WO2011059083A1 - リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2011059083A1
WO2011059083A1 PCT/JP2010/070271 JP2010070271W WO2011059083A1 WO 2011059083 A1 WO2011059083 A1 WO 2011059083A1 JP 2010070271 W JP2010070271 W JP 2010070271W WO 2011059083 A1 WO2011059083 A1 WO 2011059083A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
formula
unsubstituted
Prior art date
Application number
PCT/JP2010/070271
Other languages
English (en)
French (fr)
Inventor
安孝 河野
金子 志奈子
洋子 橋詰
石川 仁志
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2011540571A priority Critical patent/JP5721179B2/ja
Priority to CN201080051955XA priority patent/CN102668220A/zh
Priority to EP10830039.3A priority patent/EP2500975B1/en
Publication of WO2011059083A1 publication Critical patent/WO2011059083A1/ja
Priority to US13/469,366 priority patent/US20120288769A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present embodiment relates to a gel electrolyte for a lithium ion secondary battery and a lithium ion secondary battery including the same.
  • Lithium ion or lithium secondary batteries are attracting attention as power sources for mobile phones and notebook computers, as well as large power storage power sources and automobile power sources because of their high energy density.
  • Lithium ion or lithium secondary batteries can achieve a high energy density, but as the size increases, the energy density becomes enormous and higher safety is required. For example, large power storage power supplies and automobile power supplies are required to have particularly high safety. As safety measures, structural designs for cells and packages, protective circuits, electrode materials, and additives with overcharge prevention functions In addition, the separator shutdown function has been enhanced.
  • Lithium ion secondary batteries use aprotic solvents such as cyclic carbonates and chain carbonates as electrolyte solvents, and these carbonates have a high dielectric constant and high ionic conductivity of lithium ions, but have a flash point. Is low and flammable.
  • One way to further improve the safety of lithium ion secondary batteries is to make the electrolyte solution flame-retardant.
  • a technique for making an electrolyte solution flame-retardant a method of adding a phosphazene compound as a flame retardant is disclosed.
  • the nonaqueous electrolyte battery of Patent Document 1 uses a solution in which a lithium salt is dissolved in a phosphazene derivative or a solution in which a lithium salt is dissolved in a solvent in which an aprotic organic solvent is further added to the phosphazene derivative as an electrolyte.
  • the nonaqueous electrolyte battery of Patent Document 2 uses a solution in which a lithium salt is dissolved in a chain-type phosphazene derivative or a solution in which a lithium salt is dissolved in a solvent in which an aprotic organic solvent is further added to the phosphazene derivative as an electrolyte.
  • Patent Document 3 has a positive electrode, a negative electrode, a supporting salt, an organic solvent, and a non-aqueous electrolyte solution containing a phosphazene derivative, and the potential window of the phosphazene derivative has a lower limit value of +0.5 V or less.
  • the upper limit value is +4.5 V or more and the potential window of the organic solvent is wider than the potential window of the phosphazene derivative.
  • Patent Document 4 includes a positive electrode, a negative electrode, and a non-aqueous electrolyte solution containing a phosphazene derivative having a conductivity of 2.0 mS / cm at least when the support salt and lithium salt solution (0.5 mol / l) is small. There is a description regarding a non-aqueous electrolyte secondary battery.
  • SEI Solid Electrolyte Interface
  • carbonates used as the electrolyte solvent The technology used is known. Since this SEI has a large effect on charge / discharge efficiency, cycle characteristics, and safety, it is known that SEI control is indispensable at the negative electrode. SEI reduces the irreversible capacity of carbon materials and oxide materials. Can do.
  • Patent Document 5 discloses that in a nonaqueous electrolytic solution containing a lithium salt and a nonaqueous solvent, a cyclic carbonate having a carbon-carbon unsaturated bond in the molecule, and 1% by mass or more based on the nonaqueous electrolytic solution.
  • a phosphazene derivative By containing 25% by mass or less of a phosphazene derivative, it is possible to ensure safety and reliability in abnormal battery heating and the like, and to obtain excellent battery performance such as cycle characteristics.
  • Providing an aqueous electrolyte is described.
  • Patent Document 6 discloses that a non-aqueous electrolyte for a battery includes a non-aqueous solution containing a cyclic phosphazene compound and a difluorophosphate ester compound, 1,3-propane sultone, 1,3-butane sultone, 1,4-butane sultone, and 1, At least one cyclic sulfur compound selected from the group consisting of 3,2-dioxathiolane-2,2-dioxide and a supporting salt.
  • JP-A-6-13108 Japanese Patent Laid-Open No. 11-144757 JP 2001-217005 A JP 2001-217007 A JP 2006-24380 A JP 2008-41413 A
  • Patent Documents 1 to 4 and 6 since the phosphazene compound is gradually reduced and decomposed on the negative electrode during long-term use, the capacity retention rate of the battery may be greatly reduced.
  • Patent Document 5 the reductive decomposition of the phosphazene compound is suppressed by adding vinylene carbonate capable of forming SEI.
  • vinylene carbonate capable of forming SEI.
  • the resistance increases.
  • the charge / discharge characteristics of the battery may be greatly reduced.
  • Patent Document 6 when these phosphazene compounds and difluorophosphates are decomposed over a long period of time, the safety ratio after long-term use may be reduced due to a decrease in the abundance ratio of the flame retardant in the electrolytic solution. . That is, when a flame retardant that undergoes reductive decomposition is added, an amount of additive corresponding to the amount of flame retardant added is required. Therefore, the resistance of the battery is also greatly increased, and the capacity and rate characteristics may be rapidly reduced. Therefore, it is necessary to select an additive capable of forming an optimal SEI in order to stabilize the phosphazene compound for a long period of time even at a high temperature with an addition amount that does not cause deterioration of battery characteristics.
  • Patent Documents 1 to 6 are all electrolytes, there is a concern about the problem of leakage.
  • the present embodiment has been made in view of the above circumstances, and the problem of the present embodiment is a gel electrolyte for a lithium ion secondary battery having high safety and good life characteristics, and lithium ion having the same It is to provide a secondary battery.
  • the gel electrolyte for a lithium ion secondary battery includes a lithium salt, a copolymer of a monomer represented by the following formula (1) or (2) and a monomer represented by the following formula (4), A compound having a phosphazene structure represented by the formula (5), and as additives, a cyclic disulfonic acid ester represented by the following formula (6), a chain disulfonic acid ester represented by the following formula (7), and the following formula It contains at least one compound selected from sultone compounds represented by (8).
  • R 1 represents H or CH 3
  • R 2 represents any of the substituents represented by the following formula (3).
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • R 4 represents H or CH 3
  • R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ).
  • X ⁇ 1 >, X ⁇ 2 > represents a halogen element or a monovalent substituent each independently, and a monovalent substituent is an alkyl group, an alkoxy group, an aryl group, an acyl group, an aryloxy group.
  • N represents an integer of 3 to 5.
  • Formula (5) may be cyclic.
  • Q is an oxygen atom, a methylene group or a single bond
  • a 1 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms which may be branched, a carbonyl group, a sulfinyl group, a branched group.
  • R 6 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and a halogen atom, R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group having 1 to 5
  • a polyfluoroalkoxy group, a hydroxyl group, a halogen atom, -NX 4 X 5 (X 4 and X 5 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and -NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).
  • R 10 to R 15 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and a carbon group having 6 or more carbon atoms, And represents an atom or group selected from 12 or less aryl groups, and n represents an integer of 0 or more and 2 or less.
  • a lithium ion secondary battery having both high safety and good life characteristics can be obtained over a long period of time.
  • the reductive decomposition of the compound having a phosphazene structure on the negative electrode active material can be suppressed. Therefore, an increase in resistance due to reductive decomposition of a compound having a phosphazene structure can be suppressed, and a good capacity retention rate can be obtained over a long period of time.
  • a compound having a phosphazene structure can be suppressed over a long period of time, an effective amount of a compound having a phosphazene structure exists in the gel electrolyte even after long-term use, so that high flame retardancy is obtained over a long period of time. be able to. Furthermore, the amount of gas generated during the initial charging can be reduced. Furthermore, conventionally, in order to stabilize the phosphazene compound at a high temperature, a considerable amount of the sultone compound represented by the formula (8) is required, but by combining with the gel electrolyte of the present embodiment, The gel electrolyte of the embodiment provides a certain SEI alternative effect.
  • a radical polymerization initiator such as an organic peroxide is not required for the gelation of the electrolytic solution, the compound having a phosphazene structure at the time of heat polymerization, and the above formula (6) having a high SEI formation ability.
  • At least one compound selected from a cyclic disulfonic acid ester represented by formula (7), a chain disulfonic acid ester represented by formula (7) and a sultone compound represented by formula (8) is not decomposed, and the radical Since the polymerization initiator is unnecessary for the battery, the battery characteristics are not deteriorated by the influence of the residue after polymerization.
  • the gel electrolyte does not have to worry about leakage as compared with the electrolytic solution, and good adhesion characteristics between the negative electrode and the positive electrode and the separator can be obtained over a long period of time so that good life characteristics can be obtained.
  • this embodiment will be described in detail.
  • the gel electrolyte for a lithium ion secondary battery of the present embodiment includes a lithium salt, a copolymer of a monomer represented by the following formula (1) or (2) and a monomer represented by the following formula (4), and the following formula:
  • R 1 represents H or CH 3
  • R 2 represents any of the substituents represented by the following formula (3).
  • R 3 represents an alkyl group having 1 to 6 carbon atoms.
  • R 4 represents H or CH 3
  • R 5 represents —COOCH 3 , —COOC 2 H 5 , —COOC 3 H 7 , —COOC 4 H 9 , —COOCH 2 CH (CH 3 ).
  • X ⁇ 1 >, X ⁇ 2 > represents a halogen element or a monovalent substituent each independently, and a monovalent substituent is an alkyl group, an alkoxy group, an aryl group, an acyl group, an aryloxy group.
  • N represents an integer of 3 to 5.
  • Formula (5) may be cyclic.
  • Q is an oxygen atom, a methylene group or a single bond
  • a 1 is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms which may be branched, a carbonyl group, a sulfinyl group, a branched group.
  • R 6 and R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, A substituted or unsubstituted fluoroalkyl group having 1 to 5 carbon atoms, a polyfluoroalkyl group having 1 to 5 carbon atoms, —SO 2 X 3 (X 3 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -SY 1 (Y 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), -COZ (Z is a hydrogen atom, or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and a halogen atom, R 7 and R 8 each independently represents a substituted or unsubstituted alkyl group having 1 to 5
  • a polyfluoroalkoxy group, a hydroxyl group, a halogen atom, -NX 4 X 5 (X 4 and X 5 are each independently a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms), and -NY 2 CONY 3 Y 4 (Y 2 to Y 4 each independently represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms).
  • R 10 to R 15 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 3 to 6 carbon atoms, and a carbon group having 6 or more carbon atoms, Represents an atom or group selected from 12 or less aryl groups, and n represents an integer of 0 or more and 2 or less.
  • Examples of the monomer represented by the formula (1) or (2) include (3-ethyl-3-oxetanyl) methyl methacrylate, glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate, and the like. These may use only 1 type and may use 2 or more types together.
  • the monomer represented by the formula (1) or (2) may be referred to as a monomer having a ring-opening polymerizable functional group.
  • Examples of the monomer represented by the formula (4) include methyl acrylate, ethyl acrylate, methyl methacrylate, propyl methacrylate, methoxytriethylene glycol methacrylate, methoxydipropylene glycol acrylate, and the like.
  • the monomer represented by the formula (4) may be used alone or in combination of two or more.
  • the monomer represented by the formula (4) may be referred to as a monomer having no ring-opening polymerizable functional group.
  • StepA A step of synthesizing a copolymer of the monomer represented by the formula (1) or (2) and the monomer represented by the formula (4); Lithium salt, Step.
  • As an additive at least one selected from a cyclic disulfonic acid ester represented by the following formula (6), a chain disulfonic acid ester represented by the following formula (7), and a sultone compound represented by the following formula (8) It is divided into the process of containing the above compounds and gelling by heating.
  • a copolymer of the monomer represented by the formula (1) or (2) and the monomer represented by the formula (4) can be synthesized by using a radical polymerization initiator.
  • radical polymerization initiators include azo initiators such as N, N-azobisisobutyronylyl, dimethyl N, N′-azobis (2-methylpropionate), benzoyl peroxide, lauroyl peroxide, and the like. An organic peroxide type initiator is mentioned.
  • These radical polymerization initiators are deactivated because they bind to the terminal of the copolymer of the monomer represented by the formula (1) or (2) and the monomer represented by the formula (4) as the reaction starts. The reaction will not occur again by reheating after completion of the reaction.
  • the compound represented by the formula (5) is used because it has flame retardancy.
  • Examples of the compound represented by the formula (5) include monoethoxypentafluorocyclotriphosphazene, diethoxytetrafluorocyclotriphosphazene, and monophenoxypentafluorotriphosphazene. These may use only 1 type and may use 2 or more types together.
  • X 1 and X 2 may be independently different groups between units.
  • the compound represented by the above formula (6) is used as the cyclic disulfonic acid ester, and the compound represented by the above (7) is used as the chain disulfonic acid ester.
  • the cyclic disulfonic acid ester represented by the above formula (6) and the chain disulfonic acid ester represented by the above formula (7) can be obtained using the production method described in JP-B-5-44946.
  • sultone compound represented by the above formula (8) for example, 1,3-propane sultone, 1,4-butane sultone or derivatives thereof can be used, but not limited thereto. These compounds may use only 1 type and may use 2 or more types together. Conventionally, in order to stabilize the phosphazene compound at a high temperature, a considerable amount of the sultone compound represented by the above formula (8) is required, but by combining with the gel electrolyte of the present embodiment, the gel electrolyte of the present embodiment. Provides a certain SEI substitution effect.
  • Step A A step of synthesizing a copolymer of the monomer represented by the formula (1) or (2) and the monomer represented by the formula (4); A lithium salt obtained in Step A, a copolymer of a monomer represented by the following formula (1) or (2) and a monomer represented by the following formula (4), and a phosphazene structure represented by the following formula (5):
  • the additive is selected from a cyclic disulfonic acid ester represented by the following formula (6), a chain disulfonic acid ester represented by the following formula (7), and a sultone compound represented by the following formula (8). It comprises a step of gelation by crosslinking in a solution in which at least one compound is dissolved in the presence of a cationic polymerization initiator.
  • Examples of the cationic polymerization initiator include various onium salts (for example, salts of cations such as ammonium and phosphonium with anions such as —BF 4 , —PF 6 , and —CF 3 SO 3 ), LiBF 4 , LiPF 6. Lithium salts such as can be used.
  • onium salts for example, salts of cations such as ammonium and phosphonium with anions such as —BF 4 , —PF 6 , and —CF 3 SO 3
  • LiBF 4 LiPF 6.
  • Lithium salts such as can be used.
  • the cyclic electrolyte is selected from the cyclic disulfonic acid ester represented by the formula (6), the chain disulfonic acid ester represented by the formula (7), and the sultone compound represented by the formula (8).
  • the proportion of at least one compound is preferably 0.05 to 12% by mass with respect to the entire gel electrolyte. When the amount is less than 0.05% by mass with respect to the entire gel electrolyte, the effect of the surface film that suppresses the reductive decomposition of the compound having the phosphazene structure cannot be sufficiently obtained.
  • the ratio is more preferably 0.1% by mass or more and 10% by mass or less, and by making it within this range, the effect of the surface film can be further improved.
  • Step B. of obtaining the gel electrolyte of the present embodiment a radical polymerization initiator such as an organic peroxide is not required, and therefore a compound having a phosphazene structure at the time of heat polymerization, a cyclic disulfonic acid ester represented by the above formula (6) having a high SEI formation ability, At least one compound selected from the chain disulfonate represented by the formula (7) and the sultone compound represented by the formula (8) is not decomposed, and the radical polymerization initiator is not required for the battery. Therefore, the battery characteristics are not deteriorated by the influence of the residue after polymerization. Further, the gel electrolyte does not have to worry about leakage as compared with the electrolytic solution, and good adhesion characteristics between the negative electrode and the positive electrode and the separator can be obtained over a long period of time so that good life characteristics can be obtained.
  • a radical polymerization initiator such as an organic peroxide is not required, and therefore a compound having a
  • the amount of gas generated during the initial charge can be reduced, which is preferable from the viewpoint of safety.
  • the compound having a phosphazene structure and the disulfonic acid ester coexist in the gel electrolyte in the above ratio, and thus has a reaction mechanism different from that of SEI formation by the gel electrolyte containing only the disulfonic acid ester and the sultone compound. This is considered to be because an SEI incorporating a compound having the above can be formed.
  • the gel electrolyte preferably contains the compound having the phosphazene structure in an amount of 3% by mass to 20% by mass with respect to the entire gel electrolyte.
  • a sufficient flame retardant effect can be obtained by containing 3% by mass or more of the compound having a phosphazene structure with respect to the whole non-aqueous electrolyte, and a decrease in ionic conductivity can be suppressed by containing 20% by mass or less. .
  • An aprotic solvent may be included in the gel electrolyte for a lithium ion secondary battery of the present embodiment.
  • the aprotic solvent include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), cyclic carbonates such as vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl.
  • Linear carbonates such as carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, ⁇ -lactones such as ⁇ -butyrolactone, 1,2- Chain ethers such as diethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, Dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-
  • lithium salt contained in the gel electrolyte for lithium ion secondary battery of the present embodiment LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiClO 4, LiAlCl 4, and LiN (C n F 2n + 1 SO 2) (C m F 2m + 1 SO 2 ) (n and m are natural numbers), LiCF 3 SO 3 and the like are exemplified, but not limited thereto.
  • the negative electrode active material contained in the negative electrode of the lithium ion secondary battery including the gel electrolyte for the lithium ion secondary battery of the present embodiment is selected from the group consisting of, for example, lithium metal, a lithium alloy, and a material capable of inserting and extracting lithium One or more substances can be used.
  • a material capable of inserting and extracting lithium ions a carbon material or an oxide can be used.
  • graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite material thereof can be used.
  • graphite has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness, and it is formed at a high processing temperature, resulting in low impurity content and improved negative electrode performance. Is advantageous.
  • a composite material of graphite with high crystallinity and amorphous carbon with low crystallinity can be used.
  • any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphoric acid, boric acid, or a composite thereof may be used, and it is particularly preferable to include silicon oxide.
  • the structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects.
  • a film forming method a vapor deposition method, a CVD method, a sputtering method, or the like can be used.
  • the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
  • a metal capable of forming an alloy with lithium is composed of a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium.
  • the lithium metal or lithium alloy is particularly preferably amorphous. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
  • Lithium metal and lithium alloy may be appropriately formed by a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, or the like. it can.
  • Examples of the positive electrode active material included in the positive electrode of the lithium ion secondary battery including the gel electrolyte for the lithium ion secondary battery of the present embodiment include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4. Can be mentioned. Moreover, what substituted the transition metal part of these lithium containing complex oxide with another element may be used.
  • a lithium-containing composite oxide having a plateau at 4.5 V or more at the metal lithium counter electrode potential can be used.
  • the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide.
  • the lithium-containing composite oxide include Li a (M x Mn 2-x ) O 4 (where 0 ⁇ x ⁇ 2 and 0 ⁇ a ⁇ 1.2. And at least one selected from the group consisting of Ni, Co, Fe, Cr and Cu).
  • a laminated body or a wound body can be used as the electrode element, and an aluminum laminate exterior body or a metal exterior body can be used as the exterior body.
  • the battery capacity is not limited.
  • FIG. 1 is a diagram illustrating the configuration of the positive electrode of the lithium ion secondary battery of Example 1 of the present embodiment.
  • FIG. 2 is a diagram illustrating the configuration of the negative electrode of the lithium ion secondary battery according to Example 1 of the present embodiment.
  • FIG. 3 is a cross-sectional view illustrating the configuration of the battery element after winding of the lithium ion secondary battery of Example 1 of the present embodiment.
  • Example 1 First, the production of the positive electrode 1 will be described with reference to FIG. A mixture of 85% by mass of LiMn 2 O 4 , 7% by mass of acetylene black as a conductive auxiliary material and 8% by mass of polyvinylidene fluoride as a binder was added to N-methylpyrrolidone and further mixed to form a positive electrode A slurry was prepared. This is applied to both surfaces of a 20 ⁇ m thick Al foil 2 as a current collector by a doctor blade method so that the thickness after the roll press treatment is 160 ⁇ m, dried at 120 ° C. for 5 minutes, and then subjected to the roll press treatment step. Then, the positive electrode active material application part 3 was formed.
  • coated to either surface was provided in both ends. One of them was provided with a positive electrode conductive tab 6. Next to the positive electrode active material non-applied part 4 provided with the positive electrode conductive tab 6, a positive electrode active material single-sided coated part 5 coated with a positive electrode active material only on one side was provided as the positive electrode 1.
  • N-methylpyrrolidone was added to a mixture of 90% by mass of graphite, 1% by mass of acetylene black as a conductive auxiliary agent, and 9% by mass of polyvinylidene fluoride as a binder. Produced. This is applied to both surfaces of a 10 ⁇ m thick Cu foil 8 serving as a current collector by the doctor blade method so that the thickness after the roll press treatment is 120 ⁇ m, and dried at 120 ° C. for 5 minutes, followed by a roll press treatment step. Then, the negative electrode active material application part 9 was formed.
  • the negative electrode active material one-side application part 10 which apply
  • a separator 1 made of a polypropylene microporous membrane having a film thickness of 25 ⁇ m and a porosity of 55% was welded and cut, and the cut portion was fixed and wound on the winding core of the winding device, and the positive electrode 1 (FIG. 1) And the tip of the negative electrode 7 (FIG. 2) were introduced.
  • the positive electrode 1 is on the opposite side of the connecting portion of the positive electrode conductive tab 6, the negative electrode 7 is on the connecting portion side of the negative electrode conductive tab 12, the negative electrode 7 is between the two separators, and the positive electrode 1 is on the upper surface of the separator.
  • the battery element hereinafter referred to as jelly roll (J / R)) was formed by arranging, rotating and winding the core.
  • the J / R was housed in an embossed laminate outer package, the positive electrode conductive tab 6 and the negative electrode conductive tab 12 were pulled out, one side of the laminate outer package was folded back, and heat fusion was performed leaving a portion for injection.
  • a polymerization initiator did not exist as a residue in the obtained polymer solution.
  • the pregel solution was injected from the laminate injection portion, vacuum impregnation was performed, the injection portion was heat-sealed, and heated and polymerized at 60 ° C. for 24 hours to obtain a battery.
  • the obtained battery was CC-CV charged to a battery voltage of 4.2 V (charging conditions: CC current 0.02 C, CV time 5 hours, temperature 20 ° C.), and then discharged to a battery voltage 3.0 V at 0.02 C.
  • the discharge capacity at that time was taken as the initial capacity, and the ratio of the obtained initial capacity to the design capacity is shown in Table 3.
  • the cycle test of the obtained battery was CC-CV charge (upper limit voltage 4.2V, current 1C, CV time 1.5 hours), CC discharge (lower limit voltage 3.0V, current 1C), both at 45 ° C. Carried out.
  • Table 3 shows the ratio of the discharge capacity at the 1000th cycle to the discharge capacity at the 1st cycle.
  • the battery after the cycle test was placed 10 cm above the tip of the flame of the gas burner, and the electrolyte solvent was volatilized and burned and judged as follows.
  • the electrolyte was not ignited: ⁇ , extinguished after 2 to 3 seconds after ignition: ⁇ , extinguished within 10 seconds after ignition: ⁇ , continued burning without extinguishing: x.
  • Example 2 is compound No. of Table 2 as an additive. The same operation as in Example 1 was carried out except that 2% by mass of 101 was mixed.
  • Example 3 is compound No. of Table 2 as an additive. The same operation as in Example 1 was performed except that 4% by mass of 101 was mixed.
  • Example 4 is compound No. of Table 1 as an additive. The same operation as in Example 1 was performed except that 2% by mass of 2 and 2% by mass of the compound 101 of Table 2 were mixed.
  • Example 5 is compound No. of Table 1 as an additive. The same procedure as in Example 1 was performed except that 2% by mass of 2 and 3% by mass of 1,3-propane sultone were mixed.
  • Example 6 is compound No. of Table 1 as an additive. The same operation as in Example 1 was performed except that 4% by mass of 2 and 6% by mass of 1,3-propane sultone were mixed.
  • Example 7 was carried out in the same manner as Example 6 except that 20% by mass of monoethoxypentafluorocyclotriphosphazene was added.
  • Example 8 was carried out in the same manner as Example 7 except that 25% by mass of monoethoxypentafluorocyclotriphosphazene was added.
  • Example 9 is compound No. of Table 1 as an additive. The same procedure as in Example 1 was performed except that 2 mass% and 1,3-propane sultone 7 mass% were mixed.
  • Example 10 Example 10 was carried out in the same manner as Example 1 except that 2% by mass of 1,3-propane sultone was added as an additive.
  • Comparative Example 1 Comparative Example 1 was carried out in the same manner as Example 7 except that monoethoxypentafluorocyclotriphosphazene was not added.
  • Comparative Example 2 Comparative Example 2 was performed in the same manner as Example 1 except that no additive was added.
  • Comparative Example 3 Comparative Example 3 was performed in the same manner as Example 1 except that 5% by mass of vinylene carbonate (VC) not corresponding to any of the above formulas (6), (7), and (8) was added as an additive. It was.
  • VC vinylene carbonate
  • Comparative Example 4 In Comparative Example 4, instead of using ethyl acrylate and (3-ethyl-3-oxetanyl) methyl methacrylate as the monomer for the gel electrolyte polymer, triethylene glycol diacrylate and trimethylolpropane triacrylate were used in a solvent of 3. A polymer solution was prepared using 8% by mass and 1% by mass. Further, 0.5% by mass of t-butyl peroxypivalate as a polymerization initiator was mixed with the pregel solution, and gelation was performed by heat polymerization. Other than that was carried out in the same manner as in Example 1.
  • Comparative Example 5 Comparative Example 5 was carried out in the same manner as Comparative Example 4 except that 2% by mass of 1,3-propane sultone was added as an additive.
  • Table 3 shows the results of Examples 1 to 10 and Comparative Examples 1 to 5.
  • SEI by the disulfonate ester incorporating the phosphazene compound is not suitable for any electrolysis involving the phosphazene compound. It is presumed that the reductive decomposition suppressing effect of the liquid component may be greater. Due to this effect, it is presumed that the life characteristics are also good.
  • Example 1 and Comparative Examples 4 and 5 it was revealed that the characteristics deteriorated when the gel according to this embodiment is not used and a gel electrolyte is produced using an initiator at the time of heat polymerization. As described above, this is presumed that the polymerization is started by the initiator and the gel electrolyte is obtained as described above, but the desired effect is not obtained because the additive and the flame retardant are decomposed.
  • SEI with a specific disulfonic acid ester and a sultone compound can suppress reductive decomposition of a compound having a phosphazene structure over a long period of time, and can obtain good life characteristics, resulting in high safety. I was able to.
  • Example 11 was carried out in the same manner as in Example 5 except that ethyl acrylate was used as a monomer having no ring-opening polymerizable functional group, and glycidyl methacrylate was used as a monomer having a ring-opening polymerizable functional group.
  • Example 12 was carried out in the same manner as in Example 5 except that ethyl acrylate was used as the monomer having no ring-opening polymerizable functional group, and 3,4-epoxycyclohexylmethyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. It was.
  • Example 13 is the same as Example 5 except that methyl methacrylate was used as the monomer having no ring-opening polymerizable functional group, and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. The same was done.
  • Example 14 was performed in the same manner as in Example 5 except that methyl methacrylate was used as a monomer having no ring-opening polymerizable functional group, and glycidyl methacrylate was used as a monomer having a ring-opening polymerizable functional group.
  • Example 15 was carried out in the same manner as in Example 5 except that methyl methacrylate was used as the monomer having no ring-opening polymerizable functional group, and 3,4-epoxycyclohexylmethyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. It was.
  • Example 16 is the same as Example 5 except that propyl methacrylate was used as the monomer having no ring-opening polymerizable functional group, and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. The same was done.
  • Example 17 was performed in the same manner as in Example 5 except that propyl methacrylate was used as a monomer having no ring-opening polymerizable functional group, and glycidyl methacrylate was used as a monomer having a ring-opening polymerizable functional group.
  • Example 18 was carried out in the same manner as Example 5 except that propyl methacrylate was used as the monomer having no ring-opening polymerizable functional group and 3,4-epoxycyclohexylmethyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. It was.
  • Example 19 Example 19 was carried out except that methoxytriethylene glycol methacrylate was used as a monomer having no ring-opening polymerizable functional group, and (3-ethyl-3-oxetanyl) methyl methacrylate was used as a monomer having a ring-opening polymerizable functional group. Performed as in Example 5.
  • Example 20 was performed in the same manner as in Example 5 except that methoxytriethylene glycol methacrylate was used as a monomer having no ring-opening polymerizable functional group, and glycidyl methacrylate was used as a monomer having a ring-opening polymerizable functional group.
  • Example 21 is the same as Example 5 except that methoxytriethylene glycol methacrylate was used as the monomer having no ring-opening polymerizable functional group, and 3,4-epoxycyclohexylmethyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. The same was done.
  • Example 22 Example 22 was carried out except that methoxydipropylene glycol acrylate was used as the monomer having no ring-opening polymerizable functional group, and (3-ethyl-3-oxetanyl) methyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. Performed as in Example 5.
  • Example 23 was carried out in the same manner as in Example 5 except that methoxydipropylene glycol acrylate was used as the monomer having no ring-opening polymerizable functional group, and glycidyl methacrylate was used as the monomer having a ring-opening polymerizable functional group.
  • Example 24 is the same as Example 5 except that methoxydipropylene glycol acrylate was used as the monomer having no ring-opening polymerizable functional group, and 3,4-epoxycyclohexylmethyl methacrylate was used as the monomer having a ring-opening polymerizable functional group. The same was done.
  • SEI with a specific disulfonic acid ester and a sultone compound can suppress reductive decomposition of a compound having a phosphazene structure over a long period of time regardless of the polymer structure, and can obtain good lifetime characteristics. As a result, high safety could be obtained.
  • Example 25 was performed in the same manner as in Example 5 except that diethoxytetrafluorocyclotriphosphazene was used as the compound having a phosphazene structure.
  • Example 26 was carried out in the same manner as Example 5 except that monophenoxypentafluorotriphosphazene was used as the compound having a phosphazene structure.
  • This embodiment can be used for energy storage devices such as an electric double layer capacitor and a lithium ion capacitor in addition to a lithium ion secondary battery.
  • Negative electrode active material application part 10 Negative electrode active material single-sided application Part 11: Negative electrode active material non-applied part 12: Negative electrode conductive tab 13: Insulating porous sheet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

 高い安全性を有し、かつ良好な寿命特性を有するリチウムイオン二次電池を提供する。リチウム塩と、特定のモノマーとの共重合体と、特定のホスファゼン構造を有する化合物と、特定の環状ジスルホン酸エステル、特定の鎖状ジスルホン酸エステルおよび特定のスルトン化合物から選ばれる少なくとも1種以上の化合物と、を含有するリチウムイオン二次電池用ゲル電解質。

Description

リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池
 本実施形態は、リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池に関するものである。
 リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できることから携帯電話やノートパソコン用の電源のほか、大型の電力貯蔵用電源や自動車用電源としても注目されている。
 リチウムイオンまたはリチウム二次電池は、高いエネルギー密度を実現できるが、大型化するとエネルギー密度は膨大となり、より高い安全性が求められる。たとえば、大型の電力貯蔵用電源や自動車用電源においては特に高い安全性が求められており、安全対策として、セルやパッケージなどの構造設計、保護回路、電極材料、過充電防止機能を有する添加剤や、セパレータのシャットダウン機能の強化などが施されている。
 リチウムイオン二次電池は、電解液溶媒として環状カーボネートや鎖状カーボネートなどの非プロトン性溶媒を使用しており、これらカーボネート類は、誘電率が高くリチウムイオンのイオン伝導度は高いが、引火点が低く可燃性であるという特徴がある。
 リチウムイオン二次電池の安全性をさらに高める手段のひとつとして電解液の難燃化が挙げられる。電解液を難燃化する手法として、難燃化剤であるホスファゼン化合物を添加する方法が開示されている。
 例えば、特許文献1の非水電解質電池は、電解質としてホスファゼン誘導体にリチウム塩を溶解した溶液又はホスファゼン誘導体に更に非プロトン性有機溶媒を加えた溶媒にリチウム塩を溶解した溶液を使用している。これにより、短絡などの異常時にも破裂、発火等の危険性がなく、かつ優れた電池性能を達成できることが記載されている。
 特許文献2の非水電解質電池は、電解質として鎖状型ホスファゼン誘導体にリチウム塩を溶解した溶液又はホスファゼン誘導体に更に非プロトン性有機溶媒を加えた溶媒にリチウム塩を溶解した溶液を使用している。これにより、短絡などの異常時にも破裂、発火等の危険性がなく、かつ優れた電池特性を達成できることが記載されている。
 特許文献3には、正極と、負極と、支持塩、有機溶媒、及び、ホスファゼン誘導体を含有する非水系電解液と、を有し、前記ホスファゼン誘導体の電位窓が、下限値+0.5V以下で、上限値+4.5V以上の範囲であり、且つ、前記有機溶媒の電位窓が、前記ホスファゼン誘導体の電位窓より広い範囲である非水系電解液二次電池に関する記載がある。
 特許文献4には、正極と、負極と、支持塩及びリチウム塩溶解液(0.5mol/l)の導電率が小さくとも2.0mS/cmのホスファゼン誘導体を含有する非水系電解液と、を有する非水系電解液二次電池に関する記載がある。
 また、電解液溶媒として使用しているカーボネート類よりも高い電位で還元分解して、リチウムイオン透過性の高い保護膜であるSEI(Solid Electrolyte Interface:固体電解質界面)を生成する物質を添加剤として使用する技術が知られている。このSEIは、充放電効率、サイクル特性、安全性に大きな影響を及ぼすことから、負極においてSEIの制御が不可欠であることが知られており、SEIにより炭素材料や酸化物材料の不可逆容量の低減ができる。
 特許文献5には、リチウム塩及び非水溶媒を含有する非水系電解液において、更に、分子内に炭素-炭素不飽和結合を有する環状炭酸エステルと、非水系電解液に対して1質量%以上、25質量%以下のホスファゼン誘導体とを含有させることで、電池の異常加熱等における安全性・信頼性を確保することができるとともに、サイクル特性等の良好な電池性能を得ることができる優れた非水系電解液を提供することが記載されている。
 特許文献6には、電池用非水系電解液は環状ホスファゼン化合物及びジフルオロリン酸エステル化合物を含む非水溶液と、1,3-プロパンスルトン、1,3-ブタンスルトン、1,4-ブタンスルトン、及び1,3,2-ジオキサチオラン-2,2-ジオキサイドからなる群から選択される少なくとも1種の環状硫黄化合物と、支持塩とを含む。これにより、高温環境下でも優れた電池性能と高い安全性を電池に付与することが記載されている。
特開平6-13108号公報 特開平11-144757号公報 特開2001-217005号公報 特開2001-217007号公報 特開2006-24380号公報 特開2008-41413号公報
 しかしながら、特許文献1~4および6において、ホスファゼン化合物は長期使用中に負極上で徐々に還元分解されるため、電池の容量維持率が大きく低下する場合がある。
 また、特許文献5では、SEI形成可能なビニレンカーボネートを添加することでホスファゼン化合物の還元分解を抑制しているが、長期にわたるホスファゼン化合物の還元分解を抑制するほどのビニレンカーボネートを添加すると、抵抗増加の原因となり、電池の充放電特性が大きく低下する場合がある。
 さらに特許文献6では、これらホスファゼン化合物およびジフルオロリン酸エステルが長期にわたり分解した場合、電解液中の難燃化剤の存在比率が低下することにより、長期使用後の安全性が低下する場合がある。つまり、還元分解する難燃化剤を添加する場合は、難燃化剤の添加量に対し相応の添加剤量が必要となる。したがって、電池の抵抗も大幅に増加し、容量やレート特性が急激に低下する場合がある。よって電池特性低下を招かない程度の添加量で、ホスファゼン化合物が高温時においても長期安定化させるため最適なSEIを形成しうる添加剤の選定が必要となってくる。
 また、特許文献1~6はいずれも電解液であるため漏液の問題が懸念される。本実施形態は上記事情に鑑みてなされたものであり、本実施形態の課題は高い安全性を有し、かつ良好な寿命特性を有するリチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池を提供することにある。
 本実施形態に係るリチウムイオン二次電池用ゲル電解質は、リチウム塩と、下記式(1)または(2)で示されるモノマーと下記式(4)で示されるモノマーとの共重合体と、下記式(5)で示されるホスファゼン構造を有する化合物とを含有し、添加剤として、下記式(6)で示される環状ジスルホン酸エステル、下記式(7)で示される鎖状ジスルホン酸エステルおよび下記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物を含有する。
Figure JPOXMLDOC01-appb-C000008
(式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記式(3)で示される置換基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000009
(式(3)中、Rは炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000010
(式(4)中、RはHまたはCHを表し、Rは-COOCH、-COOC、-COOC、-COOC、-COOCHCH(CH、-COO(CHCHO)CH、-COO(CHCHO)、-COO(CHCHCHO)CH、-COO(CHCH(CH)O)CH、-COO(CHCH(CH)O)、-OCOCH、-OCOC、または-CHOCを表す。mは1~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000011
(式(5)中、X、Xはそれぞれ独立してハロゲン元素または一価の置換基を表し、一価の置換基は、アルキル基、アルコキシ基、アリール基、アシル基、アリールオキシ基、アミノ基、アルキルチオ基、アリールチオ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ハロゲン化アリール基、ハロゲン化アシル基、ハロゲン化アリールオキシ基、ハロゲン化アミノ基、ハロゲン化アルキルチオ基またはハロゲン化アリールチオ基を示す。nは3~5の整数を表す。なお、式(5)は環状であってもよい。)
Figure JPOXMLDOC01-appb-C000012
(式(6)中、Qは酸素原子、メチレン基または単結合、Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000013
(式(7)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは置換もしくは無置換の炭素数1~5のアルキル基)、-SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、およびハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)から選ばれる原子または基を示す。)
Figure JPOXMLDOC01-appb-C000014
(式(8)中、R10~R15は、それぞれ独立して、水素原子、炭素数1以上、12以下のアルキル基、炭素数3以上、6以下のシクロアルキル基および炭素数6以上、12以下のアリール基、から選ばれる原子または基を示す。nは0以上、2以下の整数を表す。)
 本実施形態のリチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池によれば、長期にわたり高い安全性と良好な寿命特性を併せ持つリチウムイオン二次電池を得ることができる。
本実施形態の実施例1のリチウムイオン二次電池の正極の構成を説明する図である。 本実施形態の実施例1のリチウムイオン二次電池の負極の構成を説明する図である。 本実施形態の実施例1のリチウムイオン二次電池の巻回後の電池要素の構成を説明する図である。
 本実施形態によると、ホスファゼン構造を有する化合物の還元分解に対し高い抑制効果を持つ特定のジスルホン酸エステル、およびスルトン化合物を含有することにより、負極活物質上でのホスファゼン構造を有する化合物の還元分解を抑制できる。そのため、ホスファゼン構造を有する化合物の還元分解による抵抗増加を抑制でき、長期にわたり良好な容量維持率を得ることができる。また、本実施形態によると、ホスファゼン構造を有する化合物を長期にわたり還元抑制できることから、長期使用後にもゲル電解質中に有効量のホスファゼン構造を有する化合物が存在するため、長期にわたり高い難燃性を得ることができる。さらに、初回充電時におけるガスの発生量を低減することができる。さらには、従来はホスファゼン化合物を高温時に安定化させるためには相当量の前記式(8)で示されるスルトン化合物を相当量必要としたが、本実施形態のゲル電解質とを組み合わせることで、本実施形態のゲル電解質が一定のSEI代替効果が得られる。
 さらに本実施形態によると、電解液のゲル化において有機過酸化物等のラジカル重合開始剤を必要としないため、加熱重合時にホスファゼン構造を有する化合物、さらには高いSEI形成能力を有する前記式(6)で示される環状ジスルホン酸エステル、前記式(7)で示される鎖状ジスルホン酸エステルおよび前記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物が分解されず、また前記ラジカル重合開始剤は電池には不要なものであることから重合後の残存物の影響により電池特性が低下することがない。また、ゲル電解質は電解液と比較すると漏液の心配がなく、負極、正極の両電極とセパレータとの密着性が良好であることから長期にわたり良好な寿命特性を得ることができる。以下、本実施形態について詳細に説明する。
 本実施形態のリチウムイオン二次電池用ゲル電解質は、リチウム塩と、下記式(1)または(2)で示されるモノマーと下記式(4)で示されるモノマーとの共重合体と、下記式(5)で示されるホスファゼン構造を有する化合物とを含有し、添加剤として、下記式(6)で示される環状ジスルホン酸エステル、下記式(7)で示される鎖状ジスルホン酸エステルおよび下記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物を含有する。
Figure JPOXMLDOC01-appb-C000015
(式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記式(3)で示される置換基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000016
(式(3)中、Rは炭素数1~6のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000017
(式(4)中、RはHまたはCHを表し、Rは-COOCH、-COOC、-COOC、-COOC、-COOCHCH(CH、-COO(CHCHO)CH、-COO(CHCHO)、-COO(CHCHCHO)CH、-COO(CHCH(CH)O)CH、-COO(CHCH(CH)O)、-OCOCH、-OCOC、または-CHOCを表す。mは1~3の整数を示す。)
Figure JPOXMLDOC01-appb-C000018
(式(5)中、X、Xはそれぞれ独立してハロゲン元素または一価の置換基を表し、一価の置換基は、アルキル基、アルコキシ基、アリール基、アシル基、アリールオキシ基、アミノ基、アルキルチオ基、アリールチオ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ハロゲン化アリール基、ハロゲン化アシル基、ハロゲン化アリールオキシ基、ハロゲン化アミノ基、ハロゲン化アルキルチオ基またはハロゲン化アリールチオ基を示す。nは3~5の整数を表す。なお、式(5)は環状であってもよい。)
Figure JPOXMLDOC01-appb-C000019
(式(6)中、Qは酸素原子、メチレン基または単結合、Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000020
(式(7)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは置換もしくは無置換の炭素数1~5のアルキル基)、-SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、およびハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)から選ばれる原子または基を示す。)
Figure JPOXMLDOC01-appb-C000021
(式(8)中、R10~R15は、それぞれ独立して、水素原子、炭素数1以上、12以下のアルキル基、炭素数3以上、6以下のシクロアルキル基および炭素数6以上、12以下のアリール基、から選ばれる原子または基を示す。nは0以上、2以下の整数を表す。)。
 前記式(1)または(2)で示されるモノマーの例としては、(3-エチル-3-オキセタニル)メチルメタクリレート、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート等が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。なお、以下前記式(1)または(2)で示されるモノマーを、開環重合性官能基を有するモノマーと示す場合がある。
 前記式(4)で示されるモノマーの例としては、メチルアクリレート、エチルアクリレート、メチルメタクリレート、プロピルメタクリレート、メトキシトリエチレングリコールメタクリレート、メトキシジプロピレングリコールアクリレートなどが挙げられる。前記式(4)で示されるモノマーは一種のみを用いてもよく、二種以上を併用してもよい。なお、以下前記式(4)で示されるモノマーを、開環重合性官能基を有さないモノマーと示す場合がある。
 本実施形態であるゲル電解質を得る工程としては、StepA.前記式(1)または(2)で示されるモノマーと前記式(4)で示されるモノマーとの共重合体を合成する工程と、StepB.リチウム塩と、Step.Aで得られた下記式(1)または(2)で示されるモノマーと下記式(4)で示されるモノマーとの共重合体と、下記式(5)で示されるホスファゼン構造を有する化合物とを含有し、添加剤として、下記式(6)で示される環状ジスルホン酸エステル、下記式(7)で示される鎖状ジスルホン酸エステルおよび下記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物を含有し加熱によりゲル化させる工程とに分けられる。
前記StepA.前記式(1)または(2)で示されるモノマーと前記式(4)で示されるモノマーとの共重合体は、ラジカル重合開始剤を用いることで合成できる。ラジカル重合開始剤としては、N,N-アゾビスイソブチロニロリル、ジメチルN,N’-アゾビス(2-メチルプロピオネート)などのアゾ系開始剤、ベンゾイルパーオキシド、ラウロイルパーオキシド等の有機過酸化物系開始剤が挙げられる。これらラジカル重合開始剤は、反応開始とともに前記式(1)または(2)で示されるモノマーと前記式(4)で示されるモノマーとの共重合体の末端に結合することから不活性化するため、反応終了後再加熱により再度反応を起こすことはない。
 前記ホスファゼン構造を有する化合物としては、難燃性を有することから前記式(5)で示される化合物を用いる。前記式(5)で示される化合物としては、モノエトキシペンタフルオロシクロトリホスファゼン、ジエトキシテトラフルオロシクロトリホスファゼン、モノフェノキシペンタフルオロトリホスファゼンなどが挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。なお、前記式(5)で示されるホスファゼン構造を有する化合物は、各ユニット間においてX、Xはそれぞれ独立して異なる基であってもよい。
 前記ホスファゼン構造を有する化合物の還元分解を抑制する観点から、環状ジスルホン酸エステルとしては前記式(6)で示される化合物、鎖状ジスルホン酸エステルとしては前記(7)で示される化合物を用いる。
 前記式(6)で示される環状ジスルホン酸エステルの代表例を表1に、前記式(7)で示される鎖状ジスルホン酸エステルの代表例を表2に具体的に例示するが、本実施形態はこれらに限定されるものではない。これらの化合物は1種のみを用いてもよく、2種類以上を併用してもよい。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
 前記式(6)で示される環状ジスルホン酸エステルおよび前記式(7)で示される鎖状ジスルホン酸エステルは、特公平5-44946号公報に記載される製造方法を用いて得ることができる。
 前記式(8)で示されるスルトン化合物としては、例えば、1,3-プロパンスルトン、1,4-ブタンスルトンまたはそれらの誘導体を用いることができるが、これらに限定されない。これらの化合物は1種のみを用いてもよく、2種以上を併用してもよい。従来はホスファゼン化合物を高温時に安定化させるためには相当量の前記式(8)で示されるスルトン化合物を必要としたが、本実施形態のゲル電解質とを組み合わせることで、本実施形態のゲル電解質は一定のSEI代替効果が得られる。
 本実施形態に係るゲル電解質を得る工程としては、StepA.前記式(1)または(2)で示されるモノマーと前記式(4)で示されるモノマーとの共重合体を合成する工程と、StepB.StepAで得られたリチウム塩と、下記式(1)または(2)で示されるモノマーと下記式(4)で示されるモノマーとの共重合体と、下記式(5)で示されるホスファゼン構造を有する化合物とを含有し、添加剤として、下記式(6)で示される環状ジスルホン酸エステル、下記式(7)で示される鎖状ジスルホン酸エステルおよび下記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物と、を溶解した溶液中で、カチオン重合開始剤の存在下で架橋させることによりゲル化させる工程よりなる。
 前記カチオン重合開始剤としては、各種のオニウム塩(例えば、アンモニウム、ホスホニウムなどのカチオンと、-BF、-PF、-CFSOなどのアニオンとの塩等)、LiBF、LiPFなどのリチウム塩が使用できる。
 本実施形態に係るゲル電解質において、前記式(6)で示される環状ジスルホン酸エステルおよび前記式(7)で示される鎖状ジスルホン酸エステル、および前記式(8)で示されるスルトン化合物から選ばれる少なくとも1種の化合物が占める割合は、ゲル電解質全体に対し0.05~12質量%であることが好ましい。ゲル電解質全体に対し0.05質量%未満の場合、前記ホスファゼン構造を有する化合物の還元分解を抑制する表面膜の効果を十分に得ることができない。一方、前期割合がゲル電解質全体に対し12質量%を超えると、抵抗の増加を抑制することができず、電池特性をさらに向上させることができない。前記割合は0.1質量%以上、10質量%以下であることがより好ましく、この範囲とすることにより表面膜の効果をさらに向上させることができる。
 さらに本実施形態に係るゲル電解質によれば、前記本実施形態のゲル電解質を得る工程StepB.の工程において有機過酸化物等のラジカル重合開始剤を必要としないため、加熱重合時にホスファゼン構造を有する化合物、さらには高いSEI形成能力を有する前記式(6)で示される環状ジスルホン酸エステル、前記式(7)で示される鎖状ジスルホン酸エステル、および前記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物が分解されず、また前記ラジカル重合開始剤は電池には不要なものであることから重合後の残存物の影響により電池特性が低下することがない。また、ゲル電解質は電解液と比較すると漏液の心配がなく、負極、正極の両電極とセパレータとの密着性が良好であることから長期にわたり良好な寿命特性を得ることができる。
 さらに本実施形態に係るゲル電解質によれば、初回充電時におけるガスの発生量を低減することができ、安全性の観点からも好ましい。これは、ホスファゼン構造を有する化合物とジスルホン酸エステルとが前記割合でゲル電解質中に共存することにより、ジスルホン酸エステルおよびスルトン化合物のみを含有するゲル電解質によるSEI形成とは異なる反応機構で、ホスファゼン構造を有する化合物を取り込んだSEIが形成できるためと考えられる。
 前記ゲル電解質は、前記ホスファゼン構造を有する化合物を、前記ゲル電解質全体に対し3質量%以上、20質量%以下含有することが好ましい。ホスファゼン構造を有する化合物を、非水系電解液全体に対し3質量%以上含有することで十分な難燃効果が得られ、20質量%以下含有することでイオン伝導度の低下を抑制することができる。
 本実施形態のリチウムイオン二次電池用ゲル電解質には非プロトン性溶媒が含まれてもよい。該非プロトン性溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ-ブチロラクトン等のγ-ラクトン類、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステルなどがあり、これらの非プロトン性有機溶媒を一種または二種以上を混合して使用できるが、これらに限定されるものではない。
 本実施形態のリチウムイオン二次電池用ゲル電解質に含まれるリチウム塩としては、LiPF、LiBF、LiAsF、LiSbF、LiClO、LiAlCl、およびLiN(C2n+1SO)(C2m+1SO)(n、mは自然数)、LiCFSOなどが挙げられるが、これらに限定されるものではない。
 本実施形態のリチウムイオン二次電池用ゲル電解質を備えるリチウムイオン二次電池の負極に含まれる負極活物質としては、例えばリチウム金属、リチウム合金およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵、放出できる材料としては、炭素材料または酸化物を用いることができる。
 炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブなど、あるいはこれらの複合材料を用いることができる。特に、黒鉛は電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため不純物含有量が少なく、負極性能の向上に有利であり、好ましい。さらに、結晶性の高い黒鉛と結晶性の低い非晶質炭素との複合材料なども用いることができる。
 また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、リン酸、ホウ酸のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。成膜方法としては、蒸着法、CVD法、スパッタリング法などの方法を用いることができる。
 リチウム合金は、リチウムおよびリチウムと合金形成可能な金属により構成される。例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属やリチウム合金としては、特にアモルファス状態のものが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。
 リチウム金属およびリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾルーゲル方式、などの方式で適宜形成することができる。
 本実施形態のリチウムイオン二次電池用ゲル電解質を備えるリチウムイオン二次電池の正極に含まれる正極活物質としては、例えば、LiCoO、LiNiO、LiMnなどのリチウム含有複合酸化物が挙げられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置換したものでもよい。
 また、金属リチウム対極電位で4.5V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。該リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。該リチウム含有複合酸化物としては、例えばLi(MMn2-x)O(ただし、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)で表される化合物が挙げられる。
 また、本実施形態のリチウムイオン二次電池の電池構成は、電極要素として積層体や捲回体が使用でき、外装体としてはアルミラミネート外装体や金属外装体が使用できる。さらに、電池容量について限定されるものではない。
 以下に本実施形態を実施例により図面を参照して詳細に説明するが、本実施形態はこの実施例に限定されるものではない。
 図1は本実施形態の実施例1のリチウムイオン二次電池の正極の構成を説明する図である。図2は本実施形態の実施例1のリチウムイオン二次電池の負極の構成を説明する図である。図3は本実施形態の実施例1のリチウムイオン二次電池の巻回後の電池要素の構成を説明する断面図である。
 (実施例1)
 先ず、図1により正極1の作製について説明する。LiMnを85質量%と、導電補助材としてのアセチレンブラックを7質量%と、バインダーとしてポリフッ化ビニリデンを8質量%、混合したものに、N-メチルピロリドンを加えてさらに混合して正極スラリーを作製した。これをドクターブレード法により集電体となる厚さ20μmのAl箔2の両面にロールプレス処理後の厚さが160μmになるように塗布し、120℃で5分間乾燥した後にロールプレス処理工程を経て正極活物質塗布部3を形成した。なお、両端部にはいずれの面にも正極活物質が塗布されていない正極活物質非塗布部4を設けた。そのうち一方には正極導電タブ6を設けた。正極導電タブ6が設けられた正極活物質非塗布部4の隣に、片面のみ正極活物質を塗布した正極活物質片面塗布部5を設け、正極1とした。
 図2により負極7の作製について説明する。黒鉛を90質量%と、導電補助剤としてのアセチレンブラックを1質量%と、バインダーとしてのポリフッ化ビニリデンを9質量%、混合したものに、N-メチルピロリドンを加えてさらに混合して負極スラリーを作製した。これをドクターブレード法により集電体となる厚さ10μmのCu箔8の両面に、ロールプレス処理後の厚さが120μmとなるように塗布し、120℃で5分間乾燥した後にロールプレス処理工程を経て負極活物質塗布部9を形成した。なお、両端部の一方の端面には負極活物質を片面のみ塗布した負極活物質片面塗布部10と負極活物質が塗布されていない負極活物質非塗布部11を設け、負極活物質非塗布部11に負極導電タブ12を取り付け負極7とした。
 図3により電池要素の作製について説明する。膜厚25μm、気孔率55%の親水処理を施したポリプロピレン微多孔膜からなるセパレータ13を二枚溶着して切断した部分を巻回装置の巻き芯に固定し巻きとり、正極1(図1)、および負極7(図2)の先端を導入した。正極1は正極導電タブ6の接続部の反対側を、負極7は負極導電タブ12の接続部側を先端側として、負極7は二枚のセパレータの間に、正極1はセパレータの上面にそれぞれ配置して巻き芯を回転させ巻回し、電池要素(以下ジェリーロール(J/R)と表記)を形成した。
 前記J/Rをエンボス加工したラミネート外装体に収容し、正極導電タブ6と負極導電タブ12を引き出しラミネート外装体の1辺を折り返し、注液用の部分を残して熱融着を行った。
 ゲル電解質用ポリマーのモノマーとして、エチルアクリレートを74質量%、および(3-エチル-3-オキセタニル)メチルメタクリレートを26質量%の割合で仕込んだ。さらに、反応溶剤としてエチレンカーボネート(EC):ジエチルカーボネート(DEC)=30/70(体積比)の溶剤、重合開始剤としてN,N’-アゾビスイソブチロニトリルをモノマー質量に対して2500ppm加え、ドライ窒素ガスを導入しながら65~70℃で加熱反応後、室温まで冷却した。その後、希釈溶剤としてEC/DEC=30/70(体積比)の溶剤を加え、全体が均一になるまで撹拌溶解して、分子量20万、4.0質量%、EC:DEC=30/70(体積比)ポリマー溶液が得られた。なお、得られたポリマー溶液には重合開始剤が残渣として存在しないことを確認した。
 プレゲル溶液は、前記分子量20万、4.0質量%、EC:DEC=30/70(体積比)ポリマー溶液と、1.2mol/L LiPF エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=30/70(体積比)の非プロトン性溶媒と、プレゲル溶液に対し10質量%のモノエトキシペンタフルオロシクロトリホスファゼンと、プレゲル溶液に対し2質量%の表1の化合物No.2とを混合することで作製した。
 次に、前記ラミネート注液部分から前記プレゲル溶液を注液し真空含浸を行い、注液部分を熱融着し、60℃にて24時間加熱重合してゲル化させて電池を得た。
 得られた電池を、電池電圧4.2VまでCC-CV充電(充電条件:CC電流0.02C、CV時間5時間、温度20℃)した後、0.02Cで電池電圧3.0Vまで放電したときの放電容量を初期容量とし、設計容量に対して得られた初期容量の割合を表3に示した。
 得られた電池のレート特性として、20℃での0.2C容量に対する2C容量の割合を表3に示した。
 得られた電池のサイクル試験は、CC-CV充電(上限電圧4.2V、電流1C、CV時間1.5時間)、CC放電(下限電圧3.0V、電流1C)とし、いずれも45℃で実施した。容量維持率は、1サイクル目の放電容量に対する1000サイクル目の放電容量の割合を表3に示した。
 燃焼試験は、前記サイクル試験後の電池を、ガスバーナーの炎の先端から10cm上部に設置し、電解液溶媒が揮発して燃焼する様子から以下のように判断した。電解液に着火しない:◎、着火しても2~3秒後に消火:○、着火しても10秒以内に消火:△、消火しないで燃焼し続ける:×とした。
 (実施例2)
 実施例2は、添加剤として、表2の化合物No.101を2質量%混合した以外は、実施例1と同様に行った。
 (実施例3)
 実施例3は、添加剤として、表2の化合物No.101を4質量%混合した以外は、実施例1と同様に行った。
 (実施例4)
 実施例4は、添加剤として、表1の化合物No.2を2質量%、表2の化合物101を2質量%混合した以外は、実施例1と同様に行った。
 (実施例5)
 実施例5は、添加剤として、表1の化合物No.2を2質量%、1,3-プロパンスルトンを3質量%混合した以外は、実施例1と同様に行った。
 (実施例6)
 実施例6は、添加剤として、表1の化合物No.2を4質量%、1,3-プロパンスルトンを6質量%混合した以外は、実施例1と同様に行った。
 (実施例7)
 実施例7は、モノエトキシペンタフルオロシクロトリホスファゼンを20質量%添加した以外は、実施例6と同様に行った。
 (実施例8)
 実施例8は、モノエトキシペンタフルオロシクロトリホスファゼンを25質量%添加した以外は、実施例7と同様に行った。
 (実施例9)
 実施例9は、添加剤として、表1の化合物No.2を5質量%、1,3-プロパンスルトンを7質量%混合した以外は、実施例1と同様に行った。
 (実施例10)
 実施例10は、添加剤として、1,3-プロパンスルトンを2質量%混合した以外は、実施例1と同様に行った。
 (比較例1)
 比較例1は、モノエトキシペンタフルオロシクロトリホスファゼンを添加しない以外は、実施例7と同様に行った。
 (比較例2)
 比較例2は、添加剤を添加しない以外は実施例1と同様に行った。
 (比較例3)
 比較例3は、添加剤として、前記式(6)、(7)、および(8)のいずれにも該当しないビニレンカーボネート(VC)を5質量%添加した以外は、実施例1と同様に行った。
 (比較例4)
 比較例4は、ゲル電解質用ポリマーのモノマーとして、エチルアクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートを用いる代わりに、トリエチレングリコールジアクリレートとトリメチロールプロパントリアクリレートを溶剤に対しそれぞれ3.8質量%、1質量%用いてポリマー溶液を調製した。また、プレゲル溶液に対し重合開始剤としてt-ブチルパーオキシピバレートを0.5質量%混合し、加熱重合によりゲル化を行った。それ以外は実施例1と同様に行った。
 (比較例5)
 比較例5は、添加剤として、1,3-プロパンスルトンを2質量%混合した以外は、比較例4と同様に行った。
 実施例1~10よび比較例1~5の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000024
 表3の添加剤の欄に記載のNo.2は表1の化合物No.2、No.101は表2の化合物No.101、PSは1,3-プロパンスルトン、VCは前記式(2)、(3)および(4)のいずれにも該当しないビニレンカーボネートを示す。
 表3より、実施例1~6、9~10に示すように、モノエトキシペンタフルオロシクロトリホスファゼンの添加量を一定量とし、添加剤の量を増加させた場合、容量維持率は非常に良好であった。また、サイクル後の電池の燃焼試験においても電解液に着火しないかまたは着火しても2~3秒後に消化した。それに対し、比較例1では、サイクル後の電池の燃焼試験において電解液が燃焼し続けた。比較例2では、容量維持率が低く、さらに、サイクル後の電池の燃焼試験においてゲル電解質が燃焼し続けた。即ち、添加剤がないためにホスファゼン構造を有する化合物が還元分解し、燃焼抑制に有効な量が存在しなくなっていることが分かった。また、比較例3および比較例4においても、実施例と比較してやや難燃性が低下しており、ホスファゼン構造を有する化合物の還元分解を抑制するには不十分であることが示された。実施例6~9より、添加剤の添加量が多いとSEIが厚くなり、抵抗が増加する可能性はあるが、特に燃焼抑制効果についてはサイクル後も十分持続していることが分かった。また、実施例7と8の比較より、モノエトキシペンタフルオロシクロトリホスファゼンの添加量が20質量%を超えると、電解液のイオン伝導度が低下するためにややレート特性が低下し、長期サイクルにおいてはSEIに対する過剰量のホスファゼン化合物が徐々に還元分解がされたため、長期サイクル後の電池の燃焼抑制効果がわずかに低下する結果となった。また、実施例1と10の比較より、1,3-プロパンスルトンにおいても本実施形態であるゲル電解質は加熱重合による開始剤を使用していないため一定の機能を有することが明らかになった。
 さらに、各比較例と比較すると、実施例では初回充電時にガスが低減する傾向があった。実施例では、ホスファゼン構造を有する化合物とジスルホン酸エステルとが非水電解液中に共存することにより、ジスルホン酸エステルのみを含有する非水電解液によるSEI形成とは異なる反応機構で、一部のホスファゼン構造を有する化合物を取り込んだSEIが形成できるためと考えられる。しかしながら、こうして形成されたSEI上においては、電解液中に存在するホスファゼン化合物のさらなる還元を抑制できていることから、ホスファゼン化合物を取り込んだジスルホン酸エステルによるSEIは、ホスファゼン化合物を含んだ何かしらの電解液成分の還元分解抑制効果がより大きくなっている可能性があると推測される。その効果により、寿命特性も良好であると推測される。
 さらに実施例1および比較例4、5より、本実施形態に係るモノマーを用いず、かつ、加熱重合時に開始剤を用いてゲル電解質を作製した場合、特性が低下することが明らかになった。このことは、前述したように開始剤により重合が開始されゲル電解質が得られるが、その際添加剤および難燃剤が分解されるため所望の効果が得られていないと推察される。
 以上より、特定のジスルホン酸エステルおよびスルトン化合物によるSEIは、長期にわたりホスファゼン構造を有する化合物の還元分解を抑制することができ、良好な寿命特性を得ることができ、その結果、高い安全性を得ることができた。
 さらに、ホスファゼン構造を有する化合物の添加量と、添加剤の量とのバランスを最適にすることで、レート特性の維持および、良好な寿命特性を得ることができた。
 (実施例11)
 実施例11は、開環重合性官能基を有さないモノマーとしてエチルアクリレート、開環重合性官能基を有するモノマーとしてグリシジルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例12)
 実施例12は、開環重合性官能基を有さないモノマーとしてエチルアクリレート、開環重合性官能基を有するモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例13)
 実施例13は、開環重合性官能基を有さないモノマーとしてメチルメタクリレート、開環重合性官能基を有するモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例14)
 実施例14は、開環重合性官能基を有さないモノマーとしてメチルメタクリレート、開環重合性官能基を有するモノマーとしてグリシジルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例15)
 実施例15は、開環重合性官能基を有さないモノマーとしてメチルメタクリレート、開環重合性官能基を有するモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例16)
 実施例16は、開環重合性官能基を有さないモノマーとしてプロピルメタクリレート、開環重合性官能基を有するモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例17)
 実施例17は、開環重合性官能基を有さないモノマーとしてプロピルメタクリレート、開環重合性官能基を有するモノマーとしてグリシジルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例18)
 実施例18は、開環重合性官能基を有さないモノマーとしてプロピルメタクリレート、開環重合性官能基を有するモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例19)
 実施例19は、開環重合性官能基を有さないモノマーとしてメトキシトリエチレングリコールメタクリレート、開環重合性官能基を有するモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例20)
 実施例20は、開環重合性官能基を有さないモノマーとしてメトキシトリエチレングリコールメタクリレート、開環重合性官能基を有するモノマーとしてグリシジルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例21)
 実施例21は、開環重合性官能基を有さないモノマーとしてメトキシトリエチレングリコールメタクリレート、開環重合性官能基を有するモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例22)
 実施例22は、開環重合性官能基を有さないモノマーとしてメトキシジプロピレングリコールアクリレート、開環重合性官能基を有するモノマーとして(3-エチル-3-オキセタニル)メチルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例23)
 実施例23は、開環重合性官能基を有さないモノマーとしてメトキシジプロピレングリコールアクリレート、開環重合性官能基を有するモノマーとしてグリシジルメタクリレートを用いた以外は実施例5と同様に行った。
 (実施例24)
 実施例24は、開環重合性官能基を有さないモノマーとしてメトキシジプロピレングリコールアクリレート、開環重合性官能基を有するモノマーとして3,4-エポキシシクロヘキシルメチルメタクリレートを用いた以外は実施例5と同様に行った。
Figure JPOXMLDOC01-appb-T000025
 なお、表4の開環重合性官能基を有さないモノマーの欄において、1はエチルアクリレート、2はメチルメタクリレート、3はプロピルメタクリレート、4はメトキシトリエチレングリコールメタクリレート、5はメトキシジプロピレングリコールアクリレートを示す。また、表4の開環重合性官能基を有するモノマーの欄において、1は(3-エチル-3-オキセタニル)メチルメタクリレート、2はグリシジルメタクリレート、3は3,4-エポキシシクロヘキシルメチルメタクリレートを示す。
 以上より、特定のジスルホン酸エステルおよびスルトン化合物によるSEIは、ポリマー構成によらず長期にわたりホスファゼン構造を有する化合物の還元分解を抑制することができ、良好な寿命特性を得ることができた。その結果、高い安全性を得ることができた。
 (実施例25)
 実施例25は、ホスファゼン構造を有する化合物にジエトキシテトラフルオロシクロトリホスファゼンを用いた以外は実施例5と同様に行った。
 (実施例26)
 実施例26は、ホスファゼン構造を有する化合物にモノフェノキシペンタフルオロトリホスファゼンを用いた以外は実施例5と同様に行った。
Figure JPOXMLDOC01-appb-T000026
 以上より、ホスファゼン構造を有する化合物を変えても特定のジスルホン酸エステルおよびスルトン化合物によるSEIは、ポリマー構成によらず長期にわたり種々のホスファゼン構造を有する化合物の還元分解を抑制することができ、良好な寿命特性を得ることができた。その結果、高い安全性を得ることができた。
 本実施形態は、リチウムイオン二次電池の他電気二重層キャパシタや、リチウムイオンキャパシタなどエネルギー貯蔵デバイスに利用できる。
 この出願は、2009年11月13日に出願された日本出願特願2009-260039を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
1:正極
2:Al箔
3:正極活物質塗布部
4、5:正極活物質非塗布部
6:正極導電タブ
7:負極
8:Cu箔
9:負極活物質塗布部
10:負極活物質片面塗布部
11:負極活物質非塗布部
12:負極導電タブ
13:絶縁性多孔質シート

Claims (4)

  1.  リチウム塩と、下記式(1)または(2)で示されるモノマーと下記式(4)で示されるモノマーとの共重合体と、下記式(5)で示されるホスファゼン構造を有する化合物とを含有し、添加剤として、下記式(6)で示される環状ジスルホン酸エステル、下記式(7)で示される鎖状ジスルホン酸エステルおよび下記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物を含有するリチウムイオン二次電池用ゲル電解質。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、RはHまたはCHを表し、式(1)、(2)中、Rは下記式(3)で示される置換基のいずれかを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(3)中、Rは炭素数1~6のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(4)中、RはHまたはCHを表し、Rは-COOCH、-COOC、-COOC、-COOC、-COOCHCH(CH、-COO(CHCHO)CH、-COO(CHCHO)、-COO(CHCHCHO)CH、-COO(CHCH(CH)O)CH、-COO(CHCH(CH)O)、-OCOCH、-OCOC、または-CHOCを表す。mは1~3の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(5)中、X、Xはそれぞれ独立してハロゲン元素または一価の置換基を表し、一価の置換基は、アルキル基、アルコキシ基、アリール基、アシル基、アリールオキシ基、アミノ基、アルキルチオ基、アリールチオ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ハロゲン化アリール基、ハロゲン化アシル基、ハロゲン化アリールオキシ基、ハロゲン化アミノ基、ハロゲン化アルキルチオ基またはハロゲン化アリールチオ基を示す。nは3~5の整数を表す。なお、式(5)は環状であってもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(6)中、Qは酸素原子、メチレン基または単結合、Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Aは分岐していても良い置換もしくは無置換のアルキレン基を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式(7)中、RおよびRは、それぞれ独立して、水素原子、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、-SO(Xは置換もしくは無置換の炭素数1~5のアルキル基)、-SY(Yは置換もしくは無置換の炭素数1~5のアルキル基)、-COZ(Zは水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、およびハロゲン原子、から選ばれる原子または基を示す。RおよびRは、それぞれ独立して、置換もしくは無置換の炭素数1~5のアルキル基、置換もしくは無置換の炭素数1~5のアルコキシ基、置換もしくは無置換のフェノキシ基、置換もしくは無置換の炭素数1~5のフルオロアルキル基、炭素数1~5のポリフルオロアルキル基、置換もしくは無置換の炭素数1~5のフルオロアルコキシ基、炭素数1~5のポリフルオロアルコキシ基、水酸基、ハロゲン原子、-NX(XおよびXは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)、および-NYCONY(Y~Yは、それぞれ独立して、水素原子、または置換もしくは無置換の炭素数1~5のアルキル基)から選ばれる原子または基を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (式(8)中、R10~R15は、それぞれ独立して、水素原子、炭素数1以上、12以下のアルキル基、炭素数3以上、6以下のシクロアルキル基および炭素数6以上、12以下のアリール基、から選ばれる原子または基を示す。nは0以上、2以下の整数を表す。)
  2.  前記式(6)で示される環状ジスルホン酸エステル、前記式(7)で示される鎖状ジスルホン酸エステルおよび前記式(8)で示されるスルトン化合物から選ばれる少なくとも1種以上の化合物を、0.05~12質量%含有する請求項1に記載のリチウムイオン二次電池用ゲル電解質。
  3.  前記式(5)で示されるホスファゼン構造を有する化合物を、3~20質量%含有する請求項1または2に記載のリチウムイオン二次電池用ゲル電解質。
  4.  請求項1~3のいずれか1項に記載のリチウムイオン二次電池用ゲル電解質を備えたリチウムイオン二次電池。
PCT/JP2010/070271 2009-11-13 2010-11-15 リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池 WO2011059083A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011540571A JP5721179B2 (ja) 2009-11-13 2010-11-15 リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池
CN201080051955XA CN102668220A (zh) 2009-11-13 2010-11-15 锂离子二次电池用凝胶电解质和具有其的锂离子二次电池
EP10830039.3A EP2500975B1 (en) 2009-11-13 2010-11-15 Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising same
US13/469,366 US20120288769A1 (en) 2009-11-13 2012-05-11 Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-260039 2009-11-13
JP2009260039 2009-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/469,366 Continuation-In-Part US20120288769A1 (en) 2009-11-13 2012-05-11 Gel electrolyte for lithium ion secondary battery, and lithium ion secondary battery having the same

Publications (1)

Publication Number Publication Date
WO2011059083A1 true WO2011059083A1 (ja) 2011-05-19

Family

ID=43991736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070271 WO2011059083A1 (ja) 2009-11-13 2010-11-15 リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20120288769A1 (ja)
EP (1) EP2500975B1 (ja)
JP (1) JP5721179B2 (ja)
CN (1) CN102668220A (ja)
WO (1) WO2011059083A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089352A (ja) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd 非水電解質組成物及び非水電解質二次電池
JP2013033663A (ja) * 2011-08-02 2013-02-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
JP2014035798A (ja) * 2012-08-07 2014-02-24 Jsr Corp 固体電解質膜形成剤、およびそれを含有する電解液、蓄電デバイス
WO2015072556A1 (ja) * 2013-11-15 2015-05-21 日本電気株式会社 二次電池
JP5975523B2 (ja) * 2010-12-27 2016-08-23 Necエナジーデバイス株式会社 リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
JP2017511588A (ja) * 2014-04-17 2017-04-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジカルボン酸エステル含有の電解質組成物
WO2024122411A1 (ja) * 2022-12-08 2024-06-13 出光興産株式会社 化合物、組成物、固体電解質材料、電池用シート、電池及び化合物の製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105409049A (zh) * 2013-06-06 2016-03-16 株式会社杰士汤浅国际 非水电解质二次电池和非水电解质二次电池的制造方法
US20160126591A1 (en) * 2013-06-10 2016-05-05 Navitas Systems, Llc Gel electrolyte for an electrochemical cell
KR101718062B1 (ko) * 2013-09-24 2017-03-20 삼성에스디아이 주식회사 리튬전지 전해질용 첨가제, 이를 포함하는 유기전해액 및 상기 전해액을 채용한 리튬 전지
KR102380512B1 (ko) 2015-01-16 2022-03-31 삼성에스디아이 주식회사 리튬 전지용 전해액 및 이를 채용한 리튬 전지
KR102436423B1 (ko) 2015-03-12 2022-08-25 삼성에스디아이 주식회사 리튬전지용 전해질 및 상기 전해질을 포함한 리튬 전지
KR102411933B1 (ko) 2015-03-12 2022-06-22 삼성에스디아이 주식회사 유기전해액 및 이를 포함하는 리튬 전지
KR102332334B1 (ko) 2015-03-12 2021-11-29 삼성에스디아이 주식회사 유기전해액 및 이를 포함하는 리튬 전지
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102217107B1 (ko) * 2017-11-30 2021-02-18 주식회사 엘지화학 젤 폴리머 전해질용 조성물, 이로부터 제조되는 젤 폴리머 전해질 및 이를 포함하는 리튬 이차 전지
CN109888385B (zh) * 2019-01-25 2020-11-06 厦门大学 一种锂金属二次电池用电解液及锂金属二次电池
CN114221036B (zh) * 2021-12-14 2023-11-28 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电化学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110245A (ja) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk ポリマー固体電解質リチウムイオン2次電池
JP2005190869A (ja) * 2003-12-26 2005-07-14 Bridgestone Corp ポリマー電池用電解質及びそれを備えたポリマー電池
JP2006024380A (ja) * 2004-07-06 2006-01-26 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2007328992A (ja) * 2006-06-07 2007-12-20 Nec Tokin Corp 非水電解液およびそれを用いた非水電解液二次電池
JP2008041413A (ja) * 2006-08-04 2008-02-21 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047055A1 (fr) * 1999-12-20 2001-06-28 Sunstar Giken Kabushiki Kaisha Cellule secondaire aux ions de lithium a electrolyte polymere solide
JP2002025615A (ja) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP4725728B2 (ja) * 2003-12-15 2011-07-13 日本電気株式会社 二次電池
WO2005057714A1 (ja) * 2003-12-15 2005-06-23 Nec Corporation 二次電池用電解液およびそれを用いた二次電池
JP4497456B2 (ja) * 2004-04-19 2010-07-07 日立マクセル株式会社 ゲル状電解質およびそれを用いた電気化学素子
JP4822726B2 (ja) * 2005-03-30 2011-11-24 三洋電機株式会社 リチウムイオン二次電池用ポリマー及びそれを用いたリチウムイオン二次電池
CN101033323A (zh) * 2006-03-09 2007-09-12 Nec东金株式会社 聚合物凝胶电解质和使用该电解质的聚合物二次电池
JP2007273445A (ja) * 2006-03-09 2007-10-18 Nec Tokin Corp ポリマーゲル電解質およびそれを用いたポリマー二次電池
WO2011027530A1 (ja) * 2009-09-02 2011-03-10 パナソニック株式会社 非水溶媒、並びにそれを用いた非水電解液および非水系二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110245A (ja) * 2000-10-03 2002-04-12 Maxell Hokuriku Seiki Kk ポリマー固体電解質リチウムイオン2次電池
JP2005190869A (ja) * 2003-12-26 2005-07-14 Bridgestone Corp ポリマー電池用電解質及びそれを備えたポリマー電池
JP2006024380A (ja) * 2004-07-06 2006-01-26 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
JP2007328992A (ja) * 2006-06-07 2007-12-20 Nec Tokin Corp 非水電解液およびそれを用いた非水電解液二次電池
JP2008041413A (ja) * 2006-08-04 2008-02-21 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液電池

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089352A (ja) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd 非水電解質組成物及び非水電解質二次電池
JP5975523B2 (ja) * 2010-12-27 2016-08-23 Necエナジーデバイス株式会社 リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
JP2013033663A (ja) * 2011-08-02 2013-02-14 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液電池
JP2014035798A (ja) * 2012-08-07 2014-02-24 Jsr Corp 固体電解質膜形成剤、およびそれを含有する電解液、蓄電デバイス
WO2015072556A1 (ja) * 2013-11-15 2015-05-21 日本電気株式会社 二次電池
JP2017511588A (ja) * 2014-04-17 2017-04-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ジカルボン酸エステル含有の電解質組成物
US10333178B2 (en) 2014-04-17 2019-06-25 Gotion Inc. Electrolyte compositions containing esters of dicarboxylic acids
WO2024122411A1 (ja) * 2022-12-08 2024-06-13 出光興産株式会社 化合物、組成物、固体電解質材料、電池用シート、電池及び化合物の製造方法

Also Published As

Publication number Publication date
EP2500975B1 (en) 2017-01-11
EP2500975A4 (en) 2013-08-07
CN102668220A (zh) 2012-09-12
US20120288769A1 (en) 2012-11-15
JP5721179B2 (ja) 2015-05-20
JPWO2011059083A1 (ja) 2013-04-04
EP2500975A1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5721179B2 (ja) リチウムイオン二次電池用ゲル電解質およびそれを備えたリチウムイオン二次電池
JP5403710B2 (ja) 非水系電解液およびそれを備えたデバイス
JP5645287B2 (ja) 非水系電解液およびそれを備えるリチウムイオン二次電池
JP5429845B2 (ja) 非水電解液、ゲル電解質及びそれらを用いた二次電池
JP5975523B2 (ja) リチウムイオン二次電池用ゲル電解質およびリチウムイオン二次電池
JP5315674B2 (ja) 非水電池用電解液及びこれを用いた非水電池
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
JP2008300126A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
JP5641593B2 (ja) リチウムイオン電池
JP2009199960A (ja) リチウムイオン電池
JP5435644B2 (ja) ポリマー電解質及びそれを用いた二次電池
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050026A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050020A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051955.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10830039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011540571

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010830039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010830039

Country of ref document: EP