WO2006098359A1 - 表面処理金属材料 - Google Patents

表面処理金属材料 Download PDF

Info

Publication number
WO2006098359A1
WO2006098359A1 PCT/JP2006/305116 JP2006305116W WO2006098359A1 WO 2006098359 A1 WO2006098359 A1 WO 2006098359A1 JP 2006305116 W JP2006305116 W JP 2006305116W WO 2006098359 A1 WO2006098359 A1 WO 2006098359A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
treated
film layer
surface treatment
adhesion amount
Prior art date
Application number
PCT/JP2006/305116
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Sato
Takaomi Nakayama
Toshiyuki Aishima
Original Assignee
Nihon Parkerizing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co., Ltd. filed Critical Nihon Parkerizing Co., Ltd.
Priority to CN2006800085075A priority Critical patent/CN101142079B/zh
Priority to ES06729137.7T priority patent/ES2562242T3/es
Priority to JP2007508176A priority patent/JP4510079B2/ja
Priority to EP06729137.7A priority patent/EP1859930B1/en
Priority to CA2600996A priority patent/CA2600996C/en
Priority to US11/886,554 priority patent/US7641981B2/en
Publication of WO2006098359A1 publication Critical patent/WO2006098359A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/086Iron or steel solutions containing HF

Definitions

  • the present invention relates to a metal material having a surface treatment film that can be applied to automobile bodies, automobile parts, home appliances, building materials, and the like.
  • a surface-treated metal material having a zinc phosphate film or a chromate film has been generally used.
  • the zinc phosphate coating can improve the corrosion resistance of steels such as hot-rolled steel sheets and cold-rolled steel sheets, galvanized steel sheets, and some aluminum alloys.
  • the zinc phosphate film cannot avoid the generation of sludge, which is a by-product of the reaction when the surface treatment is performed, and some steel materials such as high-tensile steel plates, aluminum Depending on the type of alloy, corrosion resistance after painting could not be ensured.
  • Patent Document 1 describes a compound containing a nitrogen atom having a lone electron pair and a non-chromium coating agent for a metal surface containing the compound and a zirconium compound. And, this method describes that by applying the composition, it is possible to obtain a surface-treated film excellent in corrosion resistance and adhesion after coating without containing hexavalent chromium which is a harmful component. It has been.
  • Patent Documents 2 to 5 have been proposed as methods for depositing a surface-treated film having excellent adhesion and corrosion resistance after coating by a chemical conversion reaction.
  • Patent Document 6 a metal acetylylacetonate, a water-soluble inorganic titanium compound, and a water-soluble zirconium compound are selected from 1: 5000 to 500 It is described as a metal surface treatment composition characterized by containing it in a weight ratio of 0: 1.
  • Patent Document 7 discloses that the surface of a metal material has an oxide of at least one element selected from the group consisting of Ti, Cr, Nb, Ta, Al, Si, and Zr, and Ti, V, A group strength consisting of Al, Cr, Si, W, Ta, Fe, and Zr A corrosion-resistant film containing a total of 10% by weight or more of carbides of at least one selected element is formed. It describes the highly corrosion-resistant surface-coated metal material. And it is described that a metal material having excellent corrosion resistance can be provided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-204485
  • Patent Document 2 JP-A-56-136978
  • Patent Document 3 Japanese Patent Laid-Open No. 8-176841
  • Patent Document 4 Japanese Patent Laid-Open No. 9-25436
  • Patent Document 5 Japanese Patent Laid-Open No. 9-31404
  • Patent Document 6 JP 2000-199077 A
  • Patent Document 7 Japanese Patent Laid-Open No. 7-228961
  • the metal material targeted in Patent Document 1 is an aluminum alloy.
  • the metal material targeted for V and deviation is excellent in the corrosion resistance of the material itself. It is an alloy, and the corrosion resistance of iron-based metal materials and zinc-based metal materials could not be substantially improved.
  • the metal materials applied are aluminum alloy, magnesium, magnesium alloy, zinc, and zinc-plated alloy, and substantially improve the corrosion resistance of the iron-based metal material. I could't do it.
  • the acid of at least one element selected from a group force consisting essentially of Ti, Cr, Nb, Ta, Al, Si, and Zr is substantially formed on the surface of the metal material.
  • Two layers are required: a layer of metal and a layer of carbide of at least one element selected from the group consisting of Ti, V, Al, Cr, Si, W, Ta, Fe, Zr, In addition these layers like heat treatment and sputtering It was necessary to manufacture by a special method.
  • the present invention provides a conventional technique for zinc phosphate treatment or chromate treatment on the surface of metal materials such as iron-based metal materials such as hot-rolled steel sheets and cold-rolled steel sheets, and zinc-based metal materials such as zinc-plated steel sheets.
  • metal materials such as iron-based metal materials such as hot-rolled steel sheets and cold-rolled steel sheets, and zinc-based metal materials such as zinc-plated steel sheets.
  • the object is to provide a metal material having a surface-treated film.
  • the present invention includes the following (1) to (6).
  • K BZA, which is the mass ratio of the A1 element adhesion amount of B, is 0.
  • (C) a surface-treated metal material having a surface-treated film layer containing at least one metal element selected from the group force consisting of Zn, Ca, and Mg on the surface of the metal material, and in the surface-treated film layer,
  • K CZA, which is the mass ratio of the total adhesion amount C of the metal elements of the component (C) to the total adhesion amount A, is 0 ⁇ K ⁇ 1
  • the surface-treated metal material according to any one of (3) to (3).
  • the mass ratio of K DZA is 0 ⁇ K ⁇ 1 above
  • the surface-treated metal material according to any one of (1) to (4).
  • concentration is 5 to 5000 ppm
  • the molar concentration ratio of the fluorine element (e) to the metal element (a) is 6 or more
  • the molar concentration of the A1 element (b) to the fluorine element (e) The ratio of 0.05 to 0.05:
  • the above-mentioned (1) to (5) which has the surface-treated film layer obtained by bringing an aqueous solution having L 0 into contact with the surface of the metal material. Surface treatment metal material.
  • the present invention relates to corrosion resistance after coating and corrosion resistance on uncoated surfaces of metal materials such as ferrous metal materials such as hot-rolled steel sheets and cold-rolled steel sheets, and zinc-based metal materials such as galvanized steel sheets. It is an epoch-making thing that makes it possible to provide a metal material having a surface treatment film using a component that does not contain environmentally harmful components and can be deposited by a simple method. .
  • the present invention provides the following components (A) and (B):
  • K BZA, which is the mass ratio of the A1 element adhesion amount B, of 0.
  • the surface-treated metal material of the present invention has a surface-treated film layer containing components as described later on the surface of the metal material.
  • the metal material is an iron-based metal material, a zinc-based metal material, an aluminum-based material, a magnesium-based material, or the like.
  • the ferrous metal material is a steel plate such as a cold rolled steel plate or a hot rolled steel plate, or a special steel such as a rod steel, a steel strip, a steel strip, a steel pipe, a wire rod, a forged product, or a bearing steel.
  • a steel plate such as a cold rolled steel plate or a hot rolled steel plate
  • a special steel such as a rod steel, a steel strip, a steel strip, a steel pipe, a wire rod, a forged product, or a bearing steel.
  • the zinc-based metal material refers to a zinc die-cast, zinc-containing metal material, and the like. Furthermore, the zinc-containing metal material refers to zinc, or zinc and another metal, such as -keckle. , Iron, aluminum, manganese, chromium, magnesium, connort, lead, and antimony (including unavoidable impurities) and the like are plated on the surface of any metal material.
  • the method of plating is not limited, and for example, melting plating, electric plating, vapor deposition plating, or the like can be applied.
  • the aluminum-based material refers to a 5000-series aluminum alloy, an aluminum alloy plate material such as a 6000-series aluminum alloy, an aluminum alloy die cast represented by ADC-12, and the like.
  • the magnesium-based material means a plate material using a magnesium alloy, such as die casting.
  • the metal material used in the present invention is such an iron-based metal material, a zinc-based metal material, an aluminum-based metal material, a magnesium-based metal material, or the like, or a combination of two or more. It may be. When two or more metal materials are used, different metals may not be in contact with each other, or different metals may be in contact with each other by a bonding method such as welding, adhesion, or riveting.
  • the metal materials used in the present invention can be used for automobile bodies, automobile parts, home appliances, buildings. Since it is a material, etc., a paint suitable for each application, for example, cationic electrodeposition coating, anion electrodeposition coating, powder coating, solvent coating, ceramic coating, etc., and a metal material used in the present invention are combined. Also good.
  • the surface-treated metal material of the present invention has the following components (A) and (B) on the surface of such a metal material:
  • the component (A) contained in the surface-treated film layer of the surface-treated metal material of the present invention comprises at least one metal oxide selected from the group force consisting of Ti, Zr, and Hf, and Z or hydroxide. It is a thing.
  • component (B) contained in the surface-treated film layer of the surface-treated metal material of the present invention is an A1 element.
  • the metal element oxide and Z or hydroxide of the component (A) have a chemically stable property that is difficult to be affected by acid and alkali, in order to improve corrosion resistance.
  • As a component of the surface treatment film layer it is chemically suitable.
  • the present inventor added the A1 element as the component (B) to the surface treatment film layer made of the metal element acid salt and the Z or hydroxide acid salt of the component (A). It has been found that the inclusion of a certain ratio improves the cracking and peeling of the surface treatment film layer.
  • the inventor analyzed the surface-treated film layer of the surface-treated metal material of the present invention with an X-ray photoelectron spectrometer (XPS).
  • XPS X-ray photoelectron spectrometer
  • the surface-treated coating layer containing the metal element oxide and Z or hydroxide of the component (A) and the A1 element of the component (B) does not crack or peel.
  • this surface-treated film layer becomes the barrier and blocks the contact between water, oxygen, chloride, which is a corrosion-promoting component, and the metal material, so that it is considered that excellent corrosion resistance can be obtained.
  • the oxide and Z or hydroxide of the metal element of component (A) have a chemically stable property that is hardly affected by acid or alkali.
  • the pH decreases in the anode portion where the metal elution (oxidation reaction) occurs, and the pH increases in the force sword portion where the reduction reaction that is a counter reaction of the acid-acid reaction occurs.
  • the surface treatment film layer inferior in acid resistance and alkali resistance dissolves in a corrosive environment, and its effect is lost. Since the surface-treated film layer of the present invention has a chemically stable property V, it is considered that excellent effects are maintained even in a corrosive environment!
  • the surface-treated film layer can be applied to the total adhesion amount A of the metal elements of the component (A).
  • K BZA, which is the mass ratio of the A1 element adhesion amount B in (B), must be 0.001 ⁇ K ⁇ 2. If it is too small, the amount of component (B) in the surface-treated film layer is too small, and the effect of suppressing defects in the surface-treated film layer becomes small. Also, if K is too large, corrosion resistance may be reduced.
  • the total adhesion amount of the total adhesion amount A and the adhesion amount B is preferably 20 to: LOOOmgZm 2 30 to 500 mgZm 2 It is most preferable that it is 40-200 mgZm 2 .
  • the surface-treated metal material of the present invention further includes the following component (C):
  • K CZA, which is a mass ratio of the total adhesion amount C of the metal element of the component (C) to the total adhesion amount A, is 0 ⁇ K ⁇ 1.
  • the surface-treated metal material of the present invention contains such a component (C) within the range of the above-mentioned defects.
  • the corrosion resistance is further improved, which is preferable.
  • the surface-treated metal material of the present invention further includes the following component (D):
  • the mass ratio of K DZA must be 0 ⁇ K ⁇ 1
  • the surface-treated metal material of the present invention contains such a component (D) within the range of the above-mentioned defects.
  • the corrosion resistance is further improved, and in addition, lubricity is preferable because it can impart wear resistance.
  • the polymer compound is not particularly limited as long as it is a polymer compound that can be contained in the surface-treated film layer of the surface-treated metal material of the present invention. Particularly preferred from the viewpoint of improving the corrosion resistance and adhesion of the film. Examples thereof include polybulal alcohol, poly (meth) acrylic acid, a copolymer of acrylic acid and methacrylic acid, ethylene and (meth) acrylic acid and (meth).
  • Copolymers with acrylic monomers such as acrylates, copolymers of ethylene and butyl acetate, polyurethanes, amino-modified phenolic resins, polybuluamines, polyallylamines, polyester resins, epoxy resins, chitosan and their compounds Tannin, tannic acid and salts thereof, phytic acid, naphthalene norphonic acid polymer, and the like.
  • acrylic monomers such as acrylates, copolymers of ethylene and butyl acetate, polyurethanes, amino-modified phenolic resins, polybuluamines, polyallylamines, polyester resins, epoxy resins, chitosan and their compounds Tannin, tannic acid and salts thereof, phytic acid, naphthalene norphonic acid polymer, and the like.
  • At least one polymer compound selected from the group power consisting of such polymer compounds can be preferably used.
  • the method for producing the surface-treated metal material of the present invention is not particularly limited as long as it is a treatment method capable of imparting the surface-treated film layer containing the above components to the surface of the metal material.
  • a chemical conversion treatment method for depositing a surface treatment film layer by a chemical reaction for depositing a surface treatment film layer by a chemical reaction, a method for applying and drying a solution containing the components of the surface treatment film layer on the surface of the metal material, a vapor deposition method, and an aqueous solution obtained by hydrolyzing metal alkoxide
  • a sol-gel method in which the metal material is dipped and then pulled up to attach a film component can be used.
  • the metal material used in the present invention is a shape having a complex structure
  • the surface treatment film layer is accompanied by a chemical reaction on the surface of the metal material, so that excellent adhesion is provided between the surface treatment film layer and the metal material surface. It has the advantage of being easy to obtain.
  • the chemical conversion treatment method includes spray treatment in which a surface treatment liquid is sprayed on the surface of the metal material, immersion treatment in which the metal material is immersed in the surface treatment liquid, and surface treatment liquid is poured on the surface of the metal material.
  • a construction method such as a pouring treatment can be used.
  • the surface treatment film in the present invention is formed by a chemical conversion treatment method in which a surface treatment film layer is deposited by the chemical reaction or a method in which a solution containing the components of the surface treatment film layer is applied and dried on the surface of the metal material.
  • the surface treatment film layer of the present invention is obtained by a chemical reaction using such an aqueous solution as a surface treatment liquid, at least one metal selected from the group consisting of Ti, Zr, and Hf is used.
  • Components other than element (a) and A1 element (b), for example, fluorine element (e) may be incorporated into the surface-treated film layer.
  • the ratio of the molar concentration of the A1 element (b) to 0.05 is 0.5: L 0, preferably 0.1 to 0.7, more preferably 0.2 to 0.6. preferable.
  • H HiF H HiF salt, Hf o, HiF, etc.
  • Hf o Hf o
  • HiF HiF
  • the method for supplying the A1 element as the component (B) to the surface treatment liquid is not particularly limited, but is preferably an inorganic A1 element.
  • A is 1, Al (SO), ⁇ 1 ( ⁇ )
  • the supply source to the surface treatment liquid of at least one metal element selected from the group force consisting of the component (C) Zn, Ca, and Mg is not particularly limited.
  • Zn, Ca, and Mg One or more of the following salts, sulfates, nitrates, hydroxides, oxides, carbonates, fluorides, and organic acid salts can be used.
  • the present invention relates to a metal material having a surface-treated film layer that can be applied to automobile bodies, automobile parts, household electrical appliances, building materials, etc., and has excellent corrosion resistance after painting and corrosion resistance when not painted. is there.
  • Example 4 surface treatment was performed in the following treatment process.
  • Alkaline degreasing was carried out by heating an aqueous solution obtained by diluting 2% of Fine Cleaner E2001 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.) with tap water to 40 ° C in both the Examples and Comparative Examples, and Sprayed for 120 seconds.
  • Fine Cleaner E2001 registered trademark: manufactured by Nihon Parkerizing Co., Ltd.
  • Aluminum nitrate reagent is added to hexafluorotitanium aqueous solution, titanium is 200ppm, aluminum is 50ppm, the ratio of molar concentration of aluminum element to molar concentration of fluorine element is 0.074, and ammonia A reagent was added to adjust the pH to 3.5, and the mixture was heated to 50 ° C. was used as the surface treatment solution in Example 1.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • An aluminum nitrate reagent and hydrofluoric acid are added to an aqueous zirconium nitrate solution to give 50 ppm as zinc, 50 ppm as aluminum, and a ratio of the molar concentration of aluminum element to the molar concentration of fluorine element to 0.47.
  • a surface treatment solution in Example 2 was prepared by adding an ammonia reagent to adjust the pH to 4.5 and then heating to 50 ° C.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • Hexafluorotitanium aqueous solution, aluminum nitrate reagent and hydrofluoric acid are added to zirconium nitrate aqueous solution, and 100 ppm as zirconium, 100 ppm as titanium, 400 ppm as aluminum, and moles of aluminum element relative to the molar concentration of fluorine element.
  • the surface treatment solution in Example 3 was obtained by setting the concentration ratio to 0.34, adding an ammonia reagent to adjust the pH to 3.0, and then heating to 45 ° C.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • hafnium oxide reagent, aluminum nitrate reagent and hydrofluoric acid to an aqueous zirconium nitrate solution and add 200 ppm for zirconium, 20 ppm for hafnium, aluminum 500 ppm as the volume, and the ratio of the molar concentration of the aluminum element to the molar concentration of the fluorine element is 0.50, and the ammonia reagent is added to adjust the pH to 4.5, followed by heating to 50 ° C. Was used as the surface treatment liquid in Example 4.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • An aluminum nitrate reagent and hydrofluoric acid are added to a hexafluorotitanium aqueous solution, the titanium is 500 ppm, the aluminum is 1500 ppm, the ratio of the molar concentration of the aluminum element to the molar concentration of the fluorine element is 0.59, and
  • the surface treatment solution in Example 5 was prepared by adding ammonia reagent to adjust the pH to 3.0 and then heating to 50 ° C.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • Example 6 Add an aluminum nitrate reagent and hydrofluoric acid to an aqueous zirconium nitrate solution to make 2000 ppm as zinc, 3000 ppm as aluminum, and the ratio of the molar concentration of aluminum to the molar concentration of fluorine as 0.53.
  • the surface treatment solution in Example 6 was prepared by adding an ammonia reagent to adjust the pH to 4.5 and then heating to 40 ° C. Then, the test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • Example 7 Add calcium nitrate reagent, aluminum nitrate reagent, and hydrofluoric acid to an aqueous zirconium nitrate solution, and calculate the ratio of the molar concentration of aluminum element to the molar concentration of fluorine element by adding 100 ppm for zirconium, 10 ppm for calcium, and 20 ppm for aluminum.
  • a surface treatment solution in Example 7 was prepared by adding ammonia reagent to pH 5.0 and then heating to 35 ° C.
  • a surface-treated metal material having a surface-treated film layer on the surface of the test plate was produced. [0063] (Example 8)
  • Hexafluorotitanium aqueous solution, calcium nitrate reagent, zinc sulfate reagent, aluminum nitrate reagent and hydrofluoric acid are added to the zirconium nitrate aqueous solution.
  • 50 ppm for aluminum the ratio of the molar concentration of aluminum element to the molar concentration of fluorine element is 0.24, and ammonia reagent is added to adjust the pH to 4.0 and then heated to 45 ° C.
  • a surface-treated metal material having a surface-treated film layer on the surface of the test plate was produced.
  • a surface-treated metal material having a surface-treated film layer on the surface of the test plate was produced.
  • Magnesium nitrate reagent, zinc sulfate reagent, aluminum nitrate reagent and hydrofluoric acid are added to an aqueous solution of zirconium nitrate.
  • the ratio of the molar concentration of aluminum element to the mol concentration of 0.35 was set to 0.35, ammonia reagent was added to adjust the pH to 4.2, and the mixture was heated to 50 ° C and surface-treated in Example 10. Liquid.
  • a surface-treated metal material having a surface-treated film layer on the surface of the test plate was produced.
  • Example 11 Add hafnium oxide reagent, calcium nitrate, commercially available naphthalene sulfonic acid, aluminum nitrate reagent and hydrofluoric acid to zirconium nitrate aqueous solution. 100 ppm for zirconium, 50 ppm for hafnium, 15 ppm for calcium, 50 ppm in terms of conversion, 25 ppm for aluminum, the ratio of the molar concentration of aluminum element to the molar concentration of fluorine element is set to 0.09, and an ammonia reagent is added to adjust the pH to 3.0, followed by addition to 50 ° C. The heated one was used as the surface treatment liquid in Example 11. Then, immerse the test plate in this surface treatment solution, and see K, K, K and the adhesion amount shown in Table 1.
  • the surface treatment metal material which has the surface treatment film layer which becomes this on the surface of a test plate was produced.
  • magnesium nitrate reagent commercially available polyallylamine aqueous solution, commercially available chitosan aqueous solution, aluminum nitrate reagent and hydrofluoric acid to zirconium nitrate aqueous solution, 100ppm as zirconium, 1500ppm as magnesium, and commercially available polyallylamine as solid content
  • the commercially available chitosan aqueous solution is 50 ppm in terms of solid content
  • aluminum is 150 ppm
  • the ratio of the molar concentration of aluminum to the molar concentration of fluorine is 0.30
  • an ammonia reagent is added to adjust the pH to 4 After that, the surface treatment liquid in Example 12 was heated to 45 ° C.
  • the surface treatment metal material which has the surface treatment film layer which becomes this on the surface of a test plate was produced.
  • Aluminum sulfate and hydrofluoric acid were added to a hexafluorozirconium aqueous solution, 5 ppm for zirconium, 5 ppm for aluminum, and the ratio of the molar concentration of aluminum element to the molar concentration of fluorine element was 0.05. Then, an ammonia reagent was added to adjust the pH to 4.5, and the mixture was heated to 35 ° C. was used as the surface treatment liquid in Example 13. Then, the test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • Ratio of Alchrome 713 (registered trademark: manufactured by Nihon Parkerizing Co., Ltd.), a commercially available chromic chromate treatment agent, diluted to 3.6% with tap water and heated to 50 ° C
  • the surface treatment liquid in Comparative Example 1 was used. Then, by immersing the test plate in this surface treatment solution for 1 minute, a surface-treated metal material having a chromium adhesion amount of 30 mgZm 2 was produced.
  • Titanium sulfate (IV) reagent and hydrofluoric acid are mixed to form an aqueous solution.
  • the titanium concentration is ⁇ m
  • the molar concentration of elemental fluorine is 3.8 times the molar concentration of titanium
  • an ammonia reagent is added to adjust the pH to 4
  • the surface treatment liquid in Comparative Example 2 was heated to 40 ° C.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • test plate was immersed in this surface treatment liquid, and a surface-treated metal material having a surface treatment film layer having the K and adhesion amount shown in Table 1 on the surface of the test plate was produced.
  • test plate After the surface treatment of the examples and comparative examples was visually confirmed, and the amount of the surface treatment film layer adhered was measured using a fluorescent X-ray analyzer (XRF-1800: manufactured by Shimadzu Corporation). It was measured.
  • XRF-1800 fluorescent X-ray analyzer
  • Cationic electrodeposition coating Epoxy-based cationic electrodeposition paint (Electron 9400: manufactured by Kansai Paint Co., Ltd.), voltage 200V, film thickness 20; ⁇ ⁇ , 175 ° C, 20 minutes baking
  • Top coat Aminoalkyd paint (Amirac TM-13 White: manufactured by Kansai Paint Co., Ltd.), spray coating, film thickness 35 ⁇ m, baking at 140 ° C for 20 minutes
  • the coating film at the time of completion of cationic electrodeposition coating is referred to as an electrodeposition coating film, and the coating film at the time of completion of top coating is referred to as a 3c 0ats coating film.
  • the 3c 0ats coated plate was immersed in deionized water at 40 ° C for 240 hours. After immersion, 100 squares with 2mm intervals were cut with a sharp cutter. The tape was peeled from the grid area! The number of peeled grids was counted.
  • Table 1 shows the appearance evaluation results of the surface treatment films obtained in Examples and Comparative Examples, and the adhesion amount of the surface treatment film. The appearance of the surface treatment film layer obtained in the examples is all uniform. It was one.
  • Table 2 shows the results of the SST test for the electrodeposited plate and the adhesion test result for the 3coats plate.
  • the examples showed good corrosion resistance for all levels and test plates.
  • the level Examples 5 and 10 in which the test material was heated for 10 minutes in a dryer heated to 90 ° C before alkali degreasing to change the surface state of the test plate (Examples 5 and 10)
  • Good corrosion resistance could be obtained because K, which is the ratio of A) to component (B), and the sum of the adhering amounts of component (A) and component (B) were within the claims.
  • Comparative Example 1 was a chromate treatment agent, but the corrosion resistance was clearly inferior to that of the Example.
  • Comparative Example 2 the test piece was heated with a drier before alkali degreasing, and further, since it was a film not containing component (B), fine defects were generated in the surface treatment film layer, and excellent corrosion resistance was exhibited. It is thought that he was able to do that.
  • Comparative Example 3 although the sum of component (A) and component (B) is within the claimed range, K, which is the ratio of component (A) to component (B), has a greater strength than the claimed range. He was strong enough to show corrosion resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

 金属材料表面に、従来技術であるリン酸亜鉛処理やクロメート処理皮膜と同等以上の塗装後耐食性、および未塗装耐食性に有し、さらに、スラッジを発生させず、環境に有害な成分を含まず、かつ簡単な方法で析出させることが可能な成分を用いた表面処理皮膜を有する金属材料の提供を課題とする。  解決手段は、次の成分(A)、および(B):(A)Ti、Zr、およびHfからなる群から選ばれる少なくとも1種の金属元素の酸化物および/または水酸化物、(B)Al元素、を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって、前記表面処理皮膜層において、前記成分(A)の前記金属元素の合計付着量Aに対する前記成分(B)のAl元素の付着量Bの質量比であるK1=B/Aが、0.001≦K1≦2である表面処理金属材料。

Description

明 細 書
表面処理金属材料
技術分野
[0001] 本発明は、自動車車体、自動車部品、家電製品、建材等に適用することができる表 面処理皮膜を有する金属材料に関する。
背景技術
[0002] 金属材料の塗装後の耐食性や未塗装での耐食性を高めるために、リン酸亜鉛皮 膜やクロメート皮膜を有する表面処理金属材料が一般に用いられてきた。リン酸亜鉛 皮膜は、熱延鋼板ゃ冷延鋼板等の鋼、亜鉛めつき鋼板、および一部のアルミニウム 合金の耐食性を向上させることができる。
[0003] し力しながら、リン酸亜鉛皮膜は、表面処理を行う際に反応の副生成物であるスラッ ジの発生が避けられず、かつ、高張力鋼板等の一部の鋼材や、アルミニウム合金の 種類によっては塗装後の耐食性を十分に確保することができない場合があった。
[0004] また、亜鉛メツキ鋼板やアルミニウム合金に対しては、クロメート皮膜を形成させるこ とによって十分な塗装後の性能を確保することが可能ではある。
し力しながら、昨今の環境規制から処理液および表面処理皮膜層中に有害な 6価 クロムを含むクロメート処理は敬遠される方向にある。そこで、有害な成分を含まない 表面処理皮膜層を提供する方法として、以下に示す手法が提案されている。
[0005] 例えば特許文献 1に、孤立電子対を持つ窒素原子を含有する化合物、および前記 化合物とジルコニウム化合物を含有する金属表面用ノンクロムコーティング剤に関し て記載されている。そして、この方法は、前記組成物を塗布することによって、有害成 分である 6価クロムを含まずに、塗装後の耐食性、および密着性に優れた表面処理 皮膜を得ることを可能とすると記載されて 、る。
[0006] 同様に、化成反応によって塗装後の密着性、および耐食性に優れる表面処理皮膜 を析出させる方法として、特許文献 2〜5の多数の方法が提案された。
[0007] さらに、特許文献 6では、金属ァセチルァセトネートと、水溶性無機チタン化合物及 び水溶性ジルコニウム化合物力 選ばれる少なくとも 1種の化合物を 1: 5000〜500 0: 1の重量比で含有することを特徴とする金属表面処理用組成物につ!/ヽて記載され ている。
[0008] さらに、特許文献 7には、金属材の表面に Ti、 Cr、 Nb、 Ta、 Al、 Si、 Zrよりなる群から 選択される少なくとも 1種の元素の酸化物と、 Ti、 V、 Al、 Cr、 Si、 W、 Ta、 Fe、 Zrよりな る群力 選択される少なくとも 1種の元素の炭化物とを、合計で 10重量%以上含有 する耐食性皮膜が形成されたものであることを特徴とする高耐食性表面被覆金属材 について記載されている。そして、これにより耐食性に優れる金属材を提供すること ができるとの記載がある。
特許文献 1:特開 2000— 204485号公報
特許文献 2:特開昭 56— 136978号公報
特許文献 3:特開平 8— 176841号公報
特許文献 4:特開平 9 - 25436号公報
特許文献 5:特開平 9 - 31404号公報
特許文献 6:特開 2000— 199077号公報
特許文献 7 :特開平 7— 228961号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、特許文献 1では対象とされる金属素材はアルミニウム合金であり、特 許文献 2〜5では、 V、ずれも対象とされる金属材料が素材そのものの耐食性に優れる アルミニウム合金であり、実質的には鉄系金属材料や亜鉛系金属材料の耐食性を向 上させることはできなかった。
[0010] また、特許文献 6にお 、て適用される金属材料は、アルミニウム合金、マグネシウム 、マグネシウム合金、亜鉛、および亜鉛めつき合金であり、実質的には鉄系金属材料 の耐食性を向上させることはできな力つた。
[0011] さらに、特許文献 7における手法においては、実質的には、金属材の表面に Ti、 Cr 、 Nb、 Ta、 Al、 Si、 Zrよりなる群力 選択される少なくとも 1種の元素の酸ィ匕物の層と、 Ti、 V、 Al、 Cr、 Si、 W、 Ta、 Fe、 Zrよりなる群から選択される少なくとも 1種の元素の炭 化物の層との 2層が必要であり、さらにこれらの層を熱処理やスパッタリングのような 特殊な方法で製造する必要があった。
[0012] 本発明は、熱延鋼板ゃ冷延鋼板等の鉄系金属材料、および亜鉛めつき鋼板等の 亜鉛系金属材料等の金属材料表面に、従来技術であるリン酸亜鉛処理やクロメート 処理皮膜と同等以上の塗装後耐食性、および未塗装耐食性を有し、さらに、スラッジ を発生させず、環境に有害な成分を含まず、かつ簡単な方法で析出させることが可 能な成分を用いた表面処理皮膜を有する金属材料を提供することを目的とするもの である。
課題を解決するための手段
[0013] 本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来 技術にはない表面処理金属材料を完成するに至った。
[0014] すなわち本発明は、下記(1)〜(6)である。
(1)次の成分 (A)、および (B) :
(A) Ti、 Zr、および Hfからなる群力 選ばれる少なくとも 1種の金属元素の酸ィ匕物 および Zまたは水酸化物
(B) A1元素
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記成分 (A)の前記金属元素の合計付着量 Aに 対する前記成分 (B)の A1元素の付着量 Bの質量比である K =BZAが、 0. 001≤ K≤ 2である表面処理金属材料。
(2)前記成分 (B)である A1元素力 無機物由来である上記(1)に記載の表面処理 金属材料。
(3)前記合計付着量 Aと、前記付着量 Bとの合計付着量が、 20〜: LOOOmgZm2で ある上記(1)または(2)に記載の表面処理金属材料。
(4)さらに、次の成分 (C) :
(C) Zn、 Ca、および Mgからなる群力 選ばれる少なくとも 1種の金属元素 を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記合計付着量 Aに対する前記成分 (C)の前記 金属元素の合計付着量 Cの質量比である K =CZAが、 0<K≤1である上記(1) 〜(3)の、、ずれかに記載の表面処理金属材料。
(5)さらに、次の成分 (D) :
(D)少なくとも 1種の高分子化合物
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記合計付着量 Aに対する前記成分 (D)の前記 高分子化合物の合計付着量 Dの質量比である K =DZAが、 0<K≤1である上記
3 3
(1)〜(4)のいずれかに記載の表面処理金属材料。
(6) Ti、 Zr、および Hfからなる群力も選ばれる少なくとも 1種の金属元素(a)と、 A1 元素 (b)と、フッ素元素(e)とを含有し、前記金属元素(a)の濃度が 5〜5000ppmで あり、前記金属元素(a)に対する前記フッ素元素(e)のモル濃度の比が 6以上であり 、さらに、前記フッ素元素(e)に対する前記 A1元素 (b)のモル濃度の比が 0. 05〜: L 0である水溶液を、前記金属材料の前記表面に接触させて得られる前記表面処理皮 膜層を有する、上記(1)〜(5)の 、ずれかに記載の表面処理金属材料。
発明の効果
[0015] 本発明は、熱延鋼板ゃ冷延鋼板等の鉄系金属材料、および亜鉛めつき鋼板等の 亜鉛系金属材料等の金属材料表面に、塗装後の耐食性、および未塗装での耐食性 に優れ、環境に有害な成分を含まず、かつ簡単な方法で析出させることが可能な成 分を用いた表面処理皮膜を有する金属材料を提供することを可能とする画期的なも のである。
発明を実施するための最良の形態
[0016] 本発明は、次の成分 (A)、および (B):
(A) Ti、 Zr、および Hfからなる群力 選ばれる少なくとも 1種の金属元素の酸ィ匕物 および Zまたは水酸化物
(B) A1元素
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記成分 (A)の前記金属元素の合計付着量 Aに 対する前記成分 (B)の A1元素の付着量 Bの質量比である K =BZAが、 0. 001≤ K≤ 2である表面処理金属材料である。 以下では、このような表面処理金属材料を「本発明の表面処理金属材料」ともいう。
[0017] <金属材料 >
本発明の表面処理金属材料は、後述するような成分を含有する表面処理皮膜層を 金属材料の表面に有する。
ここで、金属材料とは、鉄系金属材料、亜鉛系金属材料、アルミニウム系材料、およ びマグネシウム系材料等である。
[0018] ここで、鉄系金属材料とは、冷延鋼板および熱間圧延鋼板等の鋼板や、棒綱、形 綱、綱帯、鋼管、線材、铸鍛造品、および軸受綱のような特殊用途綱等を示す。
[0019] また、亜鉛系金属材料とは、亜鉛ダイキャストや亜鉛含有めつき金属材料等を示す さらに、亜鉛含有めつき金属材料とは、亜鉛、または亜鉛と他の金属、例えば-ッケ ル、鉄、アルミニウム、マンガン、クロム、マグネシウム、コノルト、鉛、およびアンチモ ン等 (不可避不純物を含む)の少なくとも 1種とを任意の金属材料の表面にめっきし たものである。ここで、そのめつき方法は限定されず、例えば溶融めつき、電気めつき 、蒸着めつき等を適用できる。
[0020] また、アルミニウム系材料とは、 5000系アルミニウム合金や、 6000系アルミニウム合 金のようなアルミニウム合金板材や、 ADC-12に代表されるアルミニウム合金ダイキヤ スト等を示す。
[0021] また、マグネシウム系材料とは、マグネシウム合金を用いた板材ゃダイキャスト等を 示す。
[0022] 本発明で用いる金属材料は、このような鉄系金属材料、亜鉛系金属材料、アルミ二 ゥム系金属材料、およびマグネシウム系金属材料等を単独に、もしくは 2以上を組み 合わせたものであってもよい。 2以上の金属材料を用いる場合、異種金属同士が接 触しない状態であっても構わないし、溶接、接着、リベット止め等の接合方法によって 異種金属同士が接合接触した状態でも構わない。
[0023] 本発明にお 、ては、上記鉄系金属材料、または上記亜鉛系金属材料の少なくとも 1種を用いることが好ましい。
[0024] また、本発明で用いる金属材料の用途は自動車車体、自動車部品、家電製品、建 材等であるので、各々の用途に応じた塗装、例えば、カチオン電着塗装、ァニオン電 着塗装、粉体塗装、溶剤塗装、セラミック塗装等と、本発明で用いる金属材料とを組 み合わせてもよい。
[0025] 本発明の表面処理金属材料は、このような金属材料の表面に、次の成分 (A)、お よび (B) :
(A) Ti、 Zr、および Hfからなる群力 選ばれる少なくとも 1種の金属元素の酸ィ匕物 および Zまたは水酸化物
(B) A1元素
を含有する表面処理皮膜層を有する。
[0026] <成分 >
本発明の表面処理金属材料の表面処理皮膜層に含有される成分 (A)は、 Ti、 Zr、 および Hfからなる群力も選ばれる少なくとも 1種の金属元素の酸ィ匕物および Zまたは 水酸化物である。
また、本発明の表面処理金属材料の表面処理皮膜層に含有される成分 (B)は、 A1 元素である。
[0027] ここで、前記成分 (A)の金属元素の酸化物および Zまたは水酸化物は、酸やアル カリに侵され難く化学的に安定な性質を有しており、耐食性を向上させるための表面 処理皮膜層の成分として、化学的には好適なものである。
[0028] し力しながら、前記成分 (A)の金属元素の酸ィ匕物および Zまたは水酸ィ匕物は硬く て脆いために、単独で用いた場合には、表面処理皮膜層に割れや剥離等の欠陥が 生じやすい。
[0029] また、同様な理由から、表面の酸ィ匕膜層が厚く成長した金属材料を用いて表面処 理皮膜層を形成した場合も、表面処理金属材料の表面に割れや剥離等の欠陥が生 じゃすい。
[0030] ここで、一般な金属材料の腐食メカニズムとしては、水と酸素とが存在する状況下で の酸素要求型腐食であるケースが多く、その腐食スピードは塩化物等の成分の存在 によって促進される。
従って、表面処理皮膜層に割れや剥離が生じると、水や酸素、および腐食促進成 分である塩ィ匕物等が金属材料に到達し易くなるため、著しく腐食し易い状態となる。
[0031] 本発明者は、このような成分 (A)の金属元素の酸ィ匕物および Zまたは水酸ィ匕物か らなる表面処理皮膜層に、成分 (B)である A1元素を、ある一定比率で含有させること によって、表面処理皮膜層の割れや剥離が改善されることを見出したのである。
[0032] 本発明者は、本発明の表面処理金属材料の表面処理皮膜層を、 X線光電子分光 分析装置 (XPS)で分析した。その結果、成分 (B)である A1元素は、被処理金属材料 が鉄系金属材料、亜鉛系金属材料、アルミニウム系材料、およびマグネシウム系材 料の 、ずれにぉ 、ても 3価の状態で表面処理皮膜層中に存在して 、ることが解った 現時点では、 3価の A1元素と結合している元素を特定できてはいないが、前記成分
(A)の金属元素の酸ィ匕物および Zまたは水酸ィ匕物力もなる表面処理皮膜層中に、 3 価の A1元素のフッ化物、酸化物、または水酸ィ匕物の形で存在することによって、表面 処理皮膜層の応力を緩和し、割れや剥離が改善されるものと考えられる。
[0033] 成分 (A)の金属元素の酸化物および Zまたは水酸化物と、成分 (B)である A1元素 とを含有する表面処理皮膜層は、割れや剥離がない。その結果、この表面処理皮膜 層がバリヤ一となり、水、酸素、および腐食促進成分である塩化物等と金属材料との 接触を遮断するので、優れた耐食性が得られるものと考えられる。
[0034] さらに、前述したとおり、成分 (A)の金属元素の酸化物および Zまたは水酸化物は 、酸やアルカリに侵され難く化学的に安定な性質を有している。ここで、金属が腐食 する際には、金属の溶出(酸化反応)が起こるアノード部では pHの低下が、また前記 酸ィ匕反応の対反応である還元反応が起こる力ソード部では pHの上昇が起こる。従つ て、耐酸性および耐アルカリ性に劣る表面処理皮膜層は、腐食環境下で溶解し、そ の効果が失われていく。本発明の表面処理皮膜層は化学的に安定な性質を有して V、るため、腐食環境下にお!/、ても優れた効果が持続するものと考えられる。
[0035] ここで、割れや剥離等の欠陥がない均一な表面処理皮膜層を得るには、表面処理 皮膜層にお!ヽて、前記成分 (A)の前記金属元素の合計付着量 Aに対する前記成分
(B)の A1元素の付着量 Bの質量比である K =BZAが、 0. 001≤K≤ 2である必要 がある。 が小さすぎると、成分 (B)の表面処理皮膜層中の量が少なすぎ、表面処理皮膜 層の欠陥を抑制する作用が小さくなる。また、 Kが大きすぎると、耐食性が低下する 恐れがある。
[0036] また、本発明の表面処理金属材料は、前記合計付着量 Aと、前記付着量 Bとの合 計付着量が、 20〜: LOOOmgZm2であることが好ましぐ 30〜500mgZm2であること 力 Sさらに好ましぐ 40〜200mgZm2であることが最も好ましい。
このような範囲より、この合計付着量力 、さすぎると表面処理皮膜層によるバリヤ一 効果が小さくなり、耐食性が低下する。逆に、大きすぎる場合は、耐食性は向上する ものの、その効果が顕著に高まることはなぐ経済的に不利となるだけである。
[0037] また、本発明の表面処理金属材料は、さらに、次の成分 (C):
(C) Zn、 Ca、および Mgからなる群力 選ばれる少なくとも 1種の金属元素 を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記合計付着量 Aに対する前記成分 (C)の前記 金属元素の合計付着量 Cの質量比である K =CZAが、 0<K≤1であることが好ま
2 2
しい。
本発明の表面処理金属材料は、このような成分 (C)を上記のような Κの範囲で含
2
有すれば、耐食性がさらに向上するので好ましい。
[0038] また、本発明の表面処理金属材料は、さらに、次の成分 (D):
(D)少なくとも 1種の高分子化合物
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 、前記表面処理皮膜層において、前記合計付着量 Αに対する前記成分 (D)の前記 高分子化合物の合計付着量 Dの質量比である K =DZAが、 0<K≤1であること
3 3
が好ましい。
本発明の表面処理金属材料は、このような成分 (D)を上記のような Κの範囲で含
3
有すれば、耐食性がさらに向上し、加えて潤滑性ゃ耐摩耗性を付与することができる ので好ましい。
[0039] ここで、高分子化合物とは、本発明の表面処理金属材料の表面処理皮膜層に含有 させることが可能な高分子化合物であれば特に制限されない。 特に皮膜の耐食性および密着性向上の観点から好ま 、例としては、ポリビュルァ ルコール、ポリ(メタ)アクリル酸、アクリル酸とメタクリル酸との共重合体、エチレンと (メ タ)アクリル酸や (メタ)アクリルレートなどのアクリル系単量体との共重合体、エチレン と酢酸ビュルとの共重合体、ポリウレタン、ァミノ変性フエノール榭脂、ポリビュルアミ ン、ポリアリルァミン、ポリエステル榭脂、エポキシ榭脂、キトサンおよびその化合物、 タンニンおよびタンニン酸とその塩、およびフィチン酸、ナフタレンスノレホン酸重合体 等を挙げることができる。
成分 (D)としては、このような高分子化合物からなる群力 選ばれる少なくとも 1つ の高分子化合物を好ましく用いることができる。
[0040] 次に、本発明の表面処理金属材料の製造方法について説明する。
本発明の表面処理金属材料の製造方法は、特に限定されず、上記の金属材料の 表面に、上記の成分を含有する表面処理皮膜層を付与することができる処理方法で あればよい。
例えば、化学反応によって表面処理皮膜層を析出させる化成処理法や、表面処理 皮膜層の成分を含む溶液を、上記金属材料表面に塗布乾燥する方法、蒸着法、お よび金属アルコキシドを加水分解した水溶液中に、上記金属材料を浸漬後引き上げ て皮膜成分を付着させるゾルゲル法等を用いることができる。
[0041] 本発明で用いる金属材料が、複雑な構造を有する形状物の場合は、表面処理皮 膜層の付き周り性の点力も化成処理法を用いることが好ましい。また、化成処理法を 採用した場合は、表面処理皮膜層の付与に、前記金属材料表面での化学反応を伴 うため、表面処理皮膜層と該金属材料表面との間に優れた密着性を得られやすい利 点ち有する。
ここで、化成処理法の工法としては、表面処理液を前記金属材料表面に噴霧する スプレー処理、該金属材料を表面処理液に浸漬する浸漬処理、および表面処理液 を該金属材料表面に流しかける流しかけ処理などの工法を用いることができる。
[0042] ここで、前記化学反応によって表面処理皮膜層を析出させる化成処理法や、表面 処理皮膜層の成分を含む溶液を前記金属材料表面に塗布乾燥する方法によって、 本発明における表面処理皮膜を形成する場合に用いる表面処理液としては、 Ti、 Zr 、および Hfからなる群力も選ばれる少なくとも 1種の金属元素(a)と、 A1元素(b)と、フ ッ素元素(e)とを含有し、前記金属元素(a)の濃度が 5〜5000ppmであり、前記金属 元素(a)に対する前記フッ素元素(e)のモル濃度の比が 6以上であり、さらに、前記フ ッ素元素(e)に対する前記 A1元素(b)のモル濃度の比が 0. 05〜: L 0である水溶液 であることが好ましい。
[0043] このような水溶液を、表面処理液として用いた化学反応によって本発明の表面処理 皮膜層を得る場合には、 Ti、 Zr、および Hfからなる群カゝら選ばれる少なくとも 1種の 金属元素(a)、および A1元素 (b)以外の成分、例えばフッ素元素(e)が表面処理皮 膜層中に取り込まれる可能性がある。しかしながら、上記に示したように、得られる表 面処理皮膜層における K =BZAが上記の範囲であれば、他の成分の影響を受け ることはなぐ割れや剥離のない均一な表面処理皮膜層を得ることが可能である。
[0044] 前記 が上記の範囲である表面処理皮膜層を得るためには、前記フッ素元素(e)
1
に対する前記 A1元素(b)のモル濃度の比が 0. 05〜: L 0、好ましくは 0. 1〜0. 7、さ らに好ましくは 0. 2〜0. 6である水溶液を用いることが好ましい。
このような水溶液を用いることによって、 Kが 0. 001から 2の範囲である表面処理 皮膜層を得られやすい。
[0045] また、このような表面処理液に、成分 (A) Ti、 Zr、および H もなる群力 選ばれる 少なくとも 1種の金属元素を供給する方法に特に限定されないが、例えば、 TiCl、 Ti(
4
SO )、 TiOSO、 Ti(NO )、 Ti〇(N〇 )、 Ti(OH)、 Ti〇〇C〇、 H TiF、 H TiFの塩、 Ti
4 2 4 3 4 3 2 4 2 2 4 2 6 2 6
〇、 Ti〇、 Ti〇、 TiF、 ZrCl、 ZrOCl、 Zr(OH) CI、 Zr(OH) Cl、 Zr(S〇 )、 ZrOSO、 Zr
2 2 3 4 4 2 2 2 3 4 2 4
(NO )、 Zr〇(N〇 )、 Zr(OH)、 H ZrF、 H ZrFの塩、 H (Zr(C〇 ) (OH) )、 H (Zr(C〇 ) (
3 4 3 2 4 2 6 2 6 2 3 2 2 2 3 2
OH) )の塩、 H Zr(OH) (SO )、 H Zr(OH) (SO )の塩、 ZrO、 ZrOBr、 ZrF、 Hi l、 Hi(
2 2 2 4 2 2 2 4 2 2 2 4 4
S〇)、 H HiF、 H HiFの塩、 Hf〇、 HiFなどをカ卩える方法を挙げることができる。
4 2 2 6 2 6 2 4
[0046] また、成分 (B)である A1元素を表面処理液に供給する方法も特に限定されな 、が 、無機物由来の A1元素であることが好ましい。具体的には、 Aに 1、 Al (SO )、 Α1(ΝΟ )
3 2 4 3 3
、 Al(OH)、 Al O、 A1F、 A1PO、 A1(H P〇)、 Na A10、 NaAlO、 Na[Al(OH) ]、 Na Al
3 3 2 3 3 4 2 4 3 3 3 2 4 3
F、 AlBr、 All、 A1(S0 ) - 12H Oおよび A1Nからなる群から選択される少なくとも 1つ
6 3 3 4 2 2
の無機物由来であるのが好ましい。 [0047] さらに、成分 (C) Zn、 Ca、および Mgからなる群力 選ばれる少なくとも 1種の金属元 素の表面処理液への供給源も特に限定されず、例えば、 Zn、 Ca、および Mgの塩ィ匕 物、硫酸塩、硝酸塩、水酸化物、酸化物、炭酸塩、フッ化物、および有機酸塩などの 1種以上を用いることができる。
[0048] 本発明は、自動車車体、自動車部品、家電製品、建材等に適用することができる、 塗装後の耐食性、および未塗装での耐食性に優れた表面処理皮膜層を有する金属 材料に関するものである。
実施例
[0049] 以下に実施例を比較例とともに挙げ、本発明の表面処理金属材料の効果を具体 的に説明する。尚、実施例で使用した金属材料、脱脂剤、化成処理剤および塗料は 市販されている材料や試薬の中から任意に選定したものであり、本発明の表面処理 金属材料の実際の用途を限定するものではない。
[0050] く供試板〉
実施例と比較例に用いた供試板の略号と内訳を以下に示す。
• SPC (冷延鋼板: JIS— G— 3141)
• GA (両面合金化溶融亜鉛メツキ鋼板:メツキ目付量 45gZm2)
[0051] <処理工程 >
実施例 1〜3、実施例 5〜13、および比較例 1〜3は以下の処理工程で表面処理を 行った。
アルカリ脱脂→水洗→皮膜化成処理→水洗→純水洗→熱風乾燥 (90°C、 5分)。
[0052] 実施例 4は次の処理工程で表面処理を行った。
アルカリ脱脂→水洗→皮膜化成処理→水洗→純水洗→冷風乾燥 (室温で乾燥す るまで (5分程度))。
[0053] アルカリ脱脂は、実施例、比較例ともにファインクリーナー E2001 (登録商標:日本 パーカライジング株式会社製)を 2%に水道水で希釈した水溶液を 40°Cに加温した 後、被処理板に 120秒間スプレーした。
[0054] 皮膜処理後の水洗、および純水洗は、実施例、比較例ともに室温で 30秒間、供試 板にスプレーした。 [0055] 実施例 5、 10および比較例 2はアルカリ脱脂を行う前に、供試材を 90°Cに加温した 乾燥機で 10分間加熱し、被処理金属材料の表面状態を変化させた。
[0056] <皮膜化成 >
(実施例 1)
へキサフルォロチタニウム水溶液に硝酸アルミニウム試薬を添カロし、チタニウムとし て 200ppm、アルミニウムとして 50ppm、フッ素元素のモル濃度に対するアルミ-ゥ ム元素のモル濃度の比を 0. 074とし、さらに、アンモニア試薬を添加し pHを 3. 5とし た後、 50°Cに加温したものを実施例 1における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0057] (実施例 2)
硝酸ジルコニウム水溶液に硝酸アルミニウム試薬およびフッ化水素酸を添加し、ジ ルコ -ゥムとして 50ppm、アルミニウムとして 50ppm、フッ素元素のモル濃度に対す るアルミニウム元素のモル濃度の比を 0. 47とし、さらに、アンモニア試薬を添カ卩し pH を 4. 5とした後、 50°Cに加温したものを実施例 2における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0058] (実施例 3)
硝酸ジルコニウム水溶液にへキサフルォロチタニウム水溶液、硝酸アルミニウム試 薬およびフッ化水素酸を添カ卩し、ジルコニウムとして 100ppm、チタニウムとして 100 ppm、アルミニウムとして 400ppm、フッ素元素のモル濃度に対するアルミニウム元素 のモル濃度の比を 0. 34とし、さらに、アンモニア試薬を添加し pHを 3. 0とした後、 4 5°Cに加温したものを実施例 3における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0059] (実施例 4)
硝酸ジルコニウム水溶液に酸化ハフニウム試薬、硝酸アルミニウム試薬およびフッ 化水素酸を添カロし、ジルコニウムとして 200ppm、ハフニウムとして 20ppm、アルミ- ゥムとして 500ppm、フッ素元素のモル濃度に対するアルミニウム元素のモル濃度の 比を 0. 50とし、さらに、アンモニア試薬を添カ卩し pHを 4. 5とした後、 50°Cに加温した ものを実施例 4における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0060] (実施例 5)
へキサフルォロチタニウム水溶液に硝酸アルミニウム試薬およびフッ化水素酸を添 加し、チタニウムとして 500ppm、アルミニウムとして 1500ppm、フッ素元素のモル濃 度に対するアルミニウム元素のモル濃度の比を 0. 59とし、さらに、アンモニア試薬を 添カロし pHを 3. 0とした後、 50°Cに加温したものを実施例 5における表面処理液とし た。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0061] (実施例 6)
硝酸ジルコニウム水溶液に硝酸アルミニウム試薬およびフッ化水素酸を添加し、ジ ルコ -ゥムとして 2000ppm、アルミニウムとして 3000ppm、フッ素元素のモル濃度に 対するアルミニウム元素のモル濃度の比を 0. 53とし、さら〖こ、アンモニア試薬を添加 し pHを 4. 5とした後、 40°Cに加温したものを実施例 6における表面処理液とした。 そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0062] (実施例 7)
硝酸ジルコニウム水溶液に硝酸カルシウム試薬、硝酸アルミニウム試薬およびフッ 化水素酸を添カロし、ジルコニウムとして 100ppm、カルシウムとして 10ppm、アルミ- ゥムとして 20ppm、フッ素元素のモル濃度に対するアルミニウム元素のモル濃度の 比を 0. 07とし、さらに、アンモニア試薬を添加し pHを 5. 0とした後、 35°Cに加温した ものを実施例 7における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す K、 Kおよび付着量となる
1 2
表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。 [0063] (実施例 8)
硝酸ジルコニウム水溶液にへキサフロォロチタニウム水溶液、硝酸カルシウム試薬 、硫酸亜鉛試薬、硝酸アルミニウム試薬およびフッ化水素酸を添加し、ジルコニウム として 20ppm、チタ二クムとして 20ppm、カノレシクムとして 5ppm、亜 として 500pp m、アルミニウムとして 50ppm、フッ素元素のモル濃度に対するアルミニウム元素の モル濃度の比を 0. 24とし、さらに、アンモニア試薬を添カ卩し pHを 4. 0とした後、 45 °Cに加温したものを実施例 8における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す K、 Kおよび付着量となる
1 2
表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0064] (実施例 9)
へキサフロォロチタニウム水溶液に酸ィ匕ハフニウム試薬、硝酸カルシウム試薬、硝 酸マグネシウム試薬、硝酸アルミニウム試薬およびフッ化水素酸を添加し、チタユウ ムとして 3000ppm、ハフニウムとして 2000ppm、カルシウムとして 20ppm、マグネシ ゥムとして 500ppm、アルミニウムとして 1500ppm、フッ素元素のモル濃度に対する アルミニウム元素のモル濃度の比を 0. 12とし、さらに、アンモニア試薬を添加し pHを 4. 0とした後、 45°Cに加温したものを実施例 9における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す K、 Kおよび付着量となる
1 2
表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0065] (実施例 10)
硝酸ジルコニウム水溶液に硝酸マグネシウム試薬、硫酸亜鉛試薬、硝酸アルミ-ゥ ム試薬およびフッ化水素酸を添カ卩し、ジルコニウムとして 100ppm、マグネシウムとし て 1000ppm、亜 |0として 2000ppm、ァノレミニゥムとして 200ppm、フッ素元素のモ ル濃度に対するアルミニウム元素のモル濃度の比を 0. 35とし、さらに、アンモニア試 薬を添加し pHを 4. 2とした後、 50°Cに加温したものを実施例 10における表面処理 液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す K、 Kおよび付着量となる
1 2
表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0066] (実施例 11) 硝酸ジルコニウム水溶液に酸化ハフニウム試薬、硝酸カルシウム、市販のナフタレ ンスルホン酸、硝酸アルミニウム試薬およびフッ化水素酸を添カ卩し、ジルコニウムとし て 100ppm、ハフニウムとして 50ppm、カルシウムとして 15ppm、ナフタレンスルホン 酸は固形物換算で 50ppm、アルミニウムとして 25ppm、フッ素元素のモル濃度に対 するアルミニウム元素のモル濃度の比を 0. 09とし、さらに、アンモニア試薬を添加し pHを 3. 0とした後、 50°Cに加温したものを実施例 11における表面処理液とした。 そして、この表面処理液に供試板を浸漬し、表 1に示す K、 K、 Kおよび付着量と
1 2 3
なる表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0067] (実施例 12)
硝酸ジルコニウム水溶液に硝酸マグネシウム試薬、市販のポリアリルアミン水溶液、 市販のキトサン水溶液、硝酸アルミニウム試薬およびフッ化水素酸を添加し、ジルコ -ゥムとして 100ppm、マグネシウムとして 1500ppm、市販のポリアリルアミンは固形 分換算で 50ppm、市販のキトサン水溶液は固形分換算で 50ppm、アルミニウムとし て 150ppm、フッ素元素のモル濃度に対するアルミニウム元素のモル濃度の比を 0. 30とし、さらに、アンモニア試薬を添カ卩し pHを 4. 0とした後、 45°Cに加温したものを 実施例 12における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す K、 K、 Kおよび付着量と
1 2 3
なる表面処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0068] (実施例 13)
へキサフルォロジルコニウム水溶液に硫酸アルミニウムおよびフッ化水素酸を添カロ し、ジルコニウムとして 5ppm、アルミニウムとして 5ppm、フッ素元素のモル濃度に対 するアルミニウム元素のモル濃度の比を 0. 05とし、さらに、アンモニア試薬を添加し pHを 4. 5とした後、 35°Cに加温したものを実施例 13における表面処理液とした。 そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0069] (比較例 1)
市販のクロミッククロメート処理薬剤であるアルクロム 713 (登録商標:日本パーカラ イジング株式会社製)を 3. 6%に水道水で希釈した水溶液を 50°Cに加温したもの比 較例 1における表面処理液とした。そして、この表面処理液に供試板を 1分間浸漬す ることによって、クロム付着量が 30mgZm2となる表面処理金属材料を作製した。
[0070] (比較例 2)
硫酸チタン (IV)試薬とフッ化水素酸とを混合し水溶液とし、チタニウムとして ΙΟΟρρ m、フッ素元素のモル濃度をチタニウムのモル濃度の 3. 8倍とし、さらに、アンモニア 試薬を添加し pHを 4. 5とした後、 40°Cに加温したものを比較例 2における表面処理 液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す付着量となる表面処理皮膜 層を供試板の表面に有する表面処理金属材料を作製した。
[0071] (比較例 3)
硝酸ジルコニウム水溶液に酸化ハフニウム試薬、硝酸アルミニウム試薬およびフッ 化水素酸を添カロし、ジルコニウムとして 50ppm、ノヽフニゥムとして 200ppm、アルミ- ゥムとして 500ppm、フッ素元素のモル濃度に対するアルミニウム元素のモル濃度の 比を 1. 76とし、さらに、アンモニア試薬を添カ卩し pHを 4. 5とした後、 50°Cに加温した ものを比較例 3における表面処理液とした。
そして、この表面処理液に供試板を浸漬し、表 1に示す Kおよび付着量となる表面 処理皮膜層を供試板の表面に有する表面処理金属材料を作製した。
[0072] <表面処理皮膜の評価、および付着量測定 >
実施例、および比較例の表面処理後の供試板の外観を目視で確認し、表面処理 皮膜層の付着量を蛍光 X線分析装置 (XRF— 1800: (株)島津製作所製)を用いて 測定した。
[0073] <塗装性能評価板の作製 >
実施例、および比較例の表面処理板の塗装性能を評価するため、以下に示すェ 程で塗装を行った。
カチオン電着塗装→純水洗→焼き付け→中塗り→焼き付け→上塗り→焼き付け。
[0074] カチオン電着塗装:エポキシ系カチオン電着塗料 (エレクロン 9400:関西ペイント 株式会社製)、電圧 200V、膜厚 20 ;ζ ΐη、 175°C20分焼き付け
[0075] 中塗り塗装:アミノアルキッド系塗料 (アミラック TP— 37グレー:関西ペイント株式会 社製)、スプレー塗装、膜厚 35 μ m、 140°C20分焼き付け
[0076] 上塗り塗装:アミノアルキッド系塗料 (アミラック TM— 13白:関西ペイント株式会社 製)、スプレー塗装、膜厚 35 μ m、 140°C20分焼き付け
[0077] <塗装性能評価 >
実施例、および比較例の塗装性能の評価を行った。評価項目と略号を以下に示す
。尚、カチオン電着塗装完了時点での塗膜を電着塗膜、上塗り塗装完了時点での塗 膜を 3c0ats塗膜と称することとする。
(0 SST:塩水噴霧試験 (電着塗膜)
GO lstADH : l次密着性 (3c0ats塗膜)
(iii) 2ndADH :耐水 2次密着性 (3c0ats塗膜)
[0078] < SST>
鋭利なカッターでクロスカットを入れた電着塗装板に 5%塩水を 840時間噴霧 (JIS —Z— 2371に準ずる)した。噴霧終了後にクロスカット部からの両側最大膨れ幅を測 し 7こ。
[0079] <両側最大膨れ幅 >
4mm未満 : ©
4mm以上 6mm未満 : 〇
6mm以上 10mm未満 : Δ
10mm以上 : X
[0080] < lstADH>
3coats塗膜に鋭利なカッターで 2mm間隔の碁盤目を 100個切った。碁盤目部のセ 口テープ剥離を行 、碁盤目の剥離個数を数えた。
[0081] < 2ndADH >
3c0ats塗装板を 40°Cの脱イオン水に 240時間浸漬した。浸漬後に鋭利なカッター で 2mm間隔の碁盤目を 100個切った。碁盤目部のセロテープ剥離を行!、碁盤目の 剥離個数を数えた。
[0082] 表 1に、実施例、および比較例で得られた表面処理皮膜の外観評価結果、および 表面処理皮膜の付着量を示す。実施例で得られた表面処理皮膜層の外観は全て均 一であった。
[0083] 電着塗装板の SST試験結果、および 3coats板の密着性試験結果を表 2に示す。 SS T試験では、実施例は全ての水準および供試板に対して良好な耐食性を示した。供 試板の表面状態を変化させるためにアルカリ脱脂を行う前に、供試材を 90°Cに加温 した乾燥機で 10分間加熱した水準 (実施例 5、および 10)についても、成分 (A)と成 分 (B)の比である K、および成分 (A)と成分 (B)の付着量の和が請求範囲に入って いたため良好な耐食性を得ることが出来た。対して、比較例 1は、クロメート処理剤で あるが、耐食性は実施例に比べ明らかに劣っていた。比較例 2はアルカリ脱脂を行う 前にテストピースを乾燥機で加熱し、さらに、成分 (B)を含まない皮膜であったため、 表面処理皮膜層に微細な欠損が発生し、優れた耐食性を示すことが出来な力つたと 考えられる。比較例 3は成分 (A)と成分 (B)の和は請求範囲に入っているものの、成 分 (A)と成分 (B)の比である Kが請求範囲より大き力つたため、優れた耐食性を示 すことが出来な力つた。
[0084] また、 3c0ats板の密着性評価結果では、実施例は全て良好な密着性を示した。対 して比較例は、 1STADHに関しては良好な結果であった力 2ndADHでは電着塗装板 の耐食性と同様に全ての比較例で良好な密着性を示す水準はな力つた。
[0085] 以上の結果から、本発明品である表面処理金属材料は、従来技術と比較して耐食 性と密着性が優れることが明らかである。
[0086] [表 1]
表 1 表面処理皮膜の性状
Figure imgf000020_0001
] 表 2 耐食性試験、 及び密着性試験結果
電着板 3coat s¾ 供試材
SST試験 I s tADH 2nd腿 (評点) (剥離個数) (剥離個数) 実施例 1 GA ◎ 0 0 実施例 2 SPC ◎ 0 0 実施例 3 GA ◎ 0 0 実施例 4 SPC ◎ 0 0 実施例 5 GA ◎ 0 0 実施例 6 SPC ◎ 0 0 実施例 7 GA ◎ 0 0 実施例 8 SPC ◎ 0 0 実施例 9 GA ◎ 0 0 実施例 10 SPC ◎ 0 0 実施例 1 1 GA ◎ 0 0 実施例 12 SPC ◎ 0 0 実施例 13 GA Δ 0 3 比較例 1 GA X 0 15 比較例 2 SPC 〇 0 27 比較例 3 SPC X 0 7

Claims

請求の範囲
[1] 次の成分 (A)、および (B) :
(A) Ti、 Zr、および Hfからなる群力 選ばれる少なくとも 1種の金属元素の酸ィ匕物 および Zまたは水酸化物
(B) A1元素
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 前記表面処理皮膜層にお!ヽて、前記成分 (A)の前記金属元素の合計付着量 Aに 対する前記成分 (B)の A1元素の付着量 Bの質量比である K =BZAが、 0. 001≤ K≤ 2である表面処理金属材料。
[2] 前記成分 (B)である A1元素が、無機物由来である請求項 1に記載の表面処理金属 材料。
[3] 前記合計付着量 Aと、前記付着量 Bとの合計付着量が、 20〜: L000mg/m2である 請求項 1または 2に記載の表面処理金属材料。
[4] さらに、次の成分 (C) :
(C) Zn、 Ca、および Mgからなる群力 選ばれる少なくとも 1種の金属元素 を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 前記表面処理皮膜層にお!ヽて、前記合計付着量 Aに対する前記成分 (C)の前記 金属元素の合計付着量 Cの質量比である K =CZAが、 0<K≤1である請求項 1
2 2
〜3の 、ずれかに記載の表面処理金属材料。
[5] さらに、次の成分 (D) :
(D)少なくとも 1種の高分子化合物
を含有する表面処理皮膜層を金属材料の表面に有する表面処理金属材料であって 前記表面処理皮膜層にお!ヽて、前記合計付着量 Αに対する前記成分 (D)の前記 高分子化合物の合計付着量 Dの質量比である K =DZAが、 0<K≤1である請求
3 3
項 1〜4のいずれかに記載の表面処理金属材料。 Ti、 Zr、および Hfからなる群力も選ばれる少なくとも 1種の金属元素(a)と、 A1元素 (b)と、フッ素元素 (e)とを含有し、
前記金属元素(a)の濃度が 5〜5000ppmであり、
前記金属元素(a)に対する前記フッ素元素(e)のモル濃度の比が 6以上であり、 さらに、前記フッ素元素(e)に対する前記 A1元素 (b)のモル濃度の比が 0. 05〜: L 0である水溶液を、前記金属材料の前記表面に接触させて得られる前記表面処理皮 膜層を有する、請求項 1〜5のいずれかに記載の表面処理金属材料。
PCT/JP2006/305116 2005-03-16 2006-03-15 表面処理金属材料 WO2006098359A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2006800085075A CN101142079B (zh) 2005-03-16 2006-03-15 表面处理金属材料
ES06729137.7T ES2562242T3 (es) 2005-03-16 2006-03-15 Material metálico con superficie tratada
JP2007508176A JP4510079B2 (ja) 2005-03-16 2006-03-15 表面処理金属材料
EP06729137.7A EP1859930B1 (en) 2005-03-16 2006-03-15 Surface-treated metallic material
CA2600996A CA2600996C (en) 2005-03-16 2006-03-15 Surface treated metal material
US11/886,554 US7641981B2 (en) 2005-03-16 2006-03-15 Surface treated metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005076057 2005-03-16
JP2005-076057 2005-03-16

Publications (1)

Publication Number Publication Date
WO2006098359A1 true WO2006098359A1 (ja) 2006-09-21

Family

ID=36991701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305116 WO2006098359A1 (ja) 2005-03-16 2006-03-15 表面処理金属材料

Country Status (8)

Country Link
US (1) US7641981B2 (ja)
EP (1) EP1859930B1 (ja)
JP (1) JP4510079B2 (ja)
KR (1) KR100921116B1 (ja)
CN (1) CN101142079B (ja)
CA (1) CA2600996C (ja)
ES (1) ES2562242T3 (ja)
WO (1) WO2006098359A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182626A (ja) * 2005-12-06 2007-07-19 Nippon Steel Corp 複合被覆金属板、複合被覆処理剤、及び複合被覆金属板の製造方法
JP2008285738A (ja) * 2007-05-21 2008-11-27 Jfe Steel Kk 表面処理鋼板
JP2011514448A (ja) * 2008-03-17 2011-05-06 日本パーカライジング株式会社 チタン及び/又はジルコニウムを主成分とする金属表面に最適化された不動態化処理剤
JP2012107309A (ja) * 2010-10-18 2012-06-07 Kobe Steel Ltd アルミニウム合金板、これを用いた接合体および自動車用部材
US8475930B2 (en) 2005-12-06 2013-07-02 Nippon Steel & Sumitomo Metal Corporation Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328545B2 (ja) * 2009-07-31 2013-10-30 日本パーカライジング株式会社 窒素化合物層を有する鉄鋼部材、及びその製造方法
CN105239064A (zh) * 2015-10-29 2016-01-13 无锡市嘉邦电力管道厂 一种耐腐蚀金属材料
JP6377226B1 (ja) * 2017-09-14 2018-08-22 ディップソール株式会社 亜鉛又は亜鉛合金基材用3価クロム化成処理液及びそれを用いた化成処理方法
CN115261161B (zh) * 2022-06-21 2023-09-29 郑州大学 一种基于壳聚糖的锈蚀青铜器温和除锈凝胶

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199077A (ja) * 1998-10-28 2000-07-18 Nippon Parkerizing Co Ltd 金属表面処理用組成物及び表面処理液ならびに表面処理方法
WO2002103080A1 (fr) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Solution traitante pour traitement de surface de metal et procede de traitement de surface
JP2004190121A (ja) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd 金属の表面処理用処理液及び表面処理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136978A (en) 1980-03-26 1981-10-26 Showa Alum Ind Kk Chemically treating solution for aluminum or aluminum alloy
JPH07228961A (ja) 1993-12-22 1995-08-29 Kobe Steel Ltd 高耐食性表面被覆金属材
JP3349851B2 (ja) 1994-12-22 2002-11-25 日本パーカライジング株式会社 スラッジ抑制性に優れたアルミニウム含有金属材料用表面処理組成物および表面処理方法
TW374096B (en) * 1995-01-10 1999-11-11 Nihon Parkerizing Process for hot dip-coating a steel material with a molten aluminum alloy according to an one-stage metal alloy coating method using a flux
WO1997003226A1 (fr) 1995-07-10 1997-01-30 Nippon Paint Co., Ltd. Traitements de surface de metaux, procede de traitement de surface de metaux et materiau metallique ayant subi un traitement de surface
JP3871361B2 (ja) 1995-07-10 2007-01-24 日本ペイント株式会社 金属表面処理組成物及び金属表面処理方法
JP3620893B2 (ja) 1995-07-21 2005-02-16 日本パーカライジング株式会社 アルミニウム含有金属用表面処理組成物及び表面処理方法
US6059896A (en) * 1995-07-21 2000-05-09 Henkel Corporation Composition and process for treating the surface of aluminiferous metals
US6361833B1 (en) * 1998-10-28 2002-03-26 Henkel Corporation Composition and process for treating metal surfaces
JP4008605B2 (ja) 1999-01-13 2007-11-14 日本ペイント株式会社 金属表面用ノンクロムコーティング剤
CA2426442A1 (en) * 2000-10-11 2003-04-08 Klaus Bittner Method for coating metallic surfaces with an aqueous composition, the aqueous composition and use of the coated substrates
TW567242B (en) * 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
EP1433878B1 (en) * 2002-12-24 2008-10-29 Chemetall GmbH Chemical conversion coating agent and surface-treated metal
JP4544450B2 (ja) * 2002-12-24 2010-09-15 日本ペイント株式会社 化成処理剤及び表面処理金属
JP4187162B2 (ja) * 2002-12-24 2008-11-26 日本ペイント株式会社 化成処理剤及び表面処理金属
EP1433875B1 (en) * 2002-12-24 2013-11-27 Chemetall GmbH Chemical conversion coating agent and surface-treated metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199077A (ja) * 1998-10-28 2000-07-18 Nippon Parkerizing Co Ltd 金属表面処理用組成物及び表面処理液ならびに表面処理方法
WO2002103080A1 (fr) * 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Solution traitante pour traitement de surface de metal et procede de traitement de surface
JP2004190121A (ja) * 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd 金属の表面処理用処理液及び表面処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1859930A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182626A (ja) * 2005-12-06 2007-07-19 Nippon Steel Corp 複合被覆金属板、複合被覆処理剤、及び複合被覆金属板の製造方法
US8475930B2 (en) 2005-12-06 2013-07-02 Nippon Steel & Sumitomo Metal Corporation Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
JP2008285738A (ja) * 2007-05-21 2008-11-27 Jfe Steel Kk 表面処理鋼板
JP2011514448A (ja) * 2008-03-17 2011-05-06 日本パーカライジング株式会社 チタン及び/又はジルコニウムを主成分とする金属表面に最適化された不動態化処理剤
JP2012107309A (ja) * 2010-10-18 2012-06-07 Kobe Steel Ltd アルミニウム合金板、これを用いた接合体および自動車用部材

Also Published As

Publication number Publication date
KR100921116B1 (ko) 2009-10-12
KR20070103492A (ko) 2007-10-23
CA2600996A1 (en) 2006-09-21
EP1859930A1 (en) 2007-11-28
CN101142079A (zh) 2008-03-12
JPWO2006098359A1 (ja) 2008-08-28
US20090004491A1 (en) 2009-01-01
ES2562242T3 (es) 2016-03-03
CA2600996C (en) 2013-07-23
JP4510079B2 (ja) 2010-07-21
EP1859930B1 (en) 2015-12-30
EP1859930A4 (en) 2011-06-08
CN101142079B (zh) 2012-11-14
US7641981B2 (en) 2010-01-05

Similar Documents

Publication Publication Date Title
JP4205939B2 (ja) 金属の表面処理方法
JP4373778B2 (ja) 金属の表面処理用処理液及び表面処理方法
JP4402991B2 (ja) 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料
JP4510079B2 (ja) 表面処理金属材料
WO2010001861A1 (ja) 金属構造物用化成処理液および表面処理方法
JP3992173B2 (ja) 金属表面処理用組成物及び表面処理液ならびに表面処理方法
TWI550099B (zh) Galvanized steel sheet containing aluminum and its manufacturing method
JP5215043B2 (ja) 金属の表面処理用処理液及び表面処理方法
JP2010090407A (ja) 金属表面処理液、および金属表面処理方法
JP4344222B2 (ja) 化成処理金属板
US5399209A (en) Composition and method for chromating treatment of metal
JP3851482B2 (ja) 耐白錆性および塗膜密着性に優れる亜鉛系めっき鋼板
EP1253218B1 (en) Organic composite coated zinc-based metal plated steel sheet
JP4615807B2 (ja) 表面処理鋼板の製造方法、表面処理鋼板、および樹脂被覆表面処理鋼板
JP3302684B2 (ja) 耐食性に優れた化成処理鋼板
JP3911160B2 (ja) 耐食性、塗装性に優れたリン酸塩処理亜鉛系メッキ鋼板
JP2001214283A (ja) 表面処理亜鉛系めっき鋼板
JP2003293168A (ja) 耐食性に優れた塗装Al−Si合金めっき鋼板
JP2003293162A (ja) 耐食性に優れた塗装めっき鋼板
MX2007011230A (es) Material metalico tratado en la superficie.
WO2005045097A1 (ja) 無機有機複合処理亜鉛系めっき鋼板
JPH0711454A (ja) 金属の塗布型クロメート処理法
JPH01162795A (ja) 亜鉛−クロム系複層電気めっき鋼板
JP2004027330A (ja) 有機複合亜鉛系メッキ鋼板
JP2004346341A (ja) 切断端面耐食性および表面性状に優れた亜鉛系めっき塗装鋼板およびその製法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008507.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007508176

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2600996

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011230

Country of ref document: MX

Ref document number: 1020077020921

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006729137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886554

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729137

Country of ref document: EP