WO2006095595A1 - 導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法 - Google Patents

導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法 Download PDF

Info

Publication number
WO2006095595A1
WO2006095595A1 PCT/JP2006/303636 JP2006303636W WO2006095595A1 WO 2006095595 A1 WO2006095595 A1 WO 2006095595A1 JP 2006303636 W JP2006303636 W JP 2006303636W WO 2006095595 A1 WO2006095595 A1 WO 2006095595A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
conductive polymer
group
antistatic
polymer
Prior art date
Application number
PCT/JP2006/303636
Other languages
English (en)
French (fr)
Inventor
Kazuyoshi Yoshida
Tailu Ning
Yasushi Masahiro
Rika Abe
Yutaka Higuchi
Original Assignee
Shin-Etsu Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005068935A external-priority patent/JP4772347B2/ja
Priority claimed from JP2005068936A external-priority patent/JP4776950B2/ja
Priority claimed from JP2005144030A external-priority patent/JP4776976B2/ja
Priority claimed from JP2005235208A external-priority patent/JP4987267B2/ja
Application filed by Shin-Etsu Polymer Co., Ltd. filed Critical Shin-Etsu Polymer Co., Ltd.
Priority to EP06714773.6A priority Critical patent/EP1857504B1/en
Priority to CN2006800073044A priority patent/CN101137718B/zh
Publication of WO2006095595A1 publication Critical patent/WO2006095595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/09Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in organic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers

Definitions

  • the present invention relates to a conductive polymer solution containing a ⁇ -conjugated conductive polymer and a method for producing the same.
  • the present invention also relates to an antistatic coating material that forms an antistatic coating film. Furthermore, the present invention relates to an antistatic hard coat layer and an optical filter.
  • the present invention relates to a conductive polymer solution containing a ⁇ -conjugated conductive polymer and a conductive coating film.
  • the antistatic adhesive which has antistatic property and adhesiveness, and an antistatic adhesive layer. It also relates to protective materials such as protective tapes, protective sheets and protective films.
  • ⁇ -conjugated conductive polymers such as polypyrrole, polythiophene, polyacetylene, polyparaphenylene, and polyarylene have been doped with an electron-donating compound or an electron-accepting compound (dopant).
  • Conductive materials have been developed and their applications are expanding.
  • a ⁇ -conjugated conductive polymer whose main chain is composed of a conjugated system containing ⁇ electrons is synthesized by an electrolytic polymerization method and a chemical oxidative polymerization method.
  • a support such as a previously formed electrode material is immersed in a mixed solution of an electrolyte serving as a dopant and a precursor monomer that forms a ⁇ -conjugated conductive polymer, and ⁇ is formed on the support.
  • a conjugated conductive polymer is formed into a film. Therefore, mass production It is difficult to
  • an oxidant and an oxidation polymerization catalyst are added to the precursor monomer of the ⁇ -conjugated conductive polymer that does not have such restrictions, and a large amount of ⁇ -conjugated conductive polymer is added in the solution. Can be manufactured.
  • an oxidant is used in the presence of polystyrene sulfonic acid, which is a polymer acid having a molecular weight of 000 to 500,000, in the presence of a cation group.
  • a method for producing an aqueous poly (3,4-dialkoxythiophene) solution by chemically oxidizing polymerization of alkoxythiophene has been proposed (see Patent Document 1).
  • a method for producing an aqueous ⁇ -conjugated conductive polymer colloid solution by chemical oxidative polymerization in the presence of polyacrylic acid has been proposed (see Patent Document 2).
  • Patent Document 1 Japanese Patent No. 2636968
  • Patent Document 2 JP-A-7-165892
  • the surface of an optical filter or an optical information recording medium is provided with a hard coat layer to prevent scratches.
  • the hard coat layer is required to have not only high hardness but also excellent transparency and antistatic property to prevent dust from adhering due to static electricity.
  • the antistatic property is required to have a stable resistance value in a region where the surface resistance is 10 6 to 10 1 (> ⁇ ) (that is, a stable antistatic property).
  • a coating film formed by applying an antistatic paint containing a ⁇ -conjugated conductive polymer and a hard coat component may be used.
  • a ⁇ -conjugated conductive polymer is insoluble by itself, but a precursor monomer of a ⁇ -conjugated conductive polymer in the presence of a ionic group-containing polymer acid is used as a chemical acid. It is known that a ⁇ -conjugated conductive polymer can be made into an aqueous solution by polymerization (see, for example, Patent Document 1).
  • a coating film having antistatic properties can be formed by applying an aqueous solution of this ⁇ -conjugated conductive polymer as a paint.
  • the drying speed is slow, and it takes time to form the coating film, and when the ⁇ -conjugated conductive polymer is water-soluble, it is compatible with the hard coat component. Since it becomes low, a hard coat layer having sufficient performance could not be obtained.
  • Patent Document 3 describes a conductive polymer having a polymer power of ⁇ alkylpyrrole in which a long-chain alkyl group is introduced at the ⁇ -position of pyrrole. Since this conductive polymer has a bulky alkyl group, it is soluble in an easily volatile organic solvent and has excellent compatibility with the hard coat component.
  • Patent Document 3 Japanese Patent No. 3024867
  • an oxidant, a vinyl chloride copolymer, and a monomer that forms a ⁇ -conjugated conductive polymer are dissolved in a solvent and applied to the base material.
  • a method of polymerizing monomers to form a composite of a salt vinyl copolymer and a conductive polymer while controlling the acid potential see Patent Document 4.
  • the conductive film may be required to have high thermal stability.
  • a method has been proposed in which a compound having a structure similar to a sulfonated substance that can be used as an antioxidant is mixed with a monomer as a dopant and electropolymerized. (See Patent Document 5).
  • Patent Document 4 JP-A-5-186619
  • Patent Document 5 Japanese Patent No. 2546617
  • a protective material is used in which a base material is provided with an adhesive layer for adhering to a component or article.
  • the protective material has antistatic properties (see, for example, Patent Documents 6 to 9).
  • Patent Documents 8 and 9 propose that an antistatic adhesive layer is provided by applying a water-soluble coating liquid containing a ⁇ -conjugated conductive polymer on a substrate.
  • a water-soluble coating liquid since the drying time becomes long, it has been required to make the coating liquid an organic solvent system.
  • Patent Document 10 a polythiophene aqueous solution is converted into a polythiophene alcohol solution, and an acrylic polymer is dispersed in the polythiophene alcohol solution to prepare a conductive adhesive dispersed in the alcohol. It has been proposed to be used for adhesive layers.
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-301819
  • Patent Document 7 JP 2001-106994 A
  • Patent Document 8 Japanese Patent Laid-Open No. 6-295016
  • Patent Document 9 JP-A-9-31222
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2005-126081
  • the conductive polymer solution including the ⁇ -conjugated conductive polymer proposed so far is an aqueous solution.
  • the drying time is short. Since it became long, the productivity of the conductive coating film was low.
  • the ⁇ -conjugated conductive polymer is water-soluble, application development is limited due to low compatibility with hydrophobic resins such as hard coat resins.
  • the present invention has been made in view of the above circumstances, and can reduce the drying time for coating formation, and a conductive polymer solution and a ⁇ -conjugated conductive polymer that are easily compatible with a hydrophobic resin. It is an object to provide a manufacturing method thereof.
  • the conductive polymer described in Patent Document 2 since the conductive polymer described in Patent Document 2 has low conductivity, when it is dissolved in an organic solvent to form a paint, the content of the conductive polymer is not increased. It was a force that could not prevent the prevention. When the content of the conductive polymer is large and a coating film is formed by applying a paint, there is a problem that the coating film is colored and the transparency is impaired. Furthermore, even the conductive polymer described in Patent Document 2 has insufficient compatibility with various hard coat resins having different polarities, and special monomers such as j8-alkylpyrrole are very It was expensive and impractical.
  • the present invention has been made in view of the above circumstances, and is capable of forming a coating film that ensures compatibility between the ⁇ -conjugated conductive polymer and the hard coat component, and has both antistatic properties and transparency.
  • An object is to provide a preventive paint. It is another object of the present invention to provide a hard coat layer having high hardness and having antistatic properties and transparency. It is another object of the present invention to provide an optical filter having a hard coat layer that has high hardness and has both antistatic properties and transparency.
  • Patent Document 5 has a problem that although the thermal stability of the coating film can be obtained, the solvent solubility cannot be obtained.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a conductive polymer solution excellent in both conductivity and solvent solubility. Furthermore, it aims at providing the conductive polymer solution which can make the thermal stability of a coating film high. Another object of the present invention is to provide a conductive coating film having excellent conductivity. Saraco offers conductive coatings with excellent thermal stability. The purpose is to provide.
  • the adhesive described in Patent Document 10 an organic solvent other than alcohol cannot be used, and the acrylic polymer that is an adhesive component is also limited.
  • the adhesive described in Patent Document 10 has a pot life at the time of coating, but cannot be said to have high storage stability, and it has been difficult to store for several days. For example, after several days from the preparation, the ⁇ -conjugated conductive polymer aggregates and separates, and the transparency and conductivity of the adhesive layer may decrease.
  • the present invention has been made in view of the above circumstances, and a liquid organic compound other than alcohol can be used as a solvent.
  • a liquid organic compound other than alcohol can be used as a solvent.
  • the acrylic polymer there is no limitation on the acrylic polymer, and the antistatic adhesive has high storage stability.
  • the purpose is to provide an agent. It is another object of the present invention to provide an antistatic adhesive layer and a protective material excellent in transparency and antistatic properties.
  • the conductive polymer solution of the present invention is characterized by containing a ⁇ -conjugated conductive polymer, a soluble polymer, a phase transfer catalyst, and an organic solvent.
  • the conductive polymer solution of the present invention can contain a binder resin.
  • an organic solvent is added to a polymer aqueous solution in which a ⁇ -conjugated conductive polymer and a solubilized polymer are dissolved in water, and then a phase transfer catalyst is added. It is characterized by that.
  • the method for producing a conductive polymer solution according to claim 4 of the present application is such that a phase transfer catalyst is added to a polymer aqueous solution in which a ⁇ -conjugated conductive polymer and a soluble polymer are dissolved in water, and the ⁇ -conjugated conductive A mixture comprising a soluble polymer, a solubilized polymer and a phase transfer catalyst is precipitated, and an organic solvent is added to the mixture.
  • the conductive resin of the present invention is obtained by removing the organic solvent from the conductive polymer solution described above.
  • the antistatic paint of the present invention is characterized by containing a ⁇ -conjugated conductive polymer, a soluble polymer, a phase transfer catalyst, a hard coat component, and an organic solvent.
  • the antistatic hard coat layer of the present invention is formed by applying the above-described antistatic coating.
  • the optical filter of the present invention is characterized by having the above-described antistatic node coat layer.
  • the conductive polymer solution of the present invention is a conductive polymer solution containing a ⁇ -conjugated conductive polymer, a polyone, a nitrogen-containing compound, and a solvent,
  • the nitrogen-containing compound has one or more nitrogen-containing functional groups selected from urea group, urethane group, allophanate group, burette group, imide group, and amide group, and the nitrogen atom of the nitrogen-containing functional group is quaternized. It is characterized by reluctantly.
  • the nitrogen-containing compound preferably has one or more unsaturated double bonds.
  • the conductive coating film of the present invention is formed by applying the above-described conductive polymer solution.
  • the antistatic adhesive of the present invention is characterized by containing a ⁇ -conjugated conductive polymer, a solubilized polymer, a phase transfer catalyst, and an adhesive component.
  • the antistatic adhesive layer of the present invention is characterized by being formed by applying the antistatic adhesive agent.
  • the protective material of the present invention is characterized by comprising a base material and the antistatic adhesive layer provided on the base material.
  • the conductive polymer solution of the present invention can shorten the drying time for forming the coating film, and the ⁇ -conjugated conductive polymer is easily compatible with the hydrophobic resin.
  • the method for producing a conductive polymer solution of the present invention it is possible to shorten the drying time for forming a coating film, and to produce a conductive polymer solution in which a ⁇ -conjugated conductive polymer is easily compatible with a hydrophobic resin. it can.
  • the antistatic coating material of the present invention ensures compatibility between the ⁇ -conjugated conductive polymer and the hard coat component, and can form a coating film having both antistatic properties and transparency.
  • the hard coat layer of the present invention has high hardness and also has antistatic properties and transparency.
  • the optical filter of the present invention has high hardness, and has both antistatic properties and transparency. It has a hard coat layer.
  • the conductive polymer solution of the present invention is excellent in both conductivity and solvent solubility.
  • the thermal stability of the coating film formed from the conductive polymer solution can be increased, and the force is also conductive.
  • the sex can be made higher.
  • the conductive coating film of the present invention is excellent in conductivity.
  • the antistatic adhesive of the present invention can use a liquid organic compound other than alcohol as a solvent, has no limitation on the acrylic polymer, and has high storage stability.
  • the antistatic adhesive layer and the protective material of the present invention are excellent in transparency and antistatic properties.
  • FIG. 1 is a cross-sectional view showing an embodiment of an optical filter of the present invention.
  • the ⁇ -conjugated conductive polymer can be used as long as it is an organic polymer having a ⁇ -conjugated main chain.
  • examples include polypyrroles, polythiophenes, polyacetylenes, polyphenylenes, polyphenylene vinylenes, polyarines, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability in air, polypyrroles, polythiophenes and polyarines are preferred. Even if the ⁇ -conjugated conductive polymer is not substituted, sufficient conductivity can be obtained.
  • an alkyl group, a carboxy group, a sulfo group, an alkoxy group, a hydroxy group, a cyano group can be obtained. It is preferable to introduce a functional group such as a group into a ⁇ -conjugated conductive polymer.
  • ⁇ -conjugated conductive polymers include polypyrrole, poly ( ⁇ -methylpyrrole), poly (3-methylpyrrole), poly (3-ethylvilol), poly (3- ⁇ -propylpyrrole), Poly (3-butyl pyrrole), poly (3-octyl pyrrole), poly (3-decyl pyrrole), poly (3-dodecyl pyrrole), poly (3,4-dimethyl pyrrole), poly (3,4 dibutyl pyrrole) , Poly (3-carboxypyrrole), poly (3-methyl-4-carboxy pyrrole), poly (3-methyl-4 carboxyethyl pyrrole), poly (3-methyl-4-carboxybutyl pyrrole), poly (3-hydroxypyrrole), Poly (3-methoxypyrrole), poly (3-ethoxypyrrole), poly (3-butoxypyrrole), poly (3-hexyloxypyrrole), Li (3-methyl-4-hexyl
  • polypyrrole selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene)
  • polypyrrole selected from polypyrrole, polythiophene, poly (N-methylpyrrole), poly (3-methylthiophene), poly (3-methoxythiophene), and poly (3,4-ethylenedioxythiophene)
  • One or two (co) polymers are preferably used because of their resistance and reactivity.
  • polypyrrole and poly (3,4-ethylenedioxythiophene) are more preferable because they have high electrical conductivity and improved heat resistance.
  • alkyl-substituted compounds such as poly (N-methylbilol) and poly (3-methylthiophene) are more preferable in terms of solvent solubility and the ability to further improve the compatibility and dispersibility when a hydrophobic resin is added.
  • a methyl group is preferred because it prevents a decrease in conductivity.
  • PEDOT-PSS polystyrene sulfonic acid
  • the ⁇ -conjugated conductive polymer is prepared by reacting a precursor monomer that forms a ⁇ -conjugated conductive polymer in a solvent in the presence of an appropriate oxidizing agent and a polymer having an anion group described below. It can be easily produced by chemical polymerization.
  • the precursor monomer has a ⁇ -conjugated system in the molecule, and a ⁇ -conjugated system is formed in the main chain even when polymerized by the action of an appropriate oxidizing agent.
  • an appropriate oxidizing agent examples include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, ⁇ -methyl pyrrole, 3-methyl pyrrole, 3-ethyl pyrrole, 3- ⁇ -propyl pyrrole, 3-butyl pyrrole, 3-octyl pyrrole, 3-decyl pyrrole, and 3-dodecyl.
  • the solvent used in the production of the ⁇ -conjugated conductive polymer is not particularly limited as long as it is a solvent that can dissolve or disperse the precursor monomer and can maintain the oxidizing power of the oxidizing agent.
  • Examples include water, polar solvents such as ⁇ ⁇ ⁇ -methyl-2-pyrrolidone, ⁇ , ⁇ ⁇ ⁇ ⁇ dimethylformamide, ⁇ , ⁇ dimethylacetamide, dimethyl sulfoxide, hexamethylenephos fortriamide, acetonitrile, benzo-tolyl, cresol, phenol, Phenols such as xylenol, alcohols such as methanol, ethanol, propanol and butanol, ketones such as acetone and methyl ethyl ketone, hydrocarbons such as hexane, benzene and toluene, carboxylic acids such as formic acid and acetic acid, Carbonate compounds such as ethylene carbonate and
  • the oxidizing agent is not particularly limited as long as it can oxidize the precursor monomer to obtain a ⁇ -conjugated conductive polymer.
  • Metal oxides such as silver oxide and cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, and oxygen.
  • the soluble polymer is a polymer that dissolves the ⁇ -conjugated conductive polymer, and examples of the solubilized polymer include polymers having an anion group and a cage or electron withdrawing group.
  • Polymers having a cation group are substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide. , Substituted or unsubstituted polyesters and copolymers thereof having a ⁇ -on group. Further, it may be composed of a structural unit having a terion group and a structural unit having no eron group.
  • the cation group of this polyion is a dopant for ⁇ -conjugated conductive polymers. Functions to improve the conductivity and heat resistance of the ⁇ -conjugated conductive polymer.
  • the polyalkylene is a polymer composed of repeating main chain force methylene.
  • examples of the polyalkylene include polyethylene, polypropylene, polybutene, polypentene, polyhexene, polyvinyl alcohol, polyvinyl phenol, poly 3,3,3-trifluoropropylene, polyacrylonitrile, polyacrylate, and polystyrene.
  • Polyalkylene is a polymer having a structural unit force in which one or more unsaturated bonds (bule groups) are contained in the main chain.
  • Specific examples of polyalkenes include probelene, 1-methylenopropenylene, 1-butinorepropenylene, 1 decinorepropenylene, 1 cyanopropylene, 1-phenolopropylene, 1-hydroxyprolene.
  • Polyimides include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, 2, 2, 3, 3-tetracarboxydiphenyl ether Anhydrides, anhydrides such as 2, 2- [4,4'-di (dicarboxyphenol) phenol] propan anhydride, and oxydiamine, noraf-rangeamine, meta-rangediamine, benzophenone And polyimides from diamines such as min.
  • polyamide examples include polyamide 6, polyamide 6, 6, polyamide 6, 10, and the like.
  • polyester examples include polyethylene terephthalate and polybutylene terephthalate.
  • examples of the substituent include an alkyl group, a hydroxy group, an amino group, a carboxy group, a cyano group, a phenol group, a phenol group, an ester group, and an alkoxy group.
  • an alkyl group, a hydroxy group, a phenol group, and an ester group are preferable.
  • Alkyl groups can increase solubility and dispersibility in polar or non-polar solvents, compatibility and dispersibility in resin, etc., and hydroxy groups can form hydrogen bonds with other hydrogen atoms, etc. Can be easily formed, and the solubility in an organic solvent, the compatibility with a resin, the dispersibility, and the adhesiveness can be increased.
  • the cyan group and hydroxyphenol group can increase the compatibility and solubility in polar resins, and can also increase the heat resistance.
  • an alkyl group, a hydroxy group, an ester group, and a cyan group are preferable.
  • alkyl group examples include chain alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, octyl, decyl, dodecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • chain alkyl groups such as methyl, ethyl, propyl, butyl, isobutyl, tert-butyl, pentyl, hexyl, octyl, decyl, dodecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • cycloalkyl group In view of solubility in organic solvents, dispersibility in rosin, steric hindrance and the like, an alkyl group having 1 to 12 carbon atoms is more preferable.
  • hydroxy group examples include a hydroxy group directly bonded to the main chain of the polyion, or a hydroxy group bonded via another functional group.
  • Other functional groups include 1 carbon -7 alkyl groups, C2-C7 alkyl groups, amide groups, imide groups and the like.
  • the hydroxy group is substituted at the end or in these functional groups.
  • a hydroxy group bonded to the terminal of an alkyl group having 1 to 6 carbon atoms bonded to the main chain is more preferable from the viewpoint of compatibility with rosin and solubility in an organic solvent.
  • amino group examples include an amino group directly bonded to the main chain of polyion, or an amino group bonded via another functional group.
  • examples of other functional groups include an alkyl group having 1 to 7 carbon atoms, an alkyl group having 2 to 7 carbon atoms, an amide group, and an imide group. The amino group is substituted at the end or inside of these functional groups.
  • phenol group examples include a phenol group directly bonded to the main chain of the polyion, or a phenol group bonded via another functional group.
  • other functional groups include alkyl groups having 1 to 7 carbon atoms, alkenyl groups having 2 to 7 carbon atoms, amide groups, and imide groups. The phenol group is substituted at the end or inside of these functional groups.
  • ester group examples include an alkyl ester group directly bonded to the main chain of the polyion, an aromatic ester group, an alkyl ester group or an aromatic ester group having another functional group interposed therebetween.
  • Examples of the cyano group include a cyano group directly bonded to the polyanion main chain, a cyano group bonded to the terminal of the alkyl group having 1 to 7 carbon atoms bonded to the polyanon main chain, and a polyanion main chain. Examples include a cyano group bonded to the terminal of the bonded alkenyl group having 2 to 7 carbon atoms.
  • the cation group of the polyion may be any functional group capable of undergoing chemical oxidation doping to the ⁇ -conjugated conductive polymer, but in particular, from the viewpoint of ease of production and stability.
  • a monosubstituted sulfate group, a monosubstituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable.
  • a sulfo group, a monosubstituted sulfate group, and a carboxy group are more preferable.
  • poly-one examples include polybulusulfonic acid, polystyrene sulfonic acid, polyallylsulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, polyacrylic sulfonic acid, polymethalyl sulfonic acid.
  • Poly-2-acrylamide-2-methylpropanesulfonic acid, polyisoprenesulfonic acid, polyvinyl carboxylic acid, police Examples include tylene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamide-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. These homopolymers may be used, or two or more kinds of copolymers may be used.
  • polystyrene sulfonic acid polyisoprene sulfonic acid, polyacrylic acid ethyl sulfonic acid, and polybutyl butyl sulfonic acid are preferable. These polyions can mitigate the thermal decomposition of the ⁇ -conjugated conductive polymer.
  • the degree of polymerization of the poly-one is preferably in the range of 10 to LOOOOO monomer units, and more preferably in the range of 50 to LOOOOO from the viewpoint of solvent solubility and conductivity.
  • Examples of the method for producing polyone include, for example, a method in which an acid is directly introduced into a polymer having no cation group using an acid, and a polymer having no cation group is sulfone. Examples thereof include a method of sulfonated with an agent, and a method of producing by polymerization of a polymerizable monomer containing a cation group.
  • the cation group-containing polymerizable monomer is produced by oxidation polymerization or radical polymerization in a solvent in the presence of an oxidizing agent and / or a polymerization catalyst.
  • a method is mentioned. Specifically, a predetermined amount of anionic group-containing polymerizable monomer is dissolved in a solvent, kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent and soot or a polymerization catalyst is dissolved in advance is added to the solvent. React in time. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent.
  • a polymerizable monomer having no cation group may be copolymerized with the cation group-containing polymerizable monomer.
  • the oxidizing agent and solvent used in the polymerization of the cation group-containing polymerizable monomer are the same as those used in the polymerization of the precursor monomer that forms the ⁇ - conjugated conductive polymer.
  • the obtained polymer is a polyion salt, it is preferable to change it to polyion acid.
  • the method for transforming to carboxylic acid include ion exchange method using ion exchange resin, dialysis method, ultrafiltration method, etc. Among these, ultrafiltration method is preferable from the viewpoint of easy work. .
  • the cation group-containing polymerizable monomer is a monomer in which a part of the monomer is substituted with a mono-substituted sulfate group, a strong hydroxyl group, a sulfo group, etc., for example, a substituted or unsubstituted ethylene sulfonic acid compound.
  • Substituted or unsubstituted styrene sulfonic acid compound substituted or unsubstituted acrylate aryl sulfonic acid compound, substituted or unsubstituted metatalyl sulfonate sulfonic acid compound, substituted or unsubstituted acrylamide
  • Specific examples include sulfonic acid compounds, substituted or unsubstituted cyclovinylene sulfonic acid compounds, substituted or unsubstituted butadiene sulfonic acid compounds, and substituted or unsubstituted vinyl aromatic sulfonic acid compounds.
  • Vinyl sulfonic acid and its salts allyl sulfonic acid and its salts, methallyl sulfonic acid and its salts, styrene sulfo Acid, methallyloxybenzene sulfonic acid and its salts, allyloxybenzene sulfonic acid and its salts, ⁇ -methylstyrene sulfonic acid and its salts, acrylamide t-butyl sulfonic acid and its salts, 2 acrylamide 2 methylpropane sulfonic acid And its salts, cyclobutene 3-sulfonic acid and its salts, isoprenesulfonic acid and its salts, 1,3 butadiene 1-sulfonic acid and its salts, 1-methyl-1,3 butadiene-2-sulfonic acid and its salts, 1-methyl-1 , 3 Butadiene-4-sulfonic acid and its salts, Ethyl sulfonic acid acrylate
  • Butylsulfonic acid (CH CH- COO- C (CH) CH -SO H) and its salts, acrylic
  • Tylsulfonic acid (CH C (CH) -COO- (CH) -SO H) and its salts, methacrylic acid
  • polyvinyl carboxylic acid polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethallyl carboxylic acid, poly 2-acrylamide-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic Examples include acids. Further, a copolymer containing two or more of these may be used.
  • polymerizable monomers having no cation group examples include ethylene, propene, 1-butene, 2-butene, 1 pentene, 2-pentene, 1-hexene, 2-hexene, styrene, p-methylolstyrene, p Ethyl styrene, p-butyl styrene, 2, 4, 6 trimethyl styrene, ⁇ -methoxy styrene, ⁇ -methyl styrene, 2 urnaphthalene, 6-methyl 2-bur naphthalene, 1 urimidazole, urpyridine, uracetate, allyl aldehyde, Acrylic-tolyl, ⁇ -Buyl-2-pyrrolidone, ⁇ -Bulacetoamide, ⁇ -Buluformamide, ⁇ -Buylimidazole, acrylamide, ⁇ , ⁇ ⁇ ⁇ Dimethylacrylamide, Acrylic acid, Methyl
  • the polymer having an electron withdrawing group includes, for example, a polymer having as a structural unit a compound having at least one selected from a cyano group, a nitro group, a formyl group, a carbonyl group, and an acetyl group as the electron withdrawing group. It is done. Among these, a cyan group is preferable because a ⁇ -conjugated conductive polymer having a high polarity can be more soluble.
  • the polymer having an electron-withdrawing group examples include polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene styrene resin, acrylonitrile-butadiene resin, atari mouth nitrile-butadiene-styrene resin, hydroxyl group or amino group-containing
  • the resin include cyanobacterized resin (for example, cyanoethylcellulose), polybulurpyrrolidone, alkylated polybulurpyrrolidone, and nitrocellulose.
  • the content of the soluble polymer is preferably in the range of 0.1 to 10 moles per mole of ⁇ -conjugated conductive polymer, and preferably in the range of 1 to 7 moles. Is more preferable. Solubilized height When the content of the child is less than 0.1 mol, the doping effect on the ⁇ -conjugated conductive polymer tends to be weak, and the conductivity may be insufficient. In addition, when the content of the solubilized polymer is more than 10 mol, the content ratio of the ⁇ -conjugated conductive polymer decreases, and it is difficult to obtain sufficient conductivity.
  • the soluble polymer may contain a synthetic rubber for improving impact resistance, an anti-aging agent, an antioxidant, or an ultraviolet absorber for improving environmental resistance. Good.
  • an amine compound-based acid inhibitor may inhibit the action of the acid agent used in polymerizing the conductive polymer, and therefore, the acid-antioxidant includes a phenol-based antioxidant. It is necessary to take measures such as using materials or mixing after polymerization.
  • the ⁇ -conjugated conductive polymer and the solubilized polymer often form a complex by chemical bonding.
  • poly (3,4-ethylenedioxythiophene) doped with polystyrene sulfonic acid (PSS -PEDOT) has high thermal stability and low degree of polymerization, so it is Highly transparent, preferred in terms of.
  • polyone functions as a dopant for the ⁇ -conjugated conductive polymer, but in the conductive polymer solution, a dopant other than polyon (hereinafter referred to as other dopant). May be included.
  • dopants may be donor-type or acceptor-type as long as the ⁇ -conjugated conductive polymer can be oxidized and reduced.
  • donor dopants include alkali metals such as sodium and potassium, alkaline earth metals such as calcium and magnesium, tetramethylammonium, tetraethynolemonium, tetrapropylammonium and tetraptylammonium. And quaternary amine compounds such as methyltriethyl ammonium and dimethyljetyl ammonium.
  • a halogen compound for example, a halogen compound, Lewis acid, proton acid, organic cyano compound, organometallic compound, fullerene, hydrogenated fullerene, hydroxylated fullerene, carboxylic acid fullerene, sulfonated fullerene or the like
  • the halogen compound includes, for example, chlorine (C1), bromine (Br), iodine (I), salt
  • Iodine (IC1) iodine bromide (IBr), iodine fluoride (IF) and the like.
  • Lewis acids examples include PF, AsF, SbF, BF, BC1, BBr, SO and the like.
  • organic cyano compound a compound containing two or more cyano groups in a conjugated bond can be used.
  • examples thereof include tetracyanoethylene, tetracyanethylene oxide, tetracyanobenzene, dichlorodisianobenzoquinone (DDQ), tetracyanoquinodimethane, tetracyanazanaphthalene and the like.
  • Examples of the protonic acid include inorganic acids and organic acids. Furthermore, examples of the inorganic acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, borohydrofluoric acid, hydrofluoric acid, perchloric acid, and the like. Examples of organic acids include organic carboxylic acids, phenols, and organic sulfonic acids.
  • organic carboxylic acid an aliphatic, aromatic, cycloaliphatic or the like containing one or more carboxy groups can be used.
  • organic carboxylic acid an aliphatic, aromatic, cycloaliphatic or the like containing one or more carboxy groups.
  • acetic acid and triphenyl acetic acid examples include acetic acid and triphenyl acetic acid.
  • organic sulfonic acid aliphatic, aromatic, cycloaliphatic or the like containing one or more sulfo groups, or a polymer containing sulfo groups can be used.
  • methanesulfonic acid ethanesulfonic acid, 1-propanesulfonic acid, 1-butanesulfonic acid, 1-hexanesulfonic acid, 1 heptanesulfonic acid, 1-octanesulfonic acid, 1 —Nonane sulfonic acid, 1-decane sulfonic acid, 1 dodecane sulphonic acid, 1-tetradecans sulphonic acid, 1 pentadecans sulphonic acid, 2 —bromoethane sulphonic acid, 3 cyclopropane 2 hydroxypropane sulphonic acid, trifluoromethane Sulfonic acid, trifluoroethanesulfonic acid, colistin methanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, aminominosulfonic acid, 1 amino-2-naphthol— 4-aminosulfonic acid, 2-amino-5-n
  • Examples of those containing two or more sulfo groups include ethanedisulfonic acid, butanedisulfonic acid, pentanedisulfonic acid, decanedisulfonic acid, o-benzenedisulfonic acid, m-benzenedisulfonic acid, p-benzenedisulfonic acid, toluenedisulfonic acid, Xylene disulfonic acid, black benzene disulfonic acid, fluorobenzene disulfonic acid, dimethylbenzene disulfonic acid, jetylbenzene disulfonic acid, alin-2,4 disulfonic acid, alin-1,2,5 disulfonic acid, 3, 4 Dihydroxy 1, 3, Benzene disulfonic acid, naphthalene disulfonic acid, methyl naphthalene disulfonic acid, ethyl naphthalene disulfonic acid, pentadecyl naphthalene disulfonic acid
  • the phase transfer catalyst is not particularly limited as long as it is coordinated to an anion group or an electron withdrawing group of the soluble polymer.
  • the coordination is a bonded form in which the solubilized polymer and the phase transfer catalyst donate electrons to each other and accept Z, whereby the intermolecular distance is shortened.
  • phase transfer catalyst examples include a compound having a cation in the molecule and a compound having a cation and cation in the molecule.
  • ammonia derivatives, imidiums, diazoniums, cations with acyclic nitrogen skeletons, cations with nitrogen-containing cyclic skeletons, nitrogen-containing resonance stabilizing cations, organic phospho- Examples include um salt.
  • methyl trihexyl ammo chloride methyl trioctyl ammo chloride, methyl tridecyl ammo chloride, methyl tridecyl ammo chloride, dioctyl dimethyl ammo bromide, didecyl dimethyl ammo bromide, Didodecyldimethylammo-um bromide, tetrahexylammo-mubromide, tetraoctylammo-umbromide, tetradecylammo-um bromide, tetradodecylammo-umbromide, tetrabutylphospho-mumbromide, tetraoctylphospho-umbromide, 2-trimethylsilyl Echirut Lihue Suho Um Chloride, 1 Dodecyl 2 Ethyl 3 Ethyl imidazolium Chloride, 1-Tetradecyl 2 Etyl 3 Eth
  • Powers include, but are not limited to, um chloride, hexyl pyridi um chloride, octyl pyridi um chloride, decyl pyridi um chloride, dodecyl pyridi um chloride, hexadodecyl pyr um chloride.
  • the content of the phase transfer catalyst is 0.1 to L0 mol with respect to the ionic group and the electron withdrawing group of the soluble polymer that does not contribute to the doping of the ⁇ -conjugated conductive polymer.
  • Equivalent force S is preferable, 0.5 2.0 equivalent is more preferable than force S, and it is particularly preferable that 0.85 to: L is 25 equivalents.
  • the content of the phase transfer catalyst is not less than the above lower limit, the phase transfer catalyst is coordinated to most of the anion group and electron withdrawing group of the soluble polymer, so that the solubility in an organic solvent is higher. Become.
  • it is below the said upper limit since excess phase-transfer catalyst is not contained in a conductive polymer solution, performance degradation, such as electroconductivity, can be prevented.
  • the organic solvent contained in the conductive polymer solution is not particularly limited as long as it is a solvent other than water.
  • a solvent other than water for example, methanol, ethanol, propylene carbonate, ⁇ ⁇ ⁇ -methylpyrrolidone, dimethylformamide, dimethylacetamide, cyclohexanone. , Acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene and the like.
  • One organic solvent may be used, or two or more organic solvents may be used.
  • Examples of the organic solvent contained in the antistatic coating include methanol, ethanol, isopropanol, propylene carbonate, ⁇ ⁇ ⁇ -methylpyrrolidone, dimethylformamide, dimethylacetamide, cyclohexanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, And toluene. These solvents may be used alone or in combination of two or more. Among the above-mentioned solvents, an organic solvent having a boiling point lower than that of water other than water is preferable because the drying rate is increased.
  • the antistatic adhesive may contain an organic solvent.
  • the organic solvent include methanol, ethanol, isopropanol, propylene carbonate, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, cyclohexanone, acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, And toluene. These organic solvents may be one type or two or more types.
  • organic solvents an organic solvent having a boiling point lower than that of water is preferable because the drying rate is increased.
  • the adhesive component is liquid, the organic solvent is not necessarily required, and the antistatic adhesive can be made solvent-free.
  • the conductive polymer solution preferably contains a binder resin because the scratch resistance and surface hardness of the coating film are increased and the adhesion to the substrate is improved.
  • the noda resin may be a thermosetting resin or a thermoplastic resin.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyimides such as polyimide and polyamideimide; polyamides such as polyamide 6, polyamide 6, 6, polyamide 12, and polyamide 11; polyvinylidene fluoride, polyphenylene Fluorine resin such as bulle, polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, trifluoroethylene, etc .; polybulal alcohol, polybull ether, polybulbutyral, polybutylbutyrate, polychlorinated bur Such as bulge resin; epoxide resin; oxetane resin; xylene resin; aramide resin; polyimide silicone; polyurethane; polyurea; melamine resin; phenol resin; A polymer etc. are mentioned.
  • binder resins may be dissolved in an organic solvent, may be provided with a functional group such as a sulfo group or a carboxy group, may be made into an aqueous solution, or may be dispersed in water such as emulsification.
  • Noinda rosins polyurethane, polyester, and wax can be mixed easily.
  • ril resin polyamide, polyimide, epoxy resin, polyimide silicone, and melamine resin is preferable.
  • the binder resin preferably contains a liquid polymer that is cured by thermal energy and Z or light energy.
  • examples of the liquid polymer that is cured by heat energy include a reactive polymer and a self-crosslinking polymer.
  • the reactive polymer is a polymer in which a monomer having a substituent is polymerized, and examples of the substituent include a hydroxy group, a carboxy group, an acid anhydride, an oxetane group, a glycidyl group, and an amino group.
  • Specific monomers include polyfunctional alcohols such as ethylene glycol, diethylene glycol, dipropylene glycol, and glycerin, malonic acid, succinic acid, glutamic acid, pimelic acid, ascorbic acid, phthalic acid, acetylstilcylic acid, adipic acid, Carboxylic acid compounds such as isophthalic acid, benzoic acid and m-toluic acid, acids such as maleic anhydride, phthalic anhydride, succinic anhydride, dichloromaleic anhydride, tetrachlorophthalic anhydride, tetrahydrophthalic anhydride, pimelic anhydride Anhydride, 3,3-Dimethyloxetane, 3,3-Dichloromethyloxetane, 3-Methyl-3-hydroxymethyloxetane, Azidomethylmethyloxetane and other oxetane compounds, Bisphenol A diglycidyl ether, Bis Ph
  • the reactive polymer at least a bifunctional or higher functional crosslinking agent is used.
  • the cross-linking agent include melamine resin, epoxy resin, metal oxide, and the like.
  • Metal oxides include basic metal compounds such as Al (OH), Al (OOC'CH) (OOCH), Al (
  • OOC-CH OOC-CH
  • ZrO (OCH) Mg (OOC.CH) ⁇ Ca (OH), Ba (OH) etc.
  • the self-crosslinking polymer is one that self-crosslinks between functional groups by heating, and includes, for example, one containing a glycidyl group and a carboxy group, or one containing both an N-methylol and a carboxy group. It is done.
  • liquid polymer that is cured by light energy examples include polyesters, epoxy resins, oxetane resins, oligomers or prepolymers such as polyacryl, polyurethane, polyimide, polyamide, polyamideimide, and polyimide silicone. .
  • Examples of monomer units constituting a liquid polymer that is cured by light energy include, for example, bisphenol, ethylene oxide-modified diatalylate, dipentaerythritol hexa (penta) talylate, dipentaerythritol monohydroxypentaacrylate, Dipropylene glycol diatalylate, trimethylolpropane tritalylate, glycerin propoxytritalylate, 4-hydroxybutyl acrylate, 1,6-hexanediol diathalate, 2-hydroxyethyl acrylate, 2-hydroxy Propyl acrylate, isobutyl acrylate, polyethylene glycol diathalate, pentaerythritol triacrylate, tetrahydrofurfuryl acrylate, trimethylolpropane triac
  • Arylates such as relates and tripropylene glycol ditalarates, tetraethylene gallic dimetatalates, alky
  • liquid polymer cured by light energy is cured by a photopolymerization initiator.
  • photopolymerization initiator examples include acetophenones, benzophenones, Michler benzoyl benzoate, a amyl oxime ester, tetramethyl thiuram monosulfide, thixanthone, and the like. Furthermore, n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed as a photosensitizer.
  • examples of the cationic polymerization initiator include allyldiazo-um salts, diaryl-no-guchi-um salts, triphenylsulfo-um salts, silanol Z aluminum chelates, and -sulfonyloxy ketones.
  • the phase transfer catalyst is coordinated to the anion group or electron withdrawing group of the solubilized polymer, and the oil solubility of the soluble polymer is increased. And a ⁇ -conjugated conductive polymer that forms a complex with the organic solvent.
  • the ⁇ -conjugated conductive polymer is oil-soluble, it is easily compatible with the hydrophobic resin.
  • a conductive coating film is formed by applying this conductive polymer solution to various substrates.
  • this conductive polymer solution by using an organic solvent having a low boiling point, the drying rate can be increased and the productivity of the conductive coating can be increased.
  • the conductive coating film formed from the conductive polymer solution has sufficient conductivity.
  • the hard coat component may be a thermosetting resin or a thermoplastic resin, for example, a polyester such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate; a polyimide such as polyimide or polyamideimide; Polyamides such as polyamide 6, polyamide 6, 6, polyamide 12 and polyamide 11; polyvinylidene fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, polychlorotrifluoroethylene Fluorine resin such as polybulal alcohol, polybule ether, polybulbutyral, polyacetic acid bur, polychlorinated bur, etc .; epoxy resin; oxetane resin; xylene resin; aramid resin; polyimide silicone; Polyurethane; Poly Rare; melamine ⁇ ; phenol ⁇ ; polyether, acrylic ⁇ and co polymers of these.
  • a polyester such as polyethylene terephthal
  • hard coat components may be dissolved in an organic solvent, may be provided with a functional group such as a sulfo group or a carboxy group, may be made into an aqueous solution, or may be dispersed in water such as emulsification. Good.
  • the hard coat component can be used by adding a curing agent such as a cross-linking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier and the like, if necessary.
  • a curing agent such as a cross-linking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier and the like, if necessary.
  • hard coat components one or more of polyurethane, polyester, acrylic resin, polyamide, polyimide, epoxy resin, and polyimide silicone are preferable because they can be easily mixed.
  • Acrylic rosin is suitable for applications such as optical filters because of its high hardness and excellent transparency.
  • the hard coat component preferably contains a liquid polymer that is cured by thermal energy and Z or light energy.
  • examples of the liquid polymer that is cured by heat energy include a reactive polymer and a self-crosslinking polymer.
  • the reaction polymer and the self-crosslinking polymer the same polymers as those mentioned in the above (binder resin) can be used.
  • a liquid polymer that is cured by light energy a monomer unit that constitutes the liquid polymer that is cured by light energy, and a photopolymer initiator that cures the liquid polymer are the above-mentioned (binder).
  • the thing similar to what was mentioned by (resin) can be used.
  • the hard coat component also exhibits a function as a binder resin for improving adhesion to a substrate to be described later on which an antistatic coating is applied.
  • the nitrogen-containing compound has one or more nitrogen-containing functional groups selected from urea group, urethane group, allophanate group, burette group, imide group, and amide group, and the nitrogen-containing functional group is classified. It is a compound.
  • the nitrogen-containing compound can be obtained by quaternizing a compound having one or more nitrogen-containing functional groups selected from urea group, urethane group, allophanate group, burette group, imide group, and amide group. .
  • Examples of the compound having a urea group include polyurea acrylate. Examples of the compound having a urethane group include urethane acrylate. Examples of the compound having an allophanate group include a (meth) attalyloyl group-containing compound having an allophanate bond. Examples of the compound having a burette group include (meth) atalyloyl group-containing compounds having a burette bond.
  • a compound having a urea group can be obtained by addition reaction of a compound having an isocyanate group and a compound having an amino group.
  • the compound having a urethane group can be obtained by addition reaction of a compound having an isocyanate group and a compound having a hydroxy group or a carboxy group.
  • the compound having an allophanate group can be obtained by addition reaction of the compound having a urethane group and the compound having an isocyanate group.
  • a compound having a burette group can be obtained by addition reaction of the compound having a urea group and a compound having an isocyanate group.
  • Examples of the compound having an isocyanate group used to obtain a compound having a urea group, a urethane group, an allophanate group, or a burette group include 2,4 tolylene diisocyanate, 2,6 tolylene diisocyanate, Xylene 1,4-diisocyanate, xylene 1,3-diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 2,4'-dimethane-diisocyanate, 4, 4, Di-phenolaterenoisocyanate, 2-trodiphenyl bis 4,4'-diisocyanate, 2, 2, -diphenylpropane 4, 4'-diisocyanate, 3, 3, -dimethyl diphenylmethane 4, 4 '-Diisocyanate, 4,4
  • Examples of the compound having an amino group used for forming a compound having a urea group include diamine and amino alcohol.
  • diamine examples include ethylene diamine, propylene diamine, butylene diamine, hexamethylene diamine, xylidene diamine, phenylenediamine, 4.4, monodiaminodiphenylmethane, and the like.
  • diamine in a broader sense, such as dihydrazide of hydrazine dicarboxylic acid (eg, oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, etc.) can be used.
  • dihydrazide of hydrazine dicarboxylic acid eg, oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, sebacic acid dihydrazide, isophthalic acid dihydrazide, etc.
  • the amino alcohol include methanolamine, 2-aminoethanol, 3 -aminopropanol, 4-aminobutanol and the like.
  • Examples of the compound having a hydroxy group include diol, amino alcohol, and high molecular weight polyol.
  • Diols include ethylene glycol, propylene glycol, tetramethylene glycol, 1,5 pentanediol, 1,6 hexanediol, 1,10 decanediol, 1,4-dihydroxycyclohexane, 1,4-dihydroxymethyl.
  • Cyclohexane, je Examples include tylene glycol and triethylene glycol.
  • Examples of the amino alcohol include those exemplified for the compound having an amino group.
  • Examples of the high molecular weight polyol compound include polyester polyol, polycarbonate polyol, polyether polyol, and the like.
  • Polyester polyols include succinic acid, adipic acid, sebacic acid, azelaic acid, terephthalic acid, isophthalic acid, orthophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, hexahydroorthophthalic acid, naphthalenedicarboxylic acid or its acid Dicarboxylic acids such as esters and acid anhydrides' acid esters and acid anhydrides, ethylene glycol, 1,3 propylene glycol, 1,2 propylene glycol, 1,3 butanediol, 1,4 butanediol, 1,5 pentane Diol, 1,6 hexanediol, 3 methyl-1,5 pentanediol, neopentyl glycol, 1,8 octanediol, 1,9-nonanediol, diethylene glycol, 1,4-cyclohexanedimethanol, or
  • polycarbonate polyol examples include those obtained by a dealcoholization reaction between a polyhydric alcohol and diethylene carbonate, dimethyl carbonate, jetyl carbonate, diphenyl carbonate, and the like.
  • These polyhydric alcohols include ethylene glycol, 1,3 propylene glycol, 1,2 propylene glycol, 1,3 butanediol, 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, 3-methyl- Examples thereof include 1,5 pentanediol, neopentyl glycol, 1,8 octanediol, 1,9-nonanediol, diethylene glycol, 1,4-cyclohexanedimethanol, and the like, and polycarbonate polyols that can be used in combination.
  • polyether polyol examples include polyethylene glycol obtained by ring-opening polymerization of ethylene oxide, propylene oxide, tetrahydrofuran and the like, polypropylene glycol, polytetramethylene ether glycol and the like, and a copolyether obtained by copolymerization thereof, Examples include ester ethers using polyester and polycarbonate polyol as initiators.
  • Examples of the compound having a carboxy group include dicarboxylic acids, acid esters, and acid anhydrides.
  • dicarboxylic acid examples include succinic acid, adipic acid, sebacic acid, azelaic acid, terephthalic acid, isophthalic acid, orthophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, hexahydroorthophthalic acid, naphthalenedicarboxylic acid, etc.
  • the acid ester examples include esters of the above dicarboxylic acids
  • examples of the acid anhydride include acid anhydrides of the above dicarboxylic acids. Or the acid ester, acid anhydride, etc. are illustrated.
  • the compound having a urea group, a urethane group, an allophanate group, or a burette group described above has a temperature condition in which a uretdione group does not open in a melted state or a norc state, preferably at 100 ° C or lower. It can be produced by uniformly mixing and reacting the components. At that time, an inert solvent may be added as necessary.
  • the inert solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, ester solvents such as ethyl acetate and butyl acetate, ketone solvents such as methyl ethyl ketone and cyclohexanone, ethylene glycol ether solvent, and the like. Teracetate, Propylene glycol methyl ether acetate, Daricol ether ester solvents such as ethyl 3-ethyoxypropionate, Ether solvents such as tetrahydrofuran and dioxane, dimethylformamide, dimethylacetone, N-methylpyrrolidone, furfural, etc. These polar solvents can be used, and one or more of these can be used
  • the reaction apparatus is not particularly limited as long as the above reaction can be carried out, and examples thereof include a mixing and kneading apparatus such as a reaction vessel equipped with a stirrer, a kneader, a single-screw or multi-screw extrusion reaction machine, and the like.
  • a compound having a urea group, a urethane group, an allophanate group, or a burette group is formed.
  • a chain extender may be added.
  • the chain extender is a substance generally containing two or more active hydrogens in a molecule having a molecular weight of 300 or less, and known alcohols, amines, amino alcohols and the like are used.
  • a catalyst When forming a compound having a urea group, urethane group, allophanate group, burette group, imide group or amide group, a catalyst may be used.
  • the catalyst include tertiary amines such as triethylamine and triethylenediamine, metal salts such as potassium acetate and zinc stearate, and organometallic compounds such as dibutyltin laurate and dibutyltin oxide.
  • the unsaturated double bond It is preferable to have one or more.
  • the nitrogen-containing compound is a quaternary salt compound of a compound having a urea group, a urethane group, an allophanate group, or a violet group, the urea group, the urethane group, the halophanate group, and the burette group are combined. It is preferable to introduce an unsaturated double bond into the product.
  • a method for introducing an unsaturated double bond into a compound having a urea group, a urethane group, an allophanate group, or a burette group for example, a compound having an isocyanate group at the molecular end and an acrylate ester-based monomer having a hydroxyl group.
  • examples include a method of reacting with the body.
  • the acrylic acid ester-based monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxy ethinoremethacrylate, 2-hydroxypropyl acrylate, glycidol dimethacrylate and pentaerythritol tris. Atallate and the like.
  • a polyimide is mentioned as a compound which has an imide group.
  • Polyimide is obtained by a condensation reaction between an acid anhydride and diamine.
  • examples of the acid anhydride include pyromellitic dianhydride, biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride, 2, 2, 3, 3-tetracarboxydiphenyl ether Anhydrous, 2, 2- [4,4′-di (dicarboxyphenyl) phenyl] propane dianhydride, and the like.
  • diamine examples include oxydiamine, para-phenylene diamine, metaphenylene diamine, benzophenone diamine, and the like.
  • a terminal acid anhydride unit and an isocyanate group-containing unsaturated monomer are subjected to a condensation reaction!
  • the unsaturated monomer containing an isocyanate group include vinylenoisocyanate, arylenoisocyanate, 2-methacryloyloxychetyl isocyanate, 2-allyloyloxychetyl isocyanate, and the like. Can be mentioned.
  • Examples of the compound having an amide group include acrylamide-based resin and polyamide.
  • Acrylamide-based rosin is a (co) polymer containing an amide group-containing monomer as a structural unit.
  • Examples of amide group-containing monomers include acrylamide, methacrylamide, N-methyl methacrylamide, N methyl acrylamide, N-methylol acrylamide, N methylol methacrylamide, N, N dimethylol acrylamide, N-methoxymethyl acrylamide.
  • Acrylamide-based rosin is a structural unit, for example, an acrylate ester (the alcohol residues include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, and tbutyl groups).
  • an active hydrogen formed from a hydroxy group-containing monomer, an amino group-containing monomer, and a glycidyl group-containing monomer, butylisocyanate A method of addition reaction of an isocyanate group-containing unsaturated monomer such as cyanate, 2-methacryloyloxychetyl isocyanate, 2-aryloyloxychetyl isocyanate, carboxy group-containing monomer and glycidyl group-containing monomer And the like.
  • Polyamide is obtained by condensation reaction of dicarboxylic acid and diamine.
  • examples of the dicarboxylic acid include succinic acid, adipic acid, sebacic acid, azeleic acid, terephthalic acid, isophthalic acid, orthophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, and hexahydroorthophthalate.
  • examples include acids and naphthalenedicarboxylic acids.
  • diamine examples include oxydiamine, para-phenylene diamine, metaphenylene diamine, benzophenone diamine, and the like.
  • Isocyanate group-containing unsaturated monomers include, for example, vinylenoisocyanate, arylenoisocyanate, 2-metataloyloxychetyl isocyanate, 2-ataryloyloxychetyl isocyanate, and the like. Is mentioned.
  • Quaternary salts of nitrogen atoms of compounds having urea, amide, urethane, allophanate, burette, imide, and amide groups are inorganic such as hydrogen chloride, hydrogen bromide, acetic acid, lactic acid, and sulfuric acid. Acid, benzyl chloride, benzyl bromide, methyl chloride, methyl bromide, dimethyl sulfate, jetyl sulfate, dipropyl sulfate, methyl p-toluenesulfonate, methyl benzenesulfonate, trimethyl phosphite, epichlorohydrin, etc. 4 Grade chlorinating agent It can be done by acting.
  • the quaternary chlorination rate of the nitrogen atom is preferably 0.1 to 100%, more preferably 2 to 100%.
  • the quaternary chloride ratio is less than 0.1%, a large amount of salt is formed in order to form a salt with a cation group that does not contribute to the doping of the complex of ⁇ -conjugated conductive polymer and polyion. Nitrogen-containing compounds must be added, and conductivity may be reduced.
  • the molecular weight of the nitrogen-containing compound is preferably 500 to 60,000 force S, more preferably 1,00 to 30,000 force from the viewpoint of workability! / !.
  • the nitrogen-containing compound is preferably contained in an amount of 0.1 to 100 molar equivalents relative to polyone, more preferably 2 to 50 molar equivalents.
  • the nitrogen-containing compound becomes excessive and there is a risk of reducing the conductivity.
  • it is less than 0.1 molar equivalent relative to polyone, it tends to be difficult to improve conductivity, thermal stability, film-forming property, abrasion resistance, and substrate adhesion.
  • a polyfunctional monomer may be added to the conductive polymer solution in order to further improve the thermal stability, film forming property, and abrasion resistance of the coating film.
  • the polyfunctional monomer for example, (meth) acrylic acid ester and (meth) acrylamide can be used.
  • Examples of (meth) acrylic acid esters include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, tetra Decaethylene glycol di (meth) acrylate, nonapropylene glycol di (meth) acrylate, doden strength propylene glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, trimethylol propane ethylene oxide adduct Tri (meth) acrylate, pentaerythritol di (meth) acrylate, penta erythritol tri (meth) acrylate, penta erythritol tetra (meth) acrylate, di penta erythritol Examples include (meth) acrylic acid esters of polyols such as ruhexa (meth) acrylate,
  • (Meth) acrylamides include the power of methylenebis (meth) acrylamide, ethylene Examples include poly (meth) acrylamides derived from amines, diaminopropane, diaminobutane, pentamethylenediamine, bis (2-aminoamino) amine, diethylenetriaminediamine, phenol-diamine, diaminebenzoic acid and the like.
  • the conductive polymer solution may contain additives such as a silane coupling agent, an antioxidant, an ultraviolet absorber, a leveling agent, and a flame retardant as necessary.
  • An adhesive component is a component that exhibits stickiness or adhesiveness, and may itself be sticky or adhesive! / It may be one that exhibits
  • adhesion means a peelable sticking
  • adhesion means a peelable sticking
  • the adhesive component include acrylic compounds, urethane compounds, epoxy compounds, ester compounds, amide compounds, urea compounds, rubber compounds, silicone compounds, melamine compounds, and carpositimide compounds.
  • Monomers or polymers such as compounds, oxazolidine compounds, and cellulose compounds. These may be used alone or in combination.
  • acrylic compounds are preferred, and acrylic monomers and z or acrylic polymers are more preferred.
  • acrylic monomers include (meth) acrylic acid and monomolecular compounds obtained by reacting (meth) acrylic acid with primary alcohol or primary amine.
  • Specific examples of the acrylate monomer include acrylic acid, methyl acrylate, butyl acrylate, isobutyl acrylate, 2-methoxyethyl acrylate, ditrimethylolpropane tetraacrylate, 2-hydroxy-3-phenoxypropinorea talit.
  • the antistatic adhesive can be made solvent-free without an organic solvent.
  • the acrylic polymer is a homopolymer or copolymer containing at least one or more acrylic monomer units as constituent components.
  • Comonomers in the case of copolymers include carboxylic acid monomers having a double bond such as maleic acid, fumaric acid, and itaconic acid, or anhydrides thereof, (meth) acrylonitrile, N-butyrpyrrolidone, N-bilucaprolatatum, and styrene. .
  • the acrylic polymer is preferably crosslinked with a crosslinking agent.
  • the crosslinking agent include isocyanate-based crosslinking agents, epoxy-based crosslinking agents, aziridine-based crosslinking agents, and metal-based crosslinking agents.
  • the adhesive component is a monomer
  • the adhesiveness can be easily controlled with respect to the substrate, and therefore a polymerization initiator can be added to the antistatic adhesive agent.
  • the polymerization initiators include acetophenones, benzophenones, Michler benzoyl benzoate, a amyl oxime ester, tetramethyltyranium monosulfide, thixanthones and the like.
  • n-butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed as a photosensitizer.
  • examples of the cationic polymerization initiator include allyldiazo-um salts, gallium-no-guchi-um salts, triphenylsulfo-um salts, silanol Z aluminum chelates, and sulfo-loxyketones.
  • the antistatic adhesive of the present invention may contain a filler. If a filler is contained, the adhesiveness can be easily controlled and blocking of the protective material can be prevented.
  • the filler include porous materials such as graphite, silicon-containing compounds such as glass beads, inorganic compounds such as calcium carbonate and inorganic phosphorus compounds, and spherical plastics.
  • the first method for producing a conductive polymer solution of the present invention is to add an organic solvent to an aqueous polymer solution in which a ⁇ -conjugated conductive polymer and a soluble polymer are dissolved in water, and then perform phase transfer.
  • This is a liquid-liquid extraction method in which a catalyst is added.
  • an organic solvent is first added to an aqueous solution of a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer, and then a phase transfer catalyst is added, followed by stirring or shaking.
  • the mixture is allowed to stand for a while to separate into an aqueous layer and an organic solvent layer, and the aqueous layer is removed, whereby the complex of the ⁇ -conjugated conductive polymer and the solubilized polymer is dissolved in the organic solvent.
  • a polymer solution is obtained.
  • the solubilized polymer is dissolved in a solvent for dissolving the polymer, and the precursor monomer of the ⁇ -conjugated conductive polymer and, if necessary, a dopant are used. Are added and mixed with sufficient stirring.
  • an oxidant is dropped into the mixture thus obtained to cause polymerization to proceed to obtain a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer, and then the oxidant, A method of removing and purifying residual monomers and by-products is used.
  • the second method for producing a conductive polymer solution of the present invention is to add a phase transfer catalyst to a polymer aqueous solution in which a ⁇ -conjugated conductive polymer and a soluble polymer are dissolved in water.
  • a mixture containing a ⁇ -conjugated conductive polymer, a solubilized polymer, and a phase transfer catalyst is separated from water, and an organic solvent is added to the mixture.
  • a phase transfer catalyst is added to an aqueous solution of a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer, and then the phase transfer between the ⁇ -conjugated conductive polymer and the solubilized polymer is performed.
  • the mixture containing the catalyst is precipitated and collected.
  • the mixture is dissolved in an organic solvent to obtain a conductive polymer solution in which a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer is dissolved in the organic solvent.
  • the ⁇ -conjugated conductive polymer and the solubilized polymer are once added to an aqueous solution, and a phase transfer catalyst is added to the aqueous solution.
  • the insoluble ⁇ -conjugated conductive polymer can be made oil-soluble. Therefore, by containing an organic solvent, a conductive polymer solution in which the ⁇ -conjugated conductive polymer is dissolved in the organic solvent can be obtained.
  • a method for producing the conductive polymer solution for example, first, a polyanion is synthesized, and a precursor monomer of a ⁇ -conjugated conductive polymer is added in the presence of the polyion and a solvent. There is a method in which a chemical oxidation polymerization is performed to obtain a solution of a ⁇ -conjugated conductive polymer, and then a nitrogen-containing compound is added to the solution.
  • Examples of methods for synthesizing polyanions include a method in which an acid is directly introduced into a polymer having no anion group using an acid, and a polymer having no anion group is sulfonated. Examples thereof include a method of producing a sulfonic acid with an agent, and a method of producing by polymerization of a cation group-containing polymerizable monomer.
  • Examples of the oxidizing agent and the oxidation catalyst used in the polymerization of the polymerizable monomer containing a cation group include ammonium peroxodisulfate (ammonium persulfate) and sodium peroxodisulfate (persulfate).
  • ammonium peroxodisulfate ammonium persulfate
  • sodium peroxodisulfate sodium peroxodisulfate
  • Sodium peroxodisulfate such as potassium peroxodisulfate (potassium persulfate)
  • transition metal compounds such as ferric chloride, ferric sulfate, ferric nitrate, cupric chloride, boron trifluoride, etc.
  • Metal oxides such as silver oxide and cesium oxide, peroxides such as hydrogen peroxide and ozone, organic peroxides such as benzoyl peroxide, and oxygen.
  • the solvent which comprises a conductive polymer solution can be used.
  • the polymerizable monomer having no ion group is the same as described above in ( ⁇ -conjugated conductive polymer).
  • the acid-oxidizing agent and the oxidation catalyst used when the precursor monomer of the ⁇ -conjugated conductive polymer is polymerized are the same as those used for the synthesis of polyion. .
  • Any solvent may be used as long as it is a solvent capable of dissolving or dispersing the precursor monomer and capable of maintaining the oxidizer and the acid catalyst of the acid catalyst, for example, a conductive polymer solution.
  • a solvent capable of dissolving or dispersing the precursor monomer and capable of maintaining the oxidizer and the acid catalyst of the acid catalyst for example, a conductive polymer solution. The thing similar to what is contained in is mentioned.
  • the cation group of the polyanion forms a salt with the ⁇ -conjugated conductive polymer as the main chain of the ⁇ -conjugated conductive polymer grows.
  • the main chain of the polymer grows along the polyon. Therefore, the obtained ⁇ -conjugated conductive polymer and poly-on become a complex in which an infinite number of salts are formed.
  • the nitrogen-containing compound When the nitrogen-containing compound is added, the remaining ⁇ conjugated conductive polymer that does not form a salt with the polyion is mixed with the quaternary salt of the nitrogen-containing compound that is a cation in a homogeneous solvent. Forms a salt.
  • the nitrogen-containing compound has an unsaturated double bond, the unsaturated double bonds are polymerized by radical polymerization, thermal polymerization, photopolymerization, cation polymerization, or plasma polymerization. It is preferable to do.
  • polymerization initiators such as azo compounds such as azobisisoptyl-tolyl, peroxides such as benzoyl peroxide, disyl peroxides, peroxy esters, hydride peroxides, etc. Polymerize using porridge.
  • polymerization is performed using a carbonyl compound, a thio compound, an organic peroxide, an azo compound, or the like as a polymerization initiator.
  • a carbonyl compound a thio compound, an organic peroxide, an azo compound, or the like
  • a polymerization initiator examples include benzophenone, 4,4 bis (dimethylamine) benzophenone, 4-methoxy-1-4'-dimethylaminobenzophenone, 4, 4, -dimethoxybenzophenone, 4-dimethylaminobenzophenone, 4-dimethylaminoacetophenone.
  • sensitizers for improving photosensitivity may be added.
  • sensitizers include 2,5 bis (4,1-jetylaminobenzal) cyclopentanone, 2,6-bis (4, -dimethylaminobenzal) cyclohexanone, 2 , 6 bis (4'-jetylaminobenzal) 4-methylcyclohexanone, 4,4'-bis (dimethylamino) chalcone, 4,4, -bis (jetylamino) chalcone, 2- (p-dimethylaminophenol-biylene) Examples thereof include benzothiazole, 2- (p dimethylaminophenol-biylene) -isonaphthothiazole, 3,3, -carbonyl-bis (7-jetylaminocoumarin), and the like. These sensitizers 1 Species or two or more can be used. Some sensitizers tend to act as photopolymerization initiators.
  • Examples of the cationic polymerization initiator used in the cationic polymerization method include allyldiazo-um salts, darylha-mouth-um salts, tri-sulfo-um salts, silanol Z aluminum chelates, and a sulfo-loxy ketones. Be mentioned
  • plasma In plasma polymerization, plasma is irradiated for a short time, receives energy from the electron bombardment of the plasma, performs fragmentation and rearrangement, and then forms a polymer by recombination of radicals.
  • These polymerizations may be performed in the form of a conductive polymer solution, or may be performed at the time of drying after coating.
  • the nitrogen-containing compound is quaternized to form a cation, and the quaternary nitrogen chloride-containing functional group of the nitrogen-containing compound is a ⁇ -conjugated conductive polymer. Forms a salt with the remaining polyone group of the polyanion that is not used to form a salt with the. As a result, conductivity and solvent solubility are improved.
  • the nitrogen-containing rich compound has one or more unsaturated double bonds
  • a crosslinking point is formed by the unsaturated double bond.
  • this unsaturated double bond is polymerized to crosslink the polyion and the ⁇ -conjugated conductive polymer which form a salt with the nitrogen-containing compound.
  • the intermolecular distance of the complex of ⁇ -conjugated conductive polymer and polyion is reduced and converged, so that the active energy for hopping in electron transfer between ⁇ -conjugated conductive polymers is reduced. Therefore, it is considered that the conductivity can be increased (specifically, it is possible to achieve lOOSZcm or more in electrical conductivity).
  • the molecular density is increased by the crosslinking of unsaturated double bonds, it is considered that the thermal stability, film-forming property, and wear resistance are improved.
  • the conductive resin of the present invention is obtained by removing the organic solvent from the conductive polymer solution described above.
  • the method for removing the organic solvent is not particularly limited, and examples thereof include a heat drying method and a vacuum drying method.
  • the conductive resin is preferably obtained from a conductive polymer solution containing a binder resin. If noinda resin is included, the pencil hardness CFIS K 5400) of conductive resin should be higher than HB.
  • a liquid-liquid extraction method can be employed as a method for producing the antistatic paint.
  • an organic solvent is first added to an aqueous solution of a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer, and then a phase transfer catalyst is added. Stir or shake. Then, it is left still for a while and separated into an aqueous layer and an organic solvent layer, and the aqueous layer is removed to obtain a solution in which the solvent is an organic solvent. Then, an antistatic paint is obtained by adding a hard coat component to the solution. Further, the antistatic paint can be produced by other methods.
  • a phase transfer catalyst is added to an aqueous solution of a complex of a ⁇ -conjugated conductive polymer and a soluble polymer, so that the ⁇ -conjugated conductive high
  • the mixture of molecules, soluble polymer and phase transfer catalyst is precipitated and collected.
  • the mixture is dissolved in an organic solvent, and a hard coat component is added to obtain an antistatic paint.
  • any method for producing an antistatic coating it is preferable to use an aqueous polymer solution containing a ⁇ -conjugated conductive polymer and a solubilized polymer.
  • a method for preparing a polymer aqueous solution for example, first, a solubilized polymer is dissolved in a solvent for dissolving the polymer.
  • the precursor monomer of the ⁇ -conjugated conductive polymer and a dopant as required are added and mixed thoroughly with stirring.
  • an oxidant is dropped into the resulting mixture to cause polymerization to proceed to obtain a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer, and then, from the complex, an oxidant, A method of removing and purifying residual monomers and by-products is employed.
  • the phase transfer catalyst is coordinated to the anion group or electron withdrawing group of the solubilized polymer, and the oil solubility of the solubilized polymer is increased.
  • the ⁇ -conjugated conductive polymer that forms a complex with the organic solvent is dissolved in an organic solvent, and compatibility with the hard coat component is ensured.
  • the ⁇ -conjugated conductive polymer contained in the antistatic coating is not an oil-soluble special monomer polymer, it is highly conductive and excellent in antistatic properties. Since the content of the ⁇ -conjugated conductive polymer can be reduced, the transparency is excellent.
  • the antistatic paint contains a hard coat component, the scratch resistance and surface hardness of the coating film can be increased.
  • the pencil hardness JIS ⁇ 5400
  • the pencil hardness can be more than ⁇ .
  • the antistatic hard coat layer of the present invention is formed by applying the antistatic paint described above.
  • Examples of the method for applying the antistatic coating include immersion, comma coating, spray coating, roll coating, and gravure printing.
  • the solvent may be removed by heating, or the antistatic paint may be cured by heat or light.
  • a heating method in the case of heating for example, a normal method such as hot air heating or infrared heating can be adopted.
  • a light irradiation method for forming a coating film by photocuring for example, a method of irradiating ultraviolet rays with a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, a metal halide lamp, etc. it can.
  • Examples of the substrate on which the antistatic node coat layer is formed include, for example, a low-density polyethylene film, a high-density polyethylene film, an ethylene-propylene copolymer film, a polypropylene film, an ethylene monoacetate butyl copolymer film, Ethylene monomethyl methacrylate copolymer film, polyethylene terephthalate (PET) film, polybutylene terephthalate (PBT) film, polyethylene naphthalate (PEN) film, polyimide film, 6-nylon film, 6, 6-nylon film, polymethyl methacrylate Film, polystyrene film, styrene-acrylonitrile-butadiene copolymer film, polyacrylonitrile film, cellulose triacetate (TAC) film, cellulose propionate film, Polyvinyl chloride film, polyvinylidene chloride film, polyvinylidene fluoride film, polytetrafluoroethylene film
  • the surface of the base material is subjected to etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation and the like for the purpose of enhancing compatibility with the antistatic paint. It is preferable to apply a hydrophilic treatment such as a coating treatment. Furthermore, dust may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • etching treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation and the like for the purpose of enhancing compatibility with the antistatic paint.
  • a hydrophilic treatment such as a coating treatment.
  • dust may be removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary.
  • the antistatic hard coat layer is formed from the above-mentioned antistatic paint, it has high hardness and excellent antistatic properties and transparency.
  • the transparency is as high as possible.
  • the total light transmittance (JIS Z) JIS Z
  • the 8701 is preferably 85% or more, more preferably 90% or more, and even more preferably 96% or more.
  • the haze (JIS K 6714) is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • the surface hardness (pencil hardness according to JIS S 6006) is preferably HB or more.
  • the surface resistance value of the antistatic node coat layer is preferably adjusted as appropriate in consideration of the optical characteristics. Usually, 1 X 10 3 ⁇ to 1 X 10 12 ⁇ can be used for antistatic applications.
  • the light transmittance, haze, surface resistance value, and surface hardness of the antistatic hard coat layer can be adjusted by the coating thickness.
  • FIG. 1 shows an optical filter of this embodiment.
  • This optical filter 1 has a film substrate 10, an antistatic hard coat layer 20 formed on the film substrate 10, and an antireflection layer 30 formed on the antistatic hard coat layer 20. Configured.
  • a transparent adhesive layer is provided on the surface of the optical filter 1 on the film base 10 side, and the optical filter 1 is attached via the adhesive layer.
  • the film substrate 10 various plastic films having transparency can be used.
  • the transparent plastic film include films having strength such as polyethylene terephthalate, polyimide, polyethersulfone, polyetheretherketone, polycarbonate, polypropylene, polyamide, acrylamide, and cellulose propionate. It is done.
  • the film substrate 10 has sputtering, corona discharge, flame, ultraviolet irradiation on the surface.
  • etching treatment such as electron beam irradiation, chemical conversion, oxidation, or undercoating treatment is performed. If such a treatment is applied to the surface, it is possible to further improve the adhesion to the antistatic layer and the coated layer 20.
  • the surface of the film substrate 10 may be dust-removed and cleaned by solvent cleaning or ultrasonic cleaning as necessary before providing the antistatic node coat layer 20.
  • the antistatic hard coat layer 20 is a film formed of an antistatic paint as described above. As described above, the antistatic hard coat layer 20 has a surface hardness (pencil hardness) of HB. The above is preferable. In addition, since it is an optical application, the total light transmittance (JIS Z 8701) of the antistatic hard coat layer 20 is preferably 85% or more, more preferably 90% or more, and more preferably 96% or more. It is particularly preferred that Further, the haze (JIS K 6714) of the antistatic node coat layer 20 is preferably 5% or less, more preferably 3% or less, and even more preferably 1% or less.
  • the antireflection layer 30 is a layer that prevents reflection of light. This layer may be a single layer or multiple layers. In the case of a single layer, the refractive index is preferably in the range of 1.38-1.45, and the optical film thickness is preferably in the range of 80 to: LOOnm.
  • the antireflection layer 30 can be formed by either a dry method or a wet method.
  • the dry method include a physical vapor deposition method such as an electron beam evaporation method, a dielectric heating evaporation method, a resistance heating evaporation method, a sputtering method, and an ion plating method, and a plasma CVD method.
  • the components of the antireflection layer 30 include, for example, silicon oxide, magnesium fluoride, niobium oxide, titanium oxide, tantalum oxide, acid aluminum, and acid zirconium. Inorganic compounds such as indium oxide and tin oxide can be used!
  • Examples of the wet method include a method of applying a coating material containing a curable compound by a known method such as comma coating, spray coating, roll coating, gravure printing, and curing the coating.
  • examples of the curable compound include a fluorine-containing organic compound, a fluorine-containing organic cage compound, and a fluorine-containing inorganic compound. Any fluorine-containing compound can be used.
  • an antifouling layer may be further provided on the antireflection layer 30. If an antifouling layer is provided, dust and dirt can be prevented from adhering or even removed.
  • the antifouling layer is not particularly limited as long as it does not inhibit the antireflection function of the antireflection layer 30, exhibits high water repellency and oil repellency, and can prevent adhesion of contamination, and is composed of an organic compound. It may be a layer or a layer made of an inorganic compound. For example, a layer containing an organic silicon compound having a perfluorosilane group or a fluorocycloalkyl group or a fluorine organic compound can be used.
  • the method for forming the antifouling layer can be appropriately selected depending on the type of the antifouling layer.
  • physical vapor deposition methods such as vapor deposition, sputtering, ion plating, chemical vapor deposition, and plasma polymerization can be used.
  • vacuum process, micro gravure method, screen coating method, dip coating method and the like can be adopted.
  • an antistatic node coat layer 20 that protects the film substrate 10 is formed, and the antistatic hard coat layer 20 is formed from the antistatic paint. Therefore, it has sufficient hardness, excellent transparency, and excellent adhesion to the film substrate 10. In addition, since the antistatic hard coat layer 20 is excellent in antistatic stability, the optical filter 1 is less prone to adhere to dust on the surface.
  • Such an optical filter 1 is suitably used for an antireflection film, an infrared absorption film, an electromagnetic wave absorption film, or the like on both sides of a liquid crystal screen or a plasma display.
  • the optical filter of the present invention is not limited to the above-described embodiment example, and it is sufficient that the optical filter has an antistatic node coat layer formed from the antistatic paint cover.
  • a polarizing plate can be used instead of the film substrate.
  • the polarizing plate include those in which a protective film is laminated on one side or both sides of a polyvinyl alcohol-based resin film that adsorbs and aligns a dichroic dye.
  • the dichroic dye include iodine and a dichroic dye. Can be used.
  • Such an optical filter can be provided on the outermost surface of the liquid crystal display device.
  • the conductive coating film of the present invention is formed by applying the conductive polymer solution described above. It is. Examples of the method for applying the conductive polymer solution include dipping, comma coating, spray coating, roll coating, and gravure printing.
  • the coating film After coating, it is preferable to cure the coating film by heat treatment or ultraviolet irradiation treatment.
  • heat treatment for example, a normal method such as hot air heating or infrared heating can be employed.
  • ultraviolet irradiation treatment for example, a method of irradiating ultraviolet rays from a light source such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, or a metal nitride lamp can be adopted.
  • the above-mentioned conductive coating film is formed by applying the above-mentioned conductive polymer solution, it has excellent conductivity.
  • the nitrogen-containing compound has an unsaturated double bond and this unsaturated double bond is polymerized, it is excellent in thermal stability, film forming property, and abrasion resistance. Excellent.
  • a liquid-liquid extraction method can be employed as a method for producing the antistatic adhesive.
  • a precursor monomer of a ⁇ -conjugated conductive polymer is chemically oxidatively polymerized in an aqueous solution of a solubilized polymer, and ⁇ -conjugated.
  • An aqueous solution of a composite of a conductive polymer and a soluble polymer is obtained.
  • an organic solvent is added to the aqueous solution of the complex of the ⁇ -shared conductive polymer and the solubilized polymer, and then a phase transfer catalyst is added, followed by stirring or shaking.
  • the antistatic adhesive can also be produced by other methods.
  • a precursor monomer of a ⁇ -conjugated conductive polymer is chemically oxidatively polymerized in an aqueous solution of a soluble polymer to obtain a ⁇ -conjugated
  • An aqueous solution of a complex of a conductive polymer and a solubilized polymer is obtained.
  • a phase transfer catalyst is added to the aqueous solution of the complex of the ⁇ -conjugated conductive polymer and the solubilized polymer to precipitate the mixture of the ⁇ -conjugated conductive polymer, the solubilized polymer, and the phase transfer catalyst. Let this be collected.
  • the mixture is dissolved in an organic solvent, and an adhesive component is added to obtain an antistatic adhesive.
  • the phase transfer catalyst is coordinated to the anion-sucking group of the solubilized polymer, and the oil solubility of the soluble polymer is high. . Therefore, the ⁇ -conjugated conductive polymer that forms a complex with the solubilized polymer is dissolved in a liquid organic compound such as an organic solvent other than alcohol or an acrylic monomer.
  • the compatibility of any adhesive component can be ensured, so that the acrylic polymer is less restricted. If there are fewer restrictions on the acrylic polymer, the performance of the adhesive can be widened.
  • antistatic adhesives in which a complex of a ⁇ -conjugated conductive polymer and a solubilized polymer has been converted into oil-soluble as well as water-soluble by a phase transfer catalyst are storage stability. Is excellent. Therefore, it is prevented that the transparency and conductivity of the adhesive layer in which the ⁇ - conjugated conductive polymer is difficult to agglomerate and separate even when stored for a long period of time are prevented.
  • the ability to prepare the antistatic adhesive is no longer necessary, and it is no longer necessary to carry out the production of the protective material. Can be made flexible.
  • the antistatic adhesive layer of the present invention is formed by applying the antistatic adhesive agent described above.
  • Examples of the application method of the antistatic adhesive include force such as dipping, comma coating, spray coating, roll coating, gravure roll coating, spin coating, etc. There is no particular limitation.
  • an antistatic adhesive layer can be obtained by curing the coating film by heating or light irradiation.
  • a heating method for example, a normal method such as hot air heating or infrared heating can be employed.
  • a light irradiation method for example, a method of irradiating ultraviolet light with a light source such as an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, or a metal nitride lamp can be adopted.
  • the thickness of the antistatic adhesive layer is not particularly limited, but is preferably 0.01 ⁇ m to 5 mm. Force S is preferable, and 0.1 / ⁇ ⁇ to 0.5 mm is more preferable. It is particularly preferably 1 to 50 / zm. When the thickness of the antistatic adhesive layer is less than 0.01 m, The antistatic property may be insufficient. If the thickness exceeds 5 mm, the antistatic adhesive layer may be internally broken at the time of peeling and remain on the object to be protected.
  • the protective material of the present invention is provided with a base material and the above-mentioned antistatic adhesive layer provided on the base material, for example, a protective tape such as a cover tape or a carrier tape, or , Protective sheets, protective films and the like.
  • the substrate is not particularly limited as long as it can hold an antistatic adhesive, but a plastic substrate is preferable from the viewpoint of transparency.
  • plastic substrates include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, celluloids such as triacetyl cellulose, polyethylene, polypropylene, ABS resin, acrylic resin, polyamide, polycarbonate, polyamide, and phenoxy. Examples of greaves and epoxy greaves.
  • polyethylene terephthalate is preferred from the viewpoint of moldability and versatility!
  • a pretreatment such as a primer treatment, a plasma treatment, an arc discharge treatment or the like may be applied to the coated surface of the substrate.
  • the thickness of the substrate is not particularly limited, but is preferably 0.01 ⁇ m to 10 mm from the viewpoint of easy peeling and transparency of the object to be protected, and is 0.1 m to lmm. It is particularly preferable that the thickness is 1 ⁇ m to 0.5 mm. If the thickness of the substrate is less than 0.01 ⁇ m, the strength is insufficient, and if it exceeds 10 mm, the handleability at the time of peeling decreases.
  • the protective material of the present invention is provided with an antistatic adhesive layer formed by applying the above-mentioned antistatic adhesive, so that it has transparency and conductivity (antistatic properties). Excellent.
  • the mixed solution thus obtained was kept at 20 ° C, and while stirring, 29. 64 g of ammonium persulfate dissolved in 200 ml of ion-exchanged water and 8. Og of ferric sulfate oxidation catalyst The solution was slowly added and reacted with stirring for 3 hours.
  • Example 2 Conductive polymer solution containing black mouth form 200 mg of cetyl pyridinium chloride as a phase transfer catalyst was added to a mixed solution of Production Example 2 with 1 Oml of PS S—PEDOT aqueous solution and 1 Oml of black mouth form, and shaken vigorously. After that, it is allowed to stand and separate into an upper aqueous layer and a lower organic solvent layer. The aqueous layer is separated and removed, and is treated with a nanomizer to dissolve the PSS—PEDOT formaldehyde solution, which is a conductive polymer solution. A liquid was obtained.
  • This organic solvent solution of PSS-PEDOT has a high drying speed when forming a coating film. Also, the conductivity is sufficiently secured.
  • This antistatic paint was evaluated as follows. In other words, Irgacure 754 (Chinoku Specialty Chemicals Co., Ltd.), a polymerization initiator, is added to the antistatic coating, applied on a TAC film with a comma coater, dried, cured by exposure to a high-pressure mercury lamp, and thickened. A 5 m antistatic node coat layer was formed. Then, the surface resistance value, visible light transmittance, and haze of this layer were measured. The results are shown in Table 2.
  • ITO colloid solution 15 g of ITO powder, 60 g of dimethylformamide (DMF), 75 g of ethanol, and 200 g of zirconia beads, and stir using a ball mill for about 1 to 24 hours, and then adjust the pH of the obtained ITO colloid solution to 2 to 8 The range was adjusted.
  • This colloidal ITO solution is diluted with a mixed solvent of methanol, ethanol, butanol, 2-methoxyethanol, and 1-methoxy-2-propanol so that the ITO concentration becomes 1.0 to 1.5% by mass. Solution was prepared.
  • the obtained ITO colloid coating solution was spin-coated at a rate of 300 rpm on the hard coat layer of the film substrate to form an ITO layer.
  • a silica coating solution was spin-coated on the ITO layer at a speed of 300 rpm, and heated at 100 ° C. for 30 minutes to obtain a laminate having a film base Z hard coat layer ZITO layer Z silica layer.
  • Table 2 shows the evaluation results of this laminate.
  • the hard coat layer formed with the antistatic coating force of Example 4 containing a conductive polymer component, a hard coat component, and a phase transfer catalyst has sufficient antistatic properties and transmits visible light.
  • the haze with a high rate was small.
  • the ratio of koji mixed with the node coat component Antistatic paint strength of Comparative Example 1 The formed hard coat layer had a large haze with low visible light transmittance.
  • the other side of the PET film (film substrate) with the adhesive layer and cover film laminated on one side was corona treated.
  • the antistatic paint of Example 4 was applied to the corona-treated surface of the PET film with a comma coater. After drying, it was cured by exposure to a high-pressure mercury lamp to form an antistatic coating layer.
  • ethanol 42. Og was added to 80 g of an ethanol dispersion of hollow silica having fine pores inside (made by Catalyst Kasei Kogyo Co., Ltd., solid content concentration 15.6% by mass) on the antistatic hard coat layer. The solution was applied. Thereafter, it was dried and heat-treated at 100 ° C. for 1 hour to form an antireflection layer having a thickness of 90 m to obtain an optical filter.
  • Adhesion test was carried out according to the grid tape method CFIS K 5400). Specifically, the surface of the optical film on the side of the antireflection layer was cut with a cutter at 11 mm length and width intervals (total of 100 square cells were formed). After sticking an adhesive tape to this, it was peeled off and the number of squares remaining on the PET film was counted. As a result, in this optical film, all 100 squares remained (1007100). That is, in this optical filter, the hard coat layer had sufficient hardness, and was excellent in transparency, antistatic properties, and adhesion to the substrate.
  • composition 1 Preparation of a complex solution (complex solution 1) of poly (ethylenedioxythiophene) and polyallylsulfonic acid Dissolve 145 g (lmol) sodium allylic sulfonate in 1000 ml ion-exchanged water and stir at 80 ° C. Pre-dissolved in 10 ml water 1. 14 g (0.005 mol) ammonium persulfate oxidizing agent The solution was added dropwise for 20 minutes and stirring was continued for another 12 hours.
  • complex solution 1 of poly (ethylenedioxythiophene) and polyallylsulfonic acid Dissolve 145 g (lmol) sodium allylic sulfonate in 1000 ml ion-exchanged water and stir at 80 ° C. Pre-dissolved in 10 ml water 1. 14 g (0.005 mol) ammonium persulfate oxidizing agent The solution was added dropwise for 20 minutes and stirring was continued for another 12 hours.
  • a reactor equipped with a stirrer, thermometer, nitrogen seal tube and condenser was charged with 203 g (lmol) isophorone diisocyanate, 46.5 g (0.775 mol) ethylene glycol and 29 g (0.25 mol 1). Pentaerythritol triatalylate was added. Next, the inside of the reactor was purged with nitrogen, heated to a reaction temperature of 60 to 70 ° C. with stirring, and reacted at the same temperature for 3 hours. Next, 6.0 parts of trioctylphosphine was added as a catalyst, heated to 65-70 ° C with stirring and reacted at the same temperature for 6 hours, and then 3.5 parts of phosphoric acid was added to stop the reaction.
  • quaternary salt solution polymer solution 1 a polymer of a urethane group-containing compound was obtained. After the polymer was diluted with isopropanol, hydrochloric acid was added, and the mixture was stirred and subjected to quaternary chlorination to obtain a polymer solution of about 30% by mass of a quaternary urethane chloride-containing compound. This was designated as quaternary salt solution polymer solution 1.
  • This quaternary salt polymer solution was formed into a film by casting, and the polymer of the urethane group-containing compound in front of the quaternary salt was similarly formed into a film, and approximately 0.2 g of each was accurately weighed. . Then, dissolve in 50 ml of dioxane Z ethanol (7Z3 volume ratio) mixed solvent and titrate with N / 10-HC104 dioxane solution using potentiometric titrator (Hiratuma Seisakusho, Comtite-7). The nitrogen content was measured.
  • the basic film had a basic nitrogen content of 0.67 mmol / g
  • the quaternary chloride polymer film (A) had a basic nitrogen content of 0.1 mmolOg. From this, the quaternary chlorination rate is about 85%. There is a certain thing.
  • This polymer was dissolved in methyl ethyl ketone and charged with 28.2 g (0.4 molar equivalent of a hydroxy group) of 2-ataryloxyxetyl isocyanate.
  • the inside of the reactor was purged with nitrogen, heated to a reaction temperature of 60 ° C. with stirring, and reacted for 3 hours. Thereafter, the solvent was removed under reduced pressure to obtain a polymer of an amide group-containing compound into which an unsaturated double bond was introduced.
  • This polymer is diluted in isopropanol, methyl chloride is added, the reaction temperature is raised to 50 ° C. while stirring, and the reaction is carried out for 2 hours to perform quaternary salting, and about 30% by mass of quaternary salt is obtained.
  • a polymer solution of the amide group-containing compound was obtained. This was designated as quaternary salt polymer solution 2.
  • the quaternary salt ratio was about 90%.
  • This polymer was dissolved in methyl ethyl ketone, added with 28.2 g (0.4 mole equivalent to carboxy group) of glycidyl acrylate, and the inside of the reactor was purged with nitrogen, while stirring. The reaction temperature was raised to 60 ° C and the reaction was allowed to proceed for 3 hours. Thereafter, the solvent was removed under reduced pressure, and then diluted with isopropanol to obtain a polymer solution of a compound having an unsaturated double bond introduced and having no functional group capable of forming a quaternary salt. This was designated as Polymer Solution 3.
  • Example 6 Add 2. lg (1 mol equivalent of quaternary salt to polyallylsulfonic acid) of quaternary salt 4 polymer solution 1 to 100 ml of complex solution 1 and uniformly disperse the conductive polymer solution. Obtained.
  • the obtained conductive polymer solution was coated on a polyethylene terephthalate (PET) film with a wire coater, dried in an oven at 100 ° C for 2 minutes, and irradiated with ultraviolet light with an integrated light intensity of 500 mj / cm 2 using an ultraviolet light exposure machine. To form a conductive coating film.
  • the electrical properties of the conductive coating were evaluated as follows. The results are shown in Table 3.
  • Electrical conductivity heat retention rate (%): Measure the electrical conductivity R of the coating film at a temperature of 25 ° C.
  • the conductive coating film was allowed to stand in an environment at a temperature of 125 ° C. for 300 hours, and then returned to a temperature of 25 ° C., and the electric conductivity R was measured. And it computed from the following formula. In addition, this
  • the electrical conductivity and heat retention rate of the glass is an indicator of thermal stability.
  • a conductive polymer solution was obtained in the same manner as in Example 7 except that the introduction of the unsaturated double bond in Preparation Example 4 was omitted. Then, a conductive coating film was formed in the same manner as in Example 7, and the electrical characteristics were evaluated. The results are shown in Table 3.
  • a conductive polymer solution was obtained in the same manner as in Example 6 except that quaternary chloride was omitted in Preparation Example 3. Then, a conductive coating film was formed in the same manner as in Example 6, and the electrical characteristics were evaluated. The results are shown in Table 4.
  • urea group, urethane group, allophanate of Preparation Example 5 A conductive polymer solution was obtained in the same manner as in Example 6 except that the polymer solution 3 containing no group, burette group, imide group or amide group was added. In the same manner as in Example 6, a conductive coating film was formed, and the electrical characteristics were evaluated. The results are shown in Table 4.
  • the conductive coating films formed from the conductive polymer solutions of Examples 6 to 8 containing a quaternary chlorinated nitrogen-containing compound had high conductivity. Further, the conductive coating films of Examples 6 and 7 in which the nitrogen-containing compound was formed from a conductive polymer solution having an unsaturated double bond had a film strength because the unsaturated double bond was polymerized. As a result, a decrease in the electrical conductivity maintenance rate was prevented. That is, the thermal stability was improved. Further, the conductivity was further improved. On the other hand, in the conductive coating film formed from the conductive polymer solution of Comparative Examples 2 and 3 having a compound whose functional group is not quaternized, the nitrogen-containing compound does not form a salt with polyone. Therefore, the improvement of electric conductivity was unseen. However, the decrease of the electrical conductivity maintenance rate was prevented by polymerization of unsaturated double bonds.
  • PSS—PEDOT aqueous solution of Production Example 2 was mixed with 200 ml of acetone and 200 ml of toluene, and 3.2 g of 1-dodecyl 2 methyl 3 benzylimidazolium chloride (phase transfer catalyst) was added and shaken vigorously. . Then, let it stand and dissolve the upper layer organic solvent. Separated into an agent layer and a lower aqueous layer, the aqueous layer was separated and removed. Next, after diluting with the same amount of MEK as the separated and removed water, it was treated with a nanomizer to obtain a MEK solution of PSS-PEDOT.
  • phase transfer catalyst phase transfer catalyst
  • Acrylic copolymer was obtained by polymerizing 50 mol% of methyl methacrylate, 30 mol% of 2-ethylhexyl methacrylate, and 20 mol% of butyl methacrylate.
  • the MEK solution of PSS—PEDOT and the acrylic copolymer were mixed and dispersed by nanomizing treatment so that the mass ratio was 60/40 to obtain an antistatic adhesive. At that time, the PEDO T force was adjusted to 1.0 mass% with respect to the acrylic copolymer.
  • MEK was distilled off from the antistatic adhesive agent obtained in Example 9, and it was compatibilized by nanomizing treatment or the like to obtain an antistatic adhesive agent that was made solvent-free.
  • An antistatic adhesive was obtained in the same manner as in Example 9 except that the acrylic monomer UN-900 OPEP manufactured by Negami Kogyo Co., Ltd. was used instead of the acrylic copolymer.
  • Example 9 Same as Example 9 except that the PSS-PEDOT aqueous solution of Production Example 2 was solvent-substituted with isopropyl alcohol and then the acrylic copolymer of Production Example 4 was dissolved in a MEKZ toluene mixed solvent (mass ratio 50Z50). Thus, an antistatic adhesive was obtained.
  • Polyester E Mar Ji Toyobo Co., Ltd., trade name Bainaroru a MD-1100, solid content 30 mass 0/0
  • Chiofen system of ⁇ -conjugated conductive polymer and Polya - one water ⁇ isopropyl alcohol solution Naagase Product name Denatron P-502S
  • a ⁇ -conjugated conductive polymer was dispersed to obtain a viscous adhesive suspended in a light purple color.
  • An adhesive was obtained in the same manner as in Comparative Example 5 except that Toyobo Co., Ltd., trade name: Pinaroll MD-1500, and solid content of 30% by mass were used as the polyester emulsion.
  • Examples 9 to: 1 1 and Comparative Examples 4 to 6 were coated on a polyethylene terephthalate one-to-film (product name: Lumirror, Toray, Inc.) as a base material with a dry film thickness of 5 / Coated to xm. Then, it dried at 80 degreeC and obtained the protective material which has an adhesion layer.
  • a polyethylene terephthalate one-to-film product name: Lumirror, Toray, Inc.
  • the transmittance and haze value (haze value) of the obtained antistatic film were measured in accordance with the optical property test method for plastics that can be stored in JIS K 7361-1.
  • the antistatic adhesives of Examples 9 and 11 containing a ⁇ -conjugated conductive polymer, polyayuone, a phase transfer catalyst and an adhesive component and containing soot as a solvent are excellent in storage stability.
  • a highly transparent and highly conductive and antistatic adhesive layer could be formed.
  • Table 5 a protective material having high transparency and conductivity was obtained.
  • the antistatic adhesive of Example 10 which contains a ⁇ -conjugated conductive polymer, polyanion, a phase transfer catalyst, and an adhesive component and is solvent-free, has excellent storage stability. It was possible to form an antistatic adhesive layer having high transparency and conductivity. As a result, as shown in Table 5, a protective material having high transparency and conductivity was obtained. [0182]
  • the conductive polymer solution of the present invention can shorten the drying time for forming the coating film, and the ⁇ -conjugated conductive polymer is easily compatible with the hydrophobic resin.
  • the method for producing a conductive polymer solution of the present invention it is possible to shorten the drying time for forming a coating film, and to produce a conductive polymer solution in which a ⁇ -conjugated conductive polymer is easily compatible with a hydrophobic resin. it can.
  • the antistatic coating material of the present invention ensures compatibility between the ⁇ -conjugated conductive polymer and the hard coat component, and can form a coating film having both antistatic properties and transparency.
  • the hard coat layer of the present invention has high hardness and also has antistatic properties and transparency.
  • the optical filter of the present invention has a hard coat layer having high hardness and having both antistatic properties and transparency.
  • the conductive polymer solution of the present invention is excellent in both conductivity and solvent solubility.
  • the thermal stability of the coating film formed from the conductive polymer solution can be increased, and the force is also conductive.
  • the sex can be made higher.
  • the conductive coating film of the present invention is excellent in conductivity.
  • the antistatic pressure-sensitive adhesive of the present invention can use a liquid organic compound other than alcohol as a solvent, has no limitation on the acrylic polymer, and has high storage stability.
  • the antistatic adhesive layer and the protective material of the present invention are excellent in transparency and antistatic properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明の導電性高分子溶液は、π共役系導電性高分子と可溶化高分子と相間移動触媒と有機溶媒を含有する。本発明の導電性高分子溶液の製造方法は、π共役系導電性高分子および可溶化高分子を水に溶解した高分子水溶液に有機溶媒を添加した後、相間移動触媒を添加する。あるいは、本発明の導電性高分子溶液の製造方法は、π共役系導電性高分子および可溶化高分子を水に溶解した高分子水溶液に相間移動触媒を添加して、π共役系導電性高分子と可溶化高分子と相間移動触媒とを含む混合物を沈殿させ、前記混合物に有機溶媒を添加する。

Description

明 細 書
導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フ ィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、お よびその製造方法
技術分野
[0001] 本発明は、 π共役系導電性高分子を含む導電性高分子溶液およびその製造方法 に関する。
また、帯電防止性の塗膜を形成する帯電防止塗料に関する。さらには、帯電防止 性のハードコート層および光学フィルタに関する。
加えて、 π共役系導電性高分子を含む導電性高分子溶液及び導電性塗膜に関す る。
さらに、帯電防止性と粘接着性を有する帯電防止性粘接着剤および帯電防止性粘 接着層に関する。また、保護テープ、保護シート、保護フィルムなどの保護材に関す る。
本願は、 2005年 3月 11日〖こ、日本に出願された特願 2005— 068935号、 2005年 3 月 11日に、日本に出願された特願 2005— 068936号、 2005年 5月 17日に、日本に 出願された特願 2005— 144030号、及び 2005年 8月 15日に、日本に出願された特願 2005— 235208号に基づき優先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、ポリピロール、ポリチォフェン、ポリアセチレン、ポリパラフエ-レン、ポリア-リ ンなどの π共役系導電性高分子に電子供与性化合物や電子受容性化合物 (ドーパ ント)を添カ卩(ドーピング)した導電性材料が開発され、その用途は広がって 、る。 一般的に、主鎖が π電子を含む共役系で構成されている π共役系導電性高分子 は、電解重合法及び化学酸化重合法により合成される。
電解重合法では、ドーパントとなる電解質と π共役系導電性高分子を形成する前 駆体モノマーとの混合溶液中に、予め形成した電極材料などの支持体を浸漬し、支 持体上に π共役系導電性高分子をフィルム状に形成する。そのため、大量に製造す ることが困難である。
一方、化学酸化重合法では、このような制約がなぐ π共役系導電性高分子の前 駆体モノマーに酸化剤及び酸化重合触媒を添加し、溶液中で大量の π共役系導電 性高分子を製造できる。
しかし、化学酸化重合法では、 π共役系導電性高分子主鎖の共役系の成長に伴 い、溶媒に対する溶解性が乏しくなるため、不溶の固形粉体で得られるようになる。 不溶性のものでは支持体表面上に π共役系導電性高分子膜を均一に形成すること が困難になる。
[0003] そのため、 π共役系導電性高分子に官能基を導入して可溶化する方法、バインダ 榭脂に分散して可溶化する方法、ァニオン基含有高分子酸を添加して可溶化する 方法が試みられている。
例えば、水への分散性を向上させるために、分子量力 000〜500000の範囲の ァ-オン基含有高分子酸であるポリスチレンスルホン酸の存在下で、酸化剤を用い て、 3, 4—ジアルコキシチォフェンを化学酸化重合してポリ(3, 4—ジアルコキシチ ォフェン)水溶液を製造する方法が提案されている (特許文献 1参照)。また、ポリアク リル酸の存在下で化学酸化重合して π共役系導電性高分子コロイド水溶液を製造 する方法が提案されて!ヽる (特許文献 2参照)。
特許文献 1:特許第 2636968号公報
特許文献 2 :特開平 7— 165892号公報
[0004] また、一般的に、光学フィルタや光情報記録媒体の表面には傷つきを防止するた めにハードコート層が備えられている。これらの光学用途では、ハードコート層は硬度 が高いだけでなぐ優れた透明性、静電気による塵埃の付着を防止するための帯電 防止性が要求される。
特に、帯電防止性については、表面抵抗が 106〜101(> Ω程度の領域で抵抗値が 安定していること (すなわち、安定した帯電防止性)が求められる。
光学フィルタや光情報記録媒体用のハードコート層としては、 π共役系導電性高 分子およびハードコート成分を含む帯電防止塗料が塗布されて形成された塗膜を用 、ることがある。 [0005] ところで、 π共役系導電性高分子はそれ単独では不溶であるが、ァ-オン基含有 高分子酸存在下で π共役系導電性高分子の前駆体モノマーをィ匕学酸ィ匕重合するこ とにより、 π共役系導電性高分子を水溶液ィ匕できることが知られている(例えば、特 許文献 1参照)。この π共役系導電性高分子の水溶液を塗料として塗布することによ り帯電防止性を有する塗膜を形成できる。しかし、水が溶媒である場合には乾燥速 度が遅ぐ塗膜形成に時間を要する上に、 π共役系導電性高分子が水溶性である 場合には、ハードコート成分との相溶性が低くなるため、充分な性能を有するハード コート層を得ることができなかった。
[0006] この問題を解決するものとして、特許文献 3には、ピロールの β位に長鎖のアルキ ル基が導入された βアルキルピロールの重合体力 なる導電性高分子が記載されて いる。この導電性高分子は嵩高いアルキル基を有するため、揮発しやすい有機溶媒 に可溶であり、ハードコート成分との相溶性にも優れる。
特許文献 3:特許第 3024867号公報
[0007] また、 π共役系導電性高分子に官能基を導入して可溶化する方法、バインダ榭脂 に分散して可溶ィ匕する方法、ポリア-オンを添加して可溶ィ匕する方法が試みられて いる。
例えば、基材上に導電膜を形成する方法として、酸化剤と塩化ビニル系共重合体 と π共役系導電性高分子を形成するモノマーとを溶剤に溶解して基材に塗布し、溶 剤により酸ィ匕電位を制御しながら、モノマーを重合して塩ィ匕ビ二ル系共重合体と導電 性高分子の複合体を形成する方法が提案されて ヽる (特許文献 4参照)。
[0008] さらに、用途によっては、導電膜は熱安定性が高いことが求められることもある。熱 安定性の高い導電膜を形成することを目的として、酸化防止剤として使用可能なス ルホン化された物質と類似の構造をもつ化合物をドーパントとしてモノマーに混合し て電解重合する方法が提案されて ヽる (特許文献 5参照)。
特許文献 4:特開平 5 - 186619号公報
特許文献 5:特許第 2546617号公報
[0009] 従来から、各種部品や物品の表面を機械的あるいは電気的に保護するため、また 、精密機器の内部への埃や水分の侵入を防ぐため、保管、搬送、輸送、加工時に保 護テープ、保護シート、保護フィルムなどの保護材で部品、物品、精密機器等を被覆 することがある。
一般的に、保護材は、基材上に、部品や物品に貼着するための粘接着層が設けら れたものが使用されている。ところで、保護材を剥離した際には静電気が生じるため 、ディスプレイ、偏光板、電子部品などの保護に保護材を適用した場合に、それらを 損傷あるいは機能低下させることがあった。その対策として、保護材に帯電防止性を 持たせることが提案されている(例えば、特許文献 6〜9参照)。特に、特許文献 8, 9 では、 π共役系導電性高分子を含む水溶性の塗液を基材上に塗布して帯電防止性 の粘接着層を設けることが提案されている。しカゝしながら、水溶性の塗液の場合には 、乾燥時間が長くなるため、塗液を有機溶剤系にすることが求められていた。
そこで、特許文献 10では、ポリチォフェン水溶液をポリチォフェンのアルコール溶 液に変換し、そのポリチォフェンのアルコール溶液にアクリル系重合体を分散させて 、アルコールに分散した導電性粘着剤を調製し、その粘着剤を粘接着層に用いるこ とが提案されている。
特許文献 6:特開 2001— 301819号公報
特許文献 7:特開 2001— 106994号公報
特許文献 8:特開平 6 - 295016号公報
特許文献 9:特開平 9 - 31222号公報
特許文献 10 :特開 2005— 126081号公報
発明の開示
発明が解決しょうとする課題
上述したように、これまでに提案されて ヽた π共役系導電性高分子を含む導電性 高分子溶液は水溶液であるが、水溶液を塗布して塗膜を形成する場合には乾燥時 間が長くなるため、導電性塗膜の生産性が低力つた。また、 π共役系導電性高分子 が水溶性である場合には、ハードコート榭脂などの疎水性榭脂との相溶性が低ぐ用 途展開が制限されていた。
本発明は、上記事情に鑑みてなされたものであって、塗膜形成の乾燥時間を短縮 でき、 π共役系導電性高分子が疎水性榭脂と相溶しやすい導電性高分子溶液およ びその製造方法を提供することを目的とする。
[0011] また、特許文献 2に記載の導電性高分子は導電性が低いため、有機溶媒に溶解し て塗料化する際にはその導電性高分子の含有量を多くしなければ所定の帯電防止 性を確保することができな力つた。導電性高分子の含有量の多 、塗料を塗布して塗 膜を形成すると、該塗膜が着色して透明性が損なわれるという問題があった。さらに、 特許文献 2に記載の導電性高分子であっても、極性の異なる種々のハードコート榭 脂との相溶性が不充分である上に、 j8—アルキルピロールなどの特殊なモノマーは 非常に高価であり、実用的ではな力つた。
本発明は、上記事情に鑑みてなされたものであって、 π共役系導電性高分子とハ ードコート成分との相溶性が確保され、帯電防止性および透明性を兼備した塗膜を 形成できる帯電防止塗料を提供することを目的とする。また、硬度が高い上に、帯電 防止性および透明性を兼備したハードコート層を提供することを目的とする。さらには 、硬度が高い上に、帯電防止性および透明性を兼備したハードコート層を備えた光 学フィルタを提供することを目的とする。
[0012] また、特許文献 4記載の方法では、基材の種類によって溶剤が限定されることから 酸ィ匕電位制御によるモノマーの重合が制限されるため、高 ヽ導電性を確保できな ヽ 。また、絶縁性榭脂である塩ィ匕ビ二ル系共重合体が含まれていることも、高い導電性 を確保できない原因となる。
特許文献 1記載の方法では、 π共役系導電性高分子の水分散性を向上させるた めに、ポリア-オンをより多く含ませている。そのため高い導電性が得られにくいという 問題があった。したがって、導電性及び溶媒溶解性とが共に優れた導電性高分子溶 液が求められている。
また、特許文献 5記載の方法では、塗膜の熱安定性は得られるものの溶媒溶解性 が得られな 、と 、う問題があった。
本発明は、前記事情を鑑みてなされたものであり、導電性及び溶媒溶解性が共に 優れた導電性高分子溶液を提供することを目的とする。さらに、塗膜の熱安定性を高 くできる導電性高分子溶液を提供することを目的とする。また、導電性が優れた導電 性塗膜を提供することを目的とする。さら〖こは、熱安定性にも優れた導電性塗膜を提 供することを目的とする。
[0013] さらに、特許文献 10に記載の粘接着剤では、アルコール以外の有機溶剤を使用で きず、粘接着成分であるアクリル系重合体にも制限があった。また、特許文献 10に記 載の粘接着剤は、塗工時のポットライフは確保されるものの、保存安定性が高いとは 言えず、数日間の保存すら困難であった。例えば、調製から数日経過すると、 π共役 系導電性高分子が凝集'分離して、粘接着層の透明性や導電性が低くなることがあ つた ο
本発明は、前記事情を鑑みてなされたものであり、アルコール以外の液状の有機 化合物を溶媒として使用でき、アクリル系重合体に制限がない上に、保存安定性が 高い帯電防止性粘接着剤を提供することを目的とする。また、透明性と帯電防止性と に優れた帯電防止性粘接着層および保護材を提供することを目的とする。
課題を解決するための手段
[0014] 本発明の導電性高分子溶液は、 π共役系導電性高分子と可溶ィ匕高分子と相間移 動触媒と有機溶媒を含有することを特徴とする。
本発明の導電性高分子溶液においては、バインダ榭脂を含有することができる。 本願請求項 3の導電性高分子溶液の製造方法は、 π共役系導電性高分子および 可溶化高分子を水に溶解した高分子水溶液に有機溶媒を添加した後、相間移動触 媒を添加することを特徴とする。
本願請求項 4の導電性高分子溶液の製造方法は、 π共役系導電性高分子および 可溶ィ匕高分子を水に溶解した高分子水溶液に相間移動触媒を添加して、 π共役系 導電性高分子と可溶化高分子と相間移動触媒とを含む混合物を沈殿させ、前記混 合物に有機溶媒を添加することを特徴とする。
本発明の導電性榭脂は、上述した導電性高分子溶液から有機溶媒が除去されて 得られることを特徴とする。
[0015] 本発明の帯電防止塗料は、 π共役系導電性高分子と可溶ィ匕高分子と相間移動触 媒とハードコート成分と有機溶媒とを含有することを特徴とする。
本発明の帯電防止性ハードコート層は、上述した帯電防止塗料が塗布されて形成 されたことを特徴とする。 本発明の光学フィルタは、上述した帯電防止性ノヽードコート層を有することを特徴と する。
[0016] 本発明の導電性高分子溶液は、 π共役系導電性高分子とポリア-オンと窒素含有 化合物と溶媒とを含有する導電性高分子溶液であって、
窒素含有化合物が、ウレァ基、ウレタン基、アロハネート基、ビュレット基、イミド基、 アミド基力 選ばれる 1種以上の窒素含有官能基を有し、該窒素含有官能基の窒素 原子が 4級塩化されて ヽることを特徴とする。
本発明の導電性高分子溶液においては、窒素含有化合物が、不飽和二重結合を 1つ以上有することが好まし 、。
本発明の導電性塗膜は、上述した導電性高分子溶液が塗布されて形成されたこと を特徴とする。
[0017] 本発明の帯電防止性粘接着剤は、 π共役系導電性高分子と可溶化高分子と相間 移動触媒と粘接着成分とを含有することを特徴とする。
本発明の帯電防止性粘接着層は、上記帯電防止性粘接着剤が塗布されて形成さ れたことを特徴とする。
本発明の保護材は、基材と、該基材上に設けられた上記帯電防止性粘接着層とを 備えて 、ることを特徴とする。
発明の効果
[0018] 本発明の導電性高分子溶液は、塗膜形成の乾燥時間を短縮でき、 π共役系導電 性高分子が疎水性榭脂と相溶しやす 、ものである。
本発明の導電性高分子溶液の製造方法によれば、塗膜形成の乾燥時間を短縮で き、 π共役系導電性高分子が疎水性榭脂と相溶しやすい導電性高分子溶液を製造 できる。
[0019] 本発明の帯電防止塗料は、 π共役系導電性高分子とハードコート成分との相溶性 が確保され、帯電防止性および透明性を兼備した塗膜を形成できる。
また、本発明のハードコート層は、硬度が高い上に、帯電防止性および透明性を兼 備している。
さらに、本発明の光学フィルタは、硬度が高い上に、帯電防止性および透明性を兼 備したハードコート層を備えている。
[0020] 本発明の導電性高分子溶液は、導電性及び溶媒溶解性が共に優れる。
本発明の導電性高分子溶液において、窒素含有化合物が不飽和二重結合を 1つ 以上有すれば、該導電性高分子溶液から形成される塗膜の熱安定性を高くでき、し 力も導電性をより高くできる。
本発明の導電性塗膜は、導電性が優れる。
[0021] 本発明の帯電防止性粘接着剤は、アルコール以外の液状の有機化合物を溶媒と して使用でき、アクリル系重合体に制限がない上に、保存安定性が高い。
本発明の帯電防止性粘接着層および保護材は、透明性と帯電防止性とに優れる。 図面の簡単な説明
[0022] [図 1]本発明の光学フィルタの一実施形態例を示す断面図である。
符号の説明
[0023] 1 光学フィルタ
20 帯電防止性ハードコート層
発明を実施するための最良の形態
[0024] ( π共役系導電性高分子)
π共役系導電性高分子は、主鎖が π共役系で構成されている有機高分子であれ ば使用できる。例えば、ポリピロール類、ポリチォフェン類、ポリアセチレン類、ポリフ ェ-レン類、ポリフエ-レンビ-レン類、ポリア-リン類、ポリアセン類、ポリチォフェン ビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安 定性の点からは、ポリピロール類、ポリチォフェン類及びポリア-リン類が好ましい。 π共役系導電性高分子は無置換のままでも、充分な導電性を得ることができるが、 導電性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、 ヒドロキシ基、シァノ基等の官能基を π共役系導電性高分子に導入することが好まし い。
[0025] また、 π共役系導電性高分子は無置換のままでも、充分な導電性およびノヽードコ ート成分との相溶性を得ることができるが、導電性およびノヽードコート成分との相溶性 をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキ シ基、シァノ基等の官能基を π共役系導電性高分子に導入することが好ましい。 このような π共役系導電性高分子の具体例としては、ポリピロール、ポリ(Ν—メチル ピロール)、ポリ(3—メチルビロール)、ポリ(3—ェチルビロール)、ポリ(3—η—プロピ ルビロール)、ポリ(3—ブチルビロール)、ポリ(3—ォクチルビロール)、ポリ(3—デシ ルビロール)、ポリ(3—ドデシルビロール)、ポリ(3, 4—ジメチルビロール)、ポリ(3, 4 ジブチルピロール)、ポリ(3—カルボキシピロール)、ポリ(3—メチルー 4 カルボ キシピロール)、ポリ(3—メチルー 4 カルボキシェチルピロール)、ポリ(3—メチルー 4 カルボキシブチルピロール)、ポリ(3—ヒドロキシピロール)、ポリ(3—メトキシピロ ール)、ポリ(3—エトキシピロール)、ポリ(3—ブトキシピロール)、ポリ(3—へキシル ォキシピロール)、ポリ(3—メチルー 4一へキシルォキシピロール)、ポリ(3—メチルー 4一へキシルォキシピロール)、ポリチォフェン、ポリ(3—メチルチオフェン)、ポリ(3 ーェチルチオフェン)、ポリ(3—プロピルチオフェン)、ポリ(3—ブチルチオフェン)、 ポリ(3—へキシルチオフェン)、ポリ(3—へプチルチオフェン)、ポリ(3—ォクチルチ オフェン)、ポリ(3—デシルチオフェン)、ポリ(3—ドデシルチオフェン)、ポリ(3—オタ タデシルチオフェン)、ポリ(3—ブロモチォフェン)、ポリ(3—クロロチォフェン)、ポリ( 3—ョードチォフェン)、ポリ(3—シァノチォフェン)、ポリ(3—フエ-ルチオフェン)、 ポリ(3, 4—ジメチルチオフェン)、ポリ(3, 4—ジブチルチオフェン)、ポリ(3—ヒドロ キシチォフェン)、ポリ(3—メトキシチォフェン)、ポリ(3—エトキシチォフェン)、ポリ(3 ーブトキシチォフェン)、ポリ(3—へキシルォキシチォフェン)、ポリ(3—ヘプチノレオ キシチォフェン)、ポリ(3—ォクチルォキシチォフェン)、ポリ(3—デシルォキシチォ フェン)、ポリ(3—ドデシルォキシチォフェン)、ポリ(3—ォクタデシルォキシチォフエ ン)、ポリ(3, 4—ジヒドロキシチォフェン)、ポリ(3, 4—ジメトキシチォフェン)、ポリ(3 , 4ージェトキシチォフェン)、ポリ(3, 4—ジプロポキシチォフェン)、ポリ(3, 4—ジブ トキシチォフェン)、ポリ(3, 4—ジへキシルォキシチオフヱン)、ポリ(3, 4—ジへプチ ルォキシチオフヱン)、ポリ(3, 4—ジォクチルォキシチオフヱン)、ポリ(3, 4—ジデシ ルォキシチォフェン)、ポリ(3, 4—ジドデシルォキシチォフェン)、ポリ(3, 4—ェチレ ンジォキシチオフヱン)、ポリ(3, 4—プロピレンジォキシチォフェン)、ポリ(3, 4—ブ テンジォキシチォフェン)、ポリ(3—メチル—4—メトキシチォフェン)、ポリ(3—メチル 4ーェトキシチォフェン)、ポリ(3—カルボキシチォフェン)、ポリ(3—メチルー 4 カルボキシチォフェン)、ポリ(3—メチルー 4 カルボキシェチルチオフェン)、ポリ(3 ーメチルー 4 カルボキシブチルチオフェン)、ポリア-リン、ポリ(2—メチルァ-リン) 、ポリ(3 イソブチルァ-リン)、ポリ(2 ァ-リンスルホン酸)、ポリ(3 ァ-リンスル ホン酸)等が挙げられる。
[0027] 中でも、ポリピロール、ポリチォフェン、ポリ(N—メチルビロール)、ポリ(3—メチルチ ォフェン)、ポリ(3—メトキシチォフェン)、ポリ(3, 4—エチレンジォキシチォフェン)か ら選ばれる 1種又は 2種からなる(共)重合体が抵抗値、反応性の点カゝら好適に用い られる。さらには、ポリピロール、ポリ(3, 4—エチレンジォキシチォフェン)は、導電性 力 り高い上に、耐熱性が向上する点から、より好ましい。
また、ポリ(N—メチルビロール)、ポリ(3—メチルチオフェン)のようなアルキル置換 化合物は溶媒溶解性や、疎水性榭脂を添加した場合の相溶性および分散性がより 向上すること力 より好ましい。また、アルキル置換ィ匕合物のアルキル基の中では、導 電性の低下を防ぐことから、メチル基が好ま 、。
さらに、ポリスチレンスルホン酸をドープしたポリ(3, 4—エチレンジォキシチォフエ ン)(PEDOT— PSSと略す)は、比較的熱安定性が高ぐ重合度が低いことから塗膜 成形後の透明性が有利となる点で好まし 、。
[0028] 上記 π共役系導電性高分子は、溶媒中、 π共役系導電性高分子を形成する前駆 体モノマーを、適切な酸化剤と後述のァニオン基を有する高分子の存在下で化学酸 化重合することによって容易に製造できる。
前駆体モノマーは、分子内に π共役系を有し、適切な酸化剤の作用によって高分 子化した際にもその主鎖に π共役系が形成されるものである。例えば、ピロール類及 びその誘導体、チオフ ン類及びその誘導体、ァニリン類及びその誘導体等が挙げ られる。
前駆体モノマーの具体例としては、ピロール、 Ν—メチルビロール、 3—メチルピロ ール、 3—ェチルピロール、 3— η—プロピルピロール、 3—ブチルピロール、 3—オタ チルピロール、 3—デシルピロール、 3—ドデシルビロール、 3, 4—ジメチルピロール 、 3, 4 ジブチルピロール、 3—カルボキシルピロール、 3—メチルー 4 カルボキシ ルピロール、 3—メチルー 4 カルボキシェチルピロール、 3—メチルー 4 カルボキ シブチルピロール、 3—ヒドロキシピロール、 3—メトキシピロール、 3—エトキシピロ一 ル、 3—ブトキシピロール、 3—へキシルォキシピロール、 3—メチルー 4一へキシルォ キシピロール、 3—メチルー 4一へキシルォキシピロール、チォフェン、 3—メチルチオ フェン、 3—ェチルチオフェン、 3—プロピルチオフェン、 3—ブチルチオフェン、 3— へキシルチオフェン、 3—へプチルチオフェン、 3—ォクチルチオフェン、 3—デシル チォフェン、 3—ドデシルチオフェン、 3—ォクタデシルチオフェン、 3—ブロモチオフ ェン、 3—クロロチォフェン、 3—ョードチォフェン、 3—シァノチォフェン、 3—フエ二ノレ チォフェン、 3, 4—ジメチルチオフェン、 3, 4—ジブチルチオフェン、 3—ヒドロキシチ ォフェン、 3—メトキシチォフェン、 3—ェトキシチォフェン、 3—ブトキシチォフェン、 3 一へキシルォキシチオフ ン、 3—へプチルォキシチオフ ン、 3—ォクチルォキシチ ォフェン、 3—デシルォキシチォフェン、 3—ドデシルォキシチォフェン、 3—ォクタデ シルォキシチォフェン、 3, 4—ジヒドロキシチォフェン、 3, 4—ジメトキシチォフェン、 3, 4ージェトキシチォフェン、 3, 4—ジプロポキシチォフェン、 3, 4—ジブトキシチォ フェン、 3, 4—ジへキシルォキシチォフェン、 3, 4—ジへプチルォキシチォフェン、 3 , 4ージォクチルォキシチォフェン、 3, 4—ジデシルォキシチォフェン、 3, 4—ジドデ シルォキシチォフェン、 3, 4—エチレンジォキシチォフェン、 3, 4—プロピレンジォキ シチォフェン、 3, 4—ブテンジォキシチォフェン、 3—メチルー 4ーメトキシチォフェン 、 3—メチルー 4ーェトキシチォフェン、 3—カルボキシチォフェン、 3—メチルー 4一力 ルボキシチォフェン、 3—メチルー 4 カルボキシェチルチオフェン、 3—メチルー 4 カルボキシブチルチオフェン、ァニリン、 2—メチルァニリン、 3 イソブチルァニリン 、 2 ァ-リンスルホン酸、 3 ァ-リンスルホン酸等が挙げられる。
(溶媒)
π共役系導電性高分子の製造で使用する溶媒としては特に制限されず、前記前 駆体モノマーを溶解又は分散しうる溶媒であり、酸化剤の酸化力を維持させることが できるものであればよい。例えば、水、 Ν—メチル—2—ピロリドン、 Ν, Ν ジメチルホ ルムアミド、 Ν, Ν ジメチルァセトアミド、ジメチルスルホキシド、へキサメチレンホス ホルトリアミド、ァセトニトリル、ベンゾ-トリル等の極性溶媒、クレゾール、フエノール、 キシレノール等のフエノール類、メタノール、エタノール、プロパノール、ブタノール等 のアルコール類、アセトン、メチルェチルケトン等のケトン類、へキサン、ベンゼン、ト ルェン等の炭化水素類、ギ酸、酢酸等のカルボン酸、エチレンカーボネート、プロピ レンカーボネート等のカーボネート化合物、ジォキサン、ジェチルエーテル等のエー テル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキ ノレエーテノレ、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジ アルキルエーテル等の鎖状エーテル類、 3ーメチルー 2—ォキサゾリジノン等の複素 環化合物、ァセトニトリル、グルタロジ-トリル、メトキシァセトニトリル、プロピオ-トリル 、ベンゾ-トリル等の-トリルイ匕合物等が挙げられる。これらの溶媒は、単独で用いて もよいし、 2種類以上の混合物としてもよいし、他の有機溶媒との混合物としてもよい
[0030] 酸化剤としては、前記前駆体モノマーを酸化させて π共役系導電性高分子を得る ことができるものであればよぐ例えば、ペルォキソ二硫酸アンモ-ゥム、ペルォキソ 二硫酸ナトリウム、ペルォキソ二硫酸カリウム等のペルォキソ二硫酸塩、塩化第二鉄 、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷移金属化合物、三フッ化ホウ素、塩 化アルミニウムなどの金属ハロゲンィ匕合物、酸化銀、酸化セシウム等の金属酸化物、 過酸化水素、オゾン等の過酸化物、過酸化ベンゾィル等の有機過酸化物、酸素等 が挙げられる。
[0031] (可溶化高分子)
可溶ィ匕高分子とは、 π共役系導電性高分子を可溶ィ匕する高分子であり、可溶化高 分子としては、ァニオン基及び Ζ又は電子吸引基を有する高分子が挙げられる。
[0032] [ァニオン基を有する高分子 (ポリア二オン) ]
ァ-オン基を有する高分子 (以下、ポリア-オンという。)は、置換若しくは未置換の ポリアルキレン、置換若しくは未置換のポリアルケ-レン、置換若しくは未置換のポリ イミド、置換若しくは未置換のポリアミド、置換若しくは未置換のポリエステル及びこれ らの共重合体であって、ァ-オン基を有するものである。また、ァ-オン基を有する構 成単位とァ-オン基を有さな 、構成単位とからなるものでもよ 、。
このポリア-オンのァ-オン基は、 π共役系導電性高分子に対するドーパントとして 機能して、 π共役系導電性高分子の導電性と耐熱性を向上させる。
[0033] ポリアルキレンとは、主鎖力メチレンの繰り返しで構成されているポリマーである。ポ リアルキレンとしては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン 、ポリへキセン、ポリビニルアルコール、ポリビニルフエノール、ポリ 3, 3, 3—トリフル ォロプロピレン、ポリアクリロニトリル、ポリアタリレート、ポリスチレン等が挙げられる。
[0034] ポリアルケ-レンとは、主鎖に不飽和結合 (ビュル基)が 1個以上含まれる構成単位 力もなるポリマーである。ポリアルケ-レンの具体例としては、プロべ-レン、 1—メチ ノレプロぺニレン、 1ーブチノレプロぺニレン、 1 デシノレプロぺニレン、 1 シァノプロぺ 二レン、 1—フエ-ノレプロべ-レン、 1—ヒドロキシプロべ-レン、 1—ブテ-レン、 1— メチノレー 1 ブテニレン、 1ーェチノレー 1 ブテニレン、 1 オタチノレー 1 ブテニレン 、 1—ペンタデシルー 1—ブテ-レン、 2—メチル 1—ブテ-レン、 2—ェチル 1— ブテニレン、 2—ブチルー 1 ブテニレン、 2—へキシルー 1 ブテニレン、 2—ォクチ ルー 1—ブテ-レン、 2—デシルー 1—ブテ-レン、 2—ドデシルー 1—ブテ-レン、 2 フエ二ルー 1 ブテニレン、 2—ブテニレン、 1ーメチルー 2—ブテニレン、 1ーェチ ルー 2—ブテ-レン、 1ーォクチルー 2—ブテ-レン、 1 ペンタデシルー 2—ブテ- レン、 2—メチル 2—ブテニレン、 2—ェチル 2—ブテニレン、 2—ブチル 2—ブ テ-レン、 2—へキシルー 2—ブテ-レン、 2—ォクチルー 2—ブテ-レン、 2—デシル —2—ブテ-レン、 2—ドデシル一 2—ブテ-レン、 2—フエ-ル一 2—ブテ-レン、 2 —プロピレンフエニル一 2 ブテニレン、 3—メチル 2 ブテニレン、 3 ェチル 2 ブテニレン、 3 ブチルー 2 ブテニレン、 3 へキシルー 2 ブテニレン、 3—オタ チル— 2 ブテ-レン、 3 デシルー 2 ブテ-レン、 3 ドデシルー 2 ブテ-レン、 3—フエ-ルー 2 ブテ-レン、 3 プロピレンフエ-ルー 2 ブテ-レン、 2 ペンテ -レン、 4 プロピノレー 2 ペンテ-レン、 4 ブチノレ一 2 ペンテ-レン、 4 へキシ ルー 2 ペンテ-レン、 4 シァノ 2 ペンテ-レン、 3—メチル 2 ペンテ-レン 、 4 ェチル 2 ペンテ二レン、 3 フエニル一 2 ペンテ二レン、 4 ヒドロキシ一 2 —ペンテ-レン、へキセ-レン等力 選ばれる 1種以上の構成単位を含む重合体が 挙げられる。
これらの中でも、不飽和結合と π共役系導電性高分子との相互作用があること、置 換若しくは未置換のブタジエンを出発物質として合成しやす!/ヽことから、置換若しくは 未置換のブテ-レンが好まし!/、。
[0035] ポリイミドとしては、ピロメリット酸二無水物、ビフエ-ルテトラカルボン酸二無水物、 ベンゾフエノンテトラカルボン酸二無水物、 2, 2, 3, 3—テトラカルボキシジフエ-ル エーテル二無水物、 2, 2- [4, 4'ージ(ジカルボキシフエ-ルォキシ)フエ-ル]プロ パンニ無水物等の無水物とォキシジァミン、ノ ラフエ-レンジァミン、メタフエ-レンジ ァミン、ベンゾフエノンジァミン等のジァミンとからのポリイミドが挙げられる。
ポリアミドとしては、ポリアミド 6、ポリアミド 6, 6、ポリアミド 6, 10等が挙げられる。 ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が 挙げられる。
[0036] ポリア-オンが置換基を有する場合、その置換基としては、アルキル基、ヒドロキシ 基、アミノ基、カルボキシ基、シァノ基、フエ-ル基、フエノール基、エステル基、アル コキシ基等が挙げられる。溶媒への溶解性、耐熱性及び樹脂への相溶性等を考慮 すると、アルキル基、ヒドロキシ基、フエノール基、エステル基が好ましい。
アルキル基は、極性溶媒又は非極性溶媒への溶解性及び分散性、榭脂への相溶 性及び分散性等を高くすることができ、ヒドロキシ基は、他の水素原子等との水素結 合を形成しやすくでき、有機溶媒への溶解性、榭脂への相溶性、分散性、接着性を 高くすることができる。また、シァノ基及びヒドロキシフエ-ル基は、極性樹脂への相 溶性、溶解性を高くすることができ、しかも、耐熱性も高くすることができる。
上記置換基の中では、アルキル基、ヒドロキシ基、エステル基、シァノ基が好ましい
[0037] 前記アルキル基としては、メチル、ェチル、プロピル、ブチル、イソブチル、 tーブチ ル、ペンチル、へキシル、ォクチル、デシル、ドデシル等の鎖状アルキル基、シクロプ 口ピル、シクロペンチル、シクロへキシル等のシクロアルキル基が挙げられる。有機溶 剤への溶解性、榭脂への分散性、立体障害等を考慮すると、炭素数 1〜12のアルキ ル基がより好ましい。
前記ヒドロキシ基としては、ポリア-オンの主鎖に直接結合したヒドロキシ基又は他の 官能基を介在して結合したヒドロキシ基が挙げられる。他の官能基としては、炭素数 1 〜7のアルキル基、炭素数 2〜7のァルケ-ル基、アミド基、イミド基等が挙げられる。 ヒドロキシ基はこれらの官能基の末端又は中に置換されている。これらの中では榭脂 への相溶及び有機溶剤への溶解性から、主鎖に結合した炭素数 1〜6のアルキル基 の末端に結合したヒドロキシ基がより好まし 、。
前記アミノ基としては、ポリア-オンの主鎖に直接結合したアミノ基又は他の官能基 を介在して結合したァミノ基が挙げられる。他の官能基としては、炭素数 1〜7のアル キル基、炭素数 2〜7のァルケ-ル基、アミド基、イミド基等が挙げられる。アミノ基は これらの官能基の末端又は中に置換されて 、る。
前記フエノール基としては、ポリア-オンの主鎖に直接結合したフエノール基又は 他の官能基を介在して結合したフ ノール基が挙げられる。他の官能基としては、炭 素数 1〜7のアルキル基、炭素数 2〜7のァルケ-ル基、アミド基、イミド基等が挙げら れる。フ ノール基はこれらの官能基の末端又は中に置換されて 、る。
前記エステル基としては、ポリア-オンの主鎖に直接結合したアルキル系エステル 基、芳香族系エステル基、他の官能基を介在してなるアルキル系エステル基又は芳 香族系エステル基が挙げられる。
シァノ基としては、ポリア-オンの主鎖に直接結合したシァノ基、ポリア-オンの主 鎖に結合した炭素数 1〜7のアルキル基の末端に結合したシァノ基、ポリア-オンの 主鎖に結合した炭素数 2〜7のアルケニル基の末端に結合したシァノ基等を挙げるこ とがでさる。
[0038] ポリア-オンのァ-オン基としては、 π共役系導電性高分子への化学酸化ドープが 起こりうる官能基であればよいが、中でも、製造の容易さ及び安定性の観点からは、 一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ 基等が好ましい。さらに、官能基の π共役系導電性高分子へのドープ効果の観点よ り、スルホ基、一置換硫酸エステル基、カルボキシ基がより好ましい。
[0039] ポリア-オンの具体例としては、ポリビュルスルホン酸、ポリスチレンスルホン酸、ポ リアリルスルホン酸、ポリアクリル酸ェチルスルホン酸、ポリアクリル酸ブチルスルホン 酸、ポリアクリルスルホン酸、ポリメタタリルスルホン酸、ポリ一 2—アクリルアミドー 2— メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビ-ルカルボン酸、ポリス チレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカル ボン酸、ポリー2—アクリルアミドー 2—メチルプロパンカルボン酸、ポリイソプレンカル ボン酸、ポリアクリル酸等が挙げられる。これらの単独重合体であってもよいし、 2種以 上の共重合体であってもよ 、。
これらのうち、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸ェ チルスルホン酸、ポリアクリル酸ブチルスルホン酸が好ましい。これらのポリア-オン は、 π共役系導電性高分子の熱分解を緩和することができる。
[0040] ポリア-オンの重合度は、モノマー単位が 10〜: LOOOOO個の範囲であることが好ま しぐ溶媒溶解性及び導電性の点からは、 50〜: LOOOO個の範囲がより好ましい。
[0041] ポリア-オンの製造方法としては、例えば、酸を用いてァ-オン基を有さないポリマ 一にァ-オン基を直接導入する方法、ァ-オン基を有さないポリマーをスルホ化剤に よりスルホン酸ィヒする方法、ァ-オン基含有重合性モノマーの重合により製造する方 法が挙げられる。
ァ-オン基含有重合性モノマーの重合により製造する方法は、溶媒中、ァ-オン基 含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下で、酸化重合又はラ ジカル重合によって製造する方法が挙げられる。具体的には、所定量のァニオン基 含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それに予め溶媒に 所定量の酸化剤及び Ζ又は重合触媒を溶解した溶液を添加し、所定時間で反応さ せる。その反応により得られたポリマーは溶媒によって一定の濃度に調整される。こ の製造方法において、ァ-オン基含有重合性モノマーにァ-オン基を有さない重合 性モノマーを共重合させてもよ 、。
ァ-オン基含有重合性モノマーの重合に際して使用する酸化剤、溶媒は、 π共役 系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様であ る。
得られたポリマーがポリア-オン塩である場合には、ポリア-オン酸に変質させるこ とが好ましい。ァ-オン酸に変質させる方法としては、イオン交換榭脂を用いたイオン 交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限 外ろ過法が好ましい。 ァ-オン基含有重合性モノマーは、モノマーの一部が一置換硫酸エステル基、力 ルポキシ基、スルホ基等で置換されたものであり、例えば、置換若しくは未置換のェ チレンスルホン酸ィ匕合物、置換若しくは未置換のスチレンスルホン酸ィ匕合物、置換若 しくは未置換のアタリレートスルホン酸ィ匕合物、置換若しくは未置換のメタタリレートス ルホン酸ィ匕合物、置換若しくは未置換のアクリルアミドスルホン酸ィ匕合物、置換若しく は未置換のシクロビニレンスルホン酸化合物、置換若しくは未置換のブタジエンスル ホン酸化合物、置換若しくは未置換のビニル芳香族スルホン酸ィ匕合物が挙げられる 具体的には、ビニルスルホン酸及びその塩類、ァリルスルホン酸及びその塩類、メ タリルスルホン酸及びその塩類、スチレンスルホン酸、メタリルォキシベンゼンスルホ ン酸及びその塩類、ァリルォキシベンゼンスルホン酸及びその塩類、 α—メチルスチ レンスルホン酸及びその塩類、アクリルアミド t ブチルスルホン酸及びその塩類、 2 アクリルアミド 2 メチルプロパンスルホン酸及びその塩類、シクロブテン 3— スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、 1, 3 ブタジエン 1—スルホン酸及びその塩類、 1ーメチルー 1, 3 ブタジエン— 2—スルホン酸及び その塩類、 1ーメチルー 1, 3 ブタジエンー4ースルホン酸及びその塩類、アクリル 酸ェチルスルホン酸(CH CH- COO- (CH ) -SO H)及びその塩類、アクリル酸プ
2 2 2 3
口ピルスルホン酸(CH CH- COO- (CH ) -SO H)及びその塩類、アクリル酸— t—
2 2 3 3
ブチルスルホン酸(CH CH- COO- C (CH ) CH -SO H)及びその塩類、アクリル
2 3 2 2 3
酸— n—ブチルスルホン酸(CH CH- COO- (CH ) -SO H)及びその塩類、ァリル
2 2 4 3
酸ェチルスルホン酸(CH CHCH -COO- (CH ) -SO H)及びその塩類、ァリル酸
2 2 2 2 3
— t ブチルスルホン酸(CH CHCH - COO- C (CH ) CH -SO H)及びその塩類
2 2 3 2 2 3
、 4—ペンテン酸ェチルスルホン酸(CH CH (CH ) - COO- (CH ) -SO H)及びそ
2 2 2 2 2 3 の塩類、 4—ペンテン酸プロピルスルホン酸(CH CH (CH ) - COO- (CH ) -SO
2 2 2 2 3 3
H)及びその塩類、 4—ペンテン酸— n—ブチルスルホン酸(CH CH (CH ) - COO-
2 2 2
(CH ) -SO H)及びその塩類、 4—ペンテン酸— t—ブチルスルホン酸(CH CH (C
2 4 3 2
H ) - COO- C (CH ) CH -SO H)及びその塩類、 4—ペンテン酸フエ-レンスルホ
2 2 3 2 2 3
ン酸(CH CH (CH ) - COO- C H -SO H)及びその塩類、 4—ペンテン酸ナフタレ ンスルホン酸(CH CH (CH ) - COO-C H -SO H)及びその塩類、メタクリル酸ェ
2 2 2 10 8 3
チルスルホン酸(CH C (CH ) -COO- (CH ) -SO H)及びその塩類、メタクリル酸
2 3 2 2 3
プロピルスルホン酸(CH C (CH ) - COO- (CH ) -SO H)及びその塩類、メタクリル
2 3 2 3 3
酸 tーブチルスルホン酸(CH C (CH ) -COO-C (CH ) CH -SO H)及びその塩
2 3 3 2 2 3
類、メタクリル酸—n—ブチルスルホン酸(CH C (CH ) - COO- (CH ) -SO H)及
2 3 2 4 3 びその塩類、メタクリル酸フエ-レンスルホン酸(CH C (CH ) -COO-C H -SO H)
2 3 6 4 3 及びその塩類、メタクリル酸ナフタレンスルホン酸(CH C (CH ) -COO-C H -SO
2 3 10 8 3
H)及びその塩類、ポリビ-ルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボ ン酸、ポリアクリルカルボン酸、ポリメタタリルカルボン酸、ポリ 2—アクリルアミドー 2 メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられ る。また、これらを 2種以上含む共重合体であってもよい。
ァ-オン基を有さない重合性モノマーとしては、エチレン、プロペン、 1ーブテン、 2 ーブテン、 1 ペンテン、 2—ペンテン、 1一へキセン、 2—へキセン、スチレン、 p—メ チノレスチレン、 p ェチルスチレン、 p ブチルスチレン、 2, 4, 6 トリメチルスチレン 、 ρ—メトキシスチレン、 α—メチルスチレン、 2 ビュルナフタレン、 6—メチル 2— ビュルナフタレン、 1 ビュルイミダゾール、ビュルピリジン、ビュルアセテート、アタリ ルアルデヒド、アクリル-トリル、 Ν ビュル— 2—ピロリドン、 Ν ビュルァセトアミド、 Ν—ビュルホルムアミド、 Ν—ビュルイミダゾール、アクリルアミド、 Ν, Ν ジメチルァ クリルアミド、アクリル酸、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル、ァ クリル酸 η—ブチル、アクリル酸 iーブチル、アクリル酸 tーブチル、アクリル酸 iーォクチ ル、アクリル酸イソノ-ルブチル、アクリル酸ラウリル、アクリル酸ァリル、アクリル酸ステ ァリル、アクリル酸イソボ-ル、アクリル酸シクロへキシル、アクリル酸ベンジル、アタリ ル酸ェチルカルビトール、アクリル酸フエノキシェチル、アクリル酸ヒドロキシェチル、 アクリル酸メトキシェチル、アクリル酸エトキシェチル、アクリル酸メトキシブチル、メタク リル酸、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸 n—ブチル、メタクリル酸 i ーブチル、メタクリル酸 tーブチル、メタクリル酸 2—ェチルへキシル、メタクリル酸ラウ リル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロへキシル、メタ クリル酸ベンジル、メタクリル酸 2—ヒドロキシェチル、メタクリル酸 2—ヒドロキシプロピ ル、アタリロイルモルホリン、ビニルァミン、 N, N ジメチルビ-ルァミン、 N, N ジェ チルビニルァミン、 N, N—ジブチルビニルァミン、 N, N ジ tーブチルビニルアミ ン、 N, N ジフエ-ルビ-ルァミン、 N—ビュルカルバゾール、ビュルアルコール、 塩化ビュル、フッ化ビュル、メチルビ-ルエーテル、ェチルビ-ルエーテル、シクロプ 口ペン、シクロブテン、シクロペンテン、シクロへキセン、シクロヘプテン、シクロ才クテ ン、 2—メチルシクロへキセン、ビュルフエノール、 1, 3 ブタジエン、 1—メチル 1, 3 ブタジエン、 2—メチルー 1, 3 ブタジエン、 1, 4 ジメチルー 1, 3 ブタジエン 、 1, 2 ジメチルー 1, 3 ブタジエン、 1, 3 ジメチルー 1, 3 ブタジエン、 1—オタ チルー 1, 3 ブタジエン、 2—ォクチルー 1, 3 ブタジエン、 1 フエ二ルー 1, 3— ブタジエン、 2 フエニノレー 1, 3 ブタジエン、 1ーヒドロキシ 1, 3 ブタジエン、 2 ーヒドロキシー 1, 3 ブタジエン等が挙げられる。
これらァ-オン基を有さない重合性モノマーを共重合することで溶媒溶解性をコント ローノレすることがでさる。
[0044] これらァ-オン基を有さな 、重合性モノマーを共重合することで溶媒溶解性および ハードコート成分との相溶性をコントロールすることができる。
[0045] [電子吸引基を有する高分子]
電子吸引基を有する高分子は、電子吸引基として、例えば、シァノ基、ニトロ基、ホ ルミル基、カルボニル基、ァセチル基から選ばれる少なくとも 1種を有する化合物を構 成単位とした高分子が挙げられる。これらの中でも、シァノ基は極性が高ぐ π共役 系導電性高分子をより可溶ィ匕できることから好ましい。
また、ハードコート成分との相溶性、分散性をより高くできることから好ましい。
電子吸引性基を有する高分子の具体例としては、ポリアクリロニトリル、ポリメタクリロ 二トリル、アクリロニトリル一スチレン榭脂、アクリロニトリル一ブタジエン榭脂、アタリ口 二トリル—ブタジエン—スチレン榭脂や、水酸基あるいはアミノ基含有榭脂をシァノエ チル化した榭脂(例えば、シァノエチルセルロース)、ポリビュルピロリドン、アルキル 化ポリビュルピロリドン、ニトロセルロースなどが挙げられる。
[0046] 可溶ィ匕高分子の含有量は、 π共役系導電性高分子 1モルに対して 0. 1〜10モル の範囲であることが好ましぐ 1〜7モルの範囲であることがより好ましい。可溶化高分 子の含有量が 0. 1モルより少なくなると、 π共役系導電性高分子へのドーピング効 果が弱くなる傾向にあり、導電性が不足することがある。また、可溶化高分子の含有 量が 10モルより多くなると、 π共役系導電性高分子の含有割合が少なくなり、やはり 充分な導電性が得られにく 、。
[0047] 可溶ィ匕高分子には、耐衝撃性を改良するための合成ゴムや、耐環境特性を向上さ せるための老化防止剤、酸化防止剤、紫外線吸収剤が添加されていてもよい。ただ し、アミンィ匕合物系の酸ィ匕防止剤は上記導電性高分子を重合させる際に用いる酸ィ匕 剤の働きを阻害することがあるので、酸ィ匕防止剤にはフエノール系のものを用いたり、 重合後に混合したりするなどの対策が必要である。
[0048] 上記 π共役系導電性高分子と可溶化高分子とは化学的結合により複合体を形成 することが多い。その複合体の中でも、ポリスチレンスルホン酸をドープしたポリ(3, 4 —エチレンジォキシチォフェン) (PSS -PEDOT)は、熱安定性が高ぐ重合度が低 V、ために塗膜形成後の透明性を高くしゃす 、点で好ま 、。
[0049] (ドーパント)
導電性高分子溶液にぉ 、て、ポリア-オンは π共役系導電性高分子のドーパント として機能するが、導電性高分子溶液にはポリア-オン以外のドーパント(以下、他 のドーパントという。)が含まれていてもよい。
他のドーパントとしては、 π共役系導電性高分子を酸化還元させることができれば ドナー性のものであってもよぐァクセプタ性のものであってもよい。
[0050] [ドナー性ドーパント]
ドナー性ドーパントとしては、例えば、ナトリウム、カリウム等のアルカリ金属、カルシ ゥム、マグネシウム等のアルカリ土類金属、テトラメチルアンモ-ゥム、テトラエチノレア ンモニゥム、テトラプロピルアンモニゥム、テトラプチルアンモニゥム、メチルトリェチル アンモ-ゥム、ジメチルジェチルアンモ -ゥム等の 4級ァミン化合物等が挙げられる。
[0051] [ァクセプタ性ドーパント]
ァクセプタ性ドーパントとしては、例えば、ハロゲン化合物、ルイス酸、プロトン酸、 有機シァノ化合物、有機金属化合物、フラーレン、水素化フラーレン、水酸化フラー レン、カルボン酸化フラーレン、スルホン酸化フラーレン等を使用できる。 さらに、ハロゲンィ匕合物としては、例えば、塩素 (C1 )、臭素 (Br )、ヨウ素 (I )、塩
2 2 2 ィ匕ヨウ素 (IC1)、臭化ヨウ素 (IBr)、フッ化ヨウ素 (IF)等が挙げられる。
ルイス酸としては、例えば、 PF、 AsF、 SbF、 BF、 BC1、 BBr、 SO等が挙げら
5 5 5 5 5 5 3 れる。
有機シァノ化合物としては、共役結合に二つ以上のシァノ基を含む化合物が使用 できる。例えば、テトラシァノエチレン、テトラシァノエチレンオキサイド、テトラシァノべ ンゼン、ジクロロジシァノベンゾキノン(DDQ)、テトラシァノキノジメタン、テトラシァノ ァザナフタレン等が挙げられる。
[0052] プロトン酸としては、無機酸、有機酸が挙げられる。さらに、無機酸としては、例えば 、塩酸、硫酸、硝酸、リン酸、ホウフッ化水素酸、フッ化水素酸、過塩素酸等が挙げら れる。また、有機酸としては、有機カルボン酸、フエノール類、有機スルホン酸等が挙 げられる。
[0053] 有機カルボン酸としては、脂肪族、芳香族、環状脂肪族等にカルボキシ基を一つ 又は二つ以上を含むものを使用できる。例えば、ギ酸、酢酸、シユウ酸、安息香酸、 フタル酸、マレイン酸、フマル酸、マロン酸、酒石酸、クェン酸、乳酸、コハク酸、モノ クロ口酢酸、ジクロロ酢酸、トリクロ口酢酸、トリフルォロ酢酸、ニトロ酢酸、トリフエ-ル 酢酸等が挙げられる。
[0054] 有機スルホン酸としては、脂肪族、芳香族、環状脂肪族等にスルホ基を一つ又は 二つ以上含むもの、又は、スルホ基を含む高分子を使用できる。
スルホ基を一つ含むものとして、例えば、メタンスルホン酸、エタンスルホン酸、 1— プロパンスルホン酸、 1—ブタンスルホン酸、 1—へキサンスルホン酸、 1 ヘプタンス ルホン酸、 1—オクタンスルホン酸、 1—ノナンスルホン酸、 1—デカンスルホン酸、 1 ードデカンスノレホン酸、 1ーテトラデカンスノレホン酸、 1 ペンタデカンスノレホン酸、 2 —ブロモエタンスルホン酸、 3 クロ口一 2 ヒドロキシプロパンスルホン酸、トリフルォ ロメタンスルホン酸、トリフルォロエタンスルホン酸、コリスチンメタンスルホン酸、 2—ァ クリルアミドー 2—メチルプロパンスルホン酸、ァミノメタンスルホン酸、 1 アミノー 2— ナフトール— 4—スルホン酸、 2 アミノー 5 ナフトール— 7—スルホン酸、 3 ァミノ プロパンスルホン酸、 N—シクロへキシル—3—ァミノプロパンスルホン酸、ベンゼンス ルホン酸、アルキルベンゼンスルホン酸、 p—トルエンスルホン酸、キシレンスルホン 酸、ェチルベンゼンスルホン酸、プロピルベンゼンスルホン酸、ブチルベンゼンスル ホン酸、ペンチルベンゼンスルホン酸、へキシルベンゼンスルホン酸、ヘプチルベン ゼンスルホン酸、ォクチルベンゼンスルホン酸、ノ-ルベンゼンスルホン酸、デシルべ ンゼンスルホン酸、ゥンデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸、ぺ ンタデシルベンゼンスルホン酸、へキサデシルベンゼンスルホン酸、 2, 4 ジメチル ベンゼンスルホン酸、ジプロピルベンゼンスルホン酸、 4ーァミノベンゼンスルホン酸、 o ァミノベンゼンスルホン酸、 m—ァミノベンゼンスルホン酸、 4 アミノー 2 クロロト ルェン—5—スルホン酸、 4 アミノー 3—メチルベンゼン— 1—スルホン酸、 4 アミ ノ 5 メトキシ 2 メチルベンゼンスルホン酸、 2 -ァミノ 5 メチルベンゼン 1 —スルホン酸、 4 アミノー 2—メチルベンゼン一 1—スルホン酸、 5 アミノー 2—メチ ルベンゼン一 1—スルホン酸、 4 アミノー 3—メチルベンゼン一 1—スルホン酸、 4— ァセトアミド 3—クロ口ベンゼンスルホン酸、 4—クロ口一 3— -トロベンゼンスルホン 酸、 p クロ口ベンゼンスルホン酸、ナフタレンスルホン酸、メチルナフタレンスルホン 酸、プロピルナフタレンスルホン酸、ブチルナフタレンスルホン酸、ペンチルナフタレ ンスルホン酸、 4 ァミノ一 1—ナフタレンスルホン酸、 8 クロロナフタレン一 1—スル ホン酸、ナフタレンスルホン酸ホルマリン重縮合物、メラミンスルホン酸ホルマリン重縮 合物、アントラキノンスルホン酸、ピレンスルホン酸等が挙げられる。また、これらの金 属塩も使用できる。
スルホ基を二つ以上含むものとしては、例えば、ェタンジスルホン酸、ブタンジスル ホン酸、ペンタンジスルホン酸、デカンジスルホン酸、 o ベンゼンジスルホン酸、 m —ベンゼンジスルホン酸、 p ベンゼンジスルホン酸、トルエンジスルホン酸、キシレ ンジスルホン酸、クロ口ベンゼンジスルホン酸、フルォロベンゼンジスルホン酸、ジメチ ルベンゼンジスルホン酸、ジェチルベンゼンジスルホン酸、ァ-リン— 2, 4 ジスル ホン酸、ァ-リン一 2, 5 ジスルホン酸、 3, 4 ジヒドロキシ一 1, 3 ベンゼンジスル ホン酸、ナフタレンジスルホン酸、メチルナフタレンジスルホン酸、ェチルナフタレンジ スルホン酸、ペンタデシルナフタレンジスルホン酸、 3 アミノー 5 ヒドロキシー 2, 7 —ナフタレンジスノレホン酸、 1—ァセトアミドー 8 ヒドロキシ一 3, 6 ナフタレンジス ルホン酸、 2 アミノー 1, 4 ベンゼンジスルホン酸、 1—アミノー 3, 8 ナフタレンジ スルホン酸、 3 アミノー 1, 5 ナフタレンジスルホン酸、 8 アミノー 1—ナフトール - 3, 6 ジスルホン酸、 4 アミノー 5 ナフトール— 2, 7 ジスルホン酸、 4 ァセト アミドー 4, 一イソチォーシァノトスチルベン一 2, 2, 一ジスルホン酸、 4一ァセトアミド -4' イソチオシアナトスチルベン 2, 2' ジスルホン酸、 4 ァセトアミドー 4' マレイミジルスチルベン一 2, 2,一ジスルホン酸、ナフタレントリスルホン酸、ジナフチ ルメタンジスルホン酸、アントラキノンジスルホン酸、アントラセンスルホン酸等が挙げ られる。また、これらの金属塩も使用できる。
(相間移動触媒)
相間移動触媒としては、可溶ィ匕高分子のァニオン基または電子吸引基に配位する ものであれば特に制限されない。ここで、配位とは、可溶化高分子と相間移動触媒と が電子を互いに供与 Z受容することにより、それらの分子間距離が短くなる結合形態 のことである。
相間移動触媒としては、分子内にカチオンを有する化合物、分子内にカチオンお よびァ-オンを有する化合物などが挙げられる。具体的には、アンモ-ゥム誘導体類 、イミ-ゥム類、ジァゾニゥム類、非環式窒素骨格のカチオン類、含窒素環式骨格の カチオン類、含窒素共鳴安定化カチオン類、有機ホスホ-ゥム塩類等が挙げられる。 より具体的には、メチルトリへキシルアンモ -ゥムクロライド、メチルトリオクチルアン モ -ゥムクロライド、メチルトリデシルアンモ -ゥムクロライド、メチルトリドデシルアンモ -ゥムクロライド、ジォクチルジメチルアンモ -ゥムブロマイド、ジデシルジメチルアン モ -ゥムブロマイド、ジドデシルジメチルアンモ -ゥムブロマイド、テトラへキシルアン モ -ゥムブロマイド、テトラオクチルアンモ -ゥムブロマイド、テトラデシルアンモ -ゥム ブロマイド、テトラドデシルアンモ -ゥムブロマイド、テトラブチルホスホ-ゥムブロマイ ド、テトラオクチルホスホ -ゥムブロマイド、 2—トリメチルシリルェチルートリフエ-ルホ スホ -ゥムクロライド、 1 ドデシル 2 ェチル 3 ェチルイミダゾリゥムクロライド、 1ーテトラデシルー 2 ェチルー 3 ェチルイミダゾリゥムクロライド、 1一へキサデシ ルー 2 ェチル 3 ェチルイミダゾリゥムクロライド、 1 ドデシル 2 メチル 3— ベンジルイミダゾリゥムクロライド、 1ーテトラデシルー 2—メチルー 3 べンジルイミダ ゾリゥムクロライド、 1 へキサデシルー 2—メチル 3 ベンジルイミダゾリゥムクロラ イド、 1ーォクタデシルー 2—メチルー 3 べンジルイミダゾリゥムクロライド、 1ーェチ ルー 3—メチルイミダゾリゥムクロライド、 1ーブチルー 3—メチルイミダゾリゥムクロライ ド、 1ーブチルー 3—メチルイミダゾリゥムテトラフルォロボレート、 1ーブチルー 3—メ チルイミダゾリゥムトリフルォロメタンスルホネート、 1 キシルー 3—メチルイミダゾリ ゥムクロライド、 1ーォクチルー 3ーメチルイミダゾリゥムクロライド、メチルピリジ-ゥムク 口ライド、ェチルピリジ-ゥムクロライド、プロピルピリジ-ゥムクロライド、ブチルピリジ
-ゥムクロライド、へキシルピリジ-ゥムクロライド、ォクチルピリジ -ゥムクロライド、デ シルピリジ-ゥムクロライド、ドデシルピリジ -ゥムクロライド、へキサドデシルピリジ-ゥ ムクロライドなどが挙げられる力 これらに限定されるものではない。
[0057] 相間移動触媒の含有量は、 π共役系導電性高分子のドープに寄与していない可 溶ィ匕高分子のァ-オン基および電子吸引基に対して 0. 1〜: L0モル当量であること 力 S好ましく、 0. 5 2. 0当量であること力 Sより好ましく、 0. 85〜: L 25当量であること が特に好ましい。相間移動触媒の含有量が前記下限値以上であれば、相間移動触 媒が可溶ィ匕高分子のァニオン基や電子吸引基の殆どに配位するため、有機溶媒へ の溶解性がより高くなる。また、前記上限値以下であれば、余剰な相間移動触媒が 導電性高分子溶液中に含まれな から、導電性等の性能低下を防止できる。
[0058] (有機溶媒)
導電性高分子溶液に含まれる有機溶媒としては、水以外の溶媒であれば特に制限 されず、例えば、メタノール、エタノール、プロピレンカーボネート、 Ν—メチルピロリド ン、ジメチルホルムアミド、ジメチルァセトアミド、シクロへキサノン、アセトン、メチルェ チルケトン、メチルイソブチルケトン、トルエン等が挙げられる。有機溶媒は 1種であつ てもよいし、 2種以上であってもよい。
帯電防止塗料に含まれる有機溶媒としては、例えば、メタノール、エタノール、イソ プロパノール、プロピレンカーボネート、 Ν—メチルピロリドン、ジメチルホルムアミド、 ジメチルァセトアミド、シクロへキサノン、アセトン、メチルェチルケトン、メチルイソブチ ルケトン、トルエン等が挙げられる。これら溶媒は 1種であってもよいし、 2種以上であ つてもよい。 上記溶媒の中でも、乾燥速度が速くなることから、水以外であって、水より沸点の低 い有機溶媒が好ましい。
[0059] 帯電防止性粘接着剤には有機溶剤が含まれていてもよい。その有機溶剤としては 、例えば、メタノール、エタノール、イソプロパノール、プロピレンカーボネート、 N—メ チルピロリドン、ジメチルホルムアミド、ジメチルァセトアミド、シクロへキサノン、ァセト ン、メチルェチルケトン(MEK)、メチルイソブチルケトン、トルエン等が挙げられる。こ れら有機溶剤は 1種であってもよ 、し、 2種以上であってもよ 、。
上記有機溶剤の中でも、乾燥速度が速くなることから、水より沸点の低い有機溶剤 が好ましい。
粘接着成分が液状のものであれば、有機溶剤は必ずしも必要ではなぐ該帯電防 止性粘接着剤を無溶剤系とすることができる。
[0060] (バインダ榭脂)
導電性高分子溶液には、塗膜の耐傷性や表面硬度が高くなり、基材との密着性が 向上することから、バインダ榭脂を含むことが好ましい。
ノ インダ榭脂としては、熱硬化性榭脂であってもよいし、熱可塑性榭脂であってもよ い。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナ フタレート等のポリエステル;ポリイミド、ポリアミドイミド等のポリイミド;ポリアミド 6、ポリ アミド 6, 6、ポリアミド 12、ポリアミド 11等のポリアミド;ポリフッ化ビ-リデン、ポリフツイ匕 ビュル、ポリテトラフノレォロエチレン、エチレンテトラフノレォロエチレンコポリマー、ポリ クロ口トリフルォロエチレン等のフッ素榭脂;ポリビュルアルコール、ポリビュルエーテ ル、ポリビュルブチラール、ポリ酢酸ビュル、ポリ塩化ビュル等のビュル榭脂;ェポキ シ榭脂;ォキセタン榭脂;キシレン榭脂;ァラミド榭脂;ポリイミドシリコーン;ポリウレタン ;ポリウレア;メラミン榭脂;フエノール榭脂;ポリエーテル;アクリル榭脂及びこれらの共 重合体等が挙げられる。
これらバインダ榭脂は、有機溶媒に溶解されていてもよいし、スルホ基やカルボキシ 基などの官能基が付与されて水溶液化されていてもよいし、乳化など水に分散され ていてもよい。
[0061] ノインダ榭脂の中でも、容易に混合できることから、ポリウレタン、ポリエステル、ァク リル榭脂、ポリアミド、ポリイミド、エポキシ榭脂、ポリイミドシリコーン、メラミン榭脂のい ずれ力 1種以上が好ましい。
また、バインダ榭脂は、熱エネルギー及び Z又は光エネルギーによって硬化する液 状重合体を含むことが好まし ヽ。
ここで、熱エネルギーにより硬化する液状重合体としては、反応型重合体及び自己 架橋型重合体が挙げられる。
反応型重合体は、置換基を有する単量体が重合した重合体であり、置換基として は、ヒドロキシ基、カルボキシ基、酸無水物、ォキセタン系、グリシジル基、ァミノ基な どが挙げられる。具体的な単量体としては、エチレングリコール、ジエチレングリコー ル、ジプロピレングリコール、グリセリン等の多官能アルコール、マロン酸、コハク酸、 グルタミン酸、ピメリン酸、ァスコルビン酸、フタル酸、ァセチルサルチル酸、アジピン 酸、イソフタル酸、安息香酸、 m—トルィル酸等のカルボン酸化合物、無水マレイン 酸、無水フタル酸、ドデシル無水コハク酸、ジクロル無水マレイン酸、テトラクロル無水 フタル酸、テトラヒドロ無水フタル酸、無水ピメリット酸等の酸無水物、 3, 3—ジメチル ォキセタン、 3, 3—ジクロロメチルォキセタン、 3—メチルー 3—ヒドロキシメチルォキ セタン、アジドメチルメチルォキセタン等のォキセタン化合物、ビスフエノール Aジグリ シジルエーテル、ビスフエノール Fジグリシジルエーテル、フエノールノボラックポリグリ シジノレエーテノレ、 N, N—ジグリシジノレ一 p—ァミノフエノーノレグリシジノレエーテノレ、テ トラブロモビスフェノール Aジグリシジルエーテル、水添ビスフエノール Aジグリシジル エーテル(すなわち、 2, 2—ビス(4—グリシジノレオキシシクロへキシノレ)プロパン)等 のグリシジルエーテル化合物、 N, N—ジグリシジルァ二リン、テトラグリシジルジァミノ ジフエ-ルメタン、 N, N, N, N—テトラグリシジル一 m—キシリレンジァミン、トリグリシ ジルイソシァヌレート、 N, N—ジグリシジル一 5, 5—ジアルキルヒダントイン等のダリ シジルァミン化合物、ジエチレントリァミン、トリエチレンテトラミン、ジメチルァミノプロ ピルァミン、 N—アミノエチルピペラジン、ベンジルジメチルァミン、トリス(ジメチルアミ ノメチル)フエノール、 DHP30—トリ(2—ェチルへクソエート)、メタフエ-レンジァミン 、ジアミノジフエ-ルメタン、ジアミノジフエ-ルスルホン、ジシアンジアミド、三フッ化ホ ゥ素、モノェチルァミン、メタンジァミン、キシレンジァミン、ェチルメチルイミダゾール 等のアミンィ匕合物、 1分子中に 2個以上のォキシラン環を含む化合物のうち、ビスフエ ノール Aのェピクロロヒドリンによるグリシジル化合物、あるいはその類似物が挙げら れる。
[0063] 反応型重合体においては、少なくとも 2官能以上の架橋剤を使用する。その架橋剤 としては、例えば、メラミン榭脂、エポキシ榭脂、金属酸ィ匕物などが挙げられる。金属 酸化物としては、塩基性金属化合物の Al (OH) 、 Al (OOC'CH ) (OOCH)、Al (
3 3 2
OOC-CH ) 、 ZrO (OCH )ゝ Mg (OOC.CH )ゝ Ca (OH) , Ba (OH) 等を適宜
3 2 3 3 2 3 使用できる。
[0064] 自己架橋型重合体は、加熱により官能基同士で自己架橋するものであり、例えば、 グリシジル基とカルボキシ基を含むもの、あるいは、 N—メチロールとカルボキシ基の 両方を含むものなどが挙げられる。
[0065] 光エネルギーによって硬化する液状重合体としては、例えば、ポリエステル、ェポキ シ榭脂、ォキセタン榭脂、ポリアクリル、ポリウレタン、ポリイミド、ポリアミド、ポリアミドィ ミド、ポリイミドシリコーン等のオリゴマー又はプレボリマーが挙げられる。
光エネルギーによって硬化する液状重合体を構成する単量体単位としては、例え ば、ビスフエノール Α·エチレンオキサイド変性ジアタリレート、ジペンタエリスリトール へキサ(ペンタ)アタリレート、ジペンタエリスリトールモノヒドロキシペンタアタリレート、 ジプロピレングリコールジアタリレート、トリメチロールプロパントリアタリレート、グリセリ ンプロポキシトリアタリレート、 4—ヒドロキシブチルアタリレート、 1, 6—へキサンジォ ールジアタリレート、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシプロピルアタリレ ート、イソボル-ルアタリレート、ポリエチレングリコールジアタリレート、ペンタエリスリト ールトリアタリレート、テトラヒドロフルフリルアタリレート、トリメチロールプロパントリァク リレート、トリプロピレングリコールジアタリレート等のアタリレート類、テトラエチレンダリ コールジメタタリレート、アルキルメタタリレート、ァリルメタタリレート、 1, 3—ブチレン グリコールジメタタリレート、 n—ブチルメタタリレート、ベンジルメタタリレート、シクロへ キシルメタタリレート、ジエチレングリコールジメタタリレート、 2—ェチルへキシルメタク リレート、グリシジルメタタリレート、 1, 6—へキサンジオールジメタタリレート、 2—ヒドロ キシェチルメタタリレート、イソボルニルメタタリレート、ラウリルメタタリレート、フエノキ シェチルメタタリレート、 t ブチルメタタリレート、テトラヒドロフルフリルメタタリレート、 トリメチロールプロパントリメタタリレート等のメタタリレート類、ァリルグリシジルエーテ ル、ブチルダリシジルエーテル、高級アルコールグリシジルエーデル、 1, 6 へキサ ンジオールダリシジルエーテル、フエ-ルグリシジルエーテル、ステアリルグリシジル エーテル等のグリシジルエーテル類、ダイアセトンアクリルアミド、 N, N ジメチルァ クリルアミド、ジメチルァミノプロピルアクリルアミド、ジメチルァミノプロピルメタクリルァ ミド、メタクリルアミド、 N—メチロールアクリルアミド、 N, N ジメチルアクリルアミド、ァ クリロイルモルホリン、 N—ビュルホルムアミド、 N メチルアクリルアミド、 N—イソプロ ピルアクリルアミド、 N— t ブチルアクリルアミド、 N フエ-ルアクリルアミド、アタリ口 ィルピペリジン、 2 -ヒドロキシェチルアクリルアミド等のアクリル (メタクリル)アミド類、 2—クロロェチノレビニノレエーテノレ、シクロへキシノレビニノレエーテノレ、ェチノレビニノレエ 一テル、ヒドロキシブチルビニルエーテル、イソブチルビニルエーテル、トリエチレング リコールビュルエーテル等のビュルエーテル類、酪酸ビュル、モノクロ口酢酸ビュル、 ビバリン酸ビュル等のカルボン酸ビュルエステル類の単官能モノマー並びに多官能 モノマーが挙げられる。
[0066] 光エネルギーによって硬化する液状重合体は、光重合開始剤によって硬化する。
その光重合開始剤としては、ァセトフエノン類、ベンゾフエノン類、ミヒラーベンゾィル ベンゾエート、 a アミ口キシムエステル、テトラメチルチウラムモノサルファイド、チォ キサントン類などが挙げられる。さらに、光増感剤として、 n—プチルァミン、トリェチル ァミン、トリ— n—ブチルホスフィン等を混合できる。
また、カチオン重合開始剤としては、ァリールジァゾ -ゥム塩類、ジァリールノヽ口-ゥ ム塩類、トリフエ-ルスルホ -ゥム塩類、シラノール Zアルミニウムキレート、 ースル ホニルォキシケトン類等が挙げられる。
[0067] 上述した導電性高分子溶液では、相間移動触媒が可溶化高分子のァニオン基や 電子吸引基に配位し、可溶ィ匕高分子の油溶性が高くなるため、可溶化高分子と複合 体を形成した π共役系導電性高分子が有機溶媒に溶解している。また、 π共役系導 電性高分子が油溶性であるため、疎水性榭脂と相溶しやすくなつている。
そして、この導電性高分子溶液を各種基材等に塗布することにより導電性塗膜を形 成できるが、その際、有機溶媒として沸点の低いものを用いることにより、乾燥速度を 速くすることができ、導電性塗膜の生産性を高くできる。しかもこの導電性高分子溶 液カゝら形成された導電性塗膜は導電性が充分に確保されている。
[0068] (ハードコート成分)
ハードコート成分は、熱硬化性榭脂であってもよいし、熱可塑性榭脂であってもよい 例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフ タレート等のポリエステル;ポリイミド、ポリアミドイミド等のポリイミド;ポリアミド 6、ポリア ミド 6, 6、ポリアミド 12、ポリアミド 11等のポリアミド;ポリフッ化ビ-リデン、ポリフッ化ビ ニル、ポリテトラフノレォロエチレン、エチレンテトラフノレォロエチレンコポリマー、ポリク ロロトリフルォロエチレン等のフッ素榭脂;ポリビュルアルコール、ポリビュルエーテル 、ポリビュルブチラール、ポリ酢酸ビュル、ポリ塩化ビュル等のビュル榭脂;エポキシ 榭脂;ォキセタン榭脂;キシレン榭脂;ァラミド榭脂;ポリイミドシリコーン;ポリウレタン; ポリウレア;メラミン榭脂;フエノール榭脂;ポリエーテル;アクリル榭脂及びこれらの共 重合体等が挙げられる。
これらハードコート成分は、有機溶剤に溶解されていてもよいし、スルホ基やカルボ キシ基などの官能基が付与されて水溶液化されていてもよいし、乳化など水に分散さ れていてもよい。
また、ハードコート成分には、必要に応じて、架橋剤、重合開始剤等の硬化剤、重 合促進剤、溶媒、粘度調整剤等を加えて使用することができる。
[0069] ハードコート成分の中でも、容易に混合できることから、ポリウレタン、ポリエステル、 アクリル榭脂、ポリアミド、ポリイミド、エポキシ榭脂、ポリイミドシリコーンのいずれか 1 種以上が好ましい。また、アクリル榭脂は、硬度が硬いとともに透明性に優れるため、 光学フィルタのような用途には適して 、る。
また、ハードコート成分は、熱エネルギー及び Z又は光エネルギーによって硬化す る液状重合体を含むことが好まし 、。
ここで、熱エネルギーにより硬化する液状重合体としては、反応型重合体及び自己 架橋型重合体が挙げられる。 この反応重合体及び自己架橋型重合体は、前記 (バインダ榭脂)で挙げられたもの と同様の重合体を使用できる。
また、光エネルギーによって硬化する液状重合体、光エネルギーによって硬化する 液状重合体を構成する単量体単位、及びこの液状重合体を硬化させる光重合体開 始剤にぉ 、ても、前記 (バインダ榭脂)で挙げられたものと同様のものが使用できる。
[0070] 上記のハードコート成分は、帯電防止塗料を塗布する後述する基材との密着性を 高めるためのバインダ榭脂としての機能も発揮する。
[0071] (窒素含有化合物)
窒素含有化合物は、ウレァ基、ウレタン基、アロハネート基、ビュレット基、イミド基、 アミド基力 選ばれる 1種以上の窒素含有官能基を有し、該窒素含有官能基力 級 塩ィ匕されて 、る化合物である。
すなわち、窒素含有化合物は、ウレァ基、ウレタン基、アロハネート基、ビュレット基 、イミド基、アミド基から選ばれる 1種以上の窒素含有官能基を有する化合物を 4級塩 ィ匕すること〖こより得られる。
[0072] [ゥレア基、ウレタン基、アロハネート基、ビュレット基を有する化合物]
ウレァ基を有する化合物としては、例えば、ポリウレァアタリレートなどが挙げられる 。ウレタン基を有する化合物としては、例えば、ウレタンアタリレートなどが挙げられる 。アロハネート基を有する化合物としては、例えば、アロハネート結合を有する (メタ) アタリロイル基含有ィ匕合物などが挙げられる。ビュレット基を有する化合物としては、 例えば、ビュレット結合を有する (メタ)アタリロイル基含有ィ匕合物などが挙げられる。
[0073] ウレァ基を有する化合物は、イソシァネート基を有する化合物とアミノ基を有する化 合物とを付加反応して得ることができる。
ウレタン基を有する化合物は、イソシァネート基を有する化合物とヒドロキシ基又は カルボキシ基を有する化合物とを付加反応して得ることができる。
アロハネート基を有する化合物は、上記ウレタン基を有する化合物とイソシァネート 基を有する化合物とを付加反応して得ることができる。
ビュレット基を有する化合物は、上記ウレァ基を有する化合物とイソシァネート基を 有する化合物とを付加反応して得ることができる。 [0074] ウレァ基、ウレタン基、アロハネート基、ビュレット基を有する化合物を得るために用 いられるイソシァネート基を有する化合物としては、 2, 4 トリレンジイソシァネート、 2 , 6 トリレンジイソシァネート、キシレン 1, 4ージイソシァネート、キシレン 1, 3— ジイソシァネート、 4, 4'ージフエ-ルメタンジイソシァネート(MDI)、 2, 4'ージフエ -ルメタンジイソシァネート、 4, 4,ージフエ-ノレエーテノレジイソシァネート、 2 -トロ ジフエ二ルー 4, 4'ージイソシァネート、 2, 2,ージフエ-ルプロパン 4, 4'ージイソ シァネート、 3, 3,ージメチルジフエ-ルメタン 4, 4'ージイソシァネート、 4, 4'ージ フエ-ルプロパンジイソシァネート、 m—フエ-レンジイソシァネート、 p フエ-レンジ イソシァネート、ナフチレン 1, 4ージイソシァネート、ナフチレン 1, 5 ジイソシァ ネート、 3, 3,ージメトキシジフエ-ルー 4, 4,ージイソシァネート等の芳香族ジイソシ ァネート、テトラメチレンジイソシァネート、へキサメチレンジイソシァネート(HDI)、リ ジンジイソシァネート等の脂肪族ジイソシァネート、イソホロンジイソシァネート、水添 ィ匕トリレンジイソシァネート、水添化キシレンジイソシァネート、水添化ジフヱニルメタン ジイソシァネート、テトラメチルキシレンジイソシァネート等の脂環族ジイソシァネート 等のジイソシァネート等が例示される。
[0075] ウレァ基を有する化合物を形成する際に使用されるアミノ基を有する化合物として は、ジァミン、ァミノアルコールが挙げられる。ジァミンとしては、例えば、エチレンジァ ミン、プロピレンジァミン、ブチレンジァミン、へキサメチレンシァミン、キシリデンジアミ ン、フエ-レンジァミン、 4. 4,一ジアミノジフエ-ルメタン等が挙げられる。また、更に 広義のジァミン、例えば、ヒドラジンゃジカルボン酸のジヒドラジド (例えばシユウ酸ジヒ ドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド、イソフ タル酸ジヒドラジド等)等も利用できる。ァミノアルコールとしては、メタノールァミン、 2 アミノエタノール、 3ーァミノプロパノール、 4 アミノブタノール等が例示される。
[0076] ヒドロキシ基を有する化合物としては、例えば、ジオール、ァミノアルコール、高分子 量のポリオールなどが挙げられる。
ジオールとしては、エチレングリコール、プロピレングリコール、テトラメチレングリコ ール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 10 デカンジオール 、 1, 4ージヒドロキシシクロへキサン、 1, 4ージヒドロキシメチルシクロへキサン、ジェ チレングリコール、トリエチレングリコール等が例示される。
ァミノアルコールとしては、上記アミノ基を有する化合物で例示したものが挙げられ る。
[0077] 高分子量のポリオール化合物としては、ポリエステルポリオール、ポリカーボネート ポリオール、ポリエーテルポリオール等が挙げられる。
ポリエステルポリオールとしては、コハク酸、アジピン酸、セバシン酸、ァゼライン酸、 テレフタル酸、イソフタル酸、オルソフタル酸、へキサヒドロテレフタル酸、へキサヒドロ イソフタル酸、へキサヒドロオルソフタル酸、ナフタレンジカルボン酸またはその酸エス テル、酸無水物等のジカルボン酸 '酸エステル、酸無水物と、エチレングリコール、 1 , 3 プロピレングリコール、 1, 2 プロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 3 メチル - 1, 5 ペンタンジオール、ネオペンチルグリコール、 1, 8 オクタンジオール、 1, 9ーノナンジオール、ジエチレングリコール、 1, 4ーシクロへキサンジメタノール、ある いはビスフエノール Aのェチレオキサイド、または、プロピレオキサイド付加物等のダリ コール、へキサメチレンジァミン、キシレンジァミン、イソホロンジァミン、モノエタノー ルァミン等のジァミンまたはァミノアルコール等単独又はこれらの混合物との脱水縮 合反応で得られるポリエステルポリオール、ポリエステルアミドポリオール、またはィプ シロン一力プロラタトン等の環状エステル (ラタトン)モノマーの開環重合で得られるラ タトン系ポリエステルポリオールが挙げられる。
[0078] ポリカーボネートポリオールとしては、多価アルコールとジエチレンカーボネート、ジ メチルカーボネート、ジェチルカーボネート、ジフエ-ルカーボネート等との脱アルコ ール反応などで得られるものが挙げられる。この多価アルコールとしては、エチレング リコーノレ、 1, 3 プロピレングリコール、 1, 2 プロピレングリコール、 1, 3 ブタンジ オール、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール 、 3—メチルー 1, 5 ペンタンジオール、ネオペンチルグリコール、 1, 8 オクタンジ オール、 1, 9ーノナンジオール、ジエチレングリコール、 1, 4ーシクロへキサンジメタ ノール等の単独又はこれらの複数使用力もなるポリカーボネートポリオールが挙げら れる。 [0079] ポリエーテルポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラ ヒドロフランなどを開環重合させたポリエチレングリコール、ポリプロピレングリコール、 ポリテトラメチレンエーテルグリコール等、及び、これらを共重合したコポリエーテル、 更に前記のポリエステル、ポリカーボネートポリオールを開始剤としたエステルエーテ ルが挙げられる。
[0080] カルボキシ基を有する化合物としては、例えば、ジカルボン酸、酸エステル、酸無 水物が挙げられる。
ジカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、ァゼライン酸、 テレフタル酸、イソフタル酸、オルソフタル酸、へキサヒドロテレフタル酸、へキサヒドロ イソフタル酸、へキサヒドロオルソフタル酸、ナフタレンジカルボン酸などが挙げられる 。また、酸エステルとしては、上記ジカルボン酸のエステルが挙げられ、酸無水物とし ては、上記ジカルボン酸の酸無水物が挙げられる。またはその酸エステル、酸無水 物等が例示される。
[0081] 上記の、ウレァ基、ウレタン基、アロハネート基、ビュレット基を有する化合物は、溶 融状態、ノ レク状態にて、ウレトジオン基が開環しない温度条件、好ましくは 100°C 以下で、上記成分を均一に混合し反応させて製造することができる。その際、必要に 応じて、不活性溶剤を添加してもよい。不活性溶剤としては、例えば、トルエン、キシ レン等の芳香族炭化水素系溶剤、酢酸ェチル、酢酸ブチル等のエステル系溶剤、メ チルェチルケトン、シクロへキサノン等のケトン系溶剤、エチレングリコールェチルェ 一テルアセテート、プロピレングリコールメチルエーテルアセテート、ェチルー 3—エト キシプロピオネート等のダリコールエーテルエステル系溶剤、テトラヒドロフラン、ジォ キサン等のエーテル系溶剤、ジメチルホルムアミド、ジメチルアセトン、 N—メチルピロ リドン、フルフラール等の極性溶剤が挙げられ、これらを 1種又は 2種以上使用できる
反応装置としては、上記の反応を行うことができれば特に制限されず、例えば、攪 拌機を備えた反応容器、ニーダー、一軸又は多軸押出し反応機等の混合混練装置 が挙げられる。
[0082] また、ウレァ基、ウレタン基、アロハネート基、ビュレット基を有する化合物を形成す る際には、鎖延長剤を添加してもよい。鎖延長剤としては、一般に分子量 300以下の 分子内に 2個以上の活性水素を含有する物質であり、公知のアルコール、ァミン、ァ ミノアルコール等が用いられる。例えば、エチレングリコール、 1, 3 プロピレングリコ ール、 1, 2 プロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 3—メチルー 1, 5 ペンタンジ オール、ネオペンチルグリコール、 1, 8 オクタンジオール、 1, 9ーノナンジオール、 トリメチロールプロパン、グリセリン、ジエチレングリコール、 1, 4ーシクロへキサンジメ タノール、ビスヒドロキシエトキシベンゼン、あるいはビスフエノール Aのエチレンォキ サイド、または、プロピレンオキサイド付加物等のダリコール、へキサメチレンジァミン 、キシレンジァミン、イソホロンジァミン、メチレンビス(オルソクロロア二リン)、モノエタ ノールァミン等のジァミン又はァミノアルコール等が挙げられる。また、水、尿素も鎖 延長剤として使うことができる。
ウレァ基、ウレタン基、アロハネート基、ビュレット基、イミド基、アミド基を有する化合 物を形成する際には、触媒を用いてもよい。触媒としては、例えば、トリェチルァミン、 トリエチレンジァミン等の第 3ァミン、酢酸カリウム、ステアリン酸亜鉛等の金属塩、ジ ブチル錫ラウレート、ジブチル錫オキサイド等の有機金属化合物などが挙げられる。
[0083] 窒素含有化合物は、該導電性高分子溶液から形成される塗膜の熱安定性、製膜 性、耐摩耗性が高くなり、導電性がより高くなることから、不飽和二重結合を 1つ以上 有することが好ましい。窒素含有化合物が、ウレァ基、ウレタン基、アロハネート基、ビ ュレット基を有する化合物の 4級塩ィ匕物である場合には、ウレァ基、ウレタン基、ァロ ハネート基、ビュレット基をィ匕合物に不飽和二重結合を導入することが好ましい。ウレ ァ基、ウレタン基、アロハネート基、ビュレット基を有する化合物に不飽和二重結合を 導入する方法としては、例えば、分子末端にイソシァネート基を有する化合物と水酸 基を有するアクリル酸エステル系単量体とを反応させる方法などが挙げられる。水酸 基を有するアクリル酸エステル系単量体としては、例えば、 2—ヒドロキシェチルアタリ レート、 2—ヒドロキシェチノレメタタリレート、 2—ヒドロキシプロピルアタリレート、グリシ ドールジメタタリレート、ペンタエリスリトールトリアタリレートなどを挙げられる。
[0084] [イミド基を有する化合物] イミド基を有する化合物としては、ポリイミドが挙げられる。ポリイミドは、酸無水物と ジァミンとを縮合反応させて得られるものである。
ここで、酸無水物としては、例えば、ピロメリット酸二無水物、ビフエ-ルテトラカルボ ン酸ニ無水物、ベンゾフエノンテトラカルボン酸二無水物、 2, 2, 3, 3—テトラカルボ キシジフエ-ルエーテル二無水物、 2, 2— [4, 4'ージ(ジカルボキシフエ-ルォキシ )フエニル]プロパン二無水物等が挙げられる。
ジァミンとしては、例えば、ォキシジァミン、パラフエ-レンジァミン、メタフエ二レンジ ァミン、ベンゾフエノンジァミン等が挙げられる。
ポリイミドに不飽和二重結合を導入するためには、末端の酸無水物単位とイソシァ ネート基含有不飽和モノマーとを縮合反応させればよ!、。イソシァネート基含有不飽 和モノマーとして、例えば、ビ-ノレイソシァネート、ァリノレイソシァネート、 2—メタクリロ ィルォキシェチルイソシァネート、 2—アタリロイルォキシェチルイソシァネート等が挙 げられる。
[アミド基を有する化合物]
アミド基を有する化合物としては、アクリルアミド系榭脂、ポリアミドが挙げられる。 アクリルアミド系榭脂は、アミド基含有モノマーを構成単位として含む (共)重合体で ある。アミド基含有モノマーとしては、例えば、アクリルアミド、メタクリルアミド、 N—メチ ルメタクリルアミド、 N メチルアクリルアミド、 N—メチロールアクリルアミド、 N メチロ ールメタクリルアミド、 N, N ジメチロールアクリルアミド、 N—メトキシメチルアクリル アミド、 N—メトキシメチルメタクリルアミド、 N—フエ-ルアクリルアミド、 N— (2—ヒドロ キシェチル)アクリルアミド、 N—メチル(2—ヒドロキシェチル)アクリルアミド等が挙げ られる。
また、アクリルアミド系榭脂は構成単位として、例えば、アクリル酸エステル (アルコ ール残基としては、メチル基、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチル 基、イソブチル基、 t ブチル基、 2—ェチルへキシル基、シクロへキシル基、フエ- ル基、ベンジル基、フエ-ルェチル基等を例示できる);メタクリル酸エステル (アルコ ール残基は上記と同じ);2—ヒドロキシェチルアタリレート、 2—ヒドロキシェチルメタク リレート、 2—ヒドロキシプロピルアタリレート、 2—ヒドロキシプロピノレメタタリレート等の ヒドロキシ基含有モノマー; N, N—ジェチルアミノエチルアタリレート、 N, N—ジェチ ルアミノエチルメタタリレート等のアミノ基含有モノマー;グリシジルアタリレート、グリシ ジルメタタリレート、ァリルグリシジルエーテル等のグリシジル基含有モノマーなどの共 重合成分を含んでもよい。
[0086] アクリルアミド系榭脂に不飽和二重結合を導入する方法としては、ヒドロキシ基含有 モノマー、アミノ基含有モノマー、グリシジル基含有モノマーより形成される活性水素 と、ビュルイソシァネート、ァリルイソシァネート、 2—メタクリロイルォキシェチルイソシ ァネート、 2—アタリロイルォキシェチルイソシァネート等のイソシァネート基含有不飽 和モノマーを付加反応させる方法、カルボキシ基含有モノマーとグリシジル基含有モ ノマーを縮合反応させる方法などが挙げられる。
[0087] ポリアミドは、ジカルボン酸とジァミンとを縮合反応させて得られるものである。
ここで、ジカルボン酸としては、例えば、コハク酸、アジピン酸、セバシン酸、ァゼライ ン酸、テレフタル酸、イソフタル酸、オルソフタル酸、へキサヒドロテレフタル酸、へキ サヒドロイソフタル酸、へキサヒドロオルソフタル酸、ナフタレンジカルボン酸等が挙げ られる。
ジァミンとしては、例えば、ォキシジァミン、パラフエ-レンジァミン、メタフエ二レンジ ァミン、ベンゾフエノンジァミン等が挙げられる。
ポリアミドに不飽和二重結合を導入するためには、末端の酸無水物単位とイソシァ ネート基含有不飽和モノマーとを縮合反応させればよ!、。イソシァネート基含有不飽 和モノマーとしては、例えば、ビ-ノレイソシァネート、ァリノレイソシァネート、 2—メタタリ ロイルォキシェチルイソシァネート、 2—アタリロイルォキシェチルイソシァネート等が 挙げられる。
[0088] [窒素原子の 4級塩化]
ウレァ基、アミド基、ウレタン基、アロハネート基、ビュレット基、イミド基、アミド基を有 する化合物の窒素原子の 4級塩ィ匕は、塩化水素、臭化水素、酢酸、乳酸、硫酸等の 無機酸やべンジルクロライド、ベンジルブロマイド、メチルクロライド、メチルブロマイド 、ジメチル硫酸、ジェチル硫酸、ジプロピル硫酸、 p—トルエンスルホン酸メチル、ベ ンゼンスルホン酸メチル、トリメチルホスファイト、ェピクロルヒドリン等の 4級塩化剤を 作用させて行うことができる。
窒素原子の 4級塩化率は、 0. 1〜100%が好ましぐ 2〜100%がより好ましい。 4 級塩化塩率が 0. 1%未満であると、 π共役系導電性高分子とポリア-オンとの複合 体のドープに寄与していないァ-オン基と塩を形成するために多量の窒素含有ィ匕合 物を添加しなければならず、導電性が低下する恐れがある。
[0089] 窒素含有化合物の分子量は、作業性の点から、 500-60, 000力 S好ましく、 1, 00 0〜30, 000力より好まし!/ヽ。
[0090] 窒素含有ィ匕合物は、ポリア-オンに対して 0. 1モル当量から 100モル当量含まれ ることが好ましぐ 2モル当量から 50モル当量含まれることがより好ましい。窒素含有 化合物の含有量がポリア-オンに対して 100モル当量を超える場合には、窒素含有 化合物が過剰になり、導電性を低下させるおそれがある。また、ポリア-オンに対して 0. 1モル当量未満では、導電性、熱安定性、製膜性、耐磨耗性、基材密着性を向上 させることが困難になる傾向にある。
[0091] (多官能モノマー)
導電性高分子溶液には、塗膜の熱安定性、製膜性、耐摩耗性をより向上させるた めに、多官能モノマーを添加してもよい。多官能モノマーとしては、例えば、(メタ)ァ クリル酸エステル、(メタ)アクリルアミドを使用できる。(メタ)アクリル酸エステルとして は、例えば、ジエチレングリコールジ (メタ)アタリレート、トリエチレングリコールジ (メタ )アタリレート、テトラエチレングリコールジ (メタ)アタリレート、ノナエチレングリコール ジ (メタ)アタリレート、テトラデカエチレングリコールジ (メタ)アタリレート、ノナプロピレ ングリコールジ (メタ)アタリレート、ドデン力プロピレングリコールジ (メタ)アタリレート、 トリメチロールプロパントリ(メタ)アタリレート、トリメチロールプロパンのエチレンォキサ イド付加物のトリ(メタ)アタリレート、ペンタエリストリトールジ (メタ)アタリレート、ペンタ エリストリトールトリ(メタ)アタリレート、ペンタエリストリトールテトラ (メタ)アタリレート、ジ ペンタエリストリトールへキサ(メタ)アタリレート、グリセリンジ (メタ)アタリレート、 1,3-プ 口パンジオールジ (メタ)アタリレート等のポリオールの(メタ)アクリル酸エステルが挙 げられる。
(メタ)アクリルアミド類としては、メチレンビス (メタ)アクリルアミドのほ力、エチレンジ ァミン、ジァミノプロパン、ジァミノブタン、ペンタメチレンジァミン、ビス(2-ァミノプロピ ル)ァミン、ジエチレントリアミンジァミン、フエ-レンジァミン、ジァミン安息香酸などか ら誘導されるポリ(メタ)アクリルアミドが挙げられる。
[0092] (添加剤)
また、導電性高分子溶液には、必要に応じて、シランカップリング剤、酸化防止剤、 紫外線吸収剤、レべリング剤、難燃剤等の添加剤を含有させることもできる。
[0093] (粘接着成分)
粘接着成分とは、粘着性または接着性を発揮する成分のことであり、それ自体が粘 着性または接着性を有するものであってもよ!/、し、加熱後に粘着性または接着性を 発揮するものであってもよい。なお、粘着とは、剥離可能な貼着を意味し、接着とは、 剥離不可能な貼着を意味する。
粘接着成分の具体例としては、アクリル系化合物、ウレタン系化合物、エポキシ系 化合物、エステル系化合物、アミド系化合物、ウレァ系化合物、ゴム系化合物、シリコ ーン系化合物、メラミン系化合物、カルポジイミド系化合物、ォキサゾリジン系化合物 、セルロース系化合物等のモノマー又はポリマーが挙げられる。これらは単独で使用 してもよいし、複数を組み合わせて使用してもよい。
上記の中でも、透明性の点から、アクリル系化合物が好ましぐさらには、アクリルモ ノマー及び z又はアクリル系重合体がより好まし 、。
[0094] アクリルモノマーとしては、例えば、(メタ)アクリル酸及び (メタ)アクリル酸と一級ァ ルコール又は一級ァミンとを反応させて得られる単分子化合物が挙げられる。アタリ ルモノマーの具体例としては、アクリル酸、アクリル酸メチル、アクリル酸ブチル、アタリ ル酸イソブチル、 2—メトキシェチルアタリレート、ジトリメチロールプロパンテトラアタリ レート、 2—ヒドロキシー3—フエノキシプロピノレアタリレート、ビスフエノーノレ Α·ェチレ ンオキサイド変性ジアタリレート、ジペンタエリスリトールペンタアタリレート、ジペンタエ リスリトールへキサアタリレート、ジペンタエリスリトールモノヒドロキシペンタアタリレート 、ジプロピレングリコールジアタリレート、トリメチロールプロパントリアタリレート、グリセ リンプロポキシトリアタリレート、 4—ヒドロキシブチルアタリレート、 1, 6—へキサンジォ ールジアタリレート、 2—ヒドロキシェチルアタリレート、 2—ヒドロキシプロピルアタリレ ート、イソボル-ルアタリレート、ポリエチレングリコールジアタリレート、ペンタエリスリト ールトリアタリレート、テトラヒドロフルフリルアタリレート、トリメチロールプロパントリァク リレート、トリプロピレングリコールジアタリレート等のアタリレート類、テトラエチレンダリ コールジメタタリレート、メチルメタタリレート、ェチルメタタリレート、 n—ブチルメタタリ レート、 t—ブチルメタタリレート、ァリルメタタリレート、 1, 3 ブチレングリコールジメタ タリレート、ベンジルメタタリレート、シクロへキシルメタタリレート、ジエチレングリコール ジメタタリレート、 2 ェチルへキシルメタタリレート、グリシジルメタタリレート、 1, 6— へキサンジオールジメタタリレート、 2—ヒドロキシェチルメタタリレート、イソボル-ルメ タクリレート、ラウリルメタタリレート、フエノキシェチルメタタリレート、テトラヒドロフルフリ ルメタタリレート、トリメチロールプロパントリメタタリレート等のメタタリレート類、ァリルグ リシジルエーテル、ブチルダリシジルエーテル、高級アルコールグリシジルエーテル、 1, 6 へキサンジオールダリシジルエーテル、フエニルダリシジルエーテル、ステアリ ルグリシジルエーテル等のグリシジルエーテル、ジアセトンアクリルアミド、 N, N ジ メチルアクリルアミド、ジメチルァミノプロピルアクリルアミド、ジメチルァミノプロピルメタ クリルアミド、メタクリルアミド、 N—メチロールアクリルアミド、アタリロイルモルホリン、 N メチルアクリルアミド、 N イソプロピルアクリルアミド、 N— t ブチルアクリルアミド 、 N—フエ-ルアクリルアミド、アタリロイルビペリジン、 2—ヒドロキシェチルアクリルァ ミド等の(メタ)アクリルアミド類、 N ビュルホルムアミド、 2—クロロェチルビ-ルエー テノレ、シクロへキシノレビニノレエーテノレ、ェチノレビニノレエーテノレ、ヒドロキシブチノレビ二 ノレエーテノレ、イソブチルビ-ルエーテル、トリエチレングリコールビュルエーテル等の ビュルエーテル類、酪酸ビュル、モノクロ口酢酸ビュル、ピバリン酸ビュル、酢酸ビ- ル、プロピオン酸ビュル等のカルボン酸ビュルエステル類などが挙げられる。
上記アクリルモノマーは液体であるため、粘接着成分として上記アクリルモノマーを 含む場合には、帯電防止性粘接着剤を、有機溶剤を含まない無溶剤系とすることが できる。
(アクリル系重合体)
アクリル系重合体とは、少なくとも 1種以上の上記アクリルモノマー単位を構成成分 として含むホモポリマーまたはコポリマーである。コポリマーの場合の共重合モノマー としては特に制限されないが、マレイン酸、フマル酸、ィタコン酸等の二重結合を有 するカルボン酸モノマーまたはその無水物、(メタ)アクリロニトリル、 N ビュルピロリ ドン、 N ビ-ルカプロラタタム、スチレンなどが挙げられる。
[0096] また、粘接着層に凝集力が求められる場合には、架橋剤によりアクリル系重合体を 架橋することが好ましい。架橋剤としては、イソシァネート系架橋剤、エポキシ系架橋 剤、アジリジン系架橋剤、金属系架橋剤などが挙げられる。
[0097] 粘接着成分がモノマーである場合には、粘接着性ゃ基材との密着性を容易に制御 できることから、該帯電防止性粘接着剤に重合開始剤を添加することが好ましい。重 合開始剤としては、ァセトフエノン類、ベンゾフエノン類、ミヒラーベンゾィルベンゾェ ート、 a アミ口キシムエステル、テトラメチルチラウムモノサルフアイド、チォキサント ン類などが挙げられる。さらに、光増感剤として、 n—プチルァミン、トリェチルァミン、 トリ— n ブチルホスフィン等を混合できる。
また、カチオン系重合開始剤として、ァリールジァゾ -ゥム塩類、ジァリールノヽ口- ゥム塩類、トリフエ-ルスルホ -ゥム塩類、シラノール Zアルミニウムキレート、 ース ルホ -ルォキシケトン類などが挙げられる。
[0098] 本発明の帯電防止性粘接着剤には、フィラーが含まれていてもよい。フィラーが含 まれていれば、粘接着性を容易に制御でき、保護材のブロッキングを防止できる。フ イラ一としては、例えば、黒鉛等の多孔質類、ガラスビーズ等の含ケィ素化合物類、 炭酸カルシウムや無機リンィ匕合物等の無機化合物、球状プラスチック等が挙げられる
[0099] <導電性高分子溶液の製造方法 >
本発明の導電性高分子溶液の製造方法の第 1の方法は、 π共役系導電性高分子 および可溶ィ匕高分子を水に溶解した高分子水溶液に有機溶媒を添加した後、相間 移動触媒を添加する液 液抽出法である。その一例では、まず、 π共役系導電性高 分子と可溶化高分子との複合体の水溶液に有機溶媒を添加し、次いで、相間移動 触媒を添加し、攪拌または振とうする。その後、しばらく静置して水層と有機溶媒層と に分離させ、水層を除去することにより、 π共役系導電性高分子と可溶化高分子との 複合体が有機溶媒に溶解した導電性高分子溶液を得る。 その際、高分子水溶液を調製する方法としては、例えば、まず、可溶化高分子を、 これを溶解する溶媒に溶解し、 π共役系導電性高分子の前駆体モノマーと必要に応 じてドーパントとを添加し、充分に攪拌混合する。次いで、これにより得られた混合物 に酸化剤を滴下して重合を進行させて、 π共役系導電性高分子と可溶化高分子と の複合体を得た後、その複合体から、酸化剤、残留モノマー、副生成物を除去、精 製する方法などが採られる。
[0100] 本発明の導電性高分子溶液の製造方法の第 2の方法は、 π共役系導電性高分子 および可溶ィ匕高分子を水に溶解した高分子水溶液に相間移動触媒を添加して、 π 共役系導電性高分子と可溶化高分子と相間移動触媒とを含む混合物を水から分離 し、前記混合物に有機溶媒を添加する方法である。この方法の一例では、まず、 π 共役系導電性高分子と可溶化高分子との複合体の水溶液に相間移動触媒を添加し て、 π共役系導電性高分子と可溶化高分子と相間移動触媒とを含む混合物を沈殿 させ、捕集する。次いで、その混合物を有機溶媒に溶解させて、 π共役系導電性高 分子と可溶化高分子との複合体が有機溶媒に溶解した導電性高分子溶液を得る。
[0101] 以上の導電性高分子溶液の製造方法では、 π共役系導電性高分子および可溶化 高分子を一旦水溶液ィ匕してから、その水溶液に相間移動触媒を添加するため、有機 溶媒に不溶であった π共役系導電性高分子を油溶性にすることができる。したがつ て、有機溶媒を含有させることにより、 π共役系導電性高分子が有機溶媒に溶解し た導電性高分子溶液を得ることができる。
[0102] 上記導電性高分子溶液を製造する方法としては、例えば、まず、ポリア二オンを合 成し、そのポリア-オンと溶媒の存在下で π共役系導電性高分子の前駆体モノマー を化学酸化重合して、 π共役系導電性高分子の溶液を得た後、その溶液に、窒素 含有化合物を添加する方法が挙げられる。
[0103] ポリア二オンの合成方法としては、例えば、酸を用いてァニオン基を有さないポリマ 一にァ-オン基を直接導入する方法、ァ-オン基を有さな 、ポリマーをスルホン化剤 によりスルホン酸ィ匕する方法、ァ-オン基含有重合性モノマーの重合により製造する 方法が挙げられる。
ァ-オン基重合性モノマーの重合により製造する方法及び具体的なァ-オン基重 合性モノマーは、前記( π共役系導電性高分子)に記載した内容と同様である。
[0104] ァ-オン基含有重合性モノマーの重合に際して使用する酸化剤及び酸化触媒とし ては、例えば、ペルォキソ二硫酸アンモ-ゥム (過硫酸アンモ-ゥム)、ペルォキソ二 硫酸ナトリウム (過硫酸ナトリウム)、ペルォキソ二硫酸カリウム (過硫酸カリウム)等の ペルォキソ二硫酸塩、塩化第二鉄、硫酸第二鉄、硝酸第二鉄、塩化第二銅等の遷 移金属化合物、三フッ化ホウ素などの金属ハロゲン化合物、酸化銀、酸化セシウム 等の金属酸化物、過酸化水素、オゾン等の過酸化物、過酸化ベンゾィル等の有機 過酸化物、酸素等が挙げられる。
また、溶媒としては、導電性高分子溶液を構成する溶媒を用いることができる。
[0105] また、ァ-オン基を有さな 、重合性モノマーも、前記( π共役系導電性高分子)に 記載した内容と同様である。
[0106] 上記ポリア-オン存在下で化学酸化重合する π共役系導電性高分子の前駆体モ ノマ一は、前記( π共役系導電性高分子)に記載した内容と同様である。
[0107] π共役系導電性高分子の前駆体モノマーをィ匕学酸ィ匕重合する際に用いられる酸 ィ匕剤、酸化触媒としては、ポリア-オンの合成に用いたものと同様である。
溶媒としては、前記前駆体モノマーを溶解又は分散しうる溶媒であり、酸化剤及び 酸ィ匕触媒の酸ィ匕カを維持させることができるものであればよぐ例えば、導電性高分 子溶液に含まれるものと同様のものが挙げられる。
[0108] その重合の際には、 π共役系導電性高分子の主鎖の成長と共にポリア-オンのァ ユオン基が π共役系導電性高分子と塩を形成するため、 π共役系導電性高分子の 主鎖はポリア-オンに沿って成長する。よって、得られた π共役系導電性高分子とポ リア-オンは無数に塩を形成した複合体になる。この複合体においては、 π共役系 導電性高分子のモノマー 3ユニットに対して 1ユニットのァ-オン基が塩を形成し、短 く成長した π共役系導電性高分子の数本が長 ヽポリア-オンに沿って塩を形成して いるものと推定されている。
窒素含有ィ匕合物を添加した際には、ポリア-オンと塩を形成していない残存 π共 役系導電性高分子は、均一溶媒中で、カチオンである窒素含有化合物の 4級塩と塩 を形成する。 [0109] 窒素含有ィ匕合物が不飽和二重結合を有する場合には、不飽和二重結合同士を、 ラジカル重合法、熱重合法、光重合法、カチオン重合法、プラズマ重合法により重合 することが好ましい。
ラジカル重合法では、重合開始剤として、例えば、ァゾビスイソプチ口-トリル等のァ ゾ化合物、過酸化べンゾィル、ジァシルペルォキシド類、ペルォキシエステル類、ヒド 口ペルォキシド類等の過酸ィ匕物などを用いて重合する。
[0110] 光重合法では、重合開始剤として、カルボニル化合物、ィォゥ化合物、有機過酸化 物、ァゾィ匕合物などを用いて重合する。具体的には、ベンゾフエノン、 4, 4 ビス(ジ メチルァミン)ベンゾフエノン、 4—メトキシ一 4'—ジメチルァミノべンゾフエノン、 4, 4, —ジメトキシベンゾフェンノン、 4—ジメチルァミノべンゾフエノン、 4—ジメチルアミノア セトフエノン、アントラキノン、 2—t—ブチルアントラキノン、 2—メチルアントラキノン、 2 , 4 ジェチルチオキサントン、フルォレノン、ァクドリン、ミヒラーズケトン、キサントン、 チォキサントン、 2—ェチルアントラキノン、ァセトフエノン、トリクロロアセトフエノン、 2 ーヒドロキシ 2—メチル -プロピオフエノン、 1ーヒドロキシシクロへキシルフェニルケト ン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソプロピル エーテル、ベンゾインフエ-ルエーテル、 2, 2—ジェトキシァセトフエノン、 2, 2—ジメ トキシ一 2—フエ-ルァセトフエノン、ベンジル、メチルベンゾィルホルメート、 1—フエ 二ルー 1, 2 プロパンジオン一 2—(o べンゾィル)ォキシム、 2, 4, 6 トリメチル ベンゾィルジフエ-ルホスフィンォキシド、テトラメチルチウラム、ジチォカーバメート、 過酸化べンゾィル、 N ラウリルピリジゥムアジド、ポリメチルフエ-ルシランなどが挙 げられる。
[0111] 光重合する場合には、光感度を向上させる増感剤を添加してもよい。増感剤の具 体的な例として、 2, 5 ビス(4,一ジェチルァミノベンザル)シクロペンタノン、 2, 6— ビス(4, -ジメチルァミノベンザル)シクロへキサノン、 2, 6 ビス(4 ' ジェチルアミ ノベンザル) 4—メチルシクロへキサノン、 4, 4'—ビス(ジメチルァミノ)カルコン、 4 , 4,—ビス(ジェチルァミノ)カルコン、 2— (p ジメチルァミノフエ-ルビ-レン)ベン ゾチアゾール、 2—(p ジメチルァミノフエ-ルビ-レン) -イソナフトチアゾール、 3, 3 ,—カルボ二ル-ビス(7-ジェチルァミノクマリン)等が挙げられる。これらの増感剤を 1 種または 2種以上使用することができる。なお、増感剤の中には光重合開始剤として ち作用するちのちある。
[0112] カチオン重合法で用いられるカチオン重合開始剤としては、ァリールジァゾ -ゥム 塩類、ジァリールハ口-ゥム塩類、トリフ -ルスルホ -ゥム塩類、シラノール Zアルミ ユウムキレート、 a スルホ -ルォキシケトン類等が挙げられる
プラズマ重合では、プラズマを短時間照射し、プラズマの電子衝撃によるエネルギ 一を受けて、フラグメンテーションとリアレンジメントをしたのち、ラジカルの再結合によ り重合体を生成する。
なお、これらの重合は、導電性高分子溶液の形態で行ってもよいが、塗布後の乾 燥の際に行ってもよい。
[0113] 以上説明した導電性高分子溶液では、窒素含有ィ匕合物が 4級塩化されてカチオン を形成し、窒素含有化合物の 4級塩化窒素含有官能基が、 π共役系導電性高分子 との塩の形成に使用されな力つたポリア-オンの残存ァ-オン基と塩を形成する。そ の結果、導電性及び溶媒溶解性が向上する。
窒素含有ィヒ合物が不飽和二重結合を 1つ以上有する場合には、不飽和二重結合 により架橋点が形成される。そして、この不飽和二重結合が重合することにより、窒素 含有化合物と塩を形成して ヽるポリア-オン及び π共役導電性高分子を架橋するこ とができる。その結果、 π共役系導電性高分子とポリア-オンとの複合体の分子間距 離が縮まり集束するため、 π共役系導電性高分子間の電子移動におけるホッピング にかかる活性ィ匕エネルギーを小さくすることができ、導電性を高くできる (具体的には 、電気伝導度で lOOSZcm以上を実現し得る。 )と考えられる。また、不飽和二重結 合の架橋によって分子密度が高まるため、熱安定性、製膜性、耐磨耗性が向上する と考えられる。
[0114] く導電性榭脂 >
本発明の導電性榭脂は、上述した導電性高分子溶液から有機溶媒が除去されて 得られるものである。有機溶媒の除去方法としては特に制限されず、熱乾燥法、真空 乾燥法などが挙げられる。
導電性榭脂には、耐傷付き性の点から、ノインダ榭脂が含まれることが好ましい。 すなわち、導電性榭脂は、バインダ榭脂を含有する導電性高分子溶液から得ること が好ましい。ノインダ榭脂を含めば、導電性榭脂の鉛筆硬度 CFIS K 5400)を HB 以上にしゃすい。
[0115] <帯電防止塗料の製造方法 >
帯電防止塗料の製造方法としては、例えば、液—液抽出法を採ることができる。液 液抽出法による帯電防止塗料の製造方法の一例では、まず、 π共役系導電性高 分子と可溶化高分子との複合体の水溶液に有機溶媒を添加し、続いて、相間移動 触媒を添加し、攪拌または振とうする。その後、しばらく静置して、水層と有機溶媒層 とに分離させ、水層を除去して、溶媒が有機溶媒の溶液を得る。そして、その溶液に ハードコート成分を添加して帯電防止塗料を得る。 また、帯電防止塗料は他の方法でも製造できる。帯電防止塗料の他の製造方法の 一例では、まず、 π共役系導電性高分子と可溶ィヒ高分子との複合体の水溶液に相 間移動触媒を添加して、 π共役系導電性高分子と可溶ィ匕高分子と相間移動触媒と の混合物を沈殿させ、これを捕集する。次いで、その混合物を有機溶媒に溶解させ るとともに、ハードコート成分を添加して帯電防止塗料を得る。
[0116] 帯電防止塗料の製造方法においては、いずれの場合も π共役系導電性高分子と 可溶化高分子とを含む高分子水溶液を使用することが好ま ヽ。高分子水溶液を調 製する方法としては、例えば、まず、可溶化高分子を、これを溶解する溶媒に溶解し
、 π共役系導電性高分子の前駆体モノマーと必要に応じてドーパントとを添加し、充 分に攪拌混合する。次いで、これにより得られた混合物に酸化剤を滴下して重合を 進行させて、 π共役系導電性高分子と可溶化高分子との複合体を得た後、その複 合体から、酸化剤、残留モノマー、副生成物を除去、精製する方法などが採られる。
[0117] 上述した帯電防止塗料では、相間移動触媒が可溶化高分子のァニオン基や電子 吸引基に配位し、可溶ィ匕高分子の油溶性が高くなつているため、可溶化高分子と複 合体を形成する π共役系導電性高分子が有機溶媒に溶解し、また、ハードコート成 分との相溶性が確保される。
また、帯電防止塗料に含まれる π共役系導電性高分子は、油溶性の特殊なモノマ 一の重合体ではないため、導電性が高ぐ帯電防止性に優れる上に、帯電防止塗料 中の π共役系導電性高分子含有量を少なくできるので、透明性に優れる。
また、帯電防止塗料は、ハードコート成分を含むため、その塗膜の耐傷性や表面硬 度を高くでき、具体的には、帯電防止塗料力も形成されたノ、ードコート層の鉛筆硬度 (JIS Κ 5400)を ΗΒ以上にできる。
[0118] <帯電防止性ノ、ードコート層 >
本発明の帯電防止性ハードコート層は、上述した帯電防止塗料が塗布されて形成 されたものである。帯電防止塗料の塗布方法としては、例えば、浸漬、コンマコート、 スプレーコート、ロールコート、グラビア印刷などが挙げられる。
塗布後、加熱により溶媒を除去し、又は熱や光によって帯電防止塗料を硬化すれ ばよい。加熱する場合の加熱方法としては、例えば、熱風加熱や赤外線加熱などの 通常の方法を採用できる。また、光硬化により塗膜を形成する場合の光照射方法とし ては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノン アーク、メタルハライドランプなどの光源力も紫外線を照射する方法を採用できる。
[0119] 帯電防止性ノヽードコート層が形成される基材としては、例えば、低密度ポリエチレン フィルム、高密度ポリエチレンフィルム、エチレン プロピレン共重合体フィルム、ポリ プロピレンフィルム、エチレン一酢酸ビュル共重合体フィルム、エチレン一メチルメタ タリレート共重合体フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリブチレ ンテレフタレート(PBT)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリイミド フィルム、 6—ナイロンフィルム、 6, 6—ナイロンフィルム、ポリメチルメタクリレートフィ ルム、ポリスチレンフィルム、スチレン一アクリロニトリル一ブタジエン共重合体フィルム 、ポリアクリロニトリルフィルム、トリ酢酸セルロース(TAC)フィルム、セルロースプロピ ォネートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリフッ化ビ -リデンフィルム、ポリ 4フッ化工チレンフィルム、ポリビュルアルコールフィルム、ェチ レン ビュルアルコール共重合体フィルム、ポリカーボネートフィルム、ポリサルホン フィルム、ポリエーテルサルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリ フエ-レンォキシドフィルムなどが挙げられる。
[0120] 基材表面には、帯電防止塗料との相性を高めることを目的として、スパッタリング、 コロナ放電、火炎、紫外線照射、電子線照射、化成、酸化などのエッチング処理や下 塗り処理などの親水処理をあら力じめ施しておくことが好ましい。さらに、必要に応じ て溶剤洗浄や超音波洗浄などにより除塵、清浄化されて 、てもよ 、。
[0121] この帯電防止性ハードコート層は、上述した帯電防止塗料から形成されたものであ るから、硬度が高い上に、帯電防止性および透明性に優れる。
帯電防止性ハードコート層を光学用途、特に、後述する光学フィルタに用いる場合 には、透明性ができるだけ高いことが好ましい。具体的には、全光線透過率 (JIS Z
8701)が 85%以上であることが好ましぐ 90%以上であることがより好ましぐ 96% 以上であることが特に好ましい。また、ヘイズ (JIS K 6714)が 5%以下であることが 好ましぐ 3%以下であることがより好ましぐ 1%以下であることが特に好ましい。 さらに、表面硬度 (JIS S 6006に準じた鉛筆硬度)が HB以上であることが好まし い。
帯電防止性ノヽードコート層の表面抵抗値は、光学特性との兼ね合いによって適宜 調節されることが好ましい。通常、 1 X 103 Ω〜1 X 1012 Ω程度であれば、帯電防止 用途に適用できる。
帯電防止性ハードコート層の光透過率、ヘイズ、表面抵抗値、表面硬度は、塗膜 厚さにより調節できる。
[0122] <光学フィルタ >
次に、本発明の光学フィルタの一実施形態例について説明する。
図 1に、本実施形態例の光学フィルタを示す。この光学フィルタ 1は、フィルム基材 1 0と、フィルム基材 10上に形成された帯電防止性ハードコート層 20と、帯電防止性ハ ードコート層 20上に形成された反射防止層 30とを有して構成されている。
この光学フィルタ 1をディスプレイ装置の表示面に貼り付ける際には、光学フィルタ 1 のフィルム基材 10側の表面に透明な接着剤層を設け、その接着剤層を介して貼り付 ける。
[0123] フィルム基材 10としては、透明性を有する各種のプラスチックフィルムを使用できる 。透明性プラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリイミド 、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリプロピ レン、ポリアミド、アクリルアミド、セルロースプロピオネートなど力もなるフィルムが挙げ られる。
また、フィルム基材 10はその表面にスパッタリング、コロナ放電、火炎、紫外線照射
、電子線照射、化成、酸化などのエッチング処理や下塗り処理が施されていることが 好ましい。このような処理が表面に施されていれば、帯電防止性ノ、ードコート層 20に 対する密着性をより高めることができる。
さらに、フィルム基材 10の表面は、帯電防止性ノヽードコート層 20を設ける前に、必 要に応じて溶剤洗浄や超音波洗浄などにより除塵、清浄化されていてもよい。
[0124] 帯電防止性ハードコート層 20は、上述した通りに帯電防止塗料から形成された膜 であり、上述したように、この帯電防止性ノ、ードコート層 20は表面硬度 (鉛筆硬度)が HB以上であることが好ましい。また、光学用途であるから、帯電防止性ハードコート 層 20の全光線透過率 (JIS Z 8701)が 85%以上であることが好ましぐ 90%以上 であることがより好ましぐ 96%以上であることが特に好ましい。また、帯電防止性ノヽ ードコート層 20のヘイズ (JIS K 6714)が 5%以下であることが好ましぐ 3%以下 であることがより好ましぐ 1%以下であることが特に好ましい。
[0125] 反射防止層 30は光の反射を防止する層である。この層は単層であってもよいし、多 層であってもよい。単層である場合、その屈折率は 1. 38-1. 45の範囲にあるのが 好ましぐまた、その光学膜厚は 80〜: LOOnmの範囲にあるのが好ましい。
反射防止層 30は、乾式法、湿式法のいずれかによつて形成できる。乾式法として は、例えば、電子ビーム蒸着法、誘電加熱式蒸着法、抵抗加熱蒸着法、スパッタリン グ法、イオンプレーティング法のような物理気相堆積法やプラズマ CVD法が挙げら れる。乾式法で反射防止層 30を形成する場合には、反射防止層 30の成分として、 例えば、酸化ケィ素、フッ化マグネシウム、酸化ニオブ、酸化チタン、酸化タンタル、 酸ィ匕アルミニウム、酸ィ匕ジルコニウム、酸化インジウム、酸化スズなどの無機化合物を 用!/、ることができる。
また、湿式法としては、例えば、コンマコート、スプレーコート、ロールコート、グラビ ァ印刷等の公知の手法により硬化性化合物を含む塗料を塗布し、これを硬化する方 法が挙げられる。湿式法で反射防止層 30を形成する場合には、硬化性化合物として 、例えば、含フッ素有機化合物、含フッ素有機ケィ素化合物、含フッ素無機化合物な どの含フッ素化合物を用いることができる。
[0126] 光学フィルタ 1においては、さらに、反射防止層 30の上に防汚層が設けられてもよ い。防汚層が設けられていれば、ごみや汚れの付着を防止し、あるいは付着しても除 去しやすくなる。
防汚層としては、反射防止層 30の反射防止機能を阻害せず、高い撥水性と撥油 性を発揮し、汚染の付着を防止できるものであれば特に制限されず、有機化合物か らなる層であってもよいし、無機化合物からなる層であってもよい。例えば、パーフル ォロシラン基又はフルォロシクロアルキル基を有する有機ケィ素化合物や、フッ素有 機化合物を含む層が挙げられる。
防汚層の形成方法は、その種類に応じて適宜選択でき、例えば、蒸着法、スパッタ リング法、イオンプレーティング法のような物理気相堆積法又は化学気相堆積法、プ ラズマ重合法のような真空プロセス、マイクログラビア法、スクリーンコート法、ディップ コート法などを採用できる。
[0127] 以上説明した光学フィルタ 1は、フィルム基材 10を保護する帯電防止性ノヽードコー ト層 20が形成されており、その帯電防止性ハードコート層 20は上記帯電防止塗料か ら形成されているので、充分な硬度を有する上に、透明性に優れ、フィルム基材 10と の密着性にも優れている。また、帯電防止性ハードコート層 20は帯電防止性の安定 性に優れているため、この光学フィルタ 1は表面に埃が付着しにくい。
このような光学フィルタ 1は、液晶画面やプラズマディスプレイ両面の反射防止フィ ルム、赤外吸収フィルム、電磁波吸収フィルム等に好適に用いられる。
[0128] なお、本発明の光学フィルタは上述した実施形態例に限定されず、上記帯電防止 塗料カゝら形成された帯電防止性ノヽードコート層を有していればよい。例えば、フィル ム基材の代わりに偏光板を用いることができる。偏光板としては、二色性色素を吸着 配向したポリビニルアルコール系榭脂フィルムの片側又は両面に保護フィルムが積 層されたものなどが挙げられ、二色性色素としては、ヨウ素、二色染料を用いることが できる。このような光学フィルタは、液晶表示装置の最表面に設けることができる。
[0129] く導電性塗膜〉
本発明の導電性塗膜は、上述した導電性高分子溶液が塗布されて形成されたもの である。導電性高分子溶液の塗布方法としては、例えば、浸漬、コンマコート、スプレ 一コート、ロールコート、グラビア印刷などが挙げられる。
塗布後、加熱処理や紫外線照射処理により塗膜を硬化することが好ましい。加熱 処理としては、例えば、熱風加熱や赤外線加熱などの通常の方法を採用できる。紫 外線照射処理としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボ ンアーク、キセノンアーク、メタルノヽライドランプなどの光源カゝら紫外線を照射する方 法を採用できる。
[0130] 以上の導電性塗膜は、上記導電性高分子溶液が塗布されて形成されたものである から、導電性に優れている。また、窒素含有ィ匕合物が不飽和二重結合を有し、この不 飽和二重結合が重合している場合には、熱安定性に優れる上に、製膜性、耐摩耗性 にも優れる。
[0131] <帯電防止性粘接着剤の製造方法 >
帯電防止性粘接着剤の製造方法としては、例えば、液 液抽出法を採ることがで きる。
液 液抽出法による帯電防止性粘接着剤の製造方法の一例では、まず、可溶化高 分子の水溶液中で、 π共役系導電性高分子の前駆体モノマーを化学酸化重合して 、 π共役系導電性高分子と可溶ィ匕高分子との複合体の水溶液を得る。次いで、 π共 役系導電性高分子と可溶化高分子との複合体の水溶液に有機溶剤を添加し、続、 て、相間移動触媒を添加し、攪拌または振とうする。その後、しばらく静置して、水層 と有機溶剤層とに分離させ、水層を除去して、溶媒が有機溶剤の溶液を得る。そして 、その溶液に粘接着成分を添加して帯電防止性粘接着剤を得る。
[0132] また、帯電防止性粘接着剤は他の方法でも製造できる。帯電防止性粘接着剤の製 造方法の他の例では、まず、可溶ィ匕高分子の水溶液中で、 π共役系導電性高分子 の前駆体モノマーを化学酸化重合して、 π共役系導電性高分子と可溶化高分子と の複合体の水溶液を得る。次いで、 π共役系導電性高分子と可溶化高分子との複 合体の水溶液に相間移動触媒を添加して、 π共役系導電性高分子と可溶化高分子 と相間移動触媒との混合物を沈殿させ、これを捕集する。次いで、その混合物を有機 溶剤に溶解させるとともに、粘接着成分を添加して帯電防止性粘接着剤を得る。 [0133] 上記帯電防止性粘接着剤では、相間移動触媒が可溶化高分子のァニオン基ゃ電 子吸引基に配位しており、可溶ィ匕高分子の油溶性が高くなつている。そのため、可溶 化高分子と複合体を形成する π共役系導電性高分子が、アルコール以外の有機溶 剤やアクリルモノマーなどの液状の有機化合物に溶解する。また、いずれの粘接着 成分であっても相溶性を確保することができるため、アクリル系重合体の制限が少な くなる。アクリル系重合体の制限が少なくなれば、粘接着剤の性能に幅を持たせるこ とがでさる。
このように、 π共役系導電性高分子および可溶化高分子の複合体が、相間移動触 媒によって水溶性力ゝら油溶性に変換されている帯電防止性粘接着剤は、保存安定 性に優れている。したがって、長期間保存しても π共役系導電性高分子が凝集,分 離しにくぐ粘接着層の透明性や導電性が低下することが防止されている。
さらに、帯電防止性粘接着剤の保存安定性が高くなつた結果、帯電防止性粘接着 剤の調製力 保護材の製造までを連続して行う必要性がなくなり、保護材の製造方 法に融通性を持たせることができる。
[0134] <帯電防止性粘接着層 >
本発明の帯電防止性粘接着層は、上記帯電防止性粘接着剤が塗布されて形成さ れたものである。
帯電防止性粘接着剤の塗布方法としては、例えば、浸漬、コンマコート、スプレーコ ート、ロールコート、グラビアロールコート、スピンコートなどが挙げられる力 一般的な 塗膜を形成する方法であれば特に限定されな ヽ。
塗布後、加熱、または、光照射によって塗膜を硬化させることで帯電防止性粘接着 層が得られる。加熱方法としては、例えば、熱風加熱や赤外線加熱などの通常の方 法を採用できる。光照射方法としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水 銀灯、カーボンアーク、キセノンアーク、メタルノヽライドランプなどの光源力も紫外線を 照射する方法を採用できる。
[0135] 帯電防止性粘接着層の厚さは特に限定されないが、 0. 01 μ m〜5mmであること 力 S好ましく、 0. 1 /ζ ηι〜0. 5mmであることがより好ましぐ l〜50 /z mであることが特 に好ましい。帯電防止性粘接着層の厚さが 0. 01 m未満であると粘接着性および 帯電防止性が不足することがあり、 5mmを超えると剥離時に帯電防止性粘接着層の 内部破断が起こり、保護対象物に残ってしまうことがある。
[0136] <保護材>
本発明の保護材は、基材と、基材上に設けられた上記帯電防止性粘接着層とを備 えているものであり、例えば、カバーテープやキャリアテープなどの保護テープ、ある いは、保護シート、保護フィルムなどが挙げられる。
ここで、基材としては、帯電防止性粘接着剤を保持できれば特に制限されないが、 透明性の点から、プラスチック基材が好ましい。プラスチック基材としては、例えば、ポ リエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の ポリエステル、トリァセチルセルロース等のセルロイド類、ポリエチレン、ポリプロピレン 、 ABS榭脂、アクリル榭脂、ポリアミド、ポリカーボネート、ポリアミド、フエノキシ榭脂類 、エポキシ榭脂等が挙げられる。これらの中でも、成形性、汎用性の点から、ポリェチ レンテレフタレートが好まし!/、。
また、帯電防止性粘接着剤との密着性を向上させるために、基材の塗工面に、ブラ イマ一処理、プラズマ処理、アーク放電処理等の前処理を施してもよい。
[0137] 基材の厚さは特に限定されないが、保護対象物力もの剥離容易性および透明性の 点から、 0. 01 μ m〜 10mmであることが好ましぐ 0. 1 m〜lmmであることがより 好ましぐ 1 μ m〜0. 5mmであることが特に好ましい。基材の厚さが 0. 01 μ m未満 であると強度が不足し、 10mmを超えると剥離時の取り扱い性が低下する。
[0138] 本発明の保護材は、上記帯電防止性粘接着剤が塗布されて形成された帯電防止 性粘接着層を備えたものであるため、透明性および導電性 (帯電防止性)に優れる。 実施例
[0139] (製造例 1)ポリスチレンスルホン酸の合成
1000mlのイオン交換水に 206gのスチレンスルホン酸ナトリウムを溶解し、 80°Cで 攪拌しながら、予め 10mlの水に溶解した 1. 14gの過硫酸アンモ-ゥム酸化剤溶液 を 20分間滴下し、この溶液を 12時間攪拌した。
得られたスチレンスルホン酸ナトリウム含有溶液に 10質量%に希釈した硫酸を 100 Oml添カ卩し、限外ろ過法を用いてポリスチレンスルホン酸含有溶液の約 1000ml溶液 を除去し、残液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000ml 溶液を除去した。上記の限外ろ過操作を 3回繰り返した。
さらに、得られたろ液に約 2000mlのイオン交換水を添カ卩し、限外ろ過法を用いて 約 2000ml溶液を除去した。この限外ろ過操作を 3回繰り返した。
得られた溶液中の水を減圧除去して、無色の固形物を得た。
[0140] (製造例 2)
14. 2gの 3, 4 エチレンジォキシチォフェンと、 36. 7gのポリスチレンスルホン酸 を 2000mlのイオン交換水に溶力した溶液とを 20°Cで混合した。
これにより得られた混合溶液を 20°Cに保ち、搔き混ぜながら、 200mlのイオン交換 水に溶力した 29. 64gの過硫酸アンモ-ゥムと 8. Ogの硫酸第二鉄の酸化触媒溶液 とをゆっくり添加し、 3時間攪拌して反応させた。
得られた反応液に 2000mlのイオン交換水を添カ卩し、限外ろ過法を用いて約 2000 ml溶液を除去した。この操作を 3回繰り返した。
そして、得られた溶液に 200mlの 10質量%に希釈した硫酸と 2000mlのイオン交 換水とを加え、限外ろ過法を用いて約 2000mlの溶液を除去し、これに 2000mlのィ オン交換水を加え、限外ろ過法を用いて約 2000mlの液を除去した。この操作を 3回 繰り返した。
さらに、得られた溶液に 2000mlのイオン交換水を加え、限外ろ過法を用いて約 20 00mlの溶液を除去した。この操作を 5回繰り返し、約 1. 5質量%の青色のポリスチレ ンスルホン酸ドープポリ(3, 4—エチレンジォキシチォフェン)(PSS— PEDOT)の水 溶液を得た。
[0141] (実施例 1)トルエンを含む導電性高分子溶液
製造例 2の PSS— PEDOT水溶液 200mlにアセトン 200mlおよびトルエン 200ml を添カロした混合液に、自社にて合成した 1 ドデシル一 2—メチル 3 ベンジルイミ ダゾリゥムクロライド (相間移動触媒) 3. 2gを加えて激しく振とうした。その後、静置し て、上層の有機溶媒層と下層の水層とに分離し、水層を分離除去し、ナノマイザー処 理して、導電性高分子溶液である PSS— PEDOTのトルエン溶液を得た。
[0142] (実施例 2)クロ口ホルムを含む導電性高分子溶液 製造例 2の PS S— PEDOT水溶液 1 Omlにクロ口ホルム 1 Omlを添カ卩した混合液に 、相間移動触媒であるセチルピリジ-ゥムクロライド 200mgを加えて激しく振とうした。 その後、静置して、上層の水層と下層の有機溶媒層とに分離し、水層を分離除去し、 ナノマイザ一処理して、導電性高分子溶液である PSS— PEDOTのクロ口ホルム溶 液を得た。
[0143] (実施例 3)ジメチルァセトアミドを含む導電性高分子溶液
製造例 2の PSS— PEDOT水溶液にキュアゾール SFZ160mgを添カ卩し、激しく振 とうした後、ろ過して固体成分を回収した。次いで、その固体成分を 20mlのジメチル ァセトアミド中に添加し、超音波洗浄機中にて分散溶解後、ナノマイザ一処理して、 導電性高分子溶液である PSS— PEDOTのジメチルァセトアミド溶液を得た。
[0144] 実施例 1〜3の導電性高分子溶液をガラス基板上にディップコートして導電性高分 子溶液の塗布膜を得た。得られた塗布膜の表面抵抗値をダイヤインスツルメンッ製 ハイレスタにより測定した。その結果を表 1に示す。
[0145] [表 1]
Figure imgf000056_0001
[0146] 以上のように、 PSS— PEDOT水溶液に相間移動触媒を添加することにより、 PSS
- PEDOTの有機溶媒溶液を調製できた。この PSS— PEDOTの有機溶媒溶液は 塗膜を形成する際の乾燥速度が速い。し力も、導電性は充分に確保されている。
[0147] (実施例 4)帯電防止塗料
製造例 2の PSS— PEDOT水溶液 200mlにアセトン 200mlおよびトルエン 200ml を添カロした混合液に、自社にて合成した 1 ドデシル一 2—メチル 3 ベンジルイミ ダゾリゥムクロライド (相間移動触媒) 3. 2gを加えて激しく振とうした。その後、静置し て、上層の有機溶媒層と下層の水層とに分離し、水層を分離除去し、ナノマイザー処 理して、 PSS— PEDOTのトルエン溶液を得た。
また、根上工業株式会社製アートレジン UN— 3320HSを 160g、共栄社化学株式 会社製ライトアタリレート PE— 3Aを 20g、 2 ヒドロキシェチルアタリレート 30gを秤量 後、混合攪拌してアクリル榭脂組成物 (ハードコート成分)を得た。
そして、 PSS— PEDOTのトルエン溶液 30gとアクリル榭脂組成物 40gとメチルェチ ルケトン 20gとイソプロパノール 10gとを混合し、ナノマイザ一処理して、帯電防止塗 料を得た。
[0148] この帯電防止塗料を以下のように評価した。すなわち、帯電防止塗料に重合開始 剤であるィルガキュア 754 (チノく'スペシャルティ ·ケミカルズ社製)を添加し、 TACフ イルム上にコンマコーターにより塗布し、乾燥、高圧水銀灯の露光により硬化して厚さ 5 mの帯電防止性ノヽードコート層を形成した。そして、この層の表面抵抗値、可視 光透過率、ヘイズを測定した。その結果を表 2に示す。
[0149] [表 2]
Figure imgf000057_0001
[0150] (比較例 1)
ITOノ ウダ 15g、ジメチルホルムアミド(DMF) 60g、エタノール 75g、及びジルコ- ァビーズ 200gを混合し、ボールミルを用いて約 1〜24時間攪拌し、その後、得られ た ITOコロイド液の pHを 2〜8の範囲に調整した。この ITOコロイド液を、メタノール、 エタノール、ブタノール、 2—メトキシエタノール、 1—メトキシ 2—プロパノールの混合 溶剤で、 ITO濃度が 1. 0〜1. 5質量%になるように希釈して ITOコロイドコーティン グ溶液を調製した。
得られた ITOコロイドコ一ティング溶液をフィルム基材のハードコ一ト層上に 300rp mの速さでスピンコートして ITO層を形成した。次いで、この ITO層の上にシリカコー ティング溶液を 300rpmの速さでスピンコートし、 100°C30分間加熱してフィルム基 材 Zハードコート層 ZITO層 Zシリカ層を有する積層体を得た。
この積層体の評価結果を表 2に示す。
[0151] 導電性高分子成分とハードコート成分と相間移動触媒とを含有する実施例 4の帯 電防止塗料力も形成されたハードコート層は、充分な帯電防止性を有し、しかも可視 光透過率が高ぐヘイズが小さかった。一方、 ΙΤΟをノヽードコート成分に混合した比 較例 1の帯電防止塗料力 形成されたハードコート層は、可視光透過率が低ぐヘイ ズが大き力つた。
[0152] (実施例 5)光学フィルタの作製
一方の面に粘着層とカバーフィルムとが積層された PETフィルム(フィルム基材)の 他方の面をコロナ処理した。次いで、その PETフィルムのコロナ処理した面に実施例 4の帯電防止塗料をコンマコーターにより塗布した。乾燥後、高圧水銀灯の露光によ り硬化して帯電防止性ノ、ードコート層を形成した。次いで、帯電防止性ハードコート 層上に、内部に微細な空孔を有する中空シリカのエタノール分散液 (触媒化成工業 株式会社製、固形分濃度 15. 6質量%) 80gにエタノール 42. Ogを加えた溶液を塗 布した。その後、乾燥し、 100°C1時間熱処理して、厚さ 90 mの反射防止層を形成 して光学フィルタを得た。
[0153] 得られた光学フィルタの可視光透過率,ヘイズ,表面抵抗、鉛筆硬度、密着性につ いて評価した。
[可視光透過率 'ヘイズ'表面抵抗測定]可視光透過率は 94. 3%、ヘイズは 0. 4% 、表面抵抗値は 4 X 108 Ωであった。
[鉛筆硬度試験] JIS S 6006に規定された試験用鉛筆を用いて、 JIS K 5400に 従い、 lKgの荷重の際に傷力 Sまったく認められない硬度を測定したところ、鉛筆硬度 は Hであった。
[密着性試験]碁盤目テープ法 CFIS K 5400)に準じて密着性試験を行った。 具体的には、光学フィルムの反射防止層側の表面にカッターにより lmm間隔で縦横 各 11本の切込みを入れた (計 100個の正方形マス目を形成させた)。これに粘着テ ープを貼った後、剥離して、 PETフィルム上に残ったマス目の数をカウントした。その 結果、この光学フィルムでは、 100個のマス目が全て残っていた(1007100)。 すなわち、この光学フィルタは、ハードコート層が充分な硬度を有し、透明性、帯電 防止性、基材との密着性に優れたものであった。
[0154] [ π共役系導電性高分子とポリア二オンとの複合体の調製]
(調製例 1)ポリ(エチレンジォキシチォフェン)とポリアリルスルホン酸との複合体溶液 (複合体溶液 1)の調製 1000mlのイオン交換水に 145g (lmol)のァリルスルホン酸ナトリウムを溶解し、 80 °Cで攪拌しながら、予め 10mlの水に溶解した 1. 14g (0. 005mol)の過硫酸アンモ -ゥム酸化剤溶液を 20分間滴下し、さらに 12時間攪拌を継続した。
得られた溶液に 10質量%に希釈した硫酸を 1000mlカ卩え、限外ろ過法を用いて約 1000ml溶液を除去し、これに 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて 約 2000mlの溶液を除去した。上記の限外ろ過操作を 3回繰り返した。得られた溶液 中の水を減圧除去して、無色の固形分を得た。
続いて、 14. 2g (0. lmol)のエチレンジォキシチォフェンと 21.8g (0. 15mol)の ポリアリルスルホン酸を 2000mlのイオン交換水に溶解した溶液とを混合させた。 この混合液を 20°Cに保ち、搔き混ぜながら 200mlのイオン交換水に溶解した 29. 64g (0. 13mol)の過硫酸アンモ-ゥムを 8. Og (0. 02mol)の硫酸第二鉄の酸化触 媒溶液をゆっくり加え、 5時間攪拌して反応させた。
得られた反応液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000m 1の溶液を除去した。この操作を 3回繰り返した。
そして、得られた溶液に 2000mlのイオン交換水をカ卩え、限外ろ過を用いて約 200 Omlの溶液を除去し、エバポレーシヨンと凍結乾燥力も水分を約 1%以下に除去後、 N、 N—ジメチルァセトアミドに溶解させ、約 1. 5質量%の青色ポリアリルスルホン酸ド ープポリ(エチレンジォキシチォフェン)(PEDOT)溶液を得た。これを複合体溶液 1 とした。
(調製例 2)ポリピロールとポリスチレンスルホン酸との複合体溶液 (複合体溶液 2)の 調製
1000mlのイオン交換水に 185g (lmol)のスチレンスルホン酸ナトリウムを溶解し、 80°Cで攪拌しながら、予め 10mlの水に溶解した 1. 14g (0. 005mol)の過硫酸アン モ -ゥム酸化剤溶液を 20分間滴下し、この溶液を 12時間攪拌した。
得られた溶液に 10質量%に希釈した硫酸を 1000mlカ卩え、限外ろ過法を用いて約 1000mlの溶液を除去し、これに 2000mlのイオン交換水をカ卩え、限外ろ過法を用い て約 2000mlの溶液を除去した。上記の限外ろ過操作を 3回繰り返した。得られた溶 液中の水を減圧除去して、無色の固形分を得た。 続いて、 6. 6g (0. lmol)のピロールと 18.5g (0. 15mol)のポリスチレンスルホン 酸を 2000mlのイオン交換水に溶解した溶液とを混合させた。
この混合液を 20°Cに保ち、搔き混ぜながら 2000mlのイオン交換水に溶解した 29 . 64g (0. 13mol)の過硫酸アンモ-ゥムを 8. 0g (0. 02mol)の硫酸第二鉄の酸化 触媒溶液をゆっくり加え、 2時間攪拌して反応させた。
得られた反応液に 2000mlのイオン交換水をカ卩え、限外ろ過法を用いて約 2000m 1溶液を除去した。この操作を 3回繰り返した。
そして、得られた溶液に 200mlのイオン交換水をカ卩え、限外ろ過法を用いて約 200 Omlの溶液を除去した。この操作を 5回繰り返し、約 1. 5質量%の青色ポリスチレンス ルホン酸ドープポリピロール溶液を得た。これを複合体溶液 2とした。
[0156] (調製例 3)ウレタン基含有化合物の溶液の調製
攪拌機、温度計、窒素シール管及び冷却器を備えた反応器に、 203g (lmol)のィ ソホロンジイソシァネート、 46. 5g (0. 75mol)のエチレングリコールと 29g (0. 25mo 1)のペンタエリストリトールトリアタリレートを添加した。次いで、反応器内を窒素置換し 、撹拌しながら反応温度 60〜70°Cに加温し、同温度にて 3時間反応させた。次に、 触媒としてトリオクチルホスフィン 6. 0部を仕込み、撹拌しながら 65〜70°Cに加熱し 同温度で 6時間反応させ、続いて、リン酸 3. 5部を加えて反応を停止させて、ウレタ ン基含有化合物の重合体を得た。この重合体をイソプロパノールで希釈した後、塩 酸を添加し、撹拌して 4級塩化を行って、約 30質量%の 4級塩化ウレタン基含有ィ匕 合物の重合体の溶液を得た。これを 4級塩ィ匕ポリマー溶液 1とした。
[0157] [4級塩化率の測定]
この 4級塩ィ匕ポリマー溶液をキャスティングによりフィルム化し、またベースとして 4級 塩ィ匕前のウレタン基含有ィ匕合物の重合体を同様にフィルム化し、それぞれ約 0. 2gを 正確に秤量した。そして、ジォキサン Zエタノール(7Z3容量比)混合溶媒 50mlに 溶解し電位差滴定装置(平沼製作所製、 Comtite— 7)を用いて、 N/10-HC104 ジォキサン溶液で滴定し、その変曲点より塩基性窒素含量を測定した。その結果、 ベースのフィルムの塩基性窒素含量は 0. 67mmol/g、 4級塩化ポリマーフィルム( A)の塩基性窒素含量は 0. lOmmolZgであった。これより、 4級塩化率は約 85%で あることがわ力る。
[0158] (調製例 4)アミド基含有化合物の溶液調製
攪拌機、温度計、窒素シール管及び冷却器を備えた反応器に、 600mlのイソプロ ピルアルコール、 115g (lmol)の N— (2—ヒドロキシェチル)アクリルアミド、 115g (l mol)の N—メチロールアクリルアミド、 6. 57g (0. 04mol)のァゾビスイソブチ口-トリ ルを添加した。次いで、反応器内を窒素置換し、撹拌しながら反応温度 80°Cに加温 して、 6時間反応させた。その後、アセトンを加えて、白色沈殿を回収し、アミド基含有 化合物の重合体を得た。この重合体をメチルェチルケトンに溶解させ、 28. 2g (ヒドロ キシ基に対して 0. 4モル等量)の 2—アタリロイルォキシェチルイソシァネートを添カロ した。反応器内を窒素置換し、攪拌しながら反応温度 60°Cに加温して、 3時間反応さ せた。その後、減圧下溶媒を除去し、不飽和二重結合が導入されたアミド基含有ィ匕 合物の重合体を得た。この重合体をイソプロパノールに希釈し、メチルクロライドを添 加し、撹拌しながら反応温度を 50度に加温し、 2時間反応させて 4級塩ィ匕を行って、 約 30質量%の 4級塩化アミド基含有化合物の重合体の溶液を得た。これを 4級塩ィ匕 ポリマー溶液 2とした。 4級塩ィ匕率は約 90%であった。
[0159] (調製例 5) 4級塩を形成可能な官能基を有さな 、化合物の溶液調製
攪拌機、温度計、窒素シール管及び冷却器を備えた反応器に、 600mlのイソプロ ピルアルコール、 116g (lmol)の 2—ヒドロキシプロピルアタリレート、 148g (lmol) の 4—ビュル安息香酸、 6. 57g (0. 04mol)のァゾビスイソブチ口-トリルを添カロした 。次いで、反応器内を窒素置換し、撹拌しながら反応温度 80°Cに加温して、 6時間 反応させた。その後、アセトンを加えて、白色沈殿を回収し、 4級塩を形成可能な官 能基を有さな ヽ化合物の重合体を得た。この重合体をメチルェチルケトンに溶解させ 、 28. 2g (カルボキシ基に対して 0. 4モル等量)のグリシジルアタリレートを添カ卩し、反 応器内を窒素置換し、攪拌しながら反応温度 60°Cに加温して、 3時間反応させた。 その後、減圧下溶媒を除去した後、イソプロパノールに希釈して、不飽和二重結合が 導入され、かつ、 4級塩を形成可能な官能基を有さない化合物の重合体の溶液を得 た。これをポリマー溶液 3とした。
[0160] (実施例 6) 100mlの複合体溶液 1に 2. lg (ポリアリルスルホン酸に対して 4級塩が 1モル当量 )の 4級塩ィ匕ポリマー溶液 1を添加し、均一に分散させて導電性高分子溶液を得た。 得られた導電性高分子溶液をポリエチレンテレフタレート (PET)フィルム上にワイ ヤーコーターで塗布し、 100°Cのオーブン中で 2分間乾燥させ、紫外線露光機によ つて積算光量 500mj/cm2の紫外線照射をして導電性塗膜を形成した。その導電 性塗膜の電気特性を以下のように評価した。その結果を表 3に示す。
[0161] 電気伝導度 (SZcm):ローレスタ (三菱化学製)を用いて導電性塗膜の電気伝導 度を測定した。
電気伝導度熱維持率(%):温度 25°Cにおける塗布膜の電気伝導度 R を測定し
25B
、測定後の導電性塗膜を温度 125°Cの環境下に 300時間放置した後、該塗膜を温 度 25°Cに戻し、電気伝導度 R を測定した。そして、下記式より算出した。なお、こ
25A
の電気伝導度熱維持率は熱安定性の指標になる。
電気伝導度熱維持率 (%) = 100 X R /R
25A 25B
[0162] (実施例 7)
100mlの複合体溶液 2に 1. lg (ポリスチレンスルホン酸に対して 4級塩が 1モル当 量)の 4級塩ポリマー溶液 2を添加し、均一に分散させて導電性高分子溶液を得た。 そして、実施例 6と同様にして導電性塗膜を形成し、電気特性を評価した。その結 果を表 3に示す。
[0163] (実施例 8)
調製例 4において不飽和二重結合の導入を省略した以外は実施例 7と同様にして 導電性高分子溶液を得た。そして、実施例 7と同様にして導電性塗膜を形成し、電気 特性を評価した。その結果を表 3に示す。
[0164] (比較例 2)
調製例 3において 4級塩化を省略したこと以外は実施例 6と同様にして導電性高分 子溶液を得た。そして、実施例 6と同様にして導電性塗膜を形成し、電気特性を評価 した。その結果を表 4に示す。
[0165] (比較例 3)
4級塩ィ匕ポリマー溶液 1の代わりに、調製例 5のゥレア基、ウレタン基、アロハネート 基、ビュレット基、イミド基、アミド基をいずれも含まないポリマー溶液 3を添加したこと 以外は実施例 6と同様にして導電性高分子溶液を得た。そして実施例 6と同様にして 導電性塗膜を形成し、電気特性を評価した。その結果を表 4に示す。
[0166] [表 3]
Figure imgf000063_0001
[0167] [表 4]
Figure imgf000063_0002
[0168] 4級塩化された窒素含有化合物を含む実施例 6〜8の導電性高分子溶液から形成 された導電性塗膜は導電性が高力 た。さらに、窒素含有ィ匕合物が不飽和二重結 合を有する導電性高分子溶液から形成された実施例 6, 7の導電性塗膜は、不飽和 二重結合が重合したため、膜強度が向上して、電気伝導度維持率の低下が防止さ れていた。すなわち、熱安定性が向上していた。また、導電性がより向上していた。 これに対し、官能基が 4級塩化されていない化合物を有する比較例 2, 3の導電性 高分子溶液から形成された導電性塗膜は、窒素含有化合物がポリア-オンと塩を形 成しないため電気伝導度の向上は見られな力つた。ただし、不飽和二重結合の重合 により、電気伝導度維持率の低下は防止されていた。
[0169] (製造例 3)導電性高分子の MEK溶液の調製
製造例 2の PSS— PEDOT水溶液 200mlにアセトン 200mlおよびトルエン 200ml を添カロした混合液に、 1―ドデシル 2 メチル 3 ベンジルイミダゾリゥムクロライ ド (相間移動触媒) 3. 2gを加えて激しく振とうした。その後、静置して、上層の有機溶 剤層と下層の水層とに分離し、水層を分離除去した。次いで、分離除去した水と等質 量の MEKにて希釈した後、ナノマイザ一処理して、 PSS— PEDOTの MEK溶液を 得た。
[0170] (製造例 4)アクリル系共重合体の合成
メチルメタタリレート 50mol%、 2—ェチルへキシルメタタリレート 30mol%、ブチルメ タクリレート 20mol%を重合してアクリル系共重合体を得た。
[0171] (実施例 9)
PSS— PEDOTの MEK溶液とアクリル系共重合体とを、質量比 60/40となるよう にナノマイズ処理により混合'分散して帯電防止性粘接着剤を得た。その際、 PEDO T力 アクリル系共重合体に対して 1. 0質量%になるようにした。
[0172] (実施例 10)
実施例 9で得た帯電防止性粘接着剤カゝら MEKを留去し、ナノマイズ処理等により 相溶化し、無溶剤化した帯電防止性粘接着剤を得た。
[0173] (実施例 11)
アクリル系共重合体の代わりに、根上工業株式会社製アクリルモノマー UN— 900 OPEPに変更したこと以外は実施例 9と同様にして帯電防止性粘接着剤を得た。
[0174] (比較例 4)
製造例 2の PSS— PEDOT水溶液を、イソプロピルアルコールにて溶剤置換した後 、製造例 4のアクリル系共重合体を MEKZトルエン混合溶媒 (質量比 50Z50)に溶 解したこと以外は実施例 9と同様にして帯電防止性粘接着剤を得た。
[0175] 実施例 9, 10及び比較例 4の帯電防止性粘接着剤を、室温下にて一週間保存した 際の保存安定性を目視により評価したところ、実施例 9, 10の粘接着剤には変化が 見られな力つたが、比較例 4の粘接着剤は濃青色析出物が沈降していた。すなわち 、実施例 9, 10の粘接着剤の保存安定性は優れていた。
[0176] (比較例 5)
ポリエステルェマルジヨン (東洋紡績製、商品名バイナロール MD— 1100、固形分 30質量0 /0)に、チォフェン系の π共役系導電性高分子とポリア-オンの水 Ζイソプロ ピルアルコール溶液 (長瀬産業製、商品名デナトロン P— 502S)を加えて攪拌した。 これにより、 π共役系導電性高分子を分散させて、薄紫色に懸濁した粘接着剤を得 た。
[0177] (比較例 6)
ポリエステルェマルジヨンとして、東洋紡績製、商品名パイナロール MD— 1500、 固形分 30質量%を用いたこと以外は比較例 5と同様にして粘接着剤を得た。
[0178] (実施例 12〜 17)保護材の製造
実施例 9〜: 1 1及び比較例 4〜6の粘接着剤を、基材であるポリエチレンテレフタレ 一トフイルム (東レ製、商品名ルミラー)上に、コータを用いて乾燥膜厚が 5 /x mになる ようにコーティングした。その後、 80°Cで乾燥して、粘着層を有する保護材を得た。
[0179] 得られた保護材の全光線透過率'ヘイズ値'表面抵抗性について評価した。その 結果を表 5に示す。
[表面抵抗率]
JIS K 6911に準拠し、ハイレスタ(三菱ィ匕学 (株)製)を用レ、て測定した。 [全光線透過率及び曇価 (ヘイズ値) ]
得られた帯電防止膜の透過率、及び曇価(ヘイズ値)を、 JIS K 7361— 1〖こおけ るプラスチックの光学的特性試験方法に準拠して測定した。
[0180] [表 5]
Figure imgf000065_0001
[0181] π共役系導電性高分子とポリアユオンと相間移動触媒と粘接着成分を含み、溶媒 として ΜΕΚを含む実施例 9, 11の帯電防止性粘接着剤は、保存安定性に優れてい た上に、透明性および導電性の高!、帯電防止性粘接着層を形成することができた。 その結果、表 5に示すように、透明性および導電性の高い保護材が得られた。
また、 π共役系導電性高分子とポリア二オンと相間移動触媒と粘接着成分を含み、 無溶剤である実施例 10の帯電防止性粘接着剤も保存安定性に優れていた上に、透 明性および導電性の高 、帯電防止性粘接着層を形成することができた。その結果、 表 5に示すように、透明性および導電性の高い保護材が得られた。 [0182] π共役系導電性高分子とポリア-オンと粘接着成分を含み、溶媒を水からイソプロ ノ V—ルに置き換えた比較例 4の帯電防止性粘接着剤は、保存安定性が低ぐ保護 材の透明性が低力つた。
ポリエステルェマルジヨンと π共役系導電性高分子とを含む比較例 2, 3の帯電防 止性粘接着剤では、保護材の透明性および導電性が共に低かった。
産業上の利用可能性
[0183] 本発明の導電性高分子溶液は、塗膜形成の乾燥時間を短縮でき、 π共役系導電 性高分子が疎水性榭脂と相溶しやす 、ものである。
本発明の導電性高分子溶液の製造方法によれば、塗膜形成の乾燥時間を短縮で き、 π共役系導電性高分子が疎水性榭脂と相溶しやすい導電性高分子溶液を製造 できる。
[0184] 本発明の帯電防止塗料は、 π共役系導電性高分子とハードコート成分との相溶性 が確保され、帯電防止性および透明性を兼備した塗膜を形成できる。
また、本発明のハードコート層は、硬度が高い上に、帯電防止性および透明性を兼 備している。
さらに、本発明の光学フィルタは、硬度が高い上に、帯電防止性および透明性を兼 備したハードコート層を備えている。
[0185] 本発明の導電性高分子溶液は、導電性及び溶媒溶解性が共に優れる。
本発明の導電性高分子溶液において、窒素含有化合物が不飽和二重結合を 1つ 以上有すれば、該導電性高分子溶液から形成される塗膜の熱安定性を高くでき、し 力も導電性をより高くできる。
本発明の導電性塗膜は、導電性が優れる。
[0186] 本発明の帯電防止性粘接着剤は、アルコール以外の液状の有機化合物を溶媒と して使用でき、アクリル系重合体に制限がない上に、保存安定性が高い。
本発明の帯電防止性粘接着層および保護材は、透明性と帯電防止性とに優れる。

Claims

請求の範囲
[I] π共役系導電性高分子と可溶化高分子と相間移動触媒と有機溶媒とを含有するこ とを特徴とする導電性高分子溶液。
[2] バインダ榭脂を含有することを特徴とする請求項 1に記載の導電性高分子溶液。
[3] π共役系導電性高分子および可溶ィ匕高分子を水に溶解した高分子水溶液に有機 溶媒を添加した後、相間移動触媒を添加することを特徴とする導電性高分子溶液の 製造方法。
[4] π共役系導電性高分子および可溶化高分子を水に溶解した高分子水溶液に相間 移動触媒を添加して、 π共役系導電性高分子と可溶ィ匕高分子と相間移動触媒とを 含む混合物を沈殿させ、前記混合物に有機溶媒を添加することを特徴とすることを 特徴とする導電性高分子溶液の製造方法。
[5] 請求項 1または 2に記載の導電性高分子溶液力 有機溶媒が除去されて得られる ことを特徴とする導電性榭脂。
[6] π共役系導電性高分子と可溶化高分子と相間移動触媒とハードコート成分と有機 溶媒とを含有することを特徴とする帯電防止塗料。
[7] 請求項 6に記載の帯電防止塗料が塗布されて形成されたことを特徴とする帯電防 止性ノヽードコート層。
[8] 請求項 7に記載の帯電防止性ノ、ードコート層を有することを特徴とする光学フィル タ。
[9] π共役系導電性高分子とポリア-オンと窒素含有化合物と溶媒とを含有する導電 性高分子溶液であって、
窒素含有化合物が、ウレァ基、ウレタン基、アロハネート基、ビュレット基、イミド基、 アミド基力 選ばれる 1種以上の窒素含有官能基を有し、該窒素含有官能基の窒素 原子が 4級塩化されていることを特徴とする導電性高分子溶液。
[10] 窒素含有化合物が、不飽和二重結合を 1つ以上有することを特徴とする請求項 9に 記載の導電性高分子溶液。
[II] 請求項 9または 10に記載の導電性高分子溶液が塗布されて形成されたことを特徴 とする導電性塗膜。
[12] π共役系導電性高分子と可溶化高分子と相間移動触媒と粘接着成分とを含有す ることを特徴とする帯電防止性粘接着剤。
[13] 請求項 12に記載の帯電防止性粘接着剤が塗布されて形成されたことを特徴とする 帯電防止性粘接着層。
[14] 基材と、該基材上に設けられた請求項 13に記載の帯電防止性粘接着層とを備え て!、ることを特徴とする保護材。
PCT/JP2006/303636 2005-03-11 2006-02-27 導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法 WO2006095595A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06714773.6A EP1857504B1 (en) 2005-03-11 2006-02-27 Electroconductive-polymer solution, antistatic coating material, antistatic hard coating layer, optical filter, electroconductive coating film, antistatic pressure-sensitive adhesive, antistatic pressure-sensitive adhesive layer, protective material, and process for producing the same
CN2006800073044A CN101137718B (zh) 2005-03-11 2006-02-27 导电性高分子溶液的制造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005068935A JP4772347B2 (ja) 2005-03-11 2005-03-11 帯電防止塗料の製造方法および帯電防止性ハードコート層の製造方法
JP2005-068936 2005-03-11
JP2005-068935 2005-03-11
JP2005068936A JP4776950B2 (ja) 2005-03-11 2005-03-11 導電性高分子溶液の製造方法
JP2005144030A JP4776976B2 (ja) 2005-05-17 2005-05-17 導電性高分子溶液及び導電性塗膜
JP2005-144030 2005-05-17
JP2005-235208 2005-05-18
JP2005235208A JP4987267B2 (ja) 2005-08-15 2005-08-15 帯電防止性粘接着剤の製造方法および保護材の製造方法

Publications (1)

Publication Number Publication Date
WO2006095595A1 true WO2006095595A1 (ja) 2006-09-14

Family

ID=36953196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303636 WO2006095595A1 (ja) 2005-03-11 2006-02-27 導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法

Country Status (5)

Country Link
US (2) US7618559B2 (ja)
EP (2) EP1857504B1 (ja)
KR (1) KR100910435B1 (ja)
CN (1) CN101921478B (ja)
WO (1) WO2006095595A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256623A (ja) * 2008-03-21 2009-11-05 Arakawa Chem Ind Co Ltd 帯電防止コーティング剤およびプラスチックフィルム
JP2011053493A (ja) * 2009-09-02 2011-03-17 Fujifilm Corp 帯電防止層を有する光学フィルム、偏光板、及び画像表示装置
JP2019046753A (ja) * 2017-09-06 2019-03-22 信越ポリマー株式会社 導電性フィルム及びその製造方法、並びに帯電防止性配管
JP2020092136A (ja) * 2018-12-04 2020-06-11 信越ポリマー株式会社 制電粘着peek樹脂テープ付き構造体
US10858623B2 (en) 2014-12-22 2020-12-08 Emd Millipore Corporation Removal of microorganisms from cell culture media

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050244816A1 (en) * 2003-12-19 2005-11-03 Ark Diagnostics, Inc. Immunoassays, haptens, immunogens and antibodies for anti-HIV therapeutics
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
US7354532B2 (en) 2004-04-13 2008-04-08 E.I. Du Pont De Nemours And Company Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids
KR101356296B1 (ko) * 2005-06-28 2014-02-06 이 아이 듀폰 디 네모아 앤드 캄파니 높은 일 함수의 투명한 도체
WO2008048888A2 (en) * 2006-10-13 2008-04-24 3M Innovative Properties Company Powder coating fluoropolymer compositions containing nitrogen-containing aromatic materials
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
TWI319863B (en) * 2007-04-20 2010-01-21 Plasma display
US20080292834A1 (en) * 2007-05-22 2008-11-27 Steven Vincent Haldeman Multiple layer glazing bilayer having a masking layer
KR100926222B1 (ko) * 2007-12-28 2009-11-09 제일모직주식회사 대전방지 코팅층을 포함하는 편광필름
KR20110002857A (ko) * 2008-04-11 2011-01-10 쓰리엠 이노베이티브 프로퍼티즈 컴파니 투명 접착 시트 및 이를 포함하는 이미지 디스플레이 소자
US20100028564A1 (en) * 2008-07-29 2010-02-04 Ming Cheng Antistatic optical constructions having optically-transmissive adhesives
US8080177B2 (en) * 2008-08-19 2011-12-20 The Boeing Company Low RF loss static dissipative adhesive
JP5612814B2 (ja) * 2008-09-22 2014-10-22 信越ポリマー株式会社 導電性高分子溶液、導電性塗膜および入力デバイス
JP5583140B2 (ja) * 2008-12-02 2014-09-03 アリゾナ・ボード・オブ・リージェンツ,フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステート・ユニバーシティ フレキシブル基板アセンブリを準備する方法およびその方法により準備されたフレキシブル基板アセンブリ
CN101899197B (zh) * 2009-03-31 2014-04-23 荒川化学工业株式会社 导电性高分子/掺杂剂分散体、导电性组合物及导电性被膜
JP5560003B2 (ja) * 2009-08-03 2014-07-23 信越ポリマー株式会社 導電性高分子溶液およびその製造方法
KR101154482B1 (ko) * 2010-04-27 2012-06-13 한국과학기술연구원 그라펜을 이용한 투명 대전방지 코팅의 제조방법 및 이에 의해 제조된 투명 대전방지 코팅
AU2011292398A1 (en) 2010-08-20 2013-03-07 Centre National De La Recherche Scientifique Films containing electrically conductive polymers
KR101072371B1 (ko) * 2010-09-20 2011-10-11 주식회사 엘지화학 편광판용 접착제 및 이를 포함하는 편광판
WO2013031455A1 (ja) * 2011-08-26 2013-03-07 富士フイルム株式会社 硬化膜の製造方法、膜、及びプラズマ開始重合性組成物
US9505935B2 (en) 2012-09-27 2016-11-29 Shin-Etsu Polymer Co., Ltd. Antistatic release agent, antistatic release coated film and antistatic release base material
TWI447154B (zh) 2012-11-27 2014-08-01 Ind Tech Res Inst 聚氯乙烯製品與其表面處理方法
KR102024975B1 (ko) * 2013-02-15 2019-09-24 신에츠 폴리머 가부시키가이샤 도전성 조성물, 도전성 조성물의 제조 방법, 대전방지 수지 조성물 및 대전방지 수지 피막
FR3007024A1 (fr) 2013-06-14 2014-12-19 Essilor Int Article revetu d'une couche de nature silico-organique ameliorant les performances d'un revetement externe
KR20150064464A (ko) * 2013-12-03 2015-06-11 삼성디스플레이 주식회사 액정 변조기를 포함하는 기판 검사 장치 및 액정 변조기의 제조 방법
JP6195811B2 (ja) * 2014-07-18 2017-09-13 信越化学工業株式会社 導電性ポリマー用高分子化合物の製造方法
KR101507314B1 (ko) * 2014-08-07 2015-04-07 (주)에버켐텍 전도성 고분자 수분산액 및 대전방지 코팅액
JP5872004B1 (ja) * 2014-08-27 2016-03-01 信越ポリマー株式会社 帯電防止フィルムの製造方法
WO2016101044A1 (en) * 2014-12-24 2016-06-30 Newsouth Innovations Pty Limited Electrically conductive polymeric material
CN104558699B (zh) 2015-01-06 2017-09-22 苏州大学 一种弹性导电胶体、制备方法及其应用
CN108028133B (zh) 2015-09-08 2019-08-13 信越聚合物株式会社 导电性高分子溶液、电容器及电容器的制造方法
EP3404069B1 (en) 2016-01-12 2022-06-29 Shin-Etsu Polymer Co. Ltd. Conductive polymer dispersion and method for preparing same, and method for manufacturing conductive film
US11865814B2 (en) * 2016-03-15 2024-01-09 Texstars, Llc p-Static capped stretched acrylic transparencies
US10182497B1 (en) 2016-06-08 2019-01-15 Northrop Grumman Systems Corporation Transparent and antistatic conformal coating for internal ESD mitigation in space environment
JP6745153B2 (ja) * 2016-07-11 2020-08-26 信越ポリマー株式会社 導電性離型層形成用塗料及びその製造方法、並びに導電性離型フィルム及びその製造方法
US10450345B2 (en) 2017-06-09 2019-10-22 General Electric Company Method of isolation of polypeptide-aptamer-polymer conjugates
EP3434177B1 (en) * 2017-07-27 2022-01-26 Heraeus Deutschland GmbH & Co. KG Self-adhesive electrode patch
WO2019146715A1 (ja) * 2018-01-26 2019-08-01 三菱ケミカル株式会社 導電性組成物とその製造方法及び水溶性ポリマーとその製造方法
KR102446530B1 (ko) 2018-03-30 2022-09-22 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 광학 적층체, 점착제 조성물 및 보호재
WO2020081507A1 (en) * 2018-10-15 2020-04-23 Florida State University Research Foundation, Inc. Electrically conducting polymers
KR102403280B1 (ko) 2018-12-24 2022-05-27 삼성에스디아이 주식회사 편광판, 이를 위한 편광판용 접착제 조성물 및 이를 포함하는 광학 표시 장치
US11673988B2 (en) * 2020-01-07 2023-06-13 The Florida State University Research Foundation, Inc. Electrically conductive multi-block polymers and methods of making the same
EP4032930B1 (en) * 2021-01-22 2023-08-30 Atotech Deutschland GmbH & Co. KG Biuret-based quaternized polymers and their use in metal or metal alloy plating baths

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222207A (ja) * 1990-01-29 1991-10-01 Matsushita Electric Ind Co Ltd 導電性高分子とその製造方法およびそれを用いた電解コンデンサ
JPH07118524A (ja) * 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd 導電性組成物、導電体及びその形成方法
JPH08231863A (ja) * 1995-01-09 1996-09-10 Internatl Business Mach Corp <Ibm> 解凝集した導電性ポリマー
JP2003213148A (ja) * 2002-01-18 2003-07-30 Mitsubishi Rayon Co Ltd 導電性組成物、導電体形成方法及び静電塗装方法
JP2005314629A (ja) * 2003-08-28 2005-11-10 Tokai Rubber Ind Ltd 半導電性組成物およびそれを用いた電子写真機器用半導電性部材
JP2006045383A (ja) * 2004-08-05 2006-02-16 Mitsubishi Rayon Co Ltd 導電性成形体の製造方法、及び導電性成形体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010247D1 (de) 1990-02-08 1996-05-02 Bayer Ag Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung
JP3216195B2 (ja) 1992-01-09 2001-10-09 東ソー株式会社 導電性複合体の製造方法
JP3024867B2 (ja) 1992-07-08 2000-03-27 東邦レーヨン株式会社 可溶性導電性高分子の製造方法
DE69321567T2 (de) 1992-12-17 1999-06-02 Agfa Gevaert Nv Antistatische, dauerhafte Grundierschicht
KR0124125B1 (ko) 1993-09-20 1997-11-24 강박광 온도 특성이 향상된 전도성 고분자 화합물의 제조방법
JP3515799B2 (ja) 1993-12-10 2004-04-05 丸菱油化工業株式会社 導電性高分子コロイド水溶液の製造方法
JP3210211B2 (ja) 1995-07-21 2001-09-17 帝人株式会社 制電性フイルム
JP4509264B2 (ja) 1999-10-08 2010-07-21 日東電工株式会社 電子部品搬送体用カバーテープ及び電子部品搬送体
JP4453789B2 (ja) 2000-04-27 2010-04-21 アキレス株式会社 導電性カバーテープ
DE10058116A1 (de) 2000-11-22 2002-05-23 Bayer Ag Polythiophene
JP4089666B2 (ja) * 2003-08-28 2008-05-28 東海ゴム工業株式会社 半導電性組成物
WO2005035626A1 (ja) 2003-10-08 2005-04-21 The Yokohama Rubber Co., Ltd. 導電性ポリアニリンの製造方法及び有機重合体組成物
JP2005126081A (ja) 2003-10-21 2005-05-19 Shin Etsu Polymer Co Ltd カバーテープ用樹脂組成物、およびこれを用いたカバーテープ、並びに包装体
JP4187764B2 (ja) 2004-03-31 2008-11-26 横浜ゴム株式会社 光電変換素子及びそれを用いた色素増感太陽電池
JP4190511B2 (ja) 2004-03-31 2008-12-03 横浜ゴム株式会社 導電性ポリアニリン分散液から形成された色素増感太陽電池の光電変換素子用導電基板並びにその基板を用いた色素増感太陽電池
JP4776950B2 (ja) 2005-03-11 2011-09-21 信越ポリマー株式会社 導電性高分子溶液の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222207A (ja) * 1990-01-29 1991-10-01 Matsushita Electric Ind Co Ltd 導電性高分子とその製造方法およびそれを用いた電解コンデンサ
JPH07118524A (ja) * 1993-09-03 1995-05-09 Nitto Chem Ind Co Ltd 導電性組成物、導電体及びその形成方法
JPH08231863A (ja) * 1995-01-09 1996-09-10 Internatl Business Mach Corp <Ibm> 解凝集した導電性ポリマー
JP2003213148A (ja) * 2002-01-18 2003-07-30 Mitsubishi Rayon Co Ltd 導電性組成物、導電体形成方法及び静電塗装方法
JP2005314629A (ja) * 2003-08-28 2005-11-10 Tokai Rubber Ind Ltd 半導電性組成物およびそれを用いた電子写真機器用半導電性部材
JP2006045383A (ja) * 2004-08-05 2006-02-16 Mitsubishi Rayon Co Ltd 導電性成形体の製造方法、及び導電性成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1857504A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256623A (ja) * 2008-03-21 2009-11-05 Arakawa Chem Ind Co Ltd 帯電防止コーティング剤およびプラスチックフィルム
JP2011053493A (ja) * 2009-09-02 2011-03-17 Fujifilm Corp 帯電防止層を有する光学フィルム、偏光板、及び画像表示装置
US8673182B2 (en) 2009-09-02 2014-03-18 Fujifilm Corporation Optical film having antistatic layer, polarizing plate and image display device
US9568647B2 (en) 2009-09-02 2017-02-14 Fujifilm Corporation Optical film having antistatic layer, polarizing plate, and image display device
US10858623B2 (en) 2014-12-22 2020-12-08 Emd Millipore Corporation Removal of microorganisms from cell culture media
JP2019046753A (ja) * 2017-09-06 2019-03-22 信越ポリマー株式会社 導電性フィルム及びその製造方法、並びに帯電防止性配管
JP2020092136A (ja) * 2018-12-04 2020-06-11 信越ポリマー株式会社 制電粘着peek樹脂テープ付き構造体
JP7198063B2 (ja) 2018-12-04 2022-12-28 信越ポリマー株式会社 制電粘着peek樹脂テープ付き構造体

Also Published As

Publication number Publication date
EP2617757A2 (en) 2013-07-24
US8414801B2 (en) 2013-04-09
EP1857504B1 (en) 2015-10-28
US7618559B2 (en) 2009-11-17
CN101921478A (zh) 2010-12-22
CN101921478B (zh) 2012-05-30
EP2617757B1 (en) 2015-07-29
EP2617757A3 (en) 2014-08-20
US20060202171A1 (en) 2006-09-14
US20090294735A1 (en) 2009-12-03
EP1857504A1 (en) 2007-11-21
EP1857504A4 (en) 2008-04-23
KR20070120126A (ko) 2007-12-21
KR100910435B1 (ko) 2009-08-04

Similar Documents

Publication Publication Date Title
WO2006095595A1 (ja) 導電性高分子溶液、帯電防止塗料、帯電防止性ハードコート層、光学フィルタ、導電性塗膜、帯電防止性粘接着剤、帯電防止性粘接着層、保護材、およびその製造方法
KR100814525B1 (ko) 도전성 조성물 및 그 제조 방법, 대전 방지 도료, 대전방지막, 대전 방지 필름, 광학 필터 및 광 정보 기록매체,콘덴서 및 그 제조방법
CN101137718B (zh) 导电性高分子溶液的制造方法
WO2006041032A1 (ja) 導電性組成物及びその製造方法、帯電防止塗料、帯電防止膜及び帯電防止フィルム、光学フィルタ、光情報記録媒体、並びにコンデンサ及びその製造方法
WO2006025262A1 (ja) 導電性組成物及び導電性架橋体、コンデンサ及びその製造方法、並びに帯電防止塗料、帯電防止膜、帯電防止フィルム、光学フィルタ、及び光情報記録媒体
JP2007031372A (ja) 多官能アクリルアミドモノマーおよびその製造方法、導電性高分子塗料、導電性塗膜
JP6148988B2 (ja) 導電性高分子分散液及び導電性塗膜
JP4776976B2 (ja) 導電性高分子溶液及び導電性塗膜
JP6452265B2 (ja) 導電性高分子分散液及び導電性塗膜
JP2019137815A (ja) 導電性高分子分散液の製造方法、及び導電性フィルムの製造方法
JP2007246708A (ja) 導電性高分子溶液及び導電性塗膜
JP2014070066A (ja) 電子伝導性オリゴマー、その製造方法、該電子伝導性オリゴマーを含む塗料、制電性被覆物、および電子部材、並びに電子伝導性組成物
JP2020031013A (ja) 導電性高分子分散液の製造方法、及び導電性フィルムの製造方法
JP2010143980A (ja) ポリチオフェン組成物、およびそれを用いてなる導電膜、ならびに積層体
JP6611317B2 (ja) 導電性高分子分散液及びその製造方法、導電性フィルム及びその製造方法
JP2022092880A (ja) 導電性高分子含有液及びその製造方法、並びに導電性積層体及びその製造方法
KR101341049B1 (ko) 유기용매 분산형 전도성 고분자를 이용한 광경화형 수지 조성물 및 이를 이용하여 제조된 필름 또는 시트
JP7291555B2 (ja) 導電性高分子含有液、並びに導電性フィルム及びその製造方法
JP5307164B2 (ja) 導電性組成物およびその製造方法
JP2021181544A (ja) 導電性高分子含有液及びその製造方法、導電性フィルム及びその製造方法、並びに導電性積層体及びその製造方法
JP2022075086A (ja) 導電性高分子含有液及びその製造方法、並びに導電性積層体及びその製造方法
JP2019196465A (ja) 導電性高分子分散液及びその製造方法、並びに導電性フィルムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007304.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006714773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023013

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006714773

Country of ref document: EP