WO2006088063A1 - 電波遮蔽体 - Google Patents

電波遮蔽体 Download PDF

Info

Publication number
WO2006088063A1
WO2006088063A1 PCT/JP2006/302660 JP2006302660W WO2006088063A1 WO 2006088063 A1 WO2006088063 A1 WO 2006088063A1 JP 2006302660 W JP2006302660 W JP 2006302660W WO 2006088063 A1 WO2006088063 A1 WO 2006088063A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
antenna
wave shield
antennas
frequency
Prior art date
Application number
PCT/JP2006/302660
Other languages
English (en)
French (fr)
Inventor
Toshio Kudo
Kazuyuki Kashihara
Katsunori Hosotani
Satoshi Sakai
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005042184A external-priority patent/JP4658635B2/ja
Priority claimed from JP2005046213A external-priority patent/JP2006233457A/ja
Priority claimed from JP2005193449A external-priority patent/JP4644543B2/ja
Priority claimed from JP2006002338A external-priority patent/JP4734121B2/ja
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to US11/816,393 priority Critical patent/US7898499B2/en
Priority to CN200680005137XA priority patent/CN101120628B/zh
Priority to EP06713801.6A priority patent/EP1853103B1/en
Publication of WO2006088063A1 publication Critical patent/WO2006088063A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0005Shielded windows
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0094Shielding materials being light-transmitting, e.g. transparent, translucent

Definitions

  • the present invention relates to a radio wave shield.
  • Patent Document 1 discloses an electromagnetic shield that can perform information communication using radio waves of an arbitrary frequency in a wide frequency band by adding an electromagnetic shielding member such as metal or ferrite to a building frame.
  • an electromagnetic shielding member such as metal or ferrite
  • radio wave shielding members radio wave reflectors such as iron plates, metal nets, metal meshes, metal foils, and radio wave absorbers such as flight are disclosed.
  • Patent Document 2 discloses an electromagnetic shielding building characterized in that an electromagnetic shielding space is secured in a building by an electromagnetic shielding surface in which "Y" -shaped linear antennas are regularly arranged. ing.
  • the “ ⁇ ” -shaped linear antenna is composed of three line-shaped element parts extending radially with the antenna central force approximately the same length.
  • Patent Document 2 describes that according to the electromagnetic shielding building disclosed in Patent Document 2, it is possible to select an electromagnetic wave of a necessary frequency and perform electromagnetic shielding.
  • Patent Document 1 Japanese Patent Publication No. 6-99972
  • Patent Document 2 Japanese Patent Laid-Open No. 10-169039 Problem to be Solved by the Invention
  • the linear antenna that reflects radio waves has a “ ⁇ ” shape. Is formed.
  • the electromagnetically shielded building described in Patent Document 2 has a problem that it is difficult to shield radio waves of a specific frequency with a high shielding rate.
  • the conventional radio wave shield since the conventional radio wave shield has a large bandwidth of 10 dB with respect to the matching frequency, it also shields radio waves other than the target specific frequency. That is, the conventional radio wave shield has a problem of low frequency selectivity.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a radio wave shielding body having a high radio wave shielding rate for radio waves of a specific frequency. Disclosure of the invention
  • the first radio wave shielding body includes a plurality of antennas that reflect radio waves of a specific frequency.
  • the plurality of antennas are arranged to form a pattern.
  • Each antenna has three line-segmented first element parts and three line-segmented second element parts.
  • the three first element portions extend radially from the center of the antenna at an angle of 120 ° to each other with substantially the same length.
  • Each second element portion is coupled to the outer end of the first element portion.
  • the antenna has frequency selectivity. For this reason, according to the first radio wave shielding body of the present invention, radio waves of a specific frequency can be selectively shielded and radio waves of other frequencies can be transmitted.
  • the antenna of the first radio wave shield according to the present invention has higher frequency selectivity than the conventional “Y” -shaped linear antenna.
  • the antenna of the first radio wave shield according to the present invention has a relatively narrow reflection peak frequency width (for example, a matching frequency). (Bandwidth of lOdB with respect to wave number).
  • the first radio wave shielding body according to the present invention can shield radio waves of a specific frequency with higher selectivity. Furthermore, by making the length of the first element portion different from the length of the second element portion, higher frequency selectivity for a specific frequency can be realized.
  • matching frequency refers to a frequency at which the transmission attenuation is maximized.
  • the matching frequency is also called a center frequency.
  • the antenna of the first radio wave shielding body according to the present invention has the second element portion coupled to the outer end of each first element portion. For this reason, it is easy to arrange a plurality of antennas so that the second element portions face each other. Thus, by arranging a plurality of antennas so that the second element portions are opposed to each other (more preferably, closely opposed), it is possible to improve the radio wave shielding rate against radio waves of a specific frequency.
  • the second element portion is coupled to the outer end of the first element portion at the center thereof, and It is preferable that the length of the two element portions and the length of the first element portion are substantially the same.
  • the length of the first element part and the length of the second element part may be appropriately determined according to the frequency (specific frequency) of the radio wave to be shielded. it can.
  • the specific frequency can be lowered by increasing the lengths of the first element portion and the second element portion.
  • the specific frequency can be adjusted by adjusting the length of the second element portion while keeping the length of the first element portion constant.
  • the length of the first element portion is adjusted.
  • the specific frequency can be adjusted only by.
  • the specific frequency can be adjusted by adjusting the length of the first element part of each antenna, and the ratio of the length of the second element part to the length of the first element part can be adjusted.
  • the specific frequency can also be adjusted by adjusting. For this reason, the first radio wave shield according to the present invention has a wide design width.
  • the plurality of antennas constitute a plurality of antenna units each having a pair of forces arranged so that the second element portions face each other. A little.
  • the radio wave reflectance of the antenna with respect to the radio wave of the specific frequency can be further increased. Therefore, according to this configuration, it is possible to realize a higher radio wave shielding rate for radio waves of a specific frequency. From the viewpoint of further improving the radio wave shielding rate against radio waves of a specific frequency, it is preferable that the interval between the opposing second element portions is narrow.
  • the plurality of antennas includes a plurality of hexagonal (preferably substantially regular hexagonal) hexagonal shapes in which a plurality of antenna units are further arranged with the second element portions facing each other and continuously developed two-dimensionally.
  • An antenna assembly may be configured.
  • six antennas (three antenna units) may be arranged in an annular shape so that the second element portions face each other.
  • the figure formed by connecting the antenna centers of the six antennas arranged in a ring form a hexagon (preferably a substantially regular hexagon).
  • the ratio of the second element parts arranged to face each other with respect to the total number of the second element parts It is preferable to increase the number. According to this configuration, it is possible to increase the number of second antennas facing the second element part of the other antenna among the three second element parts included in one antenna. For this reason, the radio wave reflectance with respect to the radio wave of the specific frequency of the antenna can be further increased. Therefore, according to this configuration, it is possible to realize a higher radio wave shielding rate of radio waves having a specific frequency.
  • the second radio wave shielding body includes a plurality of types of antennas arranged so as to form a pattern.
  • Each of the multiple types of antennas reflects radio waves having different specific frequencies.
  • Each of the multiple types of antennas has three line segments The first element portion and three line-shaped second element portions are provided.
  • the three first element portions extend radially from the center of the antenna at an angle of 120 ° with substantially the same length.
  • Each second element part is coupled to the outer end of the first element part.
  • Each of the plurality of types of antennas has frequency selectivity. That is, each of the plurality of types of antennas selectively reflects radio waves having different frequencies depending on the type. For this reason, according to the second radio wave shielding body of the present invention, it is possible to selectively shield a plurality of types of radio waves having different frequencies from each other and transmit radio waves of other frequencies.
  • the plurality of types of antennas have different sizes.
  • a third radio wave shielding body includes a plurality of first antennas and a plurality of second antennas arranged so as to form a pattern.
  • Each first antenna reflects radio waves of the first frequency.
  • Each second antenna reflects a radio wave having a second frequency different from the first frequency.
  • Each of the first antennas and the second antennas includes three line-shaped first element portions and three line-segmented second element portions. The three first element portions extend radially from the center of the antenna at an angle of 120 ° with substantially the same length.
  • Each second element part is coupled to the outer end of the first element part.
  • the first antenna and the second antenna each have frequency selectivity. That is, each of the first antenna and the second antenna selectively reflects radio waves having a specific frequency. Specifically, the first antenna reflects the first frequency wave. The second antenna reflects the radio wave of the second frequency. Therefore, according to the third radio wave shield according to the present invention, radio waves of two specific frequencies (first frequency and second frequency) are selectively shielded, and radio waves of other frequencies are transmitted. Can be
  • radio waves with a frequency of 2.4 GHz and radio waves with a frequency of 5.2 GHz are used in an environment where a wireless LAN is used.
  • radio waves of these two frequencies used for wireless LANs are selectively shielded, and radio waves of other frequencies (for example, radio waves used for mobile phone communications) are not used for wireless LANs.
  • Radio wave shields that transmit radio waves for television broadcasting are required.
  • the third radio wave shielding body according to the present invention can selectively shield radio waves of two specific frequencies and transmit radio waves of other frequencies. Therefore, the third radio wave shielding body according to the present invention can be suitably used in an environment where such a wireless LAN is used.
  • examples of the radio wave shield capable of selectively shielding radio waves of two types of frequencies include those formed with "Y" -shaped linear antennas having different sizes.
  • the first antenna and the second antenna each having the second element portion can be arranged in such a manner that the second element portions face each other, and per unit area. It is relatively easy to place a relatively large number of antennas (first antenna and second antenna). Therefore, the third radio wave shielding body of the present invention having the first antenna and the second antenna can selectively shield two types of radio waves having different frequencies with a high radio wave shielding rate.
  • the antenna (first antenna and second antenna) included in the third radio wave shield according to the present invention has a higher frequency selectivity than the conventional “ ⁇ ” -shaped linear antenna.
  • the frequency width of the reflection peak is relatively narrow.
  • two desired frequencies specifically, the first frequency and the second frequency. It can be shielded with higher selectivity.
  • the length of the first element portion different from the length of the second element portion, higher frequency selectivity with respect to a specific frequency can be realized.
  • the length of the first element portion and the length of the second element portion can be appropriately determined according to the frequency (specific frequency) of the radio wave to be reflected.
  • the specific frequency can be lowered by increasing the lengths of the first element part and the second element part.
  • the specific frequency can be adjusted by adjusting the length of the second element portion while keeping the length of the first element portion constant.
  • the length of the first element portion is adjusted.
  • the specific frequency can be adjusted only by.
  • the specific frequency can be adjusted by adjusting the length of the first element portion, and the first length of the second element portion can be adjusted.
  • the specific frequency can also be adjusted by adjusting the ratio of the length of the element part. Therefore, the third radio wave shielding body according to the present invention is wide and has a design width.
  • the first antenna and the second antenna have different sizes.
  • the plurality of first antennas each have a pair of force and are arranged such that the second element portions of the first antenna face each other. It is preferable to constitute a unit. In addition, it is preferable that a plurality of second antenna units each having a pair of forces arranged so that the second element portions of the second antenna face each other are configured as a plurality of second antenna forces. .
  • the plurality of first antennas is preferably a hexagonal shape in which a plurality of first antenna units are further arranged so that the second element portions of the first antenna are opposed to each other and are continuously developed in two dimensions (preferably Is preferably a plurality of first antenna assemblies having a substantially regular hexagonal shape.
  • the plurality of second antennas may include a plurality of second antenna units that are further connected to the second antenna. It is preferable to form a plurality of second antenna assemblies having a hexagonal shape (preferably a substantially regular hexagonal shape) arranged in such a manner that the two element portions face each other and continuously developed in two dimensions.
  • the six first antennas are arranged in a ring shape, and the figure formed by connecting the antenna centers of the six first antennas constitutes a substantially regular hexagon.
  • the six second antennas are arranged in a ring shape, and the figure connecting the center of each of the six second antennas forms a substantially regular hexagon.
  • the second element units In order to increase the radio wave shielding rate (radio wave reflectivity) for radio waves of a specific frequency by the antenna, out of the total number of the second element units, the second element units arranged to face each other. It is preferable to increase the ratio. According to this configuration, it is possible to increase the ratio of the second antenna facing the second element portion of the other antennas out of the three second element portions included in each of the antennas. For this reason, the radio wave reflectivity of the first antenna with respect to the first frequency radio wave and the radio wave reflectivity of the second antenna with respect to the second frequency radio wave can be further increased. Therefore, according to this configuration, it is possible to realize a radio wave shield capable of shielding radio waves of specific frequencies (first frequency and second frequency) with a higher radio wave shielding rate.
  • the second antenna assembly may be surrounded by the first antenna assembly.
  • the first antenna assembly and the second antenna assembly can be efficiently arranged, so that the number of first antennas and the number of second antennas included per unit area are increased. be able to. Therefore, according to this configuration, it is possible to realize a radio wave shield that can shield radio waves of the first frequency and radio waves of the second frequency with a higher radio wave shielding rate.
  • the number of first antenna assemblies and the number of second antenna assemblies can be made substantially the same.
  • the plurality of first antennas constituting the first antenna assembly and the plurality of second antennas constituting the second antenna assembly do not interfere with each other. That is, it is preferable that the first antenna and the second antenna are in contact with each other.
  • the first antenna when the frequency of the radio wave corresponding to the first antenna (first frequency) and the frequency of the radio wave corresponding to the second antenna (second frequency) are close, the first antenna It is preferable that the antenna assembly and the second antenna assembly have different axes of symmetry. In other words, it is preferable that the first antenna assembly and the second antenna assembly do not have the same axis of symmetry.
  • the second antenna assembly preferably has a symmetry axis that is inclined with respect to the symmetry axis of the first antenna assembly. According to this configuration, it is possible to effectively suppress interference between the first antenna and the second antenna.
  • the fact that the first frequency and the second frequency are close means that the ratio of the first frequency to the second frequency (the first frequency minus the second frequency) is 0.45 or more.
  • the first frequency and the second frequency are considered to be close to each other.
  • a large substantially regular hexagon (first antenna assembly) and a small substantially regular hexagon (second antenna assembly) surrounded by a large substantially regular hexagon (first antenna assembly).
  • first antenna assembly a large substantially regular hexagon
  • second antenna assembly a small substantially regular hexagon surrounded by a large substantially regular hexagon
  • first antenna assembly Have different axes of symmetry.
  • the second antenna assembly has a symmetry axis that is tilted by 10 ° with respect to the symmetry axis of the first antenna assembly.
  • This inclination is a force due to the magnitude of the first frequency and the second frequency.
  • is 2 ° or more and 40 ° or less. Is preferred. More preferably, it is 5 ° or more and 20 ° or less. More preferably, it is 10 ° or more and 15 ° or less. By doing so, interference (contact) between the first antenna and the second antenna can be effectively suppressed.
  • each antenna preferably includes a conductive material.
  • the radio wave reflectivity of the antenna with respect to radio waves of a specific frequency correlates with the conductivity of the antenna.
  • the higher the electrical conductivity of the antenna the smaller the electrical resistance of the antenna, the higher the radio wave reflectivity for radio waves with a specific frequency of the antenna. For this reason, by increasing the conductivity of the antenna, it is possible to increase the radio wave reflectance of the antenna with respect to a specific frequency radio wave. Therefore, according to this configuration, a high radio wave shielding rate with respect to radio waves of a specific frequency can be realized.
  • Examples of the conductive material include aluminum, silver, copper, gold, platinum, iron, carbon, graphite, and oxidized oxide.
  • ITO Dimtin
  • copper, aluminum, and silver are relatively inexpensive, so it is more preferable that the antenna contains at least one of copper, aluminum, and silver! /.
  • the length of the second element portion of each antenna is greater than 0 times the length of the first element portion of the antenna. 2 (3) is preferably less than 1/2 times. If the length of the second element part is 2 (3) 1/2 or more times the length of the first element part, the adjacent second element part will come into contact and the desired radio wave shielding effect cannot be obtained. Because. From the viewpoint of obtaining a suitable radio wave shielding effect, it is preferable that the length of the second element portion is not less than 0.5 times and not more than twice the length of the first element portion. More preferably, it is from 0.75 to 2 times.
  • the second element portion is perpendicular to the first element portion to which the second element portion is coupled. ,. According to this configuration, the antennas can be efficiently and densely arranged.
  • the second element portion is coupled to the first element portion at the center thereof. According to this configuration, the antennas can be efficiently and densely arranged.
  • the first element portion and the second element portion may have substantially the same length.
  • each antenna may be made of a metal film having an opening.
  • the antenna transmits light to some extent and becomes conspicuous. Therefore, it is difficult to obstruct the field of view! A radio wave shield can be realized.
  • the ratio of the area occupied by the metal film to the antenna is preferably 2.5% or more and 30% or less.
  • the "metal film having openings" refers to a metal film formed in a planar mesh shape such as a planar lattice shape (triangular lattice shape, hexagonal lattice shape, collins lattice shape, etc.) A metal film or the like in which fine holes having a circular shape in plan view (or an elliptical shape in plan view and a polygonal shape in plan view) are formed.
  • radio waves of a specific frequency are blocked with a high radio wave shielding rate. It is possible to realize a radio wave shield that can be shielded.
  • FIG. 1 is a diagram illustrating the structure of a radio wave shield 1 according to Embodiment 1.
  • FIG. 2 is a plan view of the radio wave shield 1.
  • FIG. 3 is a plan view showing the configuration of the antenna 4.
  • FIG. 4 is a cross-sectional view when glass (window glass) 7 is adhered to base 2 side of radio wave shield 1.
  • FIG. 5 is a schematic diagram of the radio wave shield 1 in which an adhesive 8 and a protective film 9 are formed on the base material 2 side of the radio wave shield 1 and rolled into a toilet paper.
  • FIG. 6 is a cross-sectional view when glass (window glass) 7 is adhered to the reflection layer 3 side of radio wave shield 1.
  • FIG. 7 is a schematic diagram of the radio wave shield 1 in which an adhesive 8 and a protective film 9 are formed on the reflective layer 3 side of the radio wave shield 1 and rolled into a toilet vapor shape.
  • FIG. 8 is a graph showing the relationship between the frequency of a radio wave and the transmission attenuation of the radio wave when passing through the radio wave shield 1.
  • FIG. 10 is a plan view showing a modification of antenna 4.
  • FIG. 11 is a plan view of the radio wave shield 10 according to the second embodiment.
  • FIG. 12 is an enlarged plan view of a part of the radio wave shield 10.
  • FIG. 13 is a plan view of the radio wave shield 20 according to the third embodiment.
  • FIG. 14 is a graph showing the radio wave shielding characteristics of the radio wave shield 20 according to the third embodiment.
  • FIG. 15 is a plan view of a conventional radio wave shield 100.
  • FIG. 16 is a graph showing the radio wave shielding characteristics of the radio wave shield 100.
  • FIG. 17 is a plan view of a conventional radio wave shield 200.
  • FIG. 18 is a graph showing the radio wave shielding characteristics of the radio wave shield 200.
  • FIG. 19 is a cross-sectional view showing a configuration of a radio wave shield (radio wave shield plate) 30 according to Embodiment 4.
  • FIG. 20 The matching frequency of the radio wave shield 1 that is not adhered to the glass plate 6 It is a graph to show.
  • ⁇ 21 A graph showing the matching frequency of the radio wave shield 1 with the reflective layer 3 side adhered to the glass plate 6.
  • FIG. 22 is a plan view of the radio wave shield 40.
  • FIG. 23 is a plan view showing the configuration of the first antenna 41.
  • FIG. 24 is a plan view showing the configuration of the second antenna.
  • FIG. 25 is a graph showing the relationship between the frequency of radio waves and the amount of transmission attenuation of radio waves when passing through the radio wave shield 1.
  • FIG. 26 is a graph showing the relationship between the element length L and the frequency of the radio wave reflected by the antennas 41 and 42.
  • FIG.28 A large and small radio wave shield with two “Y” shaped antennas! A relatively large! /, Where antenna 103 is arranged in a grid so that the element parts face each other It is a top view for doing.
  • FIG. 29 Large and small for explaining the case where a relatively large antenna 105 is arranged in a grid pattern so that the line segments are opposed to each other with a radio wave shield having two types of Jerusalem cross-type antennas. It is a top view.
  • FIG. 30 is a plan view of a radio wave shield in which a large antenna 105 and a small antenna 106 are arranged so that the second element portions face each other.
  • FIG. 31 is a plan view of a radio wave shield 50 according to Embodiment 6.
  • FIG. 32 is an enlarged plan view of a part of the radio wave shield 50.
  • FIG. 33 is an enlarged plan view of a part of the radio wave shield 50.
  • FIG. 34 is a plan view of the radio wave shield 20 according to the seventh embodiment.
  • FIG. 35 is a graph showing the relationship between frequency and transmission attenuation in Examples and Comparative Examples.
  • FIG. 36 is a graph showing the correlation between (L2ZL1) and a matching frequency in Examples and Comparative Examples.
  • FIG. 1 is a diagram illustrating the structure of the radio wave shield 1 according to the first embodiment.
  • FIG. 1B is a plan view of the radio wave shield 1 according to the first embodiment.
  • FIG. 1 (a) is a cross-sectional view of a portion cut out along the cutting line la-la in FIG. 1 (b).
  • FIG. 2 is a plan view of the radio wave shield 1.
  • FIG. 3 is a plan view showing the configuration of the antenna 4.
  • the radio wave shield 1 has a base material 2 and a reflective layer 3 formed on the surface of the base material 2.
  • the radio wave shield 1 is a mode in which the reflective layer 3 is formed on the surface of the substrate 2.
  • the radio wave shield according to the present invention is not limited to this configuration.
  • the radio wave shielding body according to the present invention may be, for example, an embodiment in which the reflective layer 3 is embedded inside the base material 2.
  • the radio wave shield 1 may have a mode in which radio wave shielding characteristics are imparted to an existing object in a room (for example, a window, a wall, a ceiling, a floor, a partition, a desk, etc.).
  • the substrate 2 is preferably in a shape having a flat surface such as a plate shape, a sheet shape, or a film shape.
  • the material of the substrate 2 is not limited in any way.
  • the material of the base material 2 can be appropriately selected according to the intended use of the radio wave shield 1.
  • Preferable examples of the substrate 2 include specific examples of materials such as resin, glass, paper, cloth, rubber, gypsum, tile, and wood.
  • the base material 2 has various properties (light transmittance, non-flammability, flame retardancy, etc.) not only as a base material (for example, a role to ensure the mechanical durability of the radio wave shield 1). It is particularly preferred that it plays a role of imparting non-halogenity, flexibility, impact resistance, heat resistance, etc.) to the radio wave shield.
  • the substrate 2 is preferably formed of a transparent material.
  • the transparent material include transparent glass and transparent polymer.
  • a transparent high molecule is preferable as the material of the substrate 2 in that it can be thinly formed, is flexible and can be wound (can be rolled) (hereinafter, transparent).
  • a film made of such a polymer is called a “transparent polymer film”).
  • Examples of the material of the transparent polymer film include polyethylene terephthalate, polyethersulfone, polystyrene, polyethylene naphthalate, polyarylate, polyether ether ketone, polycarbonate, polyethylene, polypropylene, polymethylpentene l (TPX), and polyamide.
  • nylon 6 For example, nylon 6
  • polyimide cellulosic resin (for example, triacetyl cellulose), polyurethane, fluorine-based resin (for example, polytetrafluoroethylene), bully compound (for example, polyacetylene) Salt), polyacrylic acid, polyacrylic acid ester, polyacrylonitrile, addition polymer of vinyl compound, polymethacrylic acid, polymethacrylic acid ester, vinylidene compound (for example, polysalt vinylidene) ), Fluoride -Redene Z trifluoroethylene copolymer, vinyl compound (eg, ethylene Z acetate vinyl copolymer), fluorine compound copolymer, polyether (eg, polyethylene oxide) , Epoxy resin, polybulal alcohol, polybulbutyral and the like.
  • fluorine-based resin for example, polytetrafluoroethylene
  • bully compound for example, polyacetylene) Salt
  • polyacrylic acid polyacrylic acid ester
  • the substrate 2 may be a polymer obtained by blending a UV absorber with the polymer as described above.
  • the transparent glass material include soda lime and quartz.
  • low-cost soda lime is preferable.
  • heat ray shielding glass for example, heat ray absorbing glass, heat ray reflecting glass, etc. is also preferable.
  • the thickness of the transparent polymer film used for the radio wave shield 1 is usually 10 ⁇ m or more and 500 ⁇ m or less.
  • a preferable thickness of the transparent polymer film is 30 ⁇ m or more and 150 ⁇ m or less.
  • a more preferable thickness of the transparent polymer film is 50 ⁇ m or more and 120 ⁇ m or less.
  • the radio wave shield 1 having the reflective layer 3 formed on the surface of the substrate 2 is replaced with an existing object in the room.
  • Adhesive or adhesive is applied to at least one of the surface on the side where the reflective layer 3 is formed and the surface on the opposite side. Can be applied (or adsorbed) and rolled with a protective layer on the surface of the adhesive or pressure-sensitive adhesive (toilet paper) and cut as required It is good also as an aspect.
  • Figs. 4 to 7 illustrate product patterns (usage status) of the radio wave shield 1 according to the first exemplary embodiment.
  • FIG. 4 is a cross-sectional view when the base material 2 side of the radio wave shield 1 is adhered to the glass (window glass) 7.
  • the radio wave shield 1 is adhered to the glass 7 by the adhesive 8 provided on the base material 2 side of the radio wave shield 1.
  • FIG. 5 is a schematic diagram of the radio wave shielding body 1 in which the adhesive 8 and the protective film 9 are formed on the base material 2 side of the radio wave shielding body 1 and rolled into a toilet balance.
  • the radio wave shield 1 shown in FIG. 5 it can be used by cutting it according to the required length, removing the protective film 9 and adhering it to glass or the like.
  • FIG. 6 is a cross-sectional view when the reflection layer 3 side of the radio wave shield 1 is adhered to glass (window glass) 7.
  • the radio wave shield 1 is adhered to the glass 7 by the adhesive 8 provided on the reflection layer 3 side of the radio wave shield 1.
  • FIG. 7 is a schematic diagram of the radio wave shield 1 in which an adhesive 8 and a protective film 9 are formed on the reflective layer 3 side of the radio wave shield 1 and rolled into a toilet paper shape.
  • the radio wave shield 1 shown in FIG. 7 it can be used by cutting it according to the required length, removing the protective film 9 and adhering it to glass or the like.
  • the reflective layer 3 formed on the substrate 2 is composed of a plurality of antennas 4 arranged in a predetermined pattern so as to form a pattern.
  • the reflective layer 3 is configured only by a plurality of antennas 4 having the same shape and dimension.
  • the reflective layer 3 includes the antenna 4 An antenna having a different shape and dimension may be included.
  • the antenna 4 has frequency selectivity. That is, the antenna 4 selectively reflects radio waves having a specific frequency. For this reason, the radio wave shield 1 can selectively shield radio waves of a specific frequency and transmit other light.
  • the plurality of antennas 4 are arranged on the substrate 2 in a matrix at equal intervals.
  • the plurality of antennas 4 are arranged so that adjacent antennas 4 do not contact each other.
  • each of the plurality of antennas 4 includes three first element portions 4a and And three second element portions 4b.
  • the three first element portions 4a extend outward from the antenna center C force at an angle of 120 ° to each other.
  • Each second element portion 4b is coupled to the outer end of first element portion 4a.
  • the length (L1) of the first element part 4a and the length (L2) of the second element part 4b may be different from each other or the same. It is preferable that the length (L1) of the first element portion 4a and the length (L2) of the second element portion 4b satisfy the relational expression of 0 and L2 ⁇ 2 (3) 1/2 ZL1.
  • (L2) is 2 (3 ⁇ / 2 / Ll or more)
  • the adjacent second element parts 4b come into contact with each other, and a desired radio wave shielding effect cannot be obtained.
  • the length (L2) of the second element portion 4b is preferably not less than 0.5 times and not more than twice the length (L1) of the first element portion 4a. 0. 75 times or more and 2 times or less.
  • the width of the first element portion 4a and the width of the second element portion 4b may be different from each other or the same.
  • the width of the first element portion 4a and the width of the second element portion 4b are approximately the same width (L3).
  • the antenna 4 has the three second element portions 4b coupled to the outer ends of the first element portions 4a. Therefore, the antenna 4 has higher frequency selectivity than a conventional “Y” -shaped linear antenna (a linear antenna that is configured by only three first element parts and does not have a second element part). . Therefore, the radio wave shield 1 provided with the plurality of antennas 4 can shield radio waves of a specific frequency with high selectivity.
  • the antenna 4 since the antenna 4 includes the second element portion 4b, it is easy to arrange the plurality of antennas 4 with the second element portions 4b facing each other. By arranging the plurality of antennas 4 so that the second element parts 4b face each other (more preferably, the second element parts 4b face each other closely), the radio wave shielding rate against radio waves of a specific frequency can be improved. Is possible.
  • the second element portion 4b is coupled to the outer end of the first element portion 4a at the center thereof.
  • the second element portion 4b and the first element portion 4a form a right angle.
  • the length of the second element portion 4b and the length of the first element portion 4a are substantially the same.
  • the length of the first element portion 4a and the length of the second element portion 4b correlate with the frequency (specific frequency) of the radio wave to be reflected by the antenna 4.
  • the length of the first element portion 4a and the length of the second element portion 4b can be appropriately determined according to the frequency (specific frequency) of the radio wave to be shielded by the radio wave shield 1.
  • the specific frequency can be lowered by increasing the length of the first element portion 4a and the second element portion 4b. Can do. Further, the specific frequency can be increased by shortening the lengths of the first element portion 4a and the second element portion 4b.
  • radio wave shielding characteristics of radio wave shield 1 are described in detail with reference to FIGS.
  • FIG. 8 is a graph showing the relationship between the frequency of radio waves and the amount of transmission attenuation of radio waves when passing through the radio wave shield 1.
  • the lengths (L1) and (L2) are 10.6 mm and the width L3 is 0.7 mm, respectively.
  • the transmittance of radio waves in a frequency band near a specific frequency (about 2.7 GHz) among radio waves incident on the radio wave shield 1 is selectively attenuated.
  • the radio wave shield 1 selectively blocks radio waves in the frequency band near the specific frequency among the radio waves incident on the radio wave shield 1.
  • FIG. 9 is a graph showing the relationship between the element length L and the frequency of the radio wave reflected by the antenna 4.
  • the frequency of the reflected radio wave does not greatly correlate with the width L3. That is, the frequency of the reflected radio wave is mainly determined by the element length L. Therefore, the element length L can be calculated and determined from the frequency (specific frequency) of the radio wave desired to be reflected by the antenna 4 based on the relationship between the element length L and the selected frequency as shown in FIG. For example, when creating a radio wave shield 1 that shields radio waves with a frequency of 5 GHz, it can be seen from FIG. 9 that the element length L should be about 6 mm!
  • the specific frequency can be adjusted by fixing the length (L1) of the first element portion 4a and adjusting the length (L2) of the second element portion 4b. Specifically, the specific frequency can be lowered by increasing the length (L2) of the second element portion 4b. In addition, the specific frequency can be increased by shortening the length (L2) of the second element portion 4b.
  • the length (L1) of the first element portion is set to The specific frequency can be adjusted only by adjusting.
  • both the length (L1) of the first element portion 4a and the length (L2) of the second element portion 4b are adjusted.
  • the specific frequency can be adjusted by adjusting the ratio of the length (L2) of the second element part 4b to the length (L1) of the first element part 4a. it can. Therefore, the radio wave shield 1 having a wide design width can be realized.
  • the antenna 4 is made of a conductive material. That is, the antenna 4 has conductivity.
  • the reflectivity of the antenna 4 for radio waves of a specific frequency correlates with the conductivity of the antenna 4.
  • the higher the conductivity of the antenna 4 the smaller the electric resistance of the antenna 4
  • the radio wave reflectivity (the radio wave shield rate of the radio wave shield 1) with respect to radio waves of a specific frequency of the antenna 4.
  • Examples of the conductive material include aluminum, silver, copper, gold, platinum, iron, carbon, graphite, indium tin oxide (ITO), indium zinc oxide (IZO), a mixture or an alloy thereof.
  • the antenna 4 preferably contains at least one of copper, aluminum, and silver. Since copper, aluminum, and silver have a relatively low electrical resistance among conductive materials and are inexpensive, according to this configuration, it is possible to realize a radio wave shielding body 1 that is inexpensive and has high radio wave shielding properties. Among the above conductive materials, silver is particularly preferable from the viewpoint of realizing higher radio wave shielding and low cost.
  • the antenna 4 may be composed of a conductive film made of a conductive material and an anti-oxidation film that covers the conductive film.
  • the antenna 4 may include a fine particle of a conductive material such as copper, aluminum, or silver.
  • a paste containing a powdered conductive material in a binder (hereinafter sometimes referred to as a “conductive paste”) is applied uniformly to the substrate 2 in a predetermined pattern and then dried. Can do.
  • the antenna 4 can be produced by drying, for example, in an atmosphere of 100 ° C. or more and 200 ° C. or less for 10 minutes or more and 5 hours or less.
  • the conductive paste for producing the antenna 4 may be a powdered conductive material (for example, silver) dispersed and mixed in a polyester resin.
  • the content of the conductive material is preferably 40% by weight or more and 80% by weight or less. It is more preferable that the content of the conductive material is 50 weight percent or more and 70 weight percent or less. If the content of the conductive material is less than 40 weight percent, the conductivity of the antenna 4 tends to decrease. On the other hand, when the content of the conductive material is more than 80% by weight, it tends to be difficult to uniformly disperse the resin in the resin.
  • the polyester resin serves as an adhesive for adhering the conductive material and the substrate 2.
  • the thickness of the antenna 4 is preferably 10 ⁇ m or more and 20 ⁇ m or less. If the thickness of antenna 4 is less than 10 m, the conductivity of antenna 4 tends to decrease. When the thickness of the antenna 4 is larger than 20 m, the formability of the antenna 4 tends to decrease.
  • the method of forming the antenna 4 is not limited to the above method, and may be formed by other methods.
  • evaporation method, sputtering method, chemical vapor deposition method on the base material 2 A conductive film (for example, an aluminum film, a silver film, etc.) is formed by a film formation method such as (CVD method), and an antenna 4 patterned to a predetermined shape is formed by a patterning method such as photolithography. May be.
  • the antenna 4 may be formed by adhering or adhering a thin film of aluminum or the like patterned to a predetermined shape and size to the base material 2.
  • the antenna 4 can be formed by, for example, a silk printing method, a pattern pressure bonding method, an etching Caloe method, a sputtering method, a vapor deposition method (for example, a chemical vapor deposition method (CVD method)), a mist coating method, or a mold insertion It can also be formed by an embedding method or the like.
  • the radio wave shielding body 1 according to Embodiment 1 has been described in detail, but the shape and size of the radio wave shielding body 1 is not limited at all.
  • the radio wave shield 1 may have a small side length of several millimeters or a large side length of several meters or more.
  • the radio wave shielding body 1 may have an arbitrary shape such as a triangle, a quadrangle (rectangle, square), a polygon, a circle, an ellipse or the like in plan view.
  • the number of antennas 4 included per unit area of the radio wave shield 1 is not limited at all.
  • the number of antennas 4 included per unit area of the radio wave shield 1 can be appropriately changed depending on the use of the radio wave shield 1 and the like.
  • High radio wave shielding can be realized by increasing the number of antennas 4 included per unit area of the radio wave shield 1.
  • FIG. 10 is a plan view showing the form of the antenna 4 in this modified example (modified example of the first embodiment). Specifically, FIG. 10 (a) is a plan view showing the overall shape of the antenna 4 in the present modification. FIG. 10 (b) is a partially enlarged plan view showing a partial shape of the antenna 4.
  • the antenna 4 may be formed of a metal film having an opening (preferably a metal thin film). According to this configuration, the antenna 4 can have a certain degree of light transparency and is hardly noticeable. Therefore, it is possible to realize a radio wave shield that does not obstruct visibility. From the viewpoint of good visibility, the ratio of the area occupied by the metal film to the antenna 4 is preferably 2.5% or more and 30% or less. [0109]
  • the line width (W) and its pitch (P) are determined by conductivity (radio wave shielding) and aperture ratio (translucency). Therefore, the line width (W) is preferably 5 ⁇ m or more and 70 ⁇ m or less. More preferably, it is 8 ⁇ m or more and 30 ⁇ m or less.
  • the pitch (P) is preferably 50 ⁇ m or more and 400 ⁇ m or less. More preferably, it is 100 ⁇ m or more and 300 ⁇ m or less.
  • the pitch (P) is less than 50 m, the aperture ratio (translucency) tends to decrease. On the other hand, when the pitch (P) exceeds 400 ⁇ m, the conductivity (radiation shielding) tends to decrease.
  • the radio wave shield 1 can be easily manufactured.
  • the metal film constituting the antenna 4 is formed in a square lattice shape.
  • the force metal film is, for example, a planar view lattice shape (triangular lattice shape, hexagonal lattice shape, Collins lattice shape, etc. Or a metal film formed in a mesh shape in plan view. It may be a metal film in which a plurality of fine holes in a planar view (or an elliptical shape in a plan view and a polygonal shape in a plan view) are formed.
  • FIG. 11 is a plan view of the radio wave shield 10 according to the second embodiment.
  • FIG. 12 is an enlarged plan view of a part of the radio wave shield 10.
  • the radio wave shield 10 according to the second embodiment has the same form as the radio wave shield 1 according to the first embodiment except for the arrangement of the antennas 4 in the reflective layer 3.
  • the arrangement of the antennas 4 in Embodiment 2 will be described in detail with reference to FIG. 11 and FIG.
  • FIG. 1 is referred to in common with the first embodiment, and components having substantially the same functions are described with reference numerals common to the first embodiment, and the description is omitted.
  • the plurality of antennas 4 constitute a plurality of antenna units 5a each having a pair of forces arranged so that the second element portions 4b face each other.
  • the antenna unit 5a constitutes a plurality of hexagonal antenna assemblies 5 that are arranged so that the second element portions 4b are opposed to each other and are continuously developed in a two-dimensional manner.
  • Each antenna assembly 5 includes three antenna units 5a arranged in a ring shape with the second element portions 4b facing each other.
  • the antenna assembly 5 is composed of six antennas 4 arranged in a ring shape with the second element portions 4b facing each other.
  • a plurality of antenna assemblies 5 are arranged in a matrix at predetermined intervals.
  • the antenna assembly 5 is preferably hexagonal (preferably substantially regular hexagonal). Therefore, it is preferable that the first element portion 4a and the second element portion 4b are perpendicular to each other. Further, it is preferable that the second element portion 4b is connected to the first element portion 4a at the center thereof.
  • the radio wave reflectance (radio wave shielding rate) of the antenna 4 with respect to radio waves of a specific frequency can be further improved. it can. Accordingly, it is possible to realize the radio wave shield 10 having a high radio wave shielding rate for radio waves of a specific frequency.
  • the distance (XI) between the opposing second element portions 4b is shortened, the radio wave reflectance of the radio wave shield 10 is increased. Specifically, it is preferable that the distance (XI) (see FIG. 12) between the second element portions 4b facing each other is 0.4 mm or more and 3 mm or less. A more preferable range is 0.6 mm or more and lmm or less. If the distance X is shorter than 0.4 mm, the opposing second element parts 4b may come into contact with each other undesirably. On the other hand, when the distance X is longer than 3 mm, the radio wave shielding rate tends to decrease.
  • the antenna 4 may be formed of a metal film (preferably a metal thin film) having an opening, for example, a mesh-shaped metal film, as in the above modification. . [0123] (Embodiment 3)
  • FIG. 13 is a plan view of the radio wave shield 20 according to the third embodiment.
  • the radio wave shield 20 according to the third embodiment has the same configuration as the radio wave shield 1 according to the first embodiment and the radio wave shield 10 according to the second embodiment except for the arrangement of the antennas 4 in the reflective layer 3.
  • the arrangement of the antennas 4 in Embodiment 3 will be described in detail with reference to the drawings.
  • FIG. 1 is referred to in common with the first embodiment, and components having substantially the same functions are described with reference numerals common to the first and second embodiments. Is omitted.
  • the antenna assembly 5 is further arranged so as to face the second element portions 4b (in the form of a so-called “Hercam”). For this reason, in Embodiment 3, almost all the second element portions 4b are opposed to each other.
  • the radio wave shield 20 according to the third embodiment has a higher radio wave reflectance than the radio wave shield 10 according to the second embodiment.
  • the radio wave shield 20 according to the third embodiment has higher frequency selectivity than the radio wave shield 10 according to the second embodiment as described below. Therefore, the radio wave shield 20 is suitable for the maintenance of the recent radio wave environment in which the operating frequency range is becoming saturated.
  • FIG. 14 is a graph showing the radio wave shielding characteristics of the radio wave shield 20 according to the third embodiment.
  • the 10 dB bandwidth [(F2 ⁇ F1) ZF0 (%)] of the radio wave shielding body 20 according to the third embodiment is as very small as 10.4%.
  • the radio wave shield 20 has very high frequency selectivity.
  • F0 is the matching frequency.
  • the conventional radio wave shield has lower frequency selectivity than the radio wave shield 20 according to the third embodiment.
  • FIG. 15 is a plan view of a conventional radio wave shield 100.
  • FIG. 16 is a graph showing the radio wave shielding characteristics of the radio wave shield 100.
  • FIG. 17 is a plan view of a conventional radio wave shield 101.
  • FIG. 18 is a graph showing the radio wave shielding characteristics of the radio wave shield 101.
  • the conventional radio wave shield 100 includes a plurality of so-called “Jerusalem cross-type” antennas. As shown in FIG. 16, the 10 dB bandwidth ((F2-F1) ZF0 (%)) with respect to the matching frequency (FO) of the radio wave shield 100 is 17.0%, which is the radio wave shield 2 according to the third embodiment. It is relatively larger than 0.
  • the conventional radio wave shields 100 and 101 with low frequency selectivity may shield radio waves other than the target specific frequency (range). For this reason, when the conventional radio wave shields 100 and 101 are used, the radio wave environment for radio waves other than the specific frequency may be deteriorated.
  • the radio wave shield 20 according to the third embodiment has a small 10 dB bandwidth (because it has very high frequency selectivity), so that radio waves of a specific frequency (band) are suitably shielded. In addition, radio waves other than the specific frequency (range) can be suitably transmitted.
  • the matching frequency (F0) is different between the radio wave shield 20 according to the present invention and the conventional radio wave shields 100 and 101.
  • the 10dB bandwidth is not dependent on the matching frequency.
  • the antenna 4 is formed of a metal film having an opening (preferably a metal thin film), for example, a mesh-shaped metal film. Also good.
  • the radio wave shield has been described as an application example of the present invention.
  • the radio wave shield according to the present invention is not limited to the above embodiment.
  • the radio wave shield according to the present invention may be, for example, one in which a reflective layer 3 including a plurality of antennas 4 is provided inside the radio wave shield.
  • a radio wave shield in which a reflective layer 3 including a plurality of antennas 4 is provided will be described with reference to FIG.
  • components having substantially the same functions are described with reference numerals common to the first embodiment, and the description thereof is omitted.
  • FIG. 19 is a cross-sectional view showing a configuration of a radio wave shield (radio wave shield plate) 30 according to Embodiment 4.
  • the radio wave shielding plate 30 according to the fourth embodiment includes the radio wave shielding body 1 and the plate-like body 6 according to the first embodiment. Specifically, the radio wave shielding body 1 is laminated on the plate-like body 6 via the adhesive 8 so that the antenna 4 faces the plate-like body 6.
  • the plate-like body 6 is not limited at all.
  • the plate-like body 6 may be, for example, a wooden plate or a glass plate.
  • the radio wave shield 1 is adhered or bonded to the plate-like body 6 with an adhesive (adhesive) 8.
  • the pressure-sensitive adhesive is preferably a transparent pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive from the viewpoint of transparency.
  • a transparent adhesive such as an acrylic adhesive is preferred as the adhesive.
  • the layer thickness of the pressure-sensitive adhesive or adhesive is preferably 10 m or more and 60 m or less from the viewpoints of adhesion (adhesion), radio wave shielding and transparency. A more preferable range is 20 ⁇ m or more and 50 ⁇ m or less.
  • the specific frequency are selectively reflected by the antenna 4.
  • both surfaces of the antenna 4 are the base material 2, the plate-like body 6, and the like.
  • the frequency (specific frequency) of the radio wave reflected (shielded) by the antenna 4 is different even if the shape and material of the antenna 4 are the same.
  • FIG. 20 is a graph showing the matching frequency of the radio wave shield 1 in a state where it is not adhered to the glass plate 6.
  • FIG. 21 is a graph showing the matching frequency of the radio wave shield 1 in a state where the reflective layer 3 side is adhered to the glass plate 6.
  • the relational expressions shown in FIGS. 20 and 21 are regression equations of the obtained matching frequency data.
  • 20 and 21 are data when the antenna 4 has the same length (L1) of the first element portion 4a and the length (L2) of the second element portion 4b.
  • the relationship between element length and matching frequency changes. Specifically, when the reflection layer 3 side of the radio wave shield 1 is adhered to the glass plate-like body 6, it is reflected (shielded) by the antenna 4 than when the reflection layer 3 is in contact with air. The frequency of the radio wave is low.
  • the antenna 4 may be formed of a metal film (preferably a metal thin film) having an opening, for example, a mesh-shaped metal film. .
  • the radio wave shield according to the present invention may have a plurality of types (two or three or more) of antennas 4.
  • an example of a radio wave shield having two types of antennas will be described in detail with reference to the drawings.
  • FIG. 22 is a plan view of the radio wave shield 40.
  • FIG. 23 is a plan view showing the configuration of the first antenna 41.
  • FIG. 24 is a plan view showing the configuration of the second antenna 42.
  • the radio wave shield 40 according to the fifth embodiment is different from the first embodiment except that the reflective layer 3 is composed of the first antenna 41 and the second antenna 42, and two types of antennas. It has the same form as the radio wave shield 1 according to 1.
  • the reflective layer 3 in Embodiment 5 will be described in detail with reference to FIGS.
  • FIG. 1 is referred to in common with the first embodiment, and components having substantially the same functions are described with reference numerals common to the first embodiment, and the description is omitted. To do.
  • the reflective layer 3 includes a plurality of first antennas 41 and a plurality of second antennas 42 that are arranged to form a pattern and have different sizes.
  • the first antenna 41 and the second antenna 42 may be similar.
  • the first antenna 41 and the second antenna 42 may be formed of a metal film having an opening (preferably a metal thin film), for example, a mesh-shaped metal film.
  • the reflection layer 3 includes only the first antenna 41 and the second antenna 42.
  • the present invention is not limited to this configuration. is not.
  • the reflective layer 3 may include a pattern having a shape different from that of the first antenna 41 and the second antenna 42 in a part thereof.
  • a plurality of first antennas 41 and second antennas 42 are arranged in a matrix on the substrate 2 at equal intervals so as not to interfere with each other.
  • Each of the first antenna 41 and the second antenna 42 has frequency selectivity. Specifically, the first antenna 41 reflects the first frequency, and the second antenna 42 reflects the second frequency. For this reason, the radio wave shield 40 according to the fifth embodiment can selectively shield the radio wave of the first frequency and the radio wave of the second frequency and transmit the radio wave of other frequencies.
  • radio wave shielding body for example, the second radio wave shielding body according to the present invention is suitable for an environment where radio waves of two kinds of frequencies such as a wireless LAN are used.
  • the reflective layer 3 may be configured by three or more types of antennas having different sizes.
  • the first antenna 41 includes three first element portions 41a and three second element portions 41b.
  • the three first element portions 41a extend radially from the antenna center C2 at an angle of 120 ° with substantially the same length.
  • Each second element portion 41b is coupled to the outer end of the first element portion 41a.
  • the length (L4) of the first element portion 41a and the length (L5) of the second element portion 41b may be different from each other! /, Or may be the same. It is preferable that the length (L4) of the first element portion 41a and the length (L5) of the second element portion 41b satisfy the relational expression of 0, L5, 2 (3) 1/2 ZL4. When L5 is 2 (3) V so L4 or more, the adjacent second element part 4 lb comes into contact with The desired radio wave shielding effect cannot be obtained. From the viewpoint of realizing a high specific frequency and shielding rate
  • the length (L5) of the second element portion 41b is preferably not less than 0.5 times and not more than twice the length (L4) of the first element portion 41a. More preferably, it is 0.75 times or more and 2 times or less.
  • Each second element portion 41b may be coupled to the outer end of the first element portion 41a at the center thereof.
  • Each second element portion 41b and the first element portion 41a coupled to the second element portion 41b may form a right angle (90 degrees).
  • the width of the first element portion 41a and the width of the second element portion 41b may be different from each other or may be the same.
  • the width of the first element portion 41a and the width of the second element portion 41b are approximately the same width (L6).
  • the second antenna 42 has three first element portions 42a and three second element portions 42b, similarly to the first antenna 41.
  • the three first element portions 42a extend radially from the antenna center C3 at an angle of 120 ° with substantially the same length.
  • Each second element portion 42b is coupled to the outer end of the first element portion 42a.
  • the length (L7) of the first element part 42a and the length (L8) of the second element part 42b may be different from each other or the same. It is preferable that the length (L7) of the first element portion 42a and the length (L8) of the second element portion 42b satisfy the relational expression of 0 and L8 ⁇ 2 (3) 1/2 ZL7. Further, from the viewpoint of realizing a high shielding rate at a specific frequency, the length L8 of the second element portion 42b is preferably not less than 0.5 times and not more than twice the length L7 of the first element portion 42a. More preferably, it is 0.75 times or more and 2 times or less.
  • Each second element portion 42b may be coupled to the outer end of the first element portion 42a at the center thereof.
  • Each second element portion 42b and the first element portion 42a coupled to the second element portion 41b may form a right angle (90 degrees).
  • the width of the first element portion 42a and the width of the second element portion 42b may be different from each other or may be the same.
  • the width of the first element portion 42a and the width of the second element portion 42b are substantially the same width (L9).
  • the first antenna 41 and the second antenna 42 each have the second element portion 41b (42b) coupled to the outer end of the first element portion 41a (42a). Because of this The teners 41 and 42 have higher frequency selectivity than the conventional “Y” -shaped linear antenna. In other words, the frequency widths of the reflection peaks of the first antenna 41 and the second antenna 42 are relatively narrow. Therefore, the radio wave shield 40 can shield radio waves of specific frequencies (first frequency and second frequency) with high selectivity.
  • the length L4 (L7) of the first element part 41a (42a), the length L5 (L8) of the second element part 41b (42b) and the frequency of the radio wave to be reflected by the antenna 41 (42) ( It is correlated with a specific frequency. Therefore, the length 4 (7) of the first element portion 41 & (42 &) and the length L5 (L8) of the second element portion 41b (42b) can be appropriately determined according to the desired specific frequency. .
  • the first element portion 41a (42a) when the length L4 (L7) of the first element portion 41a (42a) and the length L5 (L8) of the second element portion 41b (42b) are the same, the first element portion 41a (42a)
  • the specific frequency first frequency, second frequency
  • radio wave shielding of radio wave shield 40 when length L4 (L7) of first element part 41a (42a) and length L5 (L8) of second element part 41b (42b) are the same.
  • FIG. 25 is a graph showing the relationship between the frequency of radio waves and the transmission attenuation of radio waves when passing through the radio wave shield 40.
  • the radio wave incident on the radio wave shield 40 has two frequencies, specifically, the first frequency (about 2.6 GHz) and the second frequency (about 6. 6GHz) is attenuated by the wave shield 40.
  • the radio wave shield 40 selectively shields radio waves in a frequency band near specific frequencies (about 2.6 GHz and about 6.6 GHz) among the radio waves incident on the radio wave shield 40.
  • radio waves in a frequency band near a specific frequency are selectively reflected by the plurality of first antennas 41 and second antennas 42 included in the reflective layer 3.
  • the large first antenna 41 reflects radio waves in the frequency band around the low first frequency (about 2.6 GHz), and the small second antenna.
  • NA 42 is high and reflects radio waves in the frequency band around the second frequency (approximately 6.6 GHz)!
  • the frequencies of the radio waves reflected by the first antenna 41 and the second antenna 42 are the lengths (element lengths) of the first element portion 41a (42a) and the second element portion 41b (42b), respectively. L).
  • FIG. 26 is a graph showing the relationship between the element length L and the frequency of the radio wave reflected by the antennas 41 and 42. Specifically, the graph shown in Fig. 26 shows a radio wave shield (for antenna placement !, see 2) in which an antenna is formed of a conductive material on the surface of a PET film with a thickness of 60 m. It was created based on the results measured in contact with air.
  • the longer the element length L the lower the frequency of the radio waves reflected by the antennas 41 and 42.
  • the longer the element length L the longer the wavelength of the radio wave reflected by the antennas 41 and 42.
  • the frequency of the reflected radio waves does not correlate greatly with width L6 and width L9. That is, the frequency of the reflected radio wave mainly depends on the element length L.
  • the frequency force of the radio wave to be reflected can also be calculated.
  • L4 and L5 of the first antenna 41 are 11. It can be 19 mm, and L7 and L8 of the second antenna 42 can be 6.05 mm.
  • Figure 27 shows the case where L4 and L5 of the first antenna 41 are 11.19 mm, width L6 is 0.7 mm, L7 and L8 of the second antenna 42 are 6.05 mm, and width L9 is 0.7 mm.
  • 6 is a graph showing the amount of transmission attenuation of the radio wave shield 40.
  • the radio wave of the frequency 2.45GHz to be shielded and the radio wave of the frequency 5.2GHz are selectively used. Can be shielded.
  • the specific frequency is adjusted by fixing the length L4 (L7) of the first element portion 41a (42a) and adjusting the length L5 (L8) of the second element portion 41b (42b). It is also possible to do this. Specifically, the length L5 (L8) of the second element portion 41b (42b) is shortened to The constant frequency can be increased.
  • the length of the first element portion should be adjusted.
  • the specific frequency can be adjusted only by.
  • the length L5 (L8) of the second element part 41b (42b) is adjusted together with the length L4 (L7) of the first element part 41a (42a) as described above.
  • the first element 41a (42a) has a constant length L4 (L7) and the second element 41b (42b) has a length L5 (L8).
  • the specific frequency can also be adjusted by adjusting the ratio of the portion 41a (42a) to the length L4 (L7). For this reason, the radio wave shield 40 having a wide design width can be realized.
  • FIG. 28 is a plan view for explaining a case where a relatively large antenna 103 is arranged in a lattice shape so that the element portions face each other in a radio wave shield having two types of large and small “ ⁇ ” -shaped antennas. is there.
  • a relatively large antenna 103 (hereinafter, sometimes referred to as “large antenna 103”) is disposed so that the element portions face each other, a relatively small antenna is provided. It is difficult to arrange 104 (hereinafter referred to as “small antenna 104”) so that the element portions face each other.
  • the large antennas 103 are arranged with high density, the small antennas 104 are not of high density with a smaller number per unit area than the large antennas 103. For this reason, the radio wave shielding body shown in FIG. 28 cannot shield the radio wave targeted by the small antenna 104 with a sufficiently high shielding rate as compared with the radio wave targeted by the large antenna 103. Therefore, it is difficult for the radio wave shield described in FIG. 28 to shield a plurality of radio waves having different frequencies with the same shielding rate.
  • FIG. 29 illustrates a case where a relatively large antenna 105 is arranged in a lattice shape so that line-shaped portions face each other in a radio wave shield having two types of large and small Jerusalem cross-type antennas.
  • the relatively large antenna 105 (hereinafter sometimes referred to as “large antenna 105”) is the second element portion of the adjacent large antenna 105. It arrange
  • the relatively small antenna 106 (hereinafter sometimes referred to as “small antenna 106”) is not arranged so that the second element portions 106b of the adjacent small antennas 106 face each other. . For this reason, the reflectance of the radio wave of the specific frequency corresponding to the small antenna 106 becomes low. Therefore, this radio wave shield cannot sufficiently shield radio waves having a specific frequency corresponding to the small antenna 106. Therefore, with the radio wave shield shown in FIG. 29, it is difficult to shield a plurality of radio waves having different frequencies with the same shielding rate.
  • Fig. 30 is a plan view of the radio wave shields arranged such that the large antenna 105, the small antenna 106, and the second element portions face each other.
  • the large antenna 105 is arranged so that the second element part 105b of the adjacent large antenna 105 is closely opposed in a specific direction (lateral direction in FIG. 30).
  • the small antennas 106 are also arranged so that the second element portions 106b of the adjacent small antennas 106 closely face each other in a specific direction (lateral direction in FIG. 30).
  • the radio wave shield shown in FIG. 30 can well shield radio waves of a specific frequency that enter from the arrangement direction of antennas 105 and 106 (lateral direction in FIG. 30).
  • the radio wave shield shown in FIG. 30 can well shield radio waves of a specific frequency that enter from the arrangement direction of antennas 105 and 106 (lateral direction in FIG. 30).
  • the second element portions 105b of the large antenna 105 or the small antennas 105 and 106 are arranged in a direction (for example, the vertical direction in FIG. 30) that forms an angle with the antennas 105 and 106.
  • the second element portions 106 of the antenna 106 are not closely facing each other. For this reason, it is not possible to sufficiently shield radio waves of a specific frequency that enter from a direction (for example, upward and downward directions in FIG. 30) that forms an angle with the specific direction. Therefore, In the radio wave shielding body shown in FIG. 30, the radio wave shielding rate varies greatly depending on the incident direction of the radio wave. That is, with the configuration shown in FIG. 30, it is difficult to realize a radio wave shield that is less dependent on the incident angle of radio waves.
  • the antennas 41 and 42 have second element portions 41b and 42b coupled to the outer ends of the first element portions 41a and 42a. Therefore, it is relatively easy to dispose the plurality of antennas 41 and 42 so that the second element portions 41b and 42b face each other. Therefore, in the radio wave shield 40 according to the fifth embodiment, a high radio wave shielding rate for radio waves of a specific frequency can be easily realized.
  • the antennas 41 and 42 that shield radio waves having different frequencies are formed with substantially the same density.
  • the first frequency radio wave targeted by the first antenna 41 and the second frequency radio wave targeted by the second antenna 42 are substantially the same. Can be shielded with a shielding rate. In addition, the incident angle dependency of radio waves can be reduced.
  • FIG. 31 is a plan view of the radio wave shield 50 according to the sixth embodiment.
  • FIG. 32 and 33 are enlarged plan views of a part of the radio wave shield 50.
  • FIG. 32 and 33 are enlarged plan views of a part of the radio wave shield 50.
  • the radio wave shield 50 according to Embodiment 6 has the same form as the radio wave shield 40 according to Embodiment 5 except for the arrangement of the first antenna 41 and the second antenna 42.
  • the arrangement of the first antenna 41 and the second antenna 42 in Embodiment 6 will be described in detail with reference to FIGS.
  • FIG. 1 is referred to in common with the first and fifth embodiments, and components having substantially the same functions are described with reference numerals common to the first and fifth embodiments. Description is omitted.
  • the plurality of first antennas 41 constitute a plurality of first antenna units 51a each having a pair of forces arranged so that the second element portions 41b face each other. . Further, the first antenna unit 51a is further arranged so that the second element portions 41b are opposed to each other, and constitutes a hexagonal first antenna assembly 51 that is continuously developed in two dimensions.
  • each first antenna assembly 51 is composed of six first antennas 41 arranged in a ring shape with the second element portions 41b facing each other. Further, in the sixth embodiment, the first antenna assembly 51 is arranged in a so-called “Harcam” shape so that the second element portions 41b face each other.
  • the first element portion 41a and the second element portion 41b form a right angle.
  • the second element portion 41b is preferably coupled to the first element portion 41a at the center thereof. According to this configuration, the first antenna assembly 51 has a substantially regular hexagonal shape.
  • Each of the plurality of second antennas 42 constitutes a plurality of second antenna units 52a having a pair of forces arranged such that the second element portions 42b face each other.
  • the second antenna unit 52a is further arranged so that the second element portions 42b face each other, and constitutes a hexagonal second antenna assembly 52 that is continuously developed in a two-dimensional manner. That is, each second antenna assembly 52 is composed of six second antennas 42 arranged in an annular shape with the second element portions 42b facing each other. From the viewpoint of configuring the second antenna assembly 52 with less directivity, it is preferable that the first element portion 42a and the second element portion 42b form a right angle. Further, it is preferable that the second element portion 42b is coupled to the first element portion 42a at the center thereof. According to this configuration, the second antenna assembly 52 has a substantially regular hexagonal shape.
  • the plurality of first antennas 41 are arranged so that almost all the second element portions 41b face each other substantially in parallel.
  • the second antenna 42 is also provided so that twelve second element portions 42b out of the 18 second element portions 42b constituting the second antenna assembly 52 face each other substantially in parallel.
  • the radio wave shield 50 has a high radio wave shielding rate for radio waves of specific frequencies (first frequency and second frequency).
  • the distance X2 (X3) between the opposing second element portions 41b (42b) is preferably not less than 0.4 mm and not more than 3 mm (see FIGS. 32 and 33). A more preferable range is 0.6 mm or more and 1 mm or less. If the distance X2 (X3) is shorter than 0.4 mm, the opposing second element There is a possibility that the toe parts 41b (42b) may come into contact with each other undesirably. On the other hand, when the distance X2 (X3) is larger than 3 mm, the radio wave shielding rate tends to decrease.
  • the second element portions 41b of the first antenna 41 face each other
  • the second element portions 42b of the second antenna 42 face each other
  • the density of both antennas 41 and 42 are the same
  • an arrangement as shown in FIG. 31 is preferable.
  • first antenna assembly 51 is surrounded by second antenna assembly 52. Therefore, the first antenna assembly 51 and the second antenna assembly 52 can be efficiently arranged. In other words, the quantity of the first antenna 41 and the second antenna 42 included per unit area can be increased. Accordingly, it is possible to increase the radio wave shielding rate for radio waves of specific frequencies (first frequency and second frequency).
  • the lengths of the second element portions 41b and 42b are relatively short. By doing so, the degree of dimensional freedom of the second antenna 42 included in the second antenna assembly 52 surrounded by the first antenna assembly 51 can be increased. This is because the second element portion 41b of the first antenna 41 and the second element portion 42b of the second antenna 42 are difficult to contact.
  • the second element portion 41b is short, so that the area surrounded by the first antenna assembly 51 can be widened. Therefore, the relatively large second antenna assembly 52 can be arranged in the area surrounded by the first antenna assembly 51. Therefore, for example, the radio wave shield 50 capable of selectively blocking two types of radio waves having relatively close frequencies can be realized.
  • FIG. 34 is a plan view of the radio wave shield 60 according to the seventh embodiment.
  • the radio wave shield 50 according to the sixth embodiment has the same configuration.
  • FIG. 1 is referred to in common with the first and sixth embodiments, and components having substantially the same functions are described with the same reference numerals as those in the sixth embodiment. Omitted.
  • the first antenna assembly 51 and the second antenna assembly 52 have different symmetry axes (specifically, line symmetry axes extending in the arrangement direction of the antennas 41 and 42). So that they are inclined to each other.
  • the dimensions of the second antenna 42 constituting the second antenna assembly 52 are set to form the first antenna assembly 51. It is necessary to make it smaller than the dimension of the first antenna 41. As shown in Embodiment 6, when the first antenna assembly 51 and the second antenna assembly 52 are arranged without being inclined, the first antenna 41 and the second antenna 42 are prevented from interfering with each other. The two antennas 42 must be made very small relative to the first antenna 41, and the design freedom between the first antenna 41 and the second antenna 42 is not sufficient.
  • the two types of frequencies that can be shielded by the radio wave shield 60 can be selected relatively freely.
  • the substantially hexagonal first antenna assembly 51 and the second antenna assembly 52 are arranged closest to each other, but depending on the desired radio wave shielding ratio, If the number of antenna assemblies 51 and 52 having a substantially hexagonal shape is not adjusted and adjusted, respectively.
  • the length of the first element part 4a is 12.24mm, the width of the first element part 4a and the second element part 4b is 1.2mm, and the length of the second element part 4b is variously changed.
  • a radio wave shielding body having the same form as the radio wave shielding body 1 according to mode 1 was produced and used as examples and comparative examples.
  • Example 1 the length (L2) of the second element portion 4b was 24.48 mm. That is, L1: L2 was set to 1: 2.
  • Example 2 the length (L2) of the second element portion 4b was 15.30 mm. That is, LI: L2 was set to 1: 1.25.
  • Example 3 the length (L2) of the second element portion 4b was 12.24 mm. In other words, LI: L2 was set to 1: 1.
  • Example 4 the length (L2) of the second element portion 4b was 9.2 mm. That is, L1: L2 is set to 1: 0.5.
  • the length (L2) of the second element portion 4b was set to 0 mm. That is, the antenna has a “Y” shape.
  • FIG. 35 is a graph showing the relationship between frequency and transmission attenuation in each example.
  • the data represented by 70 in FIG. 35 is the data of Example 1.
  • Data represented by 71 is the data of Example 2.
  • Data represented by 72 is the data of Example 3.
  • Data represented by 73 is the data of Example 4.
  • the data represented by 74 is the data of the comparative example
  • FIG. 36 is a graph showing the correlation between the ratio (L2ZL1) between the length of the first element portion 4a and the length of the second element portion 4b (L2ZL1) and the matching frequency in each example and comparative example.
  • the radio wave shielding bodies according to Examples 1 to 4 having the second element portion 4b have a higher radio wave shielding rate than the radio wave shielding bodies according to the comparative examples. From this result, according to the radio wave shields according to Examples 1 to 4 having the second element part 4b, the radio wave having a specific frequency higher than that of the radio wave shield having the so-called “Y” -shaped antenna according to the comparative example. The fact that it can be shielded with the shielding rate proved powerful.
  • the radio wave shielding bodies according to Examples 1 to 4 having the second element portion 4b are related to the comparative example in which the so-called "Y" -shaped antenna is provided without the second element portion 4b. It had a sharper peak than the radio wave shield. That is, the radio wave shielding bodies according to Examples 1 to 4 having the second element portion 4b have a specific frequency that is higher in frequency selectivity than the radio wave shielding body according to the comparative example in which a so-called “Y” -shaped antenna is provided. It was found that radio waves can be shielded with higher selectivity.
  • the matching frequency force S tends to decrease as the ratio (L2ZL1) of the length of the first element portion 4a to the length of the second element portion 4b increases. I understood. This proved that the matching frequency can be adjusted by adjusting the length of the second element portion 4b.
  • the radio wave shielding body according to the present invention has a high radio wave shielding rate against radio waves of a specific frequency, and is wallpaper, partition (partition), cloth (roll screen), window glass, outer wall panel, roof. It is useful as a board, ceiling board, inner wall panel, floor board, radio wave shield, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

 電波遮蔽体(1)は、各々、特定周波数の電波を反射させる複数のアンテナ(4)を備えている。複数のアンテナ(4)は模様を構成するように配置されている。各アンテナ(4)は、3本の線分状の第1エレメント部(4a)と、3本の線分状の第2エレメント部(4b)とを有する。3本の第1エレメント部(4a)は、それぞれアンテナ(4)中心から相互に120°の角度をなして放射状に略同一長さでもって延びている。各第2エレメント部(4b)は第1エレメント部(4a)の外側端に結合されている。

Description

明 細 書
電波遮蔽体
技術分野
[0001] 本発明は電波遮蔽体に関する。
背景技術
[0002] 近年、事業所内 PHSや無線 LANの利用が広がりを見せるな力、情報の漏洩防止 や外部からの侵入電波による誤動作やノイズ防止と 、つた観点から、オフィス内での 電波環境を整えることが不可欠になっている。オフィス等の電波環境の整備用部材と して、種々のタイプのものが提案されている(例えば、特許文献 1、 2等)。
[0003] 特許文献 1には、金属やフェライトなどの電磁シールド部材をビルの躯体に付加す ることで、広 、周波数帯域で任意の周波数の電波を使って情報通信ができる電磁シ 一ルド'インテルジヱントビルが開示されている。電波シールド部材としては、鉄板、 金属網、金属メッシュ、金属箔などの電波反射体やフ ライトなどの電波吸収体が開 示されている。
[0004] しかし、これらの電波反射体や電波吸収体は周波数選択性を有さな!/、。このため、 特許文献 1に開示された電磁シールド 'インテルジェントビルでは特定周波数の電波 を選択的に遮蔽することができず、遮蔽しょうとする周波数以外の電波まで遮蔽して しまうという問題がある。
[0005] 一方、特許文献 2には、「Y」字形の線状アンテナを定期的に配列させた電磁遮蔽 面で建物内に電磁遮蔽空間を確保することを特徴とする電磁遮蔽建物が開示されて いる。「Υ」字形の線状アンテナはアンテナ中心力も略同一長さでもって放射状に延 びる線分状の 3本のエレメント部からなる。特許文献 2には、特許文献 2に開示された 電磁遮蔽建物によれば、必要な周波数の電波を選択して電磁シールドすることが可 能である、と記載されている。
特許文献 1:特公平 6— 99972号公報
特許文献 2 :特開平 10— 169039号公報 一発明が解決しょうとする課題 特許文 献 2に記載された電磁遮蔽建物では、電波を反射させる線状アンテナは「Υ」字形に 形成されている。特定周波数の電波をより確実に反射させるためには、電磁遮蔽面 に線状アンテナを、効率よぐ高密度に配列させることが好ましい。し力しながら、特 許文献 2に開示されている「Y」字形の線状アンテナでは、効率よく高密度に(単位面 積あたりに多くの線状アンテナを)配置させることが困難である。
[0006] また、高い電波遮蔽性を実現させるためには、エレメント部同士を緊密に対向させ て配置させることが特に好ましい。しかしながら、特許文献 2に開示されている「Υ」字 形の線状アンテナでは、エレメント部同士を略平行に対向させて配置させることが困 難である。
[0007] このため、特許文献 2に記載された電磁遮蔽建物では、特定周波数の電波を高 ヽ 遮蔽率で遮蔽することが困難であるという問題がある。
[0008] また、従来の電波遮蔽体は整合周波数に対する 10dBの帯域幅が大きいので、目 的とする特定周波数以外の電波も遮蔽してしまう。すなわち、従来の電波遮蔽体は 周波数選択性が低 、と 、う問題もある。
[0009] 本発明は、係る点に鑑みてなされたものであり、その目的とするところは、特定周波 数の電波に対する高い電波遮蔽率を有する電波遮蔽体を提供することにある。 発明の開示
[0010] 本発明に係る第 1の電波遮蔽体は、各々、特定周波数の電波を反射させる複数の アンテナを備えている。複数のアンテナは模様を構成するように配置されている。各 アンテナは、 3本の線分状の第 1エレメント部と、 3本の線分状の第 2エレメント部とを 有する。 3本の第 1エレメント部は、それぞれアンテナ中心から相互に 120° の角度 をなして放射状に略同一長さでもって延びている。各第 2エレメント部は第 1エレメント 部の外側端に結合されて 、る。
[0011] 本発明に係る第 1の電波遮蔽体において、アンテナは周波数選択性を有する。こ のため、本発明に係る第 1の電波遮蔽体によれば、特定周波数の電波を選択的に遮 蔽し、それ以外の周波数の電波を透過させることができる。
[0012] 尚、本発明に係る第 1の電波遮蔽体のアンテナは、従来の「Y」字形の線状アンテ ナよりもさらに高い周波数選択性を有するものである。換言すれば、本発明に係る第 1の電波遮蔽体のアンテナは、比較的狭い反射ピークの周波数幅 (例えば、整合周 波数に対する lOdBの帯域幅)を有する。このため、本発明に係る第 1の電波遮蔽体 によれば、特定周波数の電波をより高い選択性で遮蔽することができる。さらに、第 1 エレメント部の長さと第 2エレメント部の長さとを異ならしめることにより、特定周波数に 対するより高い周波数選択性を実現することができる。
[0013] 尚、本明細書において、「整合周波数」とは、透過減衰量が最大となる周波数のこと をいう。整合周波数は、センター周波数ともいう。
[0014] また、上述のように、本発明に係る第 1の電波遮蔽体のアンテナは、各第 1エレメン ト部の外側端に結合された第 2エレメント部を有する。このため、第 2エレメント部同士 を対向するように複数のアンテナを配置することが容易である。このように第 2エレメン ト部同士を対向させて (より好ましくは、緊密に対向させて)複数のアンテナを配置す ることによって、特定周波数の電波に対する電波遮蔽率を向上することができる。
[0015] 第 2エレメント部同士を対向させると共に、単位面積あたりにより多くのアンテナを配 置する観点から、第 2エレメント部はその中心で第 1エレメント部の外側端に結合され ており、且つ第 2エレメント部の長さと第 1エレメント部の長さとが略同一であることが 好ましい。
[0016] 尚、第 2エレメント部同士を対向させることにより特定周波数の電波に対する電波遮 蔽率を向上できること、及び対向する第 2エレメント部の間の間隔を狭くすることにより 、さらに特定周波数の電波に対する電波遮蔽率を向上できることは、本発明者らが 誠意研究した結果、初めて見出されたものである。
[0017] 本発明に係る第 1の電波遮蔽体において、第 1エレメント部の長さと第 2エレメント部 の長さとは、遮蔽しょうとする電波の周波数 (特定周波数)に応じて適宜決定すること ができる。例えば、第 1エレメント部の長さと第 2エレメント部の長さが同一である場合 は、第 1エレメント部及び第 2エレメント部の長さを長くすることにより特定周波数を低 下させることができる。また、例えば、第 1エレメント部の長さを一定として、第 2エレメ ント部の長さを調節することにより特定周波数を調節することができる。
[0018] 例えば、従来の「Y」字形の線状アンテナ(第 2エレメント部を有さず、第 1エレメント 部のみにより構成されているアンテナ)では、第 1エレメント部の長さを調節することに よってのみ特定周波数を調節することができる。それに対して、本発明に係る第 1の 電波遮蔽体では、上述のように、各アンテナの第 1エレメント部の長さを調節すること によって特定周波数を調節できると共に、第 2エレメント部の長さの第 1エレメント部の 長さに対する比を調節することによつても特定周波数を調節することができる。このた め、本発明に係る第 1の電波遮蔽体は広い設計幅を有する。
[0019] 本発明に係る第 1の電波遮蔽体では、複数のアンテナが、各々、第 2エレメント部同 士が対向するように配設された一対力もなる複数のアンテナユニットを構成して 、て ちょい。
[0020] 複数のアンテナを第 2エレメント部同士が対向するように配置することにより、アンテ ナの特定周波数の電波に対する電波反射率をさらに高くすることができる。従って、 この構成によれば、特定周波数の電波に対するさらに高い電波遮蔽率を実現するこ とができる。特定周波数の電波に対する電波遮蔽率をより向上する観点から、対向 する第 2エレメント部間の間隔が狭 、ことが好まし 、。
[0021] また、複数のアンテナは、複数のアンテナユニットがさらに第 2エレメント部同士を対 向させて配設されて二次元に連続展開した六角形状 (好ましくは、略正六角形状)の 複数のアンテナ集合体を構成していてもよい。言い換えれば、 6つのアンテナ(3つの アンテナユニット)が第 2エレメント部同士が対向するように環状に配列されていてもよ い。この構成では、環状に配列された 6つのアンテナのそれぞれのアンテナ中心を結 んでなる図形は六角形 (好ましくは、略正六角形)を構成している。
[0022] アンテナによる特定周波数の電波に対する電波遮蔽率 (電波反射率)を高くするた めには、第 2エレメント部の総数に対する互いに対向するように配置されて 、る第 2ェ レメント部の割合を多くすることが好ましい。この構成によれば、ひとつのアンテナに 含まれる 3本の第 2エレメント部のうち、他のアンテナの第 2エレメント部と対向して ヽ る第 2アンテナの数をより多くすることができる。このため、アンテナの特定周波数の 電波に対する電波反射率をより高くすることができる。従って、この構成によれば、特 定周波数の電波の、より高 、電波遮蔽率を実現することができる。
[0023] 本発明に係る第 2の電波遮蔽体は、模様を構成するように配置された複数種類の アンテナを備えている。複数種類のアンテナのそれぞれは、相互に異なる特定周波 数の電波を反射させるものである。複数種類のアンテナのそれぞれは、 3本の線分状 の第 1エレメント部と、 3本の線分状の第 2エレメント部とを備えている。 3本の第 1エレ メント部は、それぞれアンテナ中心から相互に 120° の角度をなして放射状に略同 一長さでもって延びている。各第 2エレメント部は、第 1エレメント部の外側端に結合さ れている。
[0024] 複数種類のアンテナのそれぞれは、周波数選択性を有する。すなわち、複数種類 のアンテナのそれぞれは、それぞれの種類に応じて相互に周波数の異なる電波を選 択的に反射する。このため、本発明に係る第 2の電波遮蔽体によれば、相互に周波 数の異なる複数種類の電波を選択的に遮蔽し、それ以外の周波数の電波を透過さ せることができる。
[0025] 本発明に係る第 2の電波遮蔽体において、複数種類のアンテナは、相互に大きさ の異なるものであることが好まし 、。
[0026] 本発明に係る第 3の電波遮蔽体は、模様を構成するように配置された複数の第 1ァ ンテナ及び複数の第 2アンテナを備えて 、る。各第 1アンテナは第 1周波数の電波を 反射させるものである。各第 2アンテナは、第 1周波数とは異なる第 2周波数の電波を 反射させるものである。各第 1アンテナ及び各第 2アンテナのそれぞれは、 3本の線 分状の第 1エレメント部と、 3本の線分状の第 2エレメント部とを有する。 3本の第 1エレ メント部は、それぞれアンテナ中心から相互に 120° の角度をなして放射状に略同 一長さでもって延びている。各第 2エレメント部は第 1エレメント部の外側端に結合さ れている。
[0027] 本発明に係る第 3の電波遮蔽体において、第 1アンテナと第 2アンテナとはそれぞ れ周波数選択性を有する。すなわち、第 1アンテナと第 2アンテナとはそれぞれに特 定の周波数の電波を選択的に反射する。具体的に、第 1アンテナは第 1周波数の電 波を反射させるものである。第 2アンテナは第 2周波数の電波を反射させるものである 。このため、本発明に係る第 3の電波遮蔽体によれば、特定の 2種の周波数 (第 1周 波数及び第 2周波数)の電波を選択的に遮蔽し、それ以外の周波数の電波を透過さ せることができる。
[0028] 例えば、無線 LANでは、 2. 4GHzの周波数の電波と、 5. 2GHzの周波数の電波 との 2種の周波数の電波が使用されている。このため、無線 LANを使用する環境に おいては、無線 LANに用いられるこれら 2種の周波数の電波を選択的に遮蔽し、無 線 LANには用いられな 、それ以外の周波数の電波(例えば携帯電話の通信に用い られている電波、テレビ放送用の電波等)を透過させるような電波遮蔽体が必要とさ れる。上述の通り、本発明に係る第 3の電波遮蔽体は特定の 2種の周波数の電波を 選択的に遮蔽し、それ以外の周波数の電波を透過させることができる。このため、本 発明に係る第 3の電波遮蔽体はこのような無線 LANが使用される環境に好適に用い ることがでさる。
[0029] 尚、 2種の周波数の電波を選択的に遮蔽可能な電波遮蔽体としては、相互に大き さが異なる「Y」字形の線状アンテナが形成されたものも挙げられる。しかしながら、大 きさが異なる 2種の「Υ」字形の線状アンテナを効率よく高密度に、且つ均等に(単位 面積あたりに多くの線状アンテナを)配置させることは困難である。このため、相互に 大きさが異なる「Υ」字形の線状アンテナが形成された電波遮蔽体では、複数の特定 の周波数の電波を十分に高い遮蔽率で遮蔽することが困難である。
[0030] それに対して、それぞれ第 2エレメント部を有する第 1アンテナと第 2アンテナとは、 それぞれ第 2エレメント部が相互に対向するような態様で配置可能であり、かつ、単 位面積あたりに比較的多くのアンテナ(第 1アンテナ及び第 2アンテナ)を配置するこ とが比較的容易である。従って、第 1アンテナと第 2アンテナとを有する本発明の第 3 の電波遮蔽体は周波数の異なる 2種の電波を選択的に高い電波遮蔽率で遮蔽する ことができる。
[0031] 尚、本発明に係る第 3の電波遮蔽体が有するアンテナ (第 1アンテナ及び第 2アン テナ)は、従来の「Υ」字形の線状アンテナよりもさらに高い周波数選択性を有する。 換言すれば、反射ピークの周波数幅が比較的狭い。このため、本発明に係る第 3の 電波遮蔽体によれば、 2種の所望の周波数 (具体的には、第 1周波数及び第 2周波 数。以下、「第 1周波数及び第 2周波数」を「特定周波数」とすることがある。)の電波 をより高い選択性で遮蔽することができる。さらに、第 1エレメント部の長さと第 2エレメ ント部の長さとを異ならしめることにより、特定周波数に対するより高い周波数選択性 を実現することができる。
[0032] 本発明に係る第 3の電波遮蔽体では、第 1エレメント部の長さと第 2エレメント部の長 さとは反射させようとする電波の周波数 (特定周波数)に応じて適宜決定することがで きる。例えば、第 1エレメント部の長さと第 2エレメント部の長さが同一である場合は、 第 1エレメント部及び第 2エレメント部の長さを長くすることにより特定周波数を低下さ せることができる。また、例えば、第 1エレメント部の長さを一定として、第 2エレメント 部の長さを調節することにより特定周波数を調節することができる。
[0033] 例えば、従来の「Y」字形の線状アンテナ(第 2エレメント部を有さず、第 1エレメント 部のみにより構成されているアンテナ)では、第 1エレメント部の長さを調節することに よってのみ特定周波数を調節することができる。それに対して、本発明に係る第 3の 電波遮蔽体では、上述のように、第 1エレメント部の長さを調節することによって特定 周波数を調節できると共に、第 2エレメント部の長さの第 1エレメント部の長さに対する 比を調節することによつても特定周波数を調節することができる。このため、本発明に 係る第 3の電波遮蔽体は広 、設計幅を有する。
[0034] 尚、第 1アンテナ及び第 2アンテナは相互に大きさが異なるものであることが好まし い。
[0035] 本発明に係る第 3の電波遮蔽体では、複数の第 1アンテナが、各々、第 1アンテナ の第 2エレメント部同士が対向するように配設された一対力 なる複数の第 1アンテナ ユニットを構成していることが好ましい。さらに、複数の第 2アンテナ力 各々、第 2ァ ンテナの第 2エレメント部同士が対向するように配設された一対力 なる複数の第 2ァ ンテナユニットを構成して 、ることが好まし 、。
[0036] この構成によれば、特定周波数 (第 1周波数及び第 2周波数)の電波に対する電波 反射率 (電波遮蔽率)をさらに高くすることができる。従って、特定周波数の電波をさ らに高い遮蔽率で遮蔽することができる電波遮蔽体を実現することができる。特定周 波数の電波に対する電波遮蔽率をより向上する観点から、第 1アンテナ及び第 2アン テナの各々において、対向する第 2エレメント部間の間隔が狭いことが好ましい。
[0037] また、複数の第 1アンテナは、複数の第 1アンテナユニットがさらに第 1アンテナの第 2エレメント部同士が対向するように配設されて二次元に連続展開した六角形状 (好 ましくは略正六角形状)の複数の第 1アンテナ集合体を構成していることが好ましい。 さらに、複数の第 2アンテナは、複数の第 2アンテナユニットがさらに第 2アンテナの第 2エレメント部同士が対向するように配設されて二次元に連続展開した六角形状 (好 ましくは略正六角形状)の複数の第 2アンテナ集合体を構成して 、ることが好ま 、。
[0038] この構成では、 6つの第 1アンテナは環状に配列されており、それら 6つの第 1アン テナのそれぞれのアンテナ中心を結んでなる図形は略正六角形を構成して 、る。同 様に、 6つの第 2アンテナは環状に配列されており、それら 6つの第 2アンテナのそれ ぞれのアンテナ中心を結んでなる図形は略正六角形を構成している。
[0039] アンテナによる特定周波数の電波に対する電波遮蔽率 (電波反射率)を高くするた めには、第 2エレメント部の総数のうち、互いに対向するように配置されている第 2エレ メント部の割合を多くすることが好ましい。この構成によれば、アンテナの各々に含ま れる 3本の第 2エレメント部のうち、他のアンテナの第 2エレメント部と対向して 、る第 2 アンテナの割合をより多くすることができる。このため、第 1アンテナの第 1周波数の電 波に対する電波反射率、及び第 2アンテナの第 2周波数の電波に対する電波反射率 をより高くすることができる。従って、この構成によれば、特定周波数 (第 1周波数及び 第 2周波数)の電波をより高い電波遮蔽率で遮蔽可能な電波遮蔽体を実現すること ができる。
[0040] また、本発明に係る第 3の電波遮蔽体では、第 2アンテナ集合体は第 1アンテナ集 合体に包囲されていてもよい。この構成によれば、第 1アンテナ集合体と第 2アンテナ 集合体とを効率よく配置することができるので、単位面積あたりに含まれる第 1アンテ ナの個数及び第 2アンテナの個数をそれぞれ多くすることができる。従って、この構 成によれば、第 1周波数の電波及び第 2周波数の電波をさらに高い電波遮蔽率で遮 蔽することができる電波遮蔽体を実現することができる。
[0041] また、この構成によれば、第 1アンテナ集合体と第 2アンテナ集合体との数と (第 1ァ ンテナと第 2アンテナとの数と)をほぼ同じにすることができる。
[0042] 尚、第 1アンテナ集合体を構成する複数の第 1アンテナと、第 2アンテナ集合体を構 成する複数の第 2アンテナとは相互に干渉していないことが好ましい。すなわち、第 1 アンテナと第 2アンテナとが接触して ヽな 、ことが好まし 、。
[0043] また、この構成において、特に、第 1アンテナに対応する電波の周波数 (第 1周波数 )と第 2アンテナに対応する電波の周波数 (第 2周波数)とが近い場合は、第 1アンテ ナ集合体と第 2アンテナ集合体とは相互に異なる対称軸を有することが好ましい。言 い換えれば、第 1アンテナ集合体と第 2アンテナ集合体とは同じ対称軸を有さないよ うにすることが好ましい。具体的には、第 2アンテナ集合体は、第 1アンテナ集合体の 対称軸に対して傾斜した対称軸を有することが好ましい。この構成によれば、第 1ァ ンテナと第 2アンテナとの干渉を効果的に抑制することができる。
[0044] 尚、本明細書において、第 1周波数と第 2周波数とが近いということは、第 1周波数 の第 2周波数に対する比 (第 1周波数く第 2周波数)が 0. 45以上であることを 、う。
[0045] 具体的に、第 1周波数が 2. 45GHz,第 2周波数が 5. 2GHzの場合、第 1周波数 の第 2周波数に対する比は 0. 47となる。従って、この場合は第 1周波数と第 2周波数 とは近 ヽ関係にあると ヽえる。
[0046] 図 34で説明すると、大きい略正六角形 (第 1アンテナ集合体)と、大きい略正六角 形 (第 1アンテナ集合体)に囲まれた小さい略正六角形 (第 2アンテナ集合体)とは相 互に異なる対称軸を有する。具体的には、第 2アンテナ集合体は、第 1アンテナ集合 体の対称軸に対して 10° 傾いた対称軸を有する。
[0047] この傾きは、第 1周波数及び第 2周波数の大きさによる力 第 1周波数が 2. 45GHz で、第 2周波数が 5. 2GHzである場合、 Θは 2° 以上 40° 以下であることが好ましい 。より好ましくは、 5° 以上 20° 以下である。さらに好ましくは、 10° 以上 15° 以下で ある。そうすることによって、第 1アンテナと第 2アンテナとの干渉 (接触)を効果的に抑 ff¾することができる。
[0048] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、各アンテナは導電材料 を含むことが好ましい。
[0049] アンテナの特定周波数の電波に対する電波反射率は、アンテナの導電率に相関 する。アンテナの導電率が高い (アンテナの電気抵抗が小さい)ほど、アンテナの特 定周波数の電波に対する電波反射率が大きくなる。このため、アンテナの導電性を 高めることによって、アンテナの特定周波数の電波に対する電波反射率を大きくする ことができる。従って、この構成によれば、特定周波数の電波に対する高い電波遮蔽 率を実現することができる。
[0050] 導電材料としては、アルミニウム、銀、銅、金、白金、鉄、カーボン、黒鉛、酸化イン ジゥムスズ (ITO)、これらの混合物又は合金等が挙げられる。それらのうち、銅、アル ミニゥムと銀とは比較的安価であるため、アンテナは、銅、アルミニウム、及び銀のうち 少なくとも 、ずれかを含んで 、ることがより好まし!/、。
[0051] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、各アンテナにおける第 2 エレメント部の長さは、当該アンテナにおける第 1エレメント部の長さの 0倍よりも大きく 、 2 (3) 1/2倍よりも小さいことが好ましい。第 2エレメント部の長さが第 1エレメント部の長 さの 2 (3) 1/2倍以上であると、隣接する第 2エレメント部が接触してしまい、所望の電波 遮蔽効果が得られなくなるからである。好適な電波遮蔽効果を得る観点から、第 2ェ レメント部の長さは第 1エレメント部の長さの 0. 5倍以上 2倍以下であることが好ましい 。さらに好ましくは 0. 75以上 2倍以下である。
[0052] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、第 2エレメント部は、第 2 エレメント部が結合された第 1エレメント部と垂直をなして 、ることが好ま 、。この構 成によれば、各アンテナを効率よく密に配置することができる。
[0053] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、第 2エレメント部は、そ の中心で第 1エレメント部と結合されていることが好ましい。この構成によれば、各アン テナを効率よく密に配置することができる。
[0054] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、第 1エレメント部と第 2ェ レメント部とは略同一長さであってもよい。
[0055] 本発明に係る第 1、第 2、又は第 3の電波遮蔽体において、各アンテナは開口部を 有する金属膜からなるものであってもよい。各アンテナを開口部を有する金属膜によ り構成した場合、アンテナは、ある程度光を透過し、目にとまりに《なる。従って、視 界の妨げとなりにく!、電波遮蔽体を実現することができる。視界良好性の観点から、 アンテナに対する金属膜が占める面積の割合は 2. 5%以上 30%以下であることが 好ましい。
[0056] 尚、「開口部を有する金属膜」とは、平面視格子状 (三角格子状、六角格子状、コリ ンズ格子状等)などの平面視メッシュ状に形成された金属膜、複数の平面視円形状( 又は、平面視楕円状、平面視多角形状)の微細孔が形成された金属膜などをいう。
[0057] 以上説明したように、本発明によれば、特定周波数の電波を高い電波遮蔽率で遮 蔽することができる電波遮蔽体を実現することができる。
図面の簡単な説明
[図 1]実施形態 1に係る電波遮蔽体 1の構造を表す図である。
[図 2]電波遮蔽体 1の平面図である。
[図 3]アンテナ 4の構成を表す平面図である。
[図 4]ガラス (窓ガラス) 7に電波遮蔽体 1の基材 2側を粘着させた場合の断面図であ る。
[図 5]電波遮蔽体 1の基材 2側に粘着剤 8及び保護膜 9が形成され、トイレットぺーパ 一状にロールされた電波遮蔽体 1の模式図である。
[図 6]ガラス (窓ガラス) 7に電波遮蔽体 1の反射層 3側を粘着させた場合の断面図で ある。
[図 7]電波遮蔽体 1の反射層 3側に粘着剤 8及び保護膜 9が形成され、トイレットベー パー状にロールされた電波遮蔽体 1の模式図である。
[図 8]電波の周波数と、電波遮蔽体 1を透過した際の電波の透過減衰量との関係を 表すグラフである。
[図 9]エレメント長 Lとアンテナ 4によって反射される電波の周波数との関係を表すダラ フである。
[図 10]アンテナ 4の変形例を表す平面図である。
[図 11]実施形態 2に係る電波遮蔽体 10の平面図である。
[図 12]電波遮蔽体 10の一部分を拡大した平面図である。
[図 13]実施形態 3に係る電波遮蔽体 20の平面図である。
[図 14]本実施形態 3に係る電波遮蔽体 20の電波遮蔽特性を示すグラフである。
[図 15]従来の電波遮蔽体 100の平面図である。
[図 16]電波遮蔽体 100の電波遮蔽特性を示すグラフである。
[図 17]従来の電波遮蔽体 200の平面図である。
[図 18]電波遮蔽体 200の電波遮蔽特性を示すグラフである。
[図 19]実施形態 4に係る電波遮蔽体 (電波遮蔽板) 30の構成を表す断面図である。
[図 20]ガラス製の板状体 6に粘着させていない状態の電波遮蔽体 1の整合周波数を 示すグラフである。
圆 21]反射層 3側をガラス製の板状体 6に粘着させた状態の電波遮蔽体 1の整合周 波数を示すグラフである。
[図 22]電波遮蔽体 40の平面図である。
[図 23]第 1アンテナ 41の構成を表す平面図である。
[図 24]第 2アンテナ 42の構成を表す平面図である。
[図 25]電波の周波数と、電波遮蔽体 1を透過した際の電波の透過減衰量との関係を 表すグラフである。
[図 26]エレメント長 Lと、アンテナ 41、 42によって反射される電波の周波数との関係を 表すグラフである。
[図 27]第 1アンテナ 41の L4、 L5を 11. 19mm,幅 L6を 0. 7mmとし、第 2アンテナ 4 2の L7、 L8を 6. 05mm,幅 L9を 0. 7mmとした場合の電波遮蔽体 40の透過減衰量 を表すグラフである。
[図 28]大小 2種の「Y」字形アンテナを有する電波遮蔽体にお!、て、比較的大き!/、ァ ンテナ 103をエレメント部同士が対向するように格子状に配列した場合を説明するた めの平面図である。
[図 29]大小 2種のエルサレムクロス型アンテナを有する電波遮蔽体にぉ 、て、比較的 大きいアンテナ 105を線分状の部分同士が対向するように格子状に配列した場合を 説明するための平面図である。
[図 30]大アンテナ 105と小アンテナ 106とが、各々、第 2エレメント部同士が対向する ように配列された電波遮蔽体の平面図である。
[図 31]実施形態 6に係る電波遮蔽体 50の平面図である。
[図 32]電波遮蔽体 50の一部を拡大した平面図である。
[図 33]電波遮蔽体 50の一部を拡大した平面図である。
[図 34]実施形態 7に係る電波遮蔽体 20の平面図である。
[図 35]実施例及び比較例における周波数と透過減衰量の関係を表すグラフである。
[図 36]実施例及び比較例における (L2ZL1)と整合周波数との相関を表すグラフで ある。 発明を実施するための最良の形態
[0059] 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
[0060] (実施形態 1)
図 1は実施形態 1に係る電波遮蔽体 1の構造を表す図である。詳細には、図 1 (b) は実施形態 1に係る電波遮蔽体 1の平面図である。図 1 (a)は図 1 (b)中の切り出し線 la— laで切り出された部分の断面図である。
[0061] 図 2は電波遮蔽体 1の平面図である。
[0062] 図 3はアンテナ 4の構成を表す平面図である。
[0063] 電波遮蔽体 1は、基材 2と、基材 2の表面に形成された反射層 3とを有する。
[0064] 尚、本実施形態 1では、電波遮蔽体 1は基材 2の表面に反射層 3を形成した態様で ある。しかし、本発明に係る電波遮蔽体はこの構成に限定されない。本発明に係る電 波遮蔽体は、例えば、基材 2の内部に反射層 3が埋め込まれた態様であってもよい。
[0065] 電波遮蔽体 1は、例えば、室内の既設対象物(例えば、窓、壁、天井、床、パーティ シヨン、机等)に電波遮蔽特性を付与する態様のものであってもよい。この場合、基材 2は、板状、シート状、又はフィルム状等の平面を有する形状であることが好ましい。
[0066] 基材 2の材料は何ら限定されるものではない。基材 2の材料は、電波遮蔽体 1の使 用用途に応じて適宜選択することができる。基材 2の好まし 、材料の具体例としては 、例えば、榭脂、ガラス、紙、布、ゴム、石膏、タイル、木材などが挙げられる。
[0067] 基材 2は、単に基材としての役割 (例えば、電波遮蔽体 1の機械的耐久性を担保す る役割)だけでなぐ様々な特性 (光透過性、不燃性、難燃性、非ハロゲン性、柔軟性 、耐衝撃性、耐熱性等)を電波遮蔽体に付与する役割を果たすものであることが特に 好ましい。
[0068] 例えば、電波遮蔽体 1を光透過性を有するものとする場合、基材 2は透明な材料に より形成されていることが好ましい。透明な材料としては、例えば、透明なガラスや透 明な高分子が挙げられる。その中でも、薄く形成することができ、且つ、柔軟性に富 み、卷回できる(ロール状にすることができる)点で、基材 2の材料としては透明な高 分子が好ましい(以下、透明な高分子により形成されたフィルムを「透明高分子フィル ム」とする。)。 [0069] 透明高分子フィルムの材料としては、例えば、ポリエチレンテレフタレート、ポリエー テルサルフォン、ポリスチレン、ポリエチレンナフタレート、ポリアリレート、ポリエーテル エーテルケトン、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリメチルペンテン l (TPX)、ポリアミド (例えば、ナイロン 6等)、ポリイミド、セルロース系榭脂(例えば、ト リアセチルセルロース等)、ポリウレタン、フッ素系榭脂(例えば、ポリテトラフルォロェ チレン等)、ビュルィ匕合物(例えば、ポリ塩ィ匕ビュル等)、ポリアクリル酸、ポリアクリル 酸エステル、ポリアクリロニトリル、ビニル化合物の付加重合体、ポリメタクリル酸、ポリ メタクリル酸エステル、ビ-リデンィ匕合物(例えば、ポリ塩ィ匕ビユリデン等)、フッ化ビ- リデン Zトリフルォロエチレン共重合体、ビ-ルイ匕合物(例えば、エチレン Z酢酸ビ- ル共重合体等)、フッ素系化合物の共重合体、ポリエーテル (例えば、ポリエチレンォ キシド等)、エポキシ榭脂、ポリビュルアルコール、ポリビュルブチラール等が挙げら れる。
[0070] また、基材 2は、上記のような高分子に、紫外線吸収剤を配合したものであってもよ い。
[0071] 透明なガラス材料の具体例としては、例えば、ソーダ石灰、石英等が挙げられる。
その中でも、低コストであるソーダ石灰が好ましい。また、熱線遮蔽ガラス (例えば、熱 線吸収ガラス、熱線反射ガラス等)も好ましい。
[0072] 電波遮蔽体 1に用いる透明高分子フィルムの厚みは、通常 10 μ m以上 500 μ m以 下である。好ましい透明高分子フィルムの厚みは 30 μ m以上 150 μ m以下である。 より好ましい透明高分子フィルムの厚みは 50 μ m以上 120 μ m以下である。透明高 分子フィルムが 10 μ mょ ヽ薄 、と反射層 3の形成が困難となる傾向があり、 500 m より厚いと、可撓性が低下し、卷回しにくくなる(ロール状にしにくくなる)傾向にある。 また、透明高分子フィルムが 500 mより厚いと光透過性が低下する傾向にある。
[0073] さらに、基材 2の表面に反射層 3が形成された電波遮蔽体 1を、室内の既存対象物
(例えば、窓、壁、天井、床、パーティション、机上等)に設置するため、反射層 3を形 成した側の面、及びその反対側の面のうち少なくとも一方に、粘着剤又は接着剤を 塗布する(あるいは、吸着加工を施す)と共に、その接着剤又は粘着剤の表面に保護 層を設けてロールし(トイレットペーパー状にロールし)、必要長に応じて切断できる 態様としてもよい。
[0074] 図 4〜図 7に本実施形態 1に係る電波遮蔽体 1の製品パターン (使用状況)を例示 する。
[0075] 図 4はガラス (窓ガラス) 7に電波遮蔽体 1の基材 2側を粘着させた場合の断面図で ある。図 4では、電波遮蔽体 1は、電波遮蔽体 1の基材 2側に設けられた粘着剤 8によ りガラス 7に粘着されている。
[0076] 図 5は、電波遮蔽体 1の基材 2側に粘着剤 8及び保護膜 9が形成され、トイレットべ 一パー状にロールされた電波遮蔽体 1の模式図である。図 5に示した電波遮蔽体 1 の場合、必要長に応じて切断し、保護膜 9をはがして、ガラス等に粘着させることによ り使用することができる。
[0077] 図 6はガラス(窓ガラス) 7に電波遮蔽体 1の反射層 3側を粘着させた場合の断面図 である。図 6では、電波遮蔽体 1は、電波遮蔽体 1の反射層 3側に設けられた粘着剤 8によってガラス 7に粘着されている。
[0078] 図 7は、電波遮蔽体 1の反射層 3側に粘着剤 8及び保護膜 9が形成され、トイレット ペーパー状にロールされた電波遮蔽体 1の模式図である。図 7に示した電波遮蔽体 1の場合、必要長に応じて切断し、保護膜 9をはがして、ガラス等に粘着させること〖こ より使用することができる。
[0079] 基材 2上に形成された反射層 3は、模様を構成するように、所定パターンで配置さ れた複数のアンテナ 4により構成されている。本実施形態 1に係る電波遮蔽体 1では 、反射層 3は、相互に同一の形状寸法の複数のアンテナ 4のみによって構成されて いるが、例えば、反射層 3は、その一部に、アンテナ 4とは異なる形状寸法のアンテナ を含んでいてもよい。
[0080] アンテナ 4は周波数選択性を有するものである。すなわち、アンテナ 4は特定周波 数の電波を選択的に反射するものである。このため、電波遮蔽体 1は特定周波数の 電波を選択的に遮蔽し、それ以外の光を透過させることができる。
[0081] 本実施形態 1では、複数のアンテナ 4は、基材 2上に、等間隔にマトリクス状に配列 されている。複数のアンテナ 4は、隣接するアンテナ 4が接触しないように配列されて いる。図 3に示すように、複数のアンテナ 4のそれぞれは、 3本の第 1エレメント部 4aと 、 3本の第 2エレメント部 4bとを有する。 3本の第 1エレメント部 4aは、相互に 120° の 角度をなしてアンテナ中心 C力 外方に延びている。
[0082] 各第 2エレメント部 4bは第 1エレメント部 4aの外側端に結合されている。第 1エレメン ト部 4aの長さ(L1)と第 2エレメント部 4bの長さ(L2)とは相互に異なっていてもよぐ また同一であってもよい。第 1エレメント部 4aの長さ(L1)と第 2エレメント部 4bの長さ( L2)とは、 0く L2< 2 (3) 1/2ZL1という関係式を満たすことが好ましい。(L2)が 2 (3^ /2/Ll以上である場合は、隣接する第 2エレメント部 4b同士が接触してしまい、所望 の電波遮蔽効果が得られなくなるからである。特定周波数の高 、遮蔽率を実現する 観点から、第 2エレメント部 4bの長さ (L2)は第 1エレメント部 4aの長さ(L1)の 0. 5倍 以上 2倍以下であることが好ましい。さらに好ましくは、 0. 75倍以上 2倍以下である。
[0083] 第 1エレメント部 4aの幅と第 2エレメント部 4bの幅は相互に異なっていてもよぐまた 、同一であってもよい。本実施形態 1においては、第 1エレメント部 4aの幅と第 2エレメ ント部 4bの幅とは略同一の幅 (L3)とする。
[0084] 上述のように、アンテナ 4は、各第 1エレメント部 4aの外側端に結合された 3本の第 2 エレメント部 4bを有する。このため、アンテナ 4は従来の「Y」字形の線状アンテナ(3 本の第 1エレメント部のみにより構成され、第 2エレメント部を有さな 、線状アンテナ) よりも高い周波数選択性を有する。従って、複数のアンテナ 4が設けられた電波遮蔽 体 1は特定周波数の電波を高い選択性で遮蔽することができる。
[0085] また、アンテナ 4は第 2エレメント部 4bを有するため、第 2エレメント部 4b同士を対向 させて複数のアンテナ 4を配置することが容易である。第 2エレメント部 4b同士を対向 させて (より好ましくは、第 2エレメント部 4b同士を緊密に対向させて)複数のアンテナ 4を配置することによって、特定周波数の電波に対する電波遮蔽率を向上することが できる。
[0086] 第 2エレメント部 4b同士を対向させると共に、単位面積あたりにより多くのアンテナ 4 を配置する観点から、第 2エレメント部 4bはその中心にぉ 、て第 1エレメント部 4aの 外側端に結合され、且つ第 2エレメント部 4bと第 1エレメント部 4aとが直角をなすこと が好ましい。また、第 2エレメント部 4bの長さと第 1エレメント部 4aの長さとが略同一で あることが好ましい。 [0087] 第 1エレメント部 4aの長さ及び第 2エレメント部 4bの長さと、アンテナ 4に反射させよ うとする電波の周波数 (特定周波数)とは相関する。このため、第 1エレメント部 4aの 長さと第 2エレメント部 4bの長さとは、電波遮蔽体 1により遮蔽させようとする電波の周 波数 (特定周波数)に応じて適宜決定することができる。例えば、第 1エレメント部 4a の長さと第 2エレメント部 4bの長さとが同一である場合は、第 1エレメント部 4a及び第 2エレメント部 4bの長さを長くすることによって特定周波数を低下させることができる。 また、第 1エレメント部 4a及び第 2エレメント部 4bの長さを短くすることによって特定周 波数を高くすることができる。
[0088] 以下、第 1エレメント部 4aの長さ(L1)と第 2エレメント部 4bの長さ(L2)とが同一であ る場合 (L1)と (L2)とが同一である場合に、 (L1)と (L2)を総称してエレメント長 と する。)の電波遮蔽体 1の電波遮蔽特性について図 8及び図 9を参照しながら詳細に 説明する。
[0089] 図 8は、電波の周波数と、電波遮蔽体 1を透過した際の電波の透過減衰量との関係 を表すグラフである。
[0090] 尚、図 8において、長さ(L1)及び(L2)はそれぞれ 10. 6mm、幅 L3が 0. 7mmで ある。
[0091] 図 8に示すように、電波遮蔽体 1に入射した電波のうち特定周波数 (約 2. 7GHz) 付近の周波数帯域の電波の透過率が選択的に減衰する。換言すれば、電波遮蔽体 1により、電波遮蔽体 1に入射した電波のうち特定周波数付近の周波数帯域の電波 が選択的に遮蔽される。これは、電波遮蔽体 1の反射層 3、詳細には反射層 3に含ま れる複数のアンテナ 4のそれぞれが、入射した電波のうち特定周波数付近の周波数 帯域の電波を選択的に反射するためである。アンテナ 4によって反射される電波の周 波数は、第 1エレメント部 4aの長さ(LI =L)と第 2エレメント部 4bとの長さ(L2 = L)に よって決定される。
[0092] 図 9はエレメント長 Lとアンテナ 4によって反射される電波の周波数との関係を表す グラフである。
[0093] 図 9に示すように、エレメント長 Lが長くなるほど、アンテナ 4によって反射される電波 の周波数は低くなる。換言すれば、エレメント長 Lが長くなるほど、アンテナ 4によって 反射される電波の波長は長くなる。逆に、エレメント長 Lが短くなるほど、アンテナ 4に よって反射される電波の周波数は高くなる(波長は短くなる)。
[0094] 一方、反射される電波の周波数は幅 L3と大きく相関しない。すなわち、反射される 電波の周波数は、主として、エレメント長 Lによって決定される。従って、図 9に示すよ うなエレメント長 Lと選択周波数との関係に基づいて、アンテナ 4により反射させたい 電波の周波数 (特定周波数)からエレメント長 Lを算出決定することができる。例えば 、周波数 5GHzの電波を遮蔽させる電波遮蔽体 1を作成する場合は、図 9より、エレメ ント長 Lを約 6mmにすればよ!、ことがわかる。
[0095] また、例えば、第 1エレメント部 4aの長さ (L1)を固定し、第 2エレメント部 4bの長さ( L2)を調整することにより特定周波数を調整することも可能である。具体的には、第 2 エレメント部 4bの長さ (L2)を長くすることにより特定周波数を低くすることができる。ま た、第 2エレメント部 4bの長さ (L2)を短くすることにより特定周波数を高くすることが 可能である。
[0096] 例えば、従来の「Y」字形の線状アンテナ(第 2エレメント部を有さず、第 1エレメント 部のみにより構成されているアンテナ)では、第 1エレメント部の長さ (L1)を調節する ことによってのみ特定周波数を調節することができる。それに対して、本実施形態 1に 係る電波遮蔽体 1では、上述のように、第 1エレメント部 4aの長さ(L1)及び第 2エレメ ント部 4bの長さ(L2)の両方を調節することによって特定周波数を調節できると共に、 第 2エレメント部 4bの長さ(L2)の第 1エレメント部 4aの長さ(L1)に対する比を調節す ることによつても特定周波数を調節することができる。従って、設計幅の広い電波遮 蔽体 1を実現することができる。
[0097] 本実施形態 1にお 、て、アンテナ 4は導電材料で形成されて 、る。すなわち、アン テナ 4は導電性を有する。アンテナ 4の特定周波数の電波に対する電波反射率 (電 波遮蔽体 1の電波遮蔽率)はアンテナ 4の導電率と相関する。具体的には、アンテナ 4の導電率が高 ヽ(アンテナ 4の電気抵抗が小さ 、)ほど、アンテナ 4の特定周波数の 電波に対する電波反射率 (電波遮蔽体 1の電波遮蔽率)が高くなる。このため、アン テナ 4の導電性を高めることによって、アンテナ 4の特定周波数の電波に対する電波 反射率 (電波遮蔽体 1の電波遮蔽率)を高くすることができる。 [0098] 導電材料としては、アルミニウム、銀、銅、金、白金、鉄、カーボン、黒鉛、酸化イン ジゥムスズ (ITO)、インジウム亜鉛酸ィ匕物 (IZO)、これらの混合物又は合金等が挙げ られる。アンテナ 4は、銅、アルミニウム、及び銀のうち少なくともいずれかを含んでい ることが好ましい。銅、アルミニウム、銀は、導電材料の中でも比較的電気抵抗が低く 、安価であるため、この構成によれば、安価且つ高い電波遮蔽性を有する電波遮蔽 体 1を実現することができる。より高い電波遮蔽性及び低コストを実現する観点から、 上記の導電材料の中でも、特に銀が好ましい。
[0099] アンテナ 4は、導電材料からなる導電膜と、その導電膜を被覆する酸ィ匕防止膜とに より構成してちょい。
[0100] また、アンテナ 4は銅、アルミニウム、銀等の導電性材料の微粒子を含んだ構成とし てもよい。例えば、粉末状の導電材料をバインダーに含ませたペースト(以下、「導電 性ペースト」とすることがある。)を基材 2に均一に所定パターンで塗布し、その後乾燥 させることにより作製することができる。具体的には、ペーストを所定のパターンに形 成した後、例えば 100°C以上 200°C以下の雰囲気下で 10分以上 5時間以下乾燥さ せることによりアンテナ 4を作製することができる。
[0101] アンテナ 4を作製するための導電性ペーストは、粉末状の導電性材料 (例えば、銀) をポリエステル榭脂中に分散混入させたものであってもよい。この場合、導電性材料 の含有率は 40重量パーセント以上 80重量パーセント以下であることが好まし 、。導 電性材料の含有率は 50重量パーセント以上 70重量パーセント以下であることがより 好まし ヽ。導電性材料の含有率が 40重量パーセント未満であるとアンテナ 4の導電 性が低下する傾向となる。一方、導電性材料の含有率が 80重量パーセントより多い と榭脂中に均一に分散混入させることが困難となる傾向がある。尚、ポリエステル榭 脂は導電性材料と基材 2とを接着させる接着剤の役割をなす。
[0102] 尚、アンテナ 4の厚さは 10 μ m以上 20 μ m以下であることが好ましい。アンテナ 4の 厚さが 10 mより小さいとアンテナ 4の導電性が低下する傾向にある。アンテナ 4の 厚さが 20 mより大きいと、アンテナ 4の形成性が低下する傾向にある。
[0103] 本発明において、アンテナ 4の形成方法は上記の方法に限定されるものではなぐ 他の方法により形成してもよい。例えば、基材 2に、蒸着法、スパッタ法、化学蒸着法 (CVD法)等の成膜方法により導電膜 (例えば、アルミニウム膜、銀膜等)を成膜し、 フォトリソグラフィ一等のパターユング方法により所定の形状寸法にパターユングされ たアンテナ 4を形成してもよい。また、所定の形状寸法にパターユングされたアルミ- ゥム等の薄膜を基材 2に粘着又は貼着することによりアンテナ 4を形成しても構わな い。その他、アンテナ 4は、例えば、シルク印刷法、パターン圧着法、エッチングカロェ 法、スパッタ法、蒸着法 (例えば、化学気相蒸着法 (CVD法))、ミスト塗装法、型の嵌 め込みによる埋め込み法等によっても形成することができる。
[0104] 以上、本実施形態 1に係る電波遮蔽体 1について詳細に説明してきたが、電波遮 蔽体 1の形状寸法は何ら制限されるものではない。電波遮蔽体 1は一辺の長さが数ミ リメ一トル角の小さなものであっても、一辺が数メートル、又はそれ以上の大きなもの であってもよい。
[0105] また、電波遮蔽体 1は、平面視において、三角形、四辺形 (長方形、正方形)、多角 形、円形、楕円形等の任意の形状のものであってもよい。
[0106] また、電波遮蔽体 1の単位面積あたりに含まれるアンテナ 4の個数も何ら限定される ものではない。電波遮蔽体 1の単位面積あたりに含まれるアンテナ 4の個数は、電波 遮蔽体 1の用途等により適宜変更することができる。電波遮蔽体 1の単位面積あたり に含まれるアンテナ 4の数量を増やすことにより高い電波遮蔽性を実現することがで きる。
[0107] (変形例)
図 10は本変形例(上記実施形態 1の変形例)におけるアンテナ 4の形態を表す平 面図である。詳細には、図 10 (a)は、本変形例におけるアンテナ 4の全体形状を表 す平面図である。図 10 (b)は、アンテナ 4の部分形状を表す部分拡大平面図である
[0108] 図 10に示すように、アンテナ 4を開口部を有する金属膜 (好ましくは、金属薄膜)に より形成してもよい。この構成によれば、アンテナ 4を、ある程度の光透過性を有し、 目に付きにくいものとすることができる。従って、視界の妨げとなりにくい電波遮蔽体 を実現することができる。視界良好性の観点から、アンテナ 4に対する金属膜が占め る面積の割合は 2. 5%以上 30%以下であることが好ま 、。 [0109] アンテナ 4を構成する金属膜を平面視メッシュ状とした場合、線幅 (W)、及びそのピ ツチ (P)は、導電性 (電波遮蔽性)と開口率 (透光性)との関係で、線幅 (W)は、 5 μ m以上 70 μ m以下であることが好ましい。より好ましくは、 8 μ m以上 30 μ m以下で ある。ピッチ(P)は、 50 μ m以上 400 μ m以下であることが好ましい。より好ましくは、 100 μ m以上 300 μ m以下である。
[0110] 線幅 (W)が 5 mより小さいと、導電性 (電波遮蔽性)が低下する傾向にある。一方 、線幅 (W)が 70 mを超えると、開口率 (透光性)が低下する傾向にある。
[0111] また、ピッチ(P)が 50 mより小さいと開口率 (透光性)が低下する傾向にある。一 方、ピッチ (P)が 400 μ mを超えると導電性 (電波遮蔽性)が低下する傾向にある。
[0112] また、アンテナ 4が配置されていることにより人が感じる不快感抑制する観点 (透光 性の観点)、及び導電性 (電波遮蔽性)の観点に加え、電波遮蔽体 1の作製容易性 の点で、線幅 (W)及びピッチ (P)を共に大きくすることがより好ましい。具体的には、 線幅(W)を 50 μ m以上 70 μ m以下とし、且つ、ピッチ(P)を 300 μ m以上 400 μ m 以下とすることがより好ま 、。
[0113] 尚、本変形例では、アンテナ 4を構成する金属膜は正方格子状に形成されている 力 金属膜は、例えば、平面視格子状 (三角格子状、六角格子状、コリンズ格子状等 )などの平面視メッシュ状に形成された金属膜であってもよい。複数の平面視円形状 (又は、平面視楕円状、平面視多角形状)の微細孔が形成された金属膜であってもよ い。
[0114] (実施形態 2)
図 11は実施形態 2に係る電波遮蔽体 10の平面図である。
[0115] 図 12は電波遮蔽体 10の一部分を拡大した平面図である。
[0116] 本実施形態 2に係る電波遮蔽体 10は、反射層 3におけるアンテナ 4の配列を除い て、実施形態 1に係る電波遮蔽体 1と同様の形態を有する。以下、本実施形態 2にお けるアンテナ 4の配列について、図 11及び図 12を参照しながら詳細に説明する。尚 、本実施形態 2の説明において、図 1は実施形態 1と共通に参照し、また、実質的に 同じ機能を有する構成要素を実施形態 1と共通の参照符号で説明し、説明を省略す る。 [0117] 実施形態 2において、複数のアンテナ 4は、各々、第 2エレメント部 4b同士が対向す るように配設された一対力もなる複数のアンテナユニット 5aを構成している。また、ァ ンテナユニット 5aは、さらに第 2エレメント部 4b同士が対向するように配設されて二次 元に連続展開した六角形状の複数のアンテナ集合体 5を構成している。各アンテナ 集合体 5は、第 2エレメント部 4b同士を対向させて環状に配置された 3つのアンテナ ユニット 5aからなる。言い換えれば、アンテナ集合体 5は、第 2エレメント部 4b同士を 対向させて環状に配置された 6つのアンテナ 4からなる。
[0118] 本実施形態 2に係る電波遮蔽体 10では、複数のアンテナ集合体 5が所定間隔でマ トリタス状に配列されている。
[0119] 種々の入射角で入射する電波に対して一定した電波遮蔽性を実現する観点から、 アンテナ集合体 5は六角形状 (好ましくは略正六角形状)であることが好ま U、。従つ て、第 1エレメント部 4aと第 2エレメント部 4bとが直角をなしていることが好ましい。また 、第 2エレメント部 4bがその中心にぉ 、て第 1エレメント部 4aと結合して 、ることが好 ましい。
[0120] 本実施形態 2では、アンテナ集合体 5を構成する 18本の第 2エレメント部 4bのうち 1 2本の第 2エレメント部 4bが相互に略平行に対向するように設けられて 、る。このよう に、比較的多くの第 2エレメント部 4b同士が対向するようにアンテナ 4を配置構成する ことによって、アンテナ 4の特定周波数の電波に対する電波反射率 (電波遮蔽率)を より向上することができる。従って、特定周波数の電波に対する高い電波遮蔽率を有 する電波遮蔽体 10を実現することができる。
[0121] 尚、対向する第 2エレメント部 4b間の距離 (XI)を短くするほど電波遮蔽体 10の電 波反射率が高くなる。具体的には、対向する第 2エレメント部 4b間の距離 (XI) (図 1 2参照)が 0. 4mm以上 3mm以下であることが好ましい。より好ましい範囲は 0. 6mm 以上 lmm以下である。距離 Xを 0. 4mmより短くすると、対向する第 2エレメント部 4b 同士が不所望に接触する虞がある。一方、距離 Xが 3mmより長いと電波遮蔽率が低 下する傾向にある。
[0122] 尚、本実施形態 2においても、上記変形例にように、アンテナ 4を開口部を有する金 属膜 (好ましくは、金属薄膜)、例えば、メッシュ状の金属膜により形成してもよい。 [0123] (実施形態 3)
図 13は実施形態 3に係る電波遮蔽体 20の平面図である。
[0124] 本実施形態 3に係る電波遮蔽体 20は、反射層 3におけるアンテナ 4の配列を除い て、実施形態 1に係る電波遮蔽体 1、実施形態 2に係る電波遮蔽体 10と同様の形態 を有する。以下、本実施形態 3におけるアンテナ 4の配列について、図面を参照しな 力 詳細に説明する。尚、本実施形態 3の説明において、図 1は実施形態 1と共通に 参照し、また、実質的に同じ機能を有する構成要素を実施形態 1、 2と共通の参照符 号で説明し、説明を省略する。
[0125] 本実施形態 3に係る電波遮蔽体 20では、アンテナ集合体 5がさらに第 2エレメント 部 4b同士が対向するように(所謂ハ-カム状に)配置されている。このため、実施形 態 3においては、ほぼすベての第 2エレメント部 4b同士が対向している。
[0126] このようにアンテナ 4を配置することによって、実施形態 2よりもさらに、相互に対向 するように設けられた第 2エレメント部 4bを多くすることができる。このため、本実施形 態 3に係る電波遮蔽体 20は、本実施形態 2に係る電波遮蔽体 10よりも更に高い電波 反射率を有する。
[0127] また、本実施形態 3に係る電波遮蔽体 20は、下記の通り、本実施形態 2に係る電波 遮蔽体 10よりも更に高い周波数選択性を有する。従って、電波遮蔽体 20は使用周 波数域が飽和状態になりつつある昨今の電波環境の整備に好適なものである。
[0128] 以下、電波遮蔽体 20が比較的高い周波数選択性を有することを、図 14〜図 18を 参照しながら具体的に説明する。
[0129] 図 14は本実施形態 3に係る電波遮蔽体 20の電波遮蔽特性を示すグラフである。
[0130] 図 14に示すように、本実施形態 3に係る電波遮蔽体 20の 10dB帯域幅〔(F2— F1 ) ZF0 (%)〕は 10. 4%と非常に小さい。このように、電波遮蔽体 20は非常に高い周 波数選択性を有する。尚、 F0は、整合周波数である。
[0131] これに対して、従来の電波遮蔽体は本実施形態 3に係る電波遮蔽体 20と比べて周 波数選択性が低い。
[0132] 図 15は従来の電波遮蔽体 100の平面図である。
[0133] 図 16は電波遮蔽体 100の電波遮蔽特性を示すグラフである。 [0134] 図 17は従来の電波遮蔽体 101の平面図である。
[0135] 図 18は電波遮蔽体 101の電波遮蔽特性を示すグラフである。
[0136] 従来の電波遮蔽体 100は、所謂「エルサレムクロス型」の複数のアンテナを備えた ものである。この電波遮蔽体 100の整合周波数 (FO)に対する 10dB帯域幅〔(F2— F1) ZF0 (%)〕は、図 16に示すように、 17. 0%と本実施形態 3に係る電波遮蔽体 2 0よりも比較的大きい。
[0137] また、図 17に示す、「Y」字形の複数のアンテナを備えた従来の電波遮蔽体 101の 10(18帯域幅〔^2—?1) 7?0 (%)〕も、図 18に示すように、 33. 0%と本実施形態 3 に係る電波遮蔽体 20よりも比較的大き ヽ。
[0138] このように周波数選択性の低い従来の電波遮蔽体 100、 101では、目的とする特 定周波数 (域)以外の電波をも遮蔽してしまうおそれがある。このため、従来の電波遮 蔽体 100、 101を用いた場合、特定周波数以外の電波に対する電波環境を悪化さ せてしまうおそれがある。これに対して、本実施形態 3に係る電波遮蔽体 20は上述の 通り、小さな 10dB帯域幅を有するため(非常に高い周波数選択性を有するため)、 特定周波数 (帯域)の電波を好適に遮蔽すると共に、特定周波数 (域)以外の電波を 好適に透過させることができる。
[0139] 尚、本発明に係る電波遮蔽体 20と従来の電波遮蔽体 100、 101では整合周波数( F0)が異なる。しかし、 10dB帯域幅は整合周波数に依存するものではない。
[0140] また、本実施形態 3にお 、ても、上記変形例にように、アンテナ 4を開口部を有する 金属膜 (好ましくは、金属薄膜)、例えば、メッシュ状の金属膜により形成してもよい。
[0141] (実施形態 4)
上記実施形態 1〜3では、本発明の適用例として電波遮蔽体について説明してき た。しかし、本発明に係る電波遮蔽体は何ら上記実施形態に限定されるものではな い。本発明に係る電波遮蔽体は、例えば、複数のアンテナ 4を含む反射層 3が電波 遮蔽体内部に設けられたものであってもよい。本実施形態 4では、複数のアンテナ 4 を含む反射層 3が内部に設けられた電波遮蔽体について図 19を参照しながら説明 する。尚、本実施形態 4の説明において、実質的に同じ機能を有する構成要素を実 施形態 1と共通の参照符号で説明し、説明を省略する。 [0142] 図 19は実施形態 4に係る電波遮蔽体 (電波遮蔽板) 30の構成を表す断面図である
[0143] 本実施形態 4に係る電波遮蔽板 30は、実施形態 1に係る電波遮蔽体 1と板状体 6と を備えている。詳細には、電波遮蔽体 1は、アンテナ 4が板状体 6と対向するように、 粘着剤 8を介して板状体 6に積層されて 、る。
[0144] 板状体 6は何ら限定されるものではな 、。板状体 6は、例えば、木製の板、ガラス板 等であってもよい。
[0145] 電波遮蔽体 1は粘着剤 (接着剤) 8により板状体 6に粘着又は接着されている。粘着 剤は、透明性の観点から、アクリル系粘着剤等の透明粘着剤であることが好ましい。 接着剤としてはアクリル系接着剤等の透明接着剤が好ま ヽ。粘着剤又は接着剤の 層厚は、粘着 (接着)性、電波遮蔽性、透明性の観点から、 10 m以上 60 m以下 であることが好ましい。より好ましい範囲は 20 μ m以上 50 μ m以下である。
[0146] 本実施形態 4のように、電波遮蔽体 1が、粘着剤 (接着剤) 8を介して、ガラス等の板 状体 6に接着又は粘着されている場合であっても、特定周波数の電波はアンテナ 4 により選択的に反射される。
[0147] 但し、実施形態 1のように、アンテナ 4の一方面が大気と接触している場合と、本実 施形態 4のように、アンテナ 4の両面が基材 2や板状体 6等の固体と接している場合と では、アンテナ 4の形状寸法及び材料が同一であったとしても、アンテナ 4により反射 (遮蔽)される電波の周波数 (特定周波数)が異なる。
[0148] 図 20はガラス製の板状体 6に粘着させていない状態の電波遮蔽体 1の整合周波数 を示すグラフである。
[0149] 図 21は反射層 3側をガラス製の板状体 6に粘着させた状態の電波遮蔽体 1の整合 周波数を示すグラフである。
[0150] 尚、図 20及び図 21中に示す関係式は、得られた整合周波数データの回帰式であ る。また、図 20及び図 21では第 1エレメント部 4aの長さ(L1)と第 2エレメント部 4bの 長さ(L2)とが同一であるアンテナ 4を有する場合のデータである。図 20及び図 21に 示す「エレメント長」とは第 1エレメント部 4aの長さ(L1) (=第 2エレメント部 4bの長さ( L2) )のことである。 [0151] 図 20及び図 21に示すように、電波遮蔽体 1の反射層 3側をガラス製の板状体 6に 粘着させると、反射層 3が空気と接している場合と比較して、エレメント長と整合周波 数との関係が変化する。具体的には、電波遮蔽体 1の反射層 3側がガラス製の板状 体 6に粘着されている場合は、反射層 3が空気と接している場合よりも、アンテナ 4に より反射 (遮蔽)される電波の周波数は低くなる。
[0152] 尚、本実施形態 4においても、上記変形例にように、アンテナ 4を開口部を有する金 属膜 (好ましくは、金属薄膜)、例えば、メッシュ状の金属膜により形成してもよい。
[0153] 以上、上記実施形態 1〜4において 1種のアンテナ 4のみを有する電波遮蔽体例に ついて説明してきた。しかし、本発明に係る電波遮蔽体は複数種類 (2種、又は 3種 以上)のアンテナ 4を有するものであってもよい。以下、 2種のアンテナを有する電波 遮蔽体例について図面を参照しながら詳細に説明する。
[0154] (実施形態 5)
図 22は電波遮蔽体 40の平面図である。
[0155] 図 23は第 1アンテナ 41の構成を表す平面図である。
[0156] 図 24は第 2アンテナ 42の構成を表す平面図である。
[0157] 本実施形態 5に係る電波遮蔽体 40は、反射層 3が第 1アンテナ 41及び第 2アンテ ナ 42と 、う 2種のアンテナにより構成されて 、る点を除 、て、実施形態 1に係る電波 遮蔽体 1と同様の形態を有する。以下、本実施形態 5における反射層 3について、図 22〜図 27を参照しながら詳細に説明する。尚、本実施形態 5の説明において、図 1 は実施形態 1と共通に参照し、また、実質的に同じ機能を有する構成要素を実施形 態 1と共通の参照符号で説明し、説明を省略する。
[0158] 本実施形態 5において、反射層 3は、模様を構成するように配置された、相互に大 きさの異なる複数の第 1アンテナ 41と複数の第 2アンテナ 42とを備えている。第 1アン テナ 41と第 2アンテナ 42とは相似形であってもよい。
[0159] 尚、上記変形例にように、第 1アンテナ 41、第 2アンテナ 42を開口部を有する金属 膜 (好ましくは、金属薄膜)、例えば、メッシュ状の金属膜により形成してもよい。
[0160] また、本実施形態 5に係る電波遮蔽体 40では、反射層 3は第 1アンテナ 41及び第 2 アンテナ 42のみによって構成されている力 本発明は何らこの構成に限定されるもの ではない。例えば、反射層 3は、その一部に、第 1アンテナ 41及び第 2アンテナ 42と は異なる形状のパターンを含んで 、てもよ 、。
[0161] 第 1アンテナ 41及び第 2アンテナ 42のそれぞれは、基材 2上に、相互に干渉しない ように、等間隔にマトリクス状に複数配列されている。第 1アンテナ 41及び第 2アンテ ナ 42はそれぞれ周波数選択性を有する。具体的には、第 1アンテナ 41は第 1周波 数を反射し、第 2アンテナ 42は第 2周波数を反射する。このため、本実施形態 5に係 る電波遮蔽体 40は第 1周波数の電波と第 2周波数の電波とを選択的に遮蔽し、それ 以外の周波数の電波を透過させることができる。
[0162] 例えば、無線 LANでは、 2. 4GHzの周波数の電波と、 5. 2GHzの周波数の電波 との 2種の周波数の電波が使用されて 、る。このように無線 LANを使用する環境等と いった 2種の周波数の電波を使用するような環境においては、使用される 2種の周波 数の電波を選択的に遮蔽し、使用されないそれ以外の周波数の電波 (例えば携帯 電話の通信に用いられている電波、テレビ放送用の電波等)を透過させるような電波 遮蔽体が必要とされる。このところ、上述の通り、本実施形態 5に係る電波遮蔽体 40 は特定の 2種の周波数 (第 1周波数及び第 2周波数)の電波を選択的に遮蔽し、それ 以外の周波数の電波を透過させることができる。このため、本発明に係る第 2の電波 遮蔽体は、このような無線 LAN等の 2種の周波数の電波が使用される環境に好適で ある。
[0163] 例えば、 3種類以上の周波数の電波が使用されるような環境においては、相互に大 きさの異なる 3種類以上のアンテナにより反射層 3を構成してもよい。
[0164] 第 1アンテナ 41は、図 22及び図 23に示すように、 3本の第 1エレメント部 41aと、 3 本の第 2エレメント部 41bとを有する。 3本の第 1エレメント部 41aは、相互に 120° の 角度をなしてアンテナ中心 C2から略同一長さでもって放射状に延びている。
[0165] 各第 2エレメント部 41bは第 1エレメント部 41aの外側端に結合されている。第 1エレ メント部 41aの長さ(L4)と第 2エレメント部 41bの長さ(L5)とは相互に異なって!/、ても よぐまた同一であってもよい。第 1エレメント部 41aの長さ(L4)と第 2エレメント部 41b の長さ(L5)とは、 0く L5く 2 (3) 1/2ZL4という関係式を満たすことが好ましい。 L5が 2 (3) Vソ L4以上である場合は、隣接する第 2エレメント部 4 lbが接触してしまい、所 望の電波遮蔽効果が得られなくなる。特定周波数の高 、遮蔽率を実現する観点から
、第 2エレメント部 41bの長さ(L5)は第 1エレメント部 41aの長さ(L4)の 0. 5倍以上 2 倍以下であることが好ましい。さらに好ましくは、 0. 75倍以上 2倍以下である。
[0166] 各第 2エレメント部 41bはその中心において第 1エレメント部 41aの外側端と結合さ れていてもよい。各第 2エレメント部 41bと、その第 2エレメント部 41bに結合した第 1 エレメント部 41aとが直角(90度)をなしていてもよい。また、第 1エレメント部 41aの幅 と第 2エレメント部 41bの幅は相互に異なっていてもよぐまた、同一であってもよい。 本実施形態 5においては、第 1エレメント部 41aの幅と第 2エレメント部 41bの幅とは略 同一の幅 (L6)とする。
[0167] 図 22及び図 23に示すように、第 2アンテナ 42も第 1アンテナ 41と同様に、 3本の第 1エレメント部 42aと、 3本の第 2エレメント部 42bとを有する。 3本の第 1エレメント部 42 aは、相互に 120° の角度をなしてアンテナ中心 C3から略同一長さでもって放射状 に延びている。
[0168] 各第 2エレメント部 42bは第 1エレメント部 42aの外側端に結合されている。第 1エレ メント部 42aの長さ(L7)と第 2エレメント部 42bの長さ(L8)とは相互に異なっていても よぐまた同一であってもよい。第 1エレメント部 42aの長さ(L7)と第 2エレメント部 42b の長さ (L8)とは、 0く L8< 2 (3) 1/2ZL7という関係式を満たすことが好ましい。また、 特定周波数の高い遮蔽率を実現する観点から、第 2エレメント部 42bの長さ L8は第 1 エレメント部 42aの長さ L7の 0. 5倍以上 2倍以下であることが好ましい。さらに好まし くは、 0. 75倍以上 2倍以下である。
[0169] 各第 2エレメント部 42bはその中心において第 1エレメント部 42aの外側端と結合さ れていてもよい。各第 2エレメント部 42bと、その第 2エレメント部 41bに結合された第 1エレメント部 42aとが直角(90度)をなしていてもよい。また、第 1エレメント部 42aの 幅と第 2エレメント部 42bの幅は相互に異なっていてもよぐまた、同一であってもよい 。本実施形態 5においては、第 1エレメント部 42aの幅と第 2エレメント部 42bの幅とは 略同一の幅 (L9)とする。
[0170] 上述のように、第 1アンテナ 41及び第 2アンテナ 42は、それぞれ第 1エレメント部 41 a (42a)の外側端に結合された第 2エレメント部 41b (42b)を有する。このため、アン テナ 41、 42は従来の「Y」字形の線状アンテナよりも高い周波数選択性を有する。換 言すれば、第 1アンテナ 41及び第 2アンテナ 42のそれぞれの反射ピークの周波数幅 が比較的狭い。従って、電波遮蔽体 40は特定周波数 (第 1周波数及び第 2周波数) の電波を高 、選択性で遮蔽することができる。
[0171] 第 1エレメント部 41a (42a)の長さ L4 (L7)と第 2エレメント部 41b (42b)の長さ L5 ( L8)とアンテナ 41 (42)に反射させようとする電波の周波数 (特定周波数)とは相関す る。このため、第 1エレメント部 41& (42&)の長さ 4 (し7)と第 2エレメント部 41b (42b) の長さ L5 (L8)とは所望の特定周波数に応じて適宜決定することができる。例えば、 第 1エレメント部 41a (42a)の長さ L4 (L7)と第 2エレメント部 41b (42b)の長さ L5 (L 8)とが同一である場合は、第 1エレメント部 41a (42a)及び第 2エレメント部 41b (42b )の長さ L5 (L8)を長くすることによって特定周波数 (第 1周波数、第 2周波数)を低下 させることがでさる。
[0172] 以下、第 1エレメント部 41a (42a)の長さ L4 (L7)と第 2エレメント部 41b (42b)の長 さ L5 (L8)とが同一である場合の電波遮蔽体 40の電波遮蔽特性について図面を参 照しながら詳細に説明する。
[0173] 図 25は、電波の周波数と、電波遮蔽体 40を透過した際の電波の透過減衰量との 関係を表すグラフである。
[0174] 尚、図 25では、第 1エレメント部 41a (42a)の長さ L4 (L7)と第 2エレメント部 41b (4
2b)の長さ L5 (L8)とのそれぞれが 10. 6mm (5. Omm)、幅 L6及び L9がそれぞれ
0. 7mmである。
[0175] 図 25に示すように、電波遮蔽体 40に入射した電波のうち 2種の周波数の電波、具 体的には、第 1周波数 (約 2. 6GHz)の電波と第 2周波数 (約 6. 6GHz)の電波が電 波遮蔽体 40により減衰される。換言すれば、電波遮蔽体 40により、電波遮蔽体 40に 入射した電波のうち特定周波数 (約 2. 6GHz及び約 6. 6GHz)付近の周波数帯域 の電波が選択的に遮蔽される。これは、反射層 3に含まれる複数の第 1アンテナ 41 及び第 2アンテナ 42によって、特定周波数付近の周波数帯域の電波が選択的に反 射されるためである。具体的には、電波遮蔽体 40では、大きな第 1アンテナ 41が低 い第 1周波数 (約 2. 6GHz)付近の周波数帯域の電波を反射させ、小さな第 2アンテ ナ 42が高 、第 2周波数 (約 6. 6GHz)付近の周波数帯域の電波を反射させて!/、る。
[0176] 尚、第 1アンテナ 41及び第 2アンテナ 42によって反射される電波の周波数は、それ ぞれ第 1エレメント部 41a (42a)と第 2エレメント部 41b (42b)との長さ(エレメント長 L) によって決定される。
[0177] 図 26はエレメント長 Lと、アンテナ 41、 42によって反射される電波の周波数との関 係を表すグラフである。詳細には、図 26に示すグラフは、厚さ 60 mの PETフィルム の表面に、導電材料でアンテナを形成させた電波遮蔽体 (アンテナの配置につ!、て は 2参照)を、アンテナが空気に接触する状態で測定した結果に基づいて作成され たものである。
[0178] 図 26に示すように、エレメント長 Lが長くなるほど、アンテナ 41、 42によって反射さ れる電波の周波数は低くなる。換言すれば、エレメント長 Lが長くなるほど、アンテナ 4 1、 42によって反射される電波の波長は長くなる。一方、反射される電波の周波数は 幅 L6、幅 L9と大きく相関しない。すなわち、反射される電波の周波数は、主として、 エレメント長 Lに依存する。
[0179] 従って、図 26に示すようなエレメント長 Lと選択周波数との関係に基づいて、反射さ せたい電波の周波数力もエレメント長 Lを算出することができる。例えば、無線 LAN に使用する周波数 2. 45GHzの電波と、周波数 5. 2GHzの電波とを遮蔽させる電波 遮蔽体 40を作製する場合は、図 26に基づいて、第 1アンテナ 41の L4、L5を 11. 19 mmとし、第 2アンテナ 42の L7、 L8を 6. 05mmとすることができる。
[0180] 図 27は第 1アンテナ 41の L4、 L5を 11. 19mm,幅 L6を 0. 7mmとし、第 2アンテ ナ 42の L7、 L8を 6. 05mm,幅 L9を 0. 7mmとした場合の電波遮蔽体 40の透過減 衰量を表すグラフである。
[0181] 図 27に示す通り、図 26のグラフに基づいて設計した電波遮蔽体 40によれば、遮蔽 させようとする周波数 2. 45GHzの電波と、周波数 5. 2GHzの電波とを選択的に遮 蔽させることができる。
[0182] また、例えば、第 1エレメント部 41a (42a)の長さ L4 (L7)を固定し、第 2エレメント部 41b (42b)の長さ L5 (L8)を調整することにより特定周波数を調整することも可能で ある。具体的には、第 2エレメント部 41b (42b)の長さ L5 (L8)を短くすることにより特 定周波数を高くすることができる。
[0183] 例えば、従来の「Y」字形の線状アンテナ(第 2エレメント部を有さず、第 1エレメント 部のみにより構成されているアンテナ)では、第 1エレメント部の長さを調節することに よってのみ特定周波数を調節することができる。それに対して、電波遮蔽体 40では、 上述のように、第 1エレメント部 41a (42a)の長さ L4 (L7)と共に第 2エレメント部 41b ( 42b)の長さ L5 (L8)を調節することによって特定周波数を調節でき、且つ、第 1エレ メント部 41a (42a)の長さ L4 (L7)を一定にして、第 2エレメント部 41b (42b)の長さ L 5 (L8)の第 1エレメント部 41a (42a)の長さ L4 (L7)に対する比を調節することによつ ても特定周波数を調節することができる。このため、広い設計幅を有する電波遮蔽体 40を実現することができる。
[0184] ところで、従来の「Y」字形の線状アンテナでは、異なる 2種の線状アンテナのそれ ぞれを効率よぐ単位面積あたりに多くのアンテナを配列させることが困難である。以 下、図 28を参照しながら詳細に説明する。
[0185] 図 28は大小 2種の「Υ」字形アンテナを有する電波遮蔽体において、比較的大きい アンテナ 103をエレメント部同士が対向するように格子状に配列した場合を説明する ための平面図である。
[0186] 図 28に示すように、比較的大きいアンテナ 103 (以下、「大アンテナ 103」とすること がある。)をエレメント部同士が対向するように配設した場合は、比較的小さいアンテ ナ 104 (以下、「小アンテナ 104」することがある。)をエレメント部同士が対向するよう に配列することは困難である。また、大アンテナ 103は高密度に配置されているが、 小アンテナ 104は大アンテナ 103よりも単位面積あたりに含まれる数が少なぐ高密 度ではない。このため、図 28に示す電波遮蔽体では、大アンテナ 103が対象とする 電波と比較して、小アンテナ 104が対象とする電波を十分に高い遮蔽率で遮蔽する ことができない。従って、図 28に記載された電波遮蔽体では、周波数の異なる複数 の電波を、それぞれ同等の遮蔽率で遮蔽することが困難である。
[0187] また、相互に大きさの異なる 2種のエルサレムクロス型のアンテナを効率よぐ単位 面積あたりに多くのアンテナを配列させることも困難である。さらに、第 2エレメント部 同士が対向するような態様で、相互に大きさの異なる 2種のエルサレムクロス型アンテ ナを効率よく配列することは特に困難である。以下、その困難性について図面を参照 しながら詳細に説明する。
[0188] 図 29は、大小 2種のエルサレムクロス型アンテナを有する電波遮蔽体において、比 較的大きいアンテナ 105を線分状の部分同士が対向するように格子状に配列した場 合を説明するための平面図である。
[0189] 図 29に示すエルサレムクロス型アンテナを有する電波遮蔽体では、比較的大きい アンテナ 105 (以下、「大アンテナ 105」とすることがある。)は隣接する大アンテナ 10 5の第 2エレメント部 105b同士が緊密な距離で対向するように配置されている。この ため、大アンテナ 105に対応する特定周波数の電波は良好に遮蔽される。しかしな がら、比較的小さいアンテナ 106 (以下、「小アンテナ 106」とすることがある。)に関し ては、隣接する小アンテナ 106の第 2エレメント部 106b同士が対向するように配置さ れていない。このため、小アンテナ 106に対応する特定周波数の電波の反射率が低 くなる。よって、この電波遮蔽体では、小アンテナ 106に対応する特定周波数の電波 を十分に遮蔽することができない。従って、図 29に示す電波遮蔽体では、周波数の 異なる複数の電波を、それぞれ同等の遮蔽率で遮蔽することが困難である。
[0190] 図 30は大アンテナ 105と小アンテナ 106と力 各々、第 2エレメント部同士が対向 するように配列された電波遮蔽体の平面図である。
[0191] 図 30に示す電波遮蔽体では、隣接する大アンテナ 105の第 2エレメント部 105b同 士が特定方向(図 30において横方向)に緊密に対向するように大アンテナ 105が配 置されている。小アンテナ 106に関しても、隣接する小アンテナ 106の第 2エレメント 部 106b同士が特定方向(図 30において横方向)に緊密に対向するように配置され ている。このため、図 30に示す電波遮蔽体は、アンテナ 105、 106の配列方向(図 3 0において横方向)から入射する特定周波数の電波に関しては良好に遮蔽すること ができる。しかしながら、図 30に示す電波遮蔽体では、アンテナ 105、 106の配列方 向と角度をなした方向(例えば、図 30において上下方向)には、大アンテナ 105の第 2エレメント部 105b同士、又は小アンテナ 106の第 2エレメント部 106同士が緊密に 対向していない。このため、特定方向と角度をなした方向(例えば、図 30において上 下方向)から入射する特定周波数の電波を十分に遮蔽することができない。従って、 図 30に示す電波遮蔽体は、電波の入射方向によって電波遮蔽率が大きく変化する 。すなわち、図 30に示す構成では、電波の入射角依存性の少ない電波遮蔽体を実 現することは困難である。
[0192] 一方、本実施形態 5に係る電波遮蔽体 40では、アンテナ 41、 42は第 1エレメント部 41a、 42aの外側端に結合された第 2エレメント部 41b、 42bを有する。このため、各 々、第 2エレメント部 41b、 42b同士が対向するように、複数のアンテナ 41、 42を配置 させることが比較的容易である。従って、本実施形態 5に係る電波遮蔽体 40では、特 定周波数の電波に対する高い電波遮蔽率を容易に実現することができる。また、本 実施形態 5に係る電波遮蔽体 40 (配置:図 23参照)では、相互に周波数の異なる電 波を遮蔽するアンテナ 41、 42が略同一の密度で形成されている。このため、本実施 形態 5に係る電波遮蔽体 40によれば、第 1アンテナ 41が対象とする第 1周波数の電 波、及び第 2アンテナ 42が対象とする第 2周波数の電波を略同一の遮蔽率で遮蔽す ることができる。また、電波の入射角依存性を小さくすることができる。
[0193] 以下、第 2エレメント部 41b、 42b同士が対向するように、複数のアンテナ 41、 42が 配設されている他の実施形態について、図面を参照しながら詳細に説明する。
[0194] (実施形態 6)
図 31は実施形態 6に係る電波遮蔽体 50の平面図である。
[0195] 図 32及び図 33は電波遮蔽体 50の一部を拡大した平面図である。
[0196] 本実施形態 6に係る電波遮蔽体 50は、第 1アンテナ 41及び第 2アンテナ 42の配置 を除いて、実施形態 5に係る電波遮蔽体 40と同様の形態を有する。以下、本実施形 態 6における第 1アンテナ 41及び第 2アンテナ 42の配置について、図 31〜33を参 照しながら詳細に説明する。尚、本実施形態 6の説明において、図 1は実施形態 1、 5と共通に参照し、また、実質的に同じ機能を有する構成要素を実施形態 1、 5と共通 の参照符号で説明し、説明を省略する。
[0197] 本実施形態 6では、複数の第 1アンテナ 41は、各々、第 2エレメント部 41b同士が対 向するように配設された一対力もなる複数の第 1アンテナユニット 51aを構成している 。また、第 1アンテナユニット 51aが、さらに第 2エレメント部 41b同士が対向するように 配設されて二次元に連続展開した六角形状の第 1アンテナ集合体 51を構成してい る。すなわち、各第 1アンテナ集合体 51は、第 2エレメント部 41b同士を対向させて環 状に配置された 6つの第 1アンテナ 41により構成されている。さら〖こ、実施形態 6では 、第 1アンテナ集合体 51は第 2エレメント部 41b同士が対向するように、所謂ハ-カム 状に配置されている。尚、方向性が少ない第 1アンテナ集合体 51を構成する観点か ら、第 1エレメント部 41a及び第 2エレメント部 41bが直角をなしていることが好ましい。 また、第 2エレメント部 41bはその中心において第 1エレメント部 41aと結合されている ことが好ましい。この構成によれば、第 1アンテナ集合体 51は略正六角形状となる。
[0198] 複数の第 2アンテナ 42は、各々、第 2エレメント部 42b同士が対向するように配設さ れた一対力もなる複数の第 2アンテナユニット 52aを構成している。また、第 2アンテ ナユニット 52aが、さらに第 2エレメント部 42b同士が対向するように配設されて二次 元に連続展開した六角形状の第 2アンテナ集合体 52を構成している。すなわち、各 第 2アンテナ集合体 52は、第 2エレメント部 42b同士を対向させて環状に配置された 6つの第 2アンテナ 42により構成されている。尚、方向性が少ない第 2アンテナ集合 体 52を構成する観点から、第 1エレメント部 42a及び第 2エレメント部 42bが直角をな していることが好ましい。また、第 2エレメント部 42bはその中心において第 1エレメント 部 42aと結合されていることが好ましい。この構成によれば、第 2アンテナ集合体 52 は略正六角形状となる。
[0199] 本実施形態 6においては、ほぼすベての第 2エレメント部 41b同士が略平行に対向 するように、複数の第 1アンテナ 41が配設されている。第 2アンテナ 42に関しても、第 2アンテナ集合体 52を構成する 18本の第 2エレメント部 42bのうち 12本の第 2エレメ ント部 42bが相互に略平行に対向するように設けられている。このように、第 2エレメン ト部 41b、 42b同士を対向させるように構成することによって、アンテナ 41、 42の特定 周波数の電波に対する電波反射率 (電波遮蔽率)を高くすることができる。従って、 電波遮蔽体 50は、特定周波数 (第 1周波数及び第 2周波数)の電波に対する高い電 波遮蔽率を有する。
[0200] 具体的には、対向する第 2エレメント部 41b (42b)間の距離 X2 (X3)が 0. 4mm以 上 3mm以下であることが好ましい(図 32、 33参照)。より好ましい範囲は、 0. 6mm 以上 lmm以下である。距離 X2 (X3)を 0. 4mmより短くすると、対向する第 2エレメン ト部 41b (42b)同士が不所望に接触する虞がある。一方、距離 X2 (X3)が 3mmより 大きいと、電波遮蔽率が低下する傾向にある。
[0201] 第 1アンテナ 41の第 2エレメント部 41b同士を対向させ、第 2アンテナ 42の第 2エレ メント部 42b同士を対向させ、かつ、両アンテナ 41、 42の密度を同じにするためには 、例えば、図 31のような配置が好ましい。
[0202] 具体的に、図 31で説明すると、第 1アンテナ集合体 51は第 2アンテナ集合体 52に より包囲されている。このため、第 1アンテナ集合体 51と第 2アンテナ集合体 52とを効 率よく配置することができる。換言すれば、単位面積あたりに含まれる第 1アンテナ 41 と第 2アンテナ 42との数量を多くすることができる。従って、特定周波数 (第 1周波数 及び第 2周波数)の電波に対する電波遮蔽率を高くすることができる。
[0203] 本実施形態 6において、第 2エレメント部 41b、 42bの長さが比較的短いことが好ま しい。そうすることによって第 1アンテナ集合体 51により包囲される第 2アンテナ集合 体 52に含まれる第 2アンテナ 42の寸法自由度を大きくすることができる。第 1アンテ ナ 41の第 2エレメント部 41bと第 2アンテナ 42の第 2エレメント部 42bとが接触しにくく なるためである。
[0204] 特に第 2エレメント部 41bが短いことが好ましぐそうすることによって、第 1アンテナ 集合体 51で囲まれた領域を広くすることができる。このため、比較的大きな第 2アン テナ集合体 52を第 1アンテナ集合体 51で囲まれた領域に配置することができる。従 つて、例えば比較的周波数の近い 2種の電波を選択的に遮蔽可能な電波遮蔽体 50 が実現可能となる。
[0205] (実施形態 7)
図 34は実施形態 7に係る電波遮蔽体 60の平面図である。
[0206] 第 1アンテナ 41及び第 2アンテナ 42の相対配置関係を除いて、実施形態 6に係る 電波遮蔽体 50と同様の形態を有する。以下、本実施形態 7における第 1アンテナ 41 及び第 2アンテナ 42の相対配置関係について、図 34を参照しながら詳細に説明す る。尚、本実施形態 7の説明において、図 1は実施形態 1、 6と共通に参照し、また、 実質的に同じ機能を有する構成要素を実施形態 6と共通の参照符号で説明し、説明 を省略する。 [0207] 実施形態 7では、第 1アンテナ集合体 51と第 2アンテナ集合体 52とは、相互に異な る対称軸 (詳細には、アンテナ 41、 42の配列方向に延びる線対称軸)を有するように 、相互に傾斜するように配置されている。
[0208] 第 1アンテナ集合体 51により第 2アンテナ集合体 52を包囲させるためには、第 2ァ ンテナ集合体 52を構成する第 2アンテナ 42の寸法を、第 1アンテナ集合体 51を構成 する第 1アンテナ 41の寸法より小さくする必要がある。実施形態 6に示すように、第 1 アンテナ集合体 51と第 2アンテナ集合体 52とを傾斜させることなく配置させた場合、 第 1アンテナ 41と第 2アンテナ 42とが相互に干渉しないように第 2アンテナ 42を第 1 アンテナ 41に対して非常に小さくしなければならず、第 1アンテナ 41と第 2アンテナ 4 2との設計自由度が十分ではない。
[0209] 一方、本実施形態 7 (図 34)に示すように、第 1アンテナ集合体 51と第 2アンテナ集 合体とを傾斜 (例えば図 34では、 0 = 10° )させて配列した場合は、相互に対向す る第 2エレメント部 41bと、相互に対向する第 2エレメント部 42bとの相対位置がずれ ている。このため、本実施形態 7では、実施形態 6に示す場合と比較して、第 1アンテ ナ 41に対する第 2アンテナ 42の相対大きさを比較的大きくすることができる。従って 、本実施形態 7に係る電波遮蔽体 60によれば、第 1アンテナ 41と第 2アンテナ 42と の形状寸法の設計自由度を広げることができる。具体的には、周波数の近い (第 1周 波数との第 2周波数との比 (第 1周波数 <第 2周波数)が 0. 45以上) 2波に対する電 波遮蔽が可能となる。従って、電波遮蔽体 60により遮蔽させることができる 2種の電 波の周波数を比較的自由に選択することができる。
[0210] また、図 31、 34では、略六角形状の第 1アンテナ集合体 51、第 2アンテナ集合体 5 2を最密に配置しているが、所望の電波遮蔽率によっては、最密に配置せず、略六 角形状のアンテナ集合体 51、 52の数をそれぞれ適宜調整すればょ 、。
実施例
[0211] 第 1エレメント部 4aの長さを 12. 24mm、第 1エレメント部 4a及び第 2エレメント部 4b の幅を 1. 2mmとし、第 2エレメント部 4bの長さを種々変化させて、実施形態 1に係る 電波遮蔽体 1と同じ形態の電波遮蔽体を作製し、実施例及び比較例とした。
[0212] 具体的には、 PETフィルム製の基材 2の上に銀ペーストを塗布し、乾燥させることに より実施例及び比較例に係るアンテナ 4を形成し、実施例及び比較例に係る電波遮 蔽体を作製した。尚、実施例 1では、第 2エレメント部 4bの長さ(L2)を 24. 48mmと した。すなわち L1 :L2が 1 : 2となるようにした。実施例 2では、第 2エレメント部 4bの長 さ(L2)を 15. 30mmとした。すなわち LI :L2が 1: 1. 25となるようにした。実施例 3で は、第 2エレメント部 4bの長さ(L2)を 12. 24mmとした。すなわち LI :L2が 1: 1とな るようにした。実施例 4では、第 2エレメント部 4bの長さ(L2)を 9. 2mmとした。すなわ ち L1 :L2が 1 : 0. 5となるようにした。比較例では、第 2エレメント部 4bの長さ(L2)を 0 mmとした。すなわち、アンテナを「Y」字形とした。
[0213] 図 35は各実施例における周波数と透過減衰量の関係を表すグラフである。
[0214] 図 35中の 70で表されるデータが実施例 1のデータである。 71で表されるデータが 実施例 2のデータである。 72で表されるデータが実施例 3のデータである。 73で表さ れるデータが実施例 4のデータである。 74で表されるデータが比較例のデータである
[0215] 図 36は各実施例及び比較例における第 1エレメント部 4aの長さと第 2エレメント部 4 bの長さとの比 (L2ZL1)と整合周波数との相関を表すグラフである。
[0216] 図 35に示すように、第 2エレメント部 4bを有する実施例 1〜4に係る電波遮蔽体は 比較例に係る電波遮蔽体よりも電波遮蔽率が高力つた。この結果から、第 2エレメント 部 4bを有する実施例 1〜4に係る電波遮蔽体によれば、比較例に係る所謂「Y」字形 のアンテナを有する電波遮蔽体よりも特定周波数の電波を高い電波遮蔽率で遮蔽 することができることがわ力つた。
[0217] また、第 2エレメント部 4bを有する実施例 1〜4に係る電波遮蔽体は、第 2エレメント 部 4bを有さな 、、所謂「Y」字形のアンテナが設けられた比較例に係る電波遮蔽体よ りも鋭いピークを有していた。すなわち、第 2エレメント部 4bを有する実施例 1〜4に 係る電波遮蔽体は、所謂「Y」字形のアンテナが設けられた比較例に係る電波遮蔽 体よりも周波数選択性が高ぐ特定周波数の電波をより高い選択性で遮蔽可能であ ることがわかった。
[0218] また、図 35及び図 36に示すように、第 1エレメント部 4aの長さと第 2エレメント部 4b の長さとの比 (L2ZL1)が大きくなるにつれて整合周波数力 S小さくなる傾向にあるこ とがわかった。このことより第 2エレメント部 4bの長さを調整することにより整合周波数 を調整することが可能であることがわ力つた。
産業上の利用可能性
以上説明したように、本発明に係る電波遮蔽体は、特定周波数の電波に対する高 い電波遮蔽率を有し、壁紙、間仕切り(パーティション)、布(ロールスクリーン)、窓ガ ラス、外壁パネル、屋根板、天井板、内壁パネル、床板、電波遮蔽体等として有用で ある。

Claims

請求の範囲
[1] 各々、それぞれアンテナ中心力も相互に 120° の角度をなして放射状に略同一長 さでもって延びる 3本の線分状の第 1エレメント部と、該各第 1エレメント部の外側端に 結合された線分状の第 2エレメント部とを有し、模様を構成するように配置された、特 定周波数の電波を反射させる複数のアンテナを備えた電波遮蔽体。
[2] 請求項 1に記載された電波遮蔽体にお!、て、
上記複数のアンテナは、各々、上記第 2エレメント部同士が対向するように配設され た一対力 なる複数のアンテナユニットを構成している電波遮蔽体。
[3] 請求項 2に記載された電波遮蔽体にお 、て、
上記複数のアンテナは、上記複数のアンテナユニットがさらに上記第 2エレメント部 同士が対向するように配設されて二次元に連続展開した略正六角形状の複数のァ ンテナ集合体を構成して 、る電波遮蔽体。
[4] 各々、それぞれアンテナ中心力も相互に 120° の角度をなして放射状に略同一長 さでもって延びる 3本の線分状の第 1エレメント部と、該各第 1エレメント部の外側端に 結合された線分状の第 2エレメント部とを有し、模様を構成するように配置された、相 互に異なる特定周波数の電波を反射させる複数種類のアンテナを備えた電波遮蔽 体。
[5] 請求項 4に記載された電波遮蔽体にぉ 、て、
上記複数種類のアンテナは相互に大きさが異なる電波遮蔽体。
[6] 各々、それぞれアンテナ中心力も相互に 120° の角度をなして放射状に略同一長 さでもって延びる 3本の線分状の第 1エレメント部と、該各第 1エレメント部の外側端に 結合された線分状の第 2エレメント部とを有し、模様を構成するように配置された、第 1周波数の電波を反射させる複数の第 1アンテナ及び第 2周波数の電波を反射させ る複数の第 2アンテナを備えた電波遮蔽体。
[7] 請求項 6に記載された電波遮蔽体にぉ 、て、
上記第 1アンテナ及び上記第 2アンテナは相互に大きさが異なる電波遮蔽体。
[8] 請求項 6に記載された電波遮蔽体にぉ 、て、
上記複数の第 1アンテナは、各々、該第 1アンテナの第 2エレメント部同士が対向す るように配設された一対力もなる複数の第 1アンテナユニットを構成しており、 上記複数の第 2アンテナは、各々、該第 2アンテナの第 2エレメント部同士が対向す るように配設された一対力 なる複数の第 2アンテナユニットを構成して 、る電波遮蔽 体。
[9] 請求項 8に記載された電波遮蔽体にぉ 、て、
上記複数の第 1アンテナは、上記複数の第 1アンテナユニットがさらに該第 1アンテ ナの第 2エレメント部同士が対向するように配設されて二次元に連続展開した略正六 角形状の複数の第 1アンテナ集合体を構成しており、
上記複数の第 2アンテナは、上記複数の第 2アンテナユニットがさらに該第 2アンテ ナの第 2エレメント部同士が対向するように配設されて二次元に連続展開した略正六 角形状の複数の第 2アンテナ集合体を構成している電波遮蔽体。
[10] 請求項 9に記載された電波遮蔽体において、
上記第 2アンテナ集合体は上記第 1アンテナ集合体に包囲されている電波遮蔽体
[11] 請求項 10に記載された電波遮蔽体において、
上記第 1アンテナ集合体と上記第 2アンテナ集合体とは相互に異なる対称軸を有 する電波遮蔽体。
[12] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、
上記各アンテナは導電材料を含む電波遮蔽体。
[13] 請求項 12に記載された電波遮蔽体において、
上記各アンテナは、上記導電材料として、銅、アルミニウム、及び銀のうち少なくとも Vヽずれかを含む電波遮蔽体。
[14] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、
上記第 2エレメント部の長さは上記第 1エレメント部の長さの 0. 5倍以上 2倍以下で ある電波遮蔽体。
[15] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、
上記各第 2エレメント部は、当該第 2エレメント部が結合された第 1エレメント部と垂 直をなして!/ヽる電波遮蔽体。
[16] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、 上記各第 2エレメント部は、その中心で上記第 1エレメント部と結合されている電波 遮蔽体。
[17] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、
上記第 1エレメント部と上記第 2エレメント部とは略同一長さである電波遮蔽体。
[18] 請求項 1、 4、 6のいずれか一項に記載された電波遮蔽体において、
上記各アンテナは開口部を有する金属膜からなる電波遮蔽体。
[19] 請求項 18に記載された電波遮蔽体において、
上記アンテナに対する上記金属膜が占める面積の割合が 2. 5%以上 30%以下で ある電波遮蔽体。
PCT/JP2006/302660 2005-02-18 2006-02-15 電波遮蔽体 WO2006088063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/816,393 US7898499B2 (en) 2005-02-18 2006-02-15 Electromagnetic wave shielding body
CN200680005137XA CN101120628B (zh) 2005-02-18 2006-02-15 电波屏蔽体
EP06713801.6A EP1853103B1 (en) 2005-02-18 2006-02-15 Radio wave shielding body

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005042184A JP4658635B2 (ja) 2005-02-18 2005-02-18 電波遮蔽体
JP2005-042184 2005-02-18
JP2005046213A JP2006233457A (ja) 2005-02-22 2005-02-22 電波遮蔽体
JP2005-046213 2005-02-22
JP2005193449A JP4644543B2 (ja) 2005-07-01 2005-07-01 電波遮蔽体
JP2005-193449 2005-07-01
JP2006002338A JP4734121B2 (ja) 2006-01-10 2006-01-10 電波遮蔽体
JP2006-002338 2006-01-10

Publications (1)

Publication Number Publication Date
WO2006088063A1 true WO2006088063A1 (ja) 2006-08-24

Family

ID=36916467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302660 WO2006088063A1 (ja) 2005-02-18 2006-02-15 電波遮蔽体

Country Status (4)

Country Link
US (1) US7898499B2 (ja)
EP (1) EP1853103B1 (ja)
KR (1) KR20070114289A (ja)
WO (1) WO2006088063A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119798A1 (ja) * 2006-04-18 2007-10-25 Mitsubishi Cable Industries, Ltd. 電波遮蔽体及びその製造方法
JP2008103849A (ja) * 2006-10-17 2008-05-01 Mitsubishi Cable Ind Ltd 周波数選択膜
JP2008311569A (ja) * 2007-06-18 2008-12-25 Mitsubishi Cable Ind Ltd 電磁波遮蔽材およびその設置方法
JP2009170887A (ja) * 2007-12-17 2009-07-30 Fujimori Kogyo Co Ltd 電磁波吸収体
JP2010522524A (ja) * 2007-03-29 2010-07-01 ボード オブ リージェンツ,ザ ユニバーシティーオブ テキサス システム 2つの周波数選択面を有する導体

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869668B2 (ja) * 2005-09-30 2012-02-08 三菱電線工業株式会社 電波遮蔽体
CN102280414B (zh) * 2006-04-27 2014-04-23 株式会社半导体能源研究所 制造半导体器件的方法
WO2007142125A1 (ja) * 2006-06-02 2007-12-13 Mitsubishi Cable Industries, Ltd. 電波遮蔽性仕切面材およびその製造方法
WO2007148680A1 (ja) * 2006-06-19 2007-12-27 Mitsubishi Cable Industries, Ltd. 電磁波遮蔽材および電磁波吸収体
GB0814077D0 (en) * 2008-08-01 2008-09-10 Qinetiq Ltd Security screening
CN103763897B (zh) * 2014-02-14 2015-06-17 哈尔滨工业大学 具有同心圆环的多周期主从嵌套圆环阵列电磁屏蔽光窗
CN103826428B (zh) * 2014-02-14 2015-07-29 哈尔滨工业大学 基于三角及正交混合分布圆环及子圆环阵列的电磁屏蔽光窗
US10541477B2 (en) * 2016-07-25 2020-01-21 Nokia Shanghai Bell Co., Ltd. Combined omnidirectional and directional antennas
CN109413971A (zh) * 2017-08-15 2019-03-01 深圳富泰宏精密工业有限公司 屏蔽箱及射频衰减控制方法
DE102019131499A1 (de) * 2019-11-21 2021-05-27 Carl Freudenberg Kg Flexibles Laminat zur Abschirmung elektromagnetischer Strahlung
WO2021131962A1 (ja) * 2019-12-25 2021-07-01 富士フイルム株式会社 電磁シールド用部材
CN112821080A (zh) * 2021-01-04 2021-05-18 北京环境特性研究所 一种在l频段透波的薄层滤波结构
CN113161757B (zh) * 2021-04-26 2022-08-12 中国电子科技集团公司第三十三研究所 一种用于舰船观察窗的吸波屏蔽除雾石墨烯超材料

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699972A (ja) 1992-09-24 1994-04-12 Dainippon Printing Co Ltd 液体紙容器用注出口
JPH10126090A (ja) * 1996-10-21 1998-05-15 Kajima Corp 電磁シールドフィルム
JPH10169039A (ja) 1996-12-10 1998-06-23 Kajima Corp 電磁遮蔽建物
JPH11195890A (ja) * 1998-01-05 1999-07-21 Nippon Paint Co Ltd 特定範囲の周波数の電磁波を反射する新規な導電性双極性素子パターン及びこれを有する周波数選択性電磁波シールド材
JPH11261286A (ja) * 1998-03-09 1999-09-24 Kajima Corp 建物内電波遮蔽域
JPH11330773A (ja) * 1998-05-11 1999-11-30 Em Techno:Kk 電磁遮蔽体および電磁遮蔽窓部材
JP2000196288A (ja) * 1996-08-30 2000-07-14 Kajima Corp 電磁シ―ルド構造
JP2001345632A (ja) * 2000-06-06 2001-12-14 Kajima Corp 電磁シールド構造
JP2003060430A (ja) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd 不要放射低減アンテナ
JP2003069282A (ja) * 2001-08-30 2003-03-07 Takenaka Komuten Co Ltd 特定電磁波透過板
JP2005142748A (ja) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The 周波数選択板の修正方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3855598A (en) * 1970-10-23 1974-12-17 Hughes Aircraft Co Mesh articles particularly for use as reflectors of electromagnetic waves
US4656487A (en) * 1985-08-19 1987-04-07 Radant Technologies, Inc. Electromagnetic energy passive filter structure
JPH0699972B2 (ja) 1985-11-12 1994-12-12 清水建設株式会社 電磁シ−ルド・インテリジエントビル
JPH07106847A (ja) * 1993-10-07 1995-04-21 Nippon Steel Corp 漏れ波導波管スロットアレーアンテナ
JP3079364B2 (ja) 1996-08-30 2000-08-21 鹿島建設株式会社 電磁シールド性能を有する窓ガラス
US5959594A (en) * 1997-03-04 1999-09-28 Trw Inc. Dual polarization frequency selective medium for diplexing two close bands at an incident angle
JPH11307989A (ja) 1998-04-17 1999-11-05 Lintec Corp 周波数選択表面を有する電波遮蔽材料およびその製造方法
US7358913B2 (en) * 1999-11-18 2008-04-15 Automotive Systems Laboratory, Inc. Multi-beam antenna
US6884936B2 (en) * 2001-03-02 2005-04-26 Hitachi Chemical Co., Ltd. Electromagnetic shield film, electromagnetic shield unit and display
JP2003258487A (ja) 2002-02-28 2003-09-12 Toppan Printing Co Ltd 電磁波シールド性を有するフィルム
US6806843B2 (en) * 2002-07-11 2004-10-19 Harris Corporation Antenna system with active spatial filtering surface
JP2004053466A (ja) 2002-07-22 2004-02-19 Yokohama Rubber Co Ltd:The 電磁波遮蔽材とその製造方法
US7420524B2 (en) * 2003-04-11 2008-09-02 The Penn State Research Foundation Pixelized frequency selective surfaces for reconfigurable artificial magnetically conducting ground planes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699972A (ja) 1992-09-24 1994-04-12 Dainippon Printing Co Ltd 液体紙容器用注出口
JP2000196288A (ja) * 1996-08-30 2000-07-14 Kajima Corp 電磁シ―ルド構造
JPH10126090A (ja) * 1996-10-21 1998-05-15 Kajima Corp 電磁シールドフィルム
JPH10169039A (ja) 1996-12-10 1998-06-23 Kajima Corp 電磁遮蔽建物
JPH11195890A (ja) * 1998-01-05 1999-07-21 Nippon Paint Co Ltd 特定範囲の周波数の電磁波を反射する新規な導電性双極性素子パターン及びこれを有する周波数選択性電磁波シールド材
JPH11261286A (ja) * 1998-03-09 1999-09-24 Kajima Corp 建物内電波遮蔽域
JPH11330773A (ja) * 1998-05-11 1999-11-30 Em Techno:Kk 電磁遮蔽体および電磁遮蔽窓部材
JP2001345632A (ja) * 2000-06-06 2001-12-14 Kajima Corp 電磁シールド構造
JP2003060430A (ja) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd 不要放射低減アンテナ
JP2003069282A (ja) * 2001-08-30 2003-03-07 Takenaka Komuten Co Ltd 特定電磁波透過板
JP2005142748A (ja) * 2003-11-05 2005-06-02 Yokohama Rubber Co Ltd:The 周波数選択板の修正方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119798A1 (ja) * 2006-04-18 2007-10-25 Mitsubishi Cable Industries, Ltd. 電波遮蔽体及びその製造方法
GB2451389A (en) * 2006-04-18 2009-01-28 Mitsubishi Cable Ind Ltd Radio wave shielding body and method of producing the same
GB2451389B (en) * 2006-04-18 2011-04-06 Mitsubishi Cable Ind Ltd Radio shielding member and method for manufacturing the same
JP2008103849A (ja) * 2006-10-17 2008-05-01 Mitsubishi Cable Ind Ltd 周波数選択膜
JP2010522524A (ja) * 2007-03-29 2010-07-01 ボード オブ リージェンツ,ザ ユニバーシティーオブ テキサス システム 2つの周波数選択面を有する導体
JP2008311569A (ja) * 2007-06-18 2008-12-25 Mitsubishi Cable Ind Ltd 電磁波遮蔽材およびその設置方法
JP2009170887A (ja) * 2007-12-17 2009-07-30 Fujimori Kogyo Co Ltd 電磁波吸収体

Also Published As

Publication number Publication date
US7898499B2 (en) 2011-03-01
EP1853103A1 (en) 2007-11-07
EP1853103A4 (en) 2010-12-08
KR20070114289A (ko) 2007-11-30
EP1853103B1 (en) 2019-11-27
US20090027300A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
WO2006088063A1 (ja) 電波遮蔽体
JP4869668B2 (ja) 電波遮蔽体
KR101306249B1 (ko) 전자파 차폐재 및 전자파 흡수체
WO2005084097A1 (ja) 電波吸収体および電波吸収体の製造方法
JPWO2005084096A1 (ja) 電磁波吸収体
JP4833571B2 (ja) 電磁波吸収体
TWI803594B (zh) 天線單元、附天線單元之窗玻璃及整合體
WO2007142125A1 (ja) 電波遮蔽性仕切面材およびその製造方法
JP5085026B2 (ja) 電磁波吸収体
JP4734121B2 (ja) 電波遮蔽体
JP4171500B2 (ja) 電波遮蔽体及びその製造方法
JP4644543B2 (ja) 電波遮蔽体
JP4658635B2 (ja) 電波遮蔽体
JP4838638B2 (ja) 電波遮蔽体及びその製造方法
JP2006233457A (ja) 電波遮蔽体
JP2005079247A (ja) 電波吸収体
JP2007336415A (ja) 周波数選択膜およびその製造方法ならびに電波遮蔽材
JP4838053B2 (ja) 電波遮蔽性仕切面材及びその製造方法
JP2003304087A (ja) 電磁波反射材
JP7492072B1 (ja) 電磁波反射板および電磁波反射装置
JP2008035232A (ja) 電波遮蔽装置
JP4528318B2 (ja) 電磁波吸収体および電磁波吸収方法
JP2002208795A (ja) 電磁波シールド材
JP2007173722A (ja) 電波遮蔽体及び電波遮蔽窓
JP2009105387A (ja) 電磁波遮蔽材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11816393

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680005137.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006713801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077021386

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006713801

Country of ref document: EP