WO2007142125A1 - 電波遮蔽性仕切面材およびその製造方法 - Google Patents

電波遮蔽性仕切面材およびその製造方法 Download PDF

Info

Publication number
WO2007142125A1
WO2007142125A1 PCT/JP2007/061131 JP2007061131W WO2007142125A1 WO 2007142125 A1 WO2007142125 A1 WO 2007142125A1 JP 2007061131 W JP2007061131 W JP 2007061131W WO 2007142125 A1 WO2007142125 A1 WO 2007142125A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave shielding
antenna
shielding partition
antennas
Prior art date
Application number
PCT/JP2007/061131
Other languages
English (en)
French (fr)
Inventor
Satoshi Sakai
Takeshi Ikeda
Toshio Kudo
Kazuyuki Kashihara
Katsunori Hosotani
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006154366A external-priority patent/JP4838053B2/ja
Priority claimed from JP2006160183A external-priority patent/JP4838638B2/ja
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Priority to GB0823663A priority Critical patent/GB2452665B/en
Publication of WO2007142125A1 publication Critical patent/WO2007142125A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47HFURNISHINGS FOR WINDOWS OR DOORS
    • A47H23/00Curtains; Draperies
    • A47H23/02Shapes of curtains; Selection of particular materials for curtains
    • A47H23/08Selection of particular materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/262Lamellar or like blinds, e.g. venetian blinds with flexibly-interconnected horizontal or vertical strips; Concertina blinds, i.e. upwardly folding flexible screens
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/36Lamellar or like blinds, e.g. venetian blinds with vertical lamellae ; Supporting rails therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/38Other details
    • E06B9/386Details of lamellae
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/40Roller blinds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/085Flexible aerials; Whip aerials with a resilient base
    • H01Q1/087Extensible roll- up aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B2001/925Protection against harmful electro-magnetic or radio-active radiations, e.g. X-rays
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/262Lamellar or like blinds, e.g. venetian blinds with flexibly-interconnected horizontal or vertical strips; Concertina blinds, i.e. upwardly folding flexible screens
    • E06B2009/2622Gathered vertically; Roman, Austrian or festoon blinds
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/262Lamellar or like blinds, e.g. venetian blinds with flexibly-interconnected horizontal or vertical strips; Concertina blinds, i.e. upwardly folding flexible screens
    • E06B2009/2625Pleated screens, e.g. concertina- or accordion-like

Definitions

  • the present invention relates to a radio wave shielding partition surface material and a method for manufacturing the same.
  • Patent Document 1 discloses a technology for restricting the entry and exit of radio waves through a building frame by forming the building frame from concrete containing an electromagnetic shielding member.
  • Patent Document 1 Japanese Patent Publication No. 6-99972
  • radio waves are always shielded in the building. For this reason, for example, when there is a need to shield radio waves, such as when using a wireless LAN in a building, the inside of the building is shielded from radio waves, and when there is no need to shield other radio waves, radio wave shielding is performed.
  • the radio wave environment cannot be adjusted as necessary, such as canceling the status. More specifically, for example, when walls, ceilings, floors, etc.
  • partition a building's room are made of concrete with an electromagnetic shielding member, so that radio waves used in the room do not leak outside
  • communication using a wireless LAN cannot be performed between rooms in a building unless the electromagnetic shielding member is removed by destroying the wall where the electromagnetic shielding member is placed.
  • the conventional technology has a problem that it is difficult to freely adjust the radio wave environment.
  • the present invention has been made in view of such a point, and an object of the present invention is to provide a radio wave shielding partitioning surface material configured such that the radio wave environment can be adjusted as necessary. is there. Means for solving the problem
  • the radio wave shielding partition surface material includes a radio wave shielding layer that is provided on the surface of the face material body and shields radio waves, so that the space can be opened and closed. It is a partition.
  • the “face material body” is a concept including a plate-like member, a sheet-like member, a cloth-like member, and a film-like member. Specific examples include a shutter, a curtain, a blind, a window, and a partition. , Roll screens, banners, etc.
  • the radio wave shielding partition material having the above configuration, the area of the radio wave shielding layer covering the boundary (specifically, a wall, a partition, etc.) and the opening (specifically, a window, etc.) of the space is reduced.
  • the ability to adjust freely S for this reason, according to the present invention, if necessary, for example, it is possible to regulate the entry and exit of radio waves into the space so that the opening and boundary of the space are covered with the radio wave shielding layer.
  • the radio wave shielding partition surface material can be installed in a necessary place such as an existing building as necessary. For this reason, it is possible to appropriately provide a space for shielding radio waves in a building that does not have radio wave shielding properties. It is also possible to form multiple radio wave shielding spaces in one room.
  • adjacent rooms can be controlled in order to suppress radio wave crossing between the rooms in contact with P.
  • the radio wave shielding partitioning surface material according to the present invention on a wall or a door that partitions the doors, it is possible to create a state in which the input / output of radio waves between adjacent rooms can be freely adjusted as necessary.
  • the radio wave shielding layer may include a plurality of antennas that selectively shield radio waves in at least one specific frequency band, which may be configured by one or a plurality of conductive films. You can also According to this configuration, it is possible to provide a space in which entry / exit of only radio waves in a specific frequency band is selectively restricted, and to freely adjust the shielding (radio wave environment) of radio waves in the specific frequency band in the space. This is preferable. Also, As a specific example of such an antenna, three first element portions having substantially the same length extending radially from the center of the antenna at an angle of approximately 120 ° are coupled to the outer ends of the first element portions.
  • this type of antenna may be referred to as a “T_Y type antenna”), and at an angle of approximately 120 ° from the center of the antenna to form a radial pattern.
  • a so-called U-shaped one consisting only of three first element portions extending approximately the same length, and further, four approximately equal lengths extending radially from the antenna center at an angle of approximately 90 ° to each other. Examples thereof include a so-called Jerusalem cloth type having a first element portion and a line-shaped second element portion coupled to the outer end of each first element portion.
  • a radio wave shielding sheet configured by providing the above radio wave shielding layer on a base material having a breathable carrier is provided, and the radio wave shielding sheet is attached to the planar main body.
  • the base material may be a coating film provided on at least a part of the surface of the holding material.
  • the carrier having air permeability include cloth-like bodies (woven fabric, non-woven fabric, knitted fabric, race, felt, paper, etc.).
  • Each antenna may be formed of a conductive material.
  • the surface on which the plurality of antennas are formed is flat in order to form the plurality of antennas with high accuracy and shape dimensional accuracy. It is necessary to fix the carrier (base material) so that it becomes (that is, wrinkles or sagging does not occur on the surface).
  • the carrier base material
  • the carrier is sufficiently adsorbed so that the surface of the carrier on which the plurality of antennas are formed is flat because of the air permeability of the carrier. It is difficult to hold. Therefore, it is difficult to form a plurality of antennas with high shape accuracy. As a result, it is difficult to achieve high wave shielding.
  • the coating film is disposed on at least a part of the surface of the air-permeable carrier.
  • the base material is mainly a carrier having air permeability, it can be adsorbed and held at the portion of the coating film. Therefore, when manufacturing the radio wave shielding partition material, the base material is kept in a state where the surface of the base material is kept flat ( (Without causing wrinkles or slack). Therefore, it is possible to form a plurality of antennas with high shape dimensional accuracy. As a result, it is possible to achieve high radio wave shielding. That is, even when the above radio wave shielding sheet is used, it is possible to easily produce a radio wave shielding partitioning surface material having a high level and radio wave shielding properties.
  • the radio wave shielding layer may be formed directly on the substrate support, but is more preferably formed on the coating film.
  • the coating film is preferable when the surface of the base material is flattened to make the thickness of the base material uniform.
  • a material for forming the antenna for example, a liquid
  • a material for forming the antenna for example, a liquid
  • bleeding penetration.
  • flowing into the concave portion
  • variations in the shape and thickness of the antenna will cause inaccuracies, and multiple antennas with the desired high radio wave shielding and frequency selectivity can be obtained. It becomes impossible.
  • the surface of the substrate is flattened by supporting a plurality of micropores and Z or irregularities on the surface of the carrier by the coating film, and the thickness of the substrate Is made uniform. For this reason, the bleeding and the flow into the concave portion as described above are suppressed, and a plurality of antennas can be formed with high shape dimensional accuracy. That is, it is possible to achieve higher radio wave shielding and frequency selectivity.
  • the coating film is not particularly limited as long as it can flatten the surface of the substrate.
  • the coating film is preferably made of an organic material (polymer material) such as resin or rubber, or an inorganic material such as glass. Additives (anti-aging agents, coloring agents, etc.) may be added.
  • Each antenna may be made of a metal film or metal foil (for example, a mesh-like metal film or metal foil) having at least one opening. According to this configuration, the visibility of each antenna can be reduced. In other words, each antenna, and hence the radio wave shielding layer, can be made inconspicuous. This configuration is particularly effective when a pattern is drawn on the antenna side surface of the carrier or when the carrier is transparent.
  • a step of obtaining a substrate by forming a coating film on at least a part of the surface of the carrier A step of obtaining a radio wave shielding sheet by forming a plurality of antennas on the base material while the base material is adsorbed and held by an adsorbing means; and a step of attaching the radio wave shielding sheet to a face material body.
  • the radio wave shielding partition material according to the present invention it is possible to freely adjust the radio wave environment as necessary.
  • FIG. 1 is a perspective view showing a configuration of a roll screen according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 3 is a view corresponding to FIG.
  • FIG. 4 is a plan view showing the shape of the antenna.
  • FIG. 5 is a characteristic diagram showing the relationship between the frequency of radio waves incident on the roll screen and the amount of transmission attenuation.
  • FIG. 6 is a characteristic diagram showing the relationship between the element length of an antenna and the frequency of a radio wave reflected by the antenna.
  • FIG. 7 is a perspective view showing the configuration of the curtain according to Embodiment 2 of the present invention.
  • FIG. 8 is a view corresponding to FIG. 7, showing the curtain open state.
  • FIG. 9 is a perspective view showing a configuration of a vertical blind according to Embodiment 3 of the present invention.
  • FIG. 10 is a view corresponding to FIG. 9, showing the open state of the blind.
  • FIG. 11 is a view corresponding to FIG. 9 showing a state in which each slat of the blind is substantially horizontal.
  • FIG. 12 is a perspective view of a horizontal blind according to Embodiment 4 of the present invention.
  • FIG. 13 is a view corresponding to FIG. 12 showing the open state of the blind.
  • FIG. 14 is a view corresponding to FIG. 12, showing a state in which each slat of the blind is substantially perpendicular to the boundary surface between the spaces.
  • FIG. 15 is a rear view of the partition according to Embodiment 5 of the present invention.
  • FIG. 16 is a front view of the partition.
  • FIG. 17 is a rear view showing the partition opened.
  • FIG. 18 is a plan view of a plane shade according to Embodiment 6 of the present invention.
  • FIG. 19 is a side view of a double roll screen according to Embodiment 7 of the present invention.
  • FIG. 20 is a plan view showing Modification Example 1 of the radio wave shielding layer according to the present invention.
  • Fig. 21 is an enlarged plan view showing a part of the radio wave shielding layer.
  • FIG. 22 is a plan view showing the second modification.
  • FIG. 23 is a plan view showing the third modification.
  • FIG. 24 is a plan view showing a fourth modification.
  • FIG. 25 is a plan view showing the fifth modification.
  • FIG. 26 is a plan view showing a sixth modification.
  • Fig. 27 is a characteristic diagram illustrating the correlation between the radio wave shielding amount (radio wave transmission attenuation amount) and the frequency in the radio wave shielding layer of Modification 6.
  • FIG. 28 is a plan view showing Modification Example 7.
  • FIG. 29 is a plan view showing Modification Example 8.
  • FIG. 30 is a plan view showing Modification Example 9.
  • FIG. 31 is a plan view showing Modification Example 10.
  • FIG. 32 is a plan view showing the eleventh modification.
  • FIG. 33 is a plan view (a) of the whole antenna showing the modified example 12, an enlarged plan view (b) of the center portion of the antenna, and a plan view (c) showing the antenna portion further enlarged .
  • FIG. 34 is a cross-sectional view showing a state in which the radio wave shielding sheet is attached to the face material body on the side opposite to the radio wave shielding layer in Modification 13.
  • FIG. 35 is a side view showing the entire radio wave shielding sheet in a state of being rolled up and an enlarged portion of the radio wave shielding sheet.
  • FIG. 36 is a view corresponding to FIG. 34, showing a state where the radio wave shielding sheet is attached to the face material main body with the surface of the radio wave shielding layer in Modification 13.
  • FIG. 37 is a view corresponding to FIG. 35, showing the entire radio wave shielding sheet in the state of being rolled up, and showing an enlarged portion of the radio wave shielding sheet.
  • FIG. 38 is a side view showing a state in which the base material is adsorbed and held in the antenna forming process when the radio wave shielding sheet is manufactured.
  • FIG. 39 is a characteristic diagram showing the transmission attenuation characteristic diagram of the radio wave shielding sheet of Modification 13 together with the transmission attenuation characteristic of the comparative example.
  • FIG. 1 is a perspective view of a roll screen 1 according to the first embodiment
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • the roll screen 1 is disposed between a space (for example, a room) 30 and a space (for example, a room) 40 and separates the space 30 from the space 40 so that it can be opened and closed. Shielding partition material.
  • the roll screen 1 includes a flexible face material body 11, a radio wave shielding layer 12 formed on one surface l ib of the face material body 11, and the face material body 11 in a roll shape. And a supporting member 10 for scraping.
  • the support member 10 is formed in an elongated shape (for example, a rod shape or a cylindrical shape), and is laid horizontally so as to be rotatable at the upper portion of the boundary between the two spaces 30 and 40 partitioned by a wall or the like.
  • the upper part of the window It may be fixed on a wall or ceiling of the wall so as to be pivotable.
  • the support member 10 may be rotatably fixed to the ceiling.
  • the support member 10 may be detachably attached.
  • the support member 10 may be configured by a rod-shaped member that is non-rotatably attached to a ceiling or a wall, and a cylindrical member that is passed through the rod-shaped member and is rotatable with respect to the rod-shaped member. .
  • the support member 10 may be composed of a plurality of members.
  • the tip of the flexible face material body 11 is fixed (adhered, adhered, or locked) to the support member 10, and is scraped off by the support member 10. Then, by pulling the other tip end portion 11 a of the face material body 11, the face material body 11 is pulled out from the support member 10.
  • the face material main body 11 can be fixed at the arbitrary drawing position. That is, the entire surface material body 11 can be wound so that the space 30 and the space 40 are not separated from each other by the surface material body 11. A part or the whole may be pulled out, and the whole or a part of the boundary between the space 30 and the space 40 may be covered with the face material body 11 to isolate the space 30 and the space 40 from each other.
  • the state in which the scraped surface material body 11 is pulled out means that the entire boundary between the space 30 and the space 40 is completely covered by the roll screen 1. It is not just about the state of being. Depending on the usage of radio waves and the strength of radio waves used, the space 30 and the space 40 may not be covered by the roll screen 1 even in the closed state.
  • the material of the face material body 11 is not particularly limited. Examples thereof include resins such as urethane resin, polyethylene (PE) resin, and polystyrene resin, woven fabric (for example, plain weave) and non-woven fabric. It can be made of cloth, paper, rubber, etc.
  • the face plate body 11 has various properties (light transmission, non-flammability, flame retardancy, non-halogenity, flexibility, impact resistance, heat resistance, etc.) that are not limited to just the role of the base material. It may play a role to be imparted to the roll screen 1.
  • the color of the face material body 11 is not particularly limited.
  • the face material body 11 may be transparent.
  • the face plate 11 can be opaque. In that case, for example, the color may be similar to the surrounding wall or ceiling.
  • a radio wave shielding layer 12 that shields radio waves is provided so as to cover the surface l ib.
  • the radio wave shielding layer 12 is formed on the surface as shown in FIG.
  • the drawn face material body 11 is pulled out (that is, the ratio of the area occupied by the radio wave shielding layer 12 to the boundary between the space 30 and the space 40 is relatively large), and the space 3
  • the radio wave shielding layer 12 By dividing 0 and the space 40 by the radio wave shielding layer 12, it is possible to regulate the input / output of radio waves between the space 30 and the space 40. In this way, for example, the radio wave R from the space 30 is reflected by the radio wave shielding layer 12 and is restricted from entering the space 40.
  • the face material body 11 having the radio wave shielding layer 12 formed on the surface is spread on the support member 10, as shown in FIG. Therefore, in order to allow the radio waves to enter and exit between the space 30 and the space 40 (that is, the ratio of the area occupied by the radio wave shielding layer 12 to the boundary between the space 30 and the space 40 is relatively small). You can also By doing so, the radio wave R from the space 30 enters the space 40 as well.
  • the roll screen 1 according to the first embodiment can be opened and closed, and the radio wave shielding state can be freely adjusted as necessary.
  • the room of the room can be partitioned using the roll screen 1 of the first embodiment so that the areas using the different wireless LANs can be partitioned.
  • a plurality of radio wave shielding spaces can be defined by attaching the roll screen 1 to the ceiling so as to cross the substantially central portion and pulling out the face material body 11.
  • the roll screen 1 of Embodiment 1 can be easily attached to an existing building or room, and a plurality of radio wave shielding spaces can be formed in one room. Can be removed and the radio wave environment can be improved more freely and easily.
  • the support member 10 may be curved or bent.
  • the radio wave shielding layer 12 selectively shields radio waves having a specific frequency.
  • the radio wave shielding layer 12 is formed by regularly arranging a plurality of antennas 13 that selectively reflect radio waves of a specific frequency. For this reason, for example, in order to use different wireless LANs in the space 30 and the space 40, the face material body 11 having the radio wave shielding layer 12 formed on the surface is pulled out to connect the space 30 and the space 40 to the radio wave shielding layer 12.
  • the wireless LAN used in the space 30 and the wireless LAN used in the space 40 are restrained from crossing, while radio waves other than the wireless LAN (for example, radio waves from mobile phones and PHS) A radio wave shielding space that allows entry and exit of Can do.
  • the use of the roll screen 1 according to the first embodiment is particularly preferable because a more free radio wave environment can be maintained.
  • the form of the antenna 13 is not particularly limited, but may be, for example, as shown in FIG.
  • the form of the antenna 13 will be described in more detail with reference to FIG. 1 and FIG. FIG. 4 is a plan view of the antenna 13.
  • each antenna 13 in the first embodiment has three first element portions 13 a and three second element portions 13 b (hereinafter, the antenna of this embodiment is referred to as an antenna of this form).
  • “T-Y type antenna” has the power S).
  • the three first element portions 13a extend outward from the antenna center C1 at an angle of 120 ° to each other.
  • Each second element portion 13b is coupled to the outer end of the first element portion 13a.
  • the lengths of the first element portions 13a are preferably substantially the same. Further, it is preferable that the lengths of the second element portions 13b are substantially the same. By doing so, the frequency selectivity of the wave shielding layer 12 can be further increased.
  • the length L1 of the first element ⁇ B13a and the length L2 of the second element ⁇ B13b satisfy the following relationship: 0 ⁇ L2 ⁇ 2 X (3) 1/2 / Ll preferable. That is, when L2 ⁇ 2 X (3) 1/2 / Ll, adjacent second element portions 13b come into contact with each other, and a desired radio wave shielding effect cannot be obtained.
  • the length L2 of the second element portion 13b is not less than 0.5 times and not more than twice the length L1 of the first element portion 13a (0.5 X L1 It is preferable that ⁇ L2 ⁇ 2 X L1). More preferably, it is 0.75 times or more and 2 times or less (0.75 ⁇ L1 ⁇ L2 ⁇ 2 ⁇ L1).
  • the width of the first element portion 13a and the width of the second element portion 13b may be different from each other, or may be the same. In the present embodiment, the width of the first element portion 13a and the width of the second element portion 13b are approximately the same width (L3).
  • each antenna 13 includes three antennas coupled to the outer end of each first element portion 13a.
  • the antenna 13 is a “Y” -shaped linear antenna (a linear antenna composed of only three first element parts extending radially from the center of the antenna and having no second element part), or a Jerusalem cross.
  • Antennas each of which is connected to four linear first element portions extending radially at substantially the same length from each other at an angle of 90 ° from the center of the antenna, and to the outer ends of the first element portions. It has a higher frequency selectivity than an antenna having a second segment part. Therefore, the roll screen 1 according to the first embodiment has high frequency selectivity, and can accurately shield only radio waves to be shielded.
  • the antenna 13 since the antenna 13 includes the second element portion 13b, it is easy to arrange the plurality of antennas 13 with the second element portions 13b facing each other (preferably, closely facing each other). .
  • the radio wave shielding rate against radio waves of a specific frequency is further improved. be able to.
  • the second element portion 13b is coupled to the outer end of the first element portion 13a at the center, Further, it is preferable that the second element portion 13b and the first element portion 13a form a right angle.
  • FIG. Fig. 5 is a graph showing the relationship between the frequency of radio waves incident on the roll screen 1 and the transmission attenuation
  • Fig. 6 is a graph showing the relationship between the element length L and the frequency of radio waves reflected by the antenna 13. It is.
  • the transmittance of radio waves having a specific frequency (about 2.7 GHz) among radio waves incident on the roll screen 1 is selectively attenuated.
  • the roll screen 1 selectively shields radio waves having a specific frequency (about 2.7 GHz) from radio waves incident on the mouth screen 1.
  • This is applied to the radio wave shielding layer 12 of the roll screen 1, more specifically, to the radio wave shielding layer 12.
  • each of the plurality of included antennas 13 selectively reflects radio waves having a specific frequency among incident radio waves.
  • the length of the first element portion 13a and the length of the second element portion 13b (element length L) and the frequency of the radio wave to be reflected by the antenna 13 (specific frequency) Is correlated.
  • the specific frequency can be increased by shortening the lengths Ll and L2 of the first and second element portions 13a and 13b.
  • the length L1 of the first element portion 13a and the length L2 of the second element portion 13b are approximately 6 mm from FIG.
  • the frequency of the reflected radio wave does not greatly correlate with the width L3. That is, the frequency of the reflected radio wave is mainly determined by the element length L.
  • the specific frequency can be adjusted by fixing the length L1 of the first element portion 13a and adjusting the length L2 of the second element portion 13b. Specifically, the specific frequency can be lowered by increasing the length L2 of the second element portion 13b. On the other hand, the specific frequency can be increased by shortening the length L2 of the second element portion 13b.
  • the antenna 13 preferably has conductivity. That is, it preferably contains a conductive material.
  • the conductive material include aluminum, silver, copper, gold, platinum, iron, carbon, graphite, indium tin oxide ITO, indium zinc oxide, and mixtures or alloys thereof.
  • the antenna 13 preferably includes at least one of copper, aluminum, and silver, which has high conductivity and is relatively inexpensive.
  • the thickness T of the antenna 13 is preferably 10 ⁇ m or more and 20 ⁇ m or less (10 ⁇ m ⁇ T ⁇ 20 ⁇ m). When the thickness T of the antenna 13 is smaller than 10 ⁇ m (more than 10 ⁇ m), the conductivity of the antenna 13 decreases and the radio wave reflectance of the antenna 13 tends to decrease. On the other hand, when the thickness T of the antenna 13 is larger than 20 ⁇ m (T> 20 ⁇ m), the formability of the antenna 13 tends to decrease.
  • the antenna 13 may be in a mesh shape, for example. In other words, it may have a large number of openings. By making the antenna 13 mesh, the antenna 13 can be made relatively inconspicuous. Therefore, this is particularly effective when the face material body 11 is transparent. Further, when the antenna 13 has a mesh shape, it is more preferable to form a mesh-like pattern having the same pattern as the antenna pattern of the antenna 13 around the antenna 13 and having no conductivity. By doing so, the antenna 13 can be made more conspicuous.
  • the antenna 13 is formed by forming a conductive film (for example, an aluminum film, a copper film, or a silver film) on the surface l ib of the face material body 11 by a film forming method such as sputtering. It is also possible to produce the conductive film by patterning it into a predetermined shape by a patterning method such as photolithography. Further, the antenna 13 may be formed by adhering or sticking a thin film of aluminum or the like patterned to a predetermined shape and size to the face material body 11.
  • a conductive film for example, an aluminum film, a copper film, or a silver film
  • a paste containing a powdered conductive material in a binder (hereinafter sometimes referred to as "conductive paste”) is uniformly applied to the face material body 11 in a predetermined pattern, and then dried.
  • conductive paste a powdered conductive material in a binder
  • the antenna 13 may be manufactured by forming a paste in a predetermined pattern and then drying the paste in an atmosphere of 100 ° C. or higher and 200 ° C. or lower for 10 minutes to 5 hours.
  • the conductive paste for producing the antenna 13 may be a powdered conductive material (for example, silver) dispersed and mixed in a polyester resin.
  • the content C of the conductive material is preferably 40 wt% or more and 80 wt% or less (40wt% ⁇ C ⁇ 80wt%), but more preferably 50wt% or more and 70wt% Less than percent (50wt% ⁇ C ⁇ 70wt%). If the content C is less than 40% by weight (C: 40 wt%), the conductive property of the antenna 13 Tend to decrease. On the other hand, if it exceeds 80 weight percent (C> 80 wt%), it tends to be difficult to uniformly disperse and mix in the resin.
  • the polyester resin serves as an adhesive that bonds the conductive material and the face material body 11 together.
  • the face material body 11 has a large number of micropores and Z or irregularities, specifically, a porous body made of a cloth-like body (including woven fabric and non-woven fabric), concrete, foamable resin, or the like.
  • a porous body made of a cloth-like body (including woven fabric and non-woven fabric), concrete, foamable resin, or the like.
  • the face material body 11 Prior to the formation of the antenna 13, the face material body 11 is previously coated with a coating film to flatten the surface rib, and the entire thickness (the thickness of the face material body 11 + the thickness of the coating film). Is preferably made uniform.
  • the material of the coating film is not particularly limited, and examples thereof include resin (specifically, urethane resin, acrylic resin, polyester resin, etc.), organic material such as rubber, or inorganic material such as glass. Among them, it is preferable that the swellability with respect to the material for forming the antenna 13 such as paste (for example, a liquid material) is low.
  • the coating film can be formed by a roll coater method, a slit die coater method, a doctor knife coater method, a gravure coater method, or the like.
  • the antenna 13 may be, for example, a spin coating method, a doctor blade method, a discharge coating method, a spray coating method, an ink jet method, a relief printing method, an intaglio printing method, a screen printing method, a micro gravure coating method, or a silk printing method. It can also be formed by pattern bonding, etching, sputtering, vapor deposition (for example, chemical vapor deposition (CVD)), mist coating, or embedding by shape fitting.
  • CVD chemical vapor deposition
  • the force described in the example in which the radio wave shielding layer 12 is formed on one surface l ib of the face material body 11 is formed on both surfaces of the face material body 11. It may be done.
  • the radio wave shielding layer formed on one surface may be different from the radio wave shielding layer formed on the other surface.
  • an antenna having a different frequency of the reflected radio wave from the antenna formed on one surface may be formed on the other surface.
  • multiple types of radio waves can be shielded.
  • the frequency of the wireless LAN transmission radio wave and the frequency of the reception radio wave are different from each other.
  • a radio wave shielding layer is formed by forming a plurality of antennas that reflect radio waves for transmission on one surface, and another antenna that is formed by reflecting a plurality of radio waves for reception on the other surface. It is preferable that two radio wave shielding layers are formed to shield both transmission radio waves and reception radio waves. Further, the radio wave shielding layer 12 made of the antenna having the same shape may be formed on both the one surface and the other surface. By doing so, it is possible to shield higher frequency radio waves.
  • a plurality of radio wave shielding partitioning surface materials are provided in a plurality so as to be separated from each other between the space 30 and the space 40.
  • a light shielding curtain, a light shielding roll screen, a blind, a shutter, etc., as a radio wave shielding partition material, and a lace curtain, a blind, etc., as a radio shielding wall material are multiplexed (double or 3). Or more).
  • the radio wave shielding layers may have different forms, or the same form. Moyore.
  • a protective film for example, a resin film for physically or chemically protecting the radio wave shielding layer 12 may be provided on the radio wave shielding layer 12.
  • a protective film for example, a resin film for physically or chemically protecting the radio wave shielding layer 12
  • the radio wave shielding layer is made of a relatively easily oxidized metal such as silver
  • a participation preventing film for suppressing oxidation of the radio wave shielding layer may be provided.
  • the radio wave shielding layer is formed of a metal having a relatively low strength
  • a protective film made of a material stronger than the material constituting the radio wave shielding layer is provided, and the roll screen 1 machine It may be possible to improve the mechanical durability.
  • the radio wave shielding layer 12 may be provided inside the face material body 11. That is, the shape and arrangement of the radio wave shielding layer 12 are not particularly limited as long as the radio wave shielding layer 12 extends along the surface of the face material body 11.
  • the radio wave shielding layer 12 is configured by the plurality of antennas 13 regularly arranged.
  • the radio wave shielding layer 12 may be composed of one or a plurality of conductive films (for example, a silver thin film, a copper thin film, an aluminum thin film, etc.).
  • the surface 1 lb of the roll screen 11 may be covered with a conductive film.
  • the force S described with respect to the example of the present invention by taking the roll screen as the radio wave shielding partition surface material as an example in which the present invention has been implemented For example, it may be a window or a banner. It can also be other face materials such as curtains, shutters, blinds, partitions, etc.
  • FIG. 7 is a perspective view of the curtain 2 according to the second embodiment
  • FIG. 8 is a perspective view of the curtain 2 in the open state.
  • the radio wave shielding partition surface material is the curtain 2
  • components having substantially the same functions are described with reference numerals common to the first embodiment, and the description thereof is omitted.
  • the curtain 2 is formed on a face member body 11 attached to a support member 10 bridged between the space 30 and the space 40 so as to be opened and closed through a plurality of rings, and on the face member body 11 And a radio wave shielding layer 12.
  • the curtain 2 is closed as shown in FIG. 7, thereby restricting the input and output of radio waves between the space 30 and the space 40.
  • the curtain 2 is opened as shown in FIG. 8, it is possible to freely select and form a state in which radio waves are allowed to enter and exit between the space 30 and the space 40. That is, by using the curtain 2 according to the second embodiment, the radio wave environment can be freely adjusted as necessary.
  • the radio environment of the existing building or room can be freely adjusted by using the curtain 2 according to the second embodiment. Can be adjusted.
  • the curtains 2 may be provided between the space 30 and the space 40 in multiple layers.
  • the curtain 2 may be provided like a so-called double curtain.
  • the shielding layer 12 is preferably composed of a plurality of antennas 13 regularly arranged.
  • FIG. 9 is a perspective view of the blind 3 according to the third embodiment
  • FIG. 10 is a perspective view of the blind 3 in an open state
  • FIG. 11 shows that the face material body 11 is substantially horizontal.
  • FIG. 10 components having substantially the same functions are described with reference numerals common to the first and second embodiments, and description thereof is omitted.
  • the blind 3 includes a support member 10 that is bridged between the space 30 and the space 40, a plurality of string-like members 51 that are fixed to the support member 10 at one end, and a string-like member.
  • a plurality of horizontally long rectangular face material bodies 11 connected to each other by 51 and positioned in parallel with each other. Furthermore, it is connected to each string-like member 51, and is provided with adjusting means 50 provided at the end of the support member 10, and a plurality of surfaces connected to each other by the string-like member 51 by this adjusting means 50.
  • the material body 11 can be rotated and the blind 3 can be raised and lowered.
  • a radio wave shielding layer 12 is formed on at least one surface of each face material body 11. For this reason, for example, as shown in FIG. 9, the blind 3 is lowered by operating the adjusting means 50 and each face material body 11 is closed (substantially vertical) so that the space 30 and the space 40 By covering the boundary with the radio wave shielding layer 12, it is possible to regulate the input / output of radio waves between the space 30 and the space 40.
  • each face material body 11 can be rotated to be in an open state with the blinds 3 lowered, so as to be substantially horizontal.
  • the use of the blind 3 according to the third embodiment also enables free adjustment of the radio wave environment as necessary.
  • the blind 3 can be easily attached to an existing building, room, etc., like the curtain 2, the use of the blind 3 according to Embodiment 3 allows the existing building, The radio wave environment in the room can be adjusted freely.
  • multiple blinds 3 may be provided, and the roll screen 1 and curtain 2, or a shutter or window having a radio wave shielding layer may be used. You can add any of them.
  • the shielding layer 12 is preferably composed of a plurality of antennas 13 regularly arranged.
  • the vertical blind 3 has been described.
  • the present invention is not limited to this and may be, for example, a horizontal blind.
  • the radio wave shielding partition surface material is the horizontal blind 4 will be described.
  • FIG. 12 is a perspective view of the blind 4 according to Embodiment 4
  • FIG. 13 is a perspective view of the blind 4 in an open state
  • FIG. FIG. 4 is a perspective view of a blind 4 that is substantially perpendicular to a boundary with 40;
  • components having substantially the same functions will be described with reference numerals common to the first to third embodiments, and description thereof will be omitted.
  • the blind 4 includes a rod-like support member 10 that is bridged between the space 30 and the space 40, a plurality of string-like members 52 having one end fixed to the support member 10, and each string-like member 52.
  • a plurality of vertically long rectangular face material bodies 11 connected to the ends and parallel to each other, and a string-like connecting member 53 for connecting the plurality of face material bodies 11 to each other are provided. Further, it is connected to the string-like members 52, 53, and is provided with an adjusting means 50 provided at the end of the support member 10. By this adjusting means 50, the rotation operation of the plurality of face material bodies 11 and the blind 4 It can be opened and closed.
  • a radio wave shielding layer 12 is formed on at least one surface of each face material body 11. For this reason, for example, as shown in FIG. 12, by operating the adjusting means 50, the blind 4 is closed and each face material body 11 is closed (a state along the boundary between the space 30 and the space 40). Thus, by covering the boundary between the space 30 and the space 40 with the radio wave shielding layer 12, the input / output of radio waves between the space 30 and the space 40 can be regulated. On the other hand, when allowing the input / output of radio waves between the space 30 and the space 40, as shown in FIG. 13, the force to operate the adjusting means 50 to open the blind 4, or As shown in Fig. 14, with the blind 4 closed, each face material body 11 is substantially suspended from the boundary between the space 30 and the space 40. It can be rotated to be straight and open.
  • the radio wave environment can be freely adjusted as necessary.
  • the blind 4 can be easily attached to an existing building, room, or the like, similarly to the curtain 2 or the blind 3, the blind 4 according to the fourth embodiment is used.
  • the radio wave environment of buildings and rooms can be adjusted freely.
  • multiple blinds 4 may be provided, and the roll screen 1, curtain 2, blind 3, or a shutter equipped with a radio wave shielding layer, You may add a window.
  • the shielding layer 12 is preferably composed of a plurality of antennas 13 regularly arranged.
  • the radio wave shielding partition surface material is a partition 5 configured to be openable and closable.
  • FIG. 15 is a rear view of the partition 5 according to the fifth embodiment
  • FIG. 16 is a front view of the partition 5
  • FIG. 17 is a rear view showing a state in which the partition 5 is opened. is there .
  • components having substantially the same functions will be described with reference numerals common to the first to fourth embodiments, and description thereof will be omitted.
  • the partition 5 according to the fifth embodiment is attached to a partition displacement rail 54 provided corresponding to the floor and the ceiling (the rail 54 may be provided only on the ceiling or the floor) so as to be displaceable.
  • the plurality of vertically long rectangular face material bodies 11 and the radio wave shielding layer 12 formed on at least one surface of each face material body 11 are provided.
  • the Lenore 54 is provided, for example, between the space 30 and the space 40 located in one room (for example, across the center of the room), and is shown in FIG. 15 and FIG.
  • the space 30 and the space 40 are partitioned in a radio wave manner. It has become possible to do.
  • partition 5 according to the fifth embodiment. Therefore, a plurality of radio wave shielding spaces can be partitioned in one room.
  • the face material body 11 is moved to the corner along the lenore 54 as shown in FIG. I hope to make it communicate. By doing so, a state in which radio waves are allowed to enter and exit between the space 30 and the space 40 is formed.
  • the radio wave environment can be freely adjusted as necessary.
  • the partition 5 can be easily attached to an existing building, room, etc., similarly to the curtain 2 and the blinds 3 and 4, by using the partition 5 according to the present embodiment 5, The radio wave environment of existing buildings and rooms can be adjusted freely.
  • multiple partitions 5 may be provided, and the roll screen 1, the curtain 2, the blinds 3, 4, or the shutter provided with the radio wave shielding layer. You can also add windows and windows.
  • the shielding layer 12 is preferably composed of a plurality of antennas 13 regularly arranged.
  • Embodiment 2 described above the case of a horizontally open curtain that opens to the left and right has been described.
  • the present invention is not limited to such a horizontally open curtain, for example, a plain shade that is a kind of curtain that is opened and closed vertically. It may be. Therefore, in the sixth embodiment, a case where the radio wave shielding partition surface material is a plain shade will be described.
  • FIG. 18 is a plan view of the plane shade 6 according to the sixth embodiment.
  • components having substantially the same functions will be described with reference numerals common to the first to fifth embodiments, and description thereof will be omitted.
  • the plain shade 6 includes a flexible face material main body 60 made of a lace or a print ground, and a radio wave shield formed on the face material main body 60.
  • Layer 12 and adjustment means 50 are provided. Then, by operating the adjusting means 50, the face material body 60 having the radio wave shielding layer 12 formed on the surface can be raised or lowered while being folded. It is configured to be able to.
  • this plain shade 6 similarly to the curtain 2, the state in which the input / output of radio waves between adjacent spaces across the plane shade 6 is restricted and the state in which it is allowed can be freely set. Can be selectively formed.
  • the adjusting unit 50 can be operated to lower the plane shade 6 to shield the adjacent spaces from each other.
  • the plain shade 6 can be easily attached to an existing building or room. For this reason, by using the plain shade 6, it is possible to freely adjust the radio wave environment of an existing building or room.
  • the curtain 2, the roll screen 1, the blinds 3, 4, etc. may be provided in combination with the plain shade 6.
  • FIG. 19 is a side view of the double roll screen 7 according to the seventh embodiment.
  • the double mouth screen 7 according to the seventh embodiment includes the roll screen 1 and the roll screen 8 described in the first embodiment.
  • the roll screen 8 includes a rod-like support member 80 and a flexible face member body 81 wound around the support member 80 and configured to be drawable.
  • the radio wave shielding layer 12 is not formed on the surface of the face material body 81.
  • the double roll screen 7 is mounted and used so that the roll screen 1 with the radio wave shielding layer 12 is located outside the room and the roll screen 8 without the radio wave shielding layer 12 is located inside the room. It is. That is, the double roll screen 7 according to the seventh embodiment is obtained by arranging a normal roll screen 8 that does not have the radio wave shielding layer 12 on the indoor side of the roll screen 1 of the first embodiment.
  • a normal roll screen 8 is provided on the indoor side.
  • the face material body 11 of the veg roll screen 1 that restricts the entry and exit of radio waves into the room is pulled out, the face material body 81 of the mouthpiece Rustalene 8 is also drawn out. It is possible to prevent the radio wave shielding layer 12 from being seen from inside the room.
  • the roll screen 8 is a member that does not contribute to the maintenance of the radio wave environment, it can be freely designed. For example, the design and color tone can be adjusted to suit the room. Therefore, by using the double roll screen 7 according to the seventh embodiment, it becomes possible not only to maintain a free radio wave environment, but also to form an interior space that is harmonized in terms of design. Become.
  • the antenna 13 of the roll screen 1 becomes very conspicuous, and the design harmony of the room. May be damaged.
  • a double roll screen 7 with a plain surface material body 81 that is the same color as the wall or ceiling is placed, for example, the antenna 13 is not visible from the room, and is the same as the wall or ceiling. Only the colored face material body 81 is visible. Therefore, the design harmony of the indoor space is maintained.
  • radio wave shielding cutting surface material including the radio wave shielding layer 12 in which one kind of TY-type antenna 13 is arranged in a matrix form spaced apart from each other at equal intervals.
  • the configuration of the radio wave shielding layer 12 is not limited to these configurations. Therefore, hereinafter, as modifications:! To 11, other forms of the radio wave shielding layer 12 in the present invention (radio wave shielding layers 12a to 12k) will be described.
  • FIG. 20 is a plan view of the radio wave shielding layer 12a in Modification 1.
  • FIG. 21 is an enlarged plan view of a part of the radio wave shielding layer 12a.
  • the radio wave shielding layer 12 includes a plurality of antenna assemblies 15 in which a plurality of antennas 13 are arranged in a matrix at predetermined intervals, and the antenna assembly 15 is a rule.
  • the multiple antennas 13 are
  • each of the plurality of antenna units 14 includes a pair of antenna units 14 arranged so that the second element portions 13b face each other, and the plurality of antenna units 14 are connected to each other by the second element portions 13b.
  • a plurality of hexagonal antenna assemblies 15 continuously developed in two dimensions are formed. That is, each antenna assembly 15 includes three antenna units 14 arranged in an annular shape with the second element portions 13b facing each other. In other words, the antenna assembly 15 includes six antennas 13 arranged in an annular shape with the second element portions 13b facing each other.
  • the 12 second element parts 13b are provided so as to closely face each other substantially in parallel.
  • the radio wave reflectivity (radio wave shielding rate) for radio waves of a specific frequency of the antenna 13 is further improved. can do. Therefore, it is possible to realize a radio wave shielding partition member having a high radio wave shielding rate against radio waves of a specific frequency.
  • the distance XI between the second element portions 13b facing each other is preferably 0.4 mm or more and 3 mm or less (0.4 mm ⁇ Xl ⁇ 3 mm).
  • a more preferable range is 0.6 mm or more and lmm or less (0.6 mm ⁇ Xl ⁇ lmm). If the distance XI is shorter than 0 ⁇ 4 mm (XI ⁇ 0 ⁇ 4 mm), the opposing second element portions 13b may come into contact with each other undesirably. On the other hand, the distance XI is longer than 3mm, and (XI> 3mm), the radio wave shielding rate tends to decrease.
  • the antenna assembly 15 is preferably hexagonal (preferably substantially regular hexagonal). . Therefore, it is preferable that the first element portion 13a and the second element portion 13b are perpendicular to each other. Further, it is preferable that the second element portion 13b is coupled to the first element portion 13a at the center thereof.
  • FIG. 22 is a plan view of the radio wave shielding layer 12b in the second modification.
  • the antenna assembly 15 further faces the second element portion 13b.
  • they are arranged in a so-called honeycomb shape.
  • substantially all the second element portions 13b face each other.
  • FIG. 23 is a plan view of the radio wave shielding layer 12c in the third modification.
  • the radio wave shielding layer 12 is configured by only one type of antenna, whereas in the present modification 3, the radio wave shielding layer 12c is formed as shown in FIG. It consists of multiple types of antennas. Specifically, the radio wave shielding layer 12c includes a plurality of relatively large antennas 16 and a plurality of relatively small antennas 17. These antennas 16 and 17 are both TY antennas having the same shape as the antenna 13 described above.
  • the large antenna 16 and the small antenna 17 are arranged in an alternating manner and in a matrix so as not to interfere with each other.
  • the antenna 16 and the antenna 17 may be similar to each other or may be non-similar.
  • the radio wave shielding layer 12c may further include other types of antennas than the antenna 16 and the antenna 17.
  • the large antenna 16 and the small antenna 17 have different frequency selectivity. That is, the antenna 16 and the antenna 17 are different in the frequency of the shielded radio wave. Therefore, according to the third modification, it is possible to realize a radio wave shielding partitioning surface material that can selectively shield two types of radio waves having different frequencies.
  • the radio wave shielding partition material according to the third modification is, for example, an environment in which a wireless LAN is used (an environment in which radio waves of two frequencies of 2.4 GHz band and 5.2 GHz band are used). Thus, it is particularly useful in an environment where radio waves having a plurality of frequencies are used.
  • the radio wave shielding layer 12c may be configured by three or more types of antennas having different sizes.
  • FIG. 24 is a plan view of the radio wave shielding layer 12d in the fourth modification.
  • the radio wave shielding layer 12d is composed of two types of antennas 16, 17 having different sizes.
  • the large antenna 16 and the small antenna 17 have the same shapes as the antenna 16 and the antenna 17 in the third modification, respectively.
  • the pair of antennas 16 arranged so that the second element portions 16b face each other constitute an antenna unit 18.
  • the three antenna units 18 constitute a hexagonal antenna assembly 19 that is continuously developed in a two-dimensional manner by being arranged so that the second element portions 16b face each other.
  • each antenna assembly 19 includes three sets of antenna units 18 arranged in a ring shape with the second element portions 16b facing each other.
  • each antenna assembly 19 includes six antennas 13 arranged in an annular shape with the second element portions 16b facing each other.
  • the plurality of antenna assemblies 19 are arranged in a honeycomb shape so that the second element portions 13b are opposed to each other.
  • each of the pair of antennas 17 arranged so that the second element portions 17b face each other includes the antenna unit 20.
  • the three antenna units 20 constitute a hexagonal antenna assembly 21 that is arranged so that the second element portions 17b face each other and are continuously developed in two dimensions.
  • Each antenna assembly 21 is arranged so as to be surrounded by the antenna assembly 19.
  • the second element portions 16b of the antenna 16 and the second element portions 17b of the antenna 17 can be opposed to each other with a high probability, and the antennas 16, 17 are substantially omitted. They can be arranged with the same density. Therefore, both the radio wave shielded by the antenna 16 and the radio wave shielded by the antenna 17 can be shielded with higher frequency selectivity and higher shielding rate.
  • the lengths of the second element portions 16b and 17b are relatively short. By doing so, contact between the antenna 16 and the antenna 17 can be suppressed. Therefore, the dimensional freedom of the antenna 17 constituting the antenna assembly 21 surrounded by the antenna assembly 19 can be further increased. As a result, for example, the frequency is relatively close A radio wave shielding partitioning surface material capable of selectively shielding two types of radio waves can be realized.
  • FIG. 25 is a plan view of the radio wave shielding layer 12e in the fifth modification.
  • Modification 5 is a further modification of Modification 4.
  • the antenna assembly 19 and the antenna assembly 21 have different line symmetry axes, and the line symmetry axis of the antenna assembly 19 and the line symmetry axis of the antenna assembly 21 are mutually different. Lean and lean.
  • the dimensions of the antenna 17 constituting the antenna assembly 21 need to be smaller than the dimensions of the antenna 16 constituting the antenna assembly 19. There is. For example, as shown in Modification 4, when the antenna assembly 19 and the antenna assembly 21 are arranged without inclining the axes of line symmetry, the antenna 16 and the antenna 17 do not interfere with each other. In addition, the antenna 17 must be made very small relative to the antenna 16, and as a result, the design flexibility of the antenna 16 and the antenna 17 is reduced.
  • the positional relationship between the portion of the second element portion 16b facing each other in the antenna assembly 19 and the portion of the second element portion 17b facing each other in the antenna assembly 21 of the antenna assemblies 19, 21 It shifts relatively around the center.
  • the degree of freedom in designing the shape and dimensions can be expanded. As a result, radio waves can be shielded against two waves that are close in frequency (ratio between the first frequency and the second frequency (first frequency ⁇ second frequency) is 0.45 or more).
  • the antenna assembly 19 and the antenna assembly 21 are arranged in a close-packed state. Depending on the desired radio wave shielding ratio, the antenna assembly 19 , 21 may be arranged with the number adjusted appropriately.
  • radio waves of one or more types of frequencies are selected.
  • the radio wave shielding partition material that can be selectively shielded is described.
  • the radio wave shielding partition material according to the present invention can selectively shield radio waves in one or more types of frequency bands. It may be. Therefore, in Modification 6, an example is described in which the radio wave shielding layer is configured by a plurality of types of antennas that selectively reflect radio waves of different specific frequencies so that radio waves of specific frequency bands can be selectively shielded.
  • the radio wave shielding layer 12f is constituted by three types of antennas 22a, 22b, and 22c will be described.
  • the "frequency band” refers to a frequency range where the ratio band exceeds 10%.
  • a radio wave shielding partition material that “selectively shields radio waves in a specific frequency band” means a 10 dB ratio band (preferably a 20 dB ratio band, more preferably a 30 dB ratio band) force exceeding S10%. (> 10%) Radio wave shielding partition material.
  • a radio wave shielding partition material that “selectively shields radio waves of a specific frequency” is a radio wave shielding partition surface material whose 10 dB ratio band is 10% or less ( ⁇ 10%).
  • the 10dB ratio band is 10dB or more ( ⁇ 10dB), and the maximum frequency of the radio wave to be shielded is F, and 10dB or more (10dB) is shielded.
  • FIG. 26 is a plan view of the radio wave shielding layer 12f in the sixth modification.
  • the radio wave shielding layer 12f is a plurality of types of antennas 22 that selectively reflect radio waves in different specific frequency bands, specifically, the first antenna 22a, the second antenna 22b, and the third antenna 22c. It is composed of different types of antennas. In the first antenna 22a, the second antenna 22b, and the third antenna 22c, their respective radio wave reflection spectrum peaks are not independent of each other. In other words, each radio wave reflection spectrum peak is continuous. Therefore, the radio wave shielding layer 12f according to this modification can selectively reflect radio waves in a frequency band having a predetermined width (for example, a frequency band of 815 MHz or more and 925 MHz or less).
  • a predetermined width for example, a frequency band of 815 MHz or more and 925 MHz or less.
  • the radio wave shielding layer 12f has radio wave shielding characteristics (radio wave transmission attenuation characteristics) as shown in FIG. From the viewpoint of achieving higher continuity of the radio wave reflection super peak, each of the antennas 22a to 22c included in the radio wave shielding layer 12f The size is preferably within ⁇ 15% (preferably ⁇ 10%, more preferably ⁇ 5%) of the size of the reference type of the antennas 22a to 22c.
  • Fig. 27 exemplifies the correlation between the radio wave shielding amount (radio wave transmission attenuation amount) of the radio wave shielding layer 12f and the frequency.
  • the spectrum peak P2 of the first antenna 22a, The spectrum peak P3 of the second antenna 22b and the spectrum peak P1 of the third antenna 22c are not isolated from each other and are continuous. That is, the ratio of the depth HI from the base line BL of P1, which is the largest peak, to the depth H2 from the base line BL in the valley (the ratio of the electromagnetic reflection (shielding) rate) is 50. /. Below (more than 3dB).
  • radio waves in the entire frequency band between the peaks P1 to P3 are shielded (reflected) with a high shielding rate of 10 dB or more. Further, the 10 dB ratio band is preferably larger than 10%.
  • Radio reflection spectrum peaks are not isolated from each other (continuous)” means the peak of the largest spectrum among the radio wave reflection (shielding) spectra of the wave shielding partitioning surface material.
  • the ratio of the minimum radio wave reflection (shielding) rate in the valley between the spectral peaks to the radio wave reflection (shielding) rate of the peak (peak) is greater than 50% (the wave reflection (shielding) of the peak (peak) of the largest spectrum) )
  • the difference between the rate and the minimum radio wave reflection (shielding) rate at the valley is less than 3 dB.
  • the radio wave reflection spectrum peaks are isolated from each other (not continuous) means that the peak part of the largest spectrum of the radio wave shielding spectrum (radio wave reflection spectrum) of the radio wave shielding partition material ( The ratio of the minimum radio wave reflection (shielding) rate at the valley between the peaks to the radio wave reflection (shielding) rate of the peak is 50% or less (the maximum wave reflection (shielding) rate of the peak (peak) The difference from the minimum radio wave reflection (shielding) rate at the valley is 3 dB or more).
  • each of the first to third antennas 22a to 22c is a TY antenna having the same shape as the antenna 13 described in the embodiment.
  • it may be Y-shaped or Jerusalem cross-shaped.
  • the first to third antennas 22a to 22c may have different shapes, or may have the same shape or similar shapes having different sizes.
  • the radio wave shielding layer 12f includes a plurality of antenna rows 23 that are arranged alternately in this order in one direction in the first antenna 22a, the second antenna 22b, and the third antenna 22c. Are two-dimensionally arranged.
  • the radio wave shielding layer 12f is formed by arranging a plurality of antenna rows 23 in which the first to third antennas 22a to 22c are alternately arranged in this order in the same direction in substantially parallel to each other. It is.
  • each first antenna 22a is adjacent to the second antenna 22b and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna row 23 to which the first antenna 22a belongs.
  • each second antenna 22b is adjacent to the first antenna 22a and the third antenna 22c belonging to the antenna row 23 adjacent to the antenna IJ23 to which the second antenna 22b belongs.
  • Each third antenna 22c is adjacent to the second antenna 22b and the first antenna 22a belonging to the antenna row 23 adjacent to the antenna row 23 to which the third antenna 22c belongs.
  • each first antenna 22a belongs to each antenna row 23 located on both sides of the antenna row 23 to which the first antenna 22a belongs.
  • each second antenna 22b belongs to each antenna array 23 located on both sides of the antenna array 23 to which the second antenna 22b belongs, and is closest to the second antenna 22b 2 Between the two second antennas 22b, the three antenna centers are arranged to form a triangle (preferably an equilateral triangle).
  • each third antenna 22c belongs to each antenna row 23 located on both sides of the antenna row 23 to which the third antenna 22c belongs, and is closest to the third antenna 22c 2 Between the three third antennas 22c, the three antenna centers are arranged to form a triangle (preferably an equilateral triangle).
  • the second element portion of the first antenna 22a is arranged so as to enter between the second antenna 22b and the third antenna 22c belonging to the adjacent antenna row 23.
  • a plurality of antenna columns 23 can be densely arranged in the row direction (lateral direction).
  • the second of the three second antennas 22b closest to the first antenna 22a it is possible to make the element portion enter. Therefore, more antennas 22a to 22c can be arranged per unit area.
  • the shielding rate of radio waves correlates with the number of antennas 22 per unit area, and the shielding rate of radio waves increases as the number of antennas 22 per unit area increases. For this reason, according to the arrangement of the antenna 22 in the present modification 6, it is possible to achieve a higher radio wave shielding rate.
  • the number of the first to third antennas 22a to 22c included per unit area can be made substantially the same, it is possible to suppress the radio wave shielding unevenness between the target frequency bands.
  • the length L2 of the second element portion is preferably shorter than the length L1 of the first element portion (L2 ⁇ L1).
  • the second element portions are arranged so as not to face each other in parallel. For this reason, the frequency selectivity of the radio wave shielding layer 12f can be kept relatively low. In other words, the ratio band of the shielding target frequency band of the radio wave shielding layer 12f can be kept relatively wide. Therefore, it is possible to realize a favorable radio wave shielding rate with little bias with respect to radio waves in the entire specific frequency band.
  • the radio wave shielding layer 12 composed of the T-Y antenna (antennas 13, 16, and 17) has been described.
  • the radio wave shielding layer 12 is composed of an antenna other than the TY type antenna.
  • a Y-shaped antenna 24 may be used.
  • the arrangement may be a matrix.
  • the “Y” -shaped antenna 24 is specifically defined as three line segments having substantially the same length extending radially at substantially the same length from the center of the antenna at an angle of approximately 120 °. What is constituted by the first element portion 24a in the shape of a ring.
  • Modification 8 is a further modification of Modification 7 described above.
  • the radio wave shielding layer 12g is composed of only one type of antenna 24, whereas in this Modification 8, the radio wave shielding layer 12h has two types of Y-shaped antennas having different sizes. It consists of 25 and 26. According to this configuration, it is possible to shield a plurality of types of radio waves having different frequencies. A possible radio wave shielding partition surface material can be realized.
  • relatively large antennas 25 are arranged so that the first element portions face each other. Specifically, the first element parts of different antennas 25 are arranged in parallel and close to each of the three first element parts of each antenna 25.
  • One relatively small antenna 24 is arranged in each of the hexagonal regions defined by the relatively large antenna 25.
  • FIG. 30 is a plan view of the radio wave shielding layer 12i in Modification 9.
  • the radio wave shielding layer 12i is composed of a plurality of Jerusalem cross-shaped antennas 27.
  • Each antenna 27 includes four linear first element portions 27a extending radially at substantially the same length from each other at an angle of 90 ° from the center of the antenna, and the outer ends of the first element portions 27a.
  • the second element part 27b in the form of a line segment coupled with each other at a predetermined angle (typically vertically).
  • the plurality of antennas 27 are arranged in a matrix so that the second element portions 27b of the adjacent antennas 27 face each other (preferably in parallel and close to each other). According to this arrangement, it is possible to further improve the radio wave shielding rate of the antenna 27 with respect to radio waves of a specific frequency.
  • FIG. 31 is a plan view of the first radio wave shielding layer 1 in Modification 10.
  • the present modification 10 is a further modification of the modification 9.
  • the radio wave shielding layer 12i is composed of only one type of antenna 27, whereas in this Modification 10, the radio wave shielding layer 13 ⁇ 4 has two types of Jerusalem crosses having different sizes. Shape antenna 2 8, 29. According to this configuration, it is possible to realize a radio wave shielding partition surface material capable of shielding a plurality of types of radio waves having different frequencies.
  • the plurality of antennas 28 are arranged so that the second element portions 28b of the adjacent antennas 28 face each other (preferably in parallel and close to each other). They are arranged in a matrix (to face each other).
  • One relatively small antenna 29 is disposed in each of the substantially rectangular regions defined by the relatively large antenna 28.
  • FIG. 32 is a plan view of the radio wave shielding layer 12k in the eleventh modification.
  • the present modification 11 is a further modification of the above modification 10 in which only the arrangement of the antennas 28 and 29 is different.
  • the antennas 28 are arranged so that the second element portions 28b of the antennas 28 adjacent to each other in the horizontal direction in Fig. 32 face each other (preferably, face in parallel and close to each other).
  • FIG. 33 is a plan view of the antenna 13 in Modification 12.
  • FIG. 33 (a) is a plan view showing the entire antenna 13 in the present modification 12
  • FIG. 33 (b) is a portion indicated by “b” in FIG. 33 (a) (antenna center C
  • FIG. 33 (c) is an enlarged plan view of the portion indicated by “c” in FIG. 33 (a).
  • Metal film or metal foil having a part for example, mesh-like metal film or metal foil
  • the metal film having an opening is a metal film formed in a planar mesh shape such as a planar lattice shape (triangular lattice shape, hexagonal lattice shape, Collins lattice shape, etc.).
  • Metal foil metal film having a microscopic hole with a circular shape in plan view, an elliptical shape in plan view, or a polygonal shape in plan view, or a circular shape in plan view, an elliptical shape in plan view, or a polygonal shape in plan view
  • a large number of metal films (metal foils) are arranged so as to be separated from each other.
  • the antenna 13 can transmit light to some extent, and the antenna 13 can be hardly stopped by eyes. Therefore, according to this configuration, for example, when the radio wave shielding partition surface material is transparent, the radio wave shielding partition surface material that does not obstruct visibility by making the base material 10 transparent is used. Can be realized. Further, when a pattern is attached to the surface of the radio wave shielding partition material, it is possible to suppress blurring of the pattern outline by the antenna 13 and deterioration of visibility.
  • the portion where the first element portion 13a intersects is made of a mesh-like metal film (or metal foil) having a triangular lattice shape in plan view, and the other first element portion 13a portion and the second element portion 13b are square in plan view. It is particularly preferable to use a mesh-like metal film (or metal foil).
  • the ratio of the area occupied by the metal film (metal foil) to the antenna 13 is preferably 2.5% or more and 30% or less.
  • the line width W and the pitch P can be set as appropriate depending on the relationship between conductivity (radio wave shielding) and aperture ratio (translucency).
  • the line width W can be set to 70 zm or less (5 ⁇ m ⁇ W ⁇ TOxm). Preferably, it is 8 ⁇ m or more and 30 ⁇ m or less (8 ⁇ m ⁇ ⁇ 30 ⁇ ). Note that it is difficult to obtain the necessary conductivity (radio wave shielding), with a smaller line width W (W ⁇ 5 zm). On the other hand, when the line width W exceeds 70 zm (W> 70 zm), a sufficient aperture ratio (translucency) cannot be obtained.
  • the pitch P can be set to 50 ⁇ 111 or more and 400 ⁇ 111 or less (50 ⁇ 111 ⁇ ⁇ 400 ⁇ 111). Preferably, it is 100 ⁇ 111 or more and 300 ⁇ 111 or less (100 ⁇ 111 ⁇ ⁇ 300 ⁇ 111). Pi If the contact P is less than 50 ⁇ ( ⁇ ⁇ 50 ⁇ ), sufficient aperture ratio (translucency) cannot be obtained. If the pitch repulsive force exceeds S 400 ⁇ m (P> 400 ⁇ m), it is difficult to obtain the required conductivity (radiation shielding).
  • the radio wave shielding layer 12 is provided on a base 60 having a breathable carrier 60a to form a radio wave shielding sheet, and this radio wave shielding sheet is used with an adhesive 61 or the like.
  • the radio wave shielding layer 12 is arranged on the face material body 11 by being attached to the face material body 11.
  • the radio wave shielding sheet is a long object that has been rolled up so that it can be used by cutting it out as long as it is needed.
  • the radio wave shielding sheet As a mode of attaching the radio wave shielding sheet to the face material body 11, first, as shown in FIG. 34, the surface of the radio wave shielding sheet opposite to the radio wave shielding layer 12 is overlaid on the face material body 11. The case where it is made to be mentioned is mentioned.
  • the radio wave shielding sheet has a layer of adhesive 61 coated on the surface of the base 60 opposite to the radio wave shielding layer 12 (lower side in FIG. 35). On the surface, a protective film 62 is attached, which is peeled off when the radio wave shielding sheet is attached to the face material body 11. As shown in FIG. 34, the surface of the radio wave shielding sheet opposite to the radio wave shielding layer 12 is overlaid on the face material body 11.
  • the radio wave shielding sheet has a layer of adhesive 61 coated on the surface of the base 60 opposite to the radio wave shielding layer 12 (lower side in FIG. 35).
  • a protective film 62 is attached, which is peeled off when the radio wave shielding sheet is attached to
  • the coating film 60b is formed on the entire surface of the carrier 60a, and the substrate 60 is configured by the carrier 60a and the coating film 60b. Yes.
  • the coating film 60b described above reduces the air permeability of the carrier 60a.
  • the coating film 60b is formed on at least a part of the carrier 60a. Therefore, the portion of the base material 60 where the coating film 60b is formed is in a state where air permeability is reduced.
  • examples of the carrier 60a include woven fabrics (for example, plain weave), non-woven fabrics, knitted fabrics, laces, felts, papers, and the like, and the shape thereof is a plate shape. , Sheet or film.
  • the coating film 60b is not particularly limited as long as the air permeability of the carrier 60a can be suppressed.
  • the coating film 60b is preferably made of an organic (high molecular weight) material such as resin or rubber, or an inorganic material such as glass. Additives (anti-aging agents, colorants, etc.) may be added.
  • the coating film 60b is preferably transparent (light transmissive). The coating film 60b may be provided only in the region where the radio wave shielding layer 12 is formed or only in the region where the antenna 13 is disposed.
  • FIG. 38 is a side view showing a process of forming a plurality of antennas 13 (radio wave shielding layers 12) on the substrate 60.
  • FIG. 38 is a side view showing a process of forming a plurality of antennas 13 (radio wave shielding layers 12) on the substrate 60.
  • a carrier 60a such as a cloth-like body having flexibility and air permeability is prepared.
  • a coating film 60b is formed on one surface of the carrier 60a to complete the substrate 60.
  • the coating film 60b reduces the air permeability of the carrier 60a, the obtained base material 60 has a reduced air permeability.
  • the air permeability of the substrate 60 may be substantially eliminated.
  • the base material 60 is spread and disposed on the suction plate 40.
  • the suction disk 40 has a flat and smooth surface, and one end of each of the plurality of intake holes 41 is opened.
  • the other ends of the intake holes 41 are connected to suction means (for example, a (vacuum) pump) not shown.
  • suction means for example, a (vacuum) pump
  • the base material 60 arranged on the suction plate 40 is sucked and held on the suction plate 40, so that the antenna 13 (the radio wave shielding layer 12) is held.
  • the surface of the base material 60 to be formed can be held flat, that is, the base material 60 can be held without causing “wrinkles” or “sagging”.
  • a radio wave shielding layer 12 including a plurality of antennas 13 is formed on the substrate 60 to obtain a radio wave shielding sheet. After that, the radio wave shielding sheet is adhered to the face material body 11 with the adhesive 61, thereby completing the radio wave shielding partitioning surface material.
  • the process of forming the coating film 60b and the process of forming the radio wave shielding layer 12 may be performed continuously, or after forming the coating film 60b, the film 60b is once wound up and stored. Thereafter, the radio wave shielding layer 12 may be formed again.
  • the surface on which the plurality of antennas are formed should be flat, that is, there should be “bumps” or “sagging” or “curvature”. It is necessary to hold the substrate 60 so that it does not occur.
  • the surface of the antenna 13 is flattened due to the air permeability of the carrier 60a. It is difficult to hold). For example, even if the carrier 60a that does not have the coating film 60b is placed on the suction disk 40 and sucked, it is difficult to sufficiently hold the carrier 60a by adsorption due to the air permeability of the carrier 60a.
  • the radio wave shielding layer 12 (antenna 13) may not have frequency selectivity.
  • the coating film 60b that reduces the air permeability of the carrier 60a is formed on the carrier 60a having air permeability.
  • the base material 60 mainly composed of the breathable carrier 60a can be sufficiently held by adsorption.
  • a radio wave shielding sheet was produced using the suction plate 40 (see Fig. 38). Specifically, first, a coating film 60b is formed on the surface of a carrier 60a made of “# 0717_CU (beige)” manufactured by Toyo Senka Co., Ltd. using a roll coater method with urethane resin. It was.
  • an antenna 13 was produced on the coating film 60b by screen printing using a silver paste in which silver fine particles were dispersed and mixed in the polyester resin at a ratio of 63 wt%.
  • the antenna 13 was manufactured by adsorbing and holding the base material 60 on the suction disk 40. After the antenna 13 was fabricated, almost no silver paste bleeding was observed on the surface of the substrate 60.
  • a radio wave shielding sheet was produced by the same process as in the above experimental example except that the coating film 60b made of urethane resin was not formed, and the transmission attenuation characteristics were similarly examined.
  • the comparative example after the produced antenna was produced, bleeding of the silver paste was visually recognized on the substrate surface.
  • Fig. 39 shows the transmission attenuation characteristics of the radio wave shielding sheet according to the experimental example and the transmission attenuation characteristics of the radio wave shielding sheet according to the comparative example.
  • the radio wave shielding partition material according to the present invention is useful as a shutter, curtain, blind, window, partition, roll screen, hanging curtain, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Building Environments (AREA)

Abstract

 必要に応じて電波環境を自由に調整可能な電波遮蔽性仕切面材を得るために、空間を仕切るように設けられた面材本体11の表面に、電波を遮蔽する電波遮蔽層12を設ける。

Description

明 細 書
電波遮蔽性仕切面材およびその製造方法
技術分野
[0001] 本発明は、電波遮蔽性仕切面材およびその製造方法に関する。
背景技術
[0002] 近年、事業所内 PHSや無線 LANなどに代表される無線機器の利用が広がりを見 せるなか、情報の漏洩防止といった観点や、外部からの侵入電波による誤動作ゃノ ィズ防止といった観点から、オフィス内での電波環境を整えることが不可欠になって いる。従来、オフィスなどにおける電波環境の整備用部材として、種々のタイプのもの が提案されている(例えば、特許文献 1, 2など)。
[0003] 例えば、特許文献 1には、電磁シールド部材を入れたコンクリートによりビルの躯体 を構成してビルの躯体を介した電波の入出を規制する技術が開示されている。 特許文献 1 :特公平 6— 99972号公報
発明の開示
発明が解決しょうとする課題
[0004] し力しながら、特許文献 1に記載された技術では、ビル内が常に電波が遮蔽された 状態となってしまう。このため、例えば、ビル内で無線 LANを使用する時のような電 波を遮蔽する必要性がある時のみビル内を電波遮蔽状態とし、それ以外の電波を遮 蔽する必要がない時には電波遮蔽状態を解除する、というような必要に応じた電波 環境の調整ができない。さらに具体例を挙げて説明すると、例えば、ビルの部屋を間 仕切る壁や天井,床などを電磁シールド部材を入れたコンクリートにより構成し、部屋 内で使用する電波が外部に漏れないようにした場合、電磁シールド部材が入れられ た壁などを破壊して電磁シールド部材を取り除かない限りビル内の部屋相互間で無 線 LANを使用した通信ができないという問題がある。すなわち、従来の技術では、電 波環境を自在に調整することが困難であるという問題がある。
[0005] 本発明は斯かる点に鑑みてなされたものであり、その目的とするところは、必要に応 じて電波環境が調整自在に構成された電波遮蔽性仕切面材を提供することにある。 課題を解決するための手段
[0006] 上記目的を解決するために、本発明に係る電波遮蔽性仕切面材は、面材本体の 表面に設けられていて電波を遮蔽する電波遮蔽層を備えており、空間を開閉可能に 仕切るものであることを特徴とする。尚、本明細書において、「面材本体」とは、板状 部材,シート状部材,布状部材,フィルム状部材を含む概念であり、具体例としては、 シャッター,カーテン,ブラインド,窓,間仕切り,ロールスクリーン,垂れ幕などを挙げ ること力 Sできる。
[0007] 上記構成の電波遮蔽性仕切面材によれば、空間の境界(具体的には、壁,パーテ イシヨンなど)や開口(具体的には、窓など)を覆う電波遮蔽層の面積を自在に調整す ること力 Sできる。このため、本発明によれば、必要に応じて、例えば、空間の開口や境 界が電波遮蔽層で覆われるようにして空間への電波の入出を規制することができ、 一方、空間の開口や境界の一部又は全部を電波遮蔽層で覆わないようにして空間 への電波の入出を許容することができる。すなわち、電波の遮蔽性を自由に調整し て、電波環境を任意に変更することができる。
[0008] また、上記の電波遮蔽性仕切面材は、既存の建物などの必要な箇所に必要に応じ て設置することができる。このため、電波遮蔽性を有さないようなビルに適宜電波遮 蔽性の空間を設けることが可能となる。また、ひとつの部屋の中に複数の電波遮蔽空 間を形成することも可能となる。
[0009] さらに、例えば、複数の部屋が設けられたビルにおいて部屋毎に異なる無線 LAN を使用するような場合には、 P 接する部屋相互間における電波の混線を抑制するた めに、隣接する部屋を間仕切る壁やドアなどに本発明に係る電波遮蔽性仕切面材を 配置し、必要に応じて隣接する部屋相互間の電波の入出を自在に調整可能な状態 をつくること力できる。
[0010] 尚、上記の電波遮蔽層としては、 1又は複数の導電膜により構成されていてもよい 力 少なくとも 1つの特定周波数帯の電波を選択的に遮蔽する複数のアンテナを有 するものとすることもできる。この構成によれば、特定周波数帯の電波のみの入出が 選択的に規制された空間を設けることができ、かつ、その空間における特定周波数 帯の電波の遮蔽性 (電波環境)を自在に調整することができるので好ましい。また、そ のようなアンテナの具体例としては、アンテナ中心から互いに略 120° の角度をなし て放射状に延びる略同一長さの 3本の第 1エレメント部と、各第 1エレメント部の外側 端に結合された線分状の第 2エレメント部とを有するもの(以下、この形状のアンテナ を「T_Y形アンテナ」とすることがある。)や、アンテナ中心から互いに略 120° の角 度をなして放射状に延びる略同一長さの 3本の第 1エレメント部のみからなる所謂 Υ 字状のもの、さらには、アンテナ中心から互いに略 90° の角度をなして放射状に延 びる略同一長さの 4本の第 1エレメント部と、各第 1エレメント部の外側端に結合され た線分状の第 2エレメント部とを有する所謂エルサレムクロス形のものなどを挙げるこ とができる。
[0011] さらに、通気性を持つ担持体を有する基材上に上記の電波遮蔽層を設けて構成さ れる電波遮蔽シートを備えており、この電波遮蔽シートが上記面状本体に貼着される ことで該面状本体上に上記電波遮蔽層が配置される場合には、上記保持材の少なく とも一部の表面上にコーティング膜が設けられたものを、上記の基材とすることができ る。尚、通気性を有する担持体としては、例えば、布状体 (織布,不織布,編み物,レ ース,フェルト,紙など)などが挙げられる。また、各アンテナは導電性材料により形成 されていてもよい。
[0012] すなわち、担持体の表面に複数の微細孔および/又は凹凸がある場合、複数のァ ンテナを高レ、形状寸法精度で形成するためには、複数のアンテナが形成される表面 が平坦となるように (すなわち、表面にしわやたるみが生じなレ、ように)担持体 (基材) を固定する必要がある。つまり、通気性を有する担持体上に直接に複数のアンテナ を形成する場合、担持体の通気性故に、複数のアンテナの形成される担持体表面が 平坦となるように該担持体を十分に吸着保持することが困難である。したがって、複 数のアンテナを高い形状寸法精度で形成することは困難である。その結果、高い電 波遮蔽性を実現することは困難となる。
[0013] これに対し、上記の構成では、通気性を持つ担持体の少なくとも一部の表面上にコ 一ティング膜が配置されている。このため、基材は、通気性を持つ担持体を主体とす るものの、上記コーティング膜の部位においては吸着保持可能である。よって、電波 遮蔽性仕切面材を製造する際に、基材を該基材の表面が平坦に保たれた状態に( 皺や弛みを生じさせることなく)保持することができる。したがって、高い形状寸法精 度で複数のアンテナを形成することが可能となる。その結果、高い電波遮蔽性を実 現すること力 S可能となる。すなわち、上記のような電波遮蔽シートを用いる場合でも、 高レ、電波遮蔽性を持つ電波遮蔽性仕切面材を容易に作製可能である。
[0014] 尚、通気性を持つ担持体を、吸着手段以外の保持手段で保持 (例えば、粘着剤な どを用いて保持)することも考えられるが、そのような場合には、担持体の保持手段へ の着脱作業が繁雑になり、特に、高い平坦度で担持体を保持しょうとすると着脱作業 力^らに煩雑になると共に作業難易度が増し、そのために、高い電波遮蔽性を持つ 電波遮蔽シート(電波遮蔽性仕切面材)の作製が困難となってしまう。これに対し、吸 着による担持体の保持は、上述の粘着剤などを用いた保持と比較して非常に容易に 複数のアンテナを形成しょうとする表面に皺や弛みが生じないように保持することが できるというメリットがある。
[0015] 上記の電波遮蔽層は、基材の担持体上に直接に形成されていてもよいが、コーテ イング膜の上に形成されていることがより好ましい。特に、コーティング膜がその基材 の表面を平坦ィ匕して基材の厚みを均一化するものである場合には好ましい。
[0016] つまり、担持体の表面に複数の微細孔および/又は凹凸がある場合、その担持体 上に直接に複数のアンテナを形成しょうとすると、アンテナを形成するための材料 (例 えば、液体材料 (インクなど))が微細孔に浸入して起こる「滲み(染込み。特に、面材 本体表面における面方向への拡がり)」や凹部への「流れ込み」が生じる虞がある。こ のような「滲み」や「流れ込み」が生じるとアンテナの形状寸法や厚さにばらつきゃ不 正確さが生じることとなり、所望の高い電波遮蔽性、周波数選択性を有する複数のァ ンテナが得られなくなる。
[0017] これに対し、上記の構成では、担持体表面の複数の微細孔および Z又は凹凸がコ 一ティング膜によって坦められて基材の表面が平坦ィ匕されると共に、基材の厚みが 均一化される。このため、上述のような滲みや凹部への流れ込みが抑制され、高い形 状寸法精度で複数のアンテナを形成することが可能となる。すなわち、より高い電波 遮蔽性および周波数選択性を実現することが可能となる。
[0018] 尚、コーティング膜は、基材の表面を平坦ィ匕できるものであれば特に限定されるも のではない。例えば、コーティング膜は、樹脂やゴムなどの有機(高分子材料)又は ガラスなどの無機材料などからなるものであることが好ましぐそれらの材料の中には 、電波遮蔽特性を低下させない範囲で添加剤 (老化防止剤、着色剤など)を配合し てもよい。
[0019] また、各アンテナは、少なくとも 1つの開口部を有する金属膜や金属箔 (例えば、メ ッシュ状の金属膜や金属箔など)からなるものであってもよい。この構成によれば、各 アンテナの視認性を低下させることができる。言い換えれば、各アンテナ、延いては 電波遮蔽層を目立たなくすることができる。この構成は、担持体のアンテナ側表面に 模様が描画されているような場合や担持体が透明である場合などに特に有効である
[0020] そして、上記の電波遮蔽シートを用いて行う上記電波遮蔽性仕切面材の製造方法 としては、担持体の少なくとも一部の表面上にコーティング膜を形成して基材を得る 工程と、その基材を吸着手段により吸着保持した状態で該基材上に複数のアンテナ を形成して電波遮蔽シートを得るする工程と、その電波遮蔽シートを面材本体に貼 着する工程とを備えるようにすること力 Sできる。
発明の効果
[0021] 本発明に係る電波遮蔽性仕切面材よれば、必要に応じて電波環境を自由に調整 すること力 Sできる。
図面の簡単な説明
[0022] [図 1]図 1は、本発明の実施形態 1に係るロールスクリーンの構成を示す斜視図である [図 2]図 2は、図 1の II II線断面図である。
[図 3]図 3は、ロールスクリーンの使用態様を示す図 1相当図である。
[図 4]図 4は、アンテナの形状を示す平面図である。
[図 5]図 5は、ロールスクリーンに入射する電波の周波数と透過減衰量との関係を表 す特性図である。
[図 6]図 6は、アンテナのエレメント長と該アンテナによって反射される電波の周波数と の関係を表す特性図である。 園 7]図 7は、本発明の実施形態 2に係るカーテンの構成を示す斜視図である。
[図 8]図 8は、カーテンの開状態を示す図 7相当図である。
園 9]図 9は、本発明の実施形態 3に係る縦型ブラインドの構成を示す斜視図である。
[図 10]図 10は、ブラインドの開状態を示す図 9相当図である。
[図 11]図 11は、ブラインドの各スラットが略水平となっている状態を示す図 9相当図で ある。
園 12]図 12は、本発明の実施形態 4に係る横型ブラインドの斜視図である。
園 13]図 13は、ブラインドの開状態を示す図 12相当図である。
[図 14]図 14は、ブラインドの各スラットが空間同士の境界面に略垂直となっている状 態を示す図 12相当図である。
園 15]図 15は、本発明の実施形態 5に係るパーティションの背面図である。
[図 16]図 16は、パーティションの正面図である。
園 17]図 17は、パーティションを開放した状態を示す背面図である。
[図 18]図 18は、本発明の実施形態 6に係るプレーンシェードの平面図である。
[図 19]図 19は、本発明の実施形態 7に係るダブルロールスクリーンの側面図である。
[図 20]図 20は、本発明に係る電波遮蔽層の変形例 1を示す平面図である。
園 21]図 21は、電波遮蔽層の一部分を拡大して示す平面図である。
園 22]図 22は、変形例 2を示す平面図である。
園 23]図 23は、変形例 3を示す平面図である。
[図 24]図 24は、変形例 4を示す平面図である。
園 25]図 25は、変形例 5を示す平面図である。
[図 26]図 26は、変形例 6を示す平面図である。
園 27]図 27は、変形例 6の電波遮蔽層における電波遮蔽量 (電波の透過減衰量)と 周波数との相関を例示する特性図である。
[図 28]図 28は、変形例 7を示す平面図である。
[図 29]図 29は、変形例 8を示す平面図である。
[図 30]図 30は、変形例 9を示す平面図である。
[図 31]図 31は、変形例 10を示す平面図である。 園 32]図 32は、変形例 11を示す平面図である。
[図 33]図 33は、変形例 12を示すアンテナ全体の平面図(a) ,アンテナ中心部の拡 大平面図(b),アンテナの部分をさらに拡大して示す平面図(c)である。
[図 34]図 34は、変形例 13において電波遮蔽シートが電波遮蔽層とは反対側の面で もって面材本体に貼着された状態を示す断面図である。
園 35]図 35は、ロール状に卷き取られた状態の電波遮蔽シートの全体を示すととも に、該電波遮蔽シートの部分を拡大して示す側面図である。
[図 36]図 36は、変形例 13において電波遮蔽シートが電波遮蔽層の面でもって面材 本体に貼着された状態を示す図 34相当図である。
園 37]図 37は、ロール状に卷き取られた状態の電波遮蔽シートの全体を示すととも に、該電波遮蔽シートの部分を拡大して示す図 35相当図である。
園 38]図 38は、電波遮蔽シート製造時のアンテナ形成工程において基材が吸着保 持された状態を示す側面図である。
園 39]図 39は、変形例 13の電波遮蔽シートの透過減衰特性図を比較例の透過減 衰特性と併せて示す特性図である。
符号の説明
1 , 8 · ■·ロールスクリーン
2 · ·カーテン
3, 4 · ■·ブラインド
5 ■·パーティション
7 ■·ダブルロールスクリーン
10, 80· · ·支持部材
11 , 60, 81 · · ·面材本体
12 · ·電波遮蔽層
13, 16, 17, 22, 24, 25, 26, 27
13a, 27a…第 1エレメン卜部
13b, 16b, 17b, 27b, 28b, 29b…第 2エレメント部
14, 18, 20…アンテナユニット 15, 19, 21…アンテナ集合体
23 …アンテナ列
30, 40…空間
60 …基材
60a …担持体
60b …コーティング膜
発明を実施するための最良の形態
[0024] 以下、本発明の実施形態を、図面に基づいて説明する。
[0025] (実施形態 1)
図 1は、本実施形態 1に係るロールスクリーン 1の斜視図であり、図 2は、図 1中の II II線断面図である。尚、本実施形態 1では、本発明を実施した電波遮蔽性仕切面 材についてロールスクリーン 1を例に挙げて説明する力 これはあくまでも例示であつ て、本発明は、本実施形態に限定されるものではない。
[0026] 図 1に示すように、ロールスクリーン 1は、空間(例えば、部屋) 30と、空間(例えば、 部屋) 40との間に配置されて空間 30を空間 40から開閉可能に間仕切る電波遮蔽性 仕切面材である。
[0027] ロールスクリーン 1は、可撓性を有する面材本体 11と、この面材本体 11の一方の面 l ib上に形成された電波遮蔽層 12と、面材本体 11をロール状に卷き取るための支 持部材 10とを備えている。支持部材 10は細長形状 (例えば、棒状又は筒状など)に 形成されており、壁などにより区画された 2つの空間 30, 40の間の境界の上部に回 動可能に横設される。詳細には、例えば、一方の空間 30が室内であり、他方の空間 40が室外であり、それら室内空間 30と室外空間 40との間の窓にロールスクリーン 1 が設けられる場合、その窓の上部の壁又は天井などに回動可能に横設されて固定さ れていてもよい。また、両空間 30, 40が同一の部屋内に属する場合、例えば、天井 に支持部材 10を回動可能に固定してもよい。尚、支持部材 10は着脱可能に取り付 けられていてもよい。また、支持部材 10を、天井や壁などに回動不能に取り付けられ た棒状部材と、その棒状部材が揷通され、棒状部材に対して回動可能な筒状部材と により構成してもよい。つまり、支持部材 10を複数の部材により構成してもよい。 [0028] 可撓性の面材本体 11は、その先端が支持部材 10に固定 (接着,粘着,又は係止 など)されており、支持部材 10に卷き取られている。そして、面材本体 11の他方の先 端部 11aを引っ張ることにより、該面材本体 11が支持部材 10から引き出されるように なっている。さらに、その任意の引き出し位置にて面材本体 11を固定可能に構成さ れている。すなわち、面材本体 11の全部を卷回させた状態として、空間 30と空間 40 とを面材本体 11により隔離しない態様とすることもできるし、一方、巻き取られた面材 本体 11の一部又は全部を引き出して、空間 30と空間 40との境界の全部又は一部を 面材本体 11によって覆って空間 30と空間 40とを隔離するような態様とすることもでき る。尚、本明細書において、卷き取られた面材本体 11を引き出した状態(閉状態とい う)は、空間 30と空間 40との境界の全体がロールスクリーン 1によって完全に覆い区 画されている状態のみをいうのではない。電波の使用状況や使用する電波の強度な どによっては、閉状態であっても空間 30と空間 40とがロールスクリーン 1によって覆 われていなくともよい。
[0029] 面材本体 11の材質は特に限定されるものではなぐ例えば、ウレタン樹脂,ポリエ チレン (PE)樹脂,ポリスチロール樹脂などの樹脂,織布 (例えば、平織など)ゃ不織 布などの布状体,紙,ゴムなどからなるものであってもよレ、。また、面材本体 11は、単 に基材としての役割だけでなぐ様々な特性 (光透過性,不燃性,難燃性,非ハロゲ ン性,柔軟性,耐衝撃性,耐熱性など)をロールスクリーン 1に付与する役割を果たす ものであってもよい。また、面材本体 11の色も特に限定されるものではなぐ例えば、 空間 30と空間 40との間の視界を妨げなレ、ようにする場合は面材本体 11を透明なも のとしてもよい。逆に空間 30と空間 40との間で視界を遮りたいような場合は、面材本 体 11を不透明なものとしてもよレ、。その場合、例えば、周囲の壁や天井と同系色とし てもよい。
[0030] 面材本体 11の一方の表面 l ibには、表面 l ibを覆うように,電波を遮蔽する電波 遮蔽層 12が設けられている。このため、例えば、空間 30と空間 40とで異なる無線 LA Nを使用し、両無線 LAN間の混線をさけたいような場合には、図 1に示すように、表 面に電波遮蔽層 12が形成された面材本体 11を引き出して(つまり、空間 30と空間 4 0との境界に対して電波遮蔽層 12が占める面積の割合を比較的大きくして)、空間 3 0と空間 40とを電波遮蔽層 12によって区画することによって、空間 30と空間 40との 間の電波の入出を規制することができる。このようにすることによって、例えば、空間 3 0からの電波 Rは、電波遮蔽層 12によって反射されて空間 40への入射が規制される
[0031] 一方、空間 30と空間 40とで同じ無線 LANを使用する場合には、図 3に示すように 、表面に電波遮蔽層 12が形成された面材本体 11を支持部材 10に卷き取って(つま り、空間 30と空間 40との境界に対して電波遮蔽層 12が占める面積の割合を比較的 小さくして)空間 30と空間 40との間の電波の入出を許容するようにすることもできる。 このようにすることによって、空間 30からの電波 Rが空間 40にも入射するようになる。
[0032] すなわち、本実施形態 1に係るロールスクリーン 1は、開閉可能であり、必要に応じ て電波の遮蔽状態を自在に調節することができる。
[0033] また、例えば、ひとつの部屋内で異なる無線 LANを使用する場合、本実施形態 1 のロールスクリーン 1を用いて異なる無線 LANを使用する領域間を区画可能なように 、例えば、部屋の略中央部を横断するように天井にロールスクリーン 1を取り付けて、 面材本体 11を引き出すことによって複数の電波遮蔽空間を区画形成することができ る。すなわち、本実施形態 1のロールスクリーン 1は、既設のビルや部屋にも容易に取 り付けて、ひとつの部屋の中に複数の電波遮蔽空間を形成することができ、また、不 要になれば取り外すことができ、より自由かつ容易に電波環境の整備を行うことが可 能となる。尚、区画形成したい電波遮蔽空間の形状によっては、支持部材 10を湾曲 させたり、屈曲させた態様としてもよい。
[0034] 本実施形態 1において、電波遮蔽層 12は、特定の周波数の電波を選択的に遮蔽 するものである。具体的には、電波遮蔽層 12は、特定の周波数の電波を選択的に反 射させる複数のアンテナ 13が規則的に配列されてなるものである。このため、例えば 、空間 30と空間 40とで互いに異なる無線 LANを使用するために、表面に電波遮蔽 層 12が形成された面材本体 11を引き出して空間 30と空間 40とを電波遮蔽層 12に よって区画して、空間 30において使用されている無線 LANと空間 40において使用 されている無線 LANとの混線を抑制する一方、無線 LAN以外の電波(例えば、携 帯電話や PHSなどの電波)の入出が許容された電波遮蔽空間を区画形成すること ができる。例えば、空間 30と空間 40との間における無線 LANの混線を抑制しつつ、 携帯電話やビル内で使用される PHSなどを空間 30と空間 40との間で使用することも 可能となる。したがって、本実施形態 1に係るロールスクリーン 1を用いることによって 、より自由な電波環境の整備が可能となるので特に好ましい。
[0035] 尚、アンテナ 13の形態は特に限定されるものではなレ、が、例えば、図 1に示すよう な形態とすることができる。以下、アンテナ 13の形態について、図 1および図 4を参照 してさらに詳細に説明する。図 4は、アンテナ 13の平面図である。
[0036] 図 4に示すように、本実施形態 1における各アンテナ 13は、 3本の第 1エレメント部 1 3aと、 3本の第 2エレメント部 13bとを有する(以下、この形態のアンテナを「T—Y形ァ ンテナ」とすること力 Sある)。 3本の第 1エレメント部 13aは、互いに 120° の角度をなし てアンテナ中心 C1から外方に延びている。各第 2エレメント部 13bは第 1エレメント部 13aの外側端に結合されてレ、る。
[0037] 各第 1エレメント部 13aの長さは互いに略同一であることが好ましい。また、各第 2ェ レメント部 13bの長さも互いに略同一であることが好ましい。そうすることによって、電 波遮蔽層 12の周波数選択性をより高くすることができる。
[0038] 尚、第 1エレメント部 13aの長さ L1と、第 2エレメント部 13bの長さ L2とは、互いに異 なって(L1≠L2)いてもよぐまた同一(L1 =L2)であってもよレ、。特に、第 1エレメン ト咅 B13aの長さ L1と、第 2エレメント咅 B13bの長さ L2とは、 0<L2< 2 X (3) 1/2/Llと レ、う関係式を満たすことが好ましい。つまり、 L2≥2 X (3) 1/2/Llである場合には、 隣接する第 2エレメント部 13b同士が接触してしまい、所望の電波遮蔽効果が得られ なくなるからである。また、特定周波数の高い遮蔽率を実現する観点から、第 2エレメ ント部 13bの長さ L2は、第 1エレメント部 13aの長さ L1の 0. 5倍以上 2倍以下(0. 5 X L1≤L2≤2 X L1)であることが好ましい。さらに好ましくは、 0. 75倍以上 2倍以下 (0. 75 X L1≤L2≤2 X L1)である。
[0039] また、第 1エレメント部 13aの幅と、第 2エレメント部 13bの幅とは互いに異なってい てもよく、また、同一であってもよレ、。本実施形態においては、第 1エレメント部 13aの 幅と、第 2エレメント部 13bの幅とは略同一の幅(L3)とする。
[0040] 上述のように、各アンテナ 13は、各第 1エレメント部 13aの外側端に結合された 3本 の第 2エレメント部 13bを有する。このため、アンテナ 13は「Y」字形の線状アンテナ( アンテナ中心から放射状に延びる 3本の第 1エレメント部のみにより構成され、第 2ェ レメント部を有さない線状アンテナ)や、エルサレムクロス形アンテナ(各々、アンテナ 中心から互いに 90° の角度をなして放射状に略同一長さでもって延びる 4本の線分 状の第 1エレメント部と、該各第 1エレメント部の外側端に結合された線分状の第 2ェ レメント部とを有するアンテナ)よりも高い周波数選択性を有する。したがって、本実施 形態 1に係るロールスクリーン 1は高い周波数選択性を有するものであり、遮蔽しょう とする電波のみを的確に遮蔽させることができる。
[0041] また、アンテナ 13は第 2エレメント部 13bを有するため、第 2エレメント部 13b同士を 対向させて (好ましくは、緊密に対向させて)複数のアンテナ 13を配置することが容 易である。第 2エレメント部 13b同士を対向させてはり好ましくは、第 2エレメント部 13 b同士を緊密に対向させて)複数のアンテナ 13を配置することによって、特定周波数 の電波に対する電波遮蔽率をより向上することができる。
[0042] 第 2エレメント部 13b同士を対向させると共に、単位面積あたりにより多くのアンテナ 13を配置する観点から、第 2エレメント部 13bはその中心において第 1エレメント部 1 3aの外側端に結合され、かつ第 2エレメント部 13bと第 1エレメント部 13aとが直角を なすことが好ましい。
[0043] 次に、第 1エレメント部 13aの長さ L1と、第 2エレメント部 13bの長さ L2とが同一であ る場合(L1 =L2。尚、ここでは、「L1」と「L2」を総称してエレメント長 Lとする)のロー ノレスクリーン 1の電波遮蔽特性について、図 5および図 6を参照しながら詳細に説明 する。図 5は、ロールスクリーン 1に入射する電波の周波数と透過減衰量との関係を 表すグラフであり、図 6は、エレメント長 Lとアンテナ 13によって反射される電波の周 波数との関係を表すグラフである。尚、図 5において、長さ L1および L2は、共に、 L1 = L2 = 10. 6mmであり、幅 L3は L3 = 0. 7mmである。
[0044] 図 5に示すように、ロールスクリーン 1に入射した電波のうち特定周波数 (約 2. 7GH z)の電波の透過率が選択的に減衰する。換言すれば、ロールスクリーン 1により、口 一ルスクリーン 1に入射した電波のうち特定周波数 (約 2. 7GHz)の電波が選択的に 遮蔽される。これは、ロールスクリーン 1の電波遮蔽層 12、詳細には電波遮蔽層 12に 含まれる複数のアンテナ 13のそれぞれが、入射した電波のうち特定周波数の電波を 選択的に反射するためである。ここで、図 6に示すように、第 1エレメント部 13aの長さ および第 2エレメント部 13bの長さ(エレメント長 L)と、アンテナ 13に反射させようとす る電波の周波数 (特定周波数)とは相関する。具体的に、エレメント長 Lが長くなるほ ど、アンテナ 13によって反射される電波の周波数は低くなる。逆に、エレメント長しが 短くなるほど、アンテナ 13によって反射される電波の周波数は高くなる。このため、第 1エレメント部 13aの長さ L1と第 2エレメント部 13bの長さ L2とは、遮蔽させようとする 電波の周波数(特定周波数)に応じて適宜決定することができる。例えば、第 1エレメ ント部 13aの長さ L1と第 2エレメント部 13bの長さ L2とが同一(L1 =L2)である場合 は、第 1および第 2エレメント部 13a, 13bの各長さ Ll, L2を長くすることによって特 定周波数を低下させることができる。一方、第 1および第 2エレメント部 13a, 13bの各 長さ Ll, L2を短くすることによって特定周波数を高くすることができる。具体的には、 周波数 5GHzの電波を遮蔽するロールスクリーン 1を作成する場合は、図 6より、第 1 エレメント部 13aの長さ L1と、第 2エレメント部 13bの長さ L2とをそれぞれ略 6mm (L1 = L2 = 6mm)と設定すること力 Sできる。
[0045] これに対し、反射される電波の周波数は、幅 L3とは大きく相関しなレ、。すなわち、 反射される電波の周波数は、主として、エレメント長 Lによって決定される。
[0046] また、例えば、第 1エレメント部 13aの長さ L1を固定とし、第 2エレメント部 13bの長さ L2を調整することにより特定周波数を調整することも可能である。具体的には、第 2 エレメント部 13bの長さ L2を長くすることにより特定周波数を低くすることができる。一 方、第 2エレメント部 13bの長さ L2を短くすることにより特定周波数を高くすることがで きる。
[0047] アンテナ 13は、導電性を有するものであることが好ましい。すなわち、導電性材料 を含むものであることが好ましい。導電材料としては、アルミニウム,銀,銅,金, 白金 ,鉄,カーボン,黒鉛,酸化インジウムスズ ITO,インジウム亜鉛酸化物 ΙΖ〇,これら の混合物又は合金などが挙げられる。アンテナ 13は、これらの中でも、高い導電率を 有していて比較的安価である銅,アルミニウム,銀のうちの少なくとも何れか 1つを含 むものであることが好ましい。 [0048] アンテナ 13の厚さ Tは 10 μ m以上 20 μ m以下(10 μ m≤T≤20 μ m)であること が好ましい。アンテナ 13の厚さ Tが 10 μ mより小さい(Τく 10 μ m)とアンテナ 13の 導電性が低下すると共に、アンテナ 13の電波反射率も低下する傾向にある。一方、 アンテナ 13の厚さ Tが 20 μ mより大きレ、(T> 20 μ m)と、アンテナ 13の形成性が低 下する傾向にある。
[0049] 尚、アンテナ 13は、例えば、メッシュ状であってもよい。すなわち、多数の開口部を 有するものであってもよレ、。アンテナ 13をメッシュ状にすることによって、比較的アン テナ 13を目立たなくすることができる。したがって、特に面材本体 11が透明である場 合などに有効である。さらに、アンテナ 13をメッシュ状とする場合、アンテナ 13の周囲 にアンテナ 13のメッシュパターンと同じパターンで、かつ導電性を有さないメッシュ状 の模様を形成しておくことがより好ましい。そうすることによって、アンテナ 13をより目 立たなレ、ものとすることができる。
[0050] アンテナ 13は、例えば、面材本体 11の表面 l ib上に、スパッタ法などの成膜方法 により導電膜 (例えば、アルミニウム膜、銅膜、銀膜など)を成膜し、成膜した導電膜を フォトリソグラフィーなどのパターユング方法により所定の形状寸法にパターニングす ることにより作製してもよレ、。また、所定の形状寸法にパターユングされたアルミニウム などの薄膜を面材本体 11に粘着又は貼着することによりアンテナ 13を形成しても構 わない。
[0051] また、例えば、粉末状の導電材料をバインダーに含ませたペースト(以下、「導電性 ペースト」とすることがある。)を面材本体 11に均一に所定パターンで塗布し、その後 乾燥させることにより作製してもよい。具体的には、ペーストを所定のパターンに形成 した後、例えば 100°C以上 200°C以下の雰囲気中で 10分以上 5時間以下乾燥させ ることによりアンテナ 13を作製してもよい。アンテナ 13を作製するための導電性ぺー ストは、粉末状の導電性材料 (例えば、銀)をポリエステル樹脂中に分散混入させたも のであってもよレ、。この場合、導電性材料の含有率 Cは 40重量パーセント以上 80重 量パーセント以下(40wt%≤C≤80wt%)であることが好ましレ、が、より好ましいの は、 50重量パーセント以上 70重量パーセント以下(50wt%≤C≤70wt%)である。 尚、含有率 Cが 40重量パーセント未満(Cく 40wt%)であると、アンテナ 13の導電 性が低下する傾向となる。一方、 80重量パーセントより多い(C > 80wt%)と、樹脂 中に均一に分散混入させることが困難となる傾向がある。尚、ポリエステル樹脂は導 電性材料と面材本体 11とを接着させる接着剤の役割をなす。
[0052] 面材本体 11が多数の微細孔および Z又は凹凸を有するようなものの場合、具体的 には、布状体 (織布および不織布を含む)やコンクリートや発泡性樹脂などからなる 多孔質体であるような場合には、ペーストが面材本体 11に滲むこと、意図せず凹部 に流れ込んでしまうことなどにより形成されるアンテナ 13の形状寸法にばらつきが発 生することを抑制するために、アンテナ 13の形成に先立って、面材本体 11を予めコ 一ティング膜でコートして、表面 l ibを平坦ィ匕すると共に、全体の厚み(面材本体 11 の厚み +コーティング膜の厚み)を均一化しておくことが好ましい。コーティング膜の 材質は特に限定されるものではないが、例えば、樹脂(具体的には、ウレタン樹脂, アクリル樹脂,ポリエステル樹脂など)、ゴムなどの有機材料、又はガラスなどの無機 材料が挙げられる。それらの中でも、ペーストなどのアンテナ 13の形成材料 (例えば 、液状の形成材料)に対する膨潤性が低レ、ものであることが好ましい。コーティング膜 の形成は、ロールコータ法,スリットダイコータ法,ドクターナイフコータ法,グラビアコ ータ法などにより行うことができる。
[0053] その他、アンテナ 13は、例えば、スピンコート法,ドクターブレード法,吐出コート法 ,スプレーコート法,インクジェット法,凸版印刷法,凹版印刷法,スクリーン印刷法, マイクログラビアコート法,シルク印刷法,パターン圧着法,エッチング加工法,スパッ タ法,蒸着法 (例えば、化学気相蒸着法 (CVD法)),ミスト塗装法,形の嵌め込みに よる埋め込み法などによっても形成することができる。
[0054] 尚、本実施形態 1では、電波遮蔽層 12が面材本体 11の一方の表面 l ib上に形成 されている例について説明した力 電波遮蔽層 12が面材本体 11の両面に形成され ていてもよい。この場合、一方の表面に形成する電波遮蔽層と他方の表面に形成す る電波遮蔽層との形態を異ならせてもよい。具体的には、例えば、一方の表面に形 成したアンテナとは反射させる電波の周波数が異なるアンテナを他方の面に形成し てもよレ、。そうすることによって、複数種類の電波を遮蔽させることができるようになる 。具体的には、無線 LANの送信用電波の周波数と受信用電波の周波数とが互いに 異なるような場合、一方の面に送信用電波を反射させるアンテナを複数形成してなる 電波遮蔽層を形成すると共に、他方の面に受信用電波を反射させるアンテナを複数 形成してなるさらなるもう一つの電波遮蔽層を形成して、送信用電波および受信用電 波の両方を遮蔽する態様とすることが好ましい。また、一方の表面と他方の表面との 両方に同形態のアンテナからなる電波遮蔽層 12を形成してもよい。そうすることによ つて、特定周波数の電波のより高い遮蔽が可能となる。
[0055] さらに高い電波遮蔽性を実現する観点から、空間 30と空間 40との間に複数の電波 遮蔽性仕切面材を互いに離間するように多重に設けることが好ましい。具体的には、 例えば、電波遮蔽性仕切面材としての遮光カーテンや遮光ロールスクリーン,ブライ ンド,シャッターなどと、電波遮蔽性仕切面材としてのレースカーテン,ブラインドなど とを多重(2重又は 3重以上)に設けてもよい。この場合においても、上述した面材本 体 11の両面に電波遮蔽層 12を設ける場合と同様に、複数の電波遮蔽層相互間で 異なる形態であってもよレ、し、同形態であってもよレ、。
[0056] また、電波遮蔽層 12の上に、電波遮蔽層 12を物理的、又は化学的に保護するた めの保護膜 (例えば樹脂膜)などを設けてもよい。具体的には、例えば電波遮蔽層が 銀などの比較的酸化されやすい金属によってできているような場合には、電波遮蔽 層の酸化を抑制するための参加防止膜を設けてもよい。また、比較的強度が弱い金 属により電波遮蔽層が形成されてレ、る場合は、電波遮蔽層を構成する材料よりも高 強度な材料により形成した保護膜を設けて、ロールスクリーン 1の機械的耐久性を向 上するようにしてもよい。
[0057] また、電波遮蔽層 12を面材本体 11の内部に設けてもよい。すなわち、電波遮蔽層 12は、該電波遮蔽層 12が面材本体 11の表面に沿って広がるものである限り、特に その形態、配置は限定されるものではない。
[0058] 本実施形態 1では、電波遮蔽層 12が規則的に配列された複数のアンテナ 13により 構成されている例について説明したが、例えば、周波数にかかわらず、入射する電 波を遮蔽する場合は、電波遮蔽層 12を、 1又は複数の導電膜 (例えば、銀薄膜,銅 薄膜,アルミニウム薄膜など)により構成してもよい。具体的には、ロールスクリーン 11 の表面 1 lbを導電膜で被覆するようにしてもょレ、。 [0059] 以上、本実施形態 1では、本発明を実施した,電波遮蔽性仕切面材としてのロール スクリーンを例に挙げて本発明例について説明した力 S、本発明はこれに限定されるも のではなぐ例えば、窓や垂れ幕などであってもよレ、。また、カーテン,シャッター,ブ ラインド,パーティションなどの他の面材であってもよレ、。
[0060] (実施形態 2)
図 7は、本実施形態 2に係るカーテン 2の斜視図であり、図 8は、開状態にあるカー テン 2の斜視図である。
[0061] 本実施形態 2では、電波遮蔽性仕切面材がカーテン 2である場合について説明す る。尚、本実施形態 2の説明において、実質的に同じ機能を有する構成要素を実施 形態 1と共通の参照符号で説明し、説明を省略する。
[0062] カーテン 2は、空間 30と空間 40との間に架橋された支持部材 10に複数のリングを 介して開閉可能に取り付けられた面材本体 11と、この面材本体 11の上に形成された 電波遮蔽層 12とを備えている。このカーテン 2を用いることによって、上記実施形態 1 に係るロールスクリーン 1と同様に、図 7に示すようにカーテン 2を閉めることによって、 空間 30と空間 40との間の電波の入出を規制する状態と、図 8に示すようにカーテン 2 を開けることによって、空間 30と空間 40との間の電波の入出を許容する状態とを自 由に選択形成することができる。すなわち、本実施形態 2に係るカーテン 2を用いるこ とによっても、必要に応じた電波環境の自由な調整が可能となる。
[0063] さらに、カーテン 2は既存の建物、部屋などにも容易に取り付けることができるため、 本実施形態 2に係るカーテン 2を用いることによって、既存の建物や、部屋の電波環 境も自在に調整することができる。
[0064] また、より高い電波遮蔽性を実現する観点から、空間 30と空間 40との間にカーテン 2を多重に設けてもよレ、。例えば、所謂 2重カーテンのようにカーテン 2を設けてもよい
[0065] また、上記実施形態 1と同様に、空間 30と空間 40との間の特定周波数の電波の入 出のみを規制し、それ以外の周波数の電波の入出を許容する場合には、電波遮蔽 層 12を規則的に配列された複数のアンテナ 13からなるものとすることが好ましい。
[0066] (実施形態 3) 本実施形態 3では、電波遮蔽性仕切面材がブラインド 3 (所謂縦型ブラインド)であ る場合について説明する。
[0067] 図 9は、本実施形態 3に係るブラインド 3の斜視図であり、図 10は、開状態にあるブ ラインド 3の斜視図であり、図 11は、面材本体 11が略水平となっているブラインド 3の 斜視図である。尚、本実施形態 3の説明において、実質的に同じ機能を有する構成 要素を実施形態 1、 2と共通の参照符号で説明し、説明を省略する。
[0068] 本実施形態 3に係るブラインド 3は、空間 30と空間 40との間に架橋された支持部材 10と、一端が支持部材 10に固定された複数の紐状部材 51と、紐状部材 51によって 互いに連結されており、互いに並行に位置する横長矩形状の複数の面材本体 11と を備えている。さらに、各紐状部材 51に連結されており、支持部材 10の端部に設け られた調節手段 50を備えており、この調節手段 50により、紐状部材 51によって互い に連結された複数の面材本体 11の回転操作およびブラインド 3の上げ下げ操作をす ることができるようになつている。
[0069] 本実施形態 3において、各面材本体 11の少なくとも一方の表面には電波遮蔽層 1 2が形成されている。このため、例えば、図 9のように、調節手段 50を操作することに よってブラインド 3を下げ、かつ各面材本体 11を閉状態(略鉛直な状態)にして空間 3 0と空間 40との境界を電波遮蔽層 12によって覆うことによって、空間 30と空間 40との 間の電波の入出を規制することができる。一方、空間 30と空間 40との間の電波の入 出を許容する場合には、図 10に示すように、調節手段 50を操作してブラインド 3を上 げた状態とする力 \又は、図 11に示すように、ブラインド 3を下げた状態で各面材本 体 11を略水平となるように回転させて開状態にすることができる。
[0070] このように、本実施形態 3に係るブラインド 3を用いることによつても、必要に応じた 電波環境の自由な調整が可能となる。
[0071] また、ブラインド 3も、カーテン 2と同様に、既存の建物、部屋などにも容易に取り付 けることができるため、本実施形態 3に係るブラインド 3を用いることによって、既存の 建物、部屋の電波環境も自在に調整することができる。
[0072] また、より高い電波遮蔽性を実現する観点から、ブラインド 3を多重に設けてもょレ、 し、上記ロールスクリーン 1やカーテン 2、又は電波遮蔽層を備えたシャッターや窓な どを併設してもよレ、。
[0073] また、上記実施形態 1と同様に、空間 30と空間 40との間の特定周波数の電波の入 出のみを規制し、それ以外の周波数の電波の入出を許容する場合には、電波遮蔽 層 12を規則的に配列された複数のアンテナ 13からなるものとすることが好ましい。
[0074] (実施形態 4)
上記実施形態 3では、縦型のブラインド 3について説明したが、本発明はこれに限 定されるものではなぐ例えば横型のブラインドであってもよい。本実施形態 4では、 電波遮蔽性仕切面材が、横型ブラインド 4である場合にっレ、て説明する。
[0075] 図 12は、本実施形態 4に係るブラインド 4の斜視図であり、図 13は、開状態にある ブラインド 4の斜視図であり、図 14は、面材本体 11が空間 30と空間 40との境界に対 して略垂直となっているブラインド 4の斜視図である。尚、本実施形態 4の説明におい て、実質的に同じ機能を有する構成要素を実施形態 1〜3と共通の参照符号で説明 し、説明を省略する。
[0076] ブラインド 4は、空間 30と空間 40との間に架橋された棒状の支持部材 10と、一端が 支持部材 10に固定された複数の紐状部材 52と、各紐状部材 52の他端に接続され ており、互いに並行に位置する縦長矩形状の複数の面材本体 11と、複数の面材本 体 11を互いに連結する紐状の連結部材 53とを備えている。さらに紐状部材 52, 53 に連結されており、支持部材 10の端部に設けられた調節手段 50を備えており、この 調節手段 50により、複数の面材本体 11の回転操作およびブラインド 4の開閉操作を することができるようになつている。
[0077] 本実施形態 4において、各面材本体 11の少なくとも一方の表面には電波遮蔽層 1 2が形成されている。このため、例えば、図 12に示すように、調節手段 50を操作する ことによって、ブラインド 4を閉め、かつ各面材本体 11を閉状態(空間 30と空間 40と の境界に沿った状態)にして空間 30と空間 40との境界を電波遮蔽層 12によって覆う ことによって、空間 30と空間 40との間の電波の入出を規制することができる。一方、 空間 30と空間 40との間の電波の入出を許容する場合には、図 13に示すように、調 節手段 50を操作してブラインド 4を開けた状態とする力、、又は、図 14に示すように、 ブラインド 4を閉めた状態で各面材本体 11を空間 30と空間 40との境界に対して略垂 直となるように回転させて開状態にすることができる。
[0078] このように、本実施形態 4に係るブラインド 4を用いることによつても、必要に応じた 電波環境の自由な調整が可能となる。
[0079] また、ブラインド 4も、カーテン 2やブラインド 3と同様に、既存の建物、部屋などにも 容易に取り付けることができるため、本実施形態 4に係るブラインド 4を用いることによ つて、既存の建物、部屋の電波環境も自在に調整することができる。
[0080] また、より高い電波遮蔽性を実現する観点から、ブラインド 4を多重に設けてもょレ、 し、上記ロールスクリーン 1やカーテン 2,ブラインド 3,又は電波遮蔽層を備えたシャ ッターや窓などを併設してもよい。
[0081] また、上記実施形態 1と同様に、空間 30と空間 40との間の特定周波数の電波の入 出のみを規制し、それ以外の周波数の電波の入出を許容する場合には、電波遮蔽 層 12を規則的に配列された複数のアンテナ 13からなるものとすることが好ましい。
[0082] (実施形態 5)
本実施形態 5では、電波遮蔽性仕切面材が、開閉可能に構成されたパーティショ ン 5である場合にっレ、て説明する。
[0083] 図 15は、本実施形態 5に係るパーティション 5の背面図であり、図 16は、パーティシ ヨン 5の正面図であり、図 17は、パーティション 5を開放した状態を表す背面図である 。尚、本実施形態 5の説明において、実質的に同じ機能を有する構成要素を実施形 態 1〜4と共通の参照符号で説明し、説明を省略する。
[0084] 本実施形態 5に係るパーティション 5は、床および天井に対応して設けられたパー テイシヨン変位用レール 54 (レール 54は天井又は床のみに設けられていてもよい)に 変位可能に取り付けられた縦長矩形状の複数の面材本体 11と、その各面材本体 11 の少なくとも一方の面に形成された電波遮蔽層 12とを備えている。
[0085] レーノレ 54は、例えば、ひとつの部屋内に位置する空間 30と空間 40との間に(例え ば、部屋の中央部を横切るように)設けられており、図 15および図 16に示すように、 レール 54に沿って複数の面材本体 11を配列させて空間 30と空間 40との境界を電 波遮蔽層 12により覆うことによって、空間 30と空間 40とを電波的に区画することがで きるようになつている。すなわち、本実施形態 5に係るパーティション 5を用いることに よってひとつの部屋に複数の電波遮蔽空間を区画形成することができる。また、空間 30と空間 40とで共通した無線 LANを使用する場合には、図 17に示すように、レー ノレ 54に沿って面材本体 11を隅に移動させて、空間 30と空間 40とを連通させるように すればよレ、。こうすることによって、空間 30と空間 40との間の電波の入出が許容され た状態が形成される。
[0086] このように、本実施形態 5に係るパーティション 5を用いることによつても、必要に応 じた電波環境の自由な調整が可能となる。
[0087] また、パーティション 5も、カーテン 2やブラインド 3, 4と同様に、既存の建物、部屋 などにも容易に取り付けることができるため、本実施形態 5に係るパーティション 5を用 いることによって、既存の建物、部屋の電波環境も自在に調整することができる。
[0088] また、より高い電波遮蔽性を実現する観点から、パーティション 5を多重に設けても ょレ、し、上記ロールスクリーン 1やカーテン 2,ブラインド 3, 4,又は電波遮蔽層を備え たシャッターや窓などを併設してもよレ、。
[0089] また、上記実施形態 1と同様に、空間 30と空間 40との間の特定周波数の電波の入 出のみを規制し、それ以外の周波数の電波の入出を許容する場合には、電波遮蔽 層 12を規則的に配列された複数のアンテナ 13からなるものとすることが好ましい。
[0090] (実施形態 6)
上記実施形態 2では、左右に開く横開きカーテンの場合について説明したが、本発 明は、そのような横開きカーテンに限定されるものではなぐ例えば、上下に開閉され るカーテンの一種であるプレーンシェードであってもよい。そこで、本実施形態 6では 、電波遮蔽性仕切面材がプレーンシェードである場合にっレ、て説明する。
[0091] 図 18は、本実施形態 6に係るプレーンシェード 6の平面図である。尚、本実施形態 6の説明において、実質的に同じ機能を有する構成要素を実施形態 1〜5と共通の 参照符号で説明し、説明を省略する。
[0092] 図 18に示すように、本実施形態 6に係るプレーンシェード 6は、レースやプリント地 などからなる可撓性の面材本体 60と、この面材本体 60の上に形成された電波遮蔽 層 12と、調整手段 50とを備えている。そして、調整手段 50を操作することによって、 表面に電波遮蔽層 12が形成された面材本体 60を折り畳みながら上げたり下げたり できるように構成されている。
[0093] このプレーンシェード 6を用いることによつても、上記カーテン 2と同様に、このプレ ーンシェード 6を挟んで隣接する空間相互間の電波の入出を規制する状態と、許容 する状態とを自由に選択形成することができる。すなわち、隣接する空間相互間の電 波の入出を規制したい場合には、調整手段 50を操作してプレーンシェード 6を下げ て隣接する空間を互いに遮蔽することができる。一方、隣接する空間相互間の電波 の入出を許容したい場合には、調整手段 50を操作してプレーンシェード 6を上げれ ばよレ、。したがって、本実施形態 6に係るプレーンシェード 6によっても、必要に応じ た電波環境の自由な調整が可能となる。
[0094] さらに、プレーンシェード 6は、既存の建物、部屋などにも容易に取り付け可能なも のである。このため、プレーンシェード 6を用いることによって、既存の建物や部屋の 電波環境の自在な調整が可能となる。
[0095] 勿論、プレーンシェード 6と共に、カーテン 2やロールスクリーン 1 ,ブラインド 3, 4な どを多重に設けても構わない。
[0096] (実施形態 7)
図 19は、本実施形態 7に係るダブルロールスクリーン 7の側面図である。
[0097] 本実施形態 7に係るダブル口一ルスクリーン 7は、上記実施形態 1で説明したロール スクリーン 1と、ロールスクリーン 8とを備えている。ロールスクリーン 8は、棒状の支持 部材 80と、その支持部材 80に卷回されており、引き出し可能に構成されている可撓 性の面材本体 81とを備えている。尚、ロールスクリーン 1とは異なり、面材本体 81の 表面には電波遮蔽層 12が形成されていなレ、。そして、ダブルロールスクリーン 7は、 電波遮蔽層 12を備えたロールスクリーン 1が室外側に位置し、電波遮蔽層 12を備え ていないロールスクリーン 8が室内側に位置するように取り付けて使用されるものであ る。すなわち、本実施形態 7に係るダブルロールスクリーン 7は、実施形態 1のロール スクリーン 1のさらに室内側に電波遮蔽層 12を有さない通常のロールスクリーン 8を配 置してなるものである。
[0098] このため、ダブルロールスクリーン 7を用いることによつても、上記実施形態 1で説明 したのと同様に、必要に応じた電波環境の自由な調整が可能となる。また、既存の建 物や部屋の電波環境の自在な調整が可能となる。
[0099] さらに、本実施形態 7では、室内側に通常のロールスクリーン 8が設けられている。
このため、例えば室内への電波の入出を規制すベぐロールスクリーン 1の面材本体 11を引き出した状態であっても、口一ルスタリーン 8の面材本体 81もまた引き出した 状態とすることによって電波遮蔽層 12が室内から視認されなレ、ようにすることができ る。また、ロールスクリーン 8は電波環境の整備に何ら寄与しない部材であるため、 自 由なデザインとすることができる。例えば、部屋に合わせたデザイン、色調とすること 力 Sできる。したがって、本実施形態 7に係るダブルロールスクリーン 7を用いることによ つて、 自在な電波環境の整備が可能となるのみならず、デザイン的にも調和のとれた 室内空間を形成することが可能となる。
[0100] 例えば、無地単色の壁および天井を有する室内の窓部に上記実施形態 1のロール スクリーン 1を配した場合、ロールスクリーン 1のアンテナ 13が非常に目立ってしまい 、部屋のデザイン的な調和を損ねることとなる虞がある。し力 ながら、壁や天井と同 系色である無地の面材本体 81を備えたダブルロールスクリーン 7を配した場合は、例 えば、アンテナ 13が室内からは視認されず、壁や天井と同系色の面材本体 81のみ が視認されるようになる。したがって、室内空間のデザイン的調和が保持される。
[0101] (変形例 1)
以上、上記実施形態:!〜 7において、 1種類の T Y形アンテナ 13が互いに等間隔 に離間してマトリクス状に複数配列されてなる電波遮蔽層 12を備えた電波遮蔽性仕 切面材の例について説明してきたが、本発明において、電波遮蔽層 12の構成はそ れらの構成に限定されるものではない。そこで、以下、変形例:!〜 11として、本発明 における電波遮蔽層 12の他の形態(電波遮蔽層 12a〜: 12k)について説明する。
[0102] 先ず、図 20および図 21に基づき、変形例 1について説明する。図 20は、本変形例 1における電波遮蔽層 12aの平面図であり、図 21は、電波遮蔽層 12aの一部分を拡 大した平面図である。
[0103] 本変形例 1では、電波遮蔽層 12は、複数のアンテナ 13が、所定間隔でマトリクス状 に配列された複数のアンテナ集合体 15を構成しており、そのアンテナ集合体 15が規 則的に(例えば、マトリクス状に)配列されてなる。具体的には、複数のアンテナ 13は 、各々、第 2エレメント部 13b同士が対向するように配設された一対からなる複数のァ ンテナユニット 14を構成しており、さらに、その複数のアンテナユニット 14は、第 2ェ レメント部 13b同士が対向するように配設されて二次元に連続展開した六角形状の 複数のアンテナ集合体 15を構成している。すなわち、各アンテナ集合体 15は、第 2 エレメント部 13b同士を対向させて環状に配置された 3つのアンテナユニット 14から なる。言い換えれば、アンテナ集合体 15は、第 2エレメント部 13b同士を対向させて 環状に配置された 6つのアンテナ 13からなる。
[0104] 本変形例 1では、アンテナ集合体 15を構成する 18本の第 2エレメント部 13bのうち 12本の第 2エレメント部 13bが互いに略平行に緊密に対向するように設けられている 。このように、比較的多くの第 2エレメント部 13b同士が緊密に対向するようにアンテ ナ 13を配置構成することによって、アンテナ 13の特定周波数の電波に対する電波 反射率(電波遮蔽率)をより向上することができる。したがって、特定周波数の電波に 対する高い電波遮蔽率を有する電波遮蔽性仕切面材を実現することができる。
[0105] 尚、対向する第 2エレメント部 13b間の距離 XI (図 21参照)を短くするほどアンテナ 13の電波反射率(電波遮蔽性仕切面材の電波遮蔽率)が高くなる。具体的には、対 向する第 2エレメント部 13b間の距離 XIが 0. 4mm以上 3mm以下(0. 4mm≤Xl≤ 3mm)であることが好ましい。より好ましい範囲は 0. 6mm以上 lmm以下(0. 6mm ≤Xl≤lmm)である。距離 XIが 0· 4mmよりも短い(XIく 0· 4mm)と、対向する第 2エレメント部 13b同士が不所望に接触する虞がある。一方、距離 XIが 3mmよりも長 レ、 (XI > 3mm)と電波遮蔽率が低下する傾向にある。
[0106] また、種々の入射角で入射する電波に対して一定した電波遮蔽性を実現する観点 から、アンテナ集合体 15は六角形状 (好ましくは略正六角形状)であることが好まし レ、。したがって、第 1エレメント部 13aと第 2エレメント部 13bとが直角をなしていること が好ましい。また、第 2エレメント部 13bがその中心において第 1エレメント部 13aと結 合していることが好ましい。
[0107] (変形例 2)
図 22は、変形例 2における電波遮蔽層 12bの平面図である。
[0108] 本変形例 2では、アンテナ集合体 15がさらに第 2エレメント部 13b同士が対向する ように、所謂ハニカム状に配置されている。このため、変形例 2においては、略全ての 第 2エレメント部 13b同士が対向している。このように、アンテナ 13を配置することによ つて、変形例 1よりもさらに、互いに対向するように設けられた第 2エレメント部 13bを 多くすることができる。このため、さらに高い電波遮蔽率を有する電波遮蔽性仕切面 材を実現することができる。
[0109] (変形例 3)
図 23は、変形例 3における電波遮蔽層 12cの平面図である。
[0110] 上記実施形態および変形例では、電波遮蔽層 12は 1種類のアンテナのみにより構 成されているのに対して、本変形例 3では、図 23に示すように、電波遮蔽層 12cは複 数種類のアンテナにより構成されている。具体的には、電波遮蔽層 12cは、比較的 大きな複数のアンテナ 16と、比較的小さな複数のアンテナ 17とにより構成されている 。これらアンテナ 16, 17は、共に上述のアンテナ 13と同形状の T—Y形アンテナであ る。
[0111] 大形のアンテナ 16と小形のアンテナ 17とは、交番状に、かつ互いに干渉しないよう にマトリクス状に離間して配置されている。アンテナ 16とアンテナ 17とは互いに相似 形であっても、非相似形であってもよい。また、電波遮蔽層 12cはアンテナ 16および アンテナ 17以外の種類のアンテナをさらに含むものであってもよい。
[0112] 大形のアンテナ 16と小形のアンテナ 17とは、互いに異なる周波数選択性を有する 。すなわち、アンテナ 16とアンテナ 17とは遮蔽する電波の周波数が互いに異なるも のである。このため、本変形例 3によれば、互いに周波数の異なる 2種の電波を選択 的に遮蔽することができる電波遮蔽性仕切面材を実現することができる。
[0113] 本変形例 3に係る電波遮蔽性仕切面材は、例えば、無線 LANが使用される環境( 2. 4GHz帯および 5. 2GHz帯の 2つの周波数の電波が使用される環境)などのよう に、複数の周波数の電波が使用される環境に特に有用である。
[0114] また、 3つ以上の周波数の電波が使用されるような環境においては、互いに大きさ の異なる 3種類以上のアンテナにより電波遮蔽層 12cを構成してもよい。
[0115] (変形例 4)
図 24は、変形例 4における電波遮蔽層 12dの平面図である。 [0116] 本変形例 4においても、上記変形例 3と同様に、電波遮蔽層 12dは、互いに大きさ の異なる 2種類のアンテナ 16, 17により構成されている。尚、大形のアンテナ 16およ び小形のアンテナ 17は、それぞれ変形例 3におけるアンテナ 16およびアンテナ 17と 同形状である。
[0117] 本変形例 4では、変形例 2における複数のアンテナ 13と同様に、第 2エレメント部 1 6b同士が対向するように配設された一対のアンテナ 16は、アンテナユニット 18を構 成している。さらに、 3組のアンテナユニット 18は、第 2エレメント部 16b同士が対向す るように配設されることで、二次元状に連続展開した六角形状のアンテナ集合体 19 を構成している。すなわち、各アンテナ集合体 19は、各々、第 2エレメント部 16b同士 を対向させて環状に配置された 3組のアンテナユニット 18からなる。言い換えれば、 各アンテナ集合体 19は、第 2エレメント部 16b同士を対向させて環状に配置された 6 つのアンテナ 13からなる。そして、複数のアンテナ集合体 19がさらに第 2エレメント部 13b同士を対向させるように、ハニカム状に配置されている。
[0118] 一方、複数のアンテナ 17については、変形例 1における複数のアンテナ 13と同様 に、各々、第 2エレメント部 17b同士が対向するように配設された一対のアンテナ 17 はアンテナユニット 20を構成しており、さらに、 3組のアンテナユニット 20は、第 2エレ メント部 17b同士が対向するように配設されて二次元に連続展開した六角形状のァ ンテナ集合体 21を構成している。そして、各アンテナ集合体 21はアンテナ集合体 19 により包囲されるように配置されている。
[0119] このような配列によれば、アンテナ 16の第 2エレメント部 16b同士、アンテナ 17の第 2エレメント部 17b同士をそれぞれ高い確率で対向させることができ、かつ各アンテナ 16, 17をそれぞれ略同程度の密度で配置することができる。したがって、アンテナ 1 6が遮蔽する電波およびアンテナ 17が遮蔽する電波の両方を、より高い周波数選択 性で、かつより高い遮蔽率で遮蔽することができる。
[0120] 本変形例 4では、第 2エレメント部 16b, 17bの長さが比較的短いことが好ましい。そ うすることによって、アンテナ 16とアンテナ 17との接触を抑制することができる。した がって、アンテナ集合体 19に包囲されるアンテナ集合体 21を構成するアンテナ 17 の寸法自由度をより大きくすることができる。その結果、例えば比較的周波数の近い 2種の電波を選択的に遮蔽可能な電波遮蔽性仕切面材が実現可能となる。
[0121] (変形例 5)
図 25は、変形例 5における電波遮蔽層 12eの平面図である。
[0122] 本変形例 5は上記変形例 4のさらなる変形例である。本変形例 5では、アンテナ集 合体 19とアンテナ集合体 21とは、互いに異なる線対称軸を有しており、アンテナ集 合体 19の線対称軸と、アンテナ集合体 21の線対称軸とは互いに傾斜してレ、る。
[0123] アンテナ集合体 19によりアンテナ集合体 21を包囲できるようにするには、アンテナ 集合体 21を構成するアンテナ 17の寸法を、アンテナ集合体 19を構成するアンテナ 16の寸法よりも小さくする必要がある。例えば、変形例 4に示すように、アンテナ集合 体 19とアンテナ集合体 21とを線対称軸を互いに傾斜させることなく配置する場合に は、アンテナ 16とアンテナ 17とが互いに干渉しないようにするために、アンテナ 17を アンテナ 16に対して非常に小さくしなければならず、その結果、アンテナ 16,アンテ ナ 17の設計自由度が低くなる。
[0124] それに対して、本変形例 5に示すように、アンテナ集合体 19とアンテナ集合体 21と を線対称軸同士を傾斜(図示する例では、傾斜角度 Θは Θ = 10° )させて配列した 場合は、アンテナ集合体 19において互いに対向する第 2エレメント部 16bの部分と、 アンテナ集合体 21において互いに対向する第 2エレメント部 17bの部分との位置関 係力 アンテナ集合体 19, 21の中心回りに相対的にずれる。このため、本変形例 5 では、変形例 4に示す場合と比較して、アンテナ 16に対するアンテナ 17の相対的な 大きさを大きくすることが可能となり、よって、その分だけアンテナ 16,アンテナ 17の 形状寸法の設計自由度を広げることができる。この結果、周波数の近い(第 1周波数 との第 2周波数との比(第 1周波数 <第 2周波数)が 0. 45以上) 2波に対する電波遮 蔽が可能となる。
[0125] また、図 25では、アンテナ集合体 19,アンテナ集合体 21をそれぞれ最密に配置す るようにしている力 所望の電波遮蔽率によっては、最密に配置せず、アンテナ集合 体 19, 21の数をそれぞれ適宜調整して配置するようにしてもょレ、。
[0126] (変形例 6)
上記実施形態および変形例:!〜 5では、 1種類又は複数種類の周波数の電波を選 択的に遮蔽可能な電波遮蔽性仕切面材について説明しているが、本発明に係る電 波遮蔽性仕切面材は、 1種又は複数種類の周波数帯域の電波を選択的に遮蔽可能 なものであってもよい。そこで、変形例 6では、特定の周波数帯域の電波を選択的に 遮蔽可能なように、それぞれ異なる特定の周波数の電波を選択的に反射させる複数 種類のアンテナにより電波遮蔽層を構成した例について説明する。具体的には、 3種 類のアンテナ 22a, 22b, 22cにより電波遮蔽層 12fを構成した例について説明する
[0127] 尚、「周波数帯域」とは比帯域が 10%を超える周波数の領域のことをいう。また、「 特定の周波数帯域の電波を選択的に遮蔽する」電波遮蔽性仕切面材とは、 10dBの 比帯域 (好ましくは 20dBの比帯域、さらに好ましくは 30dBの比帯域)力 S10%を超え る(> 10%)電波遮蔽性仕切面材のことをいう。それに対して、「特定の周波数の電 波を選択的に遮蔽する」電波遮蔽性仕切面材とは、 10dBの比帯域が 10%以下(≤ 10%)である電波遮蔽性仕切面材のことをいう。尚、 10dBの比帯域は、 10dB以上( ≥10dB)遮蔽される電波の周波数の最大値を F とし、 10dB以上( 10dB)遮蔽
max
される電波の周波数の最小値を F とした場合、 2 (F — F ) / {¥ +F )で表
mm max mm max mm される。
[0128] 以下、図 26を参照しながら、本変形例 6における電波遮蔽層 12fの構成について 詳細に説明する。図 26は、本変形例 6における電波遮蔽層 12fの平面図である。
[0129] 電波遮蔽層 12fは、互いに異なる特定の周波数帯の電波を選択的に反射させる複 数種類のアンテナ 22、具体的には、第 1アンテナ 22a,第 2アンテナ 22bおよび第 3 アンテナ 22cの 3種類のアンテナによって構成されている。第 1アンテナ 22a,第 2ァ ンテナ 22bおよび第 3アンテナ 22cは、それぞれの電波反射スぺクトノレピークが互い に独立していないものである。言い換えれば、それぞれの電波反射スペクトルピーク が連続しているものである。このため、本変形例に係る電波遮蔽層 12fは所定の幅を 持った周波数帯域 (例えば、 815MHz以上 925MHz以下の周波数帯域)の電波を 選択的に反射することができる。例えば、電波遮蔽層 12fは、図 27で示されるような 電波遮蔽特性 (電波の透過減衰特性)を有する。電波反射スぺ外ルピークのより高 い連続性を実現する観点から、電波遮蔽層 12fに含まれるアンテナ 22a〜22cの各 寸法は、それらアンテナ 22a〜22cのうちの基準となる種類のアンテナの寸法の ± 1 5 % (好ましくは ± 10 %、より好ましくは ± 5 % )以内であることが好ましい。
[0130] 図 27は、電波遮蔽層 12fの電波遮蔽量 (電波の透過減衰量)と周波数との相関を 例示ており、この特性図から判るように、第 1アンテナ 22aのスペクトルピーク P2と、第 2アンテナ 22bのスペクトルピーク P3と、第 3アンテナ 22cのスペクトルピーク P1とは 互いに孤立してはおらず、連続している。すなわち、最も大きなピークである P1のべ ースライン BLからの深さ HIに対し、谷部のベースライン BLからの深さ H2との比(電 波反射 (遮蔽)率の比)は、 50。/。以下(3dB以上)である。そして、電波遮蔽層 12fに よれば、ピーク P1〜P3の間の周波数帯域の全域の電波が 10dB以上という高い遮 蔽率で遮蔽 (反射)される。また、 10dBの比帯域が 10%よりも大きいことが好ましい。
[0131] 尚、「電波反射スペクトルピークが互いに孤立していなレ、(連続している)」とは、電 波遮蔽性仕切面材の有する電波反射(遮蔽)スペクトルのうち最も大きなスペクトルの 山部(ピーク)の電波反射 (遮蔽)率に対するスペクトルピーク間の谷部における最小 の電波反射 (遮蔽)率の比が 50%より大きレヽ(最も大きなスペクトルの山部(ピーク)の 電波反射 (遮蔽)率と谷部における最小の電波反射 (遮蔽)率との差が 3dBより小さレヽ )ことをいう。一方、「電波反射スペクトルピークが互いに孤立している(連続していな レ、)」とは、電波遮蔽性仕切面材の有する電波遮蔽スペクトル(電波反射スペクトル) のうち最も大きなスペクトルの山部(ピーク)の電波反射 (遮蔽)率に対するスペクトル ピーク間の谷部における最小の電波反射 (遮蔽)率の比が 50%以下 (最も大きなス ベクトルの山部(ピーク)の電波反射 (遮蔽)率と谷部における最小の電波反射 (遮蔽 )率との差が 3dB以上)であることをレ、う。
[0132] 尚、本変形例 6では、第 1〜第 3アンテナ 22a〜22cのそれぞれを、実施形態にお いて説明したアンテナ 13と同形状の T—Y形アンテナとしているが、 T—Y形に代え て、例えば Y字形やエルサレムクロス形などであってもよレ、。また、第 1〜第 3アンテナ 22a〜22cは、互いに異なる形状であってもよぐまた、同一形状であっても互いに大 きさの異なる相似形であってもよレ、。
[0133] 次に、本変形例 6におけるアンテナ 22a〜22cの配置について、図 26を参照しなが ら詳細に説明する。 [0134] 電波遮蔽層 12fには、第 1アンテナ 22a,第 2アンテナ 22bおよび第 3アンテナ 22c 力、それぞれ一方向にこの順で交番状に配列されてなる複数のアンテナ列 23を構 成するように二次元配列されている。言い換えれば、電波遮蔽層 12fは、各々、第 1 〜第 3アンテナ 22a〜22cがー方向にこの順で交番状に配列された複数列のアンテ ナ列 23を互いに略平行に配置してなるものである。
[0135] 電波遮蔽層 12fにおいて、各第 1アンテナ 22aは、該第 1アンテナ 22aが属するアン テナ列 23の隣のアンテナ列 23に属する第 2アンテナ 22bおよび第 3アンテナ 22cに 隣接している。同様に、各第 2アンテナ 22bは、該第 2アンテナ 22bが属するアンテナ 歹 IJ23の隣のアンテナ列 23に属する第 1アンテナ 22aおよび第 3アンテナ 22cに隣接 している。各第 3アンテナ 22cは、該第 3アンテナ 22cが属するアンテナ列 23の隣の アンテナ列 23に属する第 2アンテナ 22bおよび第 1アンテナ 22aに隣接している。言 い換えれば、第 1アンテナ 22aについて言えば、各第 1アンテナ 22aと、該第 1アンテ ナ 22aが属するアンテナ列 23の両側に位置する各アンテナ列 23にそれぞれ属して いて該第 1アンテナ 22aに最も近接する 2つの第 1アンテナ 22aとの間において、 3つ のアンテナ中心が三角形 (好ましくは正三角形)を構成するように配置されてレ、る。第 2アンテナ 22bについて言えば、各第 2アンテナ 22bと、該第 2アンテナ 22bが属する アンテナ列 23の両側に位置する各アンテナ列 23にそれぞれ属していて該第 2アン テナ 22bに最も近接する 2つの第 2アンテナ 22bとの間において、 3つのアンテナ中 心が三角形 (好ましくは正三角形)を構成するように配置されてレ、る。第 3アンテナ 11 cについて言えば、各第 3アンテナ 22cと、該第 3アンテナ 22cが属するアンテナ列 23 の両側に位置する各アンテナ列 23にそれぞれ属していて該第 3アンテナ 22cに最も 近接する 2つの第 3アンテナ 22cとの間において、 3つのアンテナ中心が三角形(好 ましくは正三角形)を構成するように配置されてレ、る。
[0136] このような配置にすることによって、例えば、第 1アンテナ 22aの第 2エレメント部が、 隣のアンテナ列 23に属する第 2アンテナ 22bと第 3アンテナ 22cとの間に入り込むよ うに配置されることになり、複数のアンテナ列 23を行方向(横方向)に密に配置するこ とが可能となる。言い換えれば、図 26に示すように、例えば、第 1アンテナ 22aが配置 された領域 R内に、該第 1アンテナ 22aに最も近接する 3つの第 2アンテナ 22bの第 2 エレメント部が入り込むような状態とすることが可能である。よって、単位面積当りによ り多くのアンテナ 22a〜22cを配置することができる。
[0137] ここで、電波の遮蔽率は、単位面積当りのアンテナ 22の数量と相関しており、単位 面積当りのアンテナ 22の数量が増加すると電波の遮蔽率も増加する。このため、本 変形例 6におけるアンテナ 22の配置によれば、さらに高い電波遮蔽率を実現するこ とが可能となる。また、第 1〜第 3アンテナ 22a〜22cの単位面積当りに含まれる各個 数を略同一にすることができるため、対象周波数帯域間における電波遮蔽ムラを抑 制すること力 Sできる。尚、より単位面積当りのアンテナ 22の数量を多くする観点から、 第 2エレメント部の長さ L2は、第 1エレメント部の長さ L1よりも短い方が好ましい(L2 < L1)。
[0138] また、本変形例 6におけるアンテナ 22a〜22cの配列では、第 2エレメント部同士が 平行に対向しないように配列されている。このため、電波遮蔽層 12fの周波数選択性 を比較的低く保つことができる。言い換えれば、電波遮蔽層 12fの遮蔽対象周波数 帯の比帯域を比較的広く保つことができる。したがって、特定の周波数帯域全域の 電波に対する偏りの少ない良好な電波遮蔽率を実現することができる。
[0139] (変形例 7)
以上、 T—Y形アンテナ(アンテナ 13、 16、 17)により構成された電波遮蔽層 12の 例について説明しているが、電波遮蔽層 12は、 T Y形アンテナ以外のアンテナに より構成されていてもよい。例えば、図 28に示すように、 Y字状のアンテナ 24であつ てもよレ、。また、その配置も、マトリクス状であってもよレ、。尚、「Y」字状のアンテナ 24 とは、具体的には、アンテナ中心から互いに略 120° の角度をなして放射状に略同 一長さでもって延びる略同一長さの 3本の線分状の第 1エレメント部 24aにより構成さ れたもののことをレ、う。
[0140] (変形例 8)
変形例 8は、上記変形例 7のさらなる変形例である。上記変形例 7では、電波遮蔽 層 12gが 1種類のアンテナ 24のみにより構成されているのに対し、本変形例 8では、 電波遮蔽層 12hは、互いに大きさの異なる 2種類の Y字状アンテナ 25, 26により構 成されている。この構成によれば、互いに周波数の異なる複数種類の電波の遮蔽が 可能な電波遮蔽性仕切面材を実現することができる。
[0141] 図 29に示すように、本変形例 8では、比較的大きなアンテナ 25が、第 1エレメント部 同士を対向させるように配列されている。具体的には、各アンテナ 25の 3本の第 1ェ レメント部のそれぞれに、異なるアンテナ 25の第 1エレメント部が平行にかつ近接して 対向するように配列されている。そして、比較的大きなアンテナ 25により区画形成さ れた六角形状の領域内のそれぞれに、比較的小さなアンテナ 24が 1つずつ配置さ れている。このような配列にすることによって、アンテナ 25の特定周波数の電波に対 する電波遮蔽率を向上することができる。
[0142] (変形例 9)
図 30は、変形例 9における電波遮蔽層 12iの平面図である。
[0143] 本実施例 10では、電波遮蔽層 12iは、エルサレムクロス形の複数のアンテナ 27に より構成されている。各アンテナ 27は、各々、アンテナ中心から互いに 90° の角度を なして放射状に略同一長さでもって延びる 4本の線分状の第 1エレメント部 27aと、各 第 1エレメント部 27aの外側端にそれぞれ所定の角度でもって (典型的には垂直に) 結合された線分状の第 2エレメント部 27bとを有するものである。このような形状のァ ンテナ 27により電波遮蔽層 12iを構成することによって、上記変形例 7, 8で説明した Y字状のアンテナにより電波遮蔽層を構成する場合に比べて、より高い周波数選択 性 (但し、 T Y形アンテナにより電波遮蔽層を構成した場合に比べると、周波数選 択性は低レヽ)を実現すること力 Sできる。
[0144] 複数のアンテナ 27は、互いに隣接するアンテナ 27の第 2エレメント部 27b同士が対 向するように (好ましくは、平行にかつ近接して対向するように)マトリクス状に配列さ れている。この配列によれば、アンテナ 27の特定周波数の電波に対する電波遮蔽率 をさらに向上することができる。
[0145] (変形例 10)
図 31は、変形例 10における電波遮蔽層 1 ¾の平面図である。
[0146] 本変形例 10は、上記変形例 9のさらなる変形例である。上記変形例 9では、電波遮 蔽層 12iが 1種類のアンテナ 27のみにより構成されているのに対し、本変形例 10で は、電波遮蔽層 1¾は、互いに大きさの異なる 2種類のエルサレムクロス形アンテナ 2 8, 29により構成されている。この構成によれば、互いに周波数の異なる複数種類の 電波の遮蔽が可能な電波遮蔽性仕切面材を実現することができる。
[0147] 図 31に示すように、本変形例 10では、複数のアンテナ 28が、互いに隣接するアン テナ 28の第 2エレメント部 28b同士が対向するように(好ましくは、平行にかつ近接し て対向するように)マトリクス状に配列されている。そして、比較的大きなアンテナ 28 により区画形成された略方形状の領域内のそれぞれに、比較的小さなアンテナ 29が 1つずつ配置されている。
[0148] このような配列にすることによって、アンテナ 28の特定周波数の電波に対する電波 遮蔽率を向上することができる。
[0149] (変形例 11)
図 32は、変形例 11における電波遮蔽層 12kの平面図である。
[0150] 本変形例 11は、アンテナ 28, 29の配列のみを異にする上記変形例 10のさらなる 変形例である。
[0151] 本変形例 11では、図 32の横方向において相隣接するアンテナ 28の第 2エレメント 部 28b同士が対向する(好ましくは、平行にかつ近接して対向する)ように配列された アンテナ 28の列と、同じく横方向において相隣接するアンテナ 29の第 2エレメント部 29b同士が対向する(好ましくは、平行にかつ近接して対向する)ように配列されたァ ンテナ 29の列と力 図 32の縦方向において交互に配列されている。このように配置 することによって、アンテナ 28, 29それぞれの特定周波数の電波に対する電波遮蔽 率を向上することができる。
[0152] (変形例 12)
図 33は、変形例 12におけるアンテナ 13の平面図である。詳細には、図 33 (a)は、 本変形例 12におけるアンテナ 13の全体を表す平面図であり、図 33 (b)は、図 33 (a) に「b」で示す部分 (アンテナ中心 C近傍部分)を拡大した平面図であり、図 33 (c)は、 図 33 (a)に「c」で示す部分を拡大した平面図である。
[0153] 上記実施形態および変形例では、アンテナ 13は開口部を有さない金属膜 (金属箔 )により形成されている例について説明した力 アンテナ 13は、例えば、図 24に示す ように、開口部を有する金属膜や金属箔 (例えば、メッシュ状の金属膜や金属箔など )により形成してもよい。
[0154] ここで、開口部を有する金属膜 (金属箔)とは、平面視格子状 (三角格子状、六角格 子状、コリンズ格子状など)などの平面視メッシュ状に形成された金属膜 (金属箔)、 平面視円形状、平面視楕円形状、又は平面視多角形状の微細孔が形成された金属 膜 (金属箔)、若しくは平面視円形状、平面視楕円形状、又は平面視多角形状の多 数の金属膜 (金属箔)が相互に離間するように配列されてなるものなどをいう。
[0155] この構成によれば、アンテナ 13をある程度光を透過するものとすることができ、アン テナ 13を眼に止まりにくいものとすることができる。したがって、この構成によれば、例 えば、電波遮蔽性仕切面材が透明である場合には、基材 10を透明とすることによつ て視界の妨げになりにくい電波遮蔽性仕切面材を実現することができる。また、電波 遮蔽性仕切面材の表面に模様が付されているような場合に、アンテナ 13による模様 の輪郭のぼやけ、視認性の悪化を抑制することができる。
[0156] アンテナ 13の透明性 (視認されにくさ)と導電性 (電波遮蔽性)とを両立する観点か ら、アンテナ 13は、図 33 (a) , (b)に示すように、 3本の第 1エレメント部 13aの交わる 部分を平面視三角格子状のメッシュ状金属膜 (又は金属箔)で構成すると共に、その 他の第 1エレメント部 13aの部分および第 2エレメント部 13bを平面視正方格子状のメ ッシュ状金属膜 (又は金属箔)で構成することが特に好ましい。
[0157] また、上記観点から、アンテナ 13に対する金属膜 (金属箔)が占める面積の割合は 2. 5%以上 30%以下であることが好ましい。
[0158] また、アンテナ 13を構成する金属膜 (金属箔)を平面視メッシュ状とした場合、図 33
(c)に示すように、線幅 Wおよびピッチ Pは、導電性 (電波遮蔽性)と開口率 (透光性) との関係で適宜設定することができる。例えば、線幅 Wは、 以上 70 z m以下(5 ^ m^W^ TO x m)とすることができる。好ましくは、 8 μ m以上 30 μ m以下(8 μ m ≤ ≤30 μ πι)である。尚、線幅 Wが より小さレ、(W< 5 z m)と、必要な導電性 (電波遮蔽性)を得ることが困難である。一方、線幅 Wが 70 z mを超える (W> 70 z m)と、十分な開口率 (透光性)が得られない。
[0159] 一方、ピッチ Pは、 50〃111以上400〃111以下(50〃111≤ ≤400〃111)とすることカ^ できる。好ましくは、 100〃111以上300〃111以下(100〃111≤ ≤300〃111)でぁる。ピ ツチ Pが 50 μ ΐηより小さい(Ρ < 50 μ ΐη)と、十分な開口率(透光性)が得られない。ピ ツチ Ρ力 S400 μ mを超える(P >400 μ m)と、必要な導電性(電波遮蔽性)を得ること が困難である。
[0160] (変形例 13)
図 34〜図 37は、変形例 13における電波遮蔽性仕切面材および電波遮蔽層を示 している。本変形例 13では、電波遮蔽層 12は、通気性を持つ担持体 60aを有する 基材 60上に設けられて電波遮蔽シートを構成しており、この電波遮蔽シートを、粘着 剤 61などを用いて面材本体 11に貼着することで該面材本体 11上に電波遮蔽層 12 が配置されるようになっている。また、電波遮蔽シートは、長尺物であってロール状に 卷き取られており、必要な長さ分だけ繰り出し、切断して使用できるようになつている
[0161] 上記電波遮蔽シートを面材本体 11に貼着する態様としては、先ず、図 34に示すよ うに、電波遮蔽シートにおける電波遮蔽層 12とは反対側の面を面材本体 11に重ね るようになされる場合が挙げられる。この場合には、電波遮蔽シートは、図 35に示す ように、基材 60における電波遮蔽層 12とは反対側(図 35の下側)の面に粘着剤 61 が層状に塗工されており、その表面には、この電波遮蔽シートを面材本体 11に貼着 する際に剥がし取られる保護膜 62が貼着されている。また、図 36に示すように、電波 遮蔽シートにおける電波遮蔽層 12の面を面材本体 11に重ねるようになされる場合に は、電波遮蔽シートは、図 37に示すように、基材 60における電波遮蔽層 12側(図 37 の下側)の面に粘着剤 61が層状に塗工されており、その表面には、上記の場合と同 じぐ保護膜 62が貼着されている。
[0162] そして、本変形例 13では、上記担持体 60aの一方の表面の全体にコーティング膜 60bが形成されており、これら担持体 60aとコーティング膜 60bとによって上記の基材 60が構成されている。
[0163] 上記のコーティング膜 60bは担持体 60aの通気性を低減させるものである。そして、 コーティング膜 60bは担持体 60aの少なくとも一部の上に形成されている。このため、 基材 60における上記コーティング膜 60b形成部分は、通気性が低減された状態とな つている。 [0164] ここで、担持体 60aとしては、織布(例えば、平織など)ゃ不織布,編み物,レース, フェルト,紙などの布状体を挙げることができ、また、その形状としては、板状、シート 状、又はフィルム状などを挙げることができる。
[0165] コーティング膜 60bとしては、担持体 60aの通気性を抑制可能なものであれば特に 限定されるものではない。例えば、コーティング膜 60bは、樹脂やゴムなどの有機(高 分子)材料又はガラスなどの無機材料などからなるものであることが好ましぐそれら の材料の中には、電波遮蔽特性を低下させない範囲で添加剤(老化防止剤、着色 剤など)を配合してもよい。また、担持体 60aが透明であるような場合などにおいては 、コーティング膜 60bは透明(光透過性)であることが好ましい。尚、コーティング膜 60 bは、電波遮蔽層 12が形成される領域のみや、アンテナ 13が配置される領域のみに 設けるようにしてもよレ、。
[0166] 次に、図 38に基づき、上記電波遮蔽シートの製造方法について説明する。図 38は 、基材 60上に複数のアンテナ 13 (電波遮蔽層 12)を形成する工程を表す側面図で ある。
[0167] まず、例えば、可撓性およびび通気性を有する布状体などの担持体 60aを用意す る。そして、その担持体 60aの一方の表面上にコーティング膜 60bを形成して基材 60 を完成させる。ここで、コーティング膜 60bは担持体 60aの通気性を低減するもので あるため、得られた基材 60は通気性が低減されたものとなる。尚、基材 60の通気性 は、実質的に全く無くなってもよい。そして、図 38に示すように、この基材 60を、吸着 盤 40上に拡げて配置する。吸着盤 40は、平坦かつ平滑な表面に、複数の吸気孔 4 1の各一端がそれぞれ開口されている。また、それら吸気孔 41の各他端は、図示し ない吸引手段 (例えば (真空)ポンプなど)に接続されている。その吸引手段を駆動さ せることによって、吸着盤 40上に配置された基材 60を該吸着盤 40上に吸着保持す るようになっており、これにより、アンテナ 13 (電波遮蔽層 12)を形成される基材 60表 面が平坦となるように、つまり、「皺」や「弛み」を生じることなく基材 60を保持できるよう になっている。そして、この状態で、複数のアンテナ 13からなる電波遮蔽層 12を上記 基材 60上に形成して電波遮蔽シートを得る。しかる後、その電波遮蔽シートを、粘着 剤 61でもって面材本体 11に貼着し、これにより電波遮蔽性仕切面材を完成させるこ とができる。尚、コーティング膜 60bを形成する工程と、電波遮蔽層 12を形成するェ 程とは連続して行ってもよいし、コーティング膜 60bを形成した後、一旦ロール状に卷 き取って保管しておき、その後改めて電波遮蔽層 12を形成するようにしてもよい。
[0168] 複数のアンテナを高い形状寸法精度で形成するためには、それら複数のアンテナ が形成される表面が平坦となるように、つまり、「皺」が入ったり「弛み」や「湾曲」が生 じないように基材 60を保持する必要がある。その際に、通気性を持つ担持体 60a上 に直接に複数のアンテナ 13を形成する場合には、担持体 60aの通気性故に、表面 が平坦となるように(「皺」や「弛み」が生じなレ、ように)保持することは困難である。例 えば、コーティング膜 60bを有さない担持体 60aを吸着盤 40上に配置して吸引したと しても、担持体 60aの通気性故、担持体 60aを十分に吸着保持することは困難である 。したがって、複数のアンテナ 13を高い形状寸法精度で形成することが困難である。 その結果、高い電波遮蔽性を実現することは困難となる。この場合、電波遮蔽層 12 ( アンテナ 13)は、例えば、周波数選択性を有さないものとなってしまう虞がある。
[0169] これに対し、本変形例 13では、通気性を持つ担持体 60aの上に該担持体 60aの通 気性を低減させるコーティング膜 60bが形成されている。このため、通気性を持つ担 持体 60aを主体とする基材 60は、吸着により十分に保持されることが可能である。す なわち、複数のアンテナ 13が形成される表面を平坦に保った状態に基材 60を保持 すること力 Sできる。したがって、高い形状寸法精度で複数のアンテナ 13を形成するこ とが可能となる。その結果、高い電波遮蔽性を実現することが可能となる。
[0170] 尚、上記の基材 60を吸着手段以外の手段により保持することも考えられる。例えば 、粘着剤などを用いて保持することも考えられる。しかしながら、そのような場合、基材 60の着脱作業が繁雑になる。特に、高い平坦度で基材 60を保持しょうとすると着脱 作業がさらに煩雑になるとともに作業困難度が増大する。このため、高い電波遮蔽性 を有する電波遮蔽シートの作製、延いては、電波遮蔽性仕切面材の作製が困難とな つてしまう。一方、吸着による基材 60の保持は、表面が高い平坦度に保たれる状態 に基材 60を保持するには、上述の粘着剤などを用いる保持と比較して極めて容易で ある。
[0171] 一実験例一 ここで、本変形例 13の電波遮蔽シートを作製し、その電波遮蔽特性 (透過減衰特 性)を調べるために行った実験について説明する。
[0172] まず、上述の吸着盤 40 (図 38参照)を用いて、電波遮蔽シートを作製した。具体的 には、まず、東洋染化社製の「# 0717_CU (ベージュ)」からなる担持体 60aの表面 をウレタン樹脂によりロールコータ法を用いてコーティング膜 60bを形成し、これを基 材 6。とした。
[0173] 次に、ポリエステル樹脂中に銀微粒子が 63wt%の割合で分散混入されてなる銀 ペーストを用いて、上記コーティング膜 60b上にスクリーン印刷法によりアンテナ 13を 作製した。アンテナ 13の作製は、上記基材 60を吸着盤 40に吸着保持させて行った 。アンテナ 13の作製後、基材 60表面上に銀ペーストの滲みは殆ど視認されなかった 。尚、第 1エレメント部の長さ L1は、 Ll = 12. 94mm,第 2エレメント部の長さ L2は、 L2 = 9. 32mm,第 1エレメント部および第 2エレメント部の線幅 L3は、 L3 = l . 58m mとした。
[0174] 以上のようにして得られた電波遮蔽シートの透過減衰量を、アジレント社製のネット ワークアナライザを用いて測定した。
[0175] 比較例として、ウレタン樹脂によるコーティング膜 60bを形成しないこと以外は上記 実験例の場合と同様の工程により電波遮蔽シートを作製し、同様に、透過減衰特性 を調べた。尚、比較例では、作製されたアンテナ作成後、基材表面に銀ペーストの滲 みが視認された。
[0176] 図 39に、実験例に係る電波遮蔽シートの透過減衰特性と、比較例に係る電波遮蔽 シートとの透過減衰特性とを併せて示す。
[0177] 図 39から判るように、実験例の電波遮蔽シートでは、 2. 4GHz付近に強いピークが 観測された。このことより、実験例に係る電波遮蔽シートは、比較的高い周波数選択 性を有するものであることが判る。これに対して、比較例に係る電波遮蔽シートでは、 2. 4GHz付近で若干透過減衰量が大きくなつているものの、ピークらしいピークは観 測されない。このことより、比較例に係る電波遮蔽体は、殆ど周波数選択性を有さな いものであることが判る。
[0178] 以上のように、実験例において高い周波数選択性が確認されたのは、担持体 60a の上にコーティング膜 60bを形成したことにより基材 60が十分に吸着保持され、アン テナ作製時において基材 60表面に「皺」や「弛み」が殆ど生じず、よって高い形状寸 法精度でアンテナ 13を形成できたためと考えられる。それに対して、比較例におい て殆ど周波数選択性が確認されたなかったのは、コーティング膜 60bが形成されて いないため、基材の十分な吸着保持が行われず、よって基材表面に「皺」や「弛み」 が生じたため、高い形状寸法精度でアンテナを形成できなかったためであると考えら れる。
産業上の利用可能性
以上説明したように、本発明に係る電波遮蔽性仕切面材は、シャッター,カーテン, ブラインド,窓,間仕切り,ロールスクリーン,垂れ幕などとして有用である。

Claims

請求の範囲
[1] 空間を仕切るように設けられた面材本体と、上記面材本体の表面に設けられ、電波 を遮蔽する電波遮蔽層とを備えた電波遮蔽性仕切面材。
[2] 請求項 1に記載された電波遮蔽性仕切面材において、
上記電波遮蔽層は少なくとも 1つの特定周波数帯の電波を選択的に遮蔽するもの である電波遮蔽性仕切面材。
[3] 請求項 1に記載された電波遮蔽性仕切面材において、
上記電波遮蔽層は、少なくとも 1つの特定周波数帯の電波を選択的に反射する複 数のアンテナを有する電波遮蔽性仕切面材。
[4] 請求項 3に記載された電波遮蔽性仕切面材において、
上記各アンテナは、各々、アンテナ中心から互いに略 120° の角度をなして放射 状に延びる略同一長さの 3本の線分状の第 1エレメント部と、該各第 1エレメント部の 外側端に結合された線分状の第 2エレメント部とを有する電波遮蔽性仕切面材。
[5] 請求項 1に記載された電波遮蔽性仕切面材において、
上記電波遮蔽層は、導電膜により構成されている電波遮蔽性仕切面材。
[6] 請求項 1 , 2, 3, 4又は 5のうちの何れ力 4項に記載された電波遮蔽性仕切面材に おいて、
上記面材本体は、シャッター,カーテン,プレーンシェード,ブラインド,窓,間仕切 り,ロールスクリーンおよび垂れ幕からなる群より選ばれたものである電波遮蔽性仕切 面材。
[7] 請求項 3に記載された電波遮蔽性仕切面材において、
通気性を持つ担持体と、該担持体の少なくとも一部の表面上に設けられたコーティ ング膜とを有し、上記面材本体に貼着可能に設けられた基材を備え、
上記電波遮蔽層は、上記基材上に設けられて電波遮蔽シートを構成し、 上記電波遮蔽層は、上記電波遮蔽シートが上記面状本体に貼着されることで該面 状本体上に配置されるように構成されてレ、る電波遮蔽性仕切面材。
[8] 請求項 7に記載された電波遮蔽性仕切面材において、
上記複数のアンテナは、上記基材を基盤上に吸着固定した状態で形成されたもの である電波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材において、
上記担持体は、可撓性を有するものである電波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材において、
上記担持体は、布状体である電波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材において、
上記電波遮蔽層は、上記コーティング膜の上に配置されている電波遮蔽性仕切面 材。
請求項 11に記載された電波遮蔽性仕切面材におレ、て、
上記担持体の表面は、非平坦面であり、
上記コーティング膜は、上記基材における上記電波遮蔽層の配置面を平坦化すよ うに設けられている電波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材において、
上記コーティング膜は、樹脂からなる電波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材において、
上記各アンテナは、導電性材料により形成されている電波遮蔽性仕切面材。 請求項 7に記載された電波遮蔽性仕切面材において、
上記各アンテナは、少なくとも 1つの開口部を有する金属膜又は金属箔からなる電 波遮蔽性仕切面材。
請求項 7に記載された電波遮蔽性仕切面材の製造方法であって、
上記担持体の少なくとも一部の表面上に上記コーティング膜を形成して上記基材 を得る工程と、
上記基材を吸着手段により吸着保持した状態で該基材上に上記複数のアンテナを 形成して上記電波遮蔽シートを得る工程と、
上記電波遮蔽シートを上記面材本体に貼着する工程と
を備えた電波遮蔽性仕切面材の製造方法。
PCT/JP2007/061131 2006-06-02 2007-05-31 電波遮蔽性仕切面材およびその製造方法 WO2007142125A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB0823663A GB2452665B (en) 2006-06-02 2007-05-31 Radio shielding partitioning plane material and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006154366A JP4838053B2 (ja) 2006-06-02 2006-06-02 電波遮蔽性仕切面材及びその製造方法
JP2006-154366 2006-06-02
JP2006-160183 2006-06-08
JP2006160183A JP4838638B2 (ja) 2006-06-08 2006-06-08 電波遮蔽体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2007142125A1 true WO2007142125A1 (ja) 2007-12-13

Family

ID=38801382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061131 WO2007142125A1 (ja) 2006-06-02 2007-05-31 電波遮蔽性仕切面材およびその製造方法

Country Status (4)

Country Link
KR (1) KR20090015995A (ja)
GB (1) GB2452665B (ja)
TW (1) TW200817564A (ja)
WO (1) WO2007142125A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208542A (ja) * 2008-03-03 2009-09-17 Toyota Infotechnology Center Co Ltd 電磁波遮蔽装置及び電磁波遮蔽体の制御方法
CN105507778A (zh) * 2015-01-30 2016-04-20 福建固美金属有限公司 一种智能卷帘式窗户的开关方法
EP3114028B1 (de) * 2014-03-04 2020-04-29 thyssenkrupp Marine Systems GmbH Marineschiff mit deckseitigen abdeckungen zur reduzierung von radarsignaturen
CN113782963A (zh) * 2021-09-14 2021-12-10 湖北宽谱航空科技有限公司 一种具有电磁屏蔽功能的毫米波天线罩及其制造方法
WO2023163206A1 (ja) * 2022-02-28 2023-08-31 大日本印刷株式会社 透明電磁波制御部材
WO2023171545A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 アンテナユニット及び窓ガラス
WO2023191086A1 (ja) * 2022-03-31 2023-10-05 リンテック株式会社 電磁波吸収部材、エーミング用パーテーション

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148680A1 (ja) * 2006-06-19 2007-12-27 Mitsubishi Cable Industries, Ltd. 電磁波遮蔽材および電磁波吸収体
GB2488150B (en) * 2011-02-17 2014-01-08 Andrew Ian Briggs Method and design for screening or reducing electromagnetic emmisions from electrical or electromagnetic devices
KR101594755B1 (ko) * 2014-06-03 2016-02-19 한국전력공사 자기장 차폐장치
CN106020385A (zh) * 2016-07-19 2016-10-12 安庆师范大学 一种具备电磁屏蔽特性的计算机机箱
EP3922805A4 (en) * 2019-02-06 2022-10-26 Agc Inc. ANTENNA UNIT, WINDOW GLASS WITH ANTENNA UNIT, AND ANTENNA UNIT INSTALLATION METHOD
KR20210124991A (ko) * 2019-02-13 2021-10-15 에이쥐씨 글래스 유럽 주파수 선택적 코팅을 갖는 글레이징 유닛 및 방법
WO2021131962A1 (ja) * 2019-12-25 2021-07-01 富士フイルム株式会社 電磁シールド用部材

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021912U (ja) * 1988-06-15 1990-01-09
JPH0237807A (ja) * 1988-07-27 1990-02-07 Toshiba Corp 周波数選択板
JPH0430607A (ja) * 1990-05-24 1992-02-03 Mitsubishi Electric Corp 周波数選択反射鏡の製造方法
US5162809A (en) * 1990-10-23 1992-11-10 Hughes Aircraft Company Polarization independent frequency selective surface for diplexing two closely spaced frequency bands
JPH054609U (ja) * 1991-04-24 1993-01-22 三菱電機株式会社 アレーアンテナ装置
JPH10169039A (ja) * 1996-12-10 1998-06-23 Kajima Corp 電磁遮蔽建物
JP2001136021A (ja) * 1999-09-08 2001-05-18 Harris Corp デュアルバンドハイブリッド固体/二色性アンテナ反射器
JP2003060430A (ja) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd 不要放射低減アンテナ
JP2003152418A (ja) * 2001-11-19 2003-05-23 Yokohama Rubber Co Ltd:The レドーム及びそれに使用する周波数選択層
JP2004087968A (ja) * 2002-08-28 2004-03-18 Mitsubishi Cable Ind Ltd 電波吸収部材
JP3657853B2 (ja) * 2000-05-02 2005-06-08 三菱電線工業株式会社 ラミネートフィルムの製造方法
JP6050807B2 (ja) * 2011-05-04 2016-12-21 ザイバ リニューアブルス リミテッド 波エネルギー抽出装置及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1195120B (it) * 1986-08-04 1988-10-12 Cselt Centro Studi Lab Telecom Procedimento per la fabbricazione di strutture dicroiche d antenna
JPH10126090A (ja) * 1996-10-21 1998-05-15 Kajima Corp 電磁シールドフィルム
JPH10168702A (ja) * 1996-12-10 1998-06-23 Kajima Corp 電磁シールド性能を備えた布
JPH1168374A (ja) * 1997-08-08 1999-03-09 Ii M Techno:Kk 電磁遮蔽体、電磁遮蔽パネルおよび電磁遮蔽ブラインド
JPH11195890A (ja) * 1998-01-05 1999-07-21 Nippon Paint Co Ltd 特定範囲の周波数の電磁波を反射する新規な導電性双極性素子パターン及びこれを有する周波数選択性電磁波シールド材
JP3180899B2 (ja) * 1998-03-09 2001-06-25 鹿島建設株式会社 電波遮蔽面状体及び建物内電波遮蔽域
JP2003304087A (ja) * 2002-04-10 2003-10-24 Toppan Printing Co Ltd 電磁波反射材
US7898499B2 (en) * 2005-02-18 2011-03-01 Mitsubishi Cable Industries, Ltd. Electromagnetic wave shielding body
JP4869668B2 (ja) * 2005-09-30 2012-02-08 三菱電線工業株式会社 電波遮蔽体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021912U (ja) * 1988-06-15 1990-01-09
JPH0237807A (ja) * 1988-07-27 1990-02-07 Toshiba Corp 周波数選択板
JPH0430607A (ja) * 1990-05-24 1992-02-03 Mitsubishi Electric Corp 周波数選択反射鏡の製造方法
JP2634088B2 (ja) * 1990-05-24 1997-07-23 三菱電機株式会社 周波数選択反射鏡の製造方法
US5162809A (en) * 1990-10-23 1992-11-10 Hughes Aircraft Company Polarization independent frequency selective surface for diplexing two closely spaced frequency bands
JPH054609U (ja) * 1991-04-24 1993-01-22 三菱電機株式会社 アレーアンテナ装置
JPH10169039A (ja) * 1996-12-10 1998-06-23 Kajima Corp 電磁遮蔽建物
JP2001136021A (ja) * 1999-09-08 2001-05-18 Harris Corp デュアルバンドハイブリッド固体/二色性アンテナ反射器
JP3657853B2 (ja) * 2000-05-02 2005-06-08 三菱電線工業株式会社 ラミネートフィルムの製造方法
JP2003060430A (ja) * 2001-08-17 2003-02-28 Mitsubishi Heavy Ind Ltd 不要放射低減アンテナ
JP2003152418A (ja) * 2001-11-19 2003-05-23 Yokohama Rubber Co Ltd:The レドーム及びそれに使用する周波数選択層
JP2004087968A (ja) * 2002-08-28 2004-03-18 Mitsubishi Cable Ind Ltd 電波吸収部材
JP6050807B2 (ja) * 2011-05-04 2016-12-21 ザイバ リニューアブルス リミテッド 波エネルギー抽出装置及び方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208542A (ja) * 2008-03-03 2009-09-17 Toyota Infotechnology Center Co Ltd 電磁波遮蔽装置及び電磁波遮蔽体の制御方法
EP3114028B1 (de) * 2014-03-04 2020-04-29 thyssenkrupp Marine Systems GmbH Marineschiff mit deckseitigen abdeckungen zur reduzierung von radarsignaturen
CN105507778A (zh) * 2015-01-30 2016-04-20 福建固美金属有限公司 一种智能卷帘式窗户的开关方法
CN113782963A (zh) * 2021-09-14 2021-12-10 湖北宽谱航空科技有限公司 一种具有电磁屏蔽功能的毫米波天线罩及其制造方法
CN113782963B (zh) * 2021-09-14 2024-04-02 湖北宽谱航空科技有限公司 一种具有电磁屏蔽功能的毫米波天线罩及其制造方法
WO2023163206A1 (ja) * 2022-02-28 2023-08-31 大日本印刷株式会社 透明電磁波制御部材
WO2023171545A1 (ja) * 2022-03-08 2023-09-14 Agc株式会社 アンテナユニット及び窓ガラス
WO2023191086A1 (ja) * 2022-03-31 2023-10-05 リンテック株式会社 電磁波吸収部材、エーミング用パーテーション

Also Published As

Publication number Publication date
TW200817564A (en) 2008-04-16
KR20090015995A (ko) 2009-02-12
GB2452665A (en) 2009-03-11
GB0823663D0 (en) 2009-02-04
GB2452665B (en) 2010-11-24

Similar Documents

Publication Publication Date Title
WO2007142125A1 (ja) 電波遮蔽性仕切面材およびその製造方法
EP1853103B1 (en) Radio wave shielding body
JP4869668B2 (ja) 電波遮蔽体
WO2016208331A1 (ja) 熱線遮蔽材、及びこれを用いる建築部材、ケージ部材並びに側面壁
KR101299223B1 (ko) 개폐식 전자파 흡수 장치
KR101306249B1 (ko) 전자파 차폐재 및 전자파 흡수체
JP7014916B2 (ja) 単位遮光生地及びその製造方法
JPH1168374A (ja) 電磁遮蔽体、電磁遮蔽パネルおよび電磁遮蔽ブラインド
JP2013238029A (ja) ガラス板、及びガラス戸
JP4838053B2 (ja) 電波遮蔽性仕切面材及びその製造方法
JP4838638B2 (ja) 電波遮蔽体及びその製造方法
WO2007119798A1 (ja) 電波遮蔽体及びその製造方法
JPH11330773A (ja) 電磁遮蔽体および電磁遮蔽窓部材
JP4757169B2 (ja) 周波数選択膜
JP5953823B2 (ja) ガラス板、及びガラス戸
JP2007184458A (ja) 電波遮蔽体
JP4249140B2 (ja) 電磁シールドロールスクリーン
JP7492072B1 (ja) 電磁波反射板および電磁波反射装置
JP2003304087A (ja) 電磁波反射材
JP2007336415A (ja) 周波数選択膜およびその製造方法ならびに電波遮蔽材
CN101120628A (zh) 电波屏蔽体
JP2008035232A (ja) 電波遮蔽装置
JP7383239B1 (ja) リフレクトアレイ
JP4644543B2 (ja) 電波遮蔽体
JP2006233457A (ja) 電波遮蔽体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07744519

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087031657

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 0823663

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070531

WWE Wipo information: entry into national phase

Ref document number: 0823663.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 07744519

Country of ref document: EP

Kind code of ref document: A1