WO2006082653A1 - ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜 - Google Patents

ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜 Download PDF

Info

Publication number
WO2006082653A1
WO2006082653A1 PCT/JP2005/001714 JP2005001714W WO2006082653A1 WO 2006082653 A1 WO2006082653 A1 WO 2006082653A1 JP 2005001714 W JP2005001714 W JP 2005001714W WO 2006082653 A1 WO2006082653 A1 WO 2006082653A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
general formula
polyarylene
atom
Prior art date
Application number
PCT/JP2005/001714
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Yamakawa
Makoto Higami
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to PCT/JP2005/001714 priority Critical patent/WO2006082653A1/ja
Priority to EP05709779A priority patent/EP1845122B1/en
Priority to US11/815,370 priority patent/US7893303B2/en
Publication of WO2006082653A1 publication Critical patent/WO2006082653A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • C08J2365/02Polyphenylenes

Definitions

  • the present invention relates to a polyarylene having a sulfonic acid group, a method for producing the same, a high molecular solid electrolyte, and a proton conductive membrane.
  • the electrolyte is usually used in a (water) solution.
  • a (water) solution in recent years, there is an increasing trend to replace this with a solid system.
  • the first reason is, for example, the ease of processing when applied to the above-mentioned electrical and electronic materials, and the second reason is the shift to light, thin, small and labor saving.
  • both proton-conducting materials made of inorganic materials and organic materials are known.
  • An example of an inorganic substance is uranyl phosphate, which is a hydrated compound.
  • these inorganic compounds do not have sufficient contact at the interface, and there are many problems in forming a conductive layer on a substrate. ! ⁇ .
  • polymers belonging to so-called cation exchange resins for example, sulfonated products of bulle polymers such as polystyrene sulfonic acid, perfluoro represented by naphthion (manufactured by Dupont).
  • a sulfonic acid group or a phosphate group is introduced into a heat-resistant polymer such as an alkyl sulfonic acid polymer, a perfluoroalkyl carboxylic acid polymer, or polybenzimidazole or polyether ether ketone (for example, Polymer Pre-Prinz Jonnon, 1993, No. 42, No. 7, p.
  • organic polymers are usually characterized in that a conductive film can be bonded on an electrode by utilizing the solubility in a force solvent used in the form of a film or the fact that they are thermoplastic. It is a sign.
  • many of these organic polymers are not yet sufficiently proton-conductive and not sufficiently durable, so that the proton conductivity decreases at high temperatures (over 100 ° C). (Particularly, the modulus of elasticity) is greatly reduced, the dependency on humidity is large, the adhesion to the electrode is not sufficiently satisfactory, and excessive swelling during operation due to the water-containing polymer structure There are problems such as a decrease in strength and collapse of the shape. Therefore, these organic polymers have various problems when applied to the electrical and electronic materials described above.
  • US Pat. No. 5,403,675 proposes a solid polymer electrolyte comprising a sulfonated rigid polyphenylene.
  • This polymer is mainly composed of a polymer obtained by polymerizing an aromatic compound consisting of a phenylene chain (structure described in U.S. Pat.No. 5,403,675, description column 9), which is used as a sulfonating agent.
  • a sulfonic acid group is introduced by reaction.
  • the proton conductivity is improved by increasing the amount of sulfonic acid group introduced, the mechanical properties of the obtained sulfone polymer, for example, toughness such as breaking elongation and bending resistance, are also hot water resistant. Is significantly impaired.
  • the present invention solves the problems in the prior art as described above, and by having an aliphatic sulfonic acid group, it has high proton conductivity over a wide range of temperature and humidity.
  • the polyarylene of the present invention includes a structural unit represented by the following general formula (1).
  • X and Y represent a divalent organic group or a direct bond
  • Z represents an oxygen atom or a sulfur atom
  • R represents a hydrogen atom, a fluorine atom, an alkyl group, or a fluorine-substituted alkyl group.
  • At least one kind of atom or group a is an integer of 1 to 20, n is 1 to 1.
  • An integer of 5 and p represents an integer of 0-10.
  • R 1 — R 8 may be the same or different from each other, and may be at least one selected from the group consisting of a hydrogen atom, a fluorine atom, an alkyl group, a fluorine-substituted alkyl group, an aryl group, and an aryl group.
  • W represents a divalent electron-withdrawing group
  • T represents a divalent organic group
  • m represents 0 or a positive integer.
  • the polyarylene production method of the present invention comprises a compound (A) containing a structural unit represented by the following general formula (3), a compound (B) represented by the following general formula (4), or the following general formula (5) Reaction with a compound (C) represented by
  • X, Y, Z, n, and p are as defined in the general formula (1), and M represents a hydrogen atom or an alkali metal atom.
  • R and a are as defined in the general formula (1), M is as defined in the general formula (3), and L is any of a chlorine atom, a bromine atom, and an iodine atom. Indicates. ]
  • the compound (A) can further include a structural unit represented by the general formula (2).
  • the polymer solid electrolyte of the present invention contains the polyarylene.
  • the proton conducting membrane of the present invention contains the polyarylene.
  • the proton conducting membrane has high proton conductivity over a wide range of temperature and humidity, and is excellent in hot water resistance and chemical stability. It is possible to provide a polyarylene-based copolymer, a method for producing the same, and a proton conducting membrane that has this copolymer strength.
  • a sulfonic acid group can be introduced without using a large amount of a sulfonating agent. Furthermore, the processing load when collecting the polyarylene of the present invention is small. Furthermore, according to the present invention, the introduction position and introduction amount of the sulfonic acid group can be easily controlled. Therefore, the polyarylene of the present invention is well adjusted in proton conductivity as a solid electrolyte or conductive membrane.
  • the polymer solid electrolyte of the present invention can be used as a polymer solid electrolyte for a fuel cell, for example.
  • the proton conductive membrane of the present invention is a conductive membrane such as an electrolyte for primary batteries, an electrolyte for secondary batteries, a polymer solid electrolyte for fuel cells, a display element, various sensors, a signal transmission medium, a solid capacitor, and an ion exchange membrane. This industrial significance is extremely large.
  • FIG. 1 is a 1 H-NMR ⁇ vector of the compound (A′—1) obtained in Example 1.
  • FIG. 2 is a 1 H-NMR ⁇ vector of the compound (A-1) obtained in Example 1.
  • FIG. 3 is a 1 ⁇ -NMR ⁇ vector of the compound ( ⁇ ′ 1) obtained in Example 1.
  • FIG. 4 is a 1 ⁇ -NMR ⁇ vector of the compound ( ⁇ 1) obtained in Example 1.
  • Example 5 is a 1 .eta. NMR spectrum of the compound obtained in Example 1 (1).
  • the polyarylene of the present invention the production method thereof, the polymer solid electrolyte, and the proton conductive membrane will be specifically described.
  • the polyarylene of the present invention includes a structural unit represented by the following general formula (1).
  • X and ⁇ ⁇ represent a divalent organic group or a direct bond, for example, -CO-,
  • An electron-withdrawing group such as
  • X is particularly preferably CO 2 SO, in which an electron-withdrawing group is preferred because it has a high polymerization activity during the production of the polyarylene of the present invention.
  • Y is electron withdrawing
  • the electron withdrawing group is a value of 0.06 or more when the hammet substituent constant is the m-position of the phenyl group, and a value of 0.01 or more when the p-position is p-position. Is a group.
  • Z represents an oxygen atom or a sulfur atom.
  • R represents at least one atom or group selected from the group consisting of a hydrogen atom, a fluorine atom, an alkyl group, and a fluorine-substituted alkyl group.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, and a hexyl group, and a methyl group and an ethyl group are preferable.
  • Examples of the fluorine-substituted alkyl group include a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, and a trifluoromethyl group.
  • Pentafluoroethyl group, etc. are preferred.
  • a is an integer from 1 to 20
  • n is an integer from 1 to 5
  • p is an integer from 0 to 10.
  • the polyarylene of the present invention further comprises a structural unit 0.1 5 100 mole 0/0 represented by the general formula (1), structural units 0 99 represented by the following general formula (2). 5 mol% can be included
  • R 1 to R 8 are at least selected from the group consisting of a hydrogen atom, a fluorine atom, an alkyl group, a fluorine-substituted alkyl group, an aryl group, and an aryl group, which may be the same or different from each other. Indicates one atom or group.
  • the alkyl group and fluorine-substituted alkyl group those exemplified as the alkyl group and fluorine-substituted alkyl group used for R in the general formula (1) can be used.
  • the aryl group include a probe group, and examples of the aryl group include a phenyl group and a pentafluorophenyl group.
  • W represents a divalent electron-withdrawing group, and examples of the electron-withdrawing group include CO CONH
  • T is a divalent organic group, and may be an electron-withdrawing group or an electron-donating group.
  • the electron-withdrawing group the groups exemplified as the aforementioned W can be used.
  • Electron donation 'As the sex group, if f row, OS CH CH C ⁇ C and the following formula: Group represented by these.
  • m is 0 or a positive integer, and the upper limit is usually 100, preferably 80.
  • the molecular weight of the polyarylene of the present invention is a polystyrene-equivalent weight average molecular weight by gel permeation chromatography (GPC), which is 11 to 1 million, preferably 21 to 800,000.
  • the number average molecular weight is 0.5 to 200,000, preferably 1 to 160,000. If it is less than 10,000, the coating film properties are insufficient, such as cracks in the molded film, and the strength properties are also problematic. On the other hand, when it exceeds 1,000,000, there are problems such as insufficient solubility and poor workability due to high solution viscosity.
  • the amount of the sulfonic acid group in the polyarylene of the present invention is 0.5-3 meqZg, preferably 0.8-2.8 meqZg. Less than 5 meqZg, proton conductivity may not increase. On the other hand, if it exceeds 3 meqZg, the hydrophilicity will be improved and it will be soluble in water-soluble polymer or hot water if not water-soluble. Even if it does not reach water solubility, durability may decrease.
  • the polyarylene of the present invention is produced by reacting compound (A) with compound (B) or compound (C).
  • compound (A), the compound (B) and the compound (C) used for producing the polyarylene of the present invention will be described in order. [0036] 2.
  • the compound (A) has a structural unit represented by the following general formula (3).
  • X, Y, Z, n, and p are as defined in the general formula (1), and M represents a hydrogen atom or an alkali metal atom.
  • Examples of the alkali metal atom represented by M include sodium, potassium, and lithium.
  • the compound (A) can further contain a structural unit represented by the general formula (2). More specifically, the compound (A) is represented by the ability to polymerize alone using at least one compound (A) represented by the following general formula (6) as a monomer, or represented by the following general formula (6). It is obtained by copolymerizing at least one compound (A) and another aromatic compound (preferably at least one compound (A;) represented by the following general formula (7)) as monomers, respectively.
  • the compound ( ⁇ ) By removing the hydrocarbon group, the compound ( ⁇ ) can be obtained.
  • Examples of the alkyl group represented by Q include a methyl group and an ethyl group.
  • Examples of the fluorine-substituted alkyl group include a trifluoromethyl group.
  • Examples of the aryl group include a phenyl group and a p-tolyl group. Etc.
  • R 9 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group include methyl group, ethyl group, n-propyl group, iso-propyl group, tert-butyl group, iso-butyl group, n-butyl group, sec-butyl group, neopentyl group, Cyclopentyl group, hexyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, adamantyl group, adamantylmethyl group, 2-ethylhexyl group, bicyclo [2.2.1] heptyl group, bicyclo [ 2.
  • Linear hydrocarbon group such as heptylmethyl group, tetrahydrofurfuryl group, 2-methylbutyl group, 3,3 dimethyl-2,4-dioxolanemethyl group, branched hydrocarbon group, Examples thereof include alicyclic hydrocarbon groups and hydrocarbon groups having a 5-membered heterocyclic ring.
  • the hydrocarbon group may contain an oxygen atom, a nitrogen atom, or a sulfur atom.
  • Examples of the hydrocarbon group containing an oxygen atom include a tetrahydro-2-vinyl group, a methoxymethyl group, an ethoxyethyl group, and a propoxymethyl group. Of these, tetrahydro-2-biranyl and methoxymethyl groups are preferred.
  • R 1 —R 8 , W, T, m are as defined in the general formula (2), and B and B ′ may be the same or different from each other.
  • Halogen atom excluding fluorine atom or —OSO Q (where Q is an alkyl group, fluorine-substituted alkyl group or aryl The ru group is shown. ) Is represented. Examples of Q include the groups exemplified in the general formula (6).
  • Compound (A) can be synthesized, for example, by the following method.
  • an aromatic acid halogen compound is used as the starting material (compound (I)), and the compound (A ′) obtained by reacting the aromatic acid halogen compound with azole.
  • the hydroxyl group contains a hydroxyl group
  • the protecting group for the hydroxyl group is a tetrahydro-2-biral group.
  • the compound (A '), the reactant and the protecting group are limited to these. Do not mean.
  • aromatic acid halogen compounds can be combined with other reactants (for example, 1,4-dimethoxybenzene, 1,3-dimethoxybenzene, 1,2-dimethoxybenzene, 1, 2, 3-trimethoxybenzene or methylthiobenzene) can be reacted.
  • other reactants for example, 1,4-dimethoxybenzene, 1,3-dimethoxybenzene, 1,2-dimethoxybenzene, 1, 2, 3-trimethoxybenzene or methylthiobenzene
  • the introduction position and introduction amount of the sulfonic acid group can be controlled.
  • R hydrogen atom, methyl group, ethyl group, t-butyl group alkyl group, etc.
  • compound (A ′) and 1-20 times molar amount of 2H-dihydropyran are dissolved in toluene in the presence of an acid catalyst (for example, cation exchange resin), and at room temperature for 1 to 24 hours. Stir. Next, after removing the acid catalyst, the toluene solution is concentrated, and then recrystallized as necessary to obtain a compound in which a tetrahydro-2-biranyl group is introduced as a protecting group.
  • an acid catalyst for example, cation exchange resin
  • Examples of the compound (A) represented by the general formula (6) include the following compounds.
  • the compound (to) represented by the general formula (6) for example, a compound in which a chlorine atom is replaced with a bromine atom or an iodine atom in the above compound, or a compound in which CO— is replaced with SO— in the above compound.
  • the chlorine atom is
  • the specific compound (A) represented by the general formula (7) includes, for example, 4
  • the compound (A) represented by the general formula (7) includes 2,2 bis [4 ⁇ 4 (4
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, bisphenol linked with an electron-withdrawing group is converted into the corresponding alkali metal salt of bisphenol.
  • Alkaline metals such as lithium, sodium, and potassium, alkali metal hydrides, alkali metal hydroxides, and alkali metal carbonates can be obtained in polar solvents with high dielectric constants such as diphenylsulfone and dimethylsulfoxide.
  • the alkali metal is reacted in excess with respect to the hydroxyl group of phenol, and usually 1.1 or 12 times equivalent is used. Preferably, 1.2 to 1.5 times equivalent is used. This In the case of benzene, toluene, xylene, hexane, cyclohexane, octane, black benzene, dioxane, tetrahydrofuran, azole, phenetol, etc.
  • Aromatic dihalide compounds substituted with activated halogen atoms such as fluorine and chlorine for example, 4,4'-difluorobenzophenone, 4,4'-dichlorobenzophenone, 4,4'-chlorofunoleo Robenzophenone, Bis (4—Black mouth Hue-Nole) Snorephone, Bis (4-Fonoreolofe-Nole) Snorehon, 4-Fonoreolofe-Nole 4 'Black mouth Hue-Nore Sunolehon, Bis (3—2 Trow 4 Black mouth Hue- ) Sulfone, 2,6-dichlorodibenzo-tolyl, 2,6-difluorobenzonitrile, hexafluorobenzene, decafluorobiphenyl, 2,5-diph Fluorobenzophenone, 1,3 bis (4-chlorobenzene) benzene, etc.
  • activated halogen atoms such as fluorine and chlorine
  • the active aromatic dinolide is used in an amount of 2-4 moles, preferably 2.2-2.8 moles, relative to bisphenol.
  • an alkali metal salt of bisphenol Prior to the aromatic nucleophilic substitution reaction, an alkali metal salt of bisphenol may be used.
  • the reaction temperature is 60-300 ° C, preferably in the range 80-250 ° C.
  • the reaction time ranges from 15 minutes to 100 hours, preferably from 1 hour to 24 hours.
  • the most preferable method is to use a chlorofluorocarbon having one halogen atom having a different reactivity as the active aromatic dihalide represented by the following formula, and the fluorine atom preferentially undergoes nucleophilic substitution reaction with phenoxide. As it happens, it is convenient to obtain the desired activated terminal cleft lip.
  • a combination of a nucleophilic substitution reaction and an electrophilic substitution reaction can be used to make the target electron-withdrawing group or electron-donating group flexible.
  • Compound (A) can be obtained by using a method for synthesizing the compound.
  • an aromatic bishalide activated with an electron-withdrawing group for example, bis (4chlorophenol) sulfone is subjected to a nucleophilic substitution reaction with phenol to obtain a bisphenoxy-substituted product.
  • the desired compound can be obtained by performing a Friedel-Craft reaction with, for example, 4-chlorobenzoic acid chloride using this substitution product.
  • the aromatic bishalide activated with the electron-withdrawing group used here the compounds exemplified above can be applied.
  • the phenol compound may be substituted, but from the viewpoint of heat resistance and flexibility, an unsubstituted compound is preferable.
  • the usable alkali metal compound which is preferably an alkali metal salt in the phenol substitution reaction
  • the compounds exemplified above can be used.
  • the amount used is 1.2 to 2 moles per mole of phenol.
  • the polar solvent described above or an azeotropic solvent with water can be used.
  • a bisphenoxy compound is reacted with black benzoic acid chloride as an acylating agent in the presence of an activator for the Friedel-Crafts reaction of Lewis acids such as aluminum chloride, boron trifluoride and zinc chloride.
  • Black-mouth benzoic acid chloride can be used in an amount of 2 to 4 times, preferably 2.2 to 3 times the amount of bisphenoxy compound.
  • the Friedel Crafts activator should be used in an amount equivalent to 1.1 times 1 to 1 mole of active halide compound such as black-mouthed benzoic acid.
  • the reaction time ranges from 15 minutes to 10 hours, and the reaction temperature ranges from -20 to 80 ° C.
  • a solvent inert to Friedel-Crafts reaction for example, black benzene, -trobenzene, etc. can be used.
  • 1 is 2 or more, preferably 2-100.
  • the catalyst system includes (i) a transition metal salt and a compound to be a ligand (hereinafter referred to as “ligand component”), or a transition metal complex in which a ligand is coordinated. (Contain copper salt), and (ii) Add a reducing agent as an essential component and add “salt” to increase the polymerization rate.
  • nickel compounds such as nickel chloride, nickel bromide, nickel iodide, and nickel acetyl acetyltonate; palladium such as palladium chloride, palladium bromide, and iodine palladium Compounds; iron compounds such as salted pig iron, iron bromide and iron iodide; and cobalt compounds such as cobalt chloride, cobalt bromide and cobalt iodide.
  • nickel chloride, nickel bromide and the like are particularly preferable.
  • Examples of the ligand component include triphenylphosphine, 2,2'-biviridine, 1,5-cyclooctadiene, 1,3-bis (diphenylphosphino) propane, and the like. Of these, triphenylphosphine and 2,2′-biviridine are preferable.
  • the compounds as the ligand components can be used alone or in combination of two or more.
  • transition metal complex in which a ligand is coordinated examples include, for example, nickel chloride bis (triphenylphosphine), nickel bromide bis (triphenylphosphine), nickel iodide bis (triphenyl-).
  • Ruphosphine nickel nitrate bis (triphenylphosphine), nickel chloride (2, 2'-biviridine), nickel bromide (2, 2'-biviridine), nickel iodide (2,2'-biviridine), nickel nitrate ( 2,2'-biviridine), bis (1,5-cyclooctagen) nickel, tetrakis (triphenylphosphine) nickel, tetrakis (triphenylphosphite) nickel, tetrakis (triphenylphosphine) palladium, etc. It is done. Of these, nickel chloride bis (triphenylphosphine) and nickel chloride (2,2, monobiviridine) are preferred.
  • Examples of the reducing agent that can be used in the catalyst system include iron, zinc, manganese, aluminum, magnesium, sodium, calcium, and the like. Of these, zinc, magnesium and manganese are preferred. These reducing agents can be used in a more active manner by contacting with an acid such as an organic acid.
  • Examples of the "salt" that can be used in the catalyst system include sodium fluoride, salt Sodium compounds such as sodium iodide, sodium bromide, sodium iodide and sodium sulfate, potassium compounds such as potassium fluoride, potassium chloride, potassium bromide, potassium iodide and potassium sulfate; tetraethylamine fluoride Ammonium compounds such as -um, salt tetramethylammonium bromide, tetraethylammonium bromide, tetraethylammonium iodide, and tetraethylammonium sulfate. . Of these, sodium bromide, sodium iodide, potassium bromide, tetraethylamine bromide and tetraethylamine iodide are preferred.
  • the proportion of each component used is usually from 0.0001 to 10 mol, preferably ⁇ 01 to 0.5 mol, based on 1 mol of the total amount of the above-mentioned monomers of the transition metal salt or transition metal complex. is there.
  • the amount is less than 0.001 mol, the polymerization reaction may not proceed sufficiently.
  • the amount exceeds 10 mol, the molecular weight may decrease.
  • the ratio of the ligand component used is usually 0.1 to 100 mol, preferably 1 mol to 1 mol of the transition metal salt. Is 1 to 10 moles. When the amount is less than 1 mol, the catalytic activity may be insufficient. On the other hand, when the amount exceeds 100 mol, the molecular weight may decrease.
  • the ratio of the reducing agent to be used is usually 0.1-100 mol, preferably 1-10 mol, per 1 mol of the total amount of the above monomers. When the amount is less than 1 mol, polymerization may not proceed sufficiently. When the amount exceeds 100 mol, purification of the resulting polymer may be difficult.
  • the use ratio thereof is usually 0.001 to 100 monole, preferably 0.1 to 1 monole, per 1 mol of the total amount of the above monomers. If it is less than 0.001 monolayer, the effect of increasing the polymerization rate may be insufficient, and if it exceeds 100 mol, purification of the resulting polymer may be difficult.
  • polymerization solvents examples include tetrahydrofuran, cyclohexanone, dimethyl sulfoxide, ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methyl-2-pyrrolidone, ⁇ -butyrolatatone, Examples include sulfolane, ⁇ -butyrolatatum, dimethylimidazolidinone, and tetramethylurea. Of these, tetrahydrofuran, ⁇ , ⁇ -dimethylformamide, ⁇ , ⁇ -dimethylacetamide, and ⁇ -methyl-2-pyrrolidone are preferred. These polymerization solvents are preferably dried sufficiently to use power. [0077] The total concentration of the monomers in the polymerization solvent is usually 190% by weight, preferably 5-40% by weight.
  • the polymerization temperature at the time of polymerization is usually 0 to 200 ° C, preferably 50 to 120 ° C.
  • the polymerization time is usually 0.5 to 100 hours, preferably 140 hours.
  • A is R 5 R 6 5 R2 R 1
  • a 'R 4 R 7 R 8 is R 4
  • the compound (B) has a structural unit represented by the following general formula (4).
  • Examples of the compound (B) include compounds represented by the following formulas.
  • the final polyarylene of the present invention obtained by adjusting the number of carbon atoms of the compound (B), that is, the number of "a” in the general formula (4) is adjusted.
  • the introduction position and introduction amount of the sulfonic acid group can be adjusted.
  • M is a hydrogen atom in the compound (A) (see general formula (3)), N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, diphenol -Add compound (A) to alkali by adding alkali metal, hydrogenated alkali metal, or alkali metal carbonate as necessary in a high dielectric constant solvent such as sulfulone or dimethylsulfoxide. It can be a metal salt.
  • Examples of the alkali metal include lithium, sodium, and potassium.
  • Examples of the alkali metal hydride, alkali metal hydroxide, and alkali metal carbonate include the alkali metal hydride and hydroxide, respectively. And carbonates.
  • the alkali metal is reacted in excess with respect to the sulfonic acid group in the compound (A), and usually 1.1 to 14 equivalents of the sulfonic acid group are used. Preferably, 1.2 to 3 times the equivalent is used.
  • the compound (A) is added to the compound (A) under basic conditions. Then, the oxygen atom or sulfur atom represented by Z causes a nucleophilic substitution reaction on the carbon atom adjacent to the oxygen atom of compound (B), thereby opening compound (B).
  • the alkali reagent used for the compound (A) and the compound (B) and the alkaline reagent is not limited thereto.
  • the compound (C) has a structural unit represented by the following general formula (5).
  • R and a are as defined in the general formula (1), and L is a chlorine atom, a bromine atom, and an iodine atom. Indicates one of the following.
  • Examples of the compound (C) include compounds represented by the following formulas.
  • K, Li or H may be substituted for Na. Also, it can be Br or I instead of C1! /.
  • reaction between the compound (A) and the compound (C) can be carried out by dissolving the compound (A) and the compound (C) in a solvent under basic conditions, for example, as shown in the following formula (13). it can.
  • the polymer solid electrolyte and proton conductive membrane of the present invention also have the polyarylene power of the present invention having a sulfonic acid group.
  • the polyarylene force of the present invention may be used in combination with an inorganic acid such as sulfuric acid and phosphoric acid, an organic acid containing a carboxylic acid, an appropriate amount of water, etc. in addition to the polyarylene of the present invention. Good.
  • the polyarylene of the present invention is dissolved in a solvent to form a solution, and then cast on a substrate by casting to form a film (casting method) or the like. It can be manufactured by forming into a film by using.
  • the substrate is not particularly limited as long as it is a substrate used in an ordinary solution casting method.
  • a substrate made of plastic, metal, or the like is used.
  • a polyethylene terephthalate (PET) film or the like is used.
  • a substrate made of thermoplastic resin is used.
  • Solvents for dissolving the polyarylene of the present invention include, for example, N-methyl-2-pyrrolidone, ⁇ , ⁇ -dimethylformamide, ⁇ I butyrolatatane, ⁇ , ⁇ -dimethylacetamide, dimethyl sulphoxide, dimethylurea, dimethyl
  • Examples include aprotic polar solvents such as imidazolidinone, and ⁇ -methyl-2-pyrrolidone (hereinafter also referred to as “ ⁇ ”) is particularly preferable from the viewpoint of solubility and solution viscosity.
  • the aprotic polar solvent can be used alone or in combination of two or more.
  • a solvent for dissolving the polyarylene of the present invention a mixture of the above aprotic polar solvent and alcohol can also be used.
  • alcohols include methanol, ethanol, propinoreanolol, iso-propinoreanoreconole, sec-butinorenorecol
  • methanol is preferable because it has an effect of lowering the solution viscosity in a wide composition range.
  • Alcohol can be used alone or in combination of two or more.
  • Hipu port tons polar solvent is 95- 25 weight 0/0, preferably 90- 25 weight 0/0, the alcohol is 5 -7 5% by weight, preferably 10-75% by weight (however, the total is 100% by weight).
  • the amount of alcohol is within the above range, the effect of lowering the solution viscosity is excellent.
  • the polymer concentration of the solution in which the polyarylene of the present invention is dissolved is usually 5 to 40% by weight, preferably 7 to 25% by weight, although it depends on the molecular weight of the polyarylene. If it is less than 5% by weight, it is difficult to increase the film thickness, and pinholes are easily generated. On the other hand, if it exceeds 40% by weight, the solution viscosity is too high to form a film, and the surface smoothness may be lacking.
  • the viscosity of the solution is usually 2,000 to 100,000 mPa, s, preferably ⁇ 3,000 to 50,000 mPa, s fe, although it depends on the molecular weight and polymer concentration of the polyarylene of the present invention. If it is less than 2,000 mPa's, the substrate strength may flow due to poor retention of the solution during film formation. On the other hand, if it exceeds 100,000 mPa ⁇ s, the viscosity is too high to be extruded from the die, making it difficult to form a film by the casting method.
  • the undried film may be pre-dried before immersing the undried film in water. Pre-drying is performed by holding the undried film at a temperature of typically 50-150 ° C for 0.1-10 hours.
  • the undried film is immersed in water
  • a batch method in which a single wafer is immersed in water may be used, or a laminated film in a state of being formed on a substrate film (eg, PET) that is usually obtained. It is also possible to apply a continuous method in which a film separated from the substrate force is immersed in water and wound.
  • the contact ratio of water is 10 parts by weight or more, preferably 30 parts by weight or more with respect to 1 part by weight of the undried film.
  • the contact ratio of water is 10 parts by weight or more, preferably 30 parts by weight or more with respect to 1 part by weight of the undried film.
  • the temperature of the water when the undried film is immersed in water is preferably in the range of 5-80 ° C
  • the immersion time depends on the initial residual solvent amount, contact ratio, and treatment temperature, it is usually in the range of 10 minutes to 240 hours. The range is preferably from 30 minutes to 100 hours.
  • the amount of residual solvent in the resulting proton conducting membrane can be 1 wt% or less.
  • Such conditions include, for example, the contact ratio between the undried film and water.
  • the film After immersing the undried film in water as described above, the film is 30-30 ° C, preferably
  • the proton conducting membrane of the present invention can be obtained by vacuum drying for 0.5 to 24 hours under a reduced pressure of preferably 500 mmHg-0.ImmHg.
  • the proton conductive membrane of the present invention obtained by the above production method usually has a dry film thickness of 10 1 to 100 ⁇ m, preferably 20 to 80 ⁇ m.
  • the proton conducting membrane of the present invention is an anti-aging agent, preferably a hindered membrane having a molecular weight of 500 or more.
  • an anti-aging agent that may contain an enolic compound, durability as a proton conductive membrane can be further improved.
  • a hindered phenol compound having a molecular weight of 500 or more that can be used in the present invention triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenol) proonate] (trade name: IRGANOX 245), 1,6-Hexanediol bis [3- (3,5-Di-tert-butyl-4-hydroxyphenol) propionate] (trade name: IRGANOX 259), 2,4 bis- (n-year-old cutylthio) — 6— (4-Hydroxy-3,5-di-tert-butyla-lino) — 3,5-— Triazine (trade name: IRGANOX 565), Pentaerythrityl-tetrakis [3 -— (3,5-Di-tert-butyl 4-hydroxyphenol) -L) propionate] (trade name: IRGANOX 1010), 2,2-diethyleneethylene [3— (3,
  • the hindered phenol compound having a molecular weight of 500 or more is preferably used in an amount of 0.01 to 10 parts by weight based on 100 parts by weight of the polyarylene.
  • the proton conductive membrane of the present invention is used for, for example, an electrolyte for a primary battery, an electrolyte for a secondary battery, a solid polymer electrolyte for a fuel cell, a display element, various sensors, a signal transmission medium, a solid capacitor, an ion exchange membrane, and the like. It can be used for a proton conductive conductive membrane.
  • the polymer film (film sample) used for various measurements is a film having a thickness of 40 ⁇ m.
  • This film is a sulfonic acid group obtained in each example.
  • the polyarylene having a water content was dissolved in N-methylpyrrolidone at a concentration of 18%, it was produced by a casting method.
  • the obtained polyarylene was washed with distilled water until the washing water became neutral, sufficiently washed with water except for the remaining free acid, and then dried. After that, weigh out the prescribed amount, dissolve in THF / water mixed solvent, perform titration with NaOH standard solution using phenolphthalein as an indicator, and the equivalent of sulfonic acid groups (ion exchange capacity) from the neutralization point. (MeqZg).
  • the impedance was measured at AC 10kHz in an environment of 85 ° C and relative humidity 90%.
  • a chemical impedance measurement system manufactured by NF Circuit Design Block Co., Ltd. was used as the resistance measurement device, and JW241 manufactured by Yamato Kagaku Co., Ltd. was used as the temperature and humidity control device.
  • Five platinum wires were pressed at intervals of 5 mm, and the AC resistance was measured by changing the distance between the wires to 5-20 mm.
  • the specific resistance of the membrane was calculated from the line-to-line distance and the resistance gradient, the AC impedance was calculated from the reciprocal of the specific resistance, and the Proton conductivity was determined from this impedance.
  • the temperature at which decomposition of the sulfonated polyarylene started from TGA was defined as the thermal decomposition start temperature (° C).
  • the weight average molecular weight and number average molecular weight of the polyarylene of this example are the molecular weights in terms of polystyrene measured by GPC using tetrahydrofuran (THF) as a solvent.
  • DMAc N-dimethylacetamide
  • FIG. 3 shows the 1 H—N MR spectrum. From the 1 H-NMR ⁇ vector shown in Fig. 3, it was confirmed that this solid had a tetrahydro-2-biral group, and the structure was estimated to be the compound (A, -l). The number average molecular weight determined by GPC for this solid was 28,000, The average molecular weight was 103,000.
  • Example 2 Except that butane sultone (B-2) 18. lg (133 mmol) was used, and the reaction was carried out in the same manner as in Example 1 to obtain a polyarylene having a powdered sulfonic acid group (compound (2)) 20 Obtained 8g. Further, the step (III) in Example 2 is represented by the following formula (18). In the formula (18), d, e, and f are positive integers. [0148] [Chemical 32]
  • 1,3-Dimethoxybenzene 33.2 g (240 mmol) and dichloromethane 300 mL were placed in a 2 L three-necked flask equipped with a stirrer, nitrogen inlet tube and dropping funnel, cooled to 10 ° C in an ice bath, and then salted. 32 g (240 mmol) of aluminum was added. Next, 50.3 g (240 mmol) of 2,5-dichlorodibenzoic acid chloride was slowly dropped from the dropping funnel. After completion of the dropwise addition, 32 g (240 mmol) of aluminum chloride-um was added. Thereafter, the temperature was returned to room temperature and stirring was continued for 12 hours.
  • reaction solution was poured into 2 L of ice water containing 300 mL of concentrated hydrochloric acid, and the separated organic layer was 10% Extracted with aqueous sodium hydroxide solution.
  • aqueous layer was neutralized with hydrochloric acid, and the precipitated solid was extracted with 2 L of ethyl acetate.
  • the solvent was distilled off, and the resulting solid was recrystallized with ethyl acetate: n-hexane, and 150 g (yield 88%) of 2,5-dichloro-4, -hydrothiobenzophenone (compound ( A, I obtained 3)).
  • step (II) in Example 4 is represented by the following formula (23).
  • Equation (23) d, e, and f are positive integers.
  • Example 4 the step (III) in Example 4 is represented by the following formula (24).
  • d, e, and f are positive integers.
  • Table 1 shows the characteristics of the polyarylenes of the present invention obtained in Examples 1-14.

Abstract

 本発明のポリアリーレンは、下記一般式(1)で表される構成単位を含む。   【化1】  〔式中、X,Yは2価の有機基または直接結合を示し、Zは酸素原子または硫黄原子を示し、Rは水素原子、フッ素原子、アルキル基、およびフッ素置換アルキル基からなる群より選ばれる少なくとも1種の原子または基を示し、aは1~20の整数、nは1~5の整数、pは0~10の整数を示す。〕

Description

明 細 書
ポリアリーレンおよびその製造方法、ならびに高分子固体電解質および プロトン伝導膜
技術分野
[0001] 本発明は、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高 分子固体電解質およびプロトン伝導膜に関する。
背景技術
[0002] 電解質は、通常、(水)溶液で用いられることが多 、。しかし近年、これを固体系に 置き換えていく傾向が高まっている。その第 1の理由としては、例えば、上記の電気' 電子材料に応用する場合のプロセッシングの容易さであり、第 2の理由としては、軽 薄短小'省力化への移行である。従来、プロトン伝導性材料としては、無機物からな るもの、有機物力もなるものの両方が知られている。無機物の例としては、例えば水 和化合物であるリン酸ゥラニルが挙げられるが、これら無機化合物は界面での接触が 十分でなく、伝導層を基板ある ヽは電極上に形成するには問題が多!ヽ。
[0003] 一方、有機化合物の例としては、いわゆる陽イオン交換樹脂に属するポリマー、例 えばポリスチレンスルホン酸などのビュル系ポリマーのスルホン化物、ナフイオン(デ ュポン社製)を代表とするパーフルォロアルキルスルホン酸ポリマー、パーフルォロア ルキルカルボン酸ポリマーや、ポリべンズイミダゾールゃポリエーテルエーテルケトン などの耐熱性高分子にスルホン酸基やリン酸基を導入したポリマー(例えば、ポリマ 一 プレプリンツ ジヤノ ン, 1993年,第 42卷,第 7号, p. 2490-2492 (Polymer Preprints, Japan, 2490-2942, Vol.42, No.7, 1993)、ポリマー プレプリンツ ジャパン , 1994年,第 43卷,第 3号, p. 735-736 (Polymer Preprints, Japan, 735-736, Vol.43, No.3, 1994)、及びポリマー プレプリンツ ジャパン, 1993年,第 42卷,第 3 号, p. 730 (Polymer Preprints, Japan, 730, Vol.42, No.3, 1993)参照)などの有機系 ポリマーが挙げられる。
[0004] これら有機系ポリマーは、通常、フィルム状で用いられる力 溶媒に可溶性であるこ と、または熱可塑性であることを利用して、電極上に伝導膜を接合加工できるのが特 徴である。しかしながら、これら有機系ポリマーの多くは、プロトン伝導性がまだ十分 でないうえに、耐久性が十分ではないため、高温(100°C以上)でプロトン伝導性が 低下してしまう点、力学的性質 (特に弾性率)が大きく低下する点、湿度条件下での 依存性が大きい点、電極との密着性が十分満足いくものとはいえない点、含水ポリマ 一構造に起因する稼動中の過度の膨潤による強度の低下や形状の崩壊に至る点な どの問題がある。したがってこれらの有機系ポリマーは、上記の電気'電子材料など に応用するには種々問題がある。
[0005] さらに、米国特許第 5, 403, 675号明細書では、スルホン化された剛直ポリフエ- レンからなる固体高分子電解質が提案されている。このポリマーはフエ-レン連鎖か らなる芳香族化合物を重合して得られるポリマー (米国特許第 5, 403, 675号の明 細書カラム 9記載の構造)を主成分とし、これをスルホン化剤と反応させてスルホン酸 基を導入している。し力しながら、スルホン酸基の導入量の増加によって、プロトン伝 導度も向上するものの、同時に得られるスルホンィ匕ポリマーの機械的性質、例えば破 断伸び、耐折曲げ性等の靭性ゃ耐熱水性は著しく損なわれる。
発明の開示
[0006] 本発明は上記のような従来技術における問題点を解決するものであって、脂肪族ス ルホン酸基を有することにより、広範囲の温度 ·湿度領域にわたって高いプロトン伝 導性を有するとともに、耐熱水性およびィ匕学的安定性に優れたプロトン伝導膜が得ら れるポリアリーレン系の共重合体およびその製造方法、ならびにこの共重合体力 な るプロトン伝導膜を提供する。
[0007] 本発明のポリアリーレンは、下記一般式(1)で表される構成単位を含む。
[0008] [化 1]
Figure imgf000003_0001
〔式中、 X, Yは 2価の有機基または直接結合を示し、 Zは酸素原子または硫黄原子 を示し、 Rは水素原子、フッ素原子、アルキル基、およびフッ素置換アルキル基から なる群より選ばれる少なくとも 1種の原子または基を示し、 aは 1一 20の整数、 nは 1一 5の整数、 pは 0— 10の整数を示す。〕
ここで、上記ポリアリーレンにおいて、上記一般式(1)で表される構成単位 0. 5— 1 00モル%と、下記一般式(2)で表される構成単位 0— 99. 5モル%とを含むことがで きる。
[0009] [化 2]
Figure imgf000004_0001
〔式中、 R1— R8は互いに同一でも異なっていてもよぐ水素原子、フッ素原子、アル キル基、フッ素置換アルキル基、ァリル基およびァリール基力 なる群より選ばれる少 なくとも 1種の原子または基を示し、 Wは 2価の電子吸引性基を示し、 Tは 2価の有機 基を示し、 mは 0または正の整数を示す。〕
本発明のポリアリーレンの製造方法は、下記一般式 (3)で表される構造単位を含む 化合物 (A)と、下記一般式 (4)で表される化合物 (B)または下記一般式 (5)で表さ れる化合物 (C)とを反応させることを含む。
[0010]
Figure imgf000004_0002
〔式中、 X, Y, Z, n, pは上記一般式(1)における定義の通りであり、 Mは水素原子 またはアルカリ金属原子を示す。〕
[0011] [化 4]
Figure imgf000004_0003
〔式中、 R, aは上記一般式(1)における定義の通りである。〕 [0012] [化 5]
L-(CR2)a-S03M ( 5 )
〔式中、 R, aは上記一般式(1)における定義の通りであり、 Mは上記一般式(3)に おける定義の通りであり、 Lは塩素原子、臭素原子、およびヨウ素原子のいずれかを 示す。〕
ここで、上記ポリアリーレンの製造方法において、上記化合物 (A)は、上記一般式( 2)で表される構造単位をさらに含むことができる。
[0013] 本発明の高分子固体電解質は上記ポリアリーレンを含む。また、本発明のプロトン 伝導膜は上記ポリアリーレンを含む。
[0014] 本発明のポリアリーレンによれば、脂肪族スルホン酸基を有することにより、広範囲 の温度 ·湿度領域にわたって高いプロトン伝導性を有するとともに、耐熱水性および 化学的安定性に優れたプロトン伝導膜が得られるポリアリーレン系の共重合体およ びその製造方法、ならびにこの共重合体力 なるプロトン伝導膜を提供することがで きる。
[0015] また、本発明によれば、多量のスルホン化剤を使用することなくスルホン酸基を導 入することができる。さらに、本発明のポリアリーレンを回収する際の処理の負荷が小 さい。さらに、本発明によれば、スルホン酸基の導入位置および導入量を制御するこ とが容易である。よって、本発明のポリアリーレンは、固体電解質または伝導膜として 、プロトン伝導性が良好に調整されている。
[0016] したがって、本発明の高分子固体電解質によれば、例えば燃料電池用の高分子固 体電解質として利用可能である。また、本発明のプロトン伝導膜は、一次電池用電解 質、二次電池用電解質、燃料電池用高分子固体電解質、表示素子、各種センサ、 信号伝達媒体、固体コンデンサ、イオン交換膜などの伝導膜として利用可能であり、 この工業的意義は極めて大である。
図面の簡単な説明
[0017] [図 1]実施例 1で得られた化合物(A '— 1)の1 H— NMR ^ベクトルである。
[図 2]実施例 1で得られた化合物(A— 1)の1 H— NMR ^ベクトルである。 [図 3]実施例 1で得られた化合物(Α' 1)の1 Η— NMR ^ベクトルである。
[図 4]実施例 1で得られた化合物(Α 1)の1 Η— NMR ^ベクトルである。
[図 5]実施例 1で得られた化合物(1)の1 Η— NMRスペクトルである。
発明を実施するための最良の形態
[0018] [発明の具体的説明]
以下、本発明のポリアリーレンおよびその製造方法、ならびに高分子固体電解質お よびプロトン伝導膜について、具体的に説明する。
[0019] 1.ポリアリーレン
本発明のポリアリーレンは、下記一般式(1)で表される構造単位を含む。
[0020] [化 6]
Figure imgf000006_0001
式中、 X, Υは 2価の有機基または直接結合を示し、例えば- CO-、
(CF )—(ここで、 qは 1一 10の整数である)、 C (CF ) COO—、
2 q 3 2
一などの電子吸引性基、
— O S CH = CH C≡C一お び下記式
[0021] [化 7]
Figure imgf000006_0002
で表される基などの電子供与性基などが挙げられる。
[0022] Xとしては、本発明のポリアリーレンの製造時の重合活性が高いという点から、電子 吸引性基が好ましぐ特に CO SO—が好ましい。一方、 Yは、電子吸引性であ
2
つてもなくてもよい。
[0023] なお、電子吸引性基とは、ノ、メット(Hammett)置換基常数がフエ-ル基の m位の場 合、 0. 06以上、 p位の場合、 0. 01以上の値となる基をいう。
[0024] Zは酸素原子または硫黄原子を示す。 [0025] Rは水素原子、フッ素原子、アルキル基、およびフッ素置換アルキル基力 なる群よ り選ばれる少なくとも 1種の原子または基を示す。アルキル基としては、メチル基、ェ チル基、プロピル基、ブチル基、アミル基、へキシル基などが挙げられ、メチル基、ェ チル基などが好ましい。フッ素置換アルキル基としては、トリフルォロメチル基、パー フルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基、パーフルォロ ペンチル基、パーフルォ口へキシル基などが挙げられ、トリフルォロメチル基、ペンタ フルォロェチル基などが好まし 、。
[0026] aは 1一 20の整数、 nは 1一 5の整数、 pは 0— 10の整数を示す。
[0027] 本発明のポリアリーレンはさらに、上記一般式(1)で表される構成単位 0. 5— 100 モル0 /0と、下記一般式(2)で表される構成単位 0— 99. 5モル%とを含むことができる
[0028]
Figure imgf000007_0001
上記一般式(2)中、 R1— R8は互いに同一でも異なっていてもよぐ水素原子、フッ 素原子、アルキル基、フッ素置換アルキル基、ァリル基およびァリール基力 なる群 より選ばれる少なくとも 1種の原子または基を示す。ここで、アルキル基およびフッ素 置換アルキル基としては、上記一般式(1)において Rに用いるアルキル基およびフッ 素置換アルキル基として例示したものを用いることができる。ァリル基としては、プロべ -ル基などが挙げられ、ァリール基としては、フエ-ル基、ペンタフルオロフヱ-ル基 などが挙げられる。
[0029] Wは 2価の電子吸引性基を示し、電子吸引性基としては、例えば CO CONH
(CF ) (ここで、 qは 1一 10の整数である) O SO
2 q 、 C (CF ) CO
3 2
SO一などが挙げられる。
2
[0030] Tは 2価の有機基であって、電子吸引性基であっても電子供与性基であってもよい 。電子吸引性基としては、前述の Wとして例示した基を用いることができる。電子供与 '性基としては、 f列えば O S CH = CH C≡C一および下記式 [化 9]
Figure imgf000008_0001
で表される基などが挙げられる。
[0031] mは 0または正の整数であり、上限は通常 100、好ましくは 80である。
[0032] 本発明のポリアリーレンの分子量は、ゲルパーミエシヨンクロマトグラフィ(GPC)によ るポリスチレン換算重量平均分子量で、 1万一 100万、好ましくは 2万一 80万であり、 GPCによるポリスチレン換算数平均分子量で、 0. 5— 20万、好ましくは 1一 16万で ある。 1万未満では、成型フィルムにクラックが発生するなど、塗膜性が不充分であり 、また強度的性質も問題がある。一方、 100万を超えると、溶解性が不十分となり、ま た溶液粘度が高ぐ加工性が不良になるなどの問題がある。
[0033] 本発明のポリアリーレン中のスルホン酸基量は 0. 5— 3meqZg、好ましくは 0. 8— 2. 8meqZgである。 0. 5meqZg未満ではプロトン伝導性が上がらないことがあり、 一方、 3meqZgを超えると親水性が向上して、水溶性ポリマー、もしくは、水溶性で なくとも熱水に可溶となってしまうか、また水溶性に至らずとも耐久性が低下すること がある。
[0034] 本発明のポリアリーレンの構造は、例えば、赤外線吸収スペクトルによって、 1, 030 一 1, 045cm—丄、 1, 160— 1, 190cm— 1の S = 0吸収、 1, 130— 1, 250cm— 1の C— O-C吸収、 1, 640— 1, 660cm— 1の C = 0吸収などにより確認でき、これらの組成比 は、スルホン酸の中和滴定ゃ元素分析などにより知ることができる。また、核磁気共 鳴スペクトル (^H— NMR)により、 6. 8—8. Oppmの芳香族プロトンのピークから、そ の構造を確認することができる。
[0035] 2.ポリアリーレンの製造方法
本発明のポリアリーレンは、化合物 (A)と、化合物 (B)または化合物 (C)とを反応さ せることにより製造される。以下、本発明のポリアリーレンを製造するために用いられ る化合物 (A)、化合物 (B)および化合物 (C)につ 、て、順に説明する。 [0036] 2. 1.化合物 (A)
化合物 (A)は、下記一般式 (3)で表される構造単位を有する。
[0037] [化 10]
Figure imgf000009_0001
上記一般式(3)中、 X, Y, Z, n, pは上記一般式(1)における定義の通りであり、 M は水素原子またはアルカリ金属原子を示す。
[0038] Mが示すアルカリ金属原子としては、ナトリウム、カリウム、リチウムなどが挙げられる
[0039] また、化合物 (A)はさらに、上記一般式 (2)で表される構造単位を含むことができる 。より具体的には、化合物 (A)は、下記一般式 (6)で表される少なくとも 1種の化合物 (A )をモノマーとして単独で重合する力、あるいは下記一般式 (6)で表される少なく とも 1種の化合物 (A )と、他の芳香族化合物 (好ましくは下記一般式 (7)で表される 少なくとも 1種の化合物 (A;) )とをそれぞれモノマーとして共重合することにより得るこ
2
とができる。具体的には、後述する式(10)に示すように、化合物 (A )中の R9 (下記 一般式 (6)参照)が炭化水素基である場合、化合物 (A ) (または、化合物 (A )およ び化合物 (A )その他の芳香族化合物)を重合させて化合物 (Α' )を得た後、 R9で示
2
される炭化水素基を除去することにより、化合物 (Α)を得ることができる。
[0040] [化 11]
Figure imgf000009_0002
化合物( A, ) [0041] [化 12]
Figure imgf000010_0001
…… ( 7 )
化合物( A2 ) 上記一般式 (6)中、 X, Υ, Ζ, η, ρは上記一般式(1)における定義の通りであり、 A および A'は互いに同一でも異なっていてもよぐフッ素原子を除くハロゲン原子 (塩 素、臭素、ヨウ素)または oso 2 Q (ここで、 Qはアルキル基、フッ素置換アルキル基
、またはァリール基を示す。)で表される基を示す。
[0042] Qが示すアルキル基としてはメチル基、ェチル基などが挙げられ、フッ素置換アル キル基としてはトリフルォロメチル基などが挙げられ、ァリール基としてはフエ-ル基、 p—トリル基などが挙げられる。
[0043] R9は水素原子、または炭素原子数 1一 20の炭化水素基を示す。炭化水素基として は、具体的には、メチル基、ェチル基、 n-プロピル基、 iso-プロピル基、 tert-ブチル 基、 iso-ブチル基、 n-ブチル基、 sec-ブチル基、ネオペンチル基、シクロペンチル基 、へキシル基、シクロへキシル基、シクロペンチルメチル基、シクロへキシルメチル基 、ァダマンチル基、ァダマンチルメチル基、 2—ェチルへキシル基、ビシクロ [2. 2. 1] ヘプチル基、ビシクロ [2. 2. 1]ヘプチルメチル基、テトラヒドロフルフリル基、 2—メチ ルブチル基、 3, 3 ジメチルー 2, 4—ジォキソランメチル基などの直鎖状炭化水素基、 分岐状炭化水素基、脂環式炭化水素基、 5員の複素環を有する炭化水素基などが 挙げられる。また、炭化水素基は酸素原子や窒素原子、硫黄原子を含んでいてもよ い。酸素原子を含む炭化水素基としては、例えば、テトラヒドロー 2—ビラ二ル基、メトキ シメチル基、エトキシェチル基、プロポキシメチル基が例示できる。これらのうち、テト ラヒドロ— 2-ビラニル基、メトキシメチル基が好まし 、。
[0044] また、上記一般式(7)中、 R1— R8, W, T, mは上記一般式(2)における定義の通り であり、 Bおよび B'は互いに同一でも異なっていてもよぐフッ素原子を除くハロゲン 原子または—OSO Q (ここで、 Qはアルキル基、フッ素置換アルキル基またはァリー ル基を示す。)で表される基を示す。 Qとしては、上記一般式 (6)で例示した基が挙 げられる。
[0045] 次に、化合物 (A )およびィ匕合物 (A )についてそれぞれ説明する。
1 2
[0046] 2. 1. 1.化合物 (A )
化合物 (A )は、例えば以下のような方法で合成することができる。なお、ここでは、 出発物質 (化合物 (I) )として芳香族酸ハロゲンィ匕合物を用い、この芳香族酸ハロゲ ン化合物にァ-ソールを反応させて得られたィ匕合物 (A ')がヒドロキシル基を含み、 このヒドロキシル基の保護基がテトラヒドロ一 2—ビラ-ル基である場合を示したが、ィ匕 合物 (A ')、反応物質および前記保護基はこれらに限定されるわけではない。例え ば、ァ-ソールのかわりに、芳香族酸ハロゲンィ匕合物に他の反応物質 (例えば、 1, 4 ージメトキシベンゼン、 1, 3—ジメトキシベンゼン、 1, 2—ジメトキシベンゼン、 1, 2, 3— トリメトキシベンゼンゃメチルチオベンゼン)を反応させることができる。
[0047] [化 13]
Figure imgf000011_0001
化合物( I ) 化合物( A ' ) 化合物( A, )
…… ( 8 )
[0048] (i)フリーテル クラフツァシル化(Friedd- Crafts acylation)
例えば、ァ-ソ一ルのジクロロメタン溶液に、氷浴下 (一 10°C)で塩ィ匕アルミニウムを 加えた後、化合物 (I)を滴下して、室温で 1一 12時間攪拌させる。次いで、濃塩酸を 含む氷水に反応液を注ぎ、分離した有機層を 10%水酸ィ匕ナトリウム水溶液で抽出し た後、水層を塩酸で中和することにより析出した固体を有機溶媒 (例えば酢酸ェチル )で抽出した後、この抽出液を濃縮後、必要に応じて再結晶することにより、ァシル基 およびヒドロキシル基を含む化合物 (A ')が得られる。なお、上記工程において、ァ 二ノールのかわりにメチルチオベンゼンを用いる場合、化合物(A ')はチオール基を 有する。
[0049] 化合物 (Α )にお 、て、芳香環上のヒドロキシル基 (またはチオール基)の置換位 置および置換数を調整することにより、最終的に得られる本発明のポリアリーレンに おいて、スルホン酸基の導入位置および導入量を制御することができる。すなわち、 本工程 (フリーデルークラフツァシルイ匕反応)において、所定位置が OR基または SR 基 (例えば、 R=水素原子、またはメチル基、ェチル基、 t ブチル基のアルキル基等 )で置換されたベンゼンを用いることにより、最終的に得られる本発明のポリアリーレ ンにおけるスルホン酸基の導入位置および導入量を制御することができる。
[0050] (ii)保護基の導入
例えば、化合物(A ')と、 1一 20倍モル量の 2H—ジヒドロピランとを、酸触媒(例え ば陽イオン交換榭脂)の存在下でトルエンに溶解させて、室温で 1一 24時間攪拌さ せる。次いで、酸触媒を除去した後、トルエン溶液を濃縮後、必要に応じて再結晶す ることにより、保護基としてテトラヒドロ一 2—ビラニル基が導入されたィ匕合物 (へ)が得 られる。なお、上記工程において、ァ-ノールのかわりにメチルチオベンゼンを用い る場合、テトラヒドロ— 2-ビラニル基はチオールの保護基として機能する。
[0051] 上記一般式 (6)で表される化合物 (A )としては、例えば、以下のような化合物が挙 げられる。
[0052] [化 14]
Figure imgf000013_0001
上記一般式 (6)で表される化合物 (へ)として、例えば、上記化合物において塩素 原子が臭素原子またはヨウ素原子に置き換わったィ匕合物、上記化合物において C O—が SO—に置き換わったィ匕合物、上記化合物において塩素原子が臭素原子ま
2
たはヨウ素原子に置き換わり、かつ CO—が SO—に置き換わったィ匕合物なども挙
2
げられる。
[0053] 2. 1. 2.化合物(A )
2
上記一般式(7)で表される化合物 (A )としては、具体的には、 m=0の場合、例え
2
ば 4,4'ージクロ口べンゾフエノン、 4,4'ージクロ口ベンズァ-リド、ビス(クロ口フエ-ル) ジフルォロメタン、 2, 2 ビス(4 クロ口フエ-ル)へキサフルォロプロパン、 4—クロ口安 息香酸 4 クロ口フエ-ル、ビス(4 クロ口フエ-ル)スルホキシド、ビス(4 クロ口フエ -ル)スルホン、これらの化合物において塩素原子が臭素原子またはヨウ素原子に置 き換わったィ匕合物、さらにこれらの化合物において 4位に置換したハロゲン原子の少 なくとも 1つ以上が 3位に置換したィ匕合物などが挙げられる。
[0054] また m= 1の場合、上記一般式(7)で表される具体的な化合物 (A )には、例えば 4
2
,4' ビス(4 クロ口べンゾィル)ジフエ-ルエーテル、 4,4' ビス(4—クロ口べンゾィノレ ァミノ)ジフエ-ルエーテル、 4,4' ビス(4 クロ口フエ-ルスルホ -ル)ジフエ-ルエー テル、 4,4' ビス(4 クロ口フエ-ル)ジフエ-ルエーテルジカルボキシレート、 4,4' ビス〔(4 クロ口フエ-ル)—1,1,1 , 3, 3, 3—へキサフノレオ口プロピル〕ジフエ-ノレエーテ ル、 4,4' ビス〔(4—クロ口フエ-ル)—1,1,1 , 3, 3, 3—へキサフルォロプロピル〕ジフエ- ルエーテル、 4,4' ビス〔(4 クロ口フエ-ル)テトラフルォロェチル〕ジフエ-ルエーテ ル、これらの化合物において塩素原子が臭素原子またはヨウ素原子に置き換わった 化合物、さらにこれらの化合物において 4位に置換したハロゲン原子が 3位に置換し た化合物、さらにこれらの化合物においてジフエ-ルエーテルの 4位に置換した基の 少なくとも 1つが 3位に置換したィ匕合物などが挙げられる。
さらに上記一般式(7)で表される化合物 (A )としては、 2,2 ビス [4 {4 (4 クロ
2
口べンゾィル)フエノキシ }フエ-ル]— 1 , 1 , 1 , 3, 3, 3—へキサフルォロプロパン、ビス [4 {4ー(4 クロ口べンゾィル)フエノキシ }フエ-ル]スルホン、および下記式で表される 化合物が挙げられる。
[0056] [化 15]
Figure imgf000015_0001
B- -SO2-0-O- SO2- -O- SO2-0-B'
Figure imgf000015_0002
B- SO2- -O- -CO- -O- -CO- -O- SO2- -B'
B- -SO2- -O- SO2- -O- SO2- -O- SO2- -B'
CF3
B-0-SO2-^O- -i- -O-0-SO2- -O- -SO2- -B'
CF3
B- -CO- -O- -CO-0-O- -CO- -O^-CO- -B' 上記一般式(7)で表される化合物 (A )は、例えば以下に示す方法で合成すること
2
ができる。
[0057] まず、電子吸引性基で連結されたビスフエノールを、対応するビスフエノールのアル カリ金属塩とするために、 N—メチルー 2—ピロリドン、 N, N—ジメチルァセトアミド、スル ホラン、ジフヱ-ルスルホン、ジメチルスルホキサイドなどの誘電率の高い極性溶媒中 でリチウム、ナトリウム、カリウムなどのアルカリ金属、水素化アルカリ金属、水酸化ァ ルカリ金属、アルカリ金属炭酸塩などをカ卩える。
[0058] 通常、アルカリ金属はフエノールのヒドロキシル基に対して過剰気味で反応させ、通 常、 1.1一 2倍当量を使用する。好ましくは、 1.2—1.5倍当量の使用である。この 際、ベンゼン、トルエン、キシレン、へキサン、シクロへキサン、オクタン、クロ口べンゼ ン、ジォキサン、テトラヒドロフラン、ァ-ソール、フエネトールなどの水と共沸する溶媒 を共存させて、電子吸引性基で活性化されたフッ素、塩素等のハロゲン原子で置換 された芳香族ジハライド化合物、例えば、 4,4'ージフルォロベンゾフエノン、 4,4'ージク ロロべンゾフエノン、 4,4'ークロロフノレォロベンゾフエノン、ビス(4—クロ口フエ-ノレ)スノレ ホン、ビス(4ーフノレオロフェ-ノレ)スノレホン、 4ーフノレオロフェ-ノレ 4' クロ口フエ-ノレ スノレホン、ビス(3—二トロー 4 クロ口フエ-ル)スルホン、 2, 6—ジクロ口べンゾ-トリル、 2, 6—ジフルォロベンゾニトリル、へキサフルォロベンゼン、デカフルォロビフエニル、 2, 5—ジフルォロベンゾフエノン、 1,3 ビス(4 クロ口べンゾィル)ベンゼンなどを反応 させる。反応性力 言えば、フッ素化合物が好ましいが、次の芳香族カップリング反 応を考慮した場合、末端が塩素原子となるように芳香族求核置換反応を組み立てる 必要がある。活性芳香族ジノヽライドはビスフエノールに対し、 2— 4倍モル、好ましくは 2. 2-2. 8倍モルの使用である。芳香族求核置換反応の前に予め、ビスフエノール のアルカリ金属塩としていてもよい。反応温度は 60— 300°Cで、好ましくは 80— 250 °Cの範囲である。反応時間は 15分一 100時間、好ましくは 1時間一 24時間の範囲で ある。最も好ましい方法としては、下記式で示される活性芳香族ジハライドとして反応 性の異なるハロゲン原子を一個づっ有するクロ口フルォロ体を用いることであり、フッ 素原子が優先してフエノキシドと求核置換反応が起きるので、目的の活性化された末 端クロ口体を得るのに好都合である。
[化 16]
Figure imgf000016_0001
( 9 )
(式中、 Wは上記一般式(2)における定義の通りである。 )
または、特開平 2— 159号公報に記載されているように、求核置換反応と親電子置 換反応とを組み合わせて、目的の電子吸引性基、電子供与性基からなる屈曲性化 合物を合成する方法を用いることにより、化合物 (A )を得ることができる。
2
[0060] 具体的には、電子吸引性基で活性化された芳香族ビスハライド、例えば、ビス (4 クロロフヱ-ル)スルホンをフエノールと求核置換反応させてビスフエノキシ置換体とす る。次いで、この置換体を用いて、例えば、 4 クロ口安息香酸クロリドとのフリーデルク ラフッ反応を行なうことにより、 目的の化合物を得ることができる。ここで使用される電 子吸引性基で活性化された芳香族ビスハライドとしては、上記の例示した化合物が 適用できる。フエノールイ匕合物は置換されていてもよいが、耐熱性や屈曲性の観点 から、無置換ィ匕合物が好ましい。なお、フエノールの置換反応にはアルカリ金属塩と するのが好ましぐ使用可能なアルカリ金属化合物としては、上記に例示したィ匕合物 を使用できる。使用量は、フヱノール 1モルに対し、 1. 2— 2倍モルである。反応に際 し、上述した極性溶媒や水との共沸溶媒を用いることができる。ビスフエノキシ化合物 に対して、塩化アルミニウム、三フッ化ホウ素、塩化亜鉛などのルイス酸のフリーデル クラフツ反応の活性化剤存在下で、ァシル化剤としてクロ口安息香酸クロライドを反応 させる。クロ口安息香酸クロライドはビスフエノキシィ匕合物に対し、 2— 4倍モル、好まし くは 2. 2— 3倍モル使用することができる。フリーデルクラフツ活性化剤は、ァシルイ匕 剤のクロ口安息香酸などの活性ハライド化合物 1モルに対し、 1. 1一 2倍当量使用す る。反応時間は 15分一 10時間の範囲で、反応温度は -20— 80°Cの範囲である。使 用溶媒は、フリーデルクラフツ反応に不活性な溶媒 (例えば、クロ口ベンゼンや-トロ ベンゼンなど)を用いることができる。
[0061] また、一般式(7)で示される化合物 (A )として、 mが 2以上である重合体は、例えば
2
、一般式 (7)において電子供与性基 Tであるエーテル性酸素の供給源となるビスフエ ノールと、電子吸引性基 Wである、 >c = o、—SO -、および
2 Zまたは〉 C (CF ) と
3 2 を組み合わせた化合物、具体的には 2, 2 ビス(4ーヒドロキシフエ-ル)—1, 1,1,3,3,3 —へキサフルォロプロパン、 2,2—ビス(4—ヒドロキシフエ-ル)ケトン、 2,2 ビス(4ーヒ ドロキシフエ-ル)スルホンなどのビスフエノールのアルカリ金属塩と過剰の 4,4ージク ロロべンゾフエノン、ビス(4 クロ口フエ-ル)スルホンなどの活性芳香族ハロゲン化合 物との置換反応を、 N—メチルー 2—ピロリドン、 Ν,Ν—ジメチルァセトアミド、スルホラン などの極性溶媒存在下で前記単量体の合成手法に順次重合して得られる。 [0062] このような化合物の例示としては、下記式で表される化合物などを挙げることができ る。
[0063] [化 17]
Figure imgf000018_0001
[0064] [化 18]
[0065] [化 19]
Figure imgf000018_0002
上記化合物において、 1は 2以上、好ましくは 2— 100である。
[0066] 2. 1. 3.触媒その他 化合物 (A^をモノマーとして重合する場合、あるいは化合物 (へ)および化合物 (A )をそれぞれモノマーとして重合する場合に使用される触媒は、遷移金属化合物を
2
含む触媒系であり、この触媒系としては、(i)遷移金属塩および配位子となる化合物( 以下、「配位子成分」という。)、または配位子が配位された遷移金属錯体 (銅塩を含 む)、ならびに (ii)還元剤を必須成分とし、さらに、重合速度を上げるために、「塩」を 添カロしてちょい。
[0067] ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、 -ッケ ルァセチルァセトナートなどのニッケル化合物;塩化パラジウム、臭化パラジウム、ヨウ ィ匕パラジウムなどのパラジウム化合物;塩ィ匕鉄、臭化鉄、ヨウ化鉄などの鉄化合物;塩 化コバルト、臭化コバルト、ヨウ化コバルトなどのコバルト化合物などが挙げられる。こ れらのうち特に、塩化ニッケル、臭化ニッケルなどが好ましい。
[0068] また、配位子成分としては、トリフエ-ルホスフィン、 2,2'—ビビリジン、 1,5—シクロォ クタジェン、 1,3—ビス(ジフエ-ルホスフイノ)プロパンなどが挙げられる。これらのうち 、トリフエ-ルホスフィン、 2,2'—ビビリジンが好ましい。上記配位子成分である化合物 は、 1種単独で、あるいは 2種以上を併用することができる。
[0069] さらに、配位子が配位された遷移金属錯体としては、例えば、塩化ニッケルビス(トリ フエ-ルホスフィン)、臭化ニッケルビス(トリフエ-ルホスフィン)、ヨウ化ニッケルビス( トリフエ-ルホスフイン)、硝酸ニッケルビス(トリフエ-ルホスフイン)、塩化ニッケル(2, 2'—ビビリジン)、臭化ニッケル(2, 2'—ビビリジン)、ヨウ化ニッケル(2,2'—ビビリジン)、 硝酸ニッケル(2,2'—ビビリジン)、ビス(1,5—シクロォクタジェン)ニッケル、テトラキス ( トリフエ-ルホスフィン)ニッケル、テトラキス(トリフエ-ルホスフアイト)ニッケル、テトラ キス(トリフエ-ルホスフィン)パラジウムなどが挙げられる。これらのうち、塩化ニッケル ビス(トリフエ-ルホスフィン)、塩化ニッケル(2,2,一ビビリジン)が好ま U、。
[0070] 上記触媒系に使用することができる還元剤としては、例えば、鉄、亜鉛、マンガン、 アルミニウム、マグネシウム、ナトリウム、カルシウムなどが挙げられる。これらのうち、 亜鉛、マグネシウム、マンガンが好ましい。これらの還元剤は、有機酸などの酸に接 触させることにより、より活性ィ匕して用いることができる。
[0071] また、上記触媒系において使用することのできる「塩」としては、フッ化ナトリウム、塩 化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、硫酸ナトリウムなどのナトリウム化合物 、フッ化カリウム、塩ィ匕カリウム、臭化カリウム、ヨウ化カリウム、硫酸カリウムなどのカリ ゥム化合物;フッ化テトラェチルアンモ-ゥム、塩ィ匕テトラェチルアンモ-ゥム、臭化テ トラェチルアンモ-ゥム、ヨウ化テトラェチルアンモ-ゥム、硫酸テトラエチルアンモ- ゥムなどのアンモ-ゥム化合物などが挙げられる。これらのうち、臭化ナトリウム、ヨウ 化ナトリウム、臭化カリウム、臭化テトラェチルアンモ-ゥム、ヨウ化テトラェチルアンモ 二ゥムが好ましい。
[0072] 各成分の使用割合は、遷移金属塩または遷移金属錯体が、上記モノマーの総計 1 モルに対し、通常、 0. 0001— 10モル、好まし <は 0. 01—0. 5モルである。 0. 000 1モル未満では、重合反応が十分に進行しないことがあり、一方、 10モルを超えると 、分子量が低下することがある。
[0073] 触媒系にお 、て、遷移金属塩および配位子成分を用いる場合、この配位子成分の 使用割合は、遷移金属塩 1モルに対し、通常、 0. 1— 100モル、好ましくは 1一 10モ ルである。 0. 1モル未満では、触媒活性が不十分となることがあり、一方、 100モルを 超えると、分子量が低下することがある。
[0074] また、還元剤の使用割合は、上記モノマーの総計 1モルに対し、通常、 0. 1— 100 モル、好ましくは 1一 10モルである。 0. 1モル未満では、重合が十分進行しないこと があり、 100モルを超えると、得られる重合体の精製が困難になることがある。
[0075] さらに、「塩」を使用する場合、その使用割合は、上記モノマーの総計 1モルに対し 、通常、 0. 001— 100モノレ、好ましく ίま 0. 01— 1モノレである。 0. 001モノレ未満で【ま 、重合速度を上げる効果が不十分であることがあり、 100モルを超えると、得られる重 合体の精製が困難となることがある。
[0076] 使用することのできる重合溶媒としては、例えばテトラヒドロフラン、シクロへキサノン 、ジメチルスルホキシド、 Ν,Ν—ジメチルホルムアミド、 Ν,Ν—ジメチルァセトアミド、 Ν— メチルー 2—ピロリドン、 γ—ブチロラタトン、スルホラン、 γ—ブチロラタタム、ジメチルイ ミダゾリジノン、テトラメチル尿素などが挙げられる。これらのうち、テトラヒドロフラン、 Ν ,Ν—ジメチルホルムアミド、 Ν,Ν—ジメチルァセトアミド、 Ν—メチルー 2—ピロリドンが好 ましい。これらの重合溶媒は、十分に乾燥して力も用いることが好ましい。 [0077] 重合溶媒中における上記モノマーの総計の濃度は、通常、 1 90重量%、好ましく は 5— 40重量%である。
[0078] また、重合する際の重合温度は、通常、 0— 200°C、好ましくは 50— 120°Cである。
また、重合時間は、通常、 0. 5— 100時間、好ましくは 1 40時間である。
[0079] 上記化合物 (A )と上記化合物 (A )とを反応させて上記化合物 (A)を得る際の反
1 2
応式の一例を下記式(10)に示す。なお、下記式において、 X, yは正の整数である。 下記式(10)に示すように、化合物 (A )と化合物 (A )とがまず反応することにより、
1 2
化合物 (Α' )が生成する。次 、で、この化合物 (Α' )中の R9が除去されて、化合物 (Α )が生成する。
[0080] [化 20]
A , が R5 R6 5 R2 R1
Y ] n ÷ B W T W普 B,
A' R4 R7 R8 が R4
化合物( Αι ) 化合物( A2 )
R' R5 .、 R6 R5 R2 R1
Νι(ΙΙ)Χ
L, Zn
( L;配位子) 普 R7 1· X
化合物( A' )
Υ
[ZR9]:
[ 脱保護]
Figure imgf000021_0001
( 1 0 ) 具体的には、上記一般式 (6)で表される少なくとも 1種の化合物 (A ) 0. 5— 100モ ル% (好ましくは 10— 99. 999モル0 /0)と、他の芳香族モノマー、好ましくは上記一般 式(7)で表される少なくとも 1種の化合物(A ) 0— 99. 5モル0 /0 (好ましくは 0. 001—
2
90モル%)とを触媒の存在下に反応させて、化合物 (A)を得るのが好ま 、。
[0082] 2. 2.化合物(B)
化合物 (B)は、下記一般式 (4)で表される構造単位を有する。
[0083] [化 21]
,0— sp2
( 4 )
、(CR2)ノ 上記一般式 (4)において、 R, aは上記一般式(1)における定義の通りである。
[0084] 化合物(B)の例示としては、下記式で表される化合物などを挙げることができる。
[0085] 本発明のポリアリーレンを製造するにあたり、化合物(B)の炭素数すなわち上記一 般式 (4)中の「a」の数を調整することにより、最終的に得られる本発明のポリアリーレ 、て、スルホン酸基の導入位置および導入量を調整することができる。
[0086] [化 22]
Figure imgf000022_0001
[0087] 2. 3.化合物 (A)と化合物(B)との合成例
上記一般式 (3)で表される構造単位を含む化合物 (A)と、上記一般式 (4)で表さ れる化合物(B)とを反応させることにより、スルホン酸基を有する本発明のポリアリー レンが得られる。
[0088] 次に、化合物 (A)と化合物(B)との合成例について示す。化合物 (A)と化合物(B) との反応は、例えば下記式(11)に示すように、塩基性条件下で化合物 (A)および化 合物(B)を溶媒に溶解させて行なうことができる c
[0089] [化 23]
,o— so2 、(c ) 化合物( B )
Figure imgf000023_0001
が R5 R6 . R6 R5 R2 R
R *3 R4普 R7 R» R4
塩基性
条件下
Y
[Z(CR2)aS03H]:
( 1 1 )
[0090] 例えば、化合物 (A)中にお 、て Mが水素原子である場合 (一般式(3)参照)、 N—メ チルー 2—ピロリドン、 N, N—ジメチルァセトアミド、スルホラン、ジフエ-ルスルホン、ジ メチルスルホキサイドなどの誘電率の高 ヽ極性溶媒中でアルカリ金属、水素化アル力 リ金属、またはアルカリ金属炭酸塩などを必要に応じて加えることにより、化合物 (A) をアルカリ金属塩とすることができる。
[0091] アルカリ金属としては、リチウム、ナトリウム、カリウムなどが例示でき、水素化アル力 リ金属、水酸化アルカリ金属、およびアルカリ金属炭酸塩としてはそれぞれ、上記ァ ルカリ金属の水素化物、水酸化物、炭酸塩が例示できる。
[0092] 通常、アルカリ金属は化合物 (A)中のスルホン酸基に対して過剰気味で反応させ、 通常、スルホン酸基の 1. 1一 4倍当量を使用する。好ましくは、 1. 2— 3倍当量の使 用である。
[0093] 化合物 (A)と化合物 (B)との反応においては、塩基性条件下、化合物 (A)中にお いて Zで示される酸素原子または硫黄原子によって、化合物 (B)の酸素原子に隣接 する炭素原子に対して求核置換反応が生じ、化合物 (B)が開環する。上記反応の一 具体例を下記式(12)に示す。なお、ここでは、化合物 (A)およびィ匕合物(B)ならび に用いたアルカリ試薬はこれらに限定されるわけではない。
[0094] [化 24]
Figure imgf000024_0001
, 、
( 1 2 )
[0095] 2. 4.化合物(C)
化合物 (C)は、下記一般式 (5)で表される構造単位を有する。
[0096] [化 25]
L-(CR2)a-S03M ( 5 ) 上記一般式(5)において、 R, aは上記一般式(1)における定義の通りであり、 Lは 塩素原子、臭素原子、およびヨウ素原子のいずれかを示す。
[0097] 化合物(C)の例示としては、下記式で表される化合物などを挙げることができる。な お、下記化合物において、 Naのかわりに Kまたは Liまたは Hであってもよい。また C1 のかわりに Brまたは Iであってもよ!/、。
[0098] 本発明のポリアリーレンを製造するにあたり、化合物(C)の炭素数すなわち上記一 般式(5)中の「a」の数を調整することにより、最終的に得られる本発明のポリアリーレ 、て、スルホン酸基の導入位置および導入量を調整することができる。 [0099] [化 26]
CICH2S03Na CICH2CH2CH2S03Na
CICH2CH2S03Na CICH2CH2CH2CH2S03Na
CICF2S03Na CICF2CF2CF2S03Na
CICF2CF2S03Na CICF2CF2CF2CF2S03Na
[0100] 2. 5.化合物 (A)と化合物(C)との合成例
上記一般式 (3)で表される構造単位を含む化合物 (A)と、上記一般式 (5)で表さ れる化合物(C)とを反応させることにより、スルホン酸基を有する本発明のポリアリー レンが得られる。
[0101] 次に、化合物 (A)と化合物(C)との合成例について示す。化合物 (A)と化合物(C) との反応は、例えば下記式(13)に示すように、塩基性条件下で化合物 (A)および化 合物 (C)を溶媒に溶解させて行なうことができる。
[0102] [化 27]
Figure imgf000026_0001
( 1 3 )
[0103] 化合物 (A)と化合物(C)との反応にぉ 、ては、例えば、前述の化合物 (A)と化合 物(B)との反応にぉ 、て例示した極性溶媒およびアルカリ試薬を用いることができる
[0104] 化合物 (A)と化合物 (C)との反応においては、塩基性条件下、化合物 (A)中にお いて Zで示される酸素原子または硫黄原子によって、化合物 (B)の酸素原子に隣接 する炭素原子に対して求核置換反応が生じる。上記反応の一具体例を下記式(14) に示す。なお、ここでは、化合物 (A)およびィ匕合物(C)ならびに用いたアルカリ試薬 はこれらに限定されるわけではない。 [0105] [化 28]
Figure imgf000027_0001
[0106] 3. 1.高分子固体電解質およびプロトン伝導膜
本発明の高分子固体電解質およびプロトン伝導膜は、スルホン酸基を有する本発 明のポリアリーレン力もなる。本発明のポリアリーレン力もプロトン伝導膜を調製する際 には、上記本発明のポリアリーレン以外に、硫酸、リン酸などの無機酸、カルボン酸を 含む有機酸、適量の水などを併用してもよい。
[0107] 本発明のプロトン伝導膜においては、上記本発明のポリアリーレンを溶剤に溶解し て溶液とした後、キャスティングにより基体上に流延してフィルム状に成形する方法( キャスティング法)などを用いてフィルム状に成形することにより製造することができる 。ここで、上記基体としては、通常の溶液キャスティング法に用いられる基体であれば 特に限定されず、例えばプラスチック製、金属製などの基体が用いられ、好ましくは、 例えばポリエチレンテレフタレート(PET)フィルムなどの熱可塑性榭脂からなる基体 が用いられる。
[0108] 本発明のポリアリーレンを溶解する溶媒としては、例えば N—メチルー 2—ピロリドン、 Ν,Ν—ジメチルホルムアミド、鏈 Iブチロラタトン、 Ν,Ν—ジメチルァセトアミド、ジメチル スノレホキシド、ジメチル尿素、ジメチルイミダゾリジノンなどの非プロトン系極性溶剤が 挙げられ、特に溶解性、溶液粘度の面から、 Ν—メチルー 2—ピロリドン(以下「ΝΜΡ」と もいう。)が好ましい。非プロトン系極性溶剤は、 1種単独であるいは 2種以上を併用 することができる。
[0109] また、本発明のポリアリーレンを溶解させる溶媒として、上記非プロトン系極性溶剤 とアルコールとの混合物も用いることができる。アルコールとしては、例えばメタノール 、エタノーノレ、プロピノレアノレコーノレ、 iso—プロピノレアノレコーノレ、 sec—ブチノレアノレコー ル、 tert—ブチルアルコールなどが挙げられ、特にメタノールが幅広い組成範囲で溶 液粘度を下げる効果があり好ましい。アルコールは、 1種単独であるいは 2種以上を 併用することができる。
[0110] 溶媒として非プロトン系極性溶剤とアルコールとの混合物を用いる場合には、非プ 口トン系極性溶剤が 95— 25重量0 /0、好ましくは 90— 25重量0 /0、アルコールが 5— 7 5重量%、好ましくは 10— 75重量%(ただし、合計は 100重量%)からなる。アルコー ルの量が上記範囲内にあると、溶液粘度を下げる効果に優れる。
[0111] 本発明のポリアリーレンを溶解させた溶液のポリマー濃度は、ポリアリーレンの分子 量にもよるが、通常、 5— 40重量%、好ましくは 7— 25重量%である。 5重量%未満 では、厚膜化し難ぐまた、ピンホールが生成しやすい。一方、 40重量%を超えると、 溶液粘度が高すぎてフィルム化し難ぐまた、表面平滑性に欠けることがある。
[0112] なお、溶液粘度は、本発明のポリアリーレンの分子量や、ポリマー濃度にもよるが、 通常、 2,000— 100,000mPa,s、好まし <は 3,000—50,000mPa,s fe 。 2,000 mPa ' s未満では、成膜中の溶液の滞留性が悪ぐ基体力 流れてしまうことがある。 一方、 100,000mPa . sを超えると、粘度が高過ぎて、ダイからの押し出しができず、 流延法によるフィルム化が困難となることがある。
[0113] 上記のようにして成膜した後、得られた未乾燥フィルムを水に浸漬することにより、 未乾燥フィルム中の有機溶剤を水と置換することができ、得られるプロトン伝導膜の 残留溶媒量を低減することができる。
[0114] なお、成膜後、未乾燥フィルムを水に浸漬する前に、未乾燥フィルムを予備乾燥し てもよい。予備乾燥は、未乾燥フィルムを通常 50— 150°Cの温度で、 0. 1— 10時間 保持することにより行われる。
[0115] 未乾燥フィルムを水に浸漬する際は、枚葉を水に浸漬するバッチ方式であっても良 いし、通常得られる基板フィルム (例えば、 PET)上に成膜された状態の積層フィルム のまま、または基板力も分離した膜を水に浸漬させて、巻き取っていく連続方法でも 適用できる。
[0116] ノツチ方式の場合は、処理されたフィルムの表面の皺形成が抑制される点で、処理 フィルムを枠にはめるなどの方式が好都合である。 [0117] 未乾燥フィルムを水に浸漬する際には、未乾燥フィルム 1重量部に対し、水が 10重 量部以上、好ましくは 30重量部以上の接触比となるようにすることがよい。得られるプ 口トン伝導膜の残存溶媒量をできるだけ少なくするためには、できるだけ大きな接触 比を維持するのがよい。また、浸漬に使用する水を交換したり、オーバーフローさせ たりして、常に水中の有機溶媒濃度を一定濃度以下に維持しておくことも、得られる プロトン伝導膜の残存溶媒量の低減に有効である。プロトン伝導膜中に残存する有 機溶媒量の面内分布を小さく抑えるためには、水中の有機溶媒濃度を撹拌等によつ て均質化させることは効果がある。
[0118] 未乾燥フィルムを水に浸漬する際の水の温度は、好ましくは 5— 80°Cの範囲である
。高温ほど、有機溶媒と水との置換速度は速くなるが、フィルムの吸水量も大きくなる ので、乾燥後に得られるプロトン伝導膜の表面状態が荒れる懸念がある。通常、置換 速度と取り扱いやすさから 10— 60°Cの温度範囲が好都合である。
[0119] 浸漬時間は、初期の残存溶媒量や接触比、処理温度にもよるが、通常 10分一 240 時間の範囲である。好ましくは 30分一 100時間の範囲である。
[0120] 上記のように未乾燥フィルムを水に浸漬した後乾燥すると、残存溶媒量が低減され たプロトン伝導膜が得られるが、このようにして得られるプロトン伝導膜の残存溶媒量 は通常 5重量%以下である。
[0121] また、浸漬条件によっては、得られるプロトン伝導膜の残存溶媒量を 1重量%以下 とすることができる。このような条件としては、例えば未乾燥フィルムと水との接触比を
、未乾燥フィルム 1重量部に対し、水が 50重量部以上、浸漬する際の水の温度を 10 一 60°C、浸漬時間を 10分一 10時間とする方法がある。
[0122] 上記のように未乾燥フィルムを水に浸漬した後、フィルムを 30— 100°C、好ましくは
50— 80。Cで、 10— 180分間、好ましくは 15— 60分乾燥し、次いで、 50— 150。Cで
、好ましくは 500mmHg— 0. ImmHgの減圧下、 0. 5— 24時間真空乾燥することに より、本発明のプロトン伝導膜を得ることができる。
[0123] 上記製造方法により得られた本発明のプロトン伝導膜は、その乾燥膜厚が通常 10 一 100 μ m好ましくは 20— 80 μ mである。
[0124] 本発明のプロトン伝導膜は老化防止剤、好ましくは分子量 500以上のヒンダードフ ェノール系化合物を含有してもよぐ老化防止剤を含有することでプロトン伝導膜とし ての耐久性をより向上させることができる。
[0125] 本発明で使用することのできる分子量 500以上のヒンダードフ ノール系化合物と しては、トリエチレングリコール ビス [3— (3— tーブチルー 5—メチルー 4ーヒドロキシフエ -ル)プロォネート] (商品名:IRGANOX 245)、 1,6—へキサンジオール ビス [3— (3, 5—ジー tーブチルー 4ーヒドロキシフエ-ル)プロピオネート] (商品名:IRGANOX 259)、 2,4 ビス— (n—才クチルチオ)— 6— (4—ヒドロキシー 3,5—ジー tーブチルァ-リノ)— 3,5— トリアジン (商品名:IRGANOX 565)、ペンタエリスリチルーテトラキス [3—(3, 5—ジー t ブチルー 4—ヒドロキシフエ-ル)プロピオネート] (商品名: IRGANOX 1010)、 2, 2—チォ ージエチレンビス [ 3— ( 3 , 5—ジー tーブチルー 4ーヒドロキシフエ-ル)プロピオネート] (商 品名:IRGANOX 1035)、ォクタデシルー 3— (3, 5—ジー tーブチルー 4ーヒドロキシフエ- ル)プロピオネート) (商品名:IRGANOX 1076)、 Ν,Ν キサメチレンビス(3, 5—ジー t —ブチルー 4—ヒドロキシーヒドロシンナマミド) (IRG AONOX 1098)、 1,3,5—トリメチル —2,4,6—トリス(3,5—ジー tーブチルー 4ッヒドロキシベンジル)ベンゼン(商品名: IRGANOX 1330)、トリスー(3, 5—ジー tーブチルー 4—ヒドロキシベンジル) イソシァヌレ イト (商品名:IRGANOX 3114)、 3, 9 ビス [2—〔3— (3— tーブチルー 4—ヒドロキシー 5—メ チルフエ-ル)プロピオ-ルォキシ〕ー1 , 1ージメチルェチル ]—2,4,8, 10—テトラォキサ スピロ [5.5]ゥンデカン(商品名: Sumilizer GA-80)などを挙げることができる。
[0126] 本発明において、ポリアリーレン 100重量部に対して分子量 500以上のヒンダード フエノール系化合物は 0. 01— 10重量部の量で使用することが好ましい。
[0127] 本発明のプロトン伝導膜は、例えば一次電池用電解質、二次電池用電解質、燃料 電池用高分子固体電解質、表示素子、各種センサ、信号伝達媒体、固体コンデンサ 、イオン交換膜などに利用可能なプロトン伝導性の伝導膜に利用可能である。
[0128] 4.実施例
以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれらの 実施例に限定されるものではない。実施例中の各種の測定項目は下記のようにして 求めた。なお、本実施例において、各種測定に用いられるポリマーフィルム (膜試料) は膜厚 40 μ mのフィルムである。このフィルムは、各実施例で得られたスルホン酸基 を有するポリアリーレンを N—メチルピロリドンに 18%の濃度で溶解させた後、キャステ イング法によって製造された。
[0129] 4. 1.測定項目
4. 1. 1.スルホン酸基の当量
得られたポリアリーレンの水洗水が中性になるまで蒸留水で洗浄し、フリーの残存し ている酸を除いて充分に水洗した後、乾燥させた。この後、所定量を秤量し、 THF/ 水の混合溶剤に溶解させ、フエノールフタレインを指示薬として NaOHの標準液を用 いて滴定を行い、中和点からスルホン酸基の当量 (イオン交換容量)(meqZg)を求 めた。
[0130] 4. 1. 2.プロトン伝導度
交流抵抗は、前記膜試料を 5mm幅の短冊状とし、この膜試料の表面に白金線( φ =0. 5mm)を押し当て、恒温恒湿装置中にこの膜試料を保持して、白金線間の交 流インピーダンス測定から求めた。 85°C、相対湿度 90%の環境下で交流 10kHzに おけるインピーダンスを測定した。抵抗測定装置として、(株) NF回路設計ブロック製 のケミカルインピーダンス測定システムを用い、恒温恒湿装置には、(株)ャマト科学 製の JW241を使用した。白金線は 5mm間隔に 5本押し当てて、線間距離を 5— 20 mmに変化させて、交流抵抗を測定した。線間距離と抵抗の勾配から膜の比抵抗を 算出し、比抵抗の逆数から交流インピーダンスを算出し、このインピーダンスから、プ 口トン伝導度を求めた。
[0131] 比抵抗 R[ Q 'cm] =0. 5 [cm] X膜厚 [cm] X抵抗線間勾配 [ Ω
Figure imgf000031_0001
[0132] 4. 1. 3.熱的性質
熱分解開始温度;
TGA (チッ素雰囲気下、 20°CZ分の昇温速度)から、スルホン化ポリアリーレンの 分解が開始した温度を、熱分解開始温度 (°C)とした。
[0133] 耐熱水性;
厚さ 40 μ mの膜試料 (スルホン化ポリマーフィルム)を 95°Cの熱水に 48時間浸漬し 、浸漬前の該フイルムの重量に対する浸漬後の該フイルムの重量の割合を、重量保 持率 (%)とした。 [0134] 4. 1. 4.フェントン試薬耐性
過酸化水素水を純水で濃度 3%に希釈し、ここに硫酸鉄を鉄イオン (Fe2+)濃度が 20ppmとなるように溶解させた。この溶液に一定の大きさの膜試料 (スルホン化ポリマ 一フィルム)を浸漬し、 45°Cで 20時間静置した。浸漬前の該フイルムの重量に対する 浸漬後の該フイルムの重量の割合を、重量保持率 (%)とした。
[0135] 4. 1. 5.分子量測定
本実施例のポリアリーレンの重量平均分子量および数平均分子量は、溶剤として テトラヒドロフラン (THF)を用い、 GPCによって測定されたポリスチレン換算の分子量 である。
[0136] 4. 2.実施例 1
(I)ベンゾフ ノン誘導体 (ィ匕合物 (A '—1) )の合成
[0137] (i) 2, 5—ジクロロー 4,ーヒドロキシベンゾフエノンの合成
ァ-ソール 64. 9g (600mmol)、ジクロロメタン 480mLを、攪拌装置、窒素導入管 、滴下ロートを取り付けた 2Lの 3口フラスコに入れ、氷浴で 10°Cに冷却後、塩化アル ミニゥム 80g (600mmol)を加えた。次に、 2, 5—ジクロ口安息香酸クロリド 125. 7g (6 OOmmol)を、滴下ロートからゆっくり滴下した。滴下終了後、塩ィ匕アルミニウム 80g ( 600mmol)を追カロした。この後室温に戻して、 12時間攪拌を続けた。
[0138] その後、濃塩酸 300mLを含む 2Lの氷水に反応液を注ぎ、分離した有機層を 10% 水酸ィ匕ナトリウム水溶液で抽出した。一方、水層を塩酸で中和して、析出した固体を 酢酸ェチル 2Lで抽出した。溶媒を留去し、得られた固体を酢酸ェチル: n—へキサン で再結晶し、 136. 3g (収率 85%)の 2, 5—ジクロロー 4,ーヒドロキシベンゾフエノン(ィ匕 合物(A ,一 1) )を得た。この化合物(A ,一 1)の1 H— NMR ^ベクトルを図 1に示す。
[0139] (ii) 2, 5—ジクロロー 4,一 (テトラヒドロ一 2—ビラ-ルォキシ)ベンゾフエノン(ィ匕合物(A
1) )の合成
化合物(A,― 1)である 2, 5—ジクロロー 4,ーヒドロキシベンゾフエノン 26. 7g (100m mol)、 2H—ジヒドロピラン 100g (1200mmol)、トルエン lOOmLをフラスコに入れ、 これを攪拌しながら、陽イオン交換榭脂 (アンバーリスト 15) 1. 5gを加え、室温で 5時 間攪拌を続けた後、ろ過により陽イオン交換榭脂を除去した。次いで、得られたろ液 を水酸ィ匕ナトリウム水溶液および食塩水で洗浄し、硫酸マグネシウムで乾燥させた後
、溶媒を留去した。得られた固形物をトルエンで再結晶し、 16. 4g (収率 47%)の 2, 5—ジクロロー 4, - (テトラヒドロ一 2—ビラ-ルォキシ)ベンゾフエノン(化合物(A— 1) )を 得た。この化合物(A—1)の1 H— NMRスペクトルを図 2に示す。また、実施例 1にお ける上記工程 (i)および (ii)を下記の式(15)に示す。
[化 29]
Figure imgf000033_0001
化合物( '— 1 ) 化合物( Α 一 1 )
( 1 5 )
[0141] (II)化合物 (Α— 1)の合成
化合物(Α— 1)である 2, 5—ジクロロー 4,一 (テトラヒドロ— 2—ビラ-ルォキシ)ベンゾ フエノン 15. 6g (44. 4mmol)、化合物(A )である 4, 4,ージクロ口べンゾフエノン · 2,
2
2—ビス(4ーヒドロキシフエ-ル)— 1, 1, 1, 3, 3, 3—へキサフルォロプロパン重縮合 物(数平均分子量 11, 200) 6. 55g (0. 585mmol)、ビス(トリフエ-ルホスフィン)二 ッケルジクロリド 0. 883g (l. 35mmol)、ョウイ匕ナトリウム 0. 877g (5. 85mmol)、トリ フエ-ルホスフィン 4. 72g (18mmol)、亜鉛 7. 06g (108mmol)を、攪拌羽根、温 度計、窒素導入管をとりつけた 500mLフラスコにとり、真空乾燥した。乾燥窒素でフ ラスコ内を置換した後、 N, N-ジメチルァセトアミド(DMAc) 52mLをカ卩え、重合を開 始した。重合中は反応液の温度が 70— 90°Cの範囲になるように制御した。 3時間後 、 DMAc200mLをカ卩えて希釈し、不溶部をろ過して、重合体溶液のろ液を得た。
[0142] この重合体溶液のろ液のうち微量を採取して、メタノールに注いで重合体を沈殿さ せ、ろ過により沈殿物を分別した後、この沈殿物を乾燥させて得られた固体の1 H— N MRスペクトルを図 3に示す。図 3に示す1 H— NMR ^ベクトルから、この固体はテトラ ヒドロ— 2—ビラ-ル基を有することが確認でき、その構造は化合物 (A,-l)であると推 測された。また、この固体について GPCで求めた数平均分子量は 28, 000、重量平 均分子量は 103, 000であった。
[0143] 一方、残りの重合体溶液のろ液を、濃塩酸 10vol%を含むメタノール 1. 5Lに注ぎ 、重合体を沈殿させた。次に、ろ過により沈殿物を分別した後、得られた固体を乾燥 させて、ヒドロキシル基を有する重合体 (ィ匕合物 (A— 1) ) 14. 3gを得た。この化合物( A— 1)の1 H— NMR ^ベクトルを図 4に示す。図 4に示すスペクトルから、この重合体 はヒドロキシル基を有することが確認できた。なお、実施例 1における上記工程 (II)を 下記の式(16)に示す。式(16)において、 d, e, fは正の整数である。
[0144] [化 30]
Figure imgf000034_0001
化合物( A— 1 )
( 1 6 )
(III)スルホン酸基を有するポリアリーレン(1)の合成
化合物(A— 1) 15. 2gを N, N—ジメチルァセトアミド(DMAc) 250mLに添カロし、 1 00°Cに加熱しながら攪拌し溶解させた。次に、水素化リチウム 1. 06g (133mmol)を 加え、 2時間攪拌した。続いて、プロパンスルトン(B— 1) 16. 2g (133mmol)を加え、 8時間反応させた。次いで、前記反応液の不溶部をろ過した後、 1N塩酸に注ぎ、重 合体を沈殿させた。沈殿させた重合体を 1N塩酸で洗浄した後、蒸留水で pHが中性 になるまで洗浄した。この重合体を 75°Cで乾燥させて、粉末状のスルホン酸基を有 するポリアリーレン (ィ匕合物(1) ) 19. 2gを得た。この化合物(1)の1 H— NMR^ぺクト ルを図 5に示す。また、実施例 1における上記工程 (III)を下記の式(17)に示す。式( 17)において、 d, e, fは正の整数である。
[化 31]
Figure imgf000035_0001
化合物( 1 )
…… ( 1 7 )
4. 3.実施例 2
実施例 1の (III)において、プロパンスルトン(B— 1) 16. 2g (133mmol
)のかわりに、ブタンスルトン(B— 2) 18. lg (133mmol)を使用したほかは、実施例 1 と同様に反応を行ない、粉末状のスルホン酸基を有するポリアリーレン (化合物(2) ) 20. 8gを得た。また、実施例 2における上記工程 (III)を下記の式(18)に示す。式(1 8)において、 d, e, fは正の整数である。 [0148] [化 32]
Figure imgf000036_0001
化合物( 2 )
( 1 8 )
[0149] 4. 4.実施例 3
(I)ベンゾフエノン誘導体 (化合物 (へ, -2) )の合成
(i) 2, 5—ジクロ口一 2,, 4,ージヒドロキシベンゾフエノンの合成
1, 3—ジメトキシベンゼン 33. 2g (240mmol)、ジクロロメタン 300mLを、攪拌装置 、窒素導入管、滴下ロートを取り付けた 2Lの 3口フラスコに入れ、氷浴で 10°Cに冷却 後、塩ィ匕アルミニウム 32g (240mmol)を加えた。次に、 2, 5—ジクロ口安息香酸クロリ ド 50. 3g (240mmol)を、滴下ロートからゆっくり滴下した。滴下終了後、塩化アルミ -ゥム 32g (240mmol)を追加した。この後室温に戻して、 12時間攪拌を続けた。
[0150] その後、濃塩酸 150mLを含む 1Lの氷水に反応液を注ぎ、分離した有機層を 10% 水酸ィ匕ナトリウム水溶液で抽出した。一方、水層を塩酸で中和して、析出した固体を 酢酸ェチル 1Lで抽出した。溶媒を留去し、得られた固体を酢酸ェチル: n—へキサン で再結晶し、 57g (収率 76%)の 2, 5—ジクロ口— 2,, 4,ージヒドロキシベンゾフエノン( 化合物 A ,- 2)を得た。 [0151] (ii) 2, 5—ジクロロ一 2,, 4しジ(テトラヒドロ一 2—ビラ-ルォキシ)ベンゾフエノン(ィ匕 合物 (A「2) )の合成
化合物(A,—2)である 2, 5—ジクロ口— 2,, 4,ージヒドロキシベンゾフエノン 28. 3g ( 100mmol)、 2H—ジヒドロピラン 200g (2400mmol)、トノレエン lOOmLをフラスコに 入れ、これを攪拌しながら、陽イオン交換榭脂 (アンバーリスト 15) 3. Ogを加え、室温 で 5時間攪拌を続けた後、ろ過により陽イオン交換榭脂を除去した。次いで、得られ たろ液を水酸ィ匕ナトリウム水溶液および食塩水で洗浄し、硫酸マグネシウムで乾燥さ せた後、溶媒を留去した。得られた固形物をトルエンで再結晶し、 21. 2g (収率 47% )の 2, 5—ジクロロ一 2,, 4,ージ(テトラヒドロ一 2—ビラ-ルォキシ)ベンゾフエノン(ィ匕合 物 (A—2) )を得た。また、実施例 3における上記工程 (i)および (ii)を下記の式(19) に示す。
[0152] [化 33]
Figure imgf000037_0001
化合物( ) 化合物( Αη— 2 )
( 1 9 )
[0153] (II)ポリアリーレン (化合物 (Α— 2) )の合成
化合物(Α— 2)である 2, 5—ジクロ口— 2,, 4,ージ(テトラヒドロ— 2—ビラ-ルォキシ) ベンゾフエノン 19. 45g (43. lmmol)、化合物(A— 2)である 4, 4,—ジクロロべンゾ
2
フエノン · 2, 2—ビス(4—ヒドロキシフエ-ル)— 1, 1, 1, 3, 3, 3—へキサフルォロプロ ノ ン重縮合物(数平均分子量 11, 200) 20. 12g (l. 80mmol)、ビス(トリフエ-ルホ スフイン)ニッケルジクロリド 0. 883g (l . 35mmol)、ョウイ匕ナトリウム 0. 877g (5. 85 mmol)、トリフエ-ルホスフィン 4. 72g (18mmol)、亜鉛 7. 06g (108mmol)を、攪 拌羽根、温度計、窒素導入管をとりつけた 500mLフラスコにとり、真空乾燥した。乾 燥窒素でフラスコ内を置換した後、 N, N—ジメチルァセトアミド(DMAc) 87mLをカロ え、重合を開始した。重合中は反応液の温度が 70— 90°Cの範囲になるように制御し た。 3時間後、 DMAc200mLをカ卩えて希釈し、不溶部をろ過して、重合体溶液のろ 液を得た。この重合体溶液のろ液は化合物 (A,一 2)を含み、また、この化合物 (A,一 2)はテトラヒドロ— 2—ビラ二ル基を有すると推測される。次に、この重合体溶液のろ液 を、濃塩酸 10vol%を含むメタノール 1. 5Lに注いで、重合体を沈殿させた。次に、ろ 過により沈殿物を分別した後、得られた固体を乾燥させて、ヒドロキシル基を有する 重合体 (ィ匕合物 ( A— 2) ) 28. 5gを得た。実施例 3における上記工程 (II)を下記の式( 20)に示す。式(20)において、 d, e, fは正の整数である。
[0154] [化 34]
Figure imgf000038_0001
化合物( A_2 )
( 20 )
[0155] (III)スルホン酸基を有するポリアリーレン(3)の合成
化合物(A— 2) 29. lgを N, N—ジメチルァセトアミド(DMAc)
500mLに添加し、 100°Cに加熱しながら攪拌し溶解させた。次に、水素化リチウム 2 . 06g (258mmol)を加え、 2時間攪拌した。続いて、プロパンスルトン(B—1) 31. 6g (258mmol)を加え、 8時間反応させた。次いで、前記反応液の不溶部をろ過した後 、 1N塩酸に注ぎ、重合体を沈殿させた。沈殿させた重合体を 1N塩酸で洗浄した後 、蒸留水で pHが中性になるまで洗浄した。この重合体を 75°Cで乾燥させて、粉末状 のスルホン酸基を有するポリアリーレン (ィ匕合物(3) ) 38. 2gを得た。また、実施例 3に おける上記工程(III)を下記の式(21)に示す。式(21)において、 d, e, fは正の整数 である。
[0156] [化 35]
Figure imgf000039_0001
化合物( 3 )
( 21 )
[0157] 4. 5.実施例 4
(I)ベンゾフ ノン誘導体 (ィ匕合物 (A '—3) )の合成
(i) 2, 5—ジクロロー 4,一ヒドロチォベンゾフエノンの合成
メチルチオベンゼン 74. 5g (600mmol)、ジクロロメタン 480mLを、攪拌装置、窒 素導入管、滴下ロートを取り付けた 2Lの 3口フラスコに入れ、氷浴で 10°Cに冷却後、 塩化ァノレミ-ゥム 80g (600mmol)を加えた。次に、 2, 5—ジクロロ安息香酸クロリド 1 25. 7g (600mmol)を、滴下ロートからゆっくり滴下した。滴下終了後、塩化アルミ- ゥム 80g (600mmol)を追カ卩した。この後室温に戻して、 12時間攪拌を続けた。
[0158] その後、濃塩酸 300mLを含む 2Lの氷水に反応液を注ぎ、分離した有機層を 10% 水酸ィ匕ナトリウム水溶液で抽出した。一方、水層を塩酸で中和して、析出した固体を 酢酸ェチル 2Lで抽出した。溶媒を留去し、得られた固体を酢酸ェチル: n—へキサン で再結晶し、 150g (収率 88%)の 2, 5—ジクロロー 4,ーヒドロチォベンゾフエノン (ィ匕 合物 (A ,一 3) )を得た。
[0159] (ii) 2, 5—ジクロロー 4,一 (テトラヒドロ一 2—ビラ-ルチオ)ベンゾフエノン(ィ匕合物(A— 3) )の合成
化合物(A ,—3)である 2, 5—ジクロロー 4,ーヒドロチォベンゾフエノン 28. 3g (100m mol)、 2H—ジヒドロピラン 100g (1200mmol)、トルエン lOOmLをフラスコに入れ、 これを攪拌しながら、陽イオン交換榭脂 (アンバーリスト 15) 1. 5gを加え、室温で 5時 間攪拌を続けた後、ろ過により陽イオン交換榭脂を除去した。次いで、得られたろ液 を水酸ィ匕ナトリウム水溶液および食塩水で洗浄し、硫酸マグネシウムで乾燥させた後 、溶媒を留去した。得られた固形物をトルエンで再結晶し、 19. 5g (収率 53%)の 2, 5—ジクロロー 4,一 (テトラヒドロ一 2—ビラ-ルチオ)ベンゾフエノン(化合物(A—3) )を得 た。また、実施例 4における上記工程 (i)および (ii)を下記の式(22)に示す。
[0160] [化 36]
Figure imgf000040_0001
化合物( Α·Γ— 3 ) 化合物( 3 )
( 22 )
(II)ポリアリーレン (化合物 (Α— 3) )の合成
化合物(Α—3)である 2, 5—ジクロロー 4,一 (テトラヒドロ— 2—ビラ-ルチオ)ベンゾフ ェノン 16. 3g (44. 4mmol)、化合物(A—3)である 4, 4,一ジクロロべンゾフエノン · 2
2
, 2—ビス(4ーヒドロキシフエ-ル)— 1, 1, 1, 3, 3, 3—へキサフルォロプロパン重縮合 物(数平均分子量 11, 200) 6. 55g (0. 585mmol)、ビス(トリフエ-ルホスフィン)二 ッケルジクロリド 0. 883g (l. 35mmol)、ョウイ匕ナトリウム 0. 877g (5. 85mmol)、トリ フエ-ルホスフィン 4. 72g (18mmol)、亜鉛 7. 06g (108mmol)を、攪拌羽根、温 度計、窒素導入管をとりつけた 500mLフラスコにとり、真空乾燥した。乾燥窒素でフ ラスコ内を置換したあと、 N, N—ジメチルァセトアミド(DMAc) 52mLをカ卩え、重合を 開始した。重合中は反応液の温度が 70— 90°Cの範囲になるように制御した。 3時間 後、 DMAc200mLをカ卩えて希釈し、不溶部をろ過して、重合体溶液のろ液を得た。 この重合体溶液のろ液は化合物 (A,一 3)を含み、また、この化合物 (A,一 3)はテトラ ヒドロー 2—ビラ-ル基を有すると推測される。この重合体溶液のろ液を、濃塩酸 lOvol %を含むメタノール 1. 5Lに注ぎ、重合体を沈殿させた。次に、ろ過により沈殿物を 分別した後、得られた固体を乾燥させて、チオール基を有する重合体 (化合物 (A - 3 ) ) 15. 2gを得た。実施例 4における上記工程 (II)を下記の式(23)に示す。式(23) において、 d, e, fは正の整数である。
[化 37]
Figure imgf000041_0001
化合物( A— 3 )
( 23 )
(III)スルホン酸基を有するポリアリーレン(4)の合成
化合物(A— 3) 15. 2gを N, N—ジメチルァセトアミド(DMAc) 250mLに添カロし、 1 00°Cに加熱しながら攪拌し溶解させた。次に、水素化リチウム 1. O6g (133mmol)を 加え、 2時間攪拌した。続いて、プロパンスルトン (B— 1) 16. 2g (133mmol)をカ卩 、 8時間反応させた。次いで、前記反応液の不溶部をろ過した後、 1N塩酸に注ぎ、重 合体を沈殿させた。沈殿させた重合体を 1N塩酸で洗浄した後、蒸留水で pHが中性 になるまで洗浄した。この重合体を 75°Cで乾燥させて、粉末状のスルホン酸基を有 するポリアリーレン (ィ匕合物 (4) ) 19. 9gを得た。また、実施例 4における上記工程 (III )を下記の式(24)に示す。式(24)において、 d, e, fは正の整数である。
[0164] [化 38]
Figure imgf000042_0001
化合物( 4 )
( 24 )
[0165] 上記実施例 1一 4でそれぞれ得られた本発明のポリアリーレンの特性を表 1に示す
[0166] [表 1] 評価項目 単位 実施例 難例 実施例 実施例
1 2 3 4
スルホン酸基の当量 meq/g 1.9 2.0 2.0 1.9 プロトン伝導度 S/cm 0.27 0.25 0.28 0.22 耐熱水性 重量保持率, % 100 100 100 100 熱分解開始温度 200 200 200 240 フェントン試薬耐性 重量保持率, % 100 100 100 100

Claims

請求の範囲
下記一般式(1)で表される構成単位を含む、ポリアリーレン。
[化 39]
Figure imgf000043_0001
〔式中、 X, Yは 2価の有機基または直接結合を示し、 Zは酸素原子または硫黄原子 を示し、 Rは水素原子、フッ素原子、アルキル基、およびフッ素置換アルキル基から なる群より選ばれる少なくとも 1種の原子または基を示し、 aは 1一 20の整数、 nは 1一 5の整数、 pは 0— 10の整数を示す。〕
請求項 1において、
上記一般式(1)で表される構成単位 0. 5— 100モル%と、下記一般式(2)で表さ れる構成単位 0— 99. 5モル0 /0とを含む、ポリアリーレン。
[化 40]
Figure imgf000043_0002
〔式中、 R1— R°は互いに同一でも異なっていてもよぐ水素原子、フッ素原子、アル キル基、フッ素置換アルキル基、ァリル基およびァリール基力 なる群より選ばれる少 なくとも 1種の原子または基を示し、 Wは 2価の電子吸引性基を示し、 Tは 2価の有機 基を示し、 mは 0または正の整数を示す。〕
下記一般式 (3)で表される構造単位を含む化合物 (A)と、下記一般式 (4)で表さ れる化合物 (B)または下記一般式 (5)で表される化合物 (C)とを反応させることを含 む、ポリアリーレンの製造方法。
[化 41]
Figure imgf000044_0001
〔式中、 X, Υ, Ζ, η, ρは上記一般式(1)における定義の通りであり、 Μは水素原子 またはアルカリ金属原子を示す。〕
[化 42]
Figure imgf000044_0002
〔式中 aは上記一般式(1)における定義の通りである。〕
[化 43] レ (CR2)a-S03M
〔式中、 R, aは上記一般式(1)における定義の通りであり、 Mは上記一般式(3)に おける定義の通りであり、 Lは塩素原子、臭素原子、およびヨウ素原子のいずれかを 示す。〕
[4] 請求項 3において、
上記化合物 (A)は、上記一般式 (2)で表される構造単位をさらに含む、ポリアリー レンの製造方法。
請求項 1または 2に記載のポリアリーレンを含む、高分子固体電解質。 請求項 1または 2に記載のポリアリーレンを含む、プロトン伝導膜。
PCT/JP2005/001714 2005-02-04 2005-02-04 ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜 WO2006082653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/001714 WO2006082653A1 (ja) 2005-02-04 2005-02-04 ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
EP05709779A EP1845122B1 (en) 2005-02-04 2005-02-04 Polyarylene, process for producing the same, solid polyelectrolyte, and proton-conductive film
US11/815,370 US7893303B2 (en) 2005-02-04 2005-02-04 Polyarylene, process for producing the same, solid polyelectrolyte, and proton-conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001714 WO2006082653A1 (ja) 2005-02-04 2005-02-04 ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜

Publications (1)

Publication Number Publication Date
WO2006082653A1 true WO2006082653A1 (ja) 2006-08-10

Family

ID=36777048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001714 WO2006082653A1 (ja) 2005-02-04 2005-02-04 ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜

Country Status (3)

Country Link
US (1) US7893303B2 (ja)
EP (1) EP1845122B1 (ja)
WO (1) WO2006082653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067702A (ja) * 2011-09-21 2013-04-18 Toppan Printing Co Ltd 高分子電解質、それを用いた高分子電解質膜および固体高分子形燃料電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291243A (ja) * 2006-04-25 2007-11-08 Jsr Corp フルオレン骨格を有する芳香族化合物およびスルホン酸基を有するポリアリーレン
ES2882803T3 (es) * 2009-08-26 2021-12-02 Evoqua Water Tech Pte Ltd Membranas de intercambio iónico
US9611368B2 (en) 2010-10-15 2017-04-04 Evoqua Water Technologies Llc Process for making a monomer solution for making cation exchange membranes
EP3626341B1 (en) 2010-10-15 2021-06-09 Evoqua Water Technologies LLC Anion exchange membranes and process for making
CN102958946B (zh) * 2011-07-29 2014-03-26 北京英力科技发展有限公司 巯基二苯甲酮类化合物及其组合物以及制备方法
US9102789B2 (en) 2011-10-28 2015-08-11 Daimler Ag Sulfonated poly(phenylene) copolymer electrolyte for fuel cells
AU2013325234B2 (en) 2012-10-04 2017-09-28 Evoqua Water Technologies Llc High-performance Anion exchange membranes and methods of making same
AU2013330438B2 (en) 2012-10-11 2017-06-01 Evoqua Water Technologies Llc Coated ion exchange membranes
KR101839390B1 (ko) 2016-11-16 2018-03-16 한국에너지기술연구원 블록공중합체, 이온 교환막 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748437A (ja) * 1993-06-04 1995-02-21 Showa Denko Kk 新規導電性重合体およびその製造法
JP2003187826A (ja) * 2001-12-20 2003-07-04 Hitachi Ltd 燃料電池、それに用いる高分子電解質及びイオン交換性樹脂
JP2005060625A (ja) * 2003-08-20 2005-03-10 Jsr Corp ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2005060585A (ja) * 2003-08-18 2005-03-10 Jsr Corp ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2005082757A (ja) * 2003-09-10 2005-03-31 Jsr Corp スルホン酸基を有するポリアリーレン共重合体およびその製造方法、ならびに高分子固体電解質、プロトン伝導膜および電池用電極

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4371475A (en) * 1977-05-04 1983-02-01 Showa Kagaku Kogyo Company, Ltd. 1,4-Bis-styryl-benzene derivatives and a process for the preparation of the same
GB8726877D0 (en) 1987-11-17 1987-12-23 Ici Plc Aromatic compounds
US5403675A (en) 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
US5637652A (en) 1993-06-04 1997-06-10 Showa Denko Kabushiki Kaisha Electroconductive polymer and process for producing the same
JP2000095970A (ja) * 1998-09-22 2000-04-04 Dainippon Printing Co Ltd 帯電防止用塗料及び帯電防止性塗膜
EP1138712B1 (en) * 2000-03-29 2006-01-18 JSR Corporation Polyarylene copolymers and proton-conductive membrane
US6812290B2 (en) * 2000-03-29 2004-11-02 Jsr Corporation Polyarylene copolymers and proton-conductive membrane
FR2819888B1 (fr) * 2001-01-19 2003-09-12 Sebia Sa Procede de separation de proteines par electrophorese capillaire et compositions de tampon pour electrophorese capillaire
JP2002289222A (ja) 2001-03-26 2002-10-04 Mitsui Chemicals Inc イオン伝導性高分子およびそれを用いた高分子膜と燃料電池
JP2002371055A (ja) 2001-06-15 2002-12-26 Toyoda Gosei Co Ltd 自己ドープ型導電性ポリマー・合成用モノマー及びそれらの合成方法
JP3760845B2 (ja) 2001-11-22 2006-03-29 東ソー株式会社 スルホアルコキシ基を持つポリアリーレンエーテルスルホン及びその製造方法
US6986960B2 (en) 2001-11-22 2006-01-17 Tosoh Corporation Poly (arylene ether sulfone) having sulfoalkoxy group, process of producing the same, and polymer electrolyte membrane comprising the same
JP3975908B2 (ja) 2002-08-22 2007-09-12 Jsr株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
JP2004087288A (ja) 2002-08-27 2004-03-18 Teijin Ltd 固体高分子電解質、それを用いた膜、触媒電極層及び燃料電池
JP3939244B2 (ja) 2002-12-18 2007-07-04 本田技研工業株式会社 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748437A (ja) * 1993-06-04 1995-02-21 Showa Denko Kk 新規導電性重合体およびその製造法
JP2003187826A (ja) * 2001-12-20 2003-07-04 Hitachi Ltd 燃料電池、それに用いる高分子電解質及びイオン交換性樹脂
JP2005060585A (ja) * 2003-08-18 2005-03-10 Jsr Corp ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2005060625A (ja) * 2003-08-20 2005-03-10 Jsr Corp ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2005082757A (ja) * 2003-09-10 2005-03-31 Jsr Corp スルホン酸基を有するポリアリーレン共重合体およびその製造方法、ならびに高分子固体電解質、プロトン伝導膜および電池用電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1845122A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067702A (ja) * 2011-09-21 2013-04-18 Toppan Printing Co Ltd 高分子電解質、それを用いた高分子電解質膜および固体高分子形燃料電池

Also Published As

Publication number Publication date
EP1845122A1 (en) 2007-10-17
US7893303B2 (en) 2011-02-22
EP1845122B1 (en) 2011-11-16
US20080015389A1 (en) 2008-01-17
EP1845122A4 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4131216B2 (ja) ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP3975908B2 (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
CA2467613C (en) Membrane-electrode assembly for direct methanol type fuel cell and proton conductive membrane
JP3698067B2 (ja) 電子吸引性基および電子供与性基を有するモノマー、それを用いた共重合体、ならびにプロトン伝導膜
CA2376848C (en) Halogenated aromatic compound, polymer thereof, and proton-conductive membrane comprising same
JP4193581B2 (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
WO2006082653A1 (ja) ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
EP1575115B1 (en) Polymer electrolyte and proton conductive membrane
JP4428181B2 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2004079380A (ja) 熱安定性の改良されたプロトン伝導膜
KR100911970B1 (ko) 할로겐화 방향족 화합물, 이 화합물의 (공)중합체, 및 이 (공)중합체를 포함하는 프로톤 전도막
JP3939244B2 (ja) 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
CA2517484C (en) Sulfonic group-containing polyarylene block copolymer, process for production thereof, solid polymer electrolyte and proton conductive membrane
WO2007125931A1 (ja) フルオレン骨格を有する芳香族化合物およびスルホン酸基を有するポリアリーレン
JP4356547B2 (ja) スルホン化ポリマーおよび固体高分子電解質
JP4876410B2 (ja) 直接メタノール型燃料電池用プロトン伝導膜
JP4139967B2 (ja) ポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP4356546B2 (ja) スルホン化ポリマーおよび固体高分子電解質
JP2005036125A (ja) ポリアリーレンおよびその製造方法
JP5417863B2 (ja) ポリアリーレン系共重合体および固体高分子電解質
JP2005112985A (ja) 疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP2006176682A (ja) アルキル基側鎖を有する化合物およびスルホン化ポリマー
JP4311164B2 (ja) 新規な芳香族スルホン酸エステル誘導体、そのポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2006335816A (ja) プロトン伝導体組成物およびプロトン伝導性複合膜
JP2005243289A (ja) 高分子電解質およびプロトン伝導膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005709779

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11815370

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005709779

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11815370

Country of ref document: US