WO2006080958A1 - Led with curent confinement structure and surface roughening - Google Patents
Led with curent confinement structure and surface roughening Download PDFInfo
- Publication number
- WO2006080958A1 WO2006080958A1 PCT/US2005/036552 US2005036552W WO2006080958A1 WO 2006080958 A1 WO2006080958 A1 WO 2006080958A1 US 2005036552 W US2005036552 W US 2005036552W WO 2006080958 A1 WO2006080958 A1 WO 2006080958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- led
- confinement structure
- type
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
Definitions
- This invention relates to light emitting diodes (LEDs) and more particularly to new structures for enhancing the extraction of light from LEDs .
- LEDs are an important class of solid state devices that convert electric energy to light and generally comprise an active layer of semiconductor material sandwiched between two oppositely doped layers . When a bias is applied across the doped layers , holes and electrons are injected into the active layer where they recombine to generate light . Light is emitted omnidirectionally from the active layer and from all surfaces of the LED .
- LEDs formed of Group-Ill nitride based material systems because of their unique combination of material characteristics including high breakdown fields , wide bandgaps (3.36 eV for GaN at room temperature) , large conduction band offset, and high saturated electron drift velocity.
- the doped and active layers are typically formed on a substrate that can be made of different materials such as silicon (Si) , silicon carbide (SiC) , and sapphire (Al 2 O 3 ) .
- SiC wafers are often preferred because they ttave" a" TmTch closer crystal lattice match to Group-III nitrides , which results in Group III nitride films of higher quality.
- SiC also has a very high thermal conductivity so that the total output power of Group III nitride devices on SiC is not limited by the thermal resistance of the wafer (as is the case with some devices formed on sapphire or Si) . Also, the availability of semi insulating SiC wafers provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible .
- SiC substrates are available from Cree Inc . , of Durham, North Carolina and methods for producing them are set forth in the scientific literature as well as in U . S . Patents , Nos . Re . 34 , 861 ; 4 , 946 , 547 ; and 5 , 200 , 022.
- TIR total internal reflection
- LEDs with SiC substrates have relatively low light extraction efficiencies because the high index of refraction of SiC (approximately 2.7 ) compared to the index of refraction for the surrounding material , such as epoxy (approximately 1.5) . This difference results in a small escape cone from which light rays from the active area can transmit from the SiC substrate into the epoxy and ultimately escape from the LED package .
- U. S . Patent No . 6 , 410 , 942 assigned to Cree Inc . , discloses an LED structure that includes an array of electrically interconnected micro LEDs formed between first and second spreading layers . When a bias is applied across the spreaders , the micro LEDs emit light . Light from each of the micro LEDs reaches a surface after traveling only a short distance, thereby reducing TIR .
- U. S . Patent No . 6 , 657 , 236 also assigned to Cree Inc . , discloses structures for enhancing light extraction in LEDs through the use of internal and external optical elements formed in an array.
- the optical elements have many different shapes , such as hemispheres and pyramids , and may be located on the surface of, or within, various layers of the LED .
- the elements provide surfaces from which light refracts or scatters .
- the invention is directed to LEDs having enhanced light extraction features .
- the LED includes a p-type layer of material with an associated p-contact , an n-type layer of material with an associated n-contact and an active region between the p-type layer and the n-type layer .
- the LED further includes a confinement structure that is formed within at least one of the p-type layer of material and the n-type layer of material .
- the confinement structure substantially prevents the emission of light from the area of the active region that is coincident with the area of the confinement structure .
- the LED also includes a roughened surface that is associated with one of the p-type and n-type layers of material .
- the LED includes a first layer of material with an associated first contact and first surface through which light is emitted, a second layer of material with an associated second contact and an active region between the first layer and the second layer .
- the LED further includes a confinement structure that is integral with one of the first layer and the second layer .
- the confinement structure is generally axially aligned with the first contact and substantially prevents the emission of light in the area of the active region that is coincident with the area of the confinement structure .
- the LED includes a first layer of material with an associated first contact and first surface through which light is emitted, a second layer of material , an active region between the first layer and the second layer, and a conducting substrate adj acent the second layer of material that has an associated substrate contact .
- the LED further includes at least one confinement structure tenatr is"' ⁇ ' ⁇ 'within one of the first layer, the second layer and the substrate .
- the confinement structure is generally axially aligned with the first contact and directs current flowing toward the active region away from the area of the active region that is coincident with the area of the confinement structure .
- the LED includes a first layer of material with an associated first contact and first surface through which light is emitted, a second layer of material with an associated second contact and an active region between the first layer and the second layer .
- the LED further includes a confinement structure that is associated with the second contact .
- the confinement structure directs current flowing toward the active region away from the area of the active region that is coincident with the area of the confinement structure .
- FIG . 1 is a cross section of one general embodiment of an LED including an active region between two layers of conducting material and a current confinement structure that may be located in either layer of the conducting material ;
- FIG . 2 is a cross section of another general embodiment of an LED including an active region between two layers of conducting material , a substrate , a roughened top surface and a current confinement structure that may be located in either layer of the conducting material or a substrate; ⁇ O 0 ⁇ 5J"FTCJ . "3' Is a cross section of a configuration of the LED of FIG. 1 , including a current confinement structure in a bottom layer of n-type material ;
- FIG . 4 is a cross section of a configuration of the LED of FIG. 2 , including a current confinement structure in a top layer of p-type material and a layer of transparent conducting material having a roughened top surface;
- FIG . 5 is a cross section of a configuration of the LED of FIG. 1 , including a current confinement structure in a bottom layer of p-type material and a layer of n-type material having a roughened top surface;
- FIG . 6 is a cross section of a configuration of the LED of FIG. 1 , including a current confinement structure in a top layer of n-type material and a layer of n-type material having a roughened top surface; and
- FIG . 7 is a cross section of another general embodiment of an LED including an active region between two layers of conducting material , a top side contact , a bottom side contact and a current confinement structure located in the layer of the bottom side contact .
- the present invention provides improved light extraction for light emitting diodes (LEDs) through a confinement structure that is formed within at least one of the p-type layer of material and the n-type layer of material of a base LED structure .
- the confinement structure is generally aligned with the contact on the top and primary emission surface of the LED and substantially prevents the emission of light from the area of the active region that is coincident with the area of the confinement structure and the top-surface contact .
- light that would otherwise emit under and be absorbed by fehS r 'tcp- ⁇ surface" contact is redirected to other regions of the active layer and the emitting side where the absorbing affect of the contact is substantially reduced.
- the current confinement structure is formed within the based LED structure using ion implantation.
- the current confinement structure may also be formed in the LED base structure using selective oxidation .
- the current confinement structure may also be formed as part of the LED structure using epitaxial regrowth .
- the LED may further include a roughed surface around the absorbing contact .
- the roughened surface may be included in all or a portion of the surface area of a layer of the base LED structure or in all or a portion of the surface area of an additional layer of material applied to the base LED structure .
- a layer of transparent material may be added to the p-type layer and roughen that layer .
- a layer of transparent material may also be added to the n-type layer of an n-side up LED structure .
- the combination of a roughened surface and current confinement structure that directs current toward the roughened surface and away from the absorbing contact provides further enhanced light extraction .
- the roughened surface improves light extraction by providing a varying surface that allows light that would otherwise be trapped in the LED by total internal reflection to escape and contribute to light emission.
- an LED 10 including a first layer of material 12 having a first surface 14 through which light is emitted, a secdhd"" ⁇ ayeT 'of" ma'E ' er ⁇ al 16 , and a layer of active material 18 sandwiched between the first layer and the second layer .
- the first layer 12 , second layer 16 and active layer 18 form a base LED structure that is positioned on a support structure 36.
- the base LED structure may be fabricated from different semiconductor material systems such as the Group III nitride based material systems .
- Group III nitrides refer to those semiconductor compounds formed between nitrogen and the elements in the Group III of the periodic table, usually aluminum (Al) , gallium (Ga) , and indium ( In) .
- the term also refers to ternary and tertiary compounds such as AlGaN and AlInGaN.
- the layer of active material 18 is in adjacent contact with the first layer 12 and the second layer 16 , and the material forming the first and second layers is GaN, with either of the first or second layers being p-type material and the other layer being n-type material .
- the material forming the active layer is InGaN.
- the first and second layer material may be AlGaN, AlGaAs or AlGaInP .
- the support structure 36 which may be a substrate or a submount .
- the support structure 36 would be a substrate, with a suitable substrate being a 4H polytype of silicon carbide, although other silicon carbide polytypes can also be used including 3C, 6H and 15R polytypes .
- Silicon carbide has a much closer crystal lattice match to Group III nitrides than sapphire and results in Group III nitride films of higher quality.
- Silicon carbide also has a very high thermal conductivity so that the total output power of Group III nitride devices on silicon carbide is not limited by the thermal dissipation of the substrate (as may be the case with some devices formed on sapphire) . Also, the availability of s ⁇ Picd ⁇ provides the capacity for device isolation and reduced parasitic capacitance that make commercial devices possible .
- SiC substrates are available from Cree, Inc . , of Durham, North Carolina and methods for producing them are set forth in the scientific literature as well as in a U . S . Patents , Nos . Re . 34 , 861 ; 4 , 946 , 547 ; and 5 , 200 , 022. For an n-side up LED configuration, the support structure 36 would be a submount .
- a first contact 22 is associated with the first layer 12 and a second contact 24 is associated with the second layer 16.
- the association of the contacts 22 , 24 with their respective layers 12 , 16 may be direct or indirect .
- a direct association wherein the first contact is in direct contact with the first layer 12 and the second contact 24 is in direct contact with the second layer 16 , is shown in FIG . 1.
- this association may be present when the substrate 36 is formed of a non-conducting material .
- Indirect associations are shown in FIG. 2 and may be present , with respect to the first contact 22 , if the LED includes a layer of transparent conducting material 25 , and for the second contact 24 , if the support structure 36 is a substrate formed of a conducting material .
- the second contact may be formed of a reflective material , such as silver (Ag) , aluminum (Al) or rhodium (Rh) .
- a current confinement structure 20 is integral with and can be formed in different location within the LED, such as within at least one of the first layer 12 , the second layer 16 or the substrate 36 (as shown in FIG. 2) .
- more than one current confinement structure may be used and in one embodiment the current confinement structure 20 may be formed in both the first layer 12 and the second layer 16 with a portion of the active material 18 between the confinement "structu ⁇ fesr" 411 S 1 OV Ih" ' : s" ⁇ m"e 'embodiments, the confinement structure
- the confinement structure 20 may be a region of the layer of material whose crystal structure or molecular properties have been altered through processes known in the art , such as ion implantation or oxidation .
- the confinement structure 20 may be a current blocking layer formed from a material that is oppositely doped relative to the material of the first or second layers 12 , 16. This current blocking layer of material may be incorporated into one or more of the first and second layers through the known process of epitaxial regrowth .
- the current confinement structure 20 is positioned relative to the first contact 22 such that the center 26 or axis of the first contact is generally aligned with the center or axis 28 of the confinement structure .
- the cross-sectional area size of the confinement structure 20 essentially mirrors that of the first contact 22.
- the thickness of the current confinement structure 20 may range anywhere from between 0.1% to 80% of the total thickness of the layer . For example, in an n-type layer of material 1 micron thick, the current confinement structure 20 may be between 0.001 and 0.8 microns thick .
- the current confinement structure 20 directs current 30 that is flowing toward the active region 18 away from the portion 32 of the active region that is substantially coincident with and aligned with the first contact 22. This redirection of current substantially prevents the recombination of current charges , i . e. , "holes” and “electrons , " in the portion 32 of the active region aligned with the first contact 22 , thus essentially rendering the region inactive .
- Light 34 is emitted from the active material 18 and propagates through the LED structure .
- light emits rrotn" CnS 'SCtlve material 18 in all directions for ease of illustration, light in the figures is shown only in the upward direction toward the top or primary emission surface of the LED .
- the top surface is the surface 14 of the top layer of material 12.
- the top surface is a layer of roughened material 25.
- one embodiment of the general LED of FIG . 1 is shown comprising a p-side up LED that includes a first layer 40 of p-type material and a second layer 42 of n-type material .
- the material is GaN.
- the current confinement structure 44 is incorporated into the n- type material layer 42.
- the structure 44 is formed by introducing impurities into the n-type material .
- the introduction of impurities may be done by ion implantation. For example, for an n-type GaN material , either Al or Ga ions may be implanted.
- the current confinement structure 44 may be positioned at any one of several locations along the depth of the n-type layer 42. This may be done by interrupting the growth process of the n-type layer 42 , implanting the impurities into the incomplete n-type layer and then resuming the growth process to complete the rest of the n-type layer .
- the growth process may be any one of various known processes including metal oxide chemical vapor deposition (MOCVD) , hybrid vapor phase epitaxy (HVPE) or molecular beam epitaxy (MBE) .
- An exemplary confinement structure formation process includes implanting the n-layer with 180 keV aluminum ions in doses of 10 13 , 10 14 and 10 15 cm "2 .
- the current confinement structure 44 is located close to active region 50 to effectively prevent n-type current from moving completely around the current confinement structure and back toward the inactive region 54 , and to increase the affect of the structure on the current in the p-type layer on the opposite side of the active region 50.
- FIG . 4 another embodiment of the general LED 10 of FIG . 2 according to the present invention is shown comprising a p-side up LED that is essentially the same as that described with reference to FIG . 3 , except the current confinement structure 44 is located in the p-type layer 40. Also, the substrate 58 is conducting thus allowing for an ifLcLxrecfi """association ' b ' etween the n-contact 48 and the n-type layer 42. A layer of transparent conducting material 56 is included on the p-type layer 40 with a portion of the conducting material layer sandwiched between the p-contact 46 and the p-type layer .
- This layer of material may be formed from ZnO, In 2 O 3 and indium tin oxide (ITO) . At least part of the conducting material layer 56 not covered by the p-contact 46 is roughened, with all of the top surface of the conducting material layer as shown in FIG . 4 being roughened. The combination of the layer of transparent conducting material 56 and localized light generation away from the absorbing contact 46 , provided by the current confinement structure 44 , increases the light extraction efficiency of the LED .
- ITO indium tin oxide
- FIG. 5 Another embodiment of the general LED 10 of FIG . 1 is shown, comprising an n-side up, flip-chip LED that includes a first layer 60 of n-type material and a second layer 62 of p-type material .
- the substrate which is typically adj acent to the first n-type layer 60 is removed to reveal the top primary emitting surface of the LED.
- the LED material is GaN.
- the current confinement structure 64 is incorporated into the p-type material layer 62 prior to flipping layers 60 , 62 , 64 and p-contact substructure onto a submount 78.
- the confinement structure 64 is formed by introducing impurities into the p-type material by ion implantation during growth. For example, for a p-type GaN material , either Al or Ga ions may be implanted.
- the top surface 66 of the n-type layer is roughened to form a roughened light extraction surface .
- the roughened surface may be provided by etching, using any one of several methods known in the art , such as photoelectrochemical (PEC) etching .
- PEC photoelectrochemical
- the roughened surface is added directly to ' the n-type layer instead of through a separately added layer of transparent conducting material , as is typically required for p-side up LEDs , due to the relative thinness of the p- layer .
- the current confinement structure 64 may be positioned at various locations along the depth of the p-type layer 62 by interrupting the growth process of the p-type layer, implanting the impurities into the incomplete p-type layer and then resuming the growth process to complete the layer .
- the current confinement structure 64 is located close to active region 72 to effectively prevent p- type current from moving completely around the current confinement structure and back toward the inactive region 76 , and to increase the affect of the structure on the current in the n-type layer on the opposite side of the active region 72.
- an LED 100 including a first layer of material 102 having a first surface 104 through which most of the light is emitted, a second layer of material 106 and a layer of active material 108 sandwiched between the first layer and the second layer .
- the layer of active material 108 is in adj acent contact with the first layer 102 and the second layer 106 , and the material forming the first and second layers is GaN and the material forming the active layer is InGaN.
- the first and second layer material may be AlGaN, AlGaAs or AlGaInP .
- a first contact 110 is associated with the first layer 102 and a second contact 112 is associated with the second layer 106.
- a current confinement structure 114 is included in the layer of the second contact 112 and is positioned relative to the first contact 110 such that the center 116 or axis of the first contact is generally aligned with the center or axis 118 of the confinement structure .
- the layer of the second contact 112 and the confinement structure 114 is formed by depositing a layer of contact material , etching away a portion of the layer of contact material and replacing it with the material of the confinement structure .
- the confinement structure 114 is formed of an insulating, non-conducting material , such as SiO 2 , AlN and SiN, and has a cross-sectional area size essentially the same as that of the first contact 110.
- the current confinement structure 114 directs current 120 that is flowing toward the active region 108 away from the portion 122 of the active region that is substantially coincident with and aligned with the first contact 110. This redirection of current substantially prevents the recombination of current charges , i . e. , "holes” and “electrons , " in the portion 122 of the active region aligned ' with ' t ' he " " "£irst contact 110 , thus essentially rendering the region inactive .
- the general LED of FIG. 7 may be formed such that the first layer 102 is either one of an n-type layer or a p-type layer and the second layer 106 is a type of layer opposite that of the first layer .
- the LED 100 may also include a surface roughening, either in the form of a roughened top surface of the first layer 102 or an additional layer of transparent conducting material having a roughened top surface .
- FIGs . 1-7 may be incorporated into other LED configurations .
- the LEDs of FIGs . 1-7 have contacts in a vertical arrangement , i . e. , on opposite sides of the LED
- the invention may be applied to LEDs having laterally arranged contacts, i . e. , on the same side of the LED, such as resonant cavity LEDs .
Landscapes
- Led Devices (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10181491.1A EP2267803B1 (en) | 2005-01-24 | 2005-09-15 | LED with current confinement structure and surface roughening |
| AT05806491T ATE524838T1 (de) | 2005-01-24 | 2005-09-15 | Led mit strombegrenzungsstruktur und oberflächenaufrauhung |
| JP2007552114A JP2008529271A (ja) | 2005-01-24 | 2005-09-15 | 電流閉じ込め構造および粗面処理を有するled |
| EP05806491A EP1849193B1 (en) | 2005-01-24 | 2005-09-15 | LED with current confinement structure and surface roughening |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/042,030 US7335920B2 (en) | 2005-01-24 | 2005-01-24 | LED with current confinement structure and surface roughening |
| US11/042,030 | 2005-01-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2006080958A1 true WO2006080958A1 (en) | 2006-08-03 |
Family
ID=36228795
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2005/036552 Ceased WO2006080958A1 (en) | 2005-01-24 | 2005-09-15 | Led with curent confinement structure and surface roughening |
Country Status (7)
| Country | Link |
|---|---|
| US (5) | US7335920B2 (enExample) |
| EP (2) | EP1849193B1 (enExample) |
| JP (3) | JP2008529271A (enExample) |
| CN (1) | CN101107720A (enExample) |
| AT (1) | ATE524838T1 (enExample) |
| TW (1) | TWI372471B (enExample) |
| WO (1) | WO2006080958A1 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007046519A1 (de) * | 2007-09-28 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung |
| WO2009128669A3 (ko) * | 2008-04-16 | 2010-01-14 | 엘지이노텍주식회사 | 발광 소자 및 그 제조방법 |
| EP2224501A1 (en) * | 2009-02-16 | 2010-09-01 | LG Innotek Co., Ltd. | Semiconductor light emitting device |
| JP2012043893A (ja) * | 2010-08-17 | 2012-03-01 | Toshiba Corp | 半導体発光素子及びその製造方法 |
Families Citing this family (182)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8545629B2 (en) | 2001-12-24 | 2013-10-01 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
| US20060005763A1 (en) * | 2001-12-24 | 2006-01-12 | Crystal Is, Inc. | Method and apparatus for producing large, single-crystals of aluminum nitride |
| US7638346B2 (en) * | 2001-12-24 | 2009-12-29 | Crystal Is, Inc. | Nitride semiconductor heterostructures and related methods |
| US8034643B2 (en) | 2003-09-19 | 2011-10-11 | Tinggi Technologies Private Limited | Method for fabrication of a semiconductor device |
| KR20070013273A (ko) * | 2004-03-15 | 2007-01-30 | 팅기 테크놀러지스 프라이빗 리미티드 | 반도체 장치의 제조 |
| CN1998094B (zh) | 2004-04-07 | 2012-12-26 | 霆激技术有限公司 | 半导体发光二极管上的反射层的制造 |
| US20060002442A1 (en) * | 2004-06-30 | 2006-01-05 | Kevin Haberern | Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures |
| US7795623B2 (en) * | 2004-06-30 | 2010-09-14 | Cree, Inc. | Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures |
| US8174037B2 (en) | 2004-09-22 | 2012-05-08 | Cree, Inc. | High efficiency group III nitride LED with lenticular surface |
| US7335920B2 (en) * | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
| US8097897B2 (en) * | 2005-06-21 | 2012-01-17 | Epistar Corporation | High-efficiency light-emitting device and manufacturing method thereof |
| JP2006310721A (ja) * | 2005-03-28 | 2006-11-09 | Yokohama National Univ | 自発光デバイス |
| KR20080030020A (ko) * | 2005-06-17 | 2008-04-03 | 더 리전츠 오브 더 유니버시티 오브 캘리포니아 | 광전자 어플리캐이션을 위한 (Al,Ga,In)N 및 ZnO직접 웨이퍼-접착 구조 및 그 제조방법 |
| US8674375B2 (en) * | 2005-07-21 | 2014-03-18 | Cree, Inc. | Roughened high refractive index layer/LED for high light extraction |
| SG130975A1 (en) * | 2005-09-29 | 2007-04-26 | Tinggi Tech Private Ltd | Fabrication of semiconductor devices for light emission |
| SG131803A1 (en) * | 2005-10-19 | 2007-05-28 | Tinggi Tech Private Ltd | Fabrication of transistors |
| US7641735B2 (en) * | 2005-12-02 | 2010-01-05 | Crystal Is, Inc. | Doped aluminum nitride crystals and methods of making them |
| SG133432A1 (en) * | 2005-12-20 | 2007-07-30 | Tinggi Tech Private Ltd | Localized annealing during semiconductor device fabrication |
| US7888686B2 (en) * | 2005-12-28 | 2011-02-15 | Group Iv Semiconductor Inc. | Pixel structure for a solid state light emitting device |
| JP2009530798A (ja) * | 2006-01-05 | 2009-08-27 | イルミテックス, インコーポレイテッド | Ledから光を導くための独立した光学デバイス |
| KR100735488B1 (ko) * | 2006-02-03 | 2007-07-04 | 삼성전기주식회사 | 질화갈륨계 발광다이오드 소자의 제조방법 |
| US9034103B2 (en) | 2006-03-30 | 2015-05-19 | Crystal Is, Inc. | Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them |
| CN101454487B (zh) * | 2006-03-30 | 2013-01-23 | 晶体公司 | 氮化铝块状晶体的可控掺杂方法 |
| US20080008964A1 (en) * | 2006-07-05 | 2008-01-10 | Chia-Hua Chan | Light emitting diode and method of fabricating a nano/micro structure |
| SG140473A1 (en) * | 2006-08-16 | 2008-03-28 | Tinggi Tech Private Ltd | Improvements in external light efficiency of light emitting diodes |
| SG140512A1 (en) * | 2006-09-04 | 2008-03-28 | Tinggi Tech Private Ltd | Electrical current distribution in light emitting devices |
| EP2070123A2 (en) | 2006-10-02 | 2009-06-17 | Illumitex, Inc. | Led system and method |
| US20090275266A1 (en) * | 2006-10-02 | 2009-11-05 | Illumitex, Inc. | Optical device polishing |
| KR100826412B1 (ko) * | 2006-11-03 | 2008-04-29 | 삼성전기주식회사 | 질화물 반도체 발광 소자 및 제조방법 |
| KR100867529B1 (ko) * | 2006-11-14 | 2008-11-10 | 삼성전기주식회사 | 수직형 발광 소자 |
| US20080116578A1 (en) * | 2006-11-21 | 2008-05-22 | Kuan-Chen Wang | Initiation layer for reducing stress transition due to curing |
| WO2008073400A1 (en) | 2006-12-11 | 2008-06-19 | The Regents Of The University Of California | Transparent light emitting diodes |
| CN107059116B (zh) | 2007-01-17 | 2019-12-31 | 晶体公司 | 引晶的氮化铝晶体生长中的缺陷减少 |
| US9771666B2 (en) | 2007-01-17 | 2017-09-26 | Crystal Is, Inc. | Defect reduction in seeded aluminum nitride crystal growth |
| US9437430B2 (en) * | 2007-01-26 | 2016-09-06 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
| US8080833B2 (en) * | 2007-01-26 | 2011-12-20 | Crystal Is, Inc. | Thick pseudomorphic nitride epitaxial layers |
| DE102007022947B4 (de) | 2007-04-26 | 2022-05-05 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen |
| US20080283503A1 (en) * | 2007-05-14 | 2008-11-20 | Cheng-Yi Liu | Method of Processing Nature Pattern on Expitaxial Substrate |
| JP2008294188A (ja) * | 2007-05-24 | 2008-12-04 | Toyoda Gosei Co Ltd | 半導体発光素子及びその製造方法 |
| US8088220B2 (en) | 2007-05-24 | 2012-01-03 | Crystal Is, Inc. | Deep-eutectic melt growth of nitride crystals |
| US8148733B2 (en) * | 2007-06-12 | 2012-04-03 | SemiLEDs Optoelectronics Co., Ltd. | Vertical LED with current guiding structure |
| US9461201B2 (en) | 2007-11-14 | 2016-10-04 | Cree, Inc. | Light emitting diode dielectric mirror |
| US7915629B2 (en) | 2008-12-08 | 2011-03-29 | Cree, Inc. | Composite high reflectivity layer |
| US8368100B2 (en) * | 2007-11-14 | 2013-02-05 | Cree, Inc. | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
| US8536584B2 (en) * | 2007-11-14 | 2013-09-17 | Cree, Inc. | High voltage wire bond free LEDS |
| WO2009100358A1 (en) * | 2008-02-08 | 2009-08-13 | Illumitex, Inc. | System and method for emitter layer shaping |
| US20090242929A1 (en) * | 2008-03-31 | 2009-10-01 | Chao-Kun Lin | Light emitting diodes with patterned current blocking metal contact |
| US8664747B2 (en) * | 2008-04-28 | 2014-03-04 | Toshiba Techno Center Inc. | Trenched substrate for crystal growth and wafer bonding |
| CN101990714B (zh) * | 2008-04-30 | 2012-11-28 | Lg伊诺特有限公司 | 发光器件和用于制造发光器件的方法 |
| KR101047634B1 (ko) * | 2008-11-24 | 2011-07-07 | 엘지이노텍 주식회사 | 발광 소자 및 그 제조방법 |
| TW201034256A (en) * | 2008-12-11 | 2010-09-16 | Illumitex Inc | Systems and methods for packaging light-emitting diode devices |
| US8096671B1 (en) | 2009-04-06 | 2012-01-17 | Nmera, Llc | Light emitting diode illumination system |
| US8529102B2 (en) * | 2009-04-06 | 2013-09-10 | Cree, Inc. | Reflector system for lighting device |
| US8476668B2 (en) * | 2009-04-06 | 2013-07-02 | Cree, Inc. | High voltage low current surface emitting LED |
| US9093293B2 (en) | 2009-04-06 | 2015-07-28 | Cree, Inc. | High voltage low current surface emitting light emitting diode |
| JP2010263085A (ja) * | 2009-05-07 | 2010-11-18 | Toshiba Corp | 発光素子 |
| US8207547B2 (en) | 2009-06-10 | 2012-06-26 | Brudgelux, Inc. | Thin-film LED with P and N contacts electrically isolated from the substrate |
| US20100314551A1 (en) * | 2009-06-11 | 2010-12-16 | Bettles Timothy J | In-line Fluid Treatment by UV Radiation |
| JP2011013083A (ja) * | 2009-07-01 | 2011-01-20 | Canon Inc | 測定装置及びそれを用いた機器 |
| US8449128B2 (en) * | 2009-08-20 | 2013-05-28 | Illumitex, Inc. | System and method for a lens and phosphor layer |
| US8585253B2 (en) | 2009-08-20 | 2013-11-19 | Illumitex, Inc. | System and method for color mixing lens array |
| TWI405409B (zh) * | 2009-08-27 | 2013-08-11 | Novatek Microelectronics Corp | 低電壓差動訊號輸出級 |
| US9362459B2 (en) | 2009-09-02 | 2016-06-07 | United States Department Of Energy | High reflectivity mirrors and method for making same |
| US9435493B2 (en) * | 2009-10-27 | 2016-09-06 | Cree, Inc. | Hybrid reflector system for lighting device |
| US8525221B2 (en) * | 2009-11-25 | 2013-09-03 | Toshiba Techno Center, Inc. | LED with improved injection efficiency |
| TWI398965B (zh) * | 2009-11-25 | 2013-06-11 | Formosa Epitaxy Inc | 發光二極體晶片及其封裝結構 |
| KR100986523B1 (ko) * | 2010-02-08 | 2010-10-07 | 엘지이노텍 주식회사 | 반도체 발광소자 및 그 제조방법 |
| US8860077B2 (en) * | 2010-02-12 | 2014-10-14 | Lg Innotek Co., Ltd. | Light emitting device and light emitting device package including the same |
| US9064693B2 (en) | 2010-03-01 | 2015-06-23 | Kirsteen Mgmt. Group Llc | Deposition of thin film dielectrics and light emitting nano-layer structures |
| RU2434315C1 (ru) | 2010-03-15 | 2011-11-20 | Юрий Георгиевич Шретер | Светоизлучающее устройство с гетерофазными границами |
| US8597962B2 (en) | 2010-03-31 | 2013-12-03 | Varian Semiconductor Equipment Associates, Inc. | Vertical structure LED current spreading by implanted regions |
| US9105824B2 (en) | 2010-04-09 | 2015-08-11 | Cree, Inc. | High reflective board or substrate for LEDs |
| US9012938B2 (en) | 2010-04-09 | 2015-04-21 | Cree, Inc. | High reflective substrate of light emitting devices with improved light output |
| KR101014071B1 (ko) * | 2010-04-15 | 2011-02-10 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 조명 시스템 |
| WO2012003304A1 (en) | 2010-06-30 | 2012-01-05 | Crystal Is, Inc. | Growth of large aluminum nitride single crystals with thermal-gradient control |
| US9287452B2 (en) | 2010-08-09 | 2016-03-15 | Micron Technology, Inc. | Solid state lighting devices with dielectric insulation and methods of manufacturing |
| US8764224B2 (en) | 2010-08-12 | 2014-07-01 | Cree, Inc. | Luminaire with distributed LED sources |
| KR101657631B1 (ko) * | 2010-08-23 | 2016-09-19 | 엘지이노텍 주식회사 | 발광 소자 |
| US8502244B2 (en) * | 2010-08-31 | 2013-08-06 | Micron Technology, Inc. | Solid state lighting devices with current routing and associated methods of manufacturing |
| US9070851B2 (en) | 2010-09-24 | 2015-06-30 | Seoul Semiconductor Co., Ltd. | Wafer-level light emitting diode package and method of fabricating the same |
| US8455882B2 (en) | 2010-10-15 | 2013-06-04 | Cree, Inc. | High efficiency LEDs |
| WO2012058535A1 (en) * | 2010-10-28 | 2012-05-03 | The Regents Of The University Of California | Method for fabrication of (al, in, ga) nitride based vertical light emitting diodes with enhanced current spreading of n-type electrode |
| US20120241788A1 (en) * | 2010-10-29 | 2012-09-27 | Sionyx, Inc. | Textured Light Emitting Devices and Methods of Making the Same |
| CN102468377A (zh) * | 2010-11-23 | 2012-05-23 | 孙智江 | 一种提高电流扩展效应的led制作方法 |
| RU2494498C2 (ru) | 2011-02-24 | 2013-09-27 | Юрий Георгиевич Шретер | Светоизлучающее полупроводниковое устройство |
| US8680556B2 (en) | 2011-03-24 | 2014-03-25 | Cree, Inc. | Composite high reflectivity layer |
| EP2528114A3 (en) * | 2011-05-23 | 2014-07-09 | LG Innotek Co., Ltd. | Light emitting device, light emitting device package, and light unit |
| US9337387B2 (en) | 2011-06-15 | 2016-05-10 | Sensor Electronic Technology, Inc. | Emitting device with improved extraction |
| US10319881B2 (en) | 2011-06-15 | 2019-06-11 | Sensor Electronic Technology, Inc. | Device including transparent layer with profiled surface for improved extraction |
| JP2014517544A (ja) | 2011-06-15 | 2014-07-17 | センサー エレクトロニック テクノロジー インコーポレイテッド | 大型の逆さ光取り出し構造付の装置 |
| US9142741B2 (en) | 2011-06-15 | 2015-09-22 | Sensor Electronic Technology, Inc. | Emitting device with improved extraction |
| US9741899B2 (en) | 2011-06-15 | 2017-08-22 | Sensor Electronic Technology, Inc. | Device with inverted large scale light extraction structures |
| US10522714B2 (en) | 2011-06-15 | 2019-12-31 | Sensor Electronic Technology, Inc. | Device with inverted large scale light extraction structures |
| US10243121B2 (en) | 2011-06-24 | 2019-03-26 | Cree, Inc. | High voltage monolithic LED chip with improved reliability |
| US8686429B2 (en) | 2011-06-24 | 2014-04-01 | Cree, Inc. | LED structure with enhanced mirror reflectivity |
| US9728676B2 (en) | 2011-06-24 | 2017-08-08 | Cree, Inc. | High voltage monolithic LED chip |
| US20130001510A1 (en) * | 2011-06-29 | 2013-01-03 | SemiLEDs Optoelectronics Co., Ltd. | Optoelectronic device having current blocking insulation layer for uniform temperature distribution and method of fabrication |
| US8395165B2 (en) | 2011-07-08 | 2013-03-12 | Bridelux, Inc. | Laterally contacted blue LED with superlattice current spreading layer |
| US8962359B2 (en) | 2011-07-19 | 2015-02-24 | Crystal Is, Inc. | Photon extraction from nitride ultraviolet light-emitting devices |
| JP6056154B2 (ja) * | 2011-07-21 | 2017-01-11 | 富士ゼロックス株式会社 | 発光素子、発光素子アレイ、光書込みヘッドおよび画像形成装置 |
| US20130026480A1 (en) | 2011-07-25 | 2013-01-31 | Bridgelux, Inc. | Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow |
| US8916906B2 (en) | 2011-07-29 | 2014-12-23 | Kabushiki Kaisha Toshiba | Boron-containing buffer layer for growing gallium nitride on silicon |
| US9142743B2 (en) | 2011-08-02 | 2015-09-22 | Kabushiki Kaisha Toshiba | High temperature gold-free wafer bonding for light emitting diodes |
| US8865565B2 (en) | 2011-08-02 | 2014-10-21 | Kabushiki Kaisha Toshiba | LED having a low defect N-type layer that has grown on a silicon substrate |
| US9012939B2 (en) | 2011-08-02 | 2015-04-21 | Kabushiki Kaisha Toshiba | N-type gallium-nitride layer having multiple conductive intervening layers |
| US9343641B2 (en) | 2011-08-02 | 2016-05-17 | Manutius Ip, Inc. | Non-reactive barrier metal for eutectic bonding process |
| US20130032810A1 (en) | 2011-08-03 | 2013-02-07 | Bridgelux, Inc. | Led on silicon substrate using zinc-sulfide as buffer layer |
| US8564010B2 (en) | 2011-08-04 | 2013-10-22 | Toshiba Techno Center Inc. | Distributed current blocking structures for light emitting diodes |
| US9059362B2 (en) * | 2011-08-30 | 2015-06-16 | Fuji Xerox Co., Ltd. | Light emitting element, light emitting element array, optical writing head, and image forming apparatus |
| US8624482B2 (en) | 2011-09-01 | 2014-01-07 | Toshiba Techno Center Inc. | Distributed bragg reflector for reflecting light of multiple wavelengths from an LED |
| US8669585B1 (en) | 2011-09-03 | 2014-03-11 | Toshiba Techno Center Inc. | LED that has bounding silicon-doped regions on either side of a strain release layer |
| WO2013033841A1 (en) | 2011-09-06 | 2013-03-14 | Trilogy Environmental Systems Inc. | Hybrid desalination system |
| US9324560B2 (en) | 2011-09-06 | 2016-04-26 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
| US10032956B2 (en) | 2011-09-06 | 2018-07-24 | Sensor Electronic Technology, Inc. | Patterned substrate design for layer growth |
| US8558247B2 (en) | 2011-09-06 | 2013-10-15 | Toshiba Techno Center Inc. | GaN LEDs with improved area and method for making the same |
| US8686430B2 (en) | 2011-09-07 | 2014-04-01 | Toshiba Techno Center Inc. | Buffer layer for GaN-on-Si LED |
| US8664679B2 (en) | 2011-09-29 | 2014-03-04 | Toshiba Techno Center Inc. | Light emitting devices having light coupling layers with recessed electrodes |
| US9012921B2 (en) | 2011-09-29 | 2015-04-21 | Kabushiki Kaisha Toshiba | Light emitting devices having light coupling layers |
| US9178114B2 (en) | 2011-09-29 | 2015-11-03 | Manutius Ip, Inc. | P-type doping layers for use with light emitting devices |
| US8698163B2 (en) | 2011-09-29 | 2014-04-15 | Toshiba Techno Center Inc. | P-type doping layers for use with light emitting devices |
| US8853668B2 (en) | 2011-09-29 | 2014-10-07 | Kabushiki Kaisha Toshiba | Light emitting regions for use with light emitting devices |
| US20130082274A1 (en) | 2011-09-29 | 2013-04-04 | Bridgelux, Inc. | Light emitting devices having dislocation density maintaining buffer layers |
| US8581267B2 (en) | 2011-11-09 | 2013-11-12 | Toshiba Techno Center Inc. | Series connected segmented LED |
| US8552465B2 (en) | 2011-11-09 | 2013-10-08 | Toshiba Techno Center Inc. | Method for reducing stress in epitaxial growth |
| US9847372B2 (en) | 2011-12-01 | 2017-12-19 | Micron Technology, Inc. | Solid state transducer devices with separately controlled regions, and associated systems and methods |
| CN103137809A (zh) * | 2011-12-05 | 2013-06-05 | 联胜光电股份有限公司 | 一种具电流扩散结构的发光二极管与其制造方法 |
| US20130161669A1 (en) * | 2011-12-23 | 2013-06-27 | Fu-Bang CHEN | Light-emitting diode with current diffusion structure and a method for fabricating the same |
| CN103383982A (zh) * | 2012-05-03 | 2013-11-06 | 联胜光电股份有限公司 | 发光二极管的电极接触结构 |
| US9437783B2 (en) | 2012-05-08 | 2016-09-06 | Cree, Inc. | Light emitting diode (LED) contact structures and process for fabricating the same |
| US9450152B2 (en) | 2012-05-29 | 2016-09-20 | Micron Technology, Inc. | Solid state transducer dies having reflective features over contacts and associated systems and methods |
| US9559258B2 (en) | 2012-06-01 | 2017-01-31 | Koninklijke Philips N.V. | Light extraction using feature size and shape control in LED surface roughening |
| KR101936267B1 (ko) * | 2012-06-08 | 2019-01-08 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 라이트 유닛 |
| CN103682020A (zh) * | 2012-08-31 | 2014-03-26 | 展晶科技(深圳)有限公司 | 发光二极管晶粒的制造方法 |
| US8814376B2 (en) | 2012-09-26 | 2014-08-26 | Apogee Translite, Inc. | Lighting devices |
| CN102903817B (zh) * | 2012-10-31 | 2015-04-22 | 安徽三安光电有限公司 | 具有反射电极的发光装置 |
| JP6275817B2 (ja) | 2013-03-15 | 2018-02-07 | クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. | 仮像電子及び光学電子装置に対する平面コンタクト |
| JP6100567B2 (ja) * | 2013-03-18 | 2017-03-22 | スタンレー電気株式会社 | 半導体発光素子とその製造方法 |
| US11435064B1 (en) | 2013-07-05 | 2022-09-06 | DMF, Inc. | Integrated lighting module |
| US10753558B2 (en) | 2013-07-05 | 2020-08-25 | DMF, Inc. | Lighting apparatus and methods |
| US11060705B1 (en) | 2013-07-05 | 2021-07-13 | DMF, Inc. | Compact lighting apparatus with AC to DC converter and integrated electrical connector |
| US9964266B2 (en) | 2013-07-05 | 2018-05-08 | DMF, Inc. | Unified driver and light source assembly for recessed lighting |
| US10563850B2 (en) | 2015-04-22 | 2020-02-18 | DMF, Inc. | Outer casing for a recessed lighting fixture |
| US11255497B2 (en) | 2013-07-05 | 2022-02-22 | DMF, Inc. | Adjustable electrical apparatus with hangar bars for installation in a building |
| US10591120B2 (en) | 2015-05-29 | 2020-03-17 | DMF, Inc. | Lighting module for recessed lighting systems |
| US10139059B2 (en) | 2014-02-18 | 2018-11-27 | DMF, Inc. | Adjustable compact recessed lighting assembly with hangar bars |
| US10551044B2 (en) | 2015-11-16 | 2020-02-04 | DMF, Inc. | Recessed lighting assembly |
| TWI597863B (zh) * | 2013-10-22 | 2017-09-01 | 晶元光電股份有限公司 | 發光元件及其製造方法 |
| KR102140278B1 (ko) * | 2014-04-18 | 2020-07-31 | 엘지이노텍 주식회사 | 발광 소자 |
| JP6303805B2 (ja) * | 2014-05-21 | 2018-04-04 | 日亜化学工業株式会社 | 発光装置及びその製造方法 |
| US10658546B2 (en) | 2015-01-21 | 2020-05-19 | Cree, Inc. | High efficiency LEDs and methods of manufacturing |
| USD851046S1 (en) | 2015-10-05 | 2019-06-11 | DMF, Inc. | Electrical Junction Box |
| US10461221B2 (en) | 2016-01-18 | 2019-10-29 | Sensor Electronic Technology, Inc. | Semiconductor device with improved light propagation |
| CN205944139U (zh) | 2016-03-30 | 2017-02-08 | 首尔伟傲世有限公司 | 紫外线发光二极管封装件以及包含此的发光二极管模块 |
| WO2018038927A1 (en) | 2016-08-26 | 2018-03-01 | The Penn State Research Foundation | High light-extraction efficiency (lee) light-emitting diode (led) |
| WO2018204402A1 (en) | 2017-05-01 | 2018-11-08 | Ohio State Innovation Foundation | Tunnel junction ultraviolet light emitting diodes with enhanced light extraction efficiency |
| WO2018237294A2 (en) | 2017-06-22 | 2018-12-27 | DMF, Inc. | Thin profile surface mount lighting apparatus |
| USD905327S1 (en) | 2018-05-17 | 2020-12-15 | DMF, Inc. | Light fixture |
| US10488000B2 (en) | 2017-06-22 | 2019-11-26 | DMF, Inc. | Thin profile surface mount lighting apparatus |
| US11067231B2 (en) | 2017-08-28 | 2021-07-20 | DMF, Inc. | Alternate junction box and arrangement for lighting apparatus |
| CN114719211A (zh) | 2017-11-28 | 2022-07-08 | Dmf股份有限公司 | 可调整的吊架杆组合件 |
| WO2019133669A1 (en) | 2017-12-27 | 2019-07-04 | DMF, Inc. | Methods and apparatus for adjusting a luminaire |
| USD877957S1 (en) | 2018-05-24 | 2020-03-10 | DMF Inc. | Light fixture |
| CA3103255A1 (en) | 2018-06-11 | 2019-12-19 | DMF, Inc. | A polymer housing for a recessed lighting system and methods for using same |
| USD903605S1 (en) | 2018-06-12 | 2020-12-01 | DMF, Inc. | Plastic deep electrical junction box |
| CN110957204A (zh) * | 2018-09-26 | 2020-04-03 | 中国科学院苏州纳米技术与纳米仿生研究所 | Iii族氮化物光电子器件的制作方法 |
| WO2020072592A1 (en) | 2018-10-02 | 2020-04-09 | Ver Lighting Llc | A bar hanger assembly with mating telescoping bars |
| WO2020073294A1 (zh) | 2018-10-11 | 2020-04-16 | 厦门市三安光电科技有限公司 | 一种发光二极管芯片及其制作方法 |
| US11695093B2 (en) | 2018-11-21 | 2023-07-04 | Analog Devices, Inc. | Superlattice photodetector/light emitting diode |
| USD901398S1 (en) | 2019-01-29 | 2020-11-10 | DMF, Inc. | Plastic deep electrical junction box |
| USD864877S1 (en) | 2019-01-29 | 2019-10-29 | DMF, Inc. | Plastic deep electrical junction box with a lighting module mounting yoke |
| USD1012864S1 (en) | 2019-01-29 | 2024-01-30 | DMF, Inc. | Portion of a plastic deep electrical junction box |
| USD966877S1 (en) | 2019-03-14 | 2022-10-18 | Ver Lighting Llc | Hanger bar for a hanger bar assembly |
| CA3154491A1 (en) | 2019-09-12 | 2021-03-18 | DMF, Inc. | Miniature lighting module and lighting fixtures using same |
| DE102020106113A1 (de) * | 2020-03-06 | 2021-09-09 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierender halbleiterkörper, strahlungsemittierender halbleiterchip und verfahren zur herstellung eines strahlungsemittierenden halbleiterkörpers |
| US11592166B2 (en) | 2020-05-12 | 2023-02-28 | Feit Electric Company, Inc. | Light emitting device having improved illumination and manufacturing flexibility |
| US12203631B2 (en) | 2020-07-16 | 2025-01-21 | DMF, Inc. | Round metal housing for a lighting system |
| USD990030S1 (en) | 2020-07-17 | 2023-06-20 | DMF, Inc. | Housing for a lighting system |
| CA3124987A1 (en) | 2020-07-17 | 2022-01-17 | DMF, Inc. | Bar hanger assembly with crossmembers and housing assemblies using same |
| CA3124976A1 (en) | 2020-07-17 | 2022-01-17 | DMF, Inc. | Polymer housing for a lighting system and methods for using same |
| US11585517B2 (en) | 2020-07-23 | 2023-02-21 | DMF, Inc. | Lighting module having field-replaceable optics, improved cooling, and tool-less mounting features |
| US11876042B2 (en) | 2020-08-03 | 2024-01-16 | Feit Electric Company, Inc. | Omnidirectional flexible light emitting device |
| CN115458647B (zh) * | 2022-10-31 | 2025-08-19 | 天津三安光电有限公司 | 一种垂直led芯片结构及其制造方法及发光装置 |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01295469A (ja) * | 1988-01-29 | 1989-11-29 | Hitachi Cable Ltd | 発光ダイオード |
| JPH0629570A (ja) * | 1992-07-07 | 1994-02-04 | Mitsubishi Cable Ind Ltd | 発光素子構造 |
| DE4422660A1 (de) * | 1993-06-30 | 1995-02-09 | Mitsubishi Chem Ind | Lichtaussendende Vorrichtung |
| JPH08167738A (ja) * | 1994-12-14 | 1996-06-25 | Sanken Electric Co Ltd | 半導体発光素子 |
| JPH08213649A (ja) * | 1995-02-01 | 1996-08-20 | Sanken Electric Co Ltd | 半導体発光素子 |
| US5565694A (en) * | 1995-07-10 | 1996-10-15 | Huang; Kuo-Hsin | Light emitting diode with current blocking layer |
| JPH08288550A (ja) * | 1995-04-10 | 1996-11-01 | Sanken Electric Co Ltd | 半導体発光素子及びその製造方法 |
| JPH0974221A (ja) * | 1995-09-05 | 1997-03-18 | Sharp Corp | 半導体発光素子 |
| US6420732B1 (en) * | 2000-06-26 | 2002-07-16 | Luxnet Corporation | Light emitting diode of improved current blocking and light extraction structure |
| US6455343B1 (en) * | 2000-03-28 | 2002-09-24 | United Epitaxy Company, Ltd. | Method of manufacturing light emitting diode with current blocking structure |
| US20020163007A1 (en) * | 2001-05-01 | 2002-11-07 | Yukio Matsumoto | Semiconductor light emitting device and method for manufacturing the same |
| JP2004047760A (ja) * | 2002-07-12 | 2004-02-12 | Hitachi Cable Ltd | 発光ダイオード用エピタキシャルウェハ及び発光ダイオード |
Family Cites Families (132)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US34861A (en) * | 1862-04-01 | Improved washing-machine | ||
| US1A (en) * | 1836-07-13 | John Ruggles | Locomotive steam-engine for rail and other roads | |
| US745098A (en) * | 1902-10-17 | 1903-11-24 | Vagnfabriks Aktiebolaget I Soedertelge | Internal-combustion engine. |
| US4866005A (en) | 1987-10-26 | 1989-09-12 | North Carolina State University | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
| US4864370A (en) | 1987-11-16 | 1989-09-05 | Motorola, Inc. | Electrical contact for an LED |
| JPH0278280A (ja) * | 1988-09-14 | 1990-03-19 | Ricoh Co Ltd | 半導体発光装置 |
| US5027168A (en) | 1988-12-14 | 1991-06-25 | Cree Research, Inc. | Blue light emitting diode formed in silicon carbide |
| US4918497A (en) | 1988-12-14 | 1990-04-17 | Cree Research, Inc. | Blue light emitting diode formed in silicon carbide |
| JPH02181980A (ja) | 1989-01-09 | 1990-07-16 | Daido Steel Co Ltd | 発光ダイオード |
| US5153889A (en) * | 1989-05-31 | 1992-10-06 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
| US5048035A (en) | 1989-05-31 | 1991-09-10 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device |
| JP3117203B2 (ja) | 1989-08-31 | 2000-12-11 | 株式会社東芝 | 発光ダイオードおよびその製造方法 |
| US4966862A (en) | 1989-08-28 | 1990-10-30 | Cree Research, Inc. | Method of production of light emitting diodes |
| US4946547A (en) * | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
| US5210051A (en) | 1990-03-27 | 1993-05-11 | Cree Research, Inc. | High efficiency light emitting diodes from bipolar gallium nitride |
| JP3114978B2 (ja) * | 1990-03-30 | 2000-12-04 | 株式会社東芝 | 半導体発光素子 |
| US5200022A (en) * | 1990-10-03 | 1993-04-06 | Cree Research, Inc. | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
| JPH04264781A (ja) | 1991-02-20 | 1992-09-21 | Eastman Kodak Japan Kk | 発光ダイオードアレイ |
| JP3089568B2 (ja) | 1991-06-26 | 2000-09-18 | 能美防災株式会社 | スプリンクラ消火設備の自動寸法測定装置 |
| JP2856374B2 (ja) | 1992-02-24 | 1999-02-10 | シャープ株式会社 | 半導体発光素子及びその製造方法 |
| JP2798545B2 (ja) | 1992-03-03 | 1998-09-17 | シャープ株式会社 | 半導体発光素子及びその製造方法 |
| US5245622A (en) | 1992-05-07 | 1993-09-14 | Bandgap Technology Corporation | Vertical-cavity surface-emitting lasers with intra-cavity structures |
| JPH0682862A (ja) * | 1992-09-04 | 1994-03-25 | Sumitomo Metal Mining Co Ltd | 半導体レーザ励起固体レーザ装置 |
| DE4305296C3 (de) | 1993-02-20 | 1999-07-15 | Vishay Semiconductor Gmbh | Verfahren zum Herstellen einer strahlungsemittierenden Diode |
| JP3323324B2 (ja) | 1993-06-18 | 2002-09-09 | 株式会社リコー | 発光ダイオードおよび発光ダイオードアレイ |
| US5416342A (en) | 1993-06-23 | 1995-05-16 | Cree Research, Inc. | Blue light-emitting diode with high external quantum efficiency |
| JPH0794778A (ja) | 1993-09-22 | 1995-04-07 | Olympus Optical Co Ltd | 発光素子 |
| US5338944A (en) | 1993-09-22 | 1994-08-16 | Cree Research, Inc. | Blue light-emitting diode with degenerate junction structure |
| DE4338187A1 (de) | 1993-11-09 | 1995-05-11 | Telefunken Microelectron | Lichtemittierendes Halbleiterbauelement |
| JP3316062B2 (ja) | 1993-12-09 | 2002-08-19 | 株式会社東芝 | 半導体発光素子 |
| US5393993A (en) | 1993-12-13 | 1995-02-28 | Cree Research, Inc. | Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices |
| US5604135A (en) | 1994-08-12 | 1997-02-18 | Cree Research, Inc. | Method of forming green light emitting diode in silicon carbide |
| US5523589A (en) | 1994-09-20 | 1996-06-04 | Cree Research, Inc. | Vertical geometry light emitting diode with group III nitride active layer and extended lifetime |
| US5631190A (en) | 1994-10-07 | 1997-05-20 | Cree Research, Inc. | Method for producing high efficiency light-emitting diodes and resulting diode structures |
| JPH08222797A (ja) | 1995-01-17 | 1996-08-30 | Hewlett Packard Co <Hp> | 半導体装置およびその製造方法 |
| JP3124694B2 (ja) * | 1995-02-15 | 2001-01-15 | 三菱電線工業株式会社 | 半導体発光素子 |
| US5814839A (en) | 1995-02-16 | 1998-09-29 | Sharp Kabushiki Kaisha | Semiconductor light-emitting device having a current adjusting layer and a uneven shape light emitting region, and method for producing same |
| JPH08250768A (ja) | 1995-03-13 | 1996-09-27 | Toyoda Gosei Co Ltd | 半導体光素子 |
| US5739554A (en) | 1995-05-08 | 1998-04-14 | Cree Research, Inc. | Double heterojunction light emitting diode with gallium nitride active layer |
| DE19629920B4 (de) | 1995-08-10 | 2006-02-02 | LumiLeds Lighting, U.S., LLC, San Jose | Licht-emittierende Diode mit einem nicht-absorbierenden verteilten Braggreflektor |
| US5719891A (en) * | 1995-12-18 | 1998-02-17 | Picolight Incorporated | Conductive element with lateral oxidation barrier |
| US5779924A (en) | 1996-03-22 | 1998-07-14 | Hewlett-Packard Company | Ordered interface texturing for a light emitting device |
| JPH10294531A (ja) | 1997-02-21 | 1998-11-04 | Toshiba Corp | 窒化物化合物半導体発光素子 |
| JP3916011B2 (ja) | 1997-02-21 | 2007-05-16 | シャープ株式会社 | 窒化ガリウム系化合物半導体発光素子及びその製造方法 |
| US6057562A (en) | 1997-04-18 | 2000-05-02 | Epistar Corp. | High efficiency light emitting diode with distributed Bragg reflector |
| JP3912845B2 (ja) | 1997-04-24 | 2007-05-09 | シャープ株式会社 | 窒化ガリウム系化合物半導体発光ダイオード及びその製造方法 |
| US6420735B2 (en) | 1997-05-07 | 2002-07-16 | Samsung Electronics Co., Ltd. | Surface-emitting light-emitting diode |
| US5789768A (en) * | 1997-06-23 | 1998-08-04 | Epistar Corporation | Light emitting diode having transparent conductive oxide formed on the contact layer |
| JP3693468B2 (ja) | 1997-07-23 | 2005-09-07 | シャープ株式会社 | 半導体発光素子 |
| US6201262B1 (en) | 1997-10-07 | 2001-03-13 | Cree, Inc. | Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure |
| DE19745723A1 (de) * | 1997-10-16 | 1998-12-10 | Telefunken Microelectron | Lichtemittierendes Halbleiterbauelement sowie Verfahren zur Herstellung |
| JPH11135834A (ja) | 1997-10-27 | 1999-05-21 | Matsushita Electric Ind Co Ltd | 発光ダイオード装置及びその製造方法 |
| JP3741528B2 (ja) | 1997-12-15 | 2006-02-01 | シャープ株式会社 | 窒化ガリウム系半導体素子の製造方法 |
| DE69839300T2 (de) | 1997-12-15 | 2009-04-16 | Philips Lumileds Lighting Company, LLC, San Jose | Licht-emittierende Vorrichtung |
| JP3516434B2 (ja) * | 1997-12-25 | 2004-04-05 | 昭和電工株式会社 | 化合物半導体発光素子 |
| JPH11204833A (ja) | 1998-01-08 | 1999-07-30 | Pioneer Electron Corp | 半導体発光素子の製造方法 |
| JP3653384B2 (ja) | 1998-02-10 | 2005-05-25 | シャープ株式会社 | 発光ダイオードの製造方法 |
| US6291839B1 (en) | 1998-09-11 | 2001-09-18 | Lulileds Lighting, U.S. Llc | Light emitting device having a finely-patterned reflective contact |
| US6177688B1 (en) | 1998-11-24 | 2001-01-23 | North Carolina State University | Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates |
| US6376269B1 (en) | 1999-02-02 | 2002-04-23 | Agilent Technologies, Inc. | Vertical cavity surface emitting laser (VCSEL) using buried Bragg reflectors and method for producing same |
| JP2000261029A (ja) | 1999-03-12 | 2000-09-22 | Oki Electric Ind Co Ltd | 光半導体素子 |
| JP2000294837A (ja) | 1999-04-05 | 2000-10-20 | Stanley Electric Co Ltd | 窒化ガリウム系化合物半導体発光素子 |
| US6222207B1 (en) * | 1999-05-24 | 2001-04-24 | Lumileds Lighting, U.S. Llc | Diffusion barrier for increased mirror reflectivity in reflective solderable contacts on high power LED chip |
| TW437104B (en) | 1999-05-25 | 2001-05-28 | Wang Tien Yang | Semiconductor light-emitting device and method for manufacturing the same |
| US6133589A (en) | 1999-06-08 | 2000-10-17 | Lumileds Lighting, U.S., Llc | AlGaInN-based LED having thick epitaxial layer for improved light extraction |
| US6287947B1 (en) | 1999-06-08 | 2001-09-11 | Lumileds Lighting, U.S. Llc | Method of forming transparent contacts to a p-type GaN layer |
| JP4382912B2 (ja) | 1999-08-26 | 2009-12-16 | 昭和電工株式会社 | AlGaInP発光ダイオード |
| JP2001077414A (ja) | 1999-09-07 | 2001-03-23 | Showa Denko Kk | Iii族窒化物半導体発光素子 |
| US6534798B1 (en) | 1999-09-08 | 2003-03-18 | California Institute Of Technology | Surface plasmon enhanced light emitting diode and method of operation for the same |
| JP2001085742A (ja) | 1999-09-17 | 2001-03-30 | Toshiba Corp | 半導体発光素子及び半導体発光素子の製造方法 |
| JP2001111103A (ja) | 1999-10-14 | 2001-04-20 | Korai Kagi Kofun Yugenkoshi | 領域電流密度を制御可能なled |
| US6492661B1 (en) | 1999-11-04 | 2002-12-10 | Fen-Ren Chien | Light emitting semiconductor device having reflection layer structure |
| US6812502B1 (en) | 1999-11-04 | 2004-11-02 | Uni Light Technology Incorporation | Flip-chip light-emitting device |
| US6410942B1 (en) * | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
| WO2001041225A2 (en) * | 1999-12-03 | 2001-06-07 | Cree Lighting Company | Enhanced light extraction in leds through the use of internal and external optical elements |
| US6992334B1 (en) | 1999-12-22 | 2006-01-31 | Lumileds Lighting U.S., Llc | Multi-layer highly reflective ohmic contacts for semiconductor devices |
| US6514782B1 (en) | 1999-12-22 | 2003-02-04 | Lumileds Lighting, U.S., Llc | Method of making a III-nitride light-emitting device with increased light generating capability |
| US6486499B1 (en) | 1999-12-22 | 2002-11-26 | Lumileds Lighting U.S., Llc | III-nitride light-emitting device with increased light generating capability |
| JP2001274456A (ja) | 2000-01-18 | 2001-10-05 | Sharp Corp | 発光ダイオード |
| JP3975388B2 (ja) | 2000-04-07 | 2007-09-12 | サンケン電気株式会社 | 半導体発光素子 |
| US6878563B2 (en) | 2000-04-26 | 2005-04-12 | Osram Gmbh | Radiation-emitting semiconductor element and method for producing the same |
| JP2002026386A (ja) | 2000-07-10 | 2002-01-25 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
| JP2002064221A (ja) | 2000-08-18 | 2002-02-28 | Hitachi Cable Ltd | 発光ダイオード |
| TW461124B (en) | 2000-11-14 | 2001-10-21 | Advanced Epitaxy Technology In | Light emitting diode device with high light transmittance |
| US6905900B1 (en) | 2000-11-28 | 2005-06-14 | Finisar Corporation | Versatile method and system for single mode VCSELs |
| US6791119B2 (en) * | 2001-02-01 | 2004-09-14 | Cree, Inc. | Light emitting diodes including modifications for light extraction |
| US6468824B2 (en) * | 2001-03-22 | 2002-10-22 | Uni Light Technology Inc. | Method for forming a semiconductor device having a metallic substrate |
| US6958497B2 (en) | 2001-05-30 | 2005-10-25 | Cree, Inc. | Group III nitride based light emitting diode structures with a quantum well and superlattice, group III nitride based quantum well structures and group III nitride based superlattice structures |
| JP2003017748A (ja) | 2001-06-27 | 2003-01-17 | Seiwa Electric Mfg Co Ltd | 窒化ガリウム系化合物半導体発光素子及びその製造方法 |
| JP4058590B2 (ja) | 2001-06-29 | 2008-03-12 | サンケン電気株式会社 | 半導体発光素子 |
| US7501023B2 (en) | 2001-07-06 | 2009-03-10 | Technologies And Devices, International, Inc. | Method and apparatus for fabricating crack-free Group III nitride semiconductor materials |
| US6740906B2 (en) | 2001-07-23 | 2004-05-25 | Cree, Inc. | Light emitting diodes including modifications for submount bonding |
| JP4055503B2 (ja) | 2001-07-24 | 2008-03-05 | 日亜化学工業株式会社 | 半導体発光素子 |
| JP2003037285A (ja) * | 2001-07-25 | 2003-02-07 | Hitachi Cable Ltd | 発光ダイオード |
| JP2003168823A (ja) | 2001-09-18 | 2003-06-13 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体発光素子 |
| JP4089194B2 (ja) | 2001-09-28 | 2008-05-28 | 日亜化学工業株式会社 | 窒化物半導体発光ダイオード |
| US7148520B2 (en) | 2001-10-26 | 2006-12-12 | Lg Electronics Inc. | Diode having vertical structure and method of manufacturing the same |
| TWI276230B (en) | 2001-12-04 | 2007-03-11 | Epitech Corp Ltd | Structure and manufacturing method of light emitting diode |
| US6784462B2 (en) | 2001-12-13 | 2004-08-31 | Rensselaer Polytechnic Institute | Light-emitting diode with planar omni-directional reflector |
| AU2002359779A1 (en) | 2001-12-21 | 2003-07-30 | Regents Of The University Of California, The Office Of Technology Transfer | Implantation for current confinement in nitride-based vertical optoelectronics |
| TW513820B (en) | 2001-12-26 | 2002-12-11 | United Epitaxy Co Ltd | Light emitting diode and its manufacturing method |
| JP4207781B2 (ja) * | 2002-01-28 | 2009-01-14 | 日亜化学工業株式会社 | 支持基板を有する窒化物半導体素子及びその製造方法 |
| JP3975763B2 (ja) | 2002-01-30 | 2007-09-12 | 昭和電工株式会社 | リン化硼素系半導体発光素子、その製造方法、および発光ダイオード |
| TW513821B (en) | 2002-02-01 | 2002-12-11 | Hsiu-Hen Chang | Electrode structure of LED and manufacturing the same |
| US6919585B2 (en) | 2002-05-17 | 2005-07-19 | Lumei Optoelectronics, Inc. | Light-emitting diode with silicon carbide substrate |
| US6828596B2 (en) | 2002-06-13 | 2004-12-07 | Lumileds Lighting U.S., Llc | Contacting scheme for large and small area semiconductor light emitting flip chip devices |
| AU2003263779A1 (en) | 2002-07-22 | 2004-02-09 | Cree, Inc. | Light emitting diode including barrier layers and manufacturing methods therefor |
| KR20110118848A (ko) | 2002-09-19 | 2011-11-01 | 크리 인코포레이티드 | 경사 측벽을 포함하고 인광물질이 코팅된 발광 다이오드, 및 그의 제조방법 |
| JP2004165436A (ja) | 2002-11-13 | 2004-06-10 | Rohm Co Ltd | 半導体発光素子の製造方法 |
| JP2004172189A (ja) | 2002-11-18 | 2004-06-17 | Shiro Sakai | 窒化物系半導体装置及びその製造方法 |
| TW200409378A (en) | 2002-11-25 | 2004-06-01 | Super Nova Optoelectronics Corp | GaN-based light-emitting diode and the manufacturing method thereof |
| JP4159865B2 (ja) | 2002-12-11 | 2008-10-01 | シャープ株式会社 | 窒化物系化合物半導体発光素子の製造方法 |
| JP3720341B2 (ja) | 2003-02-12 | 2005-11-24 | ローム株式会社 | 半導体発光素子 |
| US6831302B2 (en) | 2003-04-15 | 2004-12-14 | Luminus Devices, Inc. | Light emitting devices with improved extraction efficiency |
| JP2004363206A (ja) * | 2003-06-03 | 2004-12-24 | Rohm Co Ltd | 半導体発光素子 |
| JP2005005557A (ja) * | 2003-06-13 | 2005-01-06 | Hitachi Cable Ltd | 半導体発光素子の製造方法 |
| JP2003347586A (ja) | 2003-07-08 | 2003-12-05 | Toshiba Corp | 半導体発光素子 |
| JP4191566B2 (ja) | 2003-09-12 | 2008-12-03 | アトミック エナジー カウンセル − インスティトゥート オブ ニュークリアー エナジー リサーチ | 電流ブロック構造を有する発光ダイオードおよびその製造方法 |
| US7009214B2 (en) | 2003-10-17 | 2006-03-07 | Atomic Energy Council —Institute of Nuclear Energy Research | Light-emitting device with a current blocking structure and method for making the same |
| JP2004096130A (ja) | 2003-12-01 | 2004-03-25 | Showa Denko Kk | 窒化物半導体発光ダイオード |
| KR101154494B1 (ko) * | 2003-12-09 | 2012-06-13 | 재팬 사이언스 앤드 테크놀로지 에이젼시 | 질소면의 표면상의 구조물 제조를 통한 고효율 3족 질화물계 발광다이오드 |
| US20050169336A1 (en) * | 2004-02-04 | 2005-08-04 | Fuji Xerox Co., Ltd. | Vertical-cavity surface-emitting semiconductor laser |
| TWM255518U (en) | 2004-04-23 | 2005-01-11 | Super Nova Optoelectronics Cor | Vertical electrode structure of Gallium Nitride based LED |
| DE102004026231B4 (de) | 2004-05-28 | 2019-01-31 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Bereichs mit reduzierter elektrischer Leitfähigkeit innerhalb einer Halbleiterschicht und optoelektronisches Halbleiterbauelement |
| US20060002442A1 (en) | 2004-06-30 | 2006-01-05 | Kevin Haberern | Light emitting devices having current blocking structures and methods of fabricating light emitting devices having current blocking structures |
| JP2006066518A (ja) | 2004-08-25 | 2006-03-09 | Sharp Corp | 半導体発光素子および半導体発光素子の製造方法 |
| KR100533645B1 (ko) | 2004-09-13 | 2005-12-06 | 삼성전기주식회사 | 발광 효율을 개선한 발광 다이오드 |
| US8174037B2 (en) | 2004-09-22 | 2012-05-08 | Cree, Inc. | High efficiency group III nitride LED with lenticular surface |
| US7335920B2 (en) | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
| EP1865030B1 (en) | 2005-03-31 | 2013-06-26 | Fujifilm Corporation | Dye-containing hardenable composition, and color filter and process for producing the same |
| KR100691177B1 (ko) | 2005-05-31 | 2007-03-09 | 삼성전기주식회사 | 백색 발광소자 |
| JP2007123517A (ja) | 2005-10-27 | 2007-05-17 | Toshiba Corp | 半導体発光素子及び半導体発光装置 |
-
2005
- 2005-01-24 US US11/042,030 patent/US7335920B2/en not_active Expired - Lifetime
- 2005-09-15 EP EP05806491A patent/EP1849193B1/en not_active Expired - Lifetime
- 2005-09-15 WO PCT/US2005/036552 patent/WO2006080958A1/en not_active Ceased
- 2005-09-15 TW TW094131846A patent/TWI372471B/zh not_active IP Right Cessation
- 2005-09-15 CN CNA2005800470913A patent/CN101107720A/zh active Pending
- 2005-09-15 AT AT05806491T patent/ATE524838T1/de not_active IP Right Cessation
- 2005-09-15 EP EP10181491.1A patent/EP2267803B1/en not_active Expired - Lifetime
- 2005-09-15 JP JP2007552114A patent/JP2008529271A/ja active Pending
-
2007
- 2007-11-09 US US11/983,515 patent/US8410490B2/en not_active Expired - Lifetime
-
2008
- 2008-03-25 US US12/079,486 patent/US8410499B2/en not_active Expired - Lifetime
-
2009
- 2009-10-19 US US12/581,759 patent/US8541788B2/en not_active Expired - Fee Related
-
2011
- 2011-05-25 JP JP2011117143A patent/JP5887068B2/ja not_active Expired - Lifetime
- 2011-05-25 JP JP2011117144A patent/JP5887069B2/ja not_active Expired - Lifetime
-
2013
- 2013-08-23 US US13/974,505 patent/US8772792B2/en not_active Expired - Lifetime
Patent Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01295469A (ja) * | 1988-01-29 | 1989-11-29 | Hitachi Cable Ltd | 発光ダイオード |
| JPH0629570A (ja) * | 1992-07-07 | 1994-02-04 | Mitsubishi Cable Ind Ltd | 発光素子構造 |
| DE4422660A1 (de) * | 1993-06-30 | 1995-02-09 | Mitsubishi Chem Ind | Lichtaussendende Vorrichtung |
| JPH08167738A (ja) * | 1994-12-14 | 1996-06-25 | Sanken Electric Co Ltd | 半導体発光素子 |
| JPH08213649A (ja) * | 1995-02-01 | 1996-08-20 | Sanken Electric Co Ltd | 半導体発光素子 |
| JPH08288550A (ja) * | 1995-04-10 | 1996-11-01 | Sanken Electric Co Ltd | 半導体発光素子及びその製造方法 |
| US5565694A (en) * | 1995-07-10 | 1996-10-15 | Huang; Kuo-Hsin | Light emitting diode with current blocking layer |
| JPH0974221A (ja) * | 1995-09-05 | 1997-03-18 | Sharp Corp | 半導体発光素子 |
| US6455343B1 (en) * | 2000-03-28 | 2002-09-24 | United Epitaxy Company, Ltd. | Method of manufacturing light emitting diode with current blocking structure |
| US6420732B1 (en) * | 2000-06-26 | 2002-07-16 | Luxnet Corporation | Light emitting diode of improved current blocking and light extraction structure |
| US20020163007A1 (en) * | 2001-05-01 | 2002-11-07 | Yukio Matsumoto | Semiconductor light emitting device and method for manufacturing the same |
| JP2004047760A (ja) * | 2002-07-12 | 2004-02-12 | Hitachi Cable Ltd | 発光ダイオード用エピタキシャルウェハ及び発光ダイオード |
Non-Patent Citations (7)
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN vol. 014, no. 082 (E - 0889) 15 February 1990 (1990-02-15) * |
| PATENT ABSTRACTS OF JAPAN vol. 018, no. 240 (E - 1545) 9 May 1994 (1994-05-09) * |
| PATENT ABSTRACTS OF JAPAN vol. 1996, no. 10 31 October 1996 (1996-10-31) * |
| PATENT ABSTRACTS OF JAPAN vol. 1996, no. 12 26 December 1996 (1996-12-26) * |
| PATENT ABSTRACTS OF JAPAN vol. 1997, no. 03 31 March 1997 (1997-03-31) * |
| PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07 31 July 1997 (1997-07-31) * |
| PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007046519A1 (de) * | 2007-09-28 | 2009-04-02 | Osram Opto Semiconductors Gmbh | Dünnfilm-LED mit einer Spiegelschicht und Verfahren zu deren Herstellung |
| US9252331B2 (en) | 2007-09-28 | 2016-02-02 | Osram Opto Semiconductors Gmbh | Thin-film LED having a mirror layer and method for the production thereof |
| WO2009128669A3 (ko) * | 2008-04-16 | 2010-01-14 | 엘지이노텍주식회사 | 발광 소자 및 그 제조방법 |
| US8502193B2 (en) | 2008-04-16 | 2013-08-06 | Lg Innotek Co., Ltd. | Light-emitting device and fabricating method thereof |
| EP2224501A1 (en) * | 2009-02-16 | 2010-09-01 | LG Innotek Co., Ltd. | Semiconductor light emitting device |
| US8901599B2 (en) | 2009-02-16 | 2014-12-02 | Lg Innotek Co., Ltd. | Semiconductor light emitting device |
| JP2012043893A (ja) * | 2010-08-17 | 2012-03-01 | Toshiba Corp | 半導体発光素子及びその製造方法 |
| US8766297B2 (en) | 2010-08-17 | 2014-07-01 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method for manufacturing same |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130341663A1 (en) | 2013-12-26 |
| US20060163586A1 (en) | 2006-07-27 |
| US8772792B2 (en) | 2014-07-08 |
| TWI372471B (en) | 2012-09-11 |
| ATE524838T1 (de) | 2011-09-15 |
| US7335920B2 (en) | 2008-02-26 |
| US20100032704A1 (en) | 2010-02-11 |
| CN101107720A (zh) | 2008-01-16 |
| EP2267803A3 (en) | 2011-02-23 |
| US8410499B2 (en) | 2013-04-02 |
| EP1849193B1 (en) | 2011-09-14 |
| JP2008529271A (ja) | 2008-07-31 |
| US8541788B2 (en) | 2013-09-24 |
| EP1849193A1 (en) | 2007-10-31 |
| JP5887069B2 (ja) | 2016-03-16 |
| EP2267803B1 (en) | 2020-11-04 |
| TW200627673A (en) | 2006-08-01 |
| US20090121246A1 (en) | 2009-05-14 |
| US8410490B2 (en) | 2013-04-02 |
| US20080061311A1 (en) | 2008-03-13 |
| JP2011160007A (ja) | 2011-08-18 |
| JP5887068B2 (ja) | 2016-03-16 |
| JP2011160006A (ja) | 2011-08-18 |
| EP2267803A2 (en) | 2010-12-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7335920B2 (en) | LED with current confinement structure and surface roughening | |
| US8674375B2 (en) | Roughened high refractive index layer/LED for high light extraction | |
| US6992331B2 (en) | Gallium nitride based compound semiconductor light-emitting device | |
| US9142718B2 (en) | Light emitting device | |
| TWI451589B (zh) | 具電流阻斷結構之發光裝置及製造具電流阻斷結構發光裝置之方法 | |
| KR20140103337A (ko) | 전류 저감 구조물들을 갖는 발광 소자들 및 전류 저감 구조물들을 갖는 발광 소자들을 형성하는 방법 | |
| KR20170084148A (ko) | 상부 접점 아래에 트렌치를 갖는 발광 디바이스 | |
| KR102251237B1 (ko) | 발광 소자 | |
| KR101170193B1 (ko) | 전류 차단 구조들을 가지는 발광소자들 및 전류 차단구조들을 가지는 발광소자들의 제조방법들 | |
| KR20160133647A (ko) | 발광 소자 및 이를 구비한 라이트 유닛 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 200580047091.3 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2007552114 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2005806491 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2005806491 Country of ref document: EP |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) |