WO2006077945A1 - 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 - Google Patents

固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 Download PDF

Info

Publication number
WO2006077945A1
WO2006077945A1 PCT/JP2006/300773 JP2006300773W WO2006077945A1 WO 2006077945 A1 WO2006077945 A1 WO 2006077945A1 JP 2006300773 W JP2006300773 W JP 2006300773W WO 2006077945 A1 WO2006077945 A1 WO 2006077945A1
Authority
WO
WIPO (PCT)
Prior art keywords
dicarboxylate
group
catalyst component
methyl
solid titanium
Prior art date
Application number
PCT/JP2006/300773
Other languages
English (en)
French (fr)
Inventor
Kazuhisa Matsunaga
Hisao Hashida
Toshiyuki Tsutsui
Kunio Yamamoto
Atsushi Shibahara
Tetsunori Shinozaki
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to US11/795,504 priority Critical patent/US20090069515A1/en
Priority to ES06712019.6T priority patent/ES2537554T3/es
Priority to CN2006800026753A priority patent/CN101107276B/zh
Priority to BRPI0606424A priority patent/BRPI0606424B1/pt
Priority to JP2006553955A priority patent/JP5530054B2/ja
Priority to EP06712019.6A priority patent/EP1845113B1/en
Publication of WO2006077945A1 publication Critical patent/WO2006077945A1/ja
Priority to US11/878,739 priority patent/US7888438B2/en
Priority to US11/878,740 priority patent/US7649062B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/128Mixtures of organometallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene

Definitions

  • Solid titanium catalyst component catalyst for olefin polymerization, and method for producing olefin polymer
  • the present invention relates to a solid titanium catalyst component that is preferably used for the polymerization of olefins having 3 or more carbon atoms.
  • the present invention also relates to an polyolefin polymerization catalyst comprising the solid titanium catalyst component.
  • the present invention relates to a method for producing an olefin polymer using the olefin polymerization catalyst.
  • olefin polymerization catalysts examples include Ziegler-Natta catalysts, catalysts containing titanium tetrachloride and titanium trichloride, solid titanium catalyst components that have the power of magnesium, titanium, halogen, and electron donors, and organic metals. Catalysts composed of compounds are widely known.
  • the latter catalyst exhibits high activity in polymerization of ⁇ -olefin, such as propylene and butene-1, in addition to ethylene.
  • ⁇ _olefin polymer may have high stereoregularity.
  • a solid titanium catalyst component on which an electron donor selected from a carboxylic ester having a typical example of a phthalate ester is supported, and aluminum as a promoter component is used.
  • excellent polymerization activity and stereospecificity are exhibited when a catalyst comprising an alkyl compound and a key compound having at least one Si-OR (wherein R is a hydrocarbon group) is used. This is reported in JP-A-57-63310 (Patent Document 1).
  • the polymer obtained using the above catalyst is a polymer obtained with a Ziegler-Natta catalyst.
  • the molecular weight distribution is often narrower than that. It is known that polymers having a narrow molecular weight distribution tend to have “low melt fluidity”, “low melt tension”, “poor formability”, “slightly low rigidity”, and the like.
  • various high-speed molding technologies such as high-speed stretching technology for the purpose of improving the productivity of stretched films have been advanced from the viewpoint of productivity improvement and cost reduction.
  • Patent Document 3 3-7703
  • Patent Document 5 catalysts using a succinic acid ester having an asymmetric carbon as an electron donor contained in a solid titanium catalyst component
  • Patent Document 6 There are many reports such as WO 01/057099 pamphlet (patent document 4), WO 00/63261 pamphlet (patent document 5), WO 02/30998 pamphlet (patent document 6)), etc. .
  • JP 2001-114811 Patent Document 7
  • JP 2003-40918 Patent Document 8
  • a solid catalyst component for polymerization of olefin (s) and a catalyst for polymerization of olefin (s) containing this catalyst component are disclosed.
  • the electron-donating compound 1,2-cyclohexanedicarboxylic acid ester having a trans purity of 80% or more is used in the invention described in Patent Document 7, and cyclohexenedianolone is used in the invention described in Patent Document 8.
  • An acid diester is used, and specific examples of the cyclohexene dicarboxylic acid diester include 1-cyclohexene dicarboxylic acid having an alkoxycarbonyl group bonded to the 1-position and 2-position of the cyclohexene ring of 1-cyclohexene. Only diesters are disclosed (paragraphs [0021]-[0024] and examples). However, Patent Documents 7 and 8 have no description regarding the molecular weight distribution of the olefin polymer.
  • Patent Document 1 JP-A-57-63310
  • Patent Document 2 Japanese Patent Laid-Open No. 5-170843
  • Patent Document 3 Japanese Patent Laid-Open No. 3-7703
  • Patent Document 4 Pamphlet of International Publication No. 01/057099
  • Patent Document 5 International Publication No. 00/63261 Pamphlet
  • Patent Document 6 International Publication No. 02/30998 Pamphlet
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-114811
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2003-40918
  • the above-described catalyst is insufficient in the effect of widening the molecular weight distribution of the olefin polymer, or, according to the study by the present inventors, is a catalyst that widens the molecular weight distribution by increasing the low molecular weight component. there were.
  • these catalysts have been evaluated by the market that the melt tension of the olefin polymer is not sufficiently improved, and from the market, the molecular weight distribution has been made by a simpler process from the viewpoint of cost reduction. The arrival of a catalyst that can produce olefin polymers has been awaited.
  • an object of the present invention is to provide a catalyst component and a catalyst capable of easily producing an olefin polymer suitable for high-speed stretching and high-speed molding with a wide molecular weight distribution and high melt tension. .
  • the solid titanium catalyst component (I) of the present invention comprises:
  • n is an integer of 5 to 10].
  • R 2 and R 3 are each independently COOR 1 or R, and at least one of R 2 and R 3 is COOR 1 .
  • a plurality of R 1 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a plurality of R's are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, or a silicon-containing group.
  • R is the backbone of Yogu said ring optionally contains double bonds in the skeleton of the ring formed by bonding to each other, if it contains C a to COOR 1 is bonded two or more
  • the number of carbon atoms constituting the ring skeleton is 5 to 10.
  • the cyclic skeleton is preferably composed of 6 carbon atoms.
  • the cyclic ester compound (a) is preferably a compound represented by the following formula (la): [0023] [Chemical 2]
  • n is an integer of 5 to 10].
  • a plurality of R 1 s are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • a plurality of R's are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group, or a silicon-containing group.
  • R contains two C a in the backbone of Yogu said ring optionally contains double bonds in the skeleton of the ring formed by bonding to each other, forming a ring skeleton
  • the number of carbon atoms is 5 to: 10. ].
  • the solid titanium catalyst component (I) of the present invention may further contain an aromatic carboxylic acid ester and / or a compound having two or more ether bonds via a plurality of carbon atoms.
  • the olefin polymerization catalyst of the present invention comprises:
  • the catalyst for olefin polymerization of the present invention may further contain an electron donor (III).
  • the method for producing an olefin polymer of the present invention is characterized in that olefin is polymerized in the presence of the olefin polymerization catalyst.
  • the solid titanium catalyst component, the catalyst for olefin polymerization, and the method for producing the olefin polymer of the present invention are used to produce an olefin polymer having high stereoregularity and a wide molecular weight distribution with high activity. Is suitable.
  • the solid titanium catalyst component, the catalyst for olefin polymerization, and the method for producing the olefin polymer of the present invention are used, the moldability such as high-speed stretchability and high-speed moldability is improved, and the rigidity is also excellent. It is expected that a olefin polymer can be produced.
  • solid titanium catalyst component (I) the catalyst for olefin polymerization, and the method for producing the olefin polymer according to the present invention will be described in more detail.
  • the solid titanium catalyst component (I) according to the present invention is characterized by containing titanium, magnesium, halogen and a cyclic ester compound ( a ).
  • the cyclic ester compound (a) has a plurality of carboxylic acid ester groups and is represented by the following formula (1).
  • n is an integer of 5 to 10, preferably an integer of 5 to 7, and particularly preferably 6.
  • C a and C b represent carbon atoms.
  • R 2 and R 3 are each independently COOR 1 or R, and at least one of R 2 and R 3 is COOR 1 .
  • All of the bonds between carbon atoms in the cyclic skeleton are preferably single bonds, but other than the C a — C a bond and the C a — C b bond in the cyclic skeleton. Any single bond may be replaced with a double bond.
  • Each of the plurality of R 1 s independently has a carbon atom number of:! To 20, preferably 1 to 10, more preferably 2 to 8, still more preferably 4 to 8, particularly preferably 4 to 6. It is a monovalent hydrocarbon group.
  • the hydrocarbon group include ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, hexyl group, heptyl group, octyl group, 2_ethylhexyl group, decyl group, dodecyl group, Examples thereof include a tetradecyl group, a hexadecinole group, an octadecinole group, and an eicosyl group.
  • an n_butyl group, an isobutyl group, a hexyl group, and an octyl group are preferable, and an n_butyl group and an isobutyl group are preferable.
  • a plurality of R's are each independently a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group and a silicon-containing group.
  • a force that is an atom or group selected from at least one R is not a hydrogen atom
  • R other than a hydrogen atom a hydrocarbon group having 120 carbon atoms is preferable. Examples of the hydrocarbon group having 120 carbon atoms include a methyl group, an ethyl group, and n-propynole.
  • aliphatic hydrocarbon groups alicyclic hydrocarbon groups, and aromatic hydrocarbon groups.
  • an aliphatic hydrocarbon group is preferred. Specifically, a methyl group, an ethyl group, an n_propyl group, an iso_propyl group, an n_butyl group, an iso_butyl group, and a see-butyl group are preferred.
  • R may be bonded to each other to form a ring.
  • R is bonded to each other.
  • the ring skeleton may have a double bond in the ring skeleton. during, if it contains C a to COOR 1 is bonded two or more, the number of carbon atoms forming the ring backbone is 5: 10.
  • Examples of such a ring skeleton include a norbornane skeleton and a tetracyclododecene skeleton.
  • a plurality of Rs may be a carbonyl structure-containing group such as a carboxylic acid ester group, an alkoxy group, a siloxy group, an aldehyde group or an acetyl group. It is preferable that the above is included.
  • 4- -Dimethyl 4-cyclo ⁇ xene--1 Diisopropyl, 2- -dicarboxylate,
  • 4- -Dimethyl 4- -cyclo z ⁇ xen- -1 Di n-butyl, 2- -dicarboxylate ,
  • the compound having a diester structure as described above includes isomers such as cis and trans derived from a plurality of COOR 1 groups in Formula 1, and any structure meets the object of the present invention.
  • the content of the trans isomer is higher. The higher the content of the trans isomer, the higher the activity only by the effect of broadening the molecular weight distribution and the higher the stereoregularity of the resulting polymer.
  • Examples of the cyclic ester compound (a) include compounds represented by the following formulas (1_ :! to (1-6): Is preferred
  • the single bond in the cyclic skeleton (except for the C a _C a bond) may be replaced with a double bond.
  • n is an integer from 7 to 10: ]
  • the cyclic ester compound (a) is particularly a compound represented by the following formula (la): preferable.
  • n, R 1 and R are as defined above (that is, as defined in formula (1)), and a single bond in the cyclic skeleton (where c a —c a bond And c a —c b except the bond) may be replaced by a double bond.
  • These compounds may be used alone or in combination of two or more. Further, as long as the object of the present invention is not impaired, these cyclic ester compounds (a) may be used in combination with a catalyst component (b) or a catalyst component (c) described later.
  • the cyclic ester compound (a) may be formed in the process of preparing the solid titanium catalyst component (I). For example, when preparing the solid titanium catalyst component (I), a cyclic step is provided by substantially contacting the carboxylic anhydride or carboxylic acid dihalide corresponding to the catalyst component (a) with the corresponding alcohol.
  • the ester compound (a) can also be contained in the solid titanium catalyst component.
  • the cyclic hydrocarbon structure forms various three-dimensional structures such as a chair type and a boat type. Furthermore, if the cyclic structure has a substituent, the possible variation of the three-dimensional structure is further increased. Further, between the cyclic skeleton of the carbon atoms forming the ester group (COOR 1 group) carbon atom is bonded with an ester group (COOR 1 group) other carbon atoms attached a cyclic ester compound (a) If the bond is a single bond, the possible variations of the three-dimensional structure are widened. The ability to take such a variety of three-dimensional structures leads to the formation of a variety of active species on the solid titanium catalyst component (I).
  • olefin polymers with various molecular weights can be produced at once by polymerizing olefins using the solid titanium catalyst component (I). That is, it is possible to produce a wide refining polymer having a molecular weight distribution.
  • a magnesium compound and a titanium compound are used for the preparation of the solid titanium catalyst component (I) of the present invention.
  • Magnesium halides such as magnesium chloride and magnesium bromide
  • Alkoxy magnesium halides such as methoxy magnesium chloride, ethoxy magnesium chloride, phenoxy magnesium chloride;
  • Magnesium power norebonate such as magnesium stearate
  • These magnesium compounds may be used alone or in combination of two or more. These magnesium compounds may be complex compounds with other metals, double compounds, or mixtures with other metal compounds.
  • a halogenated magnesium particularly magnesium chloride
  • a halogen-containing magnesium compound is preferred because a halogen-containing magnesium compound is preferred.
  • alkoxymagnesium such as ethoxymagnesium is also preferably used.
  • the magnesium compound is derived from another substance, for example, obtained by contacting an organic magnesium compound such as a Grignard reagent with titanium halide, silicon halide, halogenated alcohol or the like.
  • titanium compounds include general formulas
  • the tetravalent titanium compound shown by can be mentioned. More specifically,
  • Titanium tetrahalides such as TiCl and TiBr; Ti (OCH) C1, Ti (OC H) C1, Ti ( ⁇ _n—CH) C1, Ti (OC H) Br, Ti ( ⁇ —isoC H)
  • Trihalogenated alkoxytitanium such as Br
  • Dihalogenated alkoxytitanium such as Ti (OCH) CI, Ti (OCH) CI
  • Monohalogenated alkoxy titanium such as Ti (OCH) Cl, Ti ( ⁇ -n-C H) Cl, Ti ( ⁇ C H) Br;
  • Tetraalkoxytitanium such as Ti (OCH), Ti ( ⁇ C H), Ti (OC H), Ti ( ⁇ _2_ethylhexyl)
  • titanium tetrahalide is preferable, and titanium tetrachloride is particularly preferable.
  • These titanium compounds may be used alone or in combination of two or more.
  • Examples of the magnesium compound and the titanium compound as described above may also include compounds described in detail in Patent Document 1, Patent Document 2, and the like.
  • a solid adduct comprising a magnesium compound and a catalyst component (b), a cyclic ester compound (a), and a titanium compound in a liquid state are suspended in the presence of an inert hydrocarbon solvent. Method to contact in turbid state.
  • (P-2) A method in which a solid adduct composed of a magnesium compound and a catalyst component (b), a cyclic ester compound (a), and a titanium compound in a liquid state are contacted in several steps.
  • a solid adduct comprising a magnesium compound and a catalyst component (b), a cyclic ester compound (a), and a titanium compound in a liquid state are suspended in the presence of an inert hydrocarbon solvent. The method of making it contact in a cloudy state, and making it contact in several steps.
  • (P-4) A method of bringing a liquid magnesium compound comprising a magnesium compound and a catalyst component (b) into contact with a liquid titanium compound and a cyclic ester compound (a).
  • the preferred reaction temperature in the preparation of the solid titanium catalyst component (I) is -30 ° C to 150 ° C, more preferably from 25 ° C to 130 ° C, more preferably from 25 ° C to 120 ° C. It is in the range of ° C.
  • the production of the above solid titanium catalyst component can also be carried out in the presence of a known medium, if necessary.
  • the medium include aromatic hydrocarbons such as slightly polar toluene and known aliphatic hydrocarbons such as heptane, octane, decane, and cyclohexane, and alicyclic hydrocarbon compounds. Aliphatic hydrocarbons are preferred examples.
  • the catalyst component (b) used for the formation of the solid adduct or the liquid magnesium compound a known compound capable of solubilizing the magnesium compound in a temperature range of room temperature to about 300 ° C. is preferable.
  • a known compound capable of solubilizing the magnesium compound in a temperature range of room temperature to about 300 ° C. is preferable.
  • alcohols, alcohols, amines, carboxylic acids and mixtures thereof are preferred. Examples of these compounds include compounds described in detail in Patent Document 1 and Patent Document 2.
  • the alcohol having the solubilizing ability of the magnesium compound may be methanol, ethanol, propanol, butanol, isobutanol, ethylene glycol, 2-methylpentanol, 2-ethylbutanol, n- Aliphatic alcohols such as heptanol, n-octanol, 2-ethylhexanol, decanol, dodecanol; alicyclic alcohols such as cyclohexanol, methylcyclohexanol; aromatic alcohols such as benzyl alcohol, methylbenzyl alcohol; n -Aliphatic alcohols with alkoxy groups such as butyl cellosolve
  • Examples of the carboxylic acid include organic carboxylic acids having 7 or more carbon atoms such as strong prillic acid and 2_ethylhexanoic acid.
  • Examples of aldehydes include aldehydes having 7 or more carbon atoms such as capric aldehyde and 2-ethylhexyl aldehyde.
  • Examples of the amine include amines having 6 or more carbon atoms such as heptylamine, octylamine, noninoleamine, laurylamine, 2-ethylhexylamine and the like.
  • the above alcohols are preferred, especially ethanol, Lopanol, butanol, isobutanol, hexanol, 2-ethyl hexanol, and dephenol are preferred.
  • the amount of the magnesium compound and catalyst component (b) used in preparing the solid adduct or liquid magnesium compound varies depending on the type, contact conditions, etc. Is used in an amount of 0.:! To 20 mol / liter, preferably 0.5 to 5 mol / liter, per unit volume of the catalyst component (b). If necessary, a medium inert to the solid adduct can be used in combination. Preferred examples of the medium include known hydrocarbon compounds such as heptane, octane and decane.
  • the composition ratio of the obtained solid adduct or the magnesium compound in the liquid state to the catalyst component) varies depending on the type of the compound used, and thus cannot be defined unconditionally.
  • the catalyst component (b) is preferably in the range of 2.6 mol or more, more preferably 2.7 mol or more and 5 mol or less with respect to 1 mol.
  • the solid titanium catalyst component of the present invention further comprises an aromatic carboxylic acid ester and
  • catalyst component (c) a compound having two or more ether bonds via a plurality of carbon atoms. If the solid titanium catalyst component (I) of the present invention contains the catalyst component (c), the activity and stereoregularity may be enhanced, and the molecular weight distribution may be further broadened.
  • catalyst component (c) known aromatic carboxylic acid esters and polyether compounds that are preferably used in conventional olefin polymerization catalysts, such as the above-mentioned Patent Document 2 and JP-A-2001-354714, etc. Can be used without limitation.
  • aromatic carboxylic acid ester examples include aromatic carboxylic acid monoesters such as benzoic acid esters and toluic acid esters, and aromatic polyvalent carboxylic acid esters such as phthalic acid esters. It is done. Of these, phthalic acid esters are preferred, with aromatic polycarboxylic acid esters being preferred. These phthalates include ethyl phthalate, n-butyl phthalate, isobutyl phthalate, hexyl phthalate, Phthalic acid alkyl esters such as heptyl phthalate are preferred, and diisobutyl phthalate is particularly preferred.
  • the polyether compound is more specifically a compound represented by the following formula (3).
  • m is an integer of L ⁇ m ⁇ 10, more preferably integers 3 ⁇ m ⁇ 10
  • R " ⁇ R 36 independently represents a hydrogen atom, Alternatively, it is a substituent having at least one element selected from carbon, hydrogen, oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron, and silicon.
  • a plurality of R 11 and R 12 may be the same or different. Any R U to R 36 , preferably R 11 and R 12 may be combined to form a ring other than a benzene ring.
  • Trialkoxyalkanes such as 2-cyclohexyl-2-ethoxymethyl-1,3-diethoxypropane, 2-cyclohexyl-2-methoxymethyl-1,3-dimethoxypropane,
  • 1,3-diethers are preferred, especially 2-isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopropyl -2-Isopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane are preferred.
  • the cyclic ester compound (a), the catalyst component (b), and the catalyst component (c) as described above may be considered to belong to a component called an electron donor by those skilled in the art.
  • the above electron donor component has the effect of improving the stereoregularity of the resulting polymer while maintaining high activity of the catalyst, the effect of controlling the composition distribution of the obtained copolymer, and the particle shape of the catalyst particles. It is known to exhibit a flocculant effect that controls the particle size.
  • the halogen / titanium (atomic ratio) that is, the number of moles of halogen atom / number of moles of titanium atom
  • the halogen / titanium (atomic ratio) that is, the number of moles of halogen atom / number of moles of titanium atom
  • the cyclic ester compound (a) / titanium (molar ratio) (that is, the number of moles of the cyclic ester compound (a) / the number of moles of titanium atoms) is 0.01 to 100, preferably 0.2 to 10. Mage
  • the catalyst component (b) and the catalyst component (c) are the catalyst component (c) Z which is desired to have a catalyst component (b) Z titanium atom (molar ratio) of 0 to 100, preferably 0 to 10 Titanium atom (molar ratio) is 0 to: 10
  • Magnesium / titanium (atomic ratio) (that is, the number of moles of magnesium atoms / the number of moles of titanium atoms) is 2 to: 100, preferably 4 to 50.
  • the content of components other than the cyclic ester compound (a) described above, for example, the catalyst component (b) and the catalyst component (c) is preferably 100% by weight of the cyclic ester compound (&). Is 20% by weight or less, more preferably 10% by weight or less.
  • the olefin polymerization catalyst according to the present invention comprises:
  • Solid titanium catalyst component (I) according to the present invention, and
  • organometallic compound catalyst component (II) containing a metal element selected from Group 1, Group 2 and Group 13 of the Periodic Table;
  • organometallic compound catalyst component (II) a compound containing a Group 13 metal, such as an organoaluminum compound, a complex alkylated product of a Group 1 metal and aluminum, a Group 2 metal organometallic compound, or the like is used. be able to. Of these, organoaluminum compounds are preferred.
  • organometallic compound catalyst component (II) include organometallic compound catalyst components described in known literature such as EP585869A1.
  • the olefin polymerization catalyst of the present invention may contain the above-described catalyst component (III) as necessary together with the organometallic compound catalyst component (II).
  • the catalyst component (III) is preferably an organic silicon compound. Examples of the organic silicon compound include compounds represented by the following general formula (4).
  • R and R ′ are hydrocarbon groups, and n is an integer of 0 ⁇ n ⁇ 4.
  • organic silicon compound represented by the general formula (4) examples include diisosilane, t-amylmethyljetoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, and cyclohexane.
  • Xylmethyljetoxysilane burtrimethoxy Sisilane, butyltriethoxysilane, t_butyltriethoxysilane, phenyltriethoxysilane, cyclohexyltrimethoxysilane, cyclopentyltrimethoxysilane, 2-methylcyclopentyltrimethoxysilane, cyclopentyltriethoxysilane, dicyclopentyldimethyl Toxylsilane, dicyclopentenolegetoxysilane, tricyclopentinolemethoxysilane, dintyldimethylethoxysilane and the like are used.
  • butyltriethoxysilane, diphenyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, and dicyclopentyldimethoxysilane are preferably used.
  • a silane compound represented by the following formula (5) described in WO 2004/016662 pamphlet is also a preferable example of the organic silicon compound.
  • R a is a hydrocarbon group having a carbon number:! To 6, and examples of R a include an unsaturated or saturated aliphatic hydrocarbon group having a carbon number:! To 6, Preferably, a C 2 6 hydrocarbon group is used. Specific examples include methyl group, ethyl group, n-propyl group, is o-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, is o-pentyl group, cyclopentyl group, n A xyl group, a cyclohexyl group and the like can be mentioned, and among these, an ethyl group is particularly preferred.
  • Rb is a hydrocarbon group having 1 to 12 carbon atoms or hydrogen
  • Rb is an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms or Examples include hydrogen. Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butynole group, an iso-butynole group, a sec-butynole group, an n_pentinole group, an iso_pentinole group, and a cyclopentyl group. N_hexyl group, cyclohexyl group, octyl group and the like, among which ethyl group is particularly preferable.
  • n_ is a hydrocarbon group having!:-12 carbon atoms
  • examples thereof include an unsaturated or saturated aliphatic hydrocarbon group having hydrogen atoms:!-12 and hydrogen.
  • Specific examples include methyl group, ethyl group, n_propyl group, iso_propyl group, n_butyl group, iso-butylene group, sec-butyl group, n_pentyl group, iso_pentyl group, cyclopentyl group, n_ Examples include a hexyl group, a cyclohexyl group, an octyl group, and the like. Among these, an ethyl group is particularly preferable.
  • organosilicon compound a compound represented by the following formula (6) may be mentioned.
  • RN is a cyclic amino group
  • examples of the cyclic amino group include perhydroquinolino group, nohydroisoquinolino group, 1, 2, 3, 4-tetrahydroquinolino group, 1, 2, 3, 4-- tetrahydroisoquinolino group, otatamethyleneimino group and the like.
  • catalyst component (III) examples include the aromatic carboxylic acid ester and / or a compound having two or more ether bonds via a plurality of carbon atoms (the catalyst component).
  • the polyether compounds described as examples in (c)) are also preferred, and examples are given.
  • 1,3-diethers are preferred, particularly 2_isopropyl-2-isobutyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxy Mouth pan, 2_isopropyl-2_isopentyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) 1,3-dimethoxypropane Is preferred.
  • the olefin polymerization catalyst of the present invention may contain other components useful for olefin polymerization as required in addition to the above components.
  • other components include a carrier such as silica, an antistatic agent, a particle flocculant, a storage stabilizer, and the like.
  • the method for producing an olefin polymer according to the present invention is characterized in that olefin polymerization is carried out using the catalyst for olefin polymerization of the present invention.
  • polymerization may include the meaning of copolymerization such as random copolymerization and block copolymerization in addition to homopolymerization.
  • the polymerization is carried out in the presence of a prepolymerization catalyst obtained by prepolymerization of polyolefin in the presence of the catalyst for olefin polymerization of the present invention.
  • a prepolymerization catalyst obtained by prepolymerization of polyolefin in the presence of the catalyst for olefin polymerization of the present invention.
  • This prepolymerization is carried out by prepolymerizing the fluoroolefin in an amount of 0.1 to:! OOOg, preferably 0.3 to 500 g, particularly preferably:! To 200 g per lg of olefin polymerization catalyst.
  • a catalyst having a concentration higher than the catalyst concentration in the system in the main polymerization can be used.
  • the concentration of the solid titanium catalyst component (I) in the prepolymerization is usually about 0.001 to 200 millimoles, preferably about 0.01 to 50 millimoles per 1 liter of liquid medium, in terms of titanium atoms. In particular, it is desirable that the range is from 0.:! To 20 mmol.
  • the amount of the organometallic compound catalyst component (II) in the prepolymerization may be such that 0.1 to 1000 g, preferably 0.3 to 500 g of polymer is formed per lg of the solid titanium catalyst component (I).
  • the catalyst component (III) or the like can be used as necessary.
  • these components are added to the solid titanium catalyst component (I) per mole of titanium atoms. .:! To 50 mono, preferably 0.5 to 30 mono, more preferably 1 to 10 mol.
  • the prepolymerization can be carried out under mild conditions by adding olefin and the above catalyst components to an inert hydrocarbon medium.
  • Aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, kerosene;
  • Cycloaliphatic hydrocarbons such as cycloheptane, cycloheptane, methylcycloheptane, 4-cycloheptane, 4-cycloheptane, methyl 4-cycloheptane;
  • Aromatic hydrocarbons such as benzene, toluene, xylene;
  • Halogenated hydrocarbons such as ethylene chloride and chlorobenzene
  • inert hydrocarbon media it is particularly preferable to use aliphatic hydrocarbons.
  • the prepolymerization is preferably performed in a batch system.
  • prepolymerization can be carried out using olefin in itself as a solvent, or it can be prepolymerized in a substantially solvent-free state. In this case, it is preferable to perform preliminary polymerization continuously.
  • the olefin used in the prepolymerization is the same as the olefin used in the main polymerization described later. Specifically, it may be one or different, and is preferably propylene.
  • the temperature during the prepolymerization is usually in the range of about -20 to + 100 ° C, preferably about -20 to + 80 ° C, more preferably 0 to + 40 ° C. Les.
  • Olefins that can be used in the polymerization include olefins having 3 to 20 carbon atoms, such as propylene, 1-butene, 1 -Linear olefins such as pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 4-methyl-1- Examples include branched olefins such as pentene, 3_methyl_1_pentene, and 3-methyl-1-butene, and propylene, 1-butene, 1_pentene, and 4-methyl-1-pentene are preferred. In addition, propylene, 1-butene, and 4-methyl-1-pentene are particularly preferable because of their high rigidity, low resinity, wide molecular weight distribution, and ease of manifesting the advantages of the polymer.
  • aromatic vinyl compounds such as ethylene, styrene, and arylbenzene; and alicyclic vinyl compounds such as burcyclohexane and burcycloheptane can also be used.
  • compounds having polyunsaturated bonds such as conjugated gens such as cyclopentene, cycloheptene, nonlevonolenene, tetracyclodecene, isoprene and butadiene, and conjugated gens and non-conjugated gens are used as polymerization raw materials together with ethylene and ⁇ _olefin. You can also.
  • conjugated gens such as cyclopentene, cycloheptene, nonlevonolenene, tetracyclodecene, isoprene and butadiene
  • conjugated gens and non-conjugated genes are used as polymerization raw materials together with ethylene and ⁇ _olefin. You can also.
  • These compounds can be used alone or in combination of two or more.
  • ethylene and aromatic bur compounds are preferred.
  • other olefins such as ethylene may be used in combination as long as the amount is a small amount, for example, 10% by weight or less, preferably 5% by weight or less, out of the total amount of olefins of 100% by weight.
  • the prepolymerization and the main polymerization can be carried out by any of liquid phase polymerization methods such as Barta polymerization method, solution polymerization, suspension polymerization, or gas phase polymerization method.
  • liquid phase polymerization methods such as Barta polymerization method, solution polymerization, suspension polymerization, or gas phase polymerization method.
  • the reaction solvent the inert hydrocarbon used in the above pre-polymerization can be used, or the reaction solvent can be used at the reaction temperature. Olefin can also be used.
  • the solid titanium catalyst component (I) is usually about 0.0001 to 0.5 millimeters, preferably in terms of titanium atoms per liter of polymerization volume. Is used in an amount of about 0.005 to 0.1 mmol.
  • the organometallic compound catalyst component (II) is usually about:! To 2000 monolayers, preferably about 5 to 500 moles per 1 mole of titanium atoms in the prepolymerization catalyst component in the polymerization system. Used in various amounts.
  • the catalyst component (III) is preferably from 0.001 to 50 monolayers, preferably from 0.01 to 30 monolayers, particularly preferably from the organometallic compound catalyst component (II). Used in amounts of 0.05 to 20 mol.
  • the molecular weight of the resulting polymer can be adjusted, and a polymer having a high melt flow rate can be obtained.
  • the polymerization temperature of olefin is usually about 20 to 200 ° C, preferably about 30 to 100 ° C, more preferably 50 to 90 ° C.
  • the pressure is usually normal pressure ⁇ 10 0kgf / cm 2 (9. 8MPa), Ru is preferably set to about 2 ⁇ 50kgf / cm 2 (0. 20 ⁇ 4. 9MPa).
  • the polymerization can be carried out by any of batch, semi-continuous and continuous methods. Furthermore, the polymerization can be carried out in two or more stages by changing the reaction conditions. By performing such multi-stage polymerization, it is possible to further widen the molecular weight distribution of the olefin polymer.
  • the olefin polymer thus obtained may be any of a homopolymer, a random copolymer, a block copolymer, and the like.
  • the decane insoluble component content is 70% or more, preferably 85% or more, particularly preferably 90% or more. A certain propylene-based polymer with high stereoregularity is obtained.
  • the method for producing an olefin polymer of the present invention it is possible to obtain a polyolefin having a wide molecular weight distribution, in particular, polypropylene, even without performing multi-stage polymerization, even with a small number of stages of polymerization, for example, single-stage polymerization. it can.
  • the ratio of components having a higher molecular weight is higher than that of a conventional olefin polymer having a similar melt flow rate (MFR).
  • MFR melt flow rate
  • Low molecular weight (called component) This is characterized in that the ratio of the component and the component is low and the olefin polymer is often obtained. This characteristic can be confirmed by gel permeation chromatography (GPC) measurement described later, and a polymer having both high Mw / Mn value and Mz / Mw value can be obtained.
  • the Mw / Mn value is 5 or less and the Mz / Mw value is generally less than 4, which is an index of
  • an olefin polymer having an MwZMn value of 6 to 30, preferably 7 to 20, can be obtained.
  • an olefin polymer having an MzZMw value of 4 to 15, more preferably 4.5 to 10 can be obtained.
  • a polymer having a high MzZMw value is often obtained.
  • Polypropylene having a high Mw / Mn value is considered to be common sense in the traders that it has excellent moldability and rigidity.
  • a high Mz / Mw value indicates a high content ratio of components having a high molecular weight, and the resulting polypropylene has a high melt tension and a high possibility of excellent moldability.
  • the polymers obtained by these methods are relatively complicated. However, the improvement in melt tension and moldability may not be sufficient. This is probably because polymers with different molecular weights are basically difficult to mix.
  • the polymer obtained by the method for producing an olefin polymer of the present invention has a high melt tension because polymers having different molecular weights in a very wide range are mixed at the catalyst level, that is, at the nano level. It is expected to be excellent.
  • the bulk specific gravity, melt flow rate, decane-soluble (insoluble) component amount, molecular weight distribution, and the like of the propylene polymer were measured by the following methods.
  • the measurement temperature is 230 for propylene polymers. 260 for C, 4_methyl 1_pentene polymer. C.
  • the filtrate 100ml was collected, which was dried under reduced pressure to give a part of the decane-soluble component, the table and a (g) in which the weight was measured to the single-position of 10-4 grams (this weight, the following equation After this operation, the amount of decane soluble component was determined by the following formula.
  • Decane soluble component content 100 X (500 X a) / (100 X b)
  • Decane insoluble component content 100-100 X (500 X a) / (100 X b)
  • Liquid chromatograph Waters ALC / GPC 150-C plus type (with integrated refractometer detector)
  • the MwZ Mn value and the Mz / Mw value were calculated by analyzing the obtained chromatogram by a known method.
  • the measurement time per sample was 60 minutes
  • the solid part was collected by hot filtration.
  • the solid part was resuspended in 200 ml of titanium tetrachloride, and the temperature was raised to 130 ° C. These were reacted by holding for 45 minutes while stirring.
  • the solid part was again collected by hot filtration and thoroughly washed with decane and heptane at 100 ° C until no free titanium compound was detected in the washing solution.
  • the solid titanium catalyst component (1) prepared by the above operation was stored as a decane slurry, and a part of this was dried for the purpose of examining the catalyst composition.
  • Table 1 shows the activity of the catalyst, the MFR of the obtained polymer, the amount of decane insoluble components, the bulk specific gravity, and the molecular weight distribution (Mw / Mn, Mz / Mw).
  • Example 1 except that 4-methylcyclohexane 1,2-dicarboxylate diisobutyl (cis isomer, trans isomer mixture) was used instead of cis isomer of 4-methyl 4-cyclohexene 1,2-dicarboxylate jetyl In the same manner as above, a solid titanium catalyst component ( ⁇ 3) was obtained.
  • Example 2 The same procedure as in Example 1 was conducted except that diisobutyl 3,6-diphenylcyclohexane-1,2-dicarboxylate was used in place of diisobutyl 4-methylcyclohexane 1,2-dicarboxylate (mixture of cis and trans isomers). Thus, a solid titanium catalyst component ( ⁇ 8) was obtained.
  • Example 1 except that 3-methylcyclohexane-1,2-dicarboxylate diisobutyl (cis isomer) was used in place of 4-methylcyclohexane 1,2-dicarboxylate diisobutyl (cis isomer, trans isomer mixture) Thus, a solid titanium catalyst component ( ⁇ 9) was obtained.
  • Example 2 The same procedure as in Example 1 except that diisobutyl phthalate (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of diisobutyl 1,2-dicarboxylate (a mixture of cis and trans isomers). As a result, a solid titanium catalyst component (/ 3 1) was obtained.
  • diisobutyl phthalate special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • diisobutyl 1,2-dicarboxylate a mixture of cis and trans isomers
  • 2,3-diisopropyl succinic acid gel was synthesized by the same method as described in Patent Document 5.
  • Table 2 shows the results of melt tension measurement. It can be seen that the PP of Comparative Example 2 is inferior to the melt tension compared to Example 11. Further, the yarns obtained at the time of measuring the melt tension of the polymers obtained in Comparative Examples 2 and 3 were prone to brittle yarn breakage and troubles coming off the pulleys.
  • Example 1 1 1.1 1.2 1.2 1.3
  • the polypropylene obtained by using the solid titanium catalyst component of the present invention, the catalyst for olefin polymerization, and the method for producing the olefin polymer is a polymer having a wide molecular weight distribution.
  • MzZMw value is high, which indicates that the content of high molecular weight components is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明 細 書
固体状チタン触媒成分、ォレフィン重合用触媒およびォレフィン重合体の 製造方法
技術分野
[0001] 本発明は、炭素原子数 3以上のひ-ォレフィンの重合に好ましく用いられる固体状 チタン触媒成分に関する。また本発明は、上記固体状チタン触媒成分を含むォレフ イン重合用触媒に関する。更に本発明は、上記ォレフィン重合用触媒を用いたォレ フィンの重合体の製造方法に関する。
背景技術
[0002] 従来から、エチレン、 ひ-ォレフィンの単独重合体あるいはエチレン. ひ -ォレフィン 共重合体などのォレフィン重合体を製造するために用レ、られる触媒として、活性状態 のハロゲン化マグネシウムに担持されたチタン化合物を含む触媒が知られている。 ( 以下、「単独重合」と「共重合」とをまとめて「重合」と記載する場合もある。 )
このようなォレフィン重合用触媒としては、チーグラー-ナッタ触媒と称される、四塩 化チタンや三塩化チタンを含む触媒や、マグネシウム、チタン、ハロゲンおよび電子 供与体力 なる固体状チタン触媒成分と有機金属化合物とからなる触媒等が広く知 られている。
[0003] 後者の触媒は、エチレンの他、プロピレン、ブテン- 1などの α -ォレフインの重合に 高い活性を示す。また、得られる α _ォレフィン重合体は高い立体規則性を有するこ とがある。
[0004] これらの触媒の中でも、特に、フタル酸エステルを典型的な例とするカルボン酸エス テルから選択される電子供与体が担持された固体状チタン触媒成分と、助触媒成分 としてのアルミニウム-アルキル化合物と、少なくとも一つの Si-OR (式中、 Rは炭化水 素基である)を有するケィ素化合物とからなる触媒を用いた場合に、優れた重合活性 と立体特異性が発現されることが特開昭 57-63310号公報 (特許文献 1)等で報告さ れている。
[0005] 上記の触媒を用いて得られた重合体は、チーグラー-ナッタ触媒で得られる重合体 に比して分子量分布が狭いことが多い。分子量分布が狭い重合体は、「溶融流動性 が低い」、「溶融張力が低い」、「成形性に劣る」、「剛性がやや低い」等の傾向がある ことが知られている。一方で、生産性向上、コストダウン等の観点から、たとえば延伸 フィルムの生産性向上を目的とした高速延伸技術などの様々な高速成形技術が進 化している。
[0006] 上記の様な比較的狭分子量分布の重合体をたとえば高速延伸しょうとすると、溶融 張力不足からフィルムのネックインやバタツキなどがより顕著となり、生産性向上が困 難になるケースがある。よって、より高い溶融張力を有する重合体が市場から求めら れている。
[0007] このような問題を解決させるために、分子量の異なる重合体を多段重合で製造して 重合体の分子量分布を広げる方法 (特開平 5- 170843号公報 (特許文献 2)等)や、 複数種の電子供与体を含む触媒 (特開平 3-7703号公報 (特許文献 3) )や、固体状 チタン触媒成分に含まれる電子供与体に不斉炭素を有するコハク酸エステルを使用 した触媒(国際公開第 01/057099号パンフレット (特許文献 4)、国際公開第 00/ 63261号パンフレット(特許文献 5)、国際公開第 02/30998号パンフレット(特許文 献 6) )等の数多くの報告がある。
[0008] 一方、特開 2001— 114811号公報(特許文献 7)および特開 2003— 40918号公 報 (特許文献 8)には、チタン化合物、マグネシウム化合物および電子供与性化合物 を接触させて得られるォレフィン (類)重合用固体触媒成分、ならびにこの触媒成分 を含むォレフィン (類)重合用触媒が開示されてレ、る。この電子供与性化合物として、 特許文献 7に記載の発明では、トランス純度 80%以上を有する 1,2-シクロへキサンジ カルボン酸エステルが使用され、特許文献 8に記載の発明では、シクロへキセンジカ ノレボン酸ジエステルが使用され、このシクロへキセンジカルボン酸ジエステルの具体 例としては、 1—シクロへキセンのシクロへキセン環の 1位及び 2位にアルコキシカル ボニル基が結合した 1—シクロへキセンジカルボン酸ジエステルのみが開示されてい る(段落 [0021]〜 [0024]および実施例)。し力、しながら、特許文献 7および 8には、 ォレフィン重合体の分子量分布に関する記載は一切ない。
特許文献 1 :特開昭 57-63310号公報 特許文献 2:特開平 5-170843号公報
特許文献 3:特開平 3-7703号公報
特許文献 4 :国際公開第 01/057099号パンフレット
特許文献 5 :国際公開第 00/63261号パンフレット
特許文献 6:国際公開第 02/30998号パンフレット
特許文献 7 :特開 2001— 114811号公報
特許文献 8 :特開 2003— 40918号公報
発明の開示
発明が解決しょうとする課題
[0009] しかしながら、上記の触媒は、ォレフィン重合体の分子量分布を広くする効果が不 充分であったり、本発明者らの検討によると、低分子量成分を増加させることによって 分子量分布を広げる触媒であった。一方、これらの触媒はォレフイン重合体の溶融 張力の向上が充分とは言えないと言う市場の評価があり、更に、市場からはコストダウ ンの観点等から、より簡略なプロセスで広分子量分布化したォレフィン重合体を製造 可能とする触媒の登場が待ち望まれていた。
[0010] 従って、本発明は、分子量分布が広ぐ溶融張力が高ぐ高速延伸、高速成形によ り適したォレフィン重合体を簡便に製造可能な触媒成分および触媒を提供することを 目的とする。
課題を解決するための手段
[0011] 本発明者らは鋭意研究した結果、複数のカルボン酸エステル基を有する特定の環 状エステル化合物を含む固体状チタン触媒成分を用いると、分子量分布が広いォレ フィン重合体を製造できることを見出し、本発明を完成させた。なお、特許文献 7およ び 8のいずれにも、下記式(1)で表わされる、置換基 Rを有する環状エステル化合物
(a)は、記載も示唆もされていない。
[0012] 本発明の固体状チタン触媒成分 (I)は、
チタン、マグネシウム、ハロゲンおよび下記式(1)で特定される環状エステルイ匕合 物(a)を含むことを特徴としてレ、る;
[0013] [化 1]
Figure imgf000006_0001
Figure imgf000006_0002
[0014] 〔式(1)において、 nは 5〜: 10の整数である。
[0015] R2および R3はそれぞれ独立に COOR1または Rであり、 R2および R3のうちの少なくと も 1つは COOR1である。
[0016] 環状骨格中の単結合(Ca— Ca結合、および R3が Rである場合の Ca— Cb結合を除く
。)は、二重結合に置き換えられていてもよい。
[0017] 複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。
[0018] 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少 なくとも 1つの Rは水素原子ではない。
[0019] Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に、 COOR1が結合した Caを 2つ以上含む場合は、該環の骨格をなす炭 素原子の数は 5〜10である。〕。
[0020] 前記式(1)において、前記環状骨格中の炭素原子間結合のすべては単結合であ ることが好ましい。
[0021] 前記式(1)において、前記環状骨格は 6個の炭素原子からなることが好ましい。
[0022] 前記環状エステル化合物(a)としては、下記式(la)で表わされる化合物が好ましい [0023] [化 2]
Figure imgf000007_0001
[0024] 〔式(la)において、 nは 5〜: 10の整数である。
[0025] 環状骨格中の単結合 (Ca— Ca結合および Ca— Cb結合を除く。 )は、二重結合に置 き換えられていてもよい。
[0026] 複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。
[0027] 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少 なくとも 1つの Rは水素原子ではない。
[0028] Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に 2つの Caを含む場合は、該環の骨格をなす炭素原子の数は 5〜: 10で ある。〕。
[0029] 本発明の固体状チタン触媒成分 (I)は、さらに、芳香族カルボン酸エステルおよび /または複数の炭素原子を介して 2個以上のエーテル結合を有する化合物を含ん でいてもよい。
[0030] 本発明のォレフィン重合用触媒は、
請求項 1に記載の固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族から選ばれる金属元素を含む有機金属化合 物触媒成分 (II)と
を含むことを特徴としている。
[0031] 本発明のォレフィン重合用触媒は、さらに、電子供与体 (III)を含んでいてもよい。
[0032] 本発明の、ォレフィン重合体の製造方法は、前記ォレフィン重合用触媒の存在下 にォレフインの重合を行うことを特徴としてレ、る。
発明の効果
[0033] 本発明の固体状チタン触媒成分、ォレフィン重合用触媒、およびォレフィンの重合 体の製造方法は、立体規則性が高ぐ広い分子量分布を有するォレフィン重合体を 、高活性で製造するのに適している。
[0034] また、本発明の固体状チタン触媒成分、ォレフィン重合用触媒、ォレフィンの重合 体の製造方法を用いれば、たとえば高速延伸性、高速成形性などの成形性にカロえ、 剛性にも優れたォレフィン重合体が製造可能になると期待できる。
発明を実施するための最良の形態
[0035] 以下、本発明に係る固体状チタン触媒成分 (I)、ォレフィン重合用触媒およびォレ フィン重合体の製造方法についてさらに詳細に説明する。
[0036] 「 {本 チタン 成ん i) Ί
本発明に係る固体状チタン触媒成分 (I)は、チタン、マグネシウム、ハロゲンおよび 環状エステル化合物(a)を含むことを特徴としている。
[0037] <環状エステル化合物(a) >
前記環状エステル化合物(a)は、複数のカルボン酸エステル基を有し、下記式(1) で表される。
[0038] [化 3]
Figure imgf000009_0001
Figure imgf000009_0002
[0039] 式(1)において、 nは、 5〜10の整数、好ましくは 5〜7の整数であり、特に好ましく は 6である。また Caおよび Cbは、炭素原子を表わす。
[0040] R2および R3はそれぞれ独立に COOR1または Rであり、 R2および R3のうちの少なくと も 1つは COOR1である。
[0041] 環状骨格中の炭素原子間結合は、すべてが単結合であることが好ましいが、環状 骨格中の、 Ca— Ca結合および カ¾である場合の Ca— Cb結合以外のいずれかの単 結合は、二重結合に置き換えられていてもよい。
[0042] 複数個ある R1は、それぞれ独立に、炭素原子数が:!〜 20、好ましくは 1〜10、より 好ましくは 2〜8、さらに好ましくは 4〜8、特に好ましくは 4〜6の 1価の炭化水素基で ある。この炭化水素基としては、ェチル基、 n—プロピル基、イソプロピル基、 n—ブチ ル基、イソブチル基、へキシル基、ヘプチル基、ォクチル基、 2 _ェチルへキシル基、 デシル基、ドデシル基、テトラデシル基、へキサデシノレ基、ォクタデシノレ基、エイコシ ル基などが挙げられ、中でも n_ブチル基、イソブチル基、へキシル基、ォクチル基 が好ましぐ更には n_ブチル基、イソブチル基が好ましい。
[0043] 複数個ある Rは、それぞれ独立に、水素原子、炭素原子数 1〜20の炭化水素基、 ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素 含有基から選ばれる原子または基である力 少なくとも 1つの Rは水素原子ではない [0044] 水素原子以外の Rとしては、これらの中でも炭素原子数 1 20の炭化水素基が好 ましぐこの炭素原子数 1 20の炭化水素基としては、メチル基、ェチル基、 n—プロ ピノレ基、 iso—プロピル基、 n—ブチル基、 iso—ブチル基、 sec—ブチル基、 n—ペン チノレ基、シクロペンチル基、 n キシル基、シクロへキシル基、ビニノレ基、フエ二ノレ 基、ォクチル基などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基 が挙げられる。中でも脂肪族炭化水素基が好ましぐ具体的にはメチル基、ェチル基 n_プロピル基、 iso _プロピル基、 n_ブチル基、 iso_ブチル基、 see—ブチル基 が好ましい。
[0045] また Rは、互いに結合して環を形成していてもよぐ Rが互いに結合して形成される 環の骨格中には二重結合が含まれていてもよぐ該環の骨格中に、 COOR1が結合 した Caを 2つ以上含む場合は、該環の骨格をなす炭素原子の数は 5〜: 10である。
[0046] このような環の骨格としては、ノルボルナン骨格、テトラシクロドデセン骨格などが挙 げられる。
[0047] また複数個ある Rは、カルボン酸エステル基、アルコキシ基、シロキシ基、アルデヒド 基ゃァセチル基などのカルボニル構造含有基であってもよぐこれらの置換基には、 炭化水素基 1個以上を含んでいることが好ましい。
[0048] このような環状エステルイ匕合物(a)としては、
3-メチル、:ンクロへキサン- -1,2- -ジカノレボン酸ジェチノレ、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジ n-プロピル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジイソプロピル、
3-メチル、:ンクロへキサン- -1,2- -ジカノレボン酸ジ n-ブチノレ、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジイソブチル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジへキシル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジヘプチル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジォクチル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジ 2 -ェチルへキシル、
3-メチル、:ンクロへキサン- -1,2- -ジカルボン酸ジデシル、
4-メチル、:ンクロへキサン- —1,3- -ジカルボン酸ジェチル、 -メチルシクロへキサン- 1,3- -ジカルボン酸ジイソブチル、
-メチルシクロへキサン- 1,2- -ジカノレボン酸ジェチノレ、
-メチルシクロへキサン- 1,2- -ジカルボン酸ジ n-プロピル、
-メチルシクロへキサン- 1,2- -ジカルボン酸ジイソプロピル、
-メチルシクロへキサン- 1,2- -ジカノレボン酸ジ n-ブチノレ、
-メチルシクロへキサン- 1,2- -ジカルボン酸ジイソブチル、
-メチルシクロへキサン -1,2- -ジカルボン酸ジへキシル、
-メチルシクロへキサン- 1,2- -ジカルボン酸ジヘプチル、
-メチルシクロへキサン- 1,2- -ジカルボン酸ジォクチル、
-メチルシクロへキサン- 1,2- -ジカノレボン酸ジ 2 -ェチノレへキシノレ-メチルシクロへキサン- 1,2- -ジカルボン酸ジデシル、
-メチルシクロへキサン- 1,3- -ジカノレボン酸ジェチノレ、
-メチルシクロへキサン- 1,3- -ジカルボン酸ジイソブチル、
,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジェチル、
,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジ n-プロピル、,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジイソプロピル、,4-ジメチノ 'レシクロへキサン- -1 ,2-ジカルボン酸ジ n-ブチル、,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジイソブチル、,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジへキシル、,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジヘプチル、 ,4-ジメチノ 'レシクロへキサン- -1,2-ジカルボン酸ジォクチル、 ,4-ジメチノ 'レシクロへキサン- ■1,2-ジカルボン酸ジ 2 _ェチルへキシル ,4-ジメチノ 'レシクロへキサン- ■1,2-ジカルボン酸ジデシル、
,6-ジメチノ 'レシクロへキサン- ■1,2-ジカルボン酸ジェチル、
,6-ジメチノ 'レシクロへキサン- ■ 1, 2-ジカルボン酸ジ n -プロピル、 ,6-ジメチノ 'レシクロへキサン- - 1 ,2-ジカルボン酸ジイソプロピル、 ,6-ジメチノ 'レシクロへキサン- ■ 1, 2-ジカルボン酸ジ n_ブチル、 ,6-ジメチ 'レシクロへキサン- 1,2-ジカルボン酸ジイソブチル、 ,6-ジメチ.7レシクロへ、キサン- 1,2-ジカルボン酸ジへキシル、
,6-ジメチ. 7レシクロへ 、キサン- 1,2-ジカルボン酸ジヘプチル、
,6-ジメチ. 7レシクロへ 、キサン- 1,2-ジカルボン酸ジォクチル、
,6-ジメチ,レシクロ八 、キサン- 1,2-ジカルボン酸ジ 2—ェチルへキシル、 ,6-ジメチ,レシクロ八 、キサン- 1,2-ジカルボン酸ジデシル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジェチル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジ n-プロピル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジイソプロピル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジ n-ブチル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジイソブチル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジへキシル、
,6-ジフエ.ニルシクロへキサン- 1,2-ジカルボン酸ジォクチル、
,6-ジフエ.ニノレシクロへキサン- 1,2-ジカルボン酸ジデシル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジェチル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジ n-プロピル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジイソプロピル、-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジ n-ブチル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジイソブチル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジへキシル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジヘプチル、
-メチル 6 - -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジォクチル、
-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジ 2—ェチルへキシル、-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジデシル、
-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジェチル、
-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジ n -プロピル、
-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジイソプロピル、-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジ n -ブチル、
-メチル 6- -ェチノレシ:クロへキサン- 1,2-ジカルボン酸ジイソブチル、 -メチル 6-ェチルシクロへキサン- 1,2-ジカルボン酸ジへキシル、
-メチル 6-ェチルシクロへキサン- 1,2-ジカルボン酸ジヘプチル、
-メチル 6-ェチルシクロへキサン- 1,2-ジカルボン酸ジォクチル、
-メチル 6-ェチルシクロへキサン- 1,2-ジカルボン酸ジ 2—ェチルへキシル、-メチル 6-ェチルシクロへキサン- 1,2-ジカルボン酸ジデシル、
-メチル 6-n_プロピルシクロへキサン- 1,2-ジカルボン酸ジェチル、
-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジ n -プロピル、-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジイソプロピル、-メチル 6-n_プロピルシクロへキサン- 1,2-ジカルボン酸ジ n -ブチル、-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジイソブチル、-メチル 6-n—プロピルシクロへキサン- 1,2-ジカルボン酸ジへキシル、-メチル 6-n_プロピルシクロへキサン- 1,2-ジカルボン酸ジヘプチル、-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジォクチル、-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジ 2—ェチルへキシル-メチル 6-n—プロビルシクロへキサン- 1,2-ジカルボン酸ジデシル、
-へキシルシクロへキサン- 1,2-ジカルボン酸ジェチル、
-へキシルシクロへキサン- 1,2-ジカルボン酸ジイソブチル、
,6-ジへキシルシクロへキサン- 1,2-ジカルボン酸ジェチル、
-へキシル 6-ペンチルシクロへキサン- 1,2-ジカルボン酸ジイソブチル、-メチルシクロペンタン- 1,2-ジカルボン酸ジェチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジイソブチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジヘプチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジデシル、
-メチルシクロペンタン- 1,3-ジカルボン酸ジェチル、
-メチルシクロペンタン- 1,3-ジカルボン酸ジイソブチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジェチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジイソブチル、
-メチルシクロペンタン- 1,2-ジカルボン酸ジヘプチル、 -メチルシクロペンタン- 1,2- -ジカノレボン酸ジデシ.ル、
-メチルシクロペンタン- 1,3- -ジカノレボン酸ジェチ.ル、
-メチルシクロペンタン- 1,3- -ジカノレボン酸ジイソ:; 7"チル、
,4-ジメチノ 'レシクロペンタン- -1,2 -ジカルボン酸ジ: ^チル、
,4-ジメチノ 'レシクロペンタン- -1,2 -ジカルボン酸ジノ fソブチル、
,4-ジメチノ 'レシクロペンタン- -1,2-ジカルボン酸ジヘプチル、
,4-ジメチノ 'レシクロペンタン- -1,2 -ジカルボン酸ジデ'シル、
,5-ジメチノ 'レシクロペンタン- -1,2 -ジカルボン酸ジ: ^チル、
, 5 -ジメチノ 'レシクロペンタン- -1,2-ジカルボン酸ジ fソブチル、
, 5 -ジメチ 'レシクロペンタン- -1,2 -ジカルボン酸ジ 、プチル、
,5-ジメチ 'レシクロペンタン - -1,2 -ジカルボン酸ジぅ シル、
-へキシルシクロペンタン- 1,2 -ジカルボン酸ジェチル、
, 5-ジへキシルシクロペンタン- 1 ,2-ジカルボン酸ジェチル
-へキシル 5-ペンチ 'ルシク t 2ペンタン- 1,2-ジカルボン酸ジイソブチル、-メチル 5-n—プロヒ :°ルシク 1コペンタン 1,2-ジカルボン酸ジェチル、-メチル 5-n—プロヒ :°ルシク 1コペンタン 1,2-ジカルボン酸ジ n-プロピル、-メチル 5-n—プロヒ :。ルシク tコペンタン 1,2-ジカルボン酸ジイソプロピル、-メチル 5-n—プロヒ :°ルシク tコペンタン 1,2-ジカルボン酸ジ n-ブチル、-メチル 5-n—プロヒ :°ルシク tコペンタン 1,2-ジカルボン酸ジイソブチル、-メチル 5-n—プロヒ :。ルシク tコペンタン 1,2-ジカルボン酸ジへキシル、-メチル 5-n—プロヒ :。ルシク tコペンタン 1,2-ジカルボン酸ジォクチル、-メチル 5-n_プロヒ :°ルシク tコペンタン 1,2 -ジカルボン酸ジデシル、-メチルシクロヘプタン- 1,2 -ジカルボン酸ジェチル、
-メチルシクロヘプタン- 1,2 -ジカルボン酸ジイソブチル
-メチルシクロヘプタン- 1,2 -ジカルボン酸ジヘプチル、
-メチルシクロヘプタン- 1,2 -ジカルボン酸ジデシル、
-メチルシクロヘプタン- 1,3 -ジカルボン酸ジェチル、
-メチルシクロヘプタン- 1,3 -ジカルボン酸ジイソブチル. -メチルシクロヘプタン- 1,2-ジカルボン酸ジェチル、
-メチルシクロヘプタン- 1 ,2-ジカルボン酸ジイソブチル、
-メチルシクロヘプタン- 1,2-ジカルボン酸ジヘプチル、
-メチルシクロヘプタン- 1,2-ジカルボン酸ジデシル、
-メチルシクロヘプタン- 1,3-ジカルボン酸ジェチル、
-メチルシクロヘプタン- 1,3-ジカルボン酸ジイソブチル、
,4-ジメチルシクロヘプタン _1,2 -ジカルボン酸ジェチル、
,4-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジイソブチル
,4-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジヘプチル、
,4-ジメチルシクロヘプタン _1,2 -ジカルボン酸ジデシル、
,7-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジェチル、
,7-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジイソブチル
,7-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジヘプチル、
,7-ジメチルシクロヘプタン- 1,2-ジカルボン酸ジデシル、
-へキシルシクロヘプタン- 1,2-ジカルボン酸ジェチル、
,7-ジへキシルシクロヘプタン- 1,2-ジカルボン酸ジェチノレ、
-へキシル 7-ペンチ 'ルシク t 2ヘプタン- 1,2-ジカルボン酸ジイソブチル、-メチル 7-n—プロヒ :。ルシク 1口ヘプタン 1,2-ジカルボン酸ジェチル、-メチル 7-n—プロヒ :。ルシク 1口ヘプタン 1 , 2-ジカルボン酸ジ n-プロピル、-メチル 7-n—プロヒ :。ルシク 1口ヘプタン 1 , 2-ジカルボン酸ジイソプロピル、-メチル 7-n—プロヒ :。ルシク 1コヘプタン 1,2-ジカルボン酸ジ n-ブチル、-メチル 7-n—プロヒ :°ルシク 1コヘプタン 1,2 -ジカルボン酸ジイソブチル、-メチル 7-n—プロヒ :°ルシク 1コヘプタン 1,2 -ジカルボン酸ジへキシル、-メチル 7-n—プロヒ :。ルシク 1コヘプタン 1,2-ジカルボン酸ジォクチル、-メチル 7-n—プロヒ :°ルシク 1コヘプタン 1,2 -ジカルボン酸ジデシル、-メチルシクロオクタン- 1,2-ジカルボン酸ジェチル、
-メチルシクロデカン- 1,2-ジカルボン酸ジェチル、
-ビュルシクロへキサン- 1,2-ジカルボン酸イソブチル 3,6-ジフエエルシクロへキサン- 1,2-ジカルボン酸イソブチル、 3,6-ジシクロへキシルシクロへキサン- 1,2-ジカルボン酸ェチル ノルボルナン- 2, 3-ジカルボン酸ジイソブチル、
テトラシクロドデカン- 2, 3-ジカルボン酸ジイソブチル
3-メチル 4- -シクロゾ \キセン- - 1,2- -ジカルボン酸ジェチル、
3-メチル 4- -シクロゾ \キセン- -1,2- -ジカルボン酸ジ n-プロピル、
3-メチル 4- -シクロ \キセン- -1,2- -ジカルボン酸ジイソプロピル 、
3-メチル 4- -シクロ \キセン- -1,2- -ジカルボン酸ジ n-ブチル、
3-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジイソブチル、
3-メチル 4- -シクロ z \キセン- - 1 , 2- -ジカノレボン酸ジへキシノレ、
3-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジヘプチル、
3-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジォクチル、
3-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジ 2—ェチル 、キシル、
3-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジデシル、
4-メチル 4- -シクロ z \キセン- -1,3- -ジカノレボン酸ジェチノレ、
4-メチル 4- -シクロ \キセン- -1,3- -ジカルボン酸ジイソブチル、
4-メチル 4- -シクロ \キセン- -1,2- -ジカルボン酸ジェチル、
4-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジ n-プロピル、
4-メチル 4- -シクロ \キセン- -1,2- -ジカルボン酸ジイソプロピル
4-メチル 4- -シクロ \キセン- -1,2- -ジカルボン酸ジ n-ブチル、
4-メチル 4- -シクロ, \キセン- -1,2- -ジカルボン酸ジイソブチル、
4-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジへキシル、
4-メチル 4- -シクロ z \キセン- -1,2- -ジカルボン酸ジヘプチル、
4-メチル 4- -シクロ z 、キセン- "1,2- -ジカルボン酸ジォクチル、
-メチル 4- -シクロ z 、キセン- •1,2- -ジカルボン酸ジ 2 -ェチル 、キシル、 -メチル 4- -シクロ z \キセン- •1,2- -ジカルボン酸ジデシル、
5-メチル 4- -シクロ z \キセン- •1,3- -ジカルボン酸ジェチル、
5-メチル 4- -シクロ \キセン- •1,3- -ジカルボン酸ジイソブチル、 ,4- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカノレボン酸ジェチノレ、
,4- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジ n-プロピル、
,4- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジイソプロピル. 、,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジ n-ブチル、
,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジイソブチル、
,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジへキシル、
,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジヘプチル、
,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジォクチル、
,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカノレボン酸ジ 2 -ェチノレ 、キシル,4- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジデシル、
,6- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジェチル、
,6- -ジメチル 4- -シクロ z \キセン- -1: ,2- -ジカルボン酸ジ n-プロピル、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジイソプロピル. 、,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカノレボン酸ジ n-ブチノレ、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジイソブチル、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジへキシル、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジヘプチル、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカルボン酸ジォクチル、
,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカノレボン酸ジ 2—ェチノレ 、キシル、,6- -ジメチル 4- -シクロ \キセン- - 1: ,2- -ジカノレボン酸ジデシノレ、
-へキシル 4-シクロへキセン- 1,2-ジカルボン酸ジェチル、
-へキシル 4 -シクロへキセン- 1,2-ジカルボン酸ジイソブチル、 ,6-ジへキシル 4 -シクロへキセン- 1,2 -ジカルボン酸ジェチル、
-へキシル 6_ペンチル 4 -シクロへキセン- 1,2 -ジカルボン酸ジイソブチル-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジェチル、
-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジイソブチル、
-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジヘプチル、
-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジデシル、 -メチル 3-シクロペンテン- 1,3-ジカルボン酸ジェチル、
-メチル 3-シクロペンテン- 1 ,3-ジカルボン酸ジイソブチル
-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジェチル、
-メチル 3-シクロペンテン- 1 ,2-ジカルボン酸ジイソブチル
-メチル 3-シクロペンテン- 1 ,2-ジカルボン酸ジヘプチル、
-メチル 3-シクロペンテン- 1,2-ジカルボン酸ジデシル、
-メチル 3-シクロペンテン- 1 ,3-ジカルボン酸ジェチル、
-メチル 3-シクロペンテン- 1 ,3-ジカルボン酸ジイソブチル.
,4- -ジメチル 3- -シクロペンテン- - 1,2- -ジカノレボン酸ジコチル、
,4- -ジメチノレ 3- -シクロペンテン- "1,2- -ジカノレボン酸ジ ίソブチル、,4- -ジメチル 3- -シクロペンテン- -1 ,2- -ジカノレボン酸ジ 、プチル、
,4- -ジメチル 3- -シクロペンテン- "1,2- -ジカノレボン酸ジラ シル、
,5- -ジメチノレ 3- -シクロペンテン- -1,2- -ジカノレボン酸ジコ二チル、
,5- -ジメチル 3- -シクロペンテン- -1,2- -ジ力/レボン酸ジ 'ソブチル、,5- -ジメチノレ 3- -シクロノペンテン- -1,2- -ジカノレボン酸ジ^ · 、プチル、
,5- -ジメチノレ 3_ -シクロノ ンテン- -1,2- -ジカノレボン酸ジラ ^シル、
-へキシル 3-シクロペンテン- 1,2-ジカルボン酸ジェチル、
,5-ジへキシル 3-シクロペンテン- 1,2-ジカルボン酸ジェチル、-へキシル 5-ペンチル 3-シクロペンテン- 1,2 -ジカルボン酸ジイソブチル-メチル 4-シクロヘプテン- 1,2-ジカルボン酸ジェチル、
-メチル 4-シクロヘプテン- 1 ,2-ジカルボン酸ジイソブチル、
-メチル 4-シクロヘプテン- 1,2-ジカルボン酸ジヘプチル、
-メチル 4-シクロヘプテン- 1 ,2-ジカルボン酸ジデシル、
-メチル 4-シクロヘプテン- 1,3-ジカルボン酸ジェチル、
-メチル 4-シクロヘプテン- 1 ,3-ジカルボン酸ジイソブチル、
-メチル 4-シクロヘプテン- 1,2-ジカルボン酸ジェチル、
-メチル 4-シクロヘプテン- 1 ,2-ジカルボン酸ジイソブチル、
-メチル 4-シクロヘプテン- 1 ,2-ジカルボン酸ジヘプチル、 4-メチル 4-シクロヘプテン- 1,2-ジカルボン酸ジデシル、
5-メチル 4-シクロヘプテン- 1,3-ジカルボン酸ジェチル、
5-メチル 4-シクロヘプテン- 1,3-ジカルボン酸ジイソブチル
3,4- -ジメチル 4- -シクロ z \プテン- - 1,2- -ジカルボン酸ジェチル、
3,4- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジイソブチル、
3,4- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジヘプチル、
3,4- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジデシル、
3,7- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジェチル、
3,7- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジイソブチル、
3,7- -ジメチル 4- -シクロ z \プテン- -1,2- -ジカルボン酸ジヘプチル、
3,7- -ジメチル 4- -シクロ z \プテン- —1,2- -ジカルボン酸ジデシル、
3-へキシル 4 -シクロヘプテン -1,2 -ジカルボン酸ジェチル、
3,7-ジへキシル 4-シクロヘプテン- 1,2-ジカルボン酸ジェチル、
3-へキシル 7-ペンチル 4-シクロヘプテン- 1,2-ジカルボン酸ジイソブチル、
3-メチル 5-シクロオタテン- 1,2-ジカルボン酸ジェチル、
3-メチル 6-シクロデセン- 1,2-ジカルボン酸ジェチル、
3-ビュル- 4シクロへキセン- 1,2-ジカルボン酸イソブチル、
3,6-ジフエニル -4シクロへキセン- 1,2-ジカルボン酸イソブチル、
3,6-ジシクロへキシル -4シクロへキセン- 1,2-ジカルボン酸ェチル、
2-ノルボルネン -5,6-ジカルボン酸ジイソブチル、
2-テトラシクロドデセン- 7, 8-ジカルボン酸ジイソブチル
などが挙げられる。
[0049] 上記のようなジエステル構造を持つ化合物には、式 1における複数の COOR1基に 由来するシス、トランス等の異性体が存在するが、どの構造であっても本発明の目的 に合致する効果を有するが、よりトランス体の含有率が高い方が好ましい。トランス体 の含有率が高い方が、分子量分布を広げる効果だけでなぐ活性や得られる重合体 の立体規則性がより高い傾向がある。
[0050] 前記環状エステル化合物(a)としては、下記式(1 _:!)〜(1— 6)で表される化合物 が好ましレ'
[0051] [ィ匕 4]
Figure imgf000020_0001
[0052] [化 5]
Figure imgf000020_0002
[0053] [化 6]
Figure imgf000020_0003
[0054] [化 7]
Figure imgf000021_0001
[0055] [化 8]
Figure imgf000021_0002
[0056] [化 9]
Figure imgf000021_0003
[0057] 〔上記式(1 _:!)〜(1 _ 6)中の、 R1および Rは前記同様である。
[0058] 上記式(1 _:!)〜(1 _ 3)において、環状骨格中の単結合 (ただし Ca_Ca結合およ び ca_ cb結合を除く。)は、二重結合に置き換えられていてもよい。
[0059] 上記式(1—4)〜(: 1— 6)において、環状骨格中の単結合 (ただし Ca_Ca結合を除 く。)は、二重結合に置き換えられていてもよい。
[0060] また、上記式(1— 3)および(1— 6)において nは 7〜: 10の整数である。〕
前記環状エステル化合物(a)としては、特には下記式(la)で表わされる化合物が 好ましい。
[0061] [化 10]
Figure imgf000022_0001
[0062] 〔式(la)中の、 n、 R1および Rは前記同様(すなわち、式(1)での定義と同様)であり、 環状骨格中の単結合 (ただし ca—ca結合および ca—cb結合を除く。)は、二重結合 に置き換えられていてもよレ、。〕
上記式(la)で表わされる化合物としては、具体的には
3, 6—ジメチルシクロへキサン 1, 2—ジカルボン酸ジイソブチル、
3, 6—ジメチルシクロへキサン 1, 2—ジカルボン酸ジ n—へキシル、
3, 6—ジメチルシクロへキサン 1, 2—ジカルボン酸ジ n_オタチル、
3 -メチル _ 6 _ェチルシクロへキサン一1, 2—ジカルボン酸ジイソブチル、 3 -メチル _ 6 _ェチルシクロへキサン一1, 2—ジカルボン酸ジ n -へキシル、 3 -メチル _ 6 _ェチルシクロへキサン一1, 2—ジカルボン酸ジ n -ォクチル、 3 -メチル _ 6 _ n _プロピルシクロへキサン一1, 2—ジカルボン酸ジイソブチル、 3—メチノレ _6_n—プロピルシクロへキサン一 1, 2—ジカルボン酸ジ n—へキシル、 3 -メチル _ 6 _ n _プロピルシクロへキサン一1, 2—ジカルボン酸ジ n -ォクチル、 3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジイソブチル、
3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジ n—へキシル、
3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジ n—ォクチル、 3, 5—ジメチルシクロペンタン 1, 2—ジカルボン酸ジイソブチル、
3, 5—ジメチルシクロペンタン 1, 2—ジカルボン酸ジ n—へキシル、
3, 5—ジメチルシクロペンタン 1, 2—ジカルボン酸ジ n—ォクチル、
3—メチノレ一5- ンタン一 1, 2—ジカルボン酸ジイソブチル、
3—メチノレ- 5- ンタン一 1, 2—ジカルボン酸ジ n—へキシル、 3—メチノレ- ■5- ンタン一 1, 2—ジカルボン酸ジ n_オタチル、 3—メチノレ-■5-n プロピルシクロペンタン一 1, 2—ジカルボン酸ジ n—へキシル、 3—メチノレ-■5-n プロピルシクロペンタン一 1, 2—ジカルボン酸ジ n—ォクチノレ、 3, 5—ジェチルハンク口ペンタン 1 , 2- -ジカノレボン酸ジィノブチル、
3, 5—ジェチルハンク口ペンタン 1 , 2- -ジカノレボン酸ジ n - -へキシノレ、
3, 5—ジェチルハンク口ペンタン 1 , 2- -ジカノレボン酸ジ n - -ォクチル、
3, 7—ジメチルシクロヘプタン 1, 2-ジカルボン酸ジイン 'ブチル、
3, 7 ジメチルシクロヘプタン 1, 2-ジカノレボン酸ジ n - -へキシル、
3, 7 ジメチルシクロヘプタン 1, 2-ジカノレボン酸ジ n - -ォクチル、
3- -メチルー 7 ェチルシクロヘプタン 1 , 2 ジカルボン酸ジイソブチル、
3- -メチルー 7—ェチルシクロヘプタン 1 , 2 ジカルボン酸ジ n—へキシル、 3- -メチルー 7 ェチルシクロヘプタン 1, 2 ジカルボン酸ジ n—ォクチル、 3- -メチルー 7—n—プロビルシクロヘプタン 1 , 2 ジカルボン酸ジ n—へキシル、 3- -メチル 7— n プロビルシクロヘプタン 1 , 2 ジカルボン酸ジ n ォクチル、 3, 7 ジェチルシクロヘプタン 1 , 2 ジカルボン酸ジイソブチル、
3, 7 ジェチルシクロヘプタン 1 , 2 ジカルボン酸ジ n—へキシル、
3, 7 -ジェチルシクロヘプタン 1 , 2 -ジカルボン酸ジ n_オタチル、
などが挙げられる。
上記の化合物の中では、
3, 6—ジメチルシクロへキサン 1 , 2—ジカルボン酸ジイソブチル、
3, 6—ジメチルシクロへキサン 1 , 2—ジカルボン酸ジ n—へキシル、
3, 6—ジメチルシクロへキサン 1 , 2—ジカルボン酸ジ n_オタチル、
3 -メチル _ 6 _ェチルシクロへキサン一1 , 2—ジカルボン酸ジイソブチル、 3 メチル 6 ェチルシクロへキサン 1 , 2 ジカルボン酸ジ n へキシル、
3 メチル 6 ェチルシクロへキサン 1 , 2 ジカルボン酸ジ n ォクチル、
3 メチル 6— n プロビルシクロへキサン 1 , 2 ジカルボン酸ジイソブチル、 3—メチノレ _ 6 _n—プロピルシクロへキサン一 1 , 2—ジカルボン酸ジ n—へキシル、 3 -メチル _ 6 _ n _プロピルシクロへキサン一1 , 2—ジカルボン酸ジ n -ォクチル、 3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジイソブチル、
3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジ n—へキシル、
3, 6—ジェチルシクロへキサン 1, 2—ジカルボン酸ジ n—オタチル
力 Sさらに好ましい。その理由は、触媒性能の高さだけでなぐこれらの化合物が Diels Alder反応を利用して比較的安価に製造できる点にある。
[0064] これらの化合物は、単独で用いてもよく 2種類以上を組み合わせて用いてもよい。ま た、本発明の目的を損なわない限り、これらの環状エステル化合物(a)と後述する触 媒成分 (b)や触媒成分 (c)とを組み合わせて用いてもょレ、。
[0065] また環状エステル化合物(a)は、固体状チタン触媒成分 (I)を調製する過程で形成 されてもよい。たとえば、固体状チタン触媒成分 (I)を調製する際に、触媒成分 (a)に 対応する無水カルボン酸やカルボン酸ジハライドと、対応するアルコールとが実質的 に接触する工程を設けることで、環状エステル化合物(a)を固体状チタン触媒成分 中に含有させることもできる。
[0066] 本発明のォレフィン重合体の製造方法では、分子量分布の広い重合体が得られる 。この理由は現時点で不明であるが、下記のような原因が推定される。
[0067] 環状炭化水素構造は、イス型、舟型など多彩な立体構造を形成することが知られて いる。更に、環状構造に置換基を有すると、取りうる立体構造のバリエーションは更に 増大する。また、環状エステル化合物(a)の環状骨格を形成する炭素原子のうちの、 エステル基(COOR1基)が結合した炭素原子とエステル基(COOR1基)が結合した 他の炭素原子との間の結合が単結合であれば、取りうる立体構造のバリエーションが 広がる。この多彩な立体構造を取りうることが、固体状チタン触媒成分 (I)上に多彩な 活性種を形成することに繋がる。その結果、固体状チタン触媒成分 (I)を用いてォレ フィンの重合を行うと、多様な分子量のォレフィン重合体を一度に製造することができ る、即ち分子量分布の広レヽォレフイン重合体を製造することができる。
[0068] 本発明の固体状チタン触媒成分 (I)の調製には、上記の環状エステル化合物(a) の他、マグネシウム化合物およびチタン化合物が用いられる。
[0069] <マグネシウム化合物 >
このようなマグネシウム化合物としては、具体的には、
塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウム;
メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、フエノキシ塩化マグネシウム などのアルコキシマグネシウムハライド;
エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、 2 -ェチ
ステアリン酸マグネシウムなどのマグネシウムの力ノレボン酸塩
などの公知のマグネシウム化合物を挙げることができる。
[0070] これらのマグネシウム化合物は単独で用いても、 2種以上を組み合わせて用いても よい。またこれらのマグネシウム化合物は、他の金属との錯化合物、複化合物あるい は他の金属化合物との混合物であってもよレ、。
[0071] これらの中ではハロゲンを含有するマグネシウム化合物が好ましぐハロゲン化マグ ネシゥム、特に塩化マグネシウムが好ましく用いられる。他に、エトキシマグネシウムの ようなアルコキシマグネシウムも好ましく用いられる。また、該マグネシウム化合物は、 他の物質から誘導されたもの、たとえばグリニャール試薬のような有機マグネシウム化 合物とハロゲン化チタンやハロゲン化珪素、ハロゲン化アルコールなどとを接触させ て得られるものであってもよレ、。
[0072] <チタン化合物 >
チタンィ匕合物としては、たとえば一般式;
Ti(OR) X
(Rは炭化水素基であり、 Xはハロゲン原子であり、 gは 0≤g≤4である。 )
で示される 4価のチタンィ匕合物を挙げることができる。より具体的には、
TiCl、 TiBrなどのテトラハロゲン化チタン; Ti(OCH )C1、 Ti(OC H )C1、 Ti(〇_n— C H )C1、 Ti(OC H )Br、 Ti(〇— isoC H )
Brなどのトリハロゲン化アルコキシチタン;
Ti(OCH ) CI、 Ti(OC H ) CIなどのジハロゲン化アルコキシチタン;
Ti(OCH ) Cl、 Ti(〇-n-C H ) Cl、 Ti(〇C H ) Brなどのモノハロゲン化アルコキシ チタン;
Ti(OCH )、 Ti(〇C H )、 Ti(OC H )、 Ti(〇_2_ェチルへキシル)などのテトラアル コキシチタン
などを挙げることができる。
[0073] これらの中で好ましいものは、テトラハロゲン化チタンであり、特に四塩化チタンが 好ましレ、。これらのチタン化合物は単独で用いても 2種以上を組み合わせて用いても よい。
[0074] 上記の様なマグネシウム化合物およびチタン化合物としては、たとえば前記特許文 献 1、特許文献 2などに詳細に記載されている化合物も挙げることができる。
[0075] 本発明の固体状チタン触媒成分 (I)の調製には、環状エステルイ匕合物 (a)を使用 する他は、公知の方法を制限無く使用することができる。具体的な好ましい方法とし ては、たとえば下記 (Ρ-1)〜(Ρ-4)の方法を挙げることができる。
[0076] (P-1)マグネシウム化合物および触媒成分 (b)からなる固体状付加物と、環状エス テル化合物 (a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸 濁状態で接触させる方法。
[0077] (P-2)マグネシウム化合物および触媒成分 (b)からなる固体状付加物と、環状エス テル化合物(a)と、液状状態のチタン化合物とを、複数回に分けて接触させる方法。
[0078] (P-3)マグネシウム化合物および触媒成分 (b)からなる固体状付加物と、環状エス テル化合物 (a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸 濁状態で接触させ、且つ複数回に分けて接触させる方法。
[0079] (P-4)マグネシウム化合物および触媒成分 (b)からなる液状状態のマグネシウムィ匕 合物と、液状状態のチタン化合物と、環状エステル化合物(a)とを接触させる方法。
[0080] 固体状チタン触媒成分 (I)の調製の際の好ましい反応温度は、 _ 30°C〜150°C、 より好ましくは一 25°C〜130°C、更に好ましくは一 25〜: 120°Cの範囲である。 [0081] また上記の固体状チタン触媒成分の製造は、必要に応じて公知の媒体の存在下 に行うこともできる。この媒体としては、やや極性を有するトルエンなどの芳香族炭化 水素やヘプタン、オクタン、デカン、シクロへキサンなどの公知の脂肪族炭化水素、 脂環族炭化水素化合物が挙げられるが、これらの中では脂肪族炭化水素が好ましい 例として挙げられる。
[0082] 上記の範囲で製造された固体状チタン触媒成分 (I)を用いてォレフィンの重合反 応を行うと、広い分子量分布の重合体を得られる効果と、触媒の活性や得られる重 合体の高い立体規則性とをより高いレベルで両立することが出来る。
[0083] (角虫 成ん b) )
上記の固体状付加物や液状状態のマグネシウム化合物の形成に用レ、られる触媒 成分 (b)としては、室温〜 300°C程度の温度範囲で上記のマグネシウム化合物を可 溶化できる公知の化合物が好ましぐたとえばアルコール、ァノレデヒド、ァミン、カルボ ン酸およびこれらの混合物などが好ましい。これらの化合物としては、たとえば前記 特許文献 1や特許文献 2に詳細に記載されている化合物を挙げることができる。
[0084] 上記のマグネシウム化合物可溶化能を有するアルコールとして、より具体的には メタノーノレ、エタノール、プロパノール、ブタノール、イソブタノール、エチレングリコ ール、 2-メチルペンタノール、 2-ェチルブタノール、 n-ヘプタノール、 n-ォクタノール 、 2-ェチルへキサノール、デカノール、ドデカノールのような脂肪族アルコール; シクロへキサノール、メチルシクロへキサノールのような脂環族アルコール; ベンジルアルコール、メチルベンジルアルコールなどの芳香族アルコール; n-ブチルセルソルブなどのアルコキシ基を有する脂肪族アルコール
などを挙げることができる。
[0085] カルボン酸としては、力プリル酸、 2_ェチルへキサノイツク酸などの炭素数 7以上の 有機カルボン酸類を挙げることができる。ァノレデヒドとしては、カプリックアルデヒド、 2- ェチルへキシルアルデヒドなどの炭素数 7以上のアルデヒド類を挙げることができる。
[0086] ァミンとしては、ヘプチルァミン、ォクチルァミン、ノニノレアミン、ラウリルァミン、 2-ェ チルへキシルァミンなどの炭素数 6以上のアミン類を挙げることができる。
[0087] 上記の触媒成分 (b)としては、上記のアルコール類が好ましぐ特にエタノール、プ ロパノール、ブタノール、イソブタノール、へキサノール、 2-ェチルへキサノール、デ 力ノールなどが好ましい。
[0088] 上記の固体状付加物や液状状態のマグネシウム化合物を調製する際のマグネシゥ ム化合物および触媒成分 (b)の使用量については、その種類、接触条件などによつ ても異なる力 マグネシウム化合物は、該触媒成分 (b)の単位容積あたり、 0.:!〜 20 モル/リットル、好ましくは、 0. 5〜5モル/リットルの量で用いられる。また、必要に 応じて上記固体状付加物に対して不活性な媒体を併用することもできる。上記の媒 体としては、ヘプタン、オクタン、デカンなどの公知の炭化水素化合物が好ましい例と して挙げられる。
[0089] 得られる固体状付加物や液状状態のマグネシウム化合物のマグネシウムと触媒成 分 )との組成比は、用いる化合物の種類によって異なるので一概には規定できな レ、が、マグネシウム化合物中のマグネシウム 1モルに対して、触媒成分 (b)は、好まし くは 2. 6モル以上、より好ましくは 2. 7モル以上、 5モル以下の範囲である。
[0090] <芳香族カルボン酸エステルおよび Zまたは複数の炭素原子を介して 2個以上の ヱ一テル結合を有する化合物 >
本発明の固体状チタン触媒成分 ( は、さらに、芳香族カルボン酸エステルおよび
/または複数の炭素原子を介して 2個以上のエーテル結合を有する化合物(以下「 触媒成分 (c)」ともいう。)を含んでいてもよい。本発明の固体状チタン触媒成分 (I)が 触媒成分 (c)を含んでいると活性や立体規則性を高めたり、分子量分布をより広げる ことができる場合がある。
[0091] この触媒成分 (c)としては、従来ォレフィン重合用触媒に好ましく用いられている公 知の芳香族カルボン酸エステルやポリエーテル化合物、たとえば上記特許文献 2や 特開 2001-354714号公報などに記載された化合物を制限無く用いることができる。
[0092] この芳香族カルボン酸エステルとしては、具体的には安息香酸エステルやトルィル 酸エステルなどの芳香族カルボン酸モノエステルの他、フタル酸エステル類等の芳 香族多価カルボン酸エステルが挙げられる。これらの中でも芳香族多価カルボン酸 エステルが好ましぐフタル酸エステル類がより好ましレ、。このフタル酸エステル類とし ては、フタル酸ェチル、フタル酸 n -ブチル、フタル酸イソブチル、フタル酸へキシル、 フタル酸へプチル等のフタル酸アルキルエステルが好ましく、フタル酸ジイソブチル が特に好ましい。
[0093] また前記ポリエーテル化合物としては、より具体的には以下の式(3)で表わされる 化合物が挙げられる。
[0094] [化 11]
Figure imgf000029_0001
[0095] なお、上記式(3)において、 mは l≤m≤10の整数、より好ましくは 3≤m≤ 10の整 数であり、 R"〜R36は、それぞれ独立に、水素原子、あるいは炭素、水素、酸素、フッ 素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケィ素から選択される少なく とも 1種の元素を有する置換基である。
[0096] mが 2以上である場合、複数個存在する R11および R12は、それぞれ同じであっても 異なっていてもよい。任意の RU〜R36、好ましくは R11および R12は共同してベンゼン環 以外の環を形成してレ、てもよレ、。
[0097] この様な化合物の一部の具体例としては、
2-イソプロピル- 1,3 -ジメトキシプロパン、
2-s-ブチル -1,3 -ジメトキシプロパン、
2-タミル- 1,3-ジメトキシプロパン
等の 1置換ジアルコキシプロパン類、
2-イソプロピル- 2-イソブチル -1,3 -ジメトキシプロパン、
2,2 -ジシクロへキシル -1,3 -ジメトキシプロパン、
2-メチル -2-イソプロピル- 1,3 -ジメトキシプロパン、
2-メチル -2-シクロへキシル -1,3-ジメトキシプロパン、
2-メチル -2-イソブチル -1,3-ジメトキシプロパン、
2,2-ジイソブチル -1,3-ジメトキシプロパン、
2,2-ビス (シクロへキシルメチル )-1,3-ジメトキシプロパン、 2,2-ジイソブチル -1,3-ジエトキシプロパン、
2,2-ジイソブチル -1,3-ジブトキシプロパン、
2,2-ジ -S-ブチル -1,3-ジメトキシプロパン、
2,2 -ジネオペンチル -1,3-ジメトキシプロパン、
2-イソプロピル- 2-イソペンチル -1,3-ジメトキシプロパン、
2-シクロへキシル -2-シクロへキシルメチル -1,3 -ジメトキシプロパン 等の 2置換ジアルコキシプロパン類
2, 3 -ジシクロへキシル- 1 ,4 -ジェトキシブタン、
2, 3 -ジシクロへキシル- 1 ,4 -ジェトキシブタン、
2,3 -ジイソプロピル- 1,4 -ジエトキシブタン
2,4 -ジフエニル -1,5 -ジメトキシペンタン、
2,5 -ジフエニル -1,5 -ジメトキシへキサン、
2,4-ジイソプロピル- 1,5-ジメトキシペンタン、
2,4-ジイソブチル -1,5-ジメトキシペンタン、
2,4-ジイソァミル- 1,5-ジメトキシペンタン
2-メチル -2-メトキシメチル -1,3-ジメトキシプロパン、
2-シクロへキシル -2-エトキシメチル -1,3-ジエトキシプロパン、 2-シクロへキシル -2-メトキシメチル -1,3-ジメトキシプロパン 等のトリアルコキシアルカン類、
2,2-ジイソブチル -1,3-ジメトキシ 4-シクロへキセン、
2-イソプロピル- 2-イソアミル -1,3-ジメトキシ 4 -シクロへキセン、 2-シクロへキシル -2-メトキシメチル -1,3-ジメトキシ 4 -シクロへキセン、 2-イソプロピル- 2-メトキシメチル -1,3-ジメトキシ 4 -シクロへキセン、 2-イソブチル -2-メトキシメチル -1,3 -ジメトキシ 4 -シクロへキセン、 2-シクロへキシル -2-エトキシメチル -1,3-ジメトキシ 4-シクロへキセン 2-イソプロピル- 2-エトキシメチル -1,3-ジメトキシ 4-シクロへキセン、 2-イソブチル -2-エトキシメチル -1,3-ジメトキシ 4 -シクロへキセン 等を例示することができる。
[0098] これらのうち、 1,3-ジエーテル類が好ましぐ特に、 2-イソプロピル- 2-イソブチル -1, 3-ジメトキシプロパン、 2,2 -ジイソブチル -1,3 -ジメトキシプロパン、 2-イソプロピル- 2- イソペンチル- 1,3-ジメトキシプロパン、 2,2 -ジシクロへキシル -1,3-ジメトキシプロパン 、 2,2_ビス (シクロへキシルメチル )1,3 -ジメトキシプロパンが好ましい。
[0099] これらの化合物は、 1種単独で用いてもよぐ 2種以上を組み合わせて用いてもよい
[0100] 上記の様な環状エステル化合物 (a)、触媒成分 (b)、触媒成分 (c)は、当該業者で は電子供与体と呼ばれる成分に属すると考えても差し支えない。上記の電子供与体 成分は、触媒の高い活性を維持したまま、得られる重合体の立体規則性を高める効 果ゃ、得られる共重合体の組成分布を制御する効果や、触媒粒子の粒形や粒径を 制御する凝集剤効果などを示すことが知られている。
[0101] 上記の環状エステルイ匕合物(a)は、それ自身が電子供与体であることによって、さ らに分子量分布を制御する効果をも示していると考えられる。
[0102] 本発明の固体状チタン触媒成分 (I)において、ハロゲン/チタン (原子比)(すなわ ち、ハロゲン原子のモル数/チタン原子のモル数)は、 2〜: 100、好ましくは 4〜90で あることが望ましぐ
環状エステル化合物(a) /チタン (モル比)(すなわち、環状エステルイ匕合物(a)の モル数/チタン原子のモル数)は、 0.01〜: 100、好ましくは 0.2〜10であることが望 ましぐ
触媒成分 (b)や触媒成分 (c)は、触媒成分 (b) Zチタン原子 (モル比)は 0〜: 100、 好ましくは 0〜: 10であることが望ましぐ触媒成分(c) Zチタン原子(モル比)は 0〜: 10
0、好ましくは 0〜: 10であることが望ましい。
[0103] マグネシウム/チタン (原子比)(すなわち、マグネシウム原子のモル数/チタン原 子のモル数)は、 2〜: 100、好ましくは 4〜50であることが望ましい。
[0104] また、前述した環状エステル化合物(a)以外に含まれても良い成分、たとえば触媒 成分 (b)、触媒成分 (c)の含有量は、好ましくは環状エステル化合物(&) 100重量% に対して 20重量%以下であり、より好ましくは 10重量%以下である。
[0105] 固体状チタン触媒成分 (I)のより詳細な調製条件として、環状エステル化合物 (a) を使用する以外は、たとえば EP585869A1 (欧州特許出願公開第 0585869号明細書) や前記特許文献 2等に記載の条件を好ましく用いることができる。
[0106] 「ォレフイン重合用触媒 Ί
本発明に係るォレフィン重合用触媒は、
上記の本発明に係る固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族から選ばれる金属元素を含む有機金属化合 物触媒成分 (II)と
を含むことを特徴としている。
[0107] < ^m^ ^m ^ (ID >
前記有機金属化合物触媒成分 (II)としては、第 13族金属を含む化合物、たとえば 、有機アルミニウム化合物、第 1族金属とアルミニウムとの錯アルキル化物、第 2族金 属の有機金属化合物などを用いることができる。これらの中でも有機アルミニウム化 合物が好ましい。
[0108] 有機金属化合物触媒成分 (II)としては具体的には、前記 EP585869A1等の公知の 文献に記載された有機金属化合物触媒成分を好ましい例として挙げることができる。
[0109] <触媒成分 (III) >
また、本発明のォレフィン重合用触媒は、上記の有機金属化合物触媒成分 (II)と 共に、必要に応じて既述の触媒成分 (III)を含んでいてもよい。触媒成分 (III)として 好ましくは、有機ケィ素化合物が挙げられる。この有機ケィ素化合物としては、たとえ ば下記一般式 (4)で表される化合物を例示できる。
[0110] R Si(OR' ) · · · (4)
n 4-n
(式中、 Rおよび R'は炭化水素基であり、 nは 0<n<4の整数である。 )
上記のような一般式 (4)で示される有機ケィ素化合物としては、具体的には、ジイソ シラン、 t-アミルメチルジェトキシシラン、ジシクロへキシルジメトキシシラン、シクロへ キシルメチルジメトキシシラン、シクロへキシルメチルジェトキシシラン、ビュルトリメトキ シシラン、ビュルトリエトキシシラン、 t_ブチルトリエトキシシラン、フエニルトリエトキシシ ラン、シクロへキシルトリメトキシシラン、シクロペンチルトリメトキシシラン、 2-メチルシク 口ペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、ジシクロペンチルジメ トキシシラン、ジシクロペンチノレジェトキシシラン、トリシクロペンチノレメトキシシラン、ジ ンチルジメチルエトキシシランなどが用いられる。
[0111] このうちビュルトリエトキシシラン、ジフエ二ルジメトキシシラン、ジシクロへキシルジメ トキシシラン、シクロへキシルメチルジメトキシシラン、ジシクロペンチルジメトキシシラ ンが好ましく用いられる。
[0112] また、国際公開第 2004/016662号パンフレットに記載されている下記式(5)で 表されるシラン化合物も前記有機ケィ素化合物の好ましい例である。
[0113] Si (ORa) (NRbRc) · · · (5)
3
式(5)中、 Raは、炭素数:!〜 6の炭化水素基であり、 Raとしては、炭素数:!〜 6の不 飽和あるいは飽和脂肪族炭化水素基などが挙げられ、特に好ましくは炭素数 2 6 の炭化水素基が挙げられる。具体例としてはメチル基、ェチル基、 n—プロピル基、 is o—プロピル基、 n—ブチル基、 iso—ブチル基、 sec—ブチル基、 n—ペンチル基、 is o—ペンチル基、シクロペンチル基、 n キシル基、シクロへキシル基等が挙げられ 、これらの中でもェチル基が特に好ましい。
[0114] 式(5)中、 Rbは、炭素数 1〜: 12の炭化水素基または水素であり、 Rbとしては、炭素 数 1〜: 12の不飽和あるいは飽和脂肪族炭化水素基または水素などが挙げられる。 具体例としては水素原子、メチル基、ェチル基、 n—プロピル基、 iso—プロピル基、 n —ブチノレ基、 iso—ブチノレ基、 sec—ブチノレ基、 n_ペンチノレ基、 iso _ペンチノレ基、 シクロペンチル基、 n_へキシル基、シクロへキシル基、ォクチル基等が挙げられ、こ れらの中でもェチル基が特に好ましい。
[0115] 式(5)中、 は、炭素数:!〜 12の炭化水素基であり、 としては、炭素数:!〜 12の 不飽和あるいは飽和脂肪族炭化水素基または水素などが挙げられる。具体例として はメチル基、ェチル基、 n_プロピル基、 iso_プロピル基、 n_ブチル基、 iso—ブチ ノレ基、 sec—ブチル基、 n_ペンチル基、 iso _ペンチル基、シクロペンチル基、 n_ へキシル基、シクロへキシル基、ォクチル基等が挙げられ、これらの中でもェチル基 が特に好ましい。
[0116] 上記式(5)で表される化合物の具体例としては、
ジメチルアミノトリエトキシシラン、
ジェチノレアミノトリエトキシシラン、
ジェチルアミノトリメトキシシラン、
ジェチノレアミノトリエトキシシラン、
ジェチルァミノトリ n—プロポキシシラン、
ジ n—プロピルアミノトリエトキシシラン、
メチル n—プロピルアミノトリエトキシシラン、
t_ブチルアミノトリエトキシシラン、
ェチル n—プロピルアミノトリエトキシシラン、
ェチル iso—プロピルアミノトリエトキシシラン、
メチルェチルアミノトリエトキシシラン
が挙げられる。
[0117] また、前記有機ケィ素化合物の他の例としては、下記式 (6)で表される化合物が挙 げられる。
[0118] RNSi (ORa) (6)
3
式(6)中、 RNは、環状アミノ基であり、この環状アミノ基として、例えば、パーヒドロ キノリノ基、ノ ーヒドロイソキノリノ基、 1 , 2, 3, 4—テトラヒドロキノリノ基、 1 , 2, 3, 4— テトラヒドロイソキノリノ基、オタタメチレンイミノ基等が挙げられる。上記式 (6)で表され る化合物として具体的には、
(パーヒドロキノリノ)トリエトキシシラン、
(パーヒドロイソキノリノ)トリエトキシシラン、
(1 , 2, 3, 4—テトラヒドロキノリノ)トリエトキシシラン、
(1 , 2, 3, 4—テトラヒドロイソキノリノ)トリエトキシシラン、
オタタメチレンイミノトリエトキシシラン
等が挙げられる。 [0119] これらの有機ケィ素化合物は、 2種以上組み合わせて用いることもできる。
[0120] また、触媒成分 (III)として他に有用な化合物としては、前記芳香族カルボン酸エス テルおよび/または複数の炭素原子を介して 2個以上のエーテル結合を有する化合 物(前記触媒成分 (c) )の例として記載したポリエーテル化合物も好ましレ、例として挙 げられる。
[0121] これらのポリエーテル化合物の中でも、 1,3-ジエーテル類が好ましぐ特に、 2_イソ プロピル- 2_イソブチル -1,3 -ジメトキシプロパン、 2,2-ジイソブチル -1,3 -ジメトキシプ 口パン、 2_イソプロピル- 2_イソペンチル -1,3 -ジメトキシプロパン、 2,2-ジシクロへキシ ル -1,3-ジメトキシプロパン、 2,2-ビス (シクロへキシルメチル )1,3 -ジメトキシプロパンが 好ましい。
[0122] これらの化合物は、単独で用いることも、 2種以上を組み合わせて用いることもでき る。
[0123] なお、本発明のォレフィン重合用触媒は、上記のような各成分以外にも必要に応じ てォレフイン重合に有用な他の成分を含んでいてもよレ、。この他の成分としては、たと えば、シリカなどの担体、帯電防止剤等、粒子凝集剤、保存安定剤などが挙げられる
[0124] 「ォレフインの重合体の製造方法 Ί
本発明に係るォレフィン重合体の製造方法は、本発明のォレフィン重合用触媒を 用いてォレフィン重合を行うことを特徴としている。本発明において、「重合」には、ホ モ重合の他、ランダム共重合、ブロック共重合などの共重合の意味が含まれることが ある。
[0125] 本発明のォレフィン重合体の製造方法では、本発明のォレフィン重合用触媒の存 在下にひ -ォレフインを予備重合 (prepolymerization)させて得られる予備重合触媒の 存在下で、本重合 (polymerization)を行うことも可能である。この予備重合は、ォレフィ ン重合用触媒 lg当り 0. 1〜: !OOOg好ましくは 0. 3〜500g、特に好ましくは:!〜 200 gの量でひ -ォレフインを予備重合させることにより行われる。
[0126] 予備重合では、本重合における系内の触媒濃度よりも高い濃度の触媒を用いるこ とができる。 [0127] 予備重合における前記固体状チタン触媒成分 (I)の濃度は、液状媒体 1リットル当 り、チタン原子換算で、通常約 0· 001〜200ミリモル、好ましくは約 0· 01〜50ミリモ ノレ、特に好ましくは 0. :!〜 20ミリモルの範囲とすることが望ましい。
[0128] 予備重合における前記有機金属化合物触媒成分 (II)の量は、固体状チタン触媒 成分(I) lg当り 0.1〜: 1000g、好ましくは 0.3〜500gの重合体が生成するような量で あればよぐ固体状チタン触媒成分(I)中のチタン原子 1モル当り、通常約 0.:!〜 30 0モノレ、好ましくは約 0. 5〜: 100モノレ、特に好ましくは 1〜50モルの量であることが望 ましい。
[0129] 予備重合では、必要に応じて前記触媒成分 (III)等を用いることもでき、この際これ らの成分は、前記固体状チタン触媒成分(I)中のチタン原子 1モル当り、 0.:!〜 50モ ノレ、好ましくは 0. 5〜30モノレ、さらに好ましくは 1〜10モルの量で用いられる。
[0130] 予備重合は、不活性炭化水素媒体にォレフィンおよび上記の触媒成分を加え、温 和な条件下に行うことができる。
[0131] この場合、用いられる不活性炭化水素媒体としては、具体的には、
プロパン、ブタン、ペンタン、へキサン、ヘプタン、オクタン、デカン、ドデカン、灯油 などの脂肪族炭化水素;
シクロヘプタン、シクロヘプタン、メチルシクロヘプタン、 4-シクロヘプタン、 4-シクロ ヘプタン、メチル 4-シクロヘプタンなどの脂環族炭化水素;
ベンゼン、トルエン、キシレンなどの芳香族炭化水素;
エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素、
あるいはこれらの混合物などを挙げることができる。
[0132] これらの不活性炭化水素媒体のうちでは、特に脂肪族炭化水素を用いることが好ま しい。このように、不活性炭化水素媒体を用いる場合、予備重合はバッチ式で行うこ とが好ましい。
[0133] 一方、ォレフィン自体を溶媒として予備重合を行うこともできるし、また実質的に溶 媒のない状態で予備重合することもできる。この場合には、予備重合を連続的に行う のが好ましい。
[0134] 予備重合で使用されるォレフインは、後述する本重合で使用されるォレフインと同 一であっても、異なっていてもよぐ具体的には、プロピレンであることが好ましい。
[0135] 予備重合の際の温度は、通常約- 20〜 + 100°C、好ましくは約- 20〜 + 80°C、さら に好ましくは 0〜 + 40°Cの範囲であることが望ましレ、。
[0136] 次に、前記の予備重合を経由した後に、あるいは予備重合を経由することなく実施 される本重合 (polymerization)について説明する。
[0137] 本重合 (polymerization)において使用することができる(すなわち、重合される)ォレ フィンとしては、炭素原子数が 3〜20のひ-ォレフィン、たとえば、プロピレン、 1-ブテ ン、 1-ペンテン、 1-へキセン、 1-オタテン、 1 -デセン、 1 -ドデセン、 1 -テトラデセン、 1- へキサデセン、 1 -ォクタデセン、 1-エイコセンなどの直鎖状ォレフィンや、 4-メチル -1 -ペンテン、 3_メチル _1_ペンテン、 3-メチル -1-ブテン等の分岐状ォレフインを挙げる ことができ、プロピレン、 1 -ブテン、 1_ペンテン、 4-メチル -1-ペンテンが好ましレ、。ま た、剛性の高レ、樹脂にぉレ、て分子量分布の広レ、重合体のメリットが発現し易い観点 力ら、プロピレン、 1-ブテン、 4-メチル -1-ペンテンが特に好ましい。
[0138] これらの α -ォレフインと共に、エチレンやスチレン、ァリルベンゼン等の芳香族ビニ ル化合物;ビュルシクロへキサン、ビュルシクロヘプタン等の脂環族ビニル化合物を 用レ、ることもできる。更に、シクロペンテン、シクロヘプテン、ノノレボノレネン、テトラシク ロドデセン、イソプレン、ブタジエンなどのジェン類などの共役ジェンや非共役ジェン のような多不飽和結合を有する化合物をエチレン、 α _ォレフィンとともに重合原料と して用レ、ることもできる。これらの化合物を 1種単独で用いてもよく 2種以上を併用して もよレ、。 (以下、上記のエチレンあるいは「炭素原子数が 3〜20の α -ォレフィン」と共 に用いられるォレフィンを「他のォレフィン」ともいう。 )
上記他のォレフィンの中では、エチレンや芳香族ビュル化合物が好ましレ、。また、 ォレフィンの総量 100重量%のうち、少量、たとえば 10重量%以下、好ましくは 5重 量%以下の量であれば、エチレン等の他のォレフィンが併用されてもよい。
[0139] 本発明では、予備重合および本重合は、バルタ重合法、溶解重合、懸濁重合など の液相重合法あるいは気相重合法のいずれにおいても実施できる。
[0140] 本重合力スラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重 合時に用レ、られる不活性炭化水素を用いることもできるし、反応温度において液体 であるォレフィンを用いることもできる。
[0141] 本発明の重合体の製造方法における本重合においては、前記固体状チタン触媒 成分 (I)は、重合容積 1リットル当りチタン原子に換算して、通常は約 0.0001〜0.5ミ リモノレ、好ましくは約 0.005〜0.1ミリモルの量で用いられる。また、前記有機金属化 合物触媒成分 (II)は、重合系中の予備重合触媒成分中のチタン原子 1モルに対し、 通常約:!〜 2000モノレ、好ましくは約 5〜500モルとなるような量で用いられる。前記 触媒成分 (III)は、使用される場合であれば、前記有機金属化合物触媒成分 (II)に 対して、 0. 001〜50モノレ、好ましく ίま 0. 01〜30モノレ、特 ίこ好ましく ίま 0. 05〜20モ ルの量で用いられる。
[0142] 本重合を水素の存在下に行えば、得られる重合体の分子量を調節することができ、 メルトフローレートの大きレ、重合体が得られる。
[0143] 本発明における本重合において、ォレフィンの重合温度は、通常、約 20〜200°C、 好ましくは約 30〜: 100°C、より好ましくは 50〜90°Cである。圧力は、通常、常圧〜 10 0kgf/cm2 (9. 8MPa)、好ましくは約 2〜50kgf/cm2 (0. 20〜4. 9MPa)に設定され る。本発明の重合体の製造方法においては、重合を、回分式、半連続式、連続式の 何れの方法においても行うことができる。さらに重合を、反応条件を変えて二段以上 に分けて行うこともできる。このような多段重合を行えば、ォレフィン重合体の分子量 分布を更に広げることが可能である。
[0144] このようにして得られたォレフィンの重合体は、単独重合体、ランダム共重合体およ びブロック共重合体などのいずれであってもよい。
[0145] 上記のようなォレフィン重合用触媒を用いてォレフィンの重合、特にプロピレンの重 合を行うと、デカン不溶成分含有率が 70%以上、好ましくは 85%以上、特に好ましく は 90%以上である立体規則性の高いプロピレン系重合体が得られる。
[0146] さらに本発明のォレフィン重合体の製造方法によれば、多段重合を行わなくても、 少ない段数の重合、例えば単段重合でも、分子量分布の広いポリオレフイン、特にポ リプロピレンを得ることができる。本発明のォレフィン重合体の製造方法においては、 特に、メルトフローレート(MFR)が同等である従来のォレフィン重合体よりも、分子量 の高い成分の比率が従来に比して高ぐかつ(特にベタ成分と呼ばれる)分子量の低 レ、成分の比率が低レ、ォレフイン重合体が得られる場合が多レ、ことが特徴である。この 特徴は、後述するゲルパーミエーシヨンクロマトグラフィー(GPC)測定により確認する ことができ、 Mw/Mn値および Mz/Mw値の両方が高い重合体を得ることができる
[0147] 従来のマグネシウム、チタン、ハロゲンおよび電子供与体を含む固体状チタン触媒 成分を用いて得られるポリプロピレンは、たとえば MFRが 1〜: lOg/10分の領域では、 GPC測定で求められる分子量分布の指標である Mw/Mn値が 5以下、 Mz/Mw 値は 4未満となることが一般的であった力 S、本発明のォレフィン重合体の製造方法を 用いると、上記の同様の重合条件で MwZMn値が 6〜30、好ましくは 7〜20のォレ フィン重合体を得ることができる。また好ましくは MzZMw値が 4〜15、より好ましくは 4. 5〜: 10のォレフイン重合体を得ることができる。特に、本発明のォレフィンの重合 体の製造方法によれば、 MzZMw値の高い重合体が得られることが多い。
[0148] Mw/Mn値が高いポリプロピレンは、成形性や剛性に優れることが当該業者では 常識とされている。一方、 Mz/Mw値が高いことは、分子量の高い成分の含有比率 が高いことを表しており、得られるポリプロピレンの溶融張力が高ぐ成形性に優れる 可能性が高レ、こと力 S予想される。
[0149] 本発明のォレフィンの重合体の製造方法を用いれば、多段重合を行わなくても分 子量分布の広レ、重合体を得ることができるので、重合体製造装置をよりシンプルにす る事ができる可能性がある。また、従来の多段重合法に適用すると、より溶融張力や 成形性に優れた重合体を得ることができることが予想される。
[0150] 分子量分布の広い重合体を得る他の方法としては、分子量の異なる重合体を溶解 混合や、溶融混練する方法もあるが、これらの方法により得られる重合体は、作業が 比較的煩雑な割には、溶融張力や成形性の向上が充分でない場合がある。これは 分子量の異なる重合体は基本的に混ざり難い為と推定されている。一方、本発明の ォレフィンの重合体の製造方法で得られる重合体は、触媒レベル、即ちナノレベルで 、極めて広い範囲の分子量の異なる重合体が混合しているので、溶融張力が高ぐ 成形性に優れてレ、ることが予想される。
[0151] [実施例] 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるもの ではない。
[0152] 以下の実施例において、プロピレン重合体の嵩比重、メルトフローレート、デカン可 溶 (不溶)成分量、分子量分布等は下記の方法によって測定した。
[0153] (1)嵩比重:
JIS K-6721に従って測定した。
[0154] (2)メルトフローレート(MFR):
ASTM D1238Eに準拠し、測定温度は、プロピレン重合体の場合は 230。C、 4_ メチル 1 _ペンテン重合体の場合は 260。Cとした。
[0155] (3)デカン ( 成 :
ガラス製の測定容器にプロピレン重合体約 3グラム(10— 4グラムの単位まで測定した 。また、この重量を、下式において b (グラム)と表した。)、デカン 500ml、およびデカ ンに可溶な耐熱安定剤を少量装入し、窒素雰囲気下、スターラーで攪拌しながら 2 時間で 150°Cに昇温してプロピレン重合体を溶解させ、 150°Cで 2時間保持した後、 8時間掛けて 23°Cまで徐冷した。得られたプロピレン重合体の析出物を含む液を、 磐田ガラス社製 25G-4規格のグラスフィルタ一にて減圧濾過した。濾液の 100mlを 採取し、これを減圧乾燥してデカン可溶成分の一部を得、この重量を 10— 4グラムの単 位まで測定した(この重量を、下式において a (グラム)と表した。)この操作の後、デカ ン可溶成分量を下記式によって決定した。
[0156] デカン可溶成分含有率 = 100 X (500 X a) / (100 X b)
デカン不溶成分含有率 = 100 - 100 X (500 X a) / (100 X b)
(4)分子量分布:
液体クロマトグラフ: Waters製 ALC/GPC 150-C plus型(示唆屈折計検出器一体 型)
カラム:東ソー株式会社製 GMH6-HT X 2本および GMH6-HTL X 2本を直列接続 した。
[0157] 移動相媒体: 0 -ジクロ口ベンゼン
流速: 1.0ml/分 測定温度: 140°C
検量線の作成方法:標準ポリスチレンサンプルを使用した
サンプル濃度: 0.10%(w/w)
サンプル溶液量 : 500 μ ΐ
の条件で測定し、得られたクロマトグラムを公知の方法によって解析することで MwZ Mn値および Mz/Mw値を算出した。 1サンプル当たりの測定時間は 60分であった
[0158] (5) 鬲屯 力:
東洋精機製作所株式会社製キヤピログラフ 1B型装置にメルトテンション測定装備 を付した溶融張力測定装置を用い、 230°Cの同装置シリンダー内(窒素雰囲気下) で 6分間溶融したサンプル樹脂を、ピストンを用いて長さ 8mm、直径 2.095mmのノ ズノレを通してストランドを押し出した。ピストンの押出速度は 15mm/分とした。このス トランドをフィラメント状に引き、ロードセルを付したプーリーを通し、所定の卷き取り速 度のローラーを用いて卷き取った。この時にロードセルで検出される応力を測定し、 溶融張力とした。
[0159] なお、前記環状エステル化合物(a)に該当する化合物としては、特に明記しない限 りァヅマ株式会社合成品を用いた。またトランス体、シス体の異性体純度は、特に明 記しない場合何れも 95%以上である。
実施例 1
[0160] (固体状チタン触媒成分( α 1)の調製)
内容積 2リットルの高速撹拌装置 (特殊機化工業製)を充分窒素置換した後、この 装置に精製デカン 700ml、巿販塩化マグネシウム 10g、エタノーノレ 24. 2gおよび商 品名レオドーノレ SP-S20 (花王(株)製ソルビタンジステアレート) 3gを入れ、この懸濁 液を撹拌しながら系を昇温し、懸濁液を 120°Cにて 800rpmで 30分撹拌した。次い でこの懸濁液を、沈殿物が生じないように高速撹拌しながら、内径 5mmのテフロン( 登録商標)製チューブを用いて、予め- 10°Cに冷却された精製デカン 1リットルを張り 込んである 2リットルのガラスフラスコ(攪拌機付)に移した。移液により生成した固体 を濾過し、精製 n-ヘプタンで充分洗浄することにより、塩ィ匕マグネシウム 1モルに対し てエタノールが 2· 8モル配位した固体状付加物を得た。
[0161] デカン 30mlで懸濁状にした、マグネシウム原子に換算して 46. 2ミリモルの上記固 体状付加物を、 _20°Cに保持した四塩ィ匕チタン 200ml中に、攪拌下、全量導入して 混合液を得た。この混合液を 5時間かけて 80°Cに昇温し、 80°Cに達したところで、 4_ メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物)を、 固体状付加物のマグネシウム原子 1モルに対して 0. 15モルの割合の量で添加し、 4 0分間で 120°Cまで昇温した。温度を 120°Cで 90分間攪拌しながら保持することによ りこれらを反応させた。
[0162] 90分間の反応終了後、熱濾過にて固体部を採取し、この固体部を 200mlの四塩 化チタンにて再懸濁させた後、昇温して 130°Cに達したところで、 45分間撹拌しなが ら保持することによりこれらを反応させた。 45分間の反応終了後、再び熱濾過にて固 体部を採取し、 100°Cのデカンおよびヘプタンで、洗液中に遊離のチタン化合物が 検出されなくなるまで充分洗浄した。
[0163] 以上の操作によって調製した固体状チタン触媒成分(ひ1)はデカンスラリーとして 保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。
(本重合)
内容積 2リットルの重合器に、室温で 500gのプロピレンおよび水素 1NLを加えた後 、トリェチルアルミニウムを 0. 5ミリモノレ、シクロへキシルメチルジメトキシシランを 0. 1 ミリモノレ、および固体状チタン触媒成分(α ΐ)をチタン原子換算で 0. 004ミリモルカロ え、速やかに重合器内を 70°Cまで昇温した。 70°Cで 1時間重合した後、少量のメタノ ールにて反応停止し、プロピレンをパージした。更に得られた重合体粒子を 80°Cで 一晩、減圧乾燥した。
[0164] 触媒の活性、得られた重合体の MFR、デカン不溶成分量、嵩比重、分子量分布( Mw/Mn、 Mz/Mw)を表 1に示した。
実施例 2
[0165] (固体状チタン触媒成分(ct 2)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 4-メチルシクロへキサン 1,2-ジカルボン酸ジェチル(シス体、トランス体混 合物)を用いた以外は実施例 1と同様にして、固体状チタン触媒成分(α 2)を得た。 (本重合)
固体状チタン触媒成分( α 1)に替えて固体状チタン触媒成分( ct 2)を用いた以外 は実施例 1と同様にプロピレンの重合を行った。結果を表 1に示した。
実施例 3
[0166] (固体状チタン触媒成分 3)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 4-メチル 4-シクロへキセン 1,2-ジカルボン酸ジェチルのシス体を用いた以 外は実施例 1と同様にして、固体状チタン触媒成分( α 3)を得た。
(本重合)
固体状チタン触媒成分(α 3)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 4
[0167] (固体状チタン触媒成分 4)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3_メチル 4 -シクロへキセン 1,2-ジカルボン酸ジ η_オタチル (トランス体、シス 体混合物)を用いた以外は実施例 1と同様にして、固体状チタン触媒成分(ひ 4)を得 た。
(本重合)
固体状チタン触媒成分(α 4)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 5
[0168] (固体状チタン触媒成分 5)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3_メチル 4 -シクロへキセン 1,2-ジカルボン酸ジイソブチルと 4_メチル 4 -シク 口へキセン 1,2-ジカルボン酸ジイソブチルとの混合物を用いた以外は実施例 1と同様 にして、固体状チタン触媒成分(ひ 5)を得た。
(本重合) 固体状チタン触媒成分(α 5)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 6
[0169] (固体状チタン触媒成分 6)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3_メチル 4 -シクロへキセン 1,2-ジカルボン酸ジ η -ォクチルと 4-メチル 4-シ クロへキセン 1,2-ジカルボン酸ジ η-ォクチルを用いた以外は実施例 1と同様にして、 固体状チタン触媒成分( a 6)を得た。
(本重合)
固体状チタン触媒成分( α 6)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 7
[0170] (固体状チタン触媒成分 7)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりにノルボルナン- 1,2 -ジカルボン酸ジイソブチルを用いた以外は実施例 1と 同様にして、固体状チタン触媒成分(ひ 7)を得た。
(本重合)
固体状チタン触媒成分(ひ 7)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 8
[0171] (固体状チタン触媒成分 8)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3,6-ジフヱニルシクロへキサン- 1,2 -ジカルボン酸ジイソブチルを用いた以 外は実施例 1と同様にして、固体状チタン触媒成分( α 8)を得た。
(本重合)
固体状チタン触媒成分(ひ 8)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。 実施例 9
[0172] (固体状チタン触媒成分(α 9)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3 -メチルシクロへキサン- 1,2 -ジカルボン酸ジイソブチル(シス体)を用いた 以外は実施例 1と同様にして、固体状チタン触媒成分( α 9)を得た。
(本重合)
固体状チタン触媒成分(α 9)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
実施例 10
[0173] (固体状チタン触媒成分(ひ 10)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3 -メチルシクロへキサン- 1,2 -ジカルボン酸ジ η -ォクチル(シス体)を用レヽ た以外は実施例 1と同様にして、固体状チタン触媒成分(ひ 10)を得た。
(本重合)
固体状チタン触媒成分(ひ 10)を用いた以外は実施例 1と同様にプロピレンの重合 を行った。結果を表 1に示した。
実施例 11
[0174] (固体状チタン触媒成分(a l l)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3, 6-ジメチルシクロへキサン- 1,2-ジカルボン酸ジイソブチル(トランス体含 有率 74%)を用いた以外は実施例 1と同様にして、固体状チタン触媒成分 11)を 得た。
(本重合)
固体状チタン触媒成分(ひ 11)を用いた以外は実施例 1と同様にプロピレンの重合 を行った。結果を表 1に示した。
実施例 12
[0175] (固体状チタン触媒成分( a 12)の調製) 4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3, 6-ジメチルシクロへキサン- 1,2-ジカルボン酸ジ n-ォクチル(シス体)を用 レ、た以外は実施例 1と同様にして、固体状チタン触媒成分 12)を得た。
(本重合)
固体状チタン触媒成分(ひ 12)を用いた以外は実施例 1と同様にプロピレンの重合 を行った。結果を表 1に示した。
実施例 13
[0176] (固体状チタン触媒成分( α 13)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 3-メチル 6-η-プロビルシクロへキサン- 1,2-ジカルボン酸ジイソブチルを用 レ、た以外は実施例 1と同様にして、固体状チタン触媒成分 13)を得た。
(本重合)
固体状チタン触媒成分 13)を用いた以外は実施例 1と同様にプロピレンの重合 を行った。結果を表 1に示した。
[0177] [比較例 1]
(固体状チタン触媒成分( 1)の合成)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりにフタル酸ジイソブチル (和光純薬工業 (株)製試薬特級)を用いた以外は 実施例 1と同様にして、固体状チタン触媒成分(/3 1)を得た。
(本重合)
固体状チタン触媒成分( 1)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
[0178] [比較例 2]
(2,3-ジイソプロピルコハク酸ジェチルの合成)
前記特許文献 5に記載の方法と同様の方法で、 2,3-ジイソプロピルコハク酸ジェチ ルを合成した。
(固体状チタン触媒成分( i3 2)の合成)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりに 2,3-ジイソプロピルコハク酸ジェチルを用いた以外は実施例 1と同様にし て、固体状チタン触媒成分( β 2)を得た。
(本重合)
固体状チタン触媒成分( 2)を用レ、、水素を 1. 6NL用いた以外は実施例 1と同様 にプロピレンの重合を行った。結果を表 1に示した。
[0179] [比較例 3]
(固体状チタン触媒成分( 3)の調製)
4-メチルシクロへキサン 1,2-ジカルボン酸ジイソブチル(シス体、トランス体混合物) の代わりにシクロへキサン 1,2 -ジカルボン酸ジイソブチルのトランス体を用いた以外 は実施例 1と同様にして、固体状チタン触媒成分( 3)を得た。
(本重合)
固体状チタン触媒成分( 3)を用いた以外は実施例 1と同様にプロピレンの重合を 行った。結果を表 1に示した。
[0180] [表 1]
Figure imgf000048_0001
[0181] 表 2には溶融張力測定結果を示した。実施例 11に比して比較例 2の PPは、溶融張 力に劣っていることが分かる。また、比較例 2、比較例 3で得られた重合体の溶融張 力測定時に得られた糸は脆ぐ糸切れやプーリーから外れるトラブルが起こりやすか つた。
[0182] [表 2] 溶融張力 / g
引き取り速度 Cm/min)
15 25 45 75
実施例 1 1 1.1 1 .2 1.2 1 .3
比較例 2 0.9 0.7 糸切れ 糸切れ
比較例 3 1.0 1.0 0.9 1.1
[0183] 本発明の固体状チタン触媒成分、ォレフィン重合用触媒、ォレフィンの重合体の製 造方法を利用して得られるポリプロピレンは分子量分布の広い重合体であることがわ かる。特に、ほぼ同じ MFR値の PP同士を比較した場合、分子量の高い成分の含有 率が高いことを示す MzZMw値が高いことが特徴的である。
[0184] 中でも 1位および 2位にジカルボン酸ジエステル基を有し、 3位に置換基を有する環 状ジエステル化合物を含む固体状チタン触媒成分を用いると、 Mw/Mn値が極め て高い重合体が得られる。特に 3位と 6位とに置換基を有するシクロへキサン 1, 2- ジカルボン酸ジエステル (上記式(la)の化合物に該当する)を含む固体状チタン触 媒成分を用いて得られた重合体は、 MwZMnだけでなく Mz/Mwをも極めて高い 値を示すほか、触媒の活性や得られた重合体の立体規則性も高いことが分かる。

Claims

請求の範囲
チタン、マグネシウム、ハロゲンおよび下記式(1)で特定される環状エステルイ匕合 物 (a)を含むことを特徴とする固体状チタン触媒成分 (I);
[化 1]
Figure imgf000050_0001
〔式(1)において、 nは 5〜: 10の整数である。
R2および R3はそれぞれ独立に COOR1または Rであり、 R2および R3のうちの少なくと も 1つは COOR1である。
環状骨格中の単結合 (Ca_Ca結合、および R3が Rである場合の Ca_Cb結合を除く 。)は、二重結合に置き換えられていてもよい。
複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少 なくとも 1つの Rは水素原子ではない。
Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に、 COOR1が結合した Caを 2つ以上含む場合は、該環の骨格をなす炭 素原子の数は 5〜: 10である。〕。
前記式(1)において、前記環状骨格中の炭素原子間結合のすべてが単結合であ ることを特徴とする請求項 1に記載の固体状チタン触媒成分 (I)。
[3] 前記式(1)において、前記環状骨格が 6個の炭素原子からなることを特徴とする請 求項 1に記載の固体状チタン触媒成分 (I)。
[4] 前記環状エステル化合物(a)が下記式(la)で表わされることを特徴とする請求項 1 に記載の固体状チタン触媒成分 (I);
[化 2]
Figure imgf000051_0001
〔式(la)において、 nは 5〜: 10の整数である。
環状骨格中の単結合 (ただし ca_ca結合および ca_cb結合を除く。)は、二重結合 に置き換えられてレ、てもよレ、。
複数個ある R1は、それぞれ独立に炭素数 1〜20の 1価の炭化水素基である。 複数個ある Rは、それぞれ独立に水素原子、炭素数 1〜20の炭化水素基、ハロゲ ン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケィ素含有 基から選ばれる原子または基であり、互いに結合して環を形成していてもよいが、少 なくとも 1つの Rは水素原子ではない。
Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよぐ該 環の骨格中に 2つの Caを含む場合は、該環の骨格をなす炭素原子の数は 5〜: 10で ある。〕。
さらに、芳香族カルボン酸エステルおよび/または複数の炭素原子を介して 2個以 上のエーテル結合を有する化合物を含むことを特徴とする請求項 1に記載の固体状 チタン触媒成分 (1)。
[6] 請求項 1に記載の固体状チタン触媒成分 (I)と、
周期表の第 1族、第 2族および第 13族から選ばれる金属元素を含む有機金属化合 物触媒成分 (II)と
を含むことを特徴とするォレフィン重合用触媒。
[7] さらに、電子供与体 (III)を含むことを特徴とする請求項 6に記載のォレフィン重合 用触媒。
[8] 請求項 6または 7に記載のォレフィン重合用触媒の存在下にォレフィンの重合を行 うことを特徴とするォレフィン重合体の製造方法。
PCT/JP2006/300773 2005-01-19 2006-01-19 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法 WO2006077945A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US11/795,504 US20090069515A1 (en) 2005-01-19 2006-01-19 Solid Titanium Catalyst Component, Catalyst for Polymerization of Olefin and Process for Producing Olefin Polymer
ES06712019.6T ES2537554T3 (es) 2005-01-19 2006-01-19 Componente catalizador de titanio sólido, catalizador para la polimerización de olefina y proceso para producir polímeros de olefina
CN2006800026753A CN101107276B (zh) 2005-01-19 2006-01-19 固体状钛催化剂成分、烯烃聚合用催化剂及烯烃聚合物的制备方法
BRPI0606424A BRPI0606424B1 (pt) 2005-01-19 2006-01-19 componente catalisador de titânio sólido, catalisador para polimerizaação de olefina e processo para produzir um polímero de olefina
JP2006553955A JP5530054B2 (ja) 2005-01-19 2006-01-19 オレフィン重合体製造用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
EP06712019.6A EP1845113B1 (en) 2005-01-19 2006-01-19 Solid titanium catalyst component, catalyst for olefin polymerization, and process for producing olefin polymer
US11/878,739 US7888438B2 (en) 2005-01-19 2007-07-26 Catalyst for olefin polymerization and process for olefin polymerization
US11/878,740 US7649062B2 (en) 2005-01-19 2007-07-26 Solid titanium catalyst component, catalyst for polymerization of olefin and process for producing olefin polymer

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005011513 2005-01-19
JP2005011512 2005-01-19
JP2005-011514 2005-01-19
JP2005-011513 2005-01-19
JP2005011514 2005-01-19
JP2005-011512 2005-01-19

Related Child Applications (5)

Application Number Title Priority Date Filing Date
PCT/JP2006/300774 Continuation-In-Part WO2006077946A1 (ja) 2005-01-19 2006-01-19 オレフィン重合体の製造方法および固体状チタン触媒成分
US11/795,504 A-371-Of-International US20090069515A1 (en) 2005-01-19 2006-01-19 Solid Titanium Catalyst Component, Catalyst for Polymerization of Olefin and Process for Producing Olefin Polymer
US11/795,505 Continuation-In-Part US7888437B2 (en) 2005-01-19 2006-01-19 Process for producing olefin polymer and solid titanium catalyst component
US11/878,740 Continuation-In-Part US7649062B2 (en) 2005-01-19 2007-07-26 Solid titanium catalyst component, catalyst for polymerization of olefin and process for producing olefin polymer
US11/878,739 Continuation-In-Part US7888438B2 (en) 2005-01-19 2007-07-26 Catalyst for olefin polymerization and process for olefin polymerization

Publications (1)

Publication Number Publication Date
WO2006077945A1 true WO2006077945A1 (ja) 2006-07-27

Family

ID=36692327

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/300774 WO2006077946A1 (ja) 2005-01-19 2006-01-19 オレフィン重合体の製造方法および固体状チタン触媒成分
PCT/JP2006/300773 WO2006077945A1 (ja) 2005-01-19 2006-01-19 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300774 WO2006077946A1 (ja) 2005-01-19 2006-01-19 オレフィン重合体の製造方法および固体状チタン触媒成分

Country Status (9)

Country Link
US (3) US20090069515A1 (ja)
EP (3) EP1840138B1 (ja)
JP (5) JP5530054B2 (ja)
KR (3) KR100918546B1 (ja)
BR (2) BRPI0606453B1 (ja)
ES (3) ES2537554T3 (ja)
HU (2) HUE025752T2 (ja)
TW (2) TWI315318B (ja)
WO (2) WO2006077946A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057747A1 (ja) 2007-11-01 2009-05-07 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
WO2009069483A1 (ja) 2007-11-27 2009-06-04 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2010001420A (ja) * 2008-06-23 2010-01-07 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分、その製造方法、触媒及びこれを用いたオレフィン類重合体の製造方法
WO2010032793A1 (ja) * 2008-09-22 2010-03-25 三井化学株式会社 プロピレン系ブロック共重合体、該共重合体を含む組成物およびこれらから得られる成形体
JP2010248469A (ja) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2011256278A (ja) * 2010-06-09 2011-12-22 Prime Polymer Co Ltd 微多孔膜形成用プロピレン重合体およびその用途
DE102011018527A1 (de) 2010-04-28 2012-03-15 Sumitomo Chemical Company, Ltd. Komponenten und Katalysatoren für die Polymerisierung von Olefinen
JP2013028705A (ja) * 2011-07-28 2013-02-07 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分、その製造方法、オレフィン類重合触媒およびオレフィン類重合体の製造方法
WO2013042400A1 (ja) 2011-09-20 2013-03-28 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
JP2013516535A (ja) * 2010-01-13 2013-05-13 サムスン トータル ペトロケミカルズ カンパニー リミテッド プロピレン重合用固体触媒の製造方法及びそれによって製造された触媒
JP5479734B2 (ja) * 2006-07-18 2014-04-23 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
WO2014065331A1 (ja) 2012-10-25 2014-05-01 株式会社プライムポリマー 微多孔フィルム用ポリプロピレン
JP2014181317A (ja) * 2013-03-21 2014-09-29 Prime Polymer Co Ltd プロピレン系重合体および該プロピレン系重合体を含むプロピレン系樹脂組成物
JP2014201602A (ja) * 2013-04-01 2014-10-27 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合触媒及びこれを用いたオレフィン類重合体の製造方法
WO2016158982A1 (ja) * 2015-03-31 2016-10-06 株式会社プライムポリマー 表面保護フィルム及び表面保護フィルム用プロピレン共重合体組成物
JPWO2016159069A1 (ja) * 2015-03-31 2018-01-25 株式会社プライムポリマー ポリプロピレン樹脂組成物及びその製造方法、二軸延伸フィルム及びその製造方法、並びにフィルムコンデンサ用キャパシタフィルム
US10256041B2 (en) 2015-03-31 2019-04-09 Prime Polymer Co., Ltd. Polypropylene for film capacitor, biaxially stretched film for film capacitor, film capacitor, and process for producing the same
WO2022045232A1 (ja) 2020-08-26 2022-03-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2022138634A1 (ja) 2020-12-21 2022-06-30 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918546B1 (ko) * 2005-01-19 2009-09-21 미쓰이 가가쿠 가부시키가이샤 올레핀 중합체의 제조방법 및 고체상 티탄 촉매성분
US7888438B2 (en) * 2005-01-19 2011-02-15 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and process for olefin polymerization
JP5159215B2 (ja) * 2007-08-31 2013-03-06 三井化学株式会社 ポリプロピレン樹脂からなるキャパシタフィルム用原反シート、キャパシタフィルム及びそれらの製造方法
BRPI0819539B1 (pt) 2007-12-21 2019-09-10 Dow Global Technologies Inc composição de catalisador
JP5374498B2 (ja) * 2008-04-08 2013-12-25 三井化学株式会社 エチレン重合用固体状チタン触媒成分、エチレン重合用触媒およびエチレンの重合方法
WO2012097680A1 (zh) * 2011-01-19 2012-07-26 中国石油化工股份有限公司 烯烃聚合用固体催化剂组分及催化剂
EP2583983A1 (en) 2011-10-19 2013-04-24 Basell Poliolefine Italia S.r.l. Catalyst component for the polymerization of olefins
US8575283B1 (en) 2012-06-28 2013-11-05 Formosa Plastics Corporation, U.S.A. Heterocyclic organic compounds as electron donors for polyolefin catalysts
US9522968B2 (en) 2012-11-26 2016-12-20 Lummus Novolen Technology Gmbh High performance Ziegler-Natta catalyst systems, process for producing such MgCl2 based catalysts and use thereof
US9481741B2 (en) * 2012-11-26 2016-11-01 Lummus Novolen Technology Gmbh High performance Ziegler-Natta catalyst systems, process for producing such supported catalysts and use thereof
US9593184B2 (en) 2014-10-28 2017-03-14 Formosa Plastics Corporation, Usa Oxalic acid diamides as modifiers for polyolefin catalysts
MX2018008209A (es) 2015-12-31 2018-08-28 Braskem America Inc Sistema catalizador sin ftalato y su uso en la polimerizacion de olefinas.
US9777084B2 (en) 2016-02-19 2017-10-03 Formosa Plastics Corporation, Usa Catalyst system for olefin polymerization and method for producing olefin polymer
US11427660B2 (en) 2016-08-17 2022-08-30 Formosa Plastics Corporation, Usa Organosilicon compounds as electron donors for olefin polymerization catalysts and methods of making and using same
EP3489265A4 (en) 2016-08-19 2020-04-22 Institute of Chemistry, Chinese Academy of Science POLYETHYLENE WITH ULTRA-HIGH MOLECULAR WEIGHT AND ULTRA-FINE PARTICLE SIZE, MANUFACTURING METHODS THEREFOR AND USE THEREOF
JP7113817B2 (ja) 2016-10-06 2022-08-05 ダブリュー・アール・グレース・アンド・カンパニー-コーン 複数の内部電子供与体の組合せを用いて作製されるプロ触媒組成物
US9815920B1 (en) 2016-10-14 2017-11-14 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US10124324B1 (en) 2017-05-09 2018-11-13 Formosa Plastics Corporation, Usa Olefin polymerization catalyst components and process for the production of olefin polymers therewith
US10822438B2 (en) 2017-05-09 2020-11-03 Formosa Plastics Corporation Catalyst system for enhanced stereo-specificity of olefin polymerization and method for producing olefin polymer
EP3853269A2 (en) 2018-09-17 2021-07-28 Chevron Phillips Chemical Company LP Light treatment of chromium catalysts and related catalyst preparation systems and polymerization processes
JP7228447B2 (ja) * 2019-03-29 2023-02-24 三井化学株式会社 エチレン重合用固体状チタン触媒成分の製造方法
WO2021055270A1 (en) 2019-09-16 2021-03-25 Chevron Philips Chemical Company Lp Chromium-catalyzed production of alcohols from hydrocarbons
EP4031279A1 (en) 2019-09-16 2022-07-27 Chevron Phillips Chemical Company Lp Chromium-based catalysts and processes for converting alkanes into higher and lower aliphatic hydrocarbons
CN116490268A (zh) 2020-09-14 2023-07-25 切弗朗菲利浦化学公司 由烃通过过渡金属催化生产醇和羰基化合物
CN117642409A (zh) 2021-06-08 2024-03-01 切弗朗菲利浦化学公司 在氧气的存在下由烃进行的铬催化的醇生产

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
US4725656A (en) 1982-12-24 1988-02-16 Mitsui Petrochemical Industries, Ltd. Process for producing olefin polymers
JPH037703A (ja) 1989-03-02 1991-01-14 Mitsui Petrochem Ind Ltd オレフィンの重合方法およびオレフィン重合用触媒
JPH05170843A (ja) 1991-12-20 1993-07-09 Mitsui Petrochem Ind Ltd プロピレン系ブロック共重合体の製造方法
JPH06122716A (ja) * 1992-09-01 1994-05-06 Idemitsu Petrochem Co Ltd オレフィン重合体の製造方法
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
JP2001114811A (ja) 1999-10-15 2001-04-24 Idemitsu Petrochem Co Ltd オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2001057099A1 (en) 2000-02-02 2001-08-09 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
WO2002030998A1 (en) 2000-10-13 2002-04-18 Basell Technology Company B.V. Catalyst components for the polymerization of olefins
JP2003040918A (ja) 2001-07-25 2003-02-13 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0086288B1 (en) * 1982-02-12 1986-09-24 Mitsui Petrochemical Industries, Ltd. Process for producing olefin polymers
JPS58138705A (ja) * 1982-02-12 1983-08-17 Mitsui Petrochem Ind Ltd オレフイン系重合体の製造方法
JPS58138715A (ja) * 1982-02-12 1983-08-17 Mitsui Petrochem Ind Ltd オレフイン類の重合方法
JPH06104681B2 (ja) * 1983-05-11 1994-12-21 三井石油化学工業株式会社 ゴム状エチレン共重合体の製造方法
JPH0717704B2 (ja) * 1985-07-09 1995-03-01 三菱油化株式会社 オレフイン重合体の製造法
JPH0813858B2 (ja) * 1987-02-17 1996-02-14 三井石油化学工業株式会社 α−オレフインの重合方法
JP2595227B2 (ja) * 1987-02-19 1997-04-02 三井石油化学工業株式会社 α−オレフインの重合方法
JPH0813857B2 (ja) * 1987-02-17 1996-02-14 三井石油化学工業株式会社 α−オレフインの重合方法
JPH0796567B2 (ja) * 1987-02-19 1995-10-18 三井石油化学工業株式会社 α−オレフインの重合方法
US5081166A (en) * 1988-04-21 1992-01-14 S. C. Johnson & Son, Inc. Process for producing a stabilized latex emulsion adhesive
JPH05295025A (ja) * 1992-04-24 1993-11-09 Tosoh Corp ポリオレフィンの製造方法
MY129474A (en) * 1997-12-19 2007-04-30 Basf Ag Method for hydrogenating benzene polycarboxylic acids or derivatives thereof by using a catalyst containing macropores
ATE333474T1 (de) * 1999-03-15 2006-08-15 Basell Poliolefine Srl Komponente und katalysatore für die polymerisation von olefinen
US7220696B2 (en) * 2002-04-04 2007-05-22 Mitsui Chemicals, Inc. Solid titanium catalyst component for olefin polymerization, catalyst for olefin polymerization, and process for olefin polymerization
EP2261267B1 (en) * 2003-03-26 2017-05-10 Ineos Technologies USA LLC Catalyst component comprising a substituted cycloalkane dicarboxylate as electron-donor
KR100918546B1 (ko) * 2005-01-19 2009-09-21 미쓰이 가가쿠 가부시키가이샤 올레핀 중합체의 제조방법 및 고체상 티탄 촉매성분
US7888438B2 (en) * 2005-01-19 2011-02-15 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and process for olefin polymerization

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
US4725656A (en) 1982-12-24 1988-02-16 Mitsui Petrochemical Industries, Ltd. Process for producing olefin polymers
JPH037703A (ja) 1989-03-02 1991-01-14 Mitsui Petrochem Ind Ltd オレフィンの重合方法およびオレフィン重合用触媒
JPH05170843A (ja) 1991-12-20 1993-07-09 Mitsui Petrochem Ind Ltd プロピレン系ブロック共重合体の製造方法
JPH06122716A (ja) * 1992-09-01 1994-05-06 Idemitsu Petrochem Co Ltd オレフィン重合体の製造方法
WO2000063261A1 (en) 1999-04-15 2000-10-26 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
JP2001114811A (ja) 1999-10-15 2001-04-24 Idemitsu Petrochem Co Ltd オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2001057099A1 (en) 2000-02-02 2001-08-09 Basell Technology Company B.V. Components and catalysts for the polymerization of olefins
WO2002030998A1 (en) 2000-10-13 2002-04-18 Basell Technology Company B.V. Catalyst components for the polymerization of olefins
JP2003040918A (ja) 2001-07-25 2003-02-13 Toho Catalyst Co Ltd オレフィン類重合用固体触媒成分および触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1845113A4

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5479734B2 (ja) * 2006-07-18 2014-04-23 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
WO2009057747A1 (ja) 2007-11-01 2009-05-07 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
US8822366B2 (en) 2007-11-01 2014-09-02 Mitsui Chemicals, Inc. Solid titanium catalyst component, catalyst for olefin polymerization and process for polymerizing olefin
JP5457835B2 (ja) * 2007-11-01 2014-04-02 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
US20100227991A1 (en) * 2007-11-01 2010-09-09 Kazuhisa Matsunaga Solid titanium catalyst component, catalist for olefin polymerization and process for polymerizing olefin
RU2443715C1 (ru) * 2007-11-27 2012-02-27 Митсуи Кемикалс, Инк. Твердый титановый компонент катализатора, катализатор полимеризации олефинов и способ полимеризации олефинов
US8742040B2 (en) 2007-11-27 2014-06-03 Mitsui Chemicals, Inc. Solid titanium catalyst component, olefin polymerization catalyst, and olefin polymerization process
WO2009069483A1 (ja) 2007-11-27 2009-06-04 Mitsui Chemicals, Inc. 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2010001420A (ja) * 2008-06-23 2010-01-07 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分、その製造方法、触媒及びこれを用いたオレフィン類重合体の製造方法
RU2463313C1 (ru) * 2008-09-22 2012-10-10 Митсуи Кемикалс, Инк Основанный на пропилене блоксополимер, содержащая его композиция и полученные из них формованные изделия
WO2010032793A1 (ja) * 2008-09-22 2010-03-25 三井化学株式会社 プロピレン系ブロック共重合体、該共重合体を含む組成物およびこれらから得られる成形体
US8729189B2 (en) 2008-09-22 2014-05-20 Mitsui Chemicals, Inc. Propylene-based block copolymer, composition containing the copolymer, and molded products obtained therefrom
JP2010248469A (ja) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2013516535A (ja) * 2010-01-13 2013-05-13 サムスン トータル ペトロケミカルズ カンパニー リミテッド プロピレン重合用固体触媒の製造方法及びそれによって製造された触媒
DE102011018527A1 (de) 2010-04-28 2012-03-15 Sumitomo Chemical Company, Ltd. Komponenten und Katalysatoren für die Polymerisierung von Olefinen
JP2011256278A (ja) * 2010-06-09 2011-12-22 Prime Polymer Co Ltd 微多孔膜形成用プロピレン重合体およびその用途
JP2013028705A (ja) * 2011-07-28 2013-02-07 Toho Titanium Co Ltd オレフィン類重合用固体触媒成分、その製造方法、オレフィン類重合触媒およびオレフィン類重合体の製造方法
KR20140068906A (ko) 2011-09-20 2014-06-09 도호 티타늄 가부시키가이샤 올레핀류 중합용 고체 촉매 성분, 올레핀류 중합용 촉매 및 올레핀류 중합체의 제조 방법
WO2013042400A1 (ja) 2011-09-20 2013-03-28 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合用触媒及びオレフィン類重合体の製造方法
US9243081B2 (en) 2011-09-20 2016-01-26 Toho Titanium Co., Ltd. Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
WO2014065331A1 (ja) 2012-10-25 2014-05-01 株式会社プライムポリマー 微多孔フィルム用ポリプロピレン
US10011693B2 (en) 2012-10-25 2018-07-03 Prime Polymer Co., Ltd. Polypropylene for microporous film
JP2014181317A (ja) * 2013-03-21 2014-09-29 Prime Polymer Co Ltd プロピレン系重合体および該プロピレン系重合体を含むプロピレン系樹脂組成物
JP2014201602A (ja) * 2013-04-01 2014-10-27 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合触媒及びこれを用いたオレフィン類重合体の製造方法
WO2016158982A1 (ja) * 2015-03-31 2016-10-06 株式会社プライムポリマー 表面保護フィルム及び表面保護フィルム用プロピレン共重合体組成物
JPWO2016159069A1 (ja) * 2015-03-31 2018-01-25 株式会社プライムポリマー ポリプロピレン樹脂組成物及びその製造方法、二軸延伸フィルム及びその製造方法、並びにフィルムコンデンサ用キャパシタフィルム
JPWO2016158982A1 (ja) * 2015-03-31 2018-01-25 株式会社プライムポリマー 表面保護フィルム及び表面保護フィルム用プロピレン共重合体組成物
US10256041B2 (en) 2015-03-31 2019-04-09 Prime Polymer Co., Ltd. Polypropylene for film capacitor, biaxially stretched film for film capacitor, film capacitor, and process for producing the same
WO2022045232A1 (ja) 2020-08-26 2022-03-03 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
WO2022138634A1 (ja) 2020-12-21 2022-06-30 三井化学株式会社 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体

Also Published As

Publication number Publication date
JP5597283B2 (ja) 2014-10-01
JP5476431B2 (ja) 2014-04-23
KR100903722B1 (ko) 2009-06-19
HUE025490T2 (en) 2016-04-28
TW200634035A (en) 2006-10-01
US20090069515A1 (en) 2009-03-12
BRPI0606453B1 (pt) 2016-11-29
EP2623523B1 (en) 2015-03-11
KR20090089465A (ko) 2009-08-21
KR100928374B1 (ko) 2009-11-23
ES2536729T3 (es) 2015-05-28
EP2623523A1 (en) 2013-08-07
JP2012233195A (ja) 2012-11-29
KR20070104411A (ko) 2007-10-25
BRPI0606453A2 (pt) 2009-06-30
EP1845113A1 (en) 2007-10-17
EP1845113A4 (en) 2012-04-18
JP5357394B2 (ja) 2013-12-04
WO2006077946A1 (ja) 2006-07-27
KR100918546B1 (ko) 2009-09-21
BRPI0606424A2 (pt) 2009-06-30
US20080306228A1 (en) 2008-12-11
HUE025752T2 (en) 2016-04-28
BRPI0606424B1 (pt) 2017-03-14
EP1840138B1 (en) 2013-12-11
JP2013227582A (ja) 2013-11-07
KR20070103455A (ko) 2007-10-23
US7888437B2 (en) 2011-02-15
US20080097050A1 (en) 2008-04-24
US7649062B2 (en) 2010-01-19
JPWO2006077946A1 (ja) 2008-06-19
EP1840138A4 (en) 2012-04-25
TW200643054A (en) 2006-12-16
EP1840138A1 (en) 2007-10-03
ES2445622T3 (es) 2014-03-04
EP1845113B1 (en) 2015-04-01
JP5530054B2 (ja) 2014-06-25
JPWO2006077945A1 (ja) 2008-06-19
JP2014051669A (ja) 2014-03-20
TWI315317B (en) 2009-10-01
TWI315318B (en) 2009-10-01
ES2537554T3 (es) 2015-06-09

Similar Documents

Publication Publication Date Title
JP5597283B2 (ja) オレフィン重合体製造用触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP5306225B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5457835B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5689232B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP5479734B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
JP2008024751A (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合方法
JP2013249445A (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2010111755A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006553955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680002675.3

Country of ref document: CN

Ref document number: 12007501558

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5668/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006712019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077018604

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006712019

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11795504

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0606424

Country of ref document: BR

Kind code of ref document: A2