WO2006062260A1 - 電子写真感光体 - Google Patents

電子写真感光体 Download PDF

Info

Publication number
WO2006062260A1
WO2006062260A1 PCT/JP2005/023188 JP2005023188W WO2006062260A1 WO 2006062260 A1 WO2006062260 A1 WO 2006062260A1 JP 2005023188 W JP2005023188 W JP 2005023188W WO 2006062260 A1 WO2006062260 A1 WO 2006062260A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
atoms
photosensitive member
content
maximum value
Prior art date
Application number
PCT/JP2005/023188
Other languages
English (en)
French (fr)
Inventor
Satoshi Kojima
Makoto Aoki
Jun Ohira
Hironori Owaki
Kazuto Hosoi
Motoya Yamada
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to US11/396,798 priority Critical patent/US7255969B2/en
Publication of WO2006062260A1 publication Critical patent/WO2006062260A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14704Cover layers comprising inorganic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • G03G5/08228Silicon-based comprising one or two silicon based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers
    • G03G5/08242Silicon-based comprising three or four silicon-based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/0825Silicon-based comprising five or six silicon-based layers
    • G03G5/08257Silicon-based comprising five or six silicon-based layers at least one with varying composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08285Carbon-based

Definitions

  • the present invention relates to an electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member that is most suitable for a printer, a facsimile, a copying machine, etc. using light having a relatively short wavelength of 380 nm or more and 500 nm or less for exposure. . Background art
  • Amorphous silicon (hereinafter abbreviated as a-Si) is a photoconductive material which exhibits excellent characteristics satisfying the above-mentioned characteristics, and has attracted attention as a light receiving member of an electrophotographic photosensitive member.
  • a photosensitive member having a photoconductive layer comprising a-Si is vacuum-deposited, sputtered, ion-deposited, thermally CVD, thermal-CVD, or CVD on a conductive substrate heated to 50 to 350. And formed by a film forming method such as plasma CVD.
  • a plasma CVD method in which the source gas is decomposed by high frequency or microwave glow discharge to form an a-Si deposited film on the substrate is preferable. It is attached to practical use.
  • a-Si photosensitive member comprising a substrate, a barrier layer, a photoconductive layer and a surface protective layer is disclosed in Japanese Patent Application Laid-Open No. 5-105532 and the like.
  • the elemental composition ratio of N / S i of the outermost surface of the electrophotographic photosensitive member having a photoconductive layer composed of a-Si and a surface layer composed of amorphous silicon nitride on the conductive substrate is 0.8 to 1.
  • An electrophotographic photosensitive member having an element composition ratio of O / Si in the range of 0 to 0.9 in the range of 33 is disclosed in JP-A-8-171220. '
  • an electrophotographic apparatus using an a-Si photosensitive member the electric field applied to the photosensitive member when exposing the image forming light beam is 150 kVZ cm or more, and the wavelength of the image forming light beam is 500 nm or less. It is proposed in Japanese Patent Application Laid-Open No. 2002-311693.
  • corona charging method using corona charging, roller charging method in which charging is performed by direct discharge using a conductive roller, magnetic particles, etc. have sufficient contact area for charging the a-Si photosensitive member.
  • injection charging methods in which charging is performed by direct injection of charges onto the surface of the photosensitive member.
  • the corona charging method and the roller charging method use discharge, discharge products easily adhere to the surface of the photosensitive member.
  • the a-Si photoreceptor has a surface layer much harder than organic photoreceptors, etc., so the surface layer is less likely to be scraped, and discharge is generated. Things are likely to remain on the surface.
  • the adsorption of water may combine the discharge product with the water to reduce the resistance of the surface, and the charge on the surface may move or cause an image flow phenomenon. Therefore, various measures such as the method of rubbing the surface and the method of controlling the temperature of the photosensitive body were required in some cases.
  • the injection charging method is a charging method in which the charge is directly injected from the portion in contact with the surface of the photosensitive body without actively using the discharge, the above-mentioned phenomenon such as image flow occurs. Hateful.
  • the injection charging method which is contact charging, is a voltage control type while the corona charging method is a current control type, and therefore, there is an advantage that the unevenness of the charging potential is relatively small. Disclosure of the invention
  • a-Si type electrophotographic photosensitive members are characterized by their dark resistance value, light sensitivity, electric response such as light response, optical and photoconductive characteristics, and environmental characteristics in use, as well as stability over time. Although the characteristics have been improved in terms of durability, it is a fact that there is room for further improvement in improving the overall characteristics.
  • negative toner is used as a single color toner, and an image exposure method (a method of exposing an image area) that has high controllability of latent images and is suitable for high image quality
  • the spot diameter of not only small particle diameter toner but also laser light for image formation In order to increase the resolution of an image, it is effective to reduce the spot diameter of not only small particle diameter toner but also laser light for image formation.
  • means for reducing the spot diameter of the laser light include improving the accuracy of an optical system for irradiating the photoconductive layer with laser light and increasing the aperture ratio of the imaging lens.
  • this spot diameter can only be reduced to the limit of diffraction determined by the wavelength of the laser light and the aperture ratio of the imaging lens. Therefore, in order to make the wavelength of the laser light constant and reduce the spot diameter, it is necessary to increase the size of the lens and improve the machine accuracy, etc., and it is difficult to avoid the increase in size and cost of the apparatus. .
  • a laser beam having an oscillation wavelength of 600 to 800 nm is generally used at the time of image exposure, and by shortening this wavelength further, an image can be obtained. You can increase the resolution.
  • development of a semiconductor laser with a short oscillation wavelength is rapidly advancing, and a semiconductor laser with an oscillation wavelength in the vicinity of 400 nm has been put to practical use.
  • a-Si photosensitive member such as 240.sub.p d.sub.i, which uses this semiconductor laser with an oscillation wavelength near 400 nm for image exposure.
  • small particle diameter toners used in high resolution digital full color have a problem that transfer residuals to the surface of the photosensitive member and cleaning residuals easily occur, and improvements for these are also required.
  • the photosensitive layer of the a-Si system has a peak of sensitivity in the vicinity of 600 to 7.0 O nm, so although it is slightly inferior to the peak sensitivity, if the conditions are devised, 4 : 0 to 4 1 0 Since it has sensitivity even in the vicinity of nm, it can be used, for example, when using a short wavelength laser of 405 nm. However, the sensitivity may be about half of that of the peak, and it is preferable that there is almost no light absorption in the surface area of the photoreceptor.
  • a-SiC amorphous silicon carbide
  • a-C amorphous carbon-based
  • Japanese Patent Application Laid-Open No. 8-17020 discloses an optimum value of the composition ratio of NZ Si element and the composition ratio of O / Si element on the outermost surface of the photosensitive member and the generation conditions thereof.
  • the wavelength to be provided for exposure is considered only up to 5 5 Q n m.
  • the sensitivity decreases when the film thickness of the surface layer exceeds 0.8 zm. That is, even at an exposure wavelength of 550 nm, the sensitivity decreases if it exceeds 0.8 m. For example, it is expected that some light is absorbed at a wavelength around 400 nm, which is sufficient. There is a possibility that the sensitivity can not be obtained.
  • the third function is to have a high resolution that enables small spot diameter & small particle size toners to be used.
  • the present inventors have solved the above problems, can be suitably used for high-quality, high-durability, high-speed copying processes, have practically sufficient sensitivity for short wavelength exposure, have no optical memory, and have chargeability.
  • a silicon nitride based material as the surface layer and optimizing the preparation conditions, it is possible to achieve the above object well.
  • the present invention has been achieved. That is, according to the present invention, there is provided a non-single-layer comprising a conductive substrate, a photoconductive layer, and silicon atoms and nitrogen atoms stacked on the photoconductive layer and containing at least periodic group 13 element and carbon atoms.
  • an electrophotographic photosensitive member having a surface region layer formed of a crystalline silicon nitride film, in the surface region layer, the content of the periodic table 13 to the total amount of constituent atoms is a maximum value in the film thickness direction
  • an electrophotographic photosensitive member characterized by having a distribution having at least two.
  • an electrophotographic photosensitive member of extremely good electrophotographic characteristics capable of outputting a stable, high-resolution, high-quality full-color image while minimizing absorption of short wavelength light in the surface region layer.
  • FIGS. 1A, 1 B, 1 C, and I D are schematic cross-sectional views showing an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 2 is a view schematically showing an example of a preferable configuration of a plasma CVD deposition apparatus using a high frequency of RF band that can be used for manufacturing the electrophotographic photosensitive member of the present invention.
  • FIG. 3 is a schematic view showing an example of a color electrophotographic apparatus according to the present invention.
  • FIG. 4 is an example of a depth profile for explaining local maximum values of the periodic table 13 element (boron atom), carbon atom, oxygen atom and fluorine atom content in the surface layer in the present invention.
  • FIG. 5 is a schematic view for explaining the relationship between the spot diameter of the laser for exposure and the dot diameter on the output image in the present invention.
  • FIG. 6 is a graph showing an example of measurement results of spectral sensitivity characteristics of the electrophotographic photosensitive member.
  • FIG. 7 is a graph showing the result of measuring the correlation between the nitrogen atom concentration in the surface layer of the electrophotographic photosensitive member prepared in Example 1 and the sensitivity to light of wavelength 405 nm.
  • FIGS. 8A and 8B are graphs showing an example of the spectral reflection spectrum in the case where an optically continuous change layer is provided in the present invention.
  • FIG. 9 is a graph showing the spectral reflectance spectrum of the present invention.
  • FIG. 10 is a depth profile of the surface area layer of Example 3 in the present invention.
  • FIG. 11 is a depth profile of the surface region layer of Comparative Example 1.
  • FIG. 12 is a depth profile of the surface area layer of Example 4 in the present invention.
  • FIG. 13 is a depth profile of the surface area layer of Example 5 in the present invention.
  • FIG. 14 is a depth profile of the surface area layer of Example 6 in the present invention.
  • FIG. 15 is a depth profile of the surface area layer of Example 7 in the present invention.
  • FIG. 16 is a depth profile of the surface area layer of Example 8 in the present invention.
  • FIG. 17 is a depth profile of the surface area layer of Example 9 in the present invention.
  • FIG. 18 is a depth profile of the surface area layer of Example 10 in the present invention.
  • FIG. 19 is a depth profile of the surface area layer of a real
  • FIG. 20 is a depth profile of the surface area layer of Example 12 in the present invention.
  • FIG. 21 is a depth profile file of the surface area layer of Example 13 in the present invention.
  • FIG. 22 is a schematic view illustrating the relationship between the maximum value of the surface region layer and the distance between the maximum values in the present invention.
  • FIG. 23 is a schematic view for explaining the relationship between the maximum value area, the maximum value, and the distance between maximum values of the surface area layer in the present invention.
  • FIG. 24 shows the thickness direction of the surface area layer of an example of the electrophotographic photosensitive member of the present invention. It is a figure which shows content rate distribution of periodic table group 13 element and nitrogen ⁇ .
  • FIG. 25A is a view showing a nitrogen atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic light body of the present invention.
  • FIG. 25B is a view showing a nitrogen atom content distribution in the thickness direction of the surface quenching layer of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 25C is a view showing a nitrogen atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 25D is a view showing a nitrogen atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 25E is a view showing a nitrogen atom content distribution in the thickness direction of the surface region layer of the electrophotographic photosensitive member of the comparative example.
  • FIG. 26A is a view showing a distribution of contents of periodic table group 13 elements in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 26B is a view showing a distribution of contents of periodic table group 13 elements in a thickness direction of a surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 26C is a view showing a distribution of contents of periodic table group 13 elements in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 26D is a view showing a distribution of contents of periodic table group 13 elements in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 26E is a view showing a distribution of contents of periodic table group 13 elements in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 26 F is a view showing a distribution of contents of periodic group 13 element in the thickness direction of the surface region layer of the electrophotographic photosensitive member of the comparative example.
  • FIG. 27A is a view showing a carbon atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member of the present invention.
  • Fig. 27B shows the thickness direction of the surface area layer of an example of the electrophotographic photosensitive member of the present invention. Distribution of carbon atoms 9
  • FIG. 27C is a graph showing a carbon atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member according to the present invention.
  • FIG. 27D is a view showing a carbon atom content distribution in the thickness direction of the surface region layer of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 28A is a view showing a spectral reflection spectrum of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 28B is a view showing a spectral reflection spectrum of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 28C is a view showing a spectral reflection spectrum of an example of the electrophotographic photosensitive member of the present invention.
  • FIG. 28D is a view showing a spectral reflection spectrum of an example of the electrophotographic photosensitive member of the present invention.
  • the inventors of the present invention have provided a surface layer created under specific conditions, so that they have excellent resolution and high resolution with almost no absorption of short wavelength exposure. It has been found that it is possible to maintain fine and good electrophotographic characteristics, and the present invention has been made.
  • the present inventors first made a thin film of an a-SiN: H-based material suitable as a surface layer by the conventional method as described in JP-A-8-117020 and the like. Films prepared by the above method have a relatively large absorption coefficient for light of short wavelength, for example, light of 400 to 400 nm, and a photoreceptor having such a surface layer has a wavelength of 4
  • the sensitivity may be insufficient for light in the vicinity of 0 to 4. 1 O nm.
  • absorption at short wavelengths eg, 405 nm
  • the film having a low absorption is preferably, for example, an absorption coefficient at 405 nm of 5000 cm- 1 or less, and more preferably 3000 cm- 1 or less, if it is quantitatively represented.
  • the absorption coefficient a (cm ′ ′ 1 ) can be expressed as in equation (1), where the light amount of incident light is TO, the light amount of transmitted light is T, and the film thickness is t (cm).
  • the silicon atoms exposed on the outermost surface of the film made of the compound containing silicon formed under such conditions are easily oxidized in the air, and thus an oxide film of silicon is formed. Furthermore, since there is a possibility of adsorbing elements in the atmosphere, the nitrogen atom concentration in the film should be about 10 nm, preferably about 20 nm, before the measurement. It is preferable to carry out after removing the influence of the outermost surface of the membrane.
  • the outermost surface layer of the film is removed by sputtering using Ar atoms or the like in vacuum using ESCA, S IMS, RBS, etc., thereby removing the adsorption atoms on the outermost surface and the native oxide film. It is possible to substantially eliminate the influence.
  • Nitrogen atomic concentration was measured using RBS (Rutherford backscattering spectroscopy), S IMS (secondary ion mass spectrometry), or the like.
  • 70 atm% or less is preferable and 60 atm% or less is more preferable, from the relationship of film yield.
  • 70 at If it is less than m% unevenness such as film thickness, hardness and resistance does not occur easily, and furthermore, the strength of the film can be maintained, and stable production can be performed with high yield.
  • 70 atm% unevenness in film thickness, hardness, resistance and the like tends to occur, and the yield may be greatly reduced. The cause is expected to be that if the amount of nitrogen is too much, the film binding becomes very unstable.
  • the difference in exposure wavelength also affects light absorption in the photoconductive layer. That is, at short exposure wavelengths, light absorption in the photoconductive layer is limited to very thin regions. Photogenerated carriers are accelerated by the electric field formed by the surface charge and move in the thickness direction of the film. Then, carriers of the reverse polarity to the surface charge move to the surface, and the charge is canceled to form an electrostatic latent image. However, during carrier movement, electrostatic repulsion between carriers may also move the film in the surface direction (perpendicular to the thickness direction), leading to blurring of the latent image. There is. Therefore, in order to form an electrostatic latent image pattern more faithful to the exposure pattern, it is preferable to shorten the distance traveled by the photogenerated carrier to cancel the surface charge. Is preferably closer to the surface.
  • the absorption coefficient at 405 nm is 500 cm or less as compared with the electrophotographic photosensitive member using the surface region layer of the conventional S i C system. Even in this case, the residual potential caused by the surface area layer may be increased.
  • the present inventors conducted various reviews of preparation conditions aiming at optimization of the surface region layer, focusing on characteristics such as chargeability, residual potential, sensitivity, and resolution.
  • the residual potential due to the surface region layer can be reduced by adding a small amount of carbon atoms, the effect of short wavelength exposure can be obtained, and the resolution can be improved.
  • the reason for this is not yet known, it is considered that the addition of a small amount of carbon atoms causes bonding relaxation in the a-SiN film having a large stress, resulting in the reduction of defects.
  • the film of a-SiN system prepared so that the nitrogen concentration is high has a small absorption coefficient, so it is suitable for use as a surface layer that does not absorb short wavelength light. In some cases, the bonding of the film becomes unstable, resulting in uneven characteristics.
  • the atomic spacing of S i -S i is approximately 0.2 4 nm, S The atomic spacing of i C is known to be approximately 19 nm.
  • the atomic spacing of N-N is about 0.1 nm, as the nitrogen atom concentration increases, the bonds of N-N, which have small interatomic bonds, increase. It is considered that distortion is caused to cause characteristic unevenness. .
  • the amount of carbon atoms When the amount of carbon atoms is small, the strain in the amorphous silicon nitride film is not relieved, and therefore no decrease in residual potential is observed. In addition, when the amount is increased, the sensitivity unevenness of the potential unevenness tends to be increased due to the increase of the Si—C bond, and the transmittance of the light having a short wavelength is lowered.
  • the drop in the dot reproducibility and the thin line reproducibility declines from the maximum value from the outermost surface side. It was sometimes observed when it was located relatively close to the outermost surface within about 10 O nm, or when the distance between the maximum values was close to less than 100 nm. This means that inside the phosphite carriers generated by the exposure, holes move toward the outermost surface in order to combine with the electrons of the charged charge, but at that time, the periodic table 13 contains a large amount of Group 3 elements. The portion where the resistance to the hole is lowered is longer in the carrier movement direction.
  • the present inventors focused on image quality and performed various reviews on the preparation conditions of the surface layer, and by adding a small amount of oxygen atoms, the absorption coefficient was kept small and small. It has been found that it is possible to further improve the image quality.
  • the resolution was not degraded, such as dot reproducibility and thin line reproducibility, and improvement in resolution was also confirmed depending on the preparation conditions.
  • the a_SiN film tends to exhibit a columnar structure relatively depending on the forming conditions. In the state with many columnar structures, it is thought that there are many structural boundaries appearing on the surface, and in such a state, transfer residue and cleaning residue tended to be generated.
  • the stress is more effective in a film such as a-SiN having a larger stress than when uniformly added. It is thought that the stress relaxation of the whole ⁇ ⁇ will proceed efficiently as a result of the formation of a local region that relaxes as expected.
  • oxygen has two bonds, it can be expected to work to reduce the strain of bonding in the film of the a-SiN system.
  • fluorine defect in addition to the effect of repairing defects during film formation, the stress radius can be relaxed because the atomic radius is larger than hydrogen atoms, and unreasonable bonds and weak bonds It seems that the situation where it turns into a defect after film deposition was prevented.
  • the optical memory can be significantly reduced in addition to the effects obtained independently.
  • fluorine as a terminal atom works effectively to realize both suppression of defects during film deposition and prevention of defects generated after film deposition at a high level
  • the reduction of the optical memory could be realized at the same time by the further reduction of the localized level density as well as the improvement of the resolution.
  • the ratio of the maximum content to the minimum content is It is preferable to control so as to satisfy the relationship of 2 ma ma x ZO.min and 2 ⁇ F max / F min, and it is more preferable to set 5 ⁇ O max / O min and 5 ⁇ F max / F min. Within this range, the improvement in resolution can be obtained more significantly, which is preferable.
  • the width of the oxygen atom and fluorine atom peaks is preferably controlled to be 1 O nm or more and 200 nm or less as the half value width of the content maximum value, respectively.
  • the inventors also examined the conditions under which the surface side layer region of the present invention is laminated. For the improvement and stability of the image quality, the reflection in the wavelength range of 350 nm to 680 nm is considered.
  • the minimum value (M in) and the maximum value (Max) of the ratio (%) should satisfy 0% ⁇ Ma X (%) ⁇ 20% ⁇ 0 ⁇ (Ma x M in) / (100-Max) ⁇ 0. 15 Further, it was found that it is preferable to laminate so as to be optically continuous between the photosensitive layer and the surface side layer region.
  • FIGS. 1A to 1D are schematic views showing an example of the layer configuration of the electrophotographic photosensitive member in the present invention.
  • a lower injection blocking layer 105, a photoconductive layer 10.3 and a surface area layer 104 are formed in this order on a conductive substrate 101.
  • the lower injection blocking layer 105, the photoconductive layer 103 and the surface area layer 104 formed on the conductive substrate 101 are referred to as a photosensitive layer 102.
  • the entire layer formed on the conductive substrate 101 is referred to as a photosensitive layer 02.
  • the lower injection blocking layer 105 is preferably, but not necessarily, provided in all of FIGS. 1A to 1C because it is preferably provided to block load injection from the conductive substrate side. It may also be provided on the electrophotographic photosensitive member shown in FIG. 1D.
  • the lower injection blocking layer 105, the photoconductive layer 103, and the surface area layer 104a are formed in this order on the conductive substrate 101. It is done.
  • the upper injection blocking layer 106 and the surface layer 107 are formed sequentially from the photoconductive layer 103 side.
  • the upper injection blocking layer 106 is a layer provided for the purpose of reducing the charge injection from the upper side and improving the negative chargeability, and this configuration is particularly suitable for a negative charge electrophotographic photosensitive member. is there.
  • the photosensitive layer 102 of the electrophotographic photosensitive member 100 shown in FIG. 1C is the same as in FIG. 1.A.
  • the lower injection blocking layer 105, the photoconductive layer 103, and the surface are formed on the conductive substrate 101. Region layers 104 b are formed in this order.
  • the change layer 108 and the surface layer 107 are formed in order from the photoconductive layer 103 side.
  • the conversion layer 108 is a layer provided such that the surface region layer 104 and the photoconductive layer 103 can be continuously changed in refractive index. It is preferable that the change layer 108 be a layer having the function of the upper injection blocking layer 106.
  • the change layer 108 is made to have the function of the upper injection blocking layer, the composition interface between the photoconductive layer 10 3 and the surface layer 10 7 is smoothed by gently changing the composition. At the same time, charge injection from the top can be reduced and chargeability can be improved.
  • the electrophotographic photosensitive member shown in FIG. 1D comprises a photoconductive layer 103, a first upper injection blocking layer (TBL-1) 106a and an intermediate layer 109 and a second layer on a conductive substrate 101.
  • the surface region layer 104 c is formed in this order from the upper injection blocking layer (TBL-2) 106 b and the surface protective layer (SL) 110.
  • the refractive index difference between the upper injection blocking layer 106 and the photoconductive layer 103 is In the case of a large size, it is possible to provide between the upper injection blocking layer 106 and the photoconductive layer 103 a changing range of changing the refractive index.
  • the surface area layer 104 to 104c obtain good characteristics mainly with respect to short wavelength light transmission, high resolution, resistance to continuous and repeated use, moisture resistance, resistance to use environment, and good electrical characteristics. Provided for
  • the upper injection blocking function is provided in the surface region layer and has a role as a band electric holding layer
  • the charge holding function is provided by providing an upper injection blocking layer described later. It is also effective to have it.
  • the material of the surface region layer in the present invention is made of a non-single-crystal material containing a silicon atom and a nitrogen atom as a base and containing a periodic table element 13 and a carbon atom.
  • a hydrogen atom, an oxygen atom and Z or a fluorine atom be appropriately contained in the film.
  • the surface region layer has a surface layer 107 and a change layer 108. However, it is also effective to provide the upper injection blocking layer 106 instead of the change layer or between the surface layer and the change layer. It is.
  • a glow discharge method basically, a raw material gas for Si supply which can supply silicon atoms (Si).
  • a gas and a gas are introduced at a desired ratio into a reaction vessel capable of depressurizing the inside, a glow discharge is caused in the reaction vessel, and a substrate on which a photoconductive layer or the like is previously formed at a predetermined position is formed.
  • a layer made of _SiN-based material may be formed.
  • the amount of nitrogen contained in the surface region layer is preferably in the range of 30 atm% to 70 atm% with respect to the sum of silicon atoms and nitrogen atoms. Further, the content of carbon atoms is preferably in the range of 2.0 ⁇ 10 17 Z cm 3 or more and 5.0 ⁇ 10 2 ° cm 3 or less.
  • the surface region layer of the present invention needs to be distributed so that the content of the periodic table 13 group element has at least two maximum values in the thickness direction of the film. At that time, chargeable.
  • the distance between adjacent two maximum ridges of the content of the periodic table 1 3 group element is 100 nm in the film thickness direction. It is preferable to set the range to 100 ° nm or less.
  • the maximum value of the periodic table 13 group 3 element located closest to the photoconductive layer side is 5.0 ⁇ 10 18 pieces / 18 to improve resolution such as chargeability and other electric characteristics and dot reproducibility. It is also preferable to distribute the minimum value of periodic table 13 group 3 elements existing between two adjacent maximum values of cm 3 or more to be 2.5 ⁇ 10 18 pieces / cm 3 or less. Yes.
  • FIG. 4 is a schematic concentration profile of each element in the surface region layer.
  • boron peripheral group 13 atom
  • carbon, fluorine and oxygen atoms in the surface region layer are located on the outermost surface side with boron (periodic table 13 group atom), carbon and fluorine.
  • the maximum value of the oxygen atom is deeper, and the maximum value of boron is formed near the photoconductive layer side.
  • the maximum values of carbon, fluorine and oxygen atoms are observed at one site, and the maximum values of point are observed at two sites.
  • the maximum value of the present invention will be described with reference to FIG. 22 and FIG.
  • the distribution of the content of the periodic table 13 group 3 element or carbon atom shows a shape having a maximum value at the top and not having a constant region.
  • FIG. 23 it is effective when the content of the element on the outermost surface side is larger than the content of the element of the adjacent constant area, even when the element is present in the constant area with a constant width. This fixed area is called the maximum area.
  • the maximum value is represented by the atomic content of the top, and in the case of the maximum area, the maximum value is an atom at 12 positions (mid point) in the thickness direction of the maximum area. Expressed by the content rate of
  • the distance between the maxima is represented by the distance between the tops, and in the case of a maxima area, the distance between the maxima is represented by the distance between two intermediate points. If there is a shape that does not have one constant region and one maximum region, The distance between the large values is represented by the distance between the local maximum values of each domain.
  • the distribution of the content of the oxygen atom and the fluorine or fluorine atom also has a shape having no constant region.
  • a shape that does not have a constant area where the peak exists at the maximum value can relieve stress more effectively than a shape that has a maximum area. It is thought that the stress relaxation of the whole film will proceed efficiently as a result of the creation of local regions. Furthermore, in the case where the shape carrier does not have a fixed area, when the focus carrier moves at the time of image exposure, a region in which carriers easily spread which lowers dot reproducibility and thin line reproducibility is provided locally, and carrier expansion occurs. I think that I can be pushed a little.
  • the number of local maximum values in the thickness direction of the content of the periodic table group 13 element and nitrogen atom in the surface region layer may be at least two or more, for example, two each, three each, or There may be different numbers, such as one for two and the other for three or four.
  • These local maximum values may be located anywhere in the thickness direction of the surface region layer, for example, as shown in the graph representing the content of the element 13 group 3 and nitrogen atoms in the periodic table of FIG.
  • the maximum values of the respective atoms may be present at the same position in the thickness direction, but the maximum values of the contents of the nitrogen atom and the periodic table group 13 elements may be alternately located. preferable.
  • the photoconductive layer side has a maximum value of the content of the periodic table group 13 element
  • the chargeability of the photosensitive member can be preferably improved, and the maximum value of the nitrogen atom content on the free surface side is preferable. Is particularly preferable in view of the scratch resistance and the abrasion resistance of the photoreceptor.
  • two or more upper injection blocking layers each having one maximum value of the content of the periodic table group 13 element in the thickness direction, and nitrogen atoms in the thickness direction
  • one or more intermediate layers each having one maximum value of the percentage of content alternately provided on the photoconductive layer; and as the outermost layer having a free surface, the content of nitrogen atoms in the thickness direction
  • a layer configuration provided with a surface protection layer having one maximum value.
  • four layers of the upper injection blocking layer of the second layer, the intermediate layer, the second upper injection blocking layer, and the surface layer 107 are formed on the photoconductive layer 103. It is possible to illustrate those provided in order.
  • the maximum values of nitrogen atoms, periodic table group 13 elements, and carbon atoms in the surface region layer will be described.
  • the maximum value of the nitrogen atom content in the thickness direction may have a peak shape, as shown in FIG. 25 ⁇ , FIG. 25 C, and FIG.
  • the intermediate layer shown in Fig. 25 B and the maximum value in the surface layer (SL) shown in Figs. 25 A to 25 D it has a fixed value (called a maximum area) at a fixed length in the thickness direction. It may be a shape.
  • the maximum value is expressed by the atomic content ratio at the 1 Z 2 position (midpoint) in the thickness direction of the maximum region, and between the maximum value and the minimum value between the maximum values.
  • the distance is expressed as a deviation starting from the midpoint.
  • the ratio (maximum value / minimum value) to (1) is preferably 1.10 to improve the sensitivity, wear resistance and scratch resistance.
  • the distance between the maximum value and the minimum value between the maximum value and the maximum value on the photoconductive layer side among the adjacent maximum values in the thickness direction of such nitrogen atom content is the chargeability improvement and the sensitivity to short wavelength light. More preferably, the wavelength is from 4 to 30 nm.
  • the distance between the maximum value and the minimum value of the nitrogen atom content can be adjusted by changing the thickness of the upper injection blocking layer.
  • the maximum value of the content of periodic table group 13 content in the thickness direction may be a peak shape as shown in FIGS. 26A and 26C to 26E.
  • it may be a shape having a certain value in a certain length in the thickness direction (referred to as an extremely large area).
  • the maximum value is represented by the atomic percentage of the 1 Z 2 position (mid point) in the thickness direction of the maximum region, and the distance between the maximum values is the middle point Expressed as the starting point distance. If the surface region layer has one maximum and one maximum, the distance between the position of the midpoint of the maximum and the maximum is taken as the distance between the maximum.
  • the local maximum or local maximum region located on the photoconductive layer side is the largest (Fig. 26 6).
  • the content of the periodic table group 13 element at the maximum value located closest to the photoconductive layer side is preferably 5.0 ⁇ 10 18 pieces / cm 3 or more, and the adjacent 2
  • the content of the periodic table group 13 element at the minimum value of the content ratio of periodic table group 1 to 3 group elements existing between two maximum values is less than or equal to 2.5 ⁇ 10 18 pieces / cm 3 Preferred in terms of sensitivity, chargeability and resolution.
  • “minimum value” refers to the smallest value of the periodic table group 13 element content existing between the maximum values, for example, when there are three or more maximum values, it exists between the maximum values This represents the smallest of two or more periodic table group 13 element content minimum values.
  • the minimum value is expressed as a base value in Fig. 26 A to 26 E. 1
  • the base value represents the detection limit value of content analysis method.
  • the distance between adjacent local maximum values in the thickness direction of periodic table group 13 element content in the surface region layer is preferably 100 nm or more and 1000 mm or less from the viewpoint of dot reproducibility and fine line reproducibility. .
  • the distance between the maximum values of the content of the periodic table group 13 element can be adjusted by changing the thickness of the intermediate layer.
  • the maximum value of the content of the periodic table group 13 element and the maximum value of the nitrogen atom content in such a surface region layer are alternately present in the thickness direction, and from the photoconductive layer to the free surface From the viewpoint of scratch resistance and abrasion resistance of the photosensitive member, it is preferable that the local maximum value of the content of the periodic table group 13 element and the local maximum value of the nitrogen atom content be present in the order.
  • the content of carbon atoms preferably has a maximum value as shown in FIGS. 27A to 27D.
  • Pole in the thickness direction of the content of carbon atoms The large value may be present in any of the intermediate layer, the upper injection / retaining layer, and the surface layer, and the shape of the distribution is as shown in Fig. 27 B, Fig. 27 C.
  • the shape may be a shape, or a shape having a constant value in a fixed length in the thickness direction (referred to as a maximum region), as shown in Fig. 27 A. When such a maximum region is provided, the maximum value is a maximum region.
  • the content of atoms at the 1 Z 2 position (midpoint) in the thickness direction of the carbon content of the surface area layer is as shown in Fig. 27 A to 27 D.
  • the values are expressed as base values, it is not necessary to include carbon atoms throughout the surface region layer, and there may be layer regions that do not contain carbon atoms In such a case, such base values Represents the detection limit value in content analysis means.
  • hydrogen atoms be contained in the surface region layer.
  • the hydrogen atom compensates for the dangling bonds of the silicon atom, and improves the layer quality, in particular, the photoconductive characteristics and the electronic retention characteristics.
  • the hydrogen content is preferably 5 to 70 atm%, more preferably 8 to 60 atm%, as an average value in the film, in a normal case with respect to the total amount of constituent atoms. More preferably, it is 50 atm%.
  • gaseous substances such as S i H 4 , S i 2 H 6 , S i 3 H 8 , S i 4 ⁇ 1 ⁇ , etc.
  • mako are listed as effective use of gasified hydrogenated silica (silanes), and also in terms of ease of handling at the time of layer preparation, good supply efficiency of Si, etc. 4 and Si 2 H 6 are preferred.
  • the raw material gases of these Si supplies may be used by diluting them with gases such as H 2 , He, Ar, and Ne.
  • Examples of the substance that can be a gas for supplying nitrogen include gaseous substances such as N 2 , NH 3 , NO, N 2 0, N 0 2 , and the like, or compounds that can be gasified as effectively used.
  • the substance can be a carbon-supplying gas, CH 4, C 2 H 2 , CF 4, C 2 F 6, C_ ⁇ , C 0 2, gaseous or compounds are usefully employed with which can be gasified, etc. It is mentioned as being
  • nitrogen is preferable as the nitrogen supply gas because nitrogen provides the best characteristics.
  • carbon supply gas (311 4 are preferred.
  • NO is preferred as well as oxygenating gas +.
  • these source gases for supplying nitrogen, carbon and oxygen may be used by diluting them with gases such as H 2 , He, Ar and Ne.
  • gases such as H 2 , He, Ar and Ne.
  • gaseous substances such as 0 2 , CO, CO 2 , NO, N 2 0 and N 0 2 or compounds which can be gasified can be effectively used. It can be mentioned.
  • N 2 O As the gas for supplying oxygen, preferred is N 2 O which provides the best characteristics.
  • an interhalogen compound such as fluorine gas (F 2 ), B r F, C 1 F, C 1 F 3 , B rF 3 , B r F 5 , IF 3 , IF 7 or Si i
  • F 2 fluorine gas
  • a fluorine fluoride such as F 4 or S i 2 F 6 .
  • B 2 H 6 and B 4 H for introducing a boron atom, as a source material for introducing a group 13 atom of the periodic table.
  • B 5 H 9 , B 5 H, Y B 6 H,. , B 6 H I2, B 6 H 14 , etc. water borohydride, BF 3, BC 1 3, other boron halide such as BB r 3, A 1 C 1 3, GaC l 3, Ga (CH 3 3 ), I n C 1 3 , T 1 C 1 3 etc. can be mentioned.
  • the optimum range of the substrate temperature is appropriately selected according to the layer design, but in the normal case, it is preferably 150 or more and 350 or less, more preferably 180 or more and 33 O or less, and 200 or more and .300. It is more preferable that it is the following. ⁇
  • the optimum range is appropriately selected according to the pressure even with the designing of layer configuration of the reaction vessel is preferably not more than usual when 1 X 10- 2 P a more 1 X 10 3 P a, 5 more preferably X 10- 2 or less P a or 5 X 10 2 P a, more preferably not more than 1 XI ⁇ one 1 P a more 1 X 10 2 P a. .
  • the temperature range of the conductive substrate for forming the surface region layer and the above-mentioned range can be mentioned as a preferable numerical range of the gas pressure, but the conditions are not usually determined separately. It is preferable to determine the optimum value based on the mutual and organic relationship to form a photoreceptor having the desired characteristics.
  • the discharge power is 10 W to 5000 W, and converted to 2 mW Z cm 2 per force sort electrode area (cm 2 ) 1.
  • a range of about 4 WZ cm 2 is preferable.
  • the flow rate of silicon-containing gas FSi unit: mL / min (no rma 1)
  • the product of the power per unit gas, particularly the power (WZFS i) per unit gas amount of the silicon atom-containing gas, and the gas concentration ratio of the nitrogen-containing gas to the silicon-containing gas (FNZ FS i) is 5 OW'min / mL (no rma 1) or more and 30 OW'min / mL (no rma 1) or less, 8 OW ⁇ min / mL (no rma l) It turned out that it is more preferable to set it as 20 OW * min / mL (no r ma 1) or less more than.
  • This surface area layer can have an optical pand gap of about 2.8 eV or more and an absorption coefficient of 5000 cm- 1 or less.
  • the product of the power and the flow rate ratio becomes smaller than 5 OW-min / mL (norrmal)
  • the absorption becomes large and the short wavelength becomes difficult to transmit.
  • this value exceeds 30 OW-min / mL (no rma 1)
  • the hardness of the film tends to be reduced. The reason for this is from plasma during film preparation It is believed that the damage is introduced.
  • the above-mentioned range of production conditions is preferable, it is considered as follows.
  • the radicals of the source material present in the plasma need to be properly balanced.
  • the concentration of radicals when the source gas is decomposed is considered to be determined by the ratio of source gas concentration and power when using multiple source gases, but there is a difference in decomposition efficiency depending on the type of gas, so It is thought that the concentration of radicals will not fall in the appropriate range unless the gas flow ratio is in the narrow range.
  • the content of the periodic table group 13 element it is preferable to control the content of the periodic table group 13 element to have an extremely large value during surface area polishing. Furthermore, it is more preferable to control the contents of carbon atom, oxygen atom and fluorine atom so as to have maximum values. In order to form the maximum value, this can be achieved by controlling the gas for supplying a periodic table element 13 group gas, the carbon atom, the oxygen atom and the fluorine atom during the formation of the surface region layer. be able to.
  • the control of the raw material gas to form the maximum value also includes appropriately controlling deposition film forming conditions such as gas concentration or gas flow rate, high frequency power and substrate temperature.
  • the minimum content of oxygen atoms and fluorine atoms is Omax, Fmax, and the minimum content of the entire surface area layer of oxygen atoms and fluorine atoms and fluorine atoms is Omin and Fmin, the minimum content is Omin, It is preferable that the ratio of the maximum content Omax and Fmax to Fmin satisfy the relationship of 2 ⁇ OmaxZmin and 2 ⁇ FmaxZmin, respectively.
  • the minimum content defined here refers to the value of the minimum content in the consideration surface area layer which does not include the change area 107 and the like inserted arbitrarily. In FIG. 4, the right end of the graph corresponds to the deposition start portion of the surface region layer, and the value in this region corresponds to mimin and Fmin.
  • the average concentration in the film is at least 0. O la tm% and at most 20atm%, preferably It is preferable that the ratio is at least 0.1 atm% to at most 10 atm%, and optimally at most 0.5 atm% 8'atm%. In order to adjust the content in such a range
  • an oxygen atom-containing gas such as NO as diluted with a gas such as He, O be added with precise flow control through the the lifting port one controller one: are.
  • the content of fluorine atoms in the surface region layer when expressed in the form of F / (S i + N + F), the average concentration in the film is not less than 0.011 tm% and not more than 20 atm%. It is preferable that the ratio be 0.1 atm% or more and 10 atm% or less, and more preferably 0.5 atm% or more and 8 atm% or less.
  • the thickness of the surface region layer is usually preferably 0.10 or more and 5 ⁇ m or less, more preferably 0.50 or more and 3 m or less, and still more preferably 0.1 or 1 m. If the layer thickness is greater than 0.01 / m, the surface side layer area is not lost due to wear or the like during use of the light receiving member, and if it does not exceed 0.5 m, the residual potential increases. There is no reduction in the electrophotographic properties of the
  • the temperature of the substrate is appropriately selected according to the layer design, but in the normal case, it is preferably 200 or more and 35 Ot or less, more preferably 230 or more and 330 or less, and still more preferably 250 or more and 300 or less. .
  • Ru is selected, usually, preferably less preferably 1 X 10- 2 or 2 X 1 0 3 Pa, 5X 10- 1 or 5 less, more preferably X 10? P a, more preferably not more than ⁇ 10 1 or 1 X 10 Z P a. ⁇
  • the substrate temperature for forming the surface area layer as a preferable numerical range of the gas pressure before. Although the range described can be mentioned, the conditions are not usually determined separately and independently, and optimum values are determined based on mutual and organic relationships to form an electrophotographic photosensitive member having desired characteristics. It is preferable to decide. ⁇ described with each layer being formed on the surface region layer
  • the surface layer 107 is a portion where the composition ratio of silicon atoms and nitrogen atoms in the surface region layer is substantially constant, mainly as a protective film on the surface, short wavelength light transmission, high resolution, resistance to continuous repeated use, It is set up to obtain good characteristics in terms of moisture resistance and resistance to use environment.
  • the surface protective layer provided in the surface region layer in the present invention has a free surface and is composed of a non-single crystal silicon nitride film having a silicon atom and a nitrogen atom as a base material, and has a maximum content of nitrogen atom in the thickness direction. It has one value, and provides the photoreceptor with moisture resistance, continuous repeated use characteristics, electrical pressure resistance, use environment characteristics, and durability. Maximum value of nitrogen content in the thickness direction, its shape, the relationship between the maximum value and the minimum value of nitrogen content in the upper injection blocking layer, average content of nitrogen atoms, etc. Is the same as the intermediate layer described later.
  • the surface protective layer contains a carbon atom, and if necessary, a halogen atom such as an oxygen atom, a fluorine atom, a hydrogen atom, etc., in relation to the upper injection blocking layer and the intermediate layer.
  • a halogen atom such as an oxygen atom, a fluorine atom, a hydrogen atom, etc.
  • the average concentration of nitrogen and oxygen atoms contained in the surface layer (N / S i N N)) (atm%) is in the range of 30 atm% ⁇ N / (S i N N) ⁇ 70 0 atm% And preferred from the point of yield.
  • Hydrogen and / or halogen in the surface protective layer compensates for the dangling bonds of constituent atoms such as silicon, and improves the layer quality, in particular, the photoconductivity and charge retention characteristics.
  • the content of hydrogen atoms is preferably 30 atm% or more and 70 atm% or less, more preferably 35 atm% or more and 65 5 atm% or less, based on the total amount of the composition. Is 4 0 at m% or more and 60 atm% or less.
  • the content of fluorine-containing factor is not less than 0.1 atm% and not more than 15 atm%, preferably not less than 0.1 atm% and not more than 10 atm%, more preferably 0.6. a 111% or more ⁇ 4 atm% or less.
  • the thickness of the surface protective layer is 10 nm or more and 3000 nm or less, preferably 50 nm or more and 2000 nm or less, and more preferably 100 nm or more and 1000 nm or less.
  • the layer thickness is 10 nm or more, the surface layer is not lost due to wear and the like during use of the photoreceptor, and when it is 3000 nnl or less, the residual potential does not increase and the like, and excellent electrophotographic characteristics are obtained. Can.
  • the glow discharge method can be used, and in the formation of the surface protective layer by such a glow discharge method, the temperature of the substrate, The gas pressure in the reaction vessel can be appropriately set as desired.
  • the optimum range of the substrate temperature (Ts) is appropriately selected according to the layer design, but can be, for example, 150 or more and 350 or less, preferably 180 V or more and 330 or less, more preferably 200 or more and 300 or less. .
  • the optimum range is appropriately selected according to the pressure even with the designing of layer configuration in the reaction container, 1 XI (T 2 Pa over 1 X 10 3 Pa or less, preferably 5X 10- 2 Pa or more 5X 10 2 P a less More preferably, it is 1 X 1 Q-a or more and 1 X 10 2 P a or less
  • the substrate temperature for forming the surface protective layer, and the above-mentioned range of the gas pressure may be mentioned. It is preferable to determine the optimum value on the basis of mutual and organic relationships to form a photoreceptor having the desired characteristics, without being determined independently of each other.
  • the change layer 108 is a portion where the composition ratio of silicon atoms and nitrogen atoms in the surface region layer changes, and the surface layer 107 mainly as a surface protective film and the photoconductive layer 103 and / or the upper injection blocking layer 106 The optical continuity is formed between them.
  • the minimum value (lv £ in) and the maximum value (Max) of the reflectance (%) 'in the wavelength range of 350 nm to 680 nm are 0% ⁇ Max () ⁇ 20% ⁇ ⁇ 0Max (Max-Min) / ( It is preferable to set so as to be optically continuous so as to satisfy 100-Max)) 0.15.
  • the change layer 108 it is also effective to make the content of the group 13 element and carbon atom of the periodic table have a maximum value in the change layer 108. It is recommended that the change layer 108 be made to contain the content of periodic group 13 elements and carbon atoms so as to have a maximum value, and that the upper layer have blocking ability for the change layer. ⁇ Preferred to obtain bright decay potential.
  • the function of the upper injection blocking layers 106 a and 106 b is to block the entry of charge from the top (that is, from the surface layer side) to improve the chargeability.
  • the periodic table group 13 elements include boron (B), aluminum (A 1), gallium. (Ga), indium. (In), thallium (T 1), etc., and boron is particularly preferable. It is suitable.
  • the content of atoms of the periodic table group 13 element is preferably distributed so as to have a maximum value, but it is effective even in a maximum region having a fixed region, in which case the maximum value is 5 ⁇ 10 18 It is preferable to use Zcm 3 or more.
  • the periodic table table relative to the total amount of constituent atoms of the upper injection blocking layer
  • the maximum value of the content of the Group 13 element is preferably 50 atm ppm or more and 300 0 atm ppm or less, and more preferably 100 atm ppm or more and 1500 atm ppm or less.
  • Conductivity can be controlled by containing periodic table group 13 elements in the upper injection blocking layer.
  • the atoms of the group 13 element in the periodic table are contained in a uniform distribution in the in-plane direction parallel to the surface of the substrate, whereby the characteristics in the in-plane direction can be made uniform.
  • the upper injection blocking layer is made of silicon and nitrogen atoms and is a group 13 element in the periodic table.
  • the film is made of a non-single-crystal material containing carbon and carbon atoms, and a hydrogen atom, an oxygen atom and / or a fluorine atom is appropriately contained in the film.
  • the content of nitrogen atoms contained in the upper injection blocking layer 106 is preferably in the range of 5 atm% or more and 35 atm% or less with respect to the total of silicon atoms of the constituent atoms and nitrogen atoms, and 10 a tm% or more and 30 atm% or less are more preferable, and 15 atm% or more and 30 atm% or less are more preferable.
  • the contents of nitrogen atoms, carbon atoms, and oxygen atoms contained in the upper injection blocking layers 106 a and 106 b are also related to the contents of these atoms in the intermediate layer and the surface protective layer, and thus It is decided as appropriate so that the purpose is achieved effectively, but in the case of one type, as the amount of two or more types, the total amount of 10 atm% or more with respect to the sum with silicon 70 atm It is preferable to set it as% or less. More preferably, it is 15 atm% or more and 65 atm% or less, more preferably 20 atm% or more and 60 atm% or less.
  • the upper injection blocking layer preferably contains hydrogen atoms.
  • Hydrogen atoms are essential to compensate for the dangling bonds of silicon atoms and to improve the layer quality, especially the photoconductivity and charge retention characteristics.
  • the content of hydrogen atoms is usually 30. at M% or more and 70 atm% or less, preferably 35 atm% or more and 65 atm% or less based on the total amount of constituent atoms in the upper injection blocking layer.
  • the layer thickness of the upper injection blocking layer is preferably 5 nm or more and 1000 nm or less, more preferably 10 nm or more and 80 O nm or less, from the viewpoint of achieving desired electrophotographic characteristics and economical effects. More preferably, 15 nm or more and 50 nm or less. If the layer thickness is 5 nm or more, the charge injection blocking ability from the surface side is sufficient, sufficient chargeability is obtained, and the electrophotographic characteristics are not deteriorated. In addition, the electrophotographic characteristics such as the sensitivity do not deteriorate unless it exceeds 100 nm. ⁇ It is also preferable to continuously change the composition from the side of the upper injection blocking layer and the photoconductive layer 103 toward the surface region layer 104, which is effective in improving adhesion and preventing interference.
  • the mixing ratio of the gas for supplying silicon atoms and the gas for supplying nitrogen atoms, the gas pressure in the reaction vessel, the discharge power and the substrate It is necessary to set the temperature of
  • the optimum range is appropriately selected according to the pressure even with the designing of layer configuration of the reaction vessel, it is preferably from normal case 1 X 10- 2 P a more 1 X 10 3 P a, 5 X 10_ 2 Pa or more 5 XI 0 2 Pa or less is more preferable, and 1 ⁇ 1 ⁇ ′ ′ Pa or more and 1 ⁇ 10 2 Pa or less is more preferable.
  • the temperature of the substrate is appropriately selected in the optimum range according to the layer design, but in the normal case, it is preferably 150 * C or more and 350 or less, more preferably 180 or more and 33.0 or less. The following is more preferable. .
  • the intermediate layer provided in the surface region layer of the present invention is composed of a non-single crystal silicon nitride film having silicon atoms and nitrogen atoms as a base material, and has one maximum value of the content of nitrogen atoms in the thickness direction.
  • Such an intermediate layer is formed between the first upper injection blocking layer (TBL-1) and the second upper injection blocking layer, the second upper injection blocking layer (TBL1 2.) and the third upper injection blocking layer
  • TBL-3 the content of the periodic table group 13 element with respect to the total number of constituent atoms in one surface region layer is maximized or extremely large in the thickness direction of the surface region layer.
  • the nitrogen atom content has a minimum value of at least two or more. A distribution having two or more local maxima in the thickness direction of the surface region layer is formed.
  • the nitrogen atom, carbon atom and / or oxygen atom contained in the intermediate layer preferably contains 10 atm% or more and 90 0 'atm% or less based on the total amount of all atoms constituting one intermediate layer. It is preferable from the point of sensitivity characteristics and electrical characteristics. More preferably, it is at least 15 atm% and at most 85 atm%, more preferably at least 2 0 a 1: .111% and at most 8 0 atm%. However, in any case, in the in-plane direction parallel to the surface of the substrate, it is also necessary from the viewpoint of achieving uniform properties in the in-plane direction that the content be uniformly distributed. In addition, it is preferable that the nitrogen atom is contained more than the first or second upper injection blocking layer.
  • the intermediate layer may contain a periodic table group 13 element, it is more preferable from the viewpoint of sensitivity characteristics that the content be 2.5 ⁇ 10 18 pieces / cm 3 or less. .
  • the formation of such an intermediate layer can be carried out by the glow discharge method etc.
  • the same raw material gas as the formation of the upper injection blocking layer is used.
  • the mixing ratio with the gas, the gas pressure in the reaction vessel, the discharge power, and the temperature of the substrate can be set appropriately.
  • A, C r, M o, A u Metals such as I n, N b, T e, V, .T i, P t, P d, F. C, etc., and alloys thereof, such as stainless steel, etc. can be mentioned. .
  • films or sheets of synthetic resins such as polyester, polyethylene, polyethylene carbonate, cellulose acetate, polypropylene, polyvinyl chloride, polystyrene, and polyamide, and at least light of an electrically insulating substrate such as glass or ceramic.
  • the surface on which the receptive layer is to be formed is one that has been treated to be conductive.
  • the shape of the substrate may be a cylindrical or endless belt having a smooth surface or a concave and convex surface, and the thickness thereof is appropriately determined so as to form a light receiving member as desired. When flexibility as a light receiving member is required, it can be made as thin as possible within the range where the function as a substrate can be sufficiently exhibited.
  • the substrate is usually 1 ⁇ m or more.
  • a source gas for supplying Si atoms and a hydrogen atom (H) are supplied for supplying silicon atoms (Si) and H for supplying hydrogen.
  • the raw material gas for X and the raw material gas for X supply that supplies halogen atoms (X) as necessary are introduced in a desired gas state into a reaction vessel capable of depressurizing the inside, and A discharge may be caused to form a layer consisting of a-Si: H, X on a predetermined substrate which is previously installed at a predetermined position.
  • the hydrogen atoms in the photoconductive layer and, if necessary, the halogen atoms added compensate for the dangling bonds of the silicon atoms to improve the layer quality, in particular, the photoconductivity and charge retention characteristics.
  • the content of hydrogen atoms is preferably, but not limited to, 10 to 40 atm% with respect to the sum of silicon atoms and hydrogen atoms.
  • the optical band gap becomes large and the sensitivity peak shifts to the short wavelength side.
  • Such expansion of the optical band gap is preferable when using a short wavelength exposure, in which case it is preferable to make the hydrogen atom be the sum of silicon and hydrogen atoms : at least 15 atm% or more .
  • Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H As substances that can be gases for Si supply, Si H 4 , Si 2 H 6 , Si 3 H 8 , Si 4 H ,. And other gasified or gasifiable hydrogenated silicas (silanes) are mentioned as being effectively used, and further, in terms of ease of handling at the time of layer preparation, good supply efficiency of Si, etc. 4 and Si 2 H 6 are preferred.
  • Each gas may be mixed not only with a single species but also with a plurality of gases at a predetermined mixing ratio. Furthermore, in consideration of the controllability of the film physical properties, the convenience of gas supply, etc., it is desirable to further add one or more gases selected from among these compounds including H 2 , He and hydrogen compounds. It is also possible to form a layer by mixing the amounts.
  • fluorine gas F 2
  • B r F C 1 F
  • CIF 3 CIF 3
  • Preferred examples thereof include halogen compounds, phenyl fluorides such as Si F 4 and Si 2 F 6 .
  • the amount of halogen element contained in the photoconductive layer for example, the temperature of the substrate, the amount of the source material used for containing the halogen element introduced into the reaction vessel, the discharge space Control the pressure, discharge power, etc.
  • the photoconductive layer preferably contains atoms for controlling conductivity in a nonuniform distribution in the direction of the thickness of the photoconductive layer. This is effective for improving the chargeability, reducing the optical memory, and improving the sensitivity by adjusting the travelability of the carrier of the photoconductive layer and / or compensating the travelability in a high dimension.
  • the content of atoms controlling the conductivity is not particularly limited, but in general, it is preferably from 0.5 to 5. atmppm.
  • control is performed so as to contain substantially no atoms that control conductivity (active addition You can also do '
  • the content of the conductivity controlling atom may include a region in which the concentration changes continuously or stepwise in the film thickness direction, and the content may include a constant region in the film thickness direction.
  • an atom belonging to group 13 of the periodic table (abbreviated as group 13 atom) or an atom belonging to group 15 of periodic table (abbreviated as group 15 atom) can be used.
  • group 13 atoms include boron (B), aluminum (A 1), gallium (Ga), indium (In), thallium (T 1), etc.
  • B aluminum
  • Ga gallium
  • In indium
  • T 1 thallium
  • B Al
  • Such source materials for introducing a Group 13 atom include B 2 H 6 , B 4 H 10 , B 5 H 9 , B 5 H n and B 6 H, for introducing a boron atom. . , B 6 H 12, B 6 H 14 , etc. borohydride, BF 3, BC 1 3, BB r boron halides such as 3.
  • A1 C 1 3, GaC l 3, Ga (CH 3) 3, I n C 1 3, T 1 C 1 3 , etc. can also elevation gel.
  • Specific examples of the Group 15 atom include nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (B i) and the like, and P, As and Sb are particularly preferable. .
  • Phosphorus atoms such as PH 3 and P 2 H 4 such as phosphorus hydrides such as PH 4 I, PF 3 , PF 5 , and PC 5 5 are effectively used as source materials for introducing group 15 atoms.
  • PB r 3, PBr 5, and halogenated phosphorus such as P 1 3.
  • s H 3, A s F 3, As C l 3, As B r 3, A s F 5, SbH 3, S bF 3, S bF 5, S b C 1 3, S b C 1 5, B i H 3, B i C 1 3, B i also B r 3, etc. are exemplified as the effective starting substance for introducing the group 15 atom.
  • source materials for introducing these atoms to control conductivity may be used after being diluted with H 2 and Z or He as necessary.
  • the layer thickness of the photoconductive layer is such that desired electrophotographic characteristics can be obtained and economic effects, etc. From the point of view, it is suitably determined that T is preferably 5 to 5.0 zm, more preferably 10 ⁇ 45 m, still more preferably 20 to 40 m. .
  • the layer thickness is less than 5 m, the electrophotographic characteristics such as chargeability and sensitivity are practically sufficient, and if it is not more than 50 m, the preparation time of the photoconductive layer is long. The habit does not go high.
  • the mixing ratio of the gas for supplying Si and for adding oxygen and the dilution gas, the gas pressure in the reaction vessel, the discharge power, and the substrate temperature are appropriately selected. It is preferable to set.
  • the flow rate of H 2 and / or H e used as a dilution gas is appropriately selected according to the layer design, but the flow rate of H e is usually in the case of S i supply gas. It is preferably 30 to 30 times, more preferably 4 to 15 times, and still more preferably 5 to 10 times.
  • the gas pressure in the reaction vessel also has Ru is selected, usually 1 X 1 0- 2 ⁇ : LX 1 0 3 P a is preferably, 5 X 1 0- 2 ⁇ 5 X 1 0 2 P a more preferred, 1 X 1 0 - 1 ⁇ 2 X 1 0 2 P a is more preferable.
  • the ratio of the discharge power to the flow rate of the gas for Si supply is preferably set to 0.5 to 8, 2 to 6 It is more preferable to set in the range of
  • the temperature of the substrate is appropriately selected in the optimum range according to the layer design, but 200 to 350 is preferable, 21 to 330 is more preferable,, 22 to 3 oot Is more preferred. ,
  • the above-mentioned range can be mentioned as a preferable numerical range of the substrate temperature and the gas pressure for forming the photoconductive layer, the conditions are not usually determined independently independently, and the light receiving member having desired characteristics It is preferable to determine the optimum value on the basis of mutual and organic relationships to form
  • the upper layer of the conductive substrate 101 (it is effective to provide the lower injection blocking layer 105 which serves to block the injection of the charge on the side of the substrate 101).
  • the lower injection blocking layer 105 has a function to block the charge injection from the base 1 G 1 side to the photoconductive layer 103 side when the photosensitive layer 102 receives a charging treatment of constant polarity on its free surface. There is.
  • the lower injection blocking layer 105 is obtained by containing a silicon atom as a base material and an element for controlling conductivity.
  • the lower injection blocking layer 105 preferably contains a relatively large amount of an element for controlling the conductivity as compared with the photoconductive layer 103.
  • the impurity element contained in the lower injection blocking layer 105 a Group 15 element of the periodic table can be used as the impurity element contained in the lower injection blocking layer 105.
  • the content of the element for controlling conductivity contained in the lower injection blocking layer 105 is appropriately determined as desired so that the object of the present invention can be effectively achieved.
  • the total amount of atoms is preferably 10 a tmp pm to 10000 a tmp pm, more preferably 50 a tmp pm to 7000 a tmp pm, and still more preferably 100 a tmp pm to 5000 a tmp pm.
  • the lower injection blocking layer 105 contains carbon, nitrogen and nitrogen, it is possible to improve the adhesion between the lower injection blocking layer 105 and the base body 101.
  • nitrogen and oxygen are optimally contained to obtain excellent lower injection blocking performance. It is also possible to grant. .
  • the content of nitrogen atoms and oxygen atoms contained is preferably such that the sum of nitrogen and oxygen is at least 0.1 atm% to at most 40 atm% with respect to the total amount of constituent atoms in the lower injection blocking layer. It is more preferably 1.2 atm% or more and 20 atm% or less.
  • the lower injection blocking layer 105 contains hydrogen atoms.
  • the contained hydrogen atom compensates for the dangling bonds present in the layer and is effective in improving the film quality.
  • the content of hydrogen atoms contained in the lower injection blocking layer 105 is preferably 1 atm% or more and 50 atm% or less, more preferably 5 atm% or more and 40 am or less with respect to the total amount of constituent atoms in the lower injection blocking layer. tm% or less is more preferable, and 10 atm% or more and 30 atm% or less is more preferable.
  • the lower injection blocking layer 105 in the present invention preferably contains carbon atoms.
  • the contained carbon atom compensates for the dangling bonds present in the layer and is effective in improving the film quality.
  • the content of hydrogen atoms contained in the lower injection blocking layer 105 is preferably 1 atm% or more and 50 atm% or less, more preferably 5 atm% or more, with respect to the total amount of constituent atoms in the lower injection blocking layer. 40 atm% or less is more preferable, and 10 atm% or more and 30 atm% or less is more preferable.
  • the layer thickness of the lower injection blocking layer 105 is preferably 10 O nm to 5000 nm, and more preferably 300 nm to 4000 nm, from the viewpoints of obtaining desired electrophotographic characteristics and economical effects. Is more preferable, and it is further preferable to set 50 nm or more and 3 000 nm or less.
  • the injection blocking ability of the charge from the substrate 101 becomes sufficient, sufficient chargeability can be obtained, and improvement of electrophotographic characteristics can be expected, and increase of residual potential etc. No negative effects occur.
  • T s the conductive substrate temperature
  • the optimum range is appropriately selected according to the pressure even with the designing of layer configuration of the reaction vessel, preferably normal case lX i.O_ 2 P a more 1 X 10 3 Pa or less, 5X 10_ 2 P a more 5 X 10 2 Pa or less is more preferable, and 1 X 10 "'Pa more than 1 X is optimal It is more preferable to set it to 10 2 Pa or less.
  • FIG. 2 is a schematic configuration view showing an example of an electrophotographic photoreceptor manufacturing apparatus by high frequency plasma CVD (abbreviated as RF-PCVD) using an RF band as a power source frequency.
  • RF-PCVD high frequency plasma CVD
  • the configuration of the manufacturing apparatus shown in FIG. 2 is as follows.
  • This apparatus is roughly divided into a deposition apparatus 2100, a raw material gas supply apparatus 2200, and an exhaust apparatus (not shown) for reducing the pressure in the reaction vessel 2111.
  • a deposition apparatus 2100 In the reaction vessel 2111 in the deposition apparatus 2100, a cylindrical substrate 2112, a substrate heating chamber 2113, a source gas introduction pipe 2114, a force S are installed, and a high frequency matching box 2115 is further connected.
  • Source gas supply unit 2200 S iH 4, GeH 4, H 2, CH 4, B 2 H 6, PH bomb 2221-2226 of source gases S or the like and the valve 2231 to 2236., 22 41-2246, 2251
  • the source of each raw material gas is connected to a gas introduction pipe 2114 in a reaction vessel 2111 via an M auxiliary valve 2260.
  • Formation of a deposited film using this apparatus can be performed, for example, as follows.
  • the cylindrical substrate 2112 is placed in the reaction container 2111, and the inside of the reaction container 2111 is exhausted by an exhaust device (for example, a vacuum pump) (not shown). Subsequently, the temperature of the cylindrical substrate 211.2 is controlled to a predetermined temperature of 15 Ot to 350 according to substrate heating conditions 2113.
  • an exhaust device for example, a vacuum pump
  • the valves 2223 to 2.236 of the gas cylinder and the leak valve 2117 of the reaction vessel are closed, and the gas inflow valve 22.41 2246, the outflow valve 2251 to 2 Confirm that the auxiliary valve 2 2 6 0 is open.
  • each gas is introduced from the gas cylinder 22 21 to 22 26 by opening the source gas cylinder valve 2 23 1 to 2 2 3 6, and each gas pressure is adjusted by the pressure regulator 2 26 1 to 2 2 6 6 Adjust the to 0.2 MP a.
  • each layer is formed according to the following procedure.
  • the cylindrical substrate 2 1 1 2 reaches a predetermined temperature, the necessary ones of the outflow valves 2 2 5 1 to 2 2 5 6 and the auxiliary valve 2 2 6 0 are gradually opened, and the gas pump 2 2 2 1 A predetermined gas is introduced into the reaction vessel 2 1 1 1 through the source gas feed pipe 2 1 1 4 2 to 6 2 6.
  • each raw material gas is adjusted by mass flow controllers 2 1 2 1 2 1 6 6 so as to reach a predetermined flow rate.
  • the opening of the main valve 2 1 1 8 is adjusted while looking at the vacuum gauge 2 1 1 9 so that the pressure in the reaction vessel 2 1 1 1 becomes a predetermined pressure of 1 ⁇ 10 2 Pa or less.
  • set RF power supply (not shown) of frequency 1 3 5 5 6 5 6 5 5 5 6 5 5 15 15 25 35 45 55 65 4 to the desired power and introduce RF power into the reaction vessel 2 1 1 1 through high frequency matching box 2 And cause a glow discharge.
  • the release energy causes the source gas introduced into the reaction vessel to be decomposed, and a deposited film mainly composed of a predetermined silicon is formed on the cylindrical substrate 212.
  • the supply of RF power is shut off, the outflow valve is closed to shut off the flow of gas into the reaction vessel, and the formation of the deposit is completed.
  • a plurality of similar operations are repeated to form a light receiving layer having a desired multilayer structure.
  • Outflow valves other than the necessary gas are required to form each layer. It goes without saying that each gas is left in the piping from the outlet valve 2 2 5 1 to 2 5 6 in the reaction vessel 2 1 1 1 to the reaction vessel 2 1 1 1. To avoid the problem, close the outflow valve 2 2 5 1-2 2 5 6 ', open the auxiliary valve 2 2 6 0 0, and fully open the main valve 2 1 1 8 Perform the operation you want to do.
  • the heating method of the substrate may be any heating element having a vacuum specification, more specifically, an electric resistance heating element such as a winding heater 1, a sheet heater 1, a ceramic heater, a halogen heater, etc., halogen Examples include heat radiation lamp heating elements such as lamps and infrared lamps, and heat generation elements by heat exchange means using liquid, gas or the like as a heat medium.
  • an electric resistance heating element such as a winding heater 1, a sheet heater 1, a ceramic heater, a halogen heater, etc.
  • halogen Examples include heat radiation lamp heating elements such as lamps and infrared lamps, and heat generation elements by heat exchange means using liquid, gas or the like as a heat medium.
  • heat radiation lamp heating elements such as lamps and infrared lamps
  • heat generation elements by heat exchange means using liquid, gas or the like as a heat medium As the surface material of the heating means, metals such as stainless steel, nickel, aluminum, copper and the like, ceramics, heat resistant polymer resin and the like can be used.
  • a method is used in which a container dedicated to heating is provided in addition to the reaction container, and after heating, the substrate is transferred in vacuum into the reaction container.
  • FIG. 3 is a schematic view of a color image forming apparatus (copying machine or laser beam printer) using an electrophotographic process for transferring using an intermediate transfer belt 305 comprising a film-like dielectric belt. It is.
  • a first image carrier on which an electrostatic latent image is formed on the surface and toner is attached on the electrostatic latent image to form a toner image is used repeatedly.
  • the electrophotographic photosensitive member of the present invention is composed of a photosensitive drum 301.
  • the primary charger 3.02 for uniformly charging the surface of the photosensitive drum 3.11 to a predetermined polarity and potential, and the charged photosensitive
  • An image exposure device (not shown) for image exposure on the surface to form an electrostatic latent image, and a developing device for depositing toner on the formed electrostatic latent image for development
  • a first developing device for depositing black toner (B) a developing device for depositing L toner (Y), a developing device for depositing magenta toner (M), and a cyan developer
  • a rotary type second developing device 304 b is disposed which incorporates a developing device for adhering the toner (C).
  • a photosensitive cleaner 306 for cleaning the photosensitive drum 301 and a charge exposure for discharging the photosensitive drum 301 are performed. 7 is provided.
  • the intermediate transfer belt 3 0 5 is disposed so as to be driven to the photosensitive drum 3 0 1 through the contact nip portion, and the inner image formed on the photosensitive drum 3 0 1 is A primary transfer roller 30 8 for transferring to the intermediate transfer belt 35 5 is provided.
  • a bias power supply (not shown) for applying a primary transfer bias for transferring the toner image on the photosensitive drum 301 onto the intermediate transfer belt 305 is connected to the primary transfer roller 308.
  • the secondary transfer roller 3 0 9 for further transferring the toner image transferred to the intermediate transfer belt 3 0 5 to the recording material 3 1 3 around the intermediate transfer belt 3 0 5, the intermediate transfer belt 3 0 It is provided in contact with the lower surface of 5.
  • a bias power source for applying a secondary transfer bias for transferring the toner image on the intermediate transfer belt 305 onto the recording material 1313.
  • an intermediate transfer belt cleaner 3 for cleaning a transfer residual toner remaining on the surface of the intermediate transfer belt 305 after transferring the toner image on the intermediate transfer belt 305 onto the recording material 13 13 0 is provided.
  • the image forming apparatus holds a plurality of recording materials 33 on which an image is formed.
  • the sheet feeding force set 3 1 4 and the recording material 3 1 3 from the sheet feeding force set 3 1 4 through the contact ep portion between the intermediate transfer belt 3 0 5 and the secondary transfer port 3 0 9 A transport mechanism for transporting is provided.
  • a fixing device 3.15 for fixing the toner image transferred onto the recording material 33 onto the recording material 1313 is disposed on the conveyance path of the recording material 1313.
  • a magnetic brush type charger or the like is used as the primary charger 302.
  • the image exposure apparatus includes a color separation of a color original image, an imaging exposure optical system, and a scanning exposure system using a laser scanner that outputs a laser beam modulated corresponding to a time-series electric digital pixel signal of image information. Etc. are used.
  • the photosensitive drum 301 is rotationally driven at a predetermined circumferential speed (process speed) in the clockwise direction, and the intermediate transfer belt 300 is rotated in the counterclockwise direction.
  • the photosensitive drum 3 is rotationally driven at the same peripheral speed as the photosensitive drum 3 0 1
  • the photosensitive drum 301 is uniformly charged to a predetermined polarity and potential by the primary charger 302 in the process of rotation, and then receives an image exposure 320, whereby the photosensitive drum 301 is exposed.
  • a silent latent image corresponding to the first color component image (for example, magenta component image) of the desired color image is formed.
  • the second developing unit is rotated, the developing unit to which the magenta toner (M) is attached is set at a predetermined position, and the electrostatic latent image is developed by the first color magenta toner (M). .
  • the first developing unit 304 a is in the OFF state and does not act on the photosensitive drum 301, and does not affect the first color magenta toner image.
  • the first color magenta toner image formed and carried on the photosensitive drum 301 is in the process of passing through the gap between the photosensitive drum 301 and the intermediate transfer belt 305.
  • Intermediate transfer is sequentially performed on the outer peripheral surface of the intermediate transfer belt 305 by an electric field formed by applying a primary transfer bias to a primary transfer roller 308 from a bias power source (not shown).
  • a primary transfer bias to a primary transfer roller 308 from a bias power source (not shown).
  • the surface of the photosensitive drum 301 on which the magenta toner image of the first color has been transferred to the intermediate transfer belt 305 is cleaned by the photosensitive cleaner 360.
  • a second-color toner image (for example, a cyan-toner image) is formed on the cleaned surface of the photosensitive drum 301 in the same manner as the first-color toner image is formed.
  • the color toner image is superimposed and transferred onto the surface of the intermediate transfer belt 305 onto which the first color toner image has been transferred.
  • the third color toner image for example, yellow toner image
  • the fourth color toner image for example, black toner image
  • a combined force image corresponding to one image is formed.
  • the recording material 3 1 3 is fed from the paper feeding cassette 3 1 4 to the contact nip portion between the intermediate transfer belt 3 0 5 and the secondary transfer roller 3 0 9 at a predetermined timing, and the secondary transfer roller 3 0 9 is brought into contact with the intermediate transfer belt 3 0 5, and the secondary transfer bias is applied from the bias power source to the secondary transfer roller 3 0 9, thereby overlappingly transferred onto the intermediate transfer belt 3 0 5
  • the composite color image is transferred to the recording material 1313 which is the second surface image carrier.
  • the transfer residual toner on the intermediate transfer belt 3 0 5 is cleaned by the intermediate transfer belt cleaner 3 1 0.
  • the recording material 3 13 on which the toner image is imaged is guided to the fixing device 3 1.5, where the toner image is heat-fixed on the recording material 3 1 3.
  • the secondary copying roller 309 and the intermediate transfer belt cleaner 3 10 may be separated from the intermediate transfer belt 3 0 5.
  • An electrophotographic color image forming apparatus using such an intermediate transfer belt has the following features.
  • the recording material 3.13 is processed and controlled (for example, the gripper).
  • the toner image can be transferred from the intermediate transfer belt 305 without the need to hold, adsorb, or have a curvature, etc.), and various kinds of recording materials can be used as the recording material 33. be able to.
  • thin paper (4 0 gZm 2 paper) from thick paper (2 0 0 gZm 2 paper) recording material .3
  • use of various sizes regardless of the length of wide and narrow or length of the width further d can be used as a recording material 3 1 3, envelopes, postcards, and etc. label paper as the recording material 3 1 3 It is possible. ,
  • the intermediate transfer belt 35 is excellent in flexibility and can be freely set up with the photosensitive drum 3 0 1 and the recording material 3 1 3, the degree of freedom in design is high. , It is easy to optimize the transfer efficiency etc.
  • the image forming apparatus using the intermediate transfer belt 305 has various advantages.
  • the photoreceptors A to H produced in this manner were evaluated as follows.
  • the electron ⁇ true type image forming apparatus (Canon electronic photography device i RC 6800 has been converted to a magnetic brush type charger for experimental use, The image exposure method is converted to an I AE method, the light source for image exposure is converted to a blue light emitting semiconductor laser with an oscillation wavelength of 405 nm, and the diameter of the drum surface irradiation spot can be adjusted.
  • a machine with a modified optical system hereinafter, i. RC 6800, 1
  • Measurement is made at 60 points at 10 points in the axial direction and 6 points in the circumferential direction with an interference film thickness meter (Otsuka Electronics: MCPD 2000), and the value obtained by dividing the value of maximum value / minimum value by the average film thickness Displayed as unevenness (%).
  • MCPD 2000 interference film thickness meter
  • the film thickness unevenness exceeds 30%, the hardness and resistance unevenness also increase, but there was no problem in practical use. Furthermore, when the film thickness unevenness exceeds 40%, the hardness and the resistance unevenness are also large, and the phenomenon of partial scraping on the streak occurs in continuous use, which is not preferable.
  • the transmittance of 405 nm light was evaluated by the spectral sensitivity to 405 nm light. That is, the spectral sensitivity characteristics of the manufactured photoreceptors A to H are measured, and the spectral sensitivity (peak value of spectral sensitivity) of the wavelength at which the spectral sensitivity is maximum is taken as a standard.
  • the transmittance of 405 nm light was evaluated based on the normalized spectral sensitivity of 5 nm light.
  • the spectral sensitivity here means that when the surface of the photosensitive member is charged to a constant potential, for example 450 V, and then light of various wavelengths is applied, the surface potential attenuation component per unit light quantity (unit area) (unit: V) ⁇ Point to cmV)
  • a constant potential for example 450 V
  • V unit area
  • V Point to cmV
  • This surface potential decay component is the method of Shibata et al. (Electrophotographic Society of Japan, 22nd, 1st, 1983) It carried out by the method according to. Briefly, in order to reproduce the behavior in the copier, a transparent electrode such as an ITO electrode is in close contact with the surface of the photosensitive body, exposure and voltage application are performed across the sequence in the copier, and the potential change on the surface is obtained. taking measurement.
  • the sensitivity of such a photoreceptor varies depending on the wavelength.
  • ⁇ 6 is a graph plotting the wavelength on the horizontal axis and the spectral sensitivity on the vertical axis as a normalized value based on the spectral sensitivity at the wavelength at which the value is maximum.
  • FIG. 7 shows a graph plotted as to the relationship between the nitrogen atom concentration in the surface layer and the spectral sensitivity to light of 405 nm. As apparent from FIG. 7, a clear correlation is observed between the nitrogen atom concentration and the spectral sensitivity to the 405 nm light, and as the nitrogen atom concentration increases, the light at the 405 nm light It can be seen that the spectral sensitivity tends to improve.
  • the required sensitivity value in the electrophotographic process is the laser element used And depends on the performance of the optical system, and in general, it is difficult to mention its absolute value.
  • the 405 nm of The image exposure was performed, the light amount of the image exposure light source was adjusted, and the surface potential was set to ⁇ 100 V (bright potential), and the exposure amount at that time was used as the reference exposure amount.
  • the other photosensitive members are similarly installed in the image forming apparatus for evaluation, and when the image exposure of 405 nm is irradiated at the standard exposure amount, the potential does not fall below -100 V. It was judged that the sensitivity was insufficient.
  • the index normalized by the peak value of the spectral sensitivity as shown in FIG. 6 has a sensitivity of 30% or more, It has been found that it is more preferable to have a sensitivity of 40% or more, preferably.
  • the nitrogen atom concentration in the surface layer to 30 atm% or more, more preferably 35 atm% or more, it is possible to use a blue light emitting semiconductor laser 40 It has become clear that it has the additional effect of having sensitivity to short wavelength laser light around 5 nm.
  • the photosensitive member G had a large thickness unevenness, and it was desirable that the nitrogen concentration be not too high when used as the surface layer. From such a point of view, it has been found that the nitrogen atom concentration in the surface layer is preferably 70 atm% or less, more preferably 60 atm% or less. table 1
  • Example 2 The results are shown in Table 3 on a mirror-finished aluminum cylinder 1 (support) having a diameter of 84 mm and a length of 38 l mm using the plasma C ViD apparatus shown in FIG. Under the conditions, a deposited film consisting of a lower injection blocking layer, a photoconductive layer, an upper injection blocking layer, and a surface layer was sequentially laminated to fabricate a photoreceptor.
  • the lower injection blocking layer and the photoconductive layer are formed under the conditions shown in Table 1 under all conditions as common conditions, and for the surface layer, the film flow rate of CH is variously changed as listed in Table 4 to form a film.
  • the carbon source in the surface layer Photoreceptors 2A to 2H having different dye concentrations were produced. .
  • the effect of the outermost surface was removed by removing the outermost surface by about 2 O nm and then analysis was performed using S IMS (secondary ion mass spectrometry) [CAMECA: IMS-4F].
  • the prepared electrophotographic photosensitive member was adjusted so that the surface potential at the position of the developing device would be 1 450 V (dark potential), and then adjusted so as to maximize the light quantity of the image exposure light source.
  • the surface potential of the electrophotographic photosensitive member was measured by a surface voltmeter installed at the position of the developing device and used as a residual potential. Evaluation is performed by using Photoreceptor 2 A as a reference and ranking according to the criteria shown below.
  • the charger is adjusted so that the dark area potential at the developing device position becomes 1 450 V, and the light amount of the image exposure light source so that the bright area potential at the developing device position becomes 1 In the state where is adjusted, the in-plane distribution of the dark area potential and the light area potential was measured, and the difference between the maximum value and the minimum value was regarded as the potential unevenness.
  • the evaluation was performed by using Photoreceptor 2A as a reference and ranking according to the criteria shown below.
  • the diameter is 84 mm and the length is 38 lmm
  • a deposited film consisting of a lower injection blocking layer, a photoconductive layer, a skin, and a surface area layer is sequentially laminated on a mirror-finished aluminum cylinder (support), and a photosensitive member is laminated. I made it.
  • the maximum value of carbon atoms is 1.0 ⁇ 10 2 atoms / cm 3
  • the maximum value of boron atoms is 2.
  • 1 ⁇ 10 18 i @ / cm ⁇ 6 5 from the photoconductive layer side. was X 1 0 '18 pieces m 3.
  • the maximum value interval of boron atom was 250 nm.
  • the amount of nitrogen in the surface layer was 43 atm% in the notation of NZ (S i + N).
  • the obtained photosensitive member is converted into an electrophotographic image forming apparatus (Canon electrophotographic apparatus i RC 6800, the charger is converted to a magnetic brush type for experiment, and the charging polarity is changed so that the image exposure method can be changed.
  • Is converted to the IAE method the light source for image exposure is converted to a blue light emitting semiconductor laser with an oscillation wavelength of 405 nm, and the drum surface irradiation spot diameter can be adjusted and set in the machine modified optical system for image exposure).
  • the evaluation results are shown in Table 8 together with Comparative Example 1 and Example 4 described later.
  • the produced electrophotographic photosensitive member was installed in an electrophotographic apparatus, and electricity was supplied, and the surface potential of the dark portion of the electrophotographic photosensitive member was measured by a surface voltmeter installed at the position of the developing device to obtain chargeability.
  • the charging conditions DC applied voltage to charger, superimposed AC amplitude, frequency, etc.
  • the evaluation was performed by using the photoreceptor of the layer configuration shown in Comparative Example 1 described later as a reference and ranking according to the judgment criteria shown below.
  • the prepared electrophotographic photosensitive member was adjusted so that the surface potential at the position of the developing device would be ⁇ 450 V (dark potential), and then adjusted so as to maximize the light quantity of the image exposure light source.
  • the surface potential of the electrophotographic photosensitive member was measured by a surface voltmeter installed at the position of the developing device, and the residual potential was obtained.
  • the evaluation was performed by using the photoreceptor of the layer configuration shown in Comparative Example 1 to be described later as a reference and performing marking in accordance with the judgment criteria shown below.
  • the prepared electrophotographic photosensitive member was adjusted so that the surface potential at the position of the developing device was 1450 V (dark potential), and then image exposure was performed to adjust the light amount of the image light source.
  • the surface potential was set to 1 10 0 V (bright potential), and the exposure amount at that time was taken as the sensitivity.
  • the evaluation was performed by using, as a reference, a photoreceptor having a layer configuration shown in Comparative Example 1 to be described later and ranking according to the judgment criteria shown below.
  • the prepared electrophotographic photosensitive member was adjusted so that the dark area potential at the developing device position was ⁇ 450 V, and the light area potential at the developing device position was ⁇ 10 V. With the light amount of the exposure light source adjusted, the in-plane distribution of the dark area potential and the light area potential was measured, and the difference between the maximum value and the minimum value was regarded as potential unevenness.
  • the evaluation was performed by using a photoconductor having a layer configuration shown in Comparative Example 1 described later as a reference and ranking according to the judgment criteria shown below.
  • the potential difference between the surface potential in the non-image exposure state and the time when the image was exposed and then re-charged was measured using the same potential sensor as an optical memory. Review The evaluation was performed by using the photoconductor of the layer configuration shown in Comparative Example 1 described later as a reference and ranking according to the judgment criteria shown below.
  • the spectral sensitivity characteristic is the reciprocal of the quantity of light necessary to attenuate light from a constant dark area potential to a constant light area position, that is, the potential attenuation per unit energy of light is the spectral sensitivity to the exposure wavelength.
  • the spectral sensitivities at each wavelength were measured when the was changed, and evaluated using numerical values normalized by the spectral sensitivities (peak values of spectral sensitivities) of the wavelengths at which the spectral sensitivities were maximized. More specifically, in order to evaluate the transmittance of 405 nm light, the transmittance was evaluated by the spectral sensitivity of 405 nm light.
  • the CLN property was evaluated by the cleaning blade pressure at which the cleaning residual toner starts to be generated. Specifically, after conducting 1000 sheets of A4 copy paper, repeat the experiment of observing the surface of the photoreceptor and determining the presence or absence of the cleaning residual toner while gradually lowering the pressure of the cleaning blade. The cleaning blade pressure at which cleaning residual toner starts to occur was examined. The evaluation was performed by ranking the value of the photosensitive member of the layer configuration shown in Comparative Example 1 described later as a reference (100%) and the relative evaluation in the case of drawing. The cleaning blade pressure at which the cleaning residual toner starts to be generated can be interpreted as the lower the cleaning blade pressure is wider, the better is the C L N property.
  • Example 6 In the same manner as in Example 3, using a plasma C VD apparatus shown in FIG. 2, it is shown in Table 6 on a mirror-finished aluminum cylinder (support) having a diameter of 84 mm and a length of 381 mm. Under the above conditions, the deposited film including the lower injection blocking layer, the 'photoconductive layer, the upper injection blocking layer, and the surface layer was sequentially laminated to fabricate a photosensitive body.
  • the content was made to have the maximum value and distribution as shown in Fig.11.
  • the content should be a local maximum and distribution as shown in ⁇ 12.
  • Example 4 the photoreceptors in which the distribution of boron atoms in the surface region layer has the maximum value 'at two locations showed improved characteristics in all the items evaluated.
  • Example 4 the distribution of the carbon element had a maximum at one location, but as in Example 3, the distribution of carbon, oxygen and fluorine atoms had a configuration having a maximum at one location. This shows that the resolution, residual potential, optical memory and CLN characteristics are further improved.
  • the content had a maximum value and a distribution as shown in FIG. Table 9
  • Example 10 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, it is shown in Table 10 on a mirror-finished aluminum cylinder 1 (support) having a diameter of 84 mm and a length of 381 mm. Under the conditions described above, the lower injection blocking layer, the photoconductive layer, and the deposited film consisting of the change layer and the surface layer were sequentially laminated so as to have the layer configuration shown in FIG. '
  • Example 11 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, it is shown in Table 11 on a mirror-finished aluminum cylinder (support) having a diameter of 84 mm and a length of 38 l mm. Under the conditions described above, the lower injection blocking layer, the photoconductive layer, and the deposited film consisting of the change layer and the surface layer were sequentially laminated so as to have the layer configuration shown in FIG.
  • Example 3 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, it is shown in Table 12 on a mirror-finished aluminum cylinder 1 (support) having a diameter of 84 mm and a length of 381 mm. Under the conditions described above, the lower injection blocking layer, the photoconductive layer, and the deposited film consisting of the change layer and the surface layer were sequentially laminated to obtain the layer configuration shown in FIG. 1C, to prepare a photoreceptor.
  • Table 13 shows the maximum value of the surface side of the content of boron atoms, the maximum value of the photoconductive layer side, and the maximum content of boron between the maximum values in the surface region layer of the photoreceptor prepared in Example 58. It shows the maximum value of the nitrogen content and carbon atom content of the surface layer expressed by the small value, the maximum value interval, and N (S i + N).
  • Example 5 From the evaluation results of Example 5 in Table 14, the chargeability is improved by setting the maximum value on the photoconductive layer side to 5 ⁇ 10 18 pieces / cm 3 or more, and the content between the maximum values is 2.5 ⁇ 1. It is understood that the resolution can be improved by setting the density to 0 18 pieces / cm 3 or less. When the minimum value of the content between the maximum values is more than 2.5 x 10 18 Zcm 3 , the maximum value is substantially the same as one, and the effect of resolution improvement can not be seen.
  • Example 6 From the results of Example 6, it is understood that the effect of the present invention can be obtained even when the element of periodic table group 13 is contained in the form of a maximum region, and all items are improved over the comparative example. Furthermore, it can be seen that the resolution is further improved by incorporating it so as to have the maximum value.
  • the maximum value on the photoconductive layer side is made larger than the maximum value on the surface side, and the maximum value on the photoconductive layer side is 5 ⁇ 10 18 cm 3 or more. It can be seen that the chargeability is improved.
  • Example 9 From the results of Example 8, when the maximum value interval becomes smaller than 10 O nm, the maximum values become substantially the same as one, so that improvement in resolution, chargeability, and residual potential is hardly observed. . In addition, it can be seen that the resolution, residual potential, and sensitivity improve slightly if it exceeds 1000 nm. From the above, by providing at least two local maximum values of the periodic table group 13 element, the resolution is improved, and the local maximum value on the photoconductive layer side is further higher than 5 ⁇ 10 18 / cm 3. By increasing the size and setting the maximum value interval to 100 nm or more and 100 Onm or less, it is possible to improve the electrical characteristics such as chargeability, residual potential, and sensitivity. Example 9
  • Example 15 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, on an aluminum cylinder (support) having a diameter of 84 mm and a length of 38 lmm and mirror-finished, under the conditions shown in Table 15, A deposited film consisting of the injection blocking layer, the photoconductive layer, the change layer, and the surface layer was sequentially laminated to fabricate a photoreceptor.
  • the S i H 4 gas flow rate of the change layer is gradually decreased, and the N 2 gas flow rate is varied so as to make the combination in the change pattern gradually increased so that the surface layer and the photoconductive layer become optically continuous.
  • the other conditions were manufactured under the same conditions as in Example 3.
  • the spectral reflectance spectra of the photosensitive drums were measured to evaluate the optical continuity.
  • the maximum value of carbon atoms is 1. 7 ⁇ 10 2 D atoms / cm 3
  • the maximum value of boron atoms is 7. 3 ⁇ 10 18 cm ⁇ 6. 4 ⁇ 10 18 from the photoconductive layer side. It was 3 cm 3 .
  • the maximum value interval was 40 O nm.
  • the amount of nitrogen in the surface layer was 69 atm% in the notation of NZ (S i + N). The evaluation results are shown in Table 16.
  • the content had a maximum value and a distribution as shown in FIG.
  • FIG. 8A shows the spectral reflectance spectra of Example 9-A to Example 9-D.
  • the spectral reflectance spectra of these four photoreceptors have a minimum (Min) and a maximum (Max) of 0 %% Max (%) of reflectance (%) in the wavelength range of 350 nm to 680 nm. 20% and 0 ⁇ (Max-M in) Z (100-Max)) 0. 15 Meet.
  • Example 9-E to Example 9-H are shown in FIG. 8B, but the photoreceptor is out of the above condition range.
  • the photosensitive member is manufactured such that the relationship of the reflectance is within the condition range.
  • Example 3 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, on a mirror-finished aluminum cylinder (support) having a diameter of 84 mm and a length of 38 lmm, under the conditions shown in Table 17. As shown in FIG. 1C, the lower injection blocking layer, the photoconductive layer, and the deposited film consisting of the change layer and the surface layer were sequentially laminated to fabricate a photoreceptor.
  • the content was made to have the maximum value and distribution as shown in Fig.18.
  • the maximum value of carbon atoms is 9. 8 ⁇ 10 19 Z cm 3
  • the maximum value of boron atoms is 7. 3 ⁇ 10 18 cm 3 , 6. 4 ⁇ 1 O 18 0/0 from the photoconductive layer side. It was cm 3 .
  • the maximum value interval of the iodine atom was 300 nm.
  • the amount of nitrogen in the surface layer was 48 atm% in the notation of NZ (Si + N).
  • the flow rate of CH 4 gas was changed in the change layer part to make the carbon atom content have a maximum value.
  • the other conditions were the same as in Example 3.
  • the same evaluation as in Example 3 was performed on the produced photosensitive member.
  • the maximum value of the carbon atoms from the photoconductive layer side 1. 1 X 10 2, Zc.m 3, a .1. 5 X 10 2 ⁇ number ZCM 3, the maximum value of the boron atom, photoconductive From the layer side, it was 7.1 x 10 18 i @ / cm ⁇ 6. 5 x 10 18 pieces Z cm 3 .
  • the maximum value interval of the boron atom was 28 Onm.
  • the amount of nitrogen in the surface layer was 4 8 atm% in terms of ⁇ / ⁇ (S i + N).
  • the content was made to have the maximum value and the distribution as shown in FIG.
  • Example 3 using the plasma CVD apparatus shown in FIG. 2, on a mirror-finished aluminum cylinder (support) having a diameter of 84 mm and a length of 38 lmm, under the conditions shown in Table 21:
  • the deposited film was sequentially laminated so as to have a layer configuration consisting of the lower injection blocking layer, the photoconductive layer, the conversion layer, and the surface layer shown in C, to produce a photoreceptor.
  • the flow rate of Si H 4 gas and the flow rate of N 2 gas in the change layer are The flow rate of CH 4 gas was changed in that part so that the carbon atom content had a maximum value.
  • the other conditions were the same as in Example 3.
  • the same evaluation as in Example 3 was performed on the produced photosensitive member.
  • the content was made to have the maximum value and distribution as shown in FIG.
  • Table 22 shows that even if the change layer is a constant layer, the content of elements in Group 13 of the periodic table is By having at least two maximum values in the longitudinal direction and making the contents of carbon atoms, oxygen atoms, and fluorine elements have maximum values, good results are obtained with all characteristics as in Example 3. It was obtained.
  • Example 3 In the same manner as in Example 3, using the plasma CVD apparatus shown in FIG. 2, on a mirror-finished aluminum cylinder (support) having a diameter of 84 mm and a length of 38 l mm, under the conditions shown in Table 23, The deposited film was sequentially laminated so as to have a layer configuration consisting of the lower injection blocking layer, the photoconductive layer, the conversion layer, and the surface layer shown in C, to produce a photoreceptor.
  • the layer configuration except that the lower injection blocking layer was changed from the Si system of Example 3 to the SIN system was the same as that of the third embodiment.
  • the distribution of nitrogen, boron, fluorine, oxygen, and carbon contents in the change layer was controlled at the gas flow rate so that the maximum value and distribution shown in Fig. 21 were obtained, and the distribution shown in Fig. 21 was obtained.
  • the maximum value of the carbon atoms is 2. 8X 10 2 pieces ZCM 3, the maximum value of boron atoms from the photoconductive layer side, 9. 4X 10 18 pieces Zcm 3, 5. 2 X 10 18 cells It was Zc m 3 .
  • the maximum distance between boron atoms was 480 nm.
  • the amount of nitrogen in the surface layer was 58 atm% in terms of (S i + N). .
  • the deposited film is sequentially laminated under the conditions shown in Table 25 on a mirror surface processed aluminum cylinder (support) with a diameter of 84 mm and a length of 38 lmm, and a surface area layer A photoconductor was prepared comprising the upper injection blocking layer (TBL-1), the intermediate layer, and the upper injection blocking layer (TBL-2) and the surface protective layer (Si).
  • Lower injection preventing layer and the photoconductive layer, papermaking create the conditions to base Te shown in Table 25 as a common condition, surface protective layer, a gas flow rate of S iH 4, the mixing ratio of S iH 4 tN 2, S i
  • the amount of electric power per H 4 gas amount was manufactured under the conditions shown in Table 26, and otherwise, under the conditions shown in Table 25 to prepare photoreceptors 14A to 14H having different nitrogen atom concentrations in the surface protective layer.
  • the same evaluation as in Example 1 was performed on the photosensitive members 14 A to 14 H manufactured as described above.
  • the index normalized by the peak value of the spectral sensitivity as shown in FIG. 6 preferably has a sensitivity of 30% or more, and more preferably 40% or more. all right.
  • the nitrogen atom concentration in the surface protective layer is preferably 30 atm% or more, more preferably 35 atm% or more. It has become clear that it has the further effect of having sensitivity to such short wavelength laser light around 400 nm.
  • the nitrogen concentration in the surface protective layer is preferably 70 atm% or less, more preferably 60 atm% or less.
  • the deposited film is sequentially laminated on a mirror-finished aluminum cylinder (support) with a diameter of 84 mm and a length of 38 l mm using the plasma CVD apparatus shown in FIG.
  • a photoreceptor comprising a blocking layer, a photoconductive layer, a top injection blocking layer (TBL-1), an intermediate layer, a top injection blocking layer (TBL-2), and a surface protective layer was prepared.
  • the lower injection blocking layer and the photoconductive layer were manufactured under the conditions shown in Table 27 under all conditions as common conditions, and the surface protective layer was a column showing the gas flow rate of CH 4 in Table 28;
  • the photoconductors 15A to 15H having different carbon atom concentrations in the surface protective layer were manufactured.
  • the photoreceptors 15A to 15H manufactured in this manner were evaluated in the same manner as in Example 2. At this time, the reference was set to photoconductor 15A.
  • the measurement results are shown in Table 28.
  • the measured value of (**) is considered to be the limit limit.
  • a photoconductor was prepared by laminating and forming a lower injection blocking layer, a photoconductive layer, and a surface area layer.
  • the surface area layer is the first top injection block The layer (TBL-1), the intermediate layer, the second upper injection blocking layer (TBL-2), and the surface protective layer (SL).
  • the introduction amount of N 2 gas, B 2 H 6 gas, and CH 4 gas was changed during formation of the surface region 'layer.
  • the obtained photoreceptor was set in an i RC6800-405 'nm remodeled machine, and the same evaluation as in Example 3 was performed. At this time, the reference was the photosensitive member of Comparative Example 2 described later. The evaluation results are shown in Table 32.
  • Example 16 In the same manner as in Example 16, the deposited films were sequentially stacked under the conditions shown in Table 30, and A photoreceptor comprising an injection blocking layer, a photoconductive layer,. And an upper injection blocking layer, and a surface layer was prepared.
  • the produced photosensitive member was subjected to S IMS measurement in the same manner as in Example 1. The contents of nitrogen and boron atoms were found to have the peaks shown in FIG. 25E and FIG. 26F.
  • Example 16 The same evaluation as in Example 16 was performed on the manufactured photosensitive member. The results are shown in Table 32.
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 31. From the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL_1, intermediate layer, TBL-2 and SL) The following photosensitive member was manufactured. A photoconductor was produced in the same manner as in Example 16 except that NO gas and SiF 4 gas were used for the surface region layer. The S IMS measurement was performed on the surface area layer of the produced photoreceptor in the same manner as in Example 1. The contents of nitrogen, boron and carbon atoms were found to have the peaks shown in Fig. 25B, Fig. 26E and Fig. 27B.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of NZ (Si + N) from the photoconductive layer side, and the maximum value of boron atoms is 6 from the photoconductive layer side. 5 x 10 18 pieces Z cm 3 , 2. 1 x 10 18 pieces / cm 3
  • the maximum value of the carbon atom is: .1 X 1.0 211 z cm 3 , the distance between the maximum value and the minimum value of the nitrogen atom is 15 O nm, and the maximum value interval of the boron atom is , 300 nm.
  • Example 16 The same photoelectric characteristics as in Example 16 were evaluated for the produced photosensitive member. The evaluation results are shown in Table 32 together with Example 16 and Comparative Example 2.
  • Example 16 the deposited film was sequentially stacked under the conditions shown in Table 33, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2, SL. ) was produced.
  • Six types of photoreceptors were produced in the same manner as in Example 3 except that the flow rate of B 2 H 6 gas was changed, which was introduced to the surface region layer.
  • S IMS measurement was conducted in the same manner as Example 1. The contents of nitrogen atom, boron atom and carbon atom were found to have the peaks shown in FIG. 25B, FIG. 26C or 26B, and FIG. 27A.
  • the maximum value of nitrogen atoms is 38 atm% and 43 atm% in terms of N / (S i + N), and the maximum value of carbon atoms is 1.
  • OX 10 pieces Zcm 3 The spacing between the maxima and minima of the nitrogen atom was 1 ⁇ 5 nm, and the maxima spacing of the boron atom was' 35 O. nm.
  • the maximum value of the periodic table group 13 element located closest to the photoconductive layer side is 5.0 ⁇ 10 18 pieces / cm 3 or more, in the resolution and the chargeability, It is further improved that the minimum value of the periodic table group 13 element existing between two adjacent maximum values of the periodic table group 13 element is 2.5 ⁇ 10 18 elements / cm 3 or less. Further improvement in the chargeability was observed. Also, even if the Group 13 element of the periodic table is contained as a maximum region, the photoelectric characteristics of the same properties as those of the composites contained as a peak are observed. It turned out that an effect could be obtained.
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 36, and from the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL_1, intermediate layer, TBL-2 and SL) The following photosensitive member was produced.
  • a photoconductor was produced in the same manner as in Example 1 except that the flow rate of B 2 H 6 gas introduced to the surface region layer was changed.
  • SIMS measurement was performed on the surface area layer of the produced photosensitive member in the same manner as in Example 1. It was found that the content of boron atom had a peak shown in FIG. 26D.
  • the maximum values of nitrogen atoms are 38 atm% and 4 3 atm% in terms of NZ (S i + N) from the photoconductive layer side, and the maximum value of boron atoms is from the photoconductive layer side.
  • a 0 X 10 18 atoms ZCM 3 the maximum value of the carbon atoms is 1.
  • a 0 X 1 0 2Q pieces / cm 3 the maximum value and the minimum value of the nitrogen atoms
  • the spacing between them was 9.0 nm, and the spacing between the maxima of boron atoms was 180 nm.
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 38, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer) were: BL-2, SL ) Was produced.
  • the film formation time of the intermediate layer in the surface region ⁇ layer is changed, and the distance between the maximum values of the two maximum values of the Group 13 elements contained in the surface region layer is changed.
  • Five types of photoreceptors were produced.
  • the surface area layer of the produced photosensitive member was subjected to SIMS measurement in the same manner as in Example 1.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of N / (S i + N) from the photoconductive layer side, and the maximum values of boron atoms are from the photoconductive layer side.
  • 5 x 1 It was 0 18 Zcm 3 and 2.1 ⁇ 10 18 Zcm 3 , and the maximum value of carbon atoms was 1. 10 2 ° / cm 3 . '
  • the distance between the maximum values of the two periodic table group 13 element extreme values contained in the surface region layer is in the range of 100 nm to 1000 nm in the film thickness direction. 'Is more preferable in terms of resolution, chargeability, residual potential, and sensitivity. [Example 21]
  • Example 16 the deposited film was sequentially laminated under the conditions shown in Table 41, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2 and SL) ) was produced.
  • the flow rate of N 2 gas introduced into the middle layer of the surface area layer is changed, and the ratio of the maximum value to the minimum value of the nitrogen atom content contained in the surface area layer is shown in Table 42.
  • Five types of photoreceptors were produced in the same manner as in Example 16 except that the distribution of the nitrogen atom content was changed.
  • the surface area layer of the produced photosensitive member was subjected to SIMS measurement in the same manner as in Example 1.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of N / (S i + N) from the photoconductive layer side, and the maximum values of boron atoms are from the photoconductive layer side. . 5X 1 0 18 pieces (: 111 3, 2. a 1 X 10 18 atoms ZCM 3, the maximum value of the carbon atoms is 1. a ⁇ X 10 2 ° pieces / cm 3, the maximum value and the minimum nitrogen atom The distance to the value was 150 nm, and the maximum distance between boron atoms was 300 nm.
  • the ratio of the maximum value to the minimum value of the nitrogen atom content contained in the surface area layer is preferably 1.10 or more in view of image defects. I understand. In addition, it was found that even if nitrogen atoms are contained as a maximum region having a certain part, the same effect as in the case where they are contained as peaks can be obtained. ,,,
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 44, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2 SL)
  • a photosensitive member consisting of The deposition time of the intermediate layer of the surface region layer and the second upper blocking layer (TBL-2) is changed, and the distance between the minimum value between two adjacent nitrogen atomic maximum values and the maximum value on the photoconductive layer side is
  • a photoreceptor of 6 a was produced in the same manner as in Example 16 except that the conditions were changed.
  • the maximum value of nitrogen atoms for which S IMS measurement was performed in the same manner as in Example 1 is as follows from the photoconductive layer J: NZ (S i + N) a tm%, 43 a tm%, boron
  • the maximum value of the atoms from the photoconductive layer is 6. 5 x 1.0 18 atoms cm 3 , 2.1 x 10 18 Z cm 3 , and the maximum atomic carbon number is 1.0 x 10 2 () particles Z cm 3 Met.
  • the film thickness was adjusted by adjusting the film formation time so that the distance between the maximum value on the photoconductive side and the minimum value between the maximum value and the minimum value that is in a joint becomes the value in Table 45.
  • the minimum value between the maximum values of adjacent two nitrogen atomic maximum values contained in the surface region layer and the maximum value between the photoconductive layer side and the distance between is in the range of 40 nm to 300 um.
  • Example 16 In the same manner as in Example 16, the deposited film was sequentially deposited under the conditions shown in Table 47, and the ⁇ part: Injection blocking layer, photoconductive layer, and surface area layer (TBL-1, intermediate layer, TBL-2, 2 ') A photosensitive member made of SL was manufactured. The flow rate of B 2 H 6 gas introduced into the surface region layer is changed, and the periodic table group 13 apron is included throughout the entire surface region layer, and the periodic table group 13 element has two maximum values. A photoconductor was produced in the same manner as in Example 16 except that the photoconductor was made to have. With respect to the surface area layer of the produced photosensitive member, S IMS measurement was performed in the same manner as in Example 1.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of N / (S i + N) from the photoconductive layer side, and the maximum value of boron atoms is from the photoconductive layer side. 6. 5 x 10 , 8 ii / cm 3 , 2. 1 x 10 18 i @ / cm 3 , the maximum value of carbon atoms is 1. 0 x 10 2D zcm 3 , the maximum value interval of nitrogen atoms is 150 The maximum distance between boron atoms was 300 nm. The photoelectric characteristics of the produced photosensitive member were evaluated in the same manner as in Example 16. The evaluation results are shown in Table 48.
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 49, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, interlayer> TBL-2, SL)
  • a photosensitive member consisting of By changing the flow rate of N 2 gas introduced into the surface area layer and the flow rate of B 2 H 6 gas, the content of nitrogen atoms and the content of elements in the periodic table group 13 in the surface area layer peak in the same phase
  • a photoconductor was produced in the same manner as in Example 16 except that the pigment was used.
  • the surface area layer of the produced photosensitive member was subjected to S IMS measurement in the same manner as in Example 1. It was found that the contents of nitrogen atom and boron atom had the peaks shown in FIG.
  • the maximum value of nitrogen atom is 38 atm%, 43 atm% in the notation of NZ (S i + N)
  • the maximum value of the boron atom is, from the photoconductive layer side, .6.5 ⁇ 10 i8 l @ / cm 3 , 2.1 ⁇ 10 18 Z cm 3 , and the maximum value of the carbon insulator is 1.
  • 0 X 1 0 2 Pieces / cm 3 der is, the interval between the maximum value and the minimum value of the nitrogen atoms is 15 onm, pole Daine interval boron atoms was 50 onm.
  • the photoelectric characteristics of the produced photosensitive member were evaluated in the same manner as in Example 16. The evaluation results are shown in Table 50.
  • the characteristic is not limited to the image defect It turned out that improvement was seen.
  • Example 16 In the same manner as in Example 16, the deposited film was sequentially deposited under the conditions shown in Table 51, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2) A photoreceptor comprising SL) was produced. Top charge injection blocking on the surface protective layer (SL) side " Into the layer (TBL-2), the flow rate of CH 4 gas was changed: In the same manner as in Example 16 except that the maximum value of the carbon atom content in the surface region layer was changed, four types of A photosensitive member was produced. The surface area layer of the produced photosensitive member was subjected to S IMS measurement in the same manner as in Example 1. The maximum value of nitrogen atom is from the photoconductive layer side.
  • Notation 38 a tm% of (S i + N), 43 was atm%, the maximum value of boron atoms from the photoconductive layer side, 6. 5X 10 18 atoms / cm 3, 2. 1 X 10 18 cells a ZCM 3, the maximum value of the carbon atoms is 1. OX 10 2D pieces / cm 3, the interval between the maximum value and the minimum value of the nitrogen atoms is 0.99 nm, maximum value interval boron atoms in 300 nm there were.
  • the maximum value of the two carbon atoms contained in the surface region layer is 2.5 ⁇ 10 ' 8 atoms / cm 3 or more. It turns out that it is preferable.
  • Example 16 In the same manner as in Example 16, the deposited film was sequentially deposited under the conditions shown in Table 54, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2 and SL) ) was manufactured.
  • a photoconductor was produced in the same manner as in Example 16 except that the flow rate and the film formation time of CH 4 gas introduced into the surface region layer were changed to have two maximum values.
  • the surface area layer of the produced photosensitive member was subjected to S IMS measurement in the same manner as in Example 1. The carbon atom content was found to have the peak shown in Fig. 27C.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of NZ (Si + N) from the photoconductive layer side, and the maximum value of boron atoms, from the photoconductive layer side, 6.5 X 1 O 18 f @ / cm 3 , 2.1 ⁇ 10 18 cm 3 , and the maximum value of the carbon atom is from the side of the photoconductive layer, 1. 3 , ⁇ ⁇ 10 2 ° / cm 3 , 1. a 5X 1 0 2 ° number Z cm 3, the interval between the maximum value and the minimum value of the nitrogen atoms is 15 On. m, the maximum value interval boron atoms was 30 onm.
  • Example 16 the deposited film was sequentially deposited under the conditions shown in Table 56, and the lower injection blocking layer, the photoconductive layer, and the surface area layer (TBL-1, intermediate layer, TBL-2 and SL) ) was produced.
  • a photoconductor was produced in the same manner as in Example 16 except that the flow rate of N 2 gas introduced into the lower injection blocking layer was changed, and nitrogen atoms were introduced into the lower injection blocking layer.
  • the surface area layer of the produced photosensitive member was subjected to S IMS measurement in the same manner as in Example 1.
  • the maximum values of nitrogen atoms are 38 atm% and 43 atm% in terms of (Si + N) from the photoconductive layer side; the maximum values of boron atoms are from the photoconductive layer side, 6.. 5 X 10 18 atoms / cm 3 , 2.1 X 10 18 particles Z cm 3 , and the maximum value of carbon atoms is 1. 0 X 10 2 ( one Z cm 3 , the maximum value and the minimum value of nitrogen atoms The value interval was 150 nm, and the maximum value interval of boron atoms was 300 nm. ⁇ Photoelectric characteristics of the produced photoreceptors were evaluated in the same manner as in Example ⁇ 16. The evaluation results are shown in Table 57.
  • Example 16 the deposited film was sequentially deposited and layered under the conditions shown in Table 58, and the lower injection blocking layer, photoconductive layer, and surface area layer (change layer, TBL-1, intermediate layer, TB) A photoconductor consisting of L-2 and SL was manufactured. At the beginning of the surface area layer, a change layer is introduced, and the photoconductive layer and the first upper injection blocking layer (TBL-1) are optically continuous by changing the gas flow rate, but the others are the same as in Example 16. To prepare a photoreceptor. The S IMS measurement was performed on the surface region layer of the produced photosensitive member in the same manner as in Example 1.
  • the maximum value of nitrogen atom is expressed as NZ (S i + N) 38 a tm%, 43 are atm%, the maximum value of boron atoms from the photoconductive layer side, 6. 5X 10 18 pieces ZCM 3, 2. a 1 X 10 18 atoms ZCM 3, the maximum value of the carbon atoms 1. a 0X 10 n ⁇ cm 3, the interval between the maximum value and the minimum value of the nitrogen atoms is 15 onm, maxima spacing of the boron atoms was 300 nm.
  • the spectral reflectance spectrum of the produced photosensitive drum was measured to evaluate the optical continuity.
  • the measurement results of the spectral reflection spectra of the photosensitive members 28A to 28D are shown in FIGS. 28A and 28B, and the measurement results of the spectral reflection spectra of the photosensitive members 28E to 28H are shown in FIGS. 28C and 28D.
  • Photoreceptors 28A-28D have minimum (Min) and maximum (Max) values of reflectance (%) in the wavelength range of 350 nm to 68 Onm, with a ratio of 0% to Max (%) ⁇ 20%, 0 ⁇ Max ⁇ M in) / (100 — Max) 0.15 0.15 is satisfied, and the photoconductor 28 to 2 ⁇ is the minimum value (Min) and the maximum value of the reflectance (%) in the wavelength range of 350 nm to 680 nm
  • the photoelectric characteristics were evaluated in the same manner as in Example 16 for the photosensitive member produced without satisfying the above relationship. The evaluation results are shown in Table 59.
  • the minimum (M in) and maximum (M ax) of reflectance (%) in the wavelength range of 350 nm to 680 nm has improved potential unevenness, and in particular, improved potential unevenness due to exposure unevenness in the potential blur.
  • the minimum value (Min) and the maximum value (Max) of the reflectance (%) in the wavelength range of 350 nm to 680 nm satisfy the above relationship.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

 表面層における短波長の像露光の吸収を最小限にとどめつつ、解像力を初めとする電子写真特性を良好に保つ事が可能な電子写真感光体を提供する。該電子写真感光体は、導電性基体上に順次せきそうされた光導電層および周期表13族元素と炭素原子とを含有し、少なくともシリコン原子と窒素原子を母材とする非単結晶窒化シリコン膜からなる表面領域層を有する。該表面領域層において、構成原子の総量に対する周期表13族元素の含有率が膜の厚さ方向で極大値を少なくとも2つ持つ分布を有し、かつ窒素原子の平均濃度が30atm%以上70atm%以下である。

Description

明 細 書 電子写真感光体 技術分野
本発明ほ、 電子写真感光体に関し、 特に波長が 380 nm以上 500 nm以 下の比較的短い波長の光を露光に用いたプリンタ、 ファクシミリ、 複写機など に最適な電子写真感光体に関するものである。 背景技術
像形成分野において、 感光体における光導電材料としては、
1. 高感度で、 SN比 (光電流 (I p) /暗電流 (I d) ) が高い
2. 照射する電磁波のスぺクトル特性に適合した吸収スぺクトルを有する
3. 光応答性が早く、 所望の暗抵抗値を有する
4. 使用時において人体に対して無害である
等の特性が要求される。
特に、 事務機としてオフィスで使用される電子写真装置内に組み込まれる電 子写真感光体の場合、 使用時における無公害性は重要な点である。
上述の特性を満足する優れた特性を示す光導電材料にアモルファスシリコ ン (以下、 a— S iと略す) があり、 電子写真感光体の光受容部材,として注目 されている。
a— S iからなる光導電層を有する感光体は、 一般的には、 50 〜35 0 に加熱した導電性基体上に真空蒸着法、 スパッタリング法、 イオンプレ一 ティング ¾、 熱 CVD法、 CVD法、 プラズマ CVD法等の成膜法により形 成される。 なかでも、 原料ガスを高周波あるいはマイクロ波グロ一放電によつ て分解し、 基体上に a— S i堆積膜を形成するプラズマ CVD法が好適なもの として実用に付されている。
例えば、原料ガスに S iH4、 H2、 N2、 B2H6を用いて、それぞれの原料ガス の流量比を規定する事で P— i一 n接合の逆バイアス状態.となるようにした、 基板、 障壁層、 光導電層、 表面保護層からなる a— S i感光体が特 平 5— 1 50532号公報等に開示されている。
また、 導電性基体上に a— S iからなる光導電層とアモルファス窒化ケィ素 からなる表面層を有する電子写真感光体の最表面の N/S iの元素組成比が 0. 8〜1. 33の範囲で、 O/S iの元素組成比が 0〜0. 9の範囲である 電子写真感光体が特開平 8— 171220号公報に開示されている。'
また、 近年の高画質化に対する要求から、 トナーの小粒径化と並んで、 静電 潜像の高精細化がますます求められるようになってきている。 そのためには、 例えばデジタル複写方式であれば、 像露光に用いられるレーザ一のスポッ卜径 を絞るなどの方法が挙げられ、 そのためにレーザーの短波長化が求められてき た。 感光層が水素化 a— S iを用いて形成され、 露光波長が 380 nm〜4.5 0 nmに主たる発振波長を有する紫外青紫色レーザ一光発振器を用いた画像 形成装置が、 特開 2000— 258938号公報に提案されている。
更に、 a - S i系感光体を用い、 画像形成光線を露光する際に感光体にかか る電界が 150 kVZcm以上であり、 画像形成光線の波長が 500 nm以下 である電子写真装置が、 特開 2002-311693号公報に提案されている。 また、 a— S i感光体を帯電する方法には、 コロナ帯電を用いたコロナ帯電 方式、 導電性口一ラを用い直接放電で帯電を行うローラ帯電方式、 磁性粒子等 により接触面積を十分にとり、 電荷を感光体表面に直接注入することにより帯 電を行う注入帯電方式などがある。
中でも、 コロナ帯電方式やローラ帯電方式は放電を用いるために感光体表面 に放電生成物が付着しやすい。 加えて a— S i感光体は有機感光体などに比べ てはるかに高硬度な表面層を持っているために表面層が削れにくく、 放電生成. 物が表面に残存しやすい。 こで、 高湿環境下などで水分の吸着によって放電 生成物と水分が結合して表面を低抵抗化させ、 表面の電荷が移動しゃすくなつ て画像流れ現象が発生する場合がある。 そのため、 表面の罈擦方法や感光体の 温度管理方法など、 様々な工夫が必要となる場合があ 0た。
これに対して、 注入帯電方式は放電を積極的に用いることはせずに、 感光体 表面に接触した部分から直接電荷を注入する帯電方式であるために前記の画 像流れといった現象は発生しにくい。
また、 接触帯電である注入帯電方式は、 コロナ帯電方式が電流制御型である のに対し、 電圧制御型であるため、 帯電電位のムラを比較的小さくしゃすいと いうメリットがある。 発明の開示
発明が解決しょうとする課題
従来の a— S i系の電子写真感光体は、 暗抵抗値、 光感度、 光応答性等の電 気的、 光学的、 光導電特性、 及び使用環境特性の点、 さらには経時安定性およ び耐久性の点で特性の向上が図られてはいるが、 総合的な特性向上を図る上で さらに改良する余地が存在するのが実状である。
特に、 近年急速にデジタル化、 カラー化へのシフトが進み、 電子写真装置へ の高画質化 (高解像であること、 高精細であること、 濃度ムラがないこと、 画 像欠陥 白抜けや黒点など) がないこと等) の要求は以前に増して.高まってい る。
デジタルフルカラ一複写機では、 カラ一トナーとしてネガトナーが、 潜像の 制御性が高く高画質化に適したイメージ露光法 (画像部を露光する方法) およ
•び負電荷を帯電させる感光体との組み合わせて使用されている。 負帯電用 a— S i系感光体においては、 表面からの電荷の流入を出来るだけ阻止する機能の 如何が特性向上のカギを握っている。 加えて、 高速化、 高耐久 への要求も急速に増しており、 電子写真感光体で は、 電気的特性、 光導電特性および均一性の向上や画像欠陥の低減とともに、 耐久性ゃ耐環境性 (温度'湿度変化順応性) 等の性能の大憚な改善が求められ ている。
画像の解像度を高めるためには、 小粒径トナーだけでなく、 像形成用のレ一' ザ一光のスポッ卜径を小さくすることが有効である。 レ一ザ一光のスポット径 を小さくする手段としては、 レーザー光を光導電層に照射する光学系の精度を 向上させたり、 結像レンズの開口率を大きくしたりすること等が挙げられる。 しかし、 このスポット径はレ一ザ一光の波長と結像レンズの開口率で決まる回 折限界までしか小さくすることはできない。 このため、 レーザー光の波長を一 定にして、 スポット径を小さくするためには、 レンズの大型化や機械精度の向 上等を行なう必要があり、 装置の大型化やコスト上昇が避け難かった。
このため、 近年、 レ一ザ一光のスポット径の下限がレ一ザ一光の波長に正比 例することに着目し、 レーザ一光の波長を短くすることでスポット径を小さく し、 静電潜像の解像虔を高めるという技術が注目されている。
従来の電子写真装置においては、 画像露光の際に 6 0 0〜 8 0 0 nmの発振 波長を有するレーザ一光が一般的に用いられており、 この波長をさらに短.くす ることで画像の解像度を高めることができる。 近年、 発振波長の短い半導体レ 一ザ一の開発が急速に進んでおり、 4 0 0 nm近辺に発振波長を有する半導体 レーザ一が実用化されている。
この 4 0 0 nm近辺の発振波長の半導体レ一ザ一を画像露光に用いた、 2 4 0 0 d p iといった高解像度の a— S i感光体が求められている。
また、 高解像度デジタルフルカラーで用いられる小粒径トナーには、 感光体 表面への転写残や、 クリーニング残が生じやすいという課題があり、 これに対 する改善も求められている。
以上に挙げた手法によって画像の解像度を高めるためには、 感光体が 4 0 0 nm近辺の短波長帯の光に対応できるよう、 特に表面領域の材質のさらなる'改 善が要求されている。
例えば a— S i系の感光層は、 感度のピークが 6 0 0〜7.0 O nm付近であ るため、 ピーク感度に比べればやや劣るものの、 条件を工夫すれば 4 :0 0〜4 1 0 nm付近でも感度は有しているので、 例えば、 4 0 5 n mの短波長レ一ザ —を用いた場合でも使用可能である。 ただし、 感度的 はピークに比べて半分 前後となる場合もあり、 感光体の表面領域における光の吸収が殆どないことが 好ましいことになる。
しかし、 従来表面層に好適に用いられてきたアモルファス炭化シリコン (以 降 a— S i C) 系材料やアモルファス力一ボン (以降 a— C ) 系材料の場合、 4 0 0〜4 1 0 nm近辺では吸収が大きくなりやすい傾向があった。 このため に、 a— S i C系材料では、条件を工夫することで透過率を向上させる、また、 ある程度膜厚を薄くする事で対処する事も可能であるが、 表面層は複写機内で 摺擦によって徐々に磨耗していくという宿命にあり、 ある程度以上の膜厚を確 保する必要がある。 よって、 膜厚増による吸収量増と磨耗ムラによる感度ムラ が、 高解像な画像を安定的に出力する場合には、 問題になってくる場合があつ た。
これに対し、 a— C系材料の場合は、 条件によっては透過率のよい膜も作成 可能であつたが、 その場合にはポリマーに近い構造となり、 硬度が低くなつた り、 抵抗値が高くなりすぎたりする場合があった。 よって、 a— C系材料の場 合には、 透過率と硬度あるいは抵抗とのトレードオフになる場合があった。 これらの材料の代わりに、 アモルファス窒化シリコン (以降 a— S i. N) 系 材料を用いることができることが判っていたが、 そのような膜は感光体の表面 層としては使用が難しく、 これまで卖用化されていない。 例えば、 特開平 8— 1 7 1 2 2 0号公報には、 a— S i Nの原料ガスの違いによって様々な禾点と 欠点があることが示されており、 表面層として好適な条件を得るためには特定 の条件を選択する必要があることが示されている。
特開平 8— 1 7 1 2 2 0号公報では、 感光体の最表面の NZ S i元素組成比 および O/ S i元素組成比の最適値とその生成条件が開示されている。 しかし ながら、 特開平 8— 1 7 1 2 2 0号公報では、 露光こ供される波長ば 5 5 Q n mまでしか考慮されていない。 更に、 特開平 8— 1 7 1 2 2 0号公報には、 表 面層の膜厚が 0 . 8 z mを超えると感度が低下することが記載されている。 即 ち、 5 5 0 n mの露光波長でも、 0 . 8 mを越えると感度が低下することか ら、 例えば 4 0 0 nm付近の波長においてはある程度光を吸収する事が予想さ れ、 十分な感度が得られない可能性がある。
すなわち、 1つ目には、 表面領域にて 4 0 0 n m付近の短波長の露光がほと んど吸収されない事が必要であり、 2つ目には、 表面からの負電荷の注入を阻 止する機能を十分に持つ事、 3つ目として、.小スポット径&小粒径トナーを活 かせる高解像度を持つことである。 課題を解決するための手段
本発明者らは上記の諸問題を解決し、 高画質、 高耐久、 高速の複写プロセス に好適に使用でき、 短波長露光に対して実用上十分な感度を持ち、 光メモリが なく、 帯電能が高く、 高コントラストな複写プロセスを実現するために、 鋭意 検討した結果、 表面層として窒化シリコン系材料を採用し、 作成条件を最適化 することで、.上記の目的を良好に達成しうることを見出し、 本発明に至った。 即ち、 本発明は、 導電性基体と、 光導霉層と、 光導電層上に積層されたシリ コン原子と窒素原子を母材とし、 少なくとも周期表 1 3族元素と炭素原子を含 有する非単結晶窒化シリコン膜からなる表面領域層.を有する電子写真感光体 において、.前記表面領域層内に、.構成原子の総量に対する周期表 1 3族元素の 含有率が膜め厚さ方向で極大値を少なくとも 2つ持つ分布を有することを特 徵とする電子写真感光体である。 本発明によれば、 表面領域層における短波長光の吸収を最小限にとどめ、'安 定して高解像度で高品質なフルカラー画像を出力できる極めて良好な電子写 真特性の電子写真感光体を提供することができる。 図面の簡単な説明
図 1 A、 1 B、 1 C及び I Dは本発明の電子写真感光体の一例を示す模式的 な断面図である。
図 2は本発明の電子写真感光体の製造に使用することが可能な、 R F帯の高 周波を用いたプラズマ C VD堆積装置の好適な構成の一例を模式的に示した 図である。
図 3は本発明におけるカラー電子写真装置構成の一例を表す模式図である。 図 4は本発明における表面層中の周期表 1 3族元素(硼素原子)、炭素原子、 酸素 子及びフッ素原子含有量の極大値を説明するデプスプロファイルの一 例ある。
図 5は本発明における、 露光用レーザ一のスポット径と、 出力画像上のドッ 卜径との関係を説明する模式図である。
図 6は電子写真感光体の分光感度特性の測定結果の一例を表すグラフ あ る。
図 7は実施例 1で作成した電子写真感光体の表面層中における窒素原子濃 度と波長 4 0 5 n mの光に対する感度との相関を測定した結果を、表すグラフ である。
図 8 A及び 8 Bは本発明における、 光学的に連続した変化層を設けた場合の 分光反射スぺクトルの一例を示すグラフである。
図 9は本発明における、 実施 の分光反射スペクトルを示すグラフである。 図 1 0は本発明における、 実施例 3の表面領域層のデプスプロファイルであ る。 図 1 1は比較例 1の表面領域層のデプスプロファイルである。
図 1 2は本発明における、 実施例 4の表面領域層のデプスプロファイルであ る。
図 1 3は本発明における、 実施例 5の表面領域層のデプスプロファイル .あ る。
図 1 4は本発明における、 実施例 6の表面領域層のデプスプロファイルであ る。
図 1 5は本発明における、 実施例 7の表面領域層のデプスプロファイルであ る。
図 1 6は本発明における、 実施例 8の表面領域層のデプスプロファイルであ る。
図 1 7は本発明における、 実施例 9の表面領域層のデプスプロファイルであ る。
図 1 8は本発明における、 実施例 1 0の表面領域層のデプスプロファイルで る。
図 1 9は本発明における、 実; ^例 1 1の表面領域層のデプスプロファイルで る。
図 2 0は本発明における、 実施例 1 2の表面領域層のデプスプロファイルで る。
図 2 1は本発明における、 実施例 1 3の表面領域層のデプスプロ.ファイルで る。
図 2 2は本発明における、 表面領域層の極大値と極大値間距離の関係を説明 する模式図である。
図 2 3は本発明における、 表面領域層の極大値領域、 極大値および極大値間 距離の関係を説明する模式図である。
図 2 4は本発明の電子写真感光体の一例の表面領域層の厚さ方向における 周期表第 1 3族元素と窒素^子の含有率分布を示す図である。
図 2 5 Aは本発明の電子写真 光体の一例の表面領域層の厚さ方向におけ る窒素原子の含有率分布を示す図である。
図 2 5 Bは本発明の電子写真感光体の一例の表面鎮域層の厚さ方向に'おけ る窒素原子の含有率分布を示す図である。
図 2 5 Cは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る窒素原子の含有率分布を示す図である。
図 2 5 Dは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る窒素原子の含有率分布を示す図である。
図 2 5 Eは比較例の電子写真感光体の表面領域層の厚さ方向における窒素 原子の含有率分布を示す図である。
図 2 6 Aは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る周期表第 1 3族元素の含有率分布を示す図である。
図 2 6 Bは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る周期表第 1 3族元素の含有率分布を示す図である。
図 2 6 Cは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る周期表第 1 3族元素の含有率分布を示す図である。
図 2 6 Dは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る周期表第 1 3族元素の含有率分布を示す図である。
図 2 6 Eは本発明の電子写真感光体の一例の表面領域層の—厚さ.方向におけ る周期表第 1 3族元素の含有率分布を示す図である。
図 2 6 Fは比較例の電子写真感光体の表面領域層の厚さ方向における周期 表第 1 3族元素の含有率分布を示す図である。
図 2 7 Aは本発明の電子写真.感光体の一例の表面領域層の厚さ方向におけ る炭素原子の含有率分布を示す図である。
図 2 7 Bは本発明の電子写真感光体の一例の表面領域層の厚さ方向におけ る炭素原子の含有率分布を示す図である 9
図 2 7 Cは本発明の電子写真感 体の一例の表面領域層の厚さ方向におけ る炭素原子め含有率分布を示す図である。
図 2 7 Dは本発明の電子写真感光体の一例の表面領域層の厚さ方向に .け る炭素原子の含有率分布を示す図である。
図 2 8 Aは本発明の電子写真感光体の一例の分光反射スぺクトルを示す図 である。
図 2 8 Bは本発明の電子写真感光体の一例の分光反射スぺクトルを示す図 である。
図 2 8 Cは本発明の電子写真感光体の一例の分光反射スぺクトルを示す図 である。
図 2 8 Dは本発明の電子写真感光体の一例の分光反射スぺクトルを示す図 である。 発明を実施するための最良の形態
本発明者らは上記課題を達成すべく鋭意検討を行つた結果、 特定の条件で作 成した表面層を設けることで、 短波長の露光をほとんど吸収することなく、 且 つ解像力に優れ、 高精細で良好な電子写真特性を保つことが可能である事を見 出し、 本発明に至った。
本発明者らはまず特開平 8 — 1 7 1 2 2 0号公報などにあるような従来の 方法により、 表面層として好適な a— S i N : H系材料の薄膜を作成したが、 これらの方法で作成した膜は短波長の光、 例えば 4 0 0〜4 1 0 nmの光に対 する吸収係数が比較的大きく、 そのような表面層をもつ感光体では、 波長が 4
0 0〜4 .1 O nm付近の光に対しては感度が不十分となる場合がある.ことが わかった。 の後検討を重ねるうち、 限られた製造条件でしか、 短波長 (例え ば 4 0 5 n m) における吸収を抑えられないことが分かった。 具体的には、 原 料ガス種、 原料ガスの流量とそれらの比率、 投入電力とガス量に対する比など を適切に定める必要があり、 これらが特定の範囲に入った.とき、 初めて吸収の 少ない膜が得られる事が判った。 ここで、 吸収が少ない膜とは、 定量的に表す とすれば、 例えば 405 nmにおける吸収係数が 5000 cm— 1以下であるこ 'とが好ましく、 3000 cm—1以下であることがより好ましい。
ここで、 吸収係数 a (cm"1) は、 入射光の光量を TO、 透過光の光量を T、 膜厚を t (cm) としたとき、 (1) 式のように表すことが出来る。
=- (1 n (T/TO) ) /t · · (1)
このような条件で作成したシリコンを含む化合物からなる膜の最表面に露 出するシリコン原子は、 空気中で容易に酸化されるので、 シリコンの酸ィ匕膜が 形成されている。 更に、 大気中の元素を吸着している可能性があるので、 膜中 の窒素原子濃度は、 測定する前に、 およそ 10 nm、 好ましくは 20 nm程度 の厚さだけ、 膜の最表面の層を取り除き、 膜の最表面の影響を除去した後に行 なうことが好ましい。
膜の最表面の層は、 ESCA、 S IMS, RBSなどを用いて真空中で Ar 原子などを用いたスパッ夕を施す事によりの除去することで、 最表面の吸着原 子や自然酸化膜の影響を実質的に無くす事が可能である。
上記の方法で、膜の最表面の影響を無くした後、 XPS (X線光電子分光法)、
RBS (ラザフォード後方散乱分光法) 、 S IMS (二次イオン質量分析法) などを用いて窒素原子濃度め測定を行なった。
この結果、 波長 405 nmの場合、 実用膜厚 (およそ 0. 2 m〜2. 0 m) で、 吸収係数が 5000 cm- 1以下であれば吸収が許容でき、 この際の窒. 素原子濃度 (N/ (S i +N) ) の値は、 30 a tm%以上が好ましく、 35 a tm%以上であることがより圩ましいことがわかゥた。
また、 上限としては、 膜の歩留まりの関係から、 70 a tm%以下が好まし く、 60 a tm%以下であることがより好ましいことがわかった。 70 a t m%以下であれば、 膜厚、 硬度および抵抗などのムラが発生しにくく、 更に、 膜の強度が保て、 且つ、 安定して高歩留まりで製造できるのでが、.表面層とし て使用するに好ましい特性を備えるが、 7 0 a t m%を超えると、膜厚や硬度、 抵抗などのムラが発生しやすくなり、 歩留まりが大きく低下する場合がある。 原因は、 窒素が多くなりすぎると膜の結合が非常に不安定になるためではない かと予想される。
次に、 スポット径を絞った際の効果について図 5を用いて説明する。 図 5,で は、 横軸にレーザ一スポット径、 縦軸に潜像や画像上のドット径をとり、 様々 な電子写真プロセスで比較した場合を想定している。 具体的には、 6 5 5 n m のレーザ一光を用いた場合 (図 5の (1 ) に相当) と、 例えば 4 0 5 n mのレ 一ザ一光を用いた場合 (図 5の (2 ) 〜 (5 ) に相当) を考える。
図 5の (1 ) では、 例えば光学系の開口数などで何とか絞る事が可能でも、 ある程度限界があるのに対し、 図 5の (2 ) 〜 (5 ) では短波長露光を甩いて いるので、 更にスポット径を絞る事が可能である。'
一方、 露光波長の違いは、 光導電層における光吸収にも影響する。 即ち、 短 い露光波長では光導電層における光吸収が非常に薄い領域に限られる。 光生成 キャリアは、 表面電荷が形成する電界によって加速され、 膜の厚さ方向に移動 する。 そして、 表面電荷と逆極性のキャリアが表面に移動し、 電荷をキャンセ ルすることで、 静電潜像が形成される。 しかし、 キャリア移動の際に、 キヤリ ァ同士の静電的な反発力によって、 膜の面方向 (厚さ方向に垂直な.方向) にも 移動する可能性があり、 潜像のぼけにつながる場合がある。 従って、 露光パタ —ンにより忠実な静電潜像パターンを形成するためには、 光生成キャリアが表 面電荷をキャンセルするために移動する距離を短くした方が好ましく、 即ち、 光キャリアの生成領域は、 表面に近い方が好ましい。
従来の 6 0 0〜 8 0.0 nmの露光では、 a— S i感光体の光学特性から光導 電層の上部数 m〜十数; mまで光が到達してキャリア生成が起こる。 一方、 例えば 4 0 5 nmの露光では、 光導電層最上部の極めて薄い範囲で光吸収が終 了し、 光生成キャリアが上部に到達するまでに広がる余地が殆どないため、 更 に高解像が期待できることとなる。 このことから、 仮に同 スポット径 (図 5 のィに相当) でも、 解像力に差がでることが期待される。
S i N系の表面領域層を用いた場合、 従来の S i C系の表面領域層を用いた 電子写真感光体に比べて、 4 0 5 nmにおける吸収係数が 5 0 0 0 c m 以下 であっても、 表面領域層起因の残留電位が大きくなることがあつた。
そのような場合には、 ドット再現性や細線再現性といった解像度が、 6 6 0 nmから 4 0 5 n mに露光レ一ザ一を変更しても、 向上しないことがわかった。 そこで本発明者らは、 帯電能や残留電位、 感度、 解像度といった特性に着目 しながら表面領域層の最適化を狙って作成条件の様々な見直しを行った。
その結果、 微量の炭素原子を添加することで、 表面領域層起因の残留電位を 低減でき、 短波長露光の効果が得られて解像度の向上が可能であることがわか つ 。
また、 十分な帯電能を維持するために、 周期表 1 3族元素を表面領域層に含 有させる必要があるが、 その場合に少なくとも極大値を 2個有するように含有 させることが効果的であることがわかった。
この理由としてはまだ分かっていないが、 炭素原子を微量添加することによ り、 応力の大きな a— S i N系の膜において結合 緩和が起こり、 結果として 欠陥が減少したと考えられる。 前述したように窒素濃度が高くなるように作成 した a— S i N系の膜は吸収係数が小さいので、 短波長光を吸収しない表面層 として使用するには好適であるが、 膜中の応力も大きくなる場合があり膜の結 合が不安定になり特性ムラが生じることがあつた。 本発明の電子写真感光体に おいては、. 表面層がアモルファス状態であるので、 結晶状態とはやや異なるの であるが、 S i— S iの原子間隔はおよそ 0 . 2 4 n m、 S i Cの原子間隔は およそ 1 9 n mであることが知られている。 これに対して N— Nの原芋間隔はおよそ 0 . 1 1 n mであることから、 窒素 原子濃度が増えていくと、 原子間 Ρίの小さい N— Nの結合が増えるために、 膜 中に歪が生じて特性ムラになるのではないかと考えられる。.
これに対して、 C— Cの原子間隔はおよそ 0 . 1 5 ftmであることから、 S i原子と窒素原子とを母体とするアモルファス状態の窒化シリコン膜に炭素 原子を微量含ませることで、 膜中の歪が緩和されるものと考える。
炭素原子の量が少ないと、 アモルファス状態の窒化シリコン膜中の歪が緩和 されないので、 残留電位の低下は見られない。 また量が多くなつてくると、 S i— C結合の増加により、 電位ムラの感度のムラが大きくなる傾向が見られる と共に、 やや短波長光の透過性が低下してくる。
十分な 電能を得るためには、 表面から電子が層中に流れ込むことを阻止す る必要がある。 その機能を十分に発揮するためには、 膜中に炭素原子を、 5 X 1 0 18個 Z c m3以上含有させる必要があるが、 表面領域層全体に均一に含有さ せた場合には、 表面領域層の正孔にたいする抵抗が下がりドット再現性や細線 再現性が低下する場合があった。
帯電能、 度等、 電子写真感光体の良好な電気特性を得るために、 周期表 1 3族元素を表面領域層に含有させることが必要であるが、 その場合に、 表面領 域層全体に均一にいれるのではなく、 膜の厚さ方向で極大値を少なくとも 2つ 持つた分布にすることが重要であることがわかつた。
また、 均一に含有させた場合だけでなく、 膜の厚さ方向で極大値,を少なくと も 2つ持つ場合でも、 ドッ卜再現性や細線再現性の低下は、 極大値が最表面側 から、 およそ 1 0 O nm以内という比較的最表面に近いところに位置する場合 や、 極大値の間隔が 1 0 0 n m未満と近接した場合に見られることがあった。 これは、.露光により生じたフォ卜キャリアの、内、 正孔が、 帯電電荷の電子と 結合するために最表面側にむかって移動するが、 その時、 周期表 1 3族元素を 多く含有し正孔にたいする抵抗が下がっている部分が、 キヤリァ移動方向で長 くなるほど、 面内方向への広がりが増すためである。 また、 比較的最表面に近' いところに極大値をもつように含有させた場合も同様で、 フォトキャリアを発 生する部分から、 表面からの電子を阻止する極大値の部分までが長くなるため に、 面内方向への広がりが大きくなつていると考えている。 ·
さらに、 本発明者らは、 画像品質に着目して、 表面層の作成条件の様々な見' 直しを行ったところ、 微量の酸素原子を添加することにより、 吸収係数を小さ.、 く抑えながら画像品質をより向上させることが可能である事がわかつた。
これは、 高解像度デジタ フル力ラーで用いられる小粒径トナ一の転写残や、 クリ一ニング残が減少したために画像品質が向上したと考える。 また、 ドット 再現性や細線再現性といった解像度の低下は見られず、 作成条件によってはわ ずかながら解像度の向上も確認できた。
この理由としてはまだ分かっていないが、 酸素原子を微量添加することによ り、 炭素原子だけを添加したときよりも、 応力の大きな a— S i N系の膜にお いて結合の緩和が起こり、 結果として欠陥が減少したと考えられる。 前述した ように窒素濃度の高い a— S i N系の膜は吸収係数が小さく硬度も非常に大 きいので、 表面層として使用するには好適であるが、 硬度が矢きいと膜中の応 力も大きくなる場合があり、 非常に大きな残留応力が膜中に残ってしまう場合 がある。 このような場合には応力による歪を緩和するために結合が切れたりし て、 膜堆積後 ίこ欠陥が生成されることが考えられる。 炭素と異なり、 酸素は結 合手の数が 2本であることから、 原子間に効果的に入る事で結合の.ひずみを緩 和する!!きが予想でき、 欠陥生成を効果的に防止できるのではないかと考えて いる。
一方、 水素終端などは膜形成中に欠陥を修復する効果はあるものの、 無理な 結合や弱.い結合が膜堆積後に欠.陥に変わって、しまうような場合には効力がな レ^ よって; 微量酸素によって結合の緩和が起こり、 水素による欠陥修復と並 行して、 これまで成膜後に生成されていた欠陥を効果的に低減させた事により、 総合的に欠陥低減が実現できたのではないかと考えている。 このように、 低欠 陥化が実現すると、 膜中にある浅い卜ラップが減り、 例えば帯電後にトラップ に束縛されたキャリアが、 現像までの間に再励起して出てくることがなくなる。 本来、 このような浅い卜ラップから出てくるキヤリ.ァは、 潜像形成によって生 じた電位差を埋めるようにドリフトすると考えられるので、 璋像をなまらせた り、 潜像の深さを浅くしたりしてしまうと考えられる。 よって、 トラップの低 減が図れれば、 潜像をなまらせる原因が減り、 解像度が高まると考えている。 以上のことにより、酸素を適量導入する事で、解像度が高まったと考えている。 また、 a _ S i N膜は、 作成条件により比較的柱状構造を示しやすい。 柱状 構造が多い状態では、 表面に現れる構造境界が多いと考えられ、 そのような状 態では転写残ゃクリ一ニング残が生じやすかつた。
このような柱状構造の低減に対して、 炭素原子を均一に含有させるよりも、 局所的に極大値を有する分布を持たせることが好ましいことが分かった。
微量の炭素及び酸素の添加により、 転写残やクリーニング残が減少したのは、 上記のように低欠陥化がすすみ、 柱状構造が低減したために、 表面に現れる構 造境界が減少したと考えている。
また、 酸素の量が少ない場合には価電子制御性の不純物と同様の作用が発生 すると思われ、 バンド構造の不整合を修正する働きがあると考えている。 この ようなバンドの不整合は、 キャリアの蓄積や横流れを生じる原因となる恐れが あり、,結果として解像力.も低下させる可能性がある。 よって、 バン.ド構造の整 合性向上は望ましい。
このように、 酸素原子を適度に添加させることでこれらの添加効果が効果的 に得られることが判った。 一方、 添加量が増加すると、 添加物的な役割から構 造材的な役割に変化する事があり、 S i O構造や S i NO構造となり、'膜の硬 度が下がったり、 抵抗値が上昇して残留電位が増大したり、 親水性の S i〇結 合が増加する事により高温高湿下で画像がボケたりする現象が発生する場合 があることが判った。
さらに、 本発明者らは酸素の添加に関して検討を重ねたところ、 腠中で極大 値を持つように含有させる方が、 上記のような硬度低下や ¾留電位増大といつ た弊害が全く見られず、 転写残やクリーニング残の減少に効果的で、 かつ解 度向上が得られる事が判った。 また、 このように膜中で極大値を持たせるよう に添加する元素としては、フッ素も同様の効果が得られ,る事が判った。加えて、 酸素とフッ素が共に極大値を持つように添加すると、 更に好ましい事がわかつ た。
このように酸素及び Zまたはフッ素を一部領域に比較的高濃度に添加する ことにより、 均一に添加した場合よりも、 応力の大きな a— S i Nなどの膜に おいては、 応力を効果的に緩和する局所的な領域が出来る事で、 結果として腠 全体の応力緩和が効率的に進むと考えられる。
前述したように、 酸素は結合手の数が 2本であることから、 a— S i N系の 膜中で結合のひずみを緩和.する働きが予想できる。 また、 -13, フッ素ほ欠陥 を終端することで、 膜形成中に欠陥を修復する効果に加え、 水素原子に比べて 原子半径が大きいために応力集中を緩和でき、 無理な結合や弱い結合が膜堆積 後に欠陥に変わってしまうような状況を防止できたと思われる。
前述したとおり、 酸素が高濃度で入ると膜の硬度が落ちたり、 膜の抵抗値が 上がり過ぎて残留電位が増えたり、 親水性の膜になって感光体を高湿下で使い にくくなる傾向がある。
しかし、 酸素を極大値を持つ分布とすることで、 部分的には比較的高濃度に した場合でも、 上記のような弊害が発現しない。 これは、 局所的には高濃度で あるが、 構造体として特性を発現するような層領域とはならないためと考える。 またフッ素は終端元素であり、 効果的に終端する.ことでネットヮ一クの自由 度は上がる方向になる ώ しかし終端元素を増やしすぎるとやはり膜の硬度が下 がったり、 吸収が大きくなつたりして好ましくない場合が生ずる事がある。 し かしフッ素の場合も高濃度の極大値を持つ分布とすることで、 上記のような硬 度や吸収の問題を回避できることが分かった。 これは酸素の場合と同様に比較 的高濃度の領域を作る事で、 その領域で集中的に応力緩和 行えるためと考え られる。 また、 フッ素は水素に比べて原子半径がやや大きいので、 フ :ッ素が 端原子として終端することでネットヮ一クの構造が水素終 ¾している領域と は異なる (結合距離が増えたりする) 状況が作れ、 このような膜構造の違いが 応力緩和に更に役立っていると考えている。 この場合、 例えば塩素原子では原 子半径が大きくなりすぎ、 逆に結合の歪みを大きくする場合がある。 以上の点 から、 フッ素原子の濃度分布がピークを持つように含有させたことで、 解像力 を向上させることが出来たと考えられる。
特に、 酸素原子とフッ素原子とが各々極大値を持つように含有させた場合に は、 これら単独で得られる効果に加え、 更に光メモリの低減が顕著に得られる ことが判った。 この理由も明らかではないが、 酸素による結合の緩和に加え、 終端原子としてのフッ素が有効に働いて膜堆積中の欠陥生成抑制と膜堆積後 に生成される欠陥防止の両方が高水準で実現される事で、 解像力の向上は勿論、 局在準位密度の吏なる低減により、 光メモリ低減も同時に実現できたのではな いかと想像している。
ここで、 酸素原子、 フッ素原子の極大値における最大含有量をそれぞれ Om a x、 Fm a x、 表面領域層における最小含有量を Om i n、 Fm i nとした とき、 最小含有量に対する最大含有量の比率が、 2≤〇m a xZO.m i n、 2 ≤Fm a x/Fm i nの関係を満たすよ に制御する事が好ましく、 5≤Om a x/Om i n、 5≤Fm a x/Fm i nとすることがより好ましい。 この範 囲とすることで、 解像力の改善がより顕著に得られるため、 好ましい。
また、 酸素原子、 フッ素原子 ピークの幅としては、 含有量極大値の半値幅 として、 それぞれ 1 O nm以上 2 0 0 nm以下に制御する事が好ましい。 極大 値の半値幅を 1 O n m以上とすることで、 極大値の形成による膜特性への影響、 即ち応力緩和による欠陥低 が効果的に及ぼされる。 また、 ピ一クの半値幅を
20 Onm以下とすることで、 極 値近傍領域の膜質を阻害することなく、 解 像力等を更に向上させることが可能になったものと考えられる。
さらに本発明者らは、 本発明の表面側層領域を積層させる条件についても検 討を行ったところ、 画像品質の向上及び安定性のためには、 波長 350 nmか ら 680 nmの範囲の反射率 (%) の最小値 (M i n) と最大値 (Max) が 0 %≤Ma X (%) ≤20%かっ0≤ (Ma x-M i n) / (100— Max) ≤0. 15を満たすように、 感光層と表面側層領域との間を光学的に連続にな るように、 積層することが好ましいことが分かった。
次に、 本発明の実施の形態について図面を用いて詳細に説明する。
図 1 A〜 1 Dは本発明における電子写真感光体の層構成の一例について示 した模式図である。
図 1 Aに示す電子写真感光体 100は、 導電性基体 101の上に下部注入阻 止層 105、 光導電層 10.3および表面領域層 104がこの順に形成されてい る。
導電性基体 101上に形成された下部注入阻止層 105、 光導電層 103お よび表面領域層 104を感光層 102と称する。
尚、 図 1 B〜1Dにおいても、 導電性基体 101上に形成された層全体を感 光層 02と称している。
下部注入阻止層 105は、 必須ではないが、 導電性基体側からの «荷 注入 を阻止するために設けられていることが好ましいために、 図 1 A〜l C全てに 設けられている。 また図 1Dに示す電子写真感光体にも設けても良い。
図 1 Bに示す電子写真感光体 100の感光層 102は、 図 1 Aと同様に、 導 電性基体 101上に下部注入阻 層 105、 光導電層 103および 面領域層 104 aがこの順に形成されている。 図 1 B'の表面領域層 104 aは、 光導電 層 103側から順に、 上部注入阻止層 106および表面層 107が形成されて いる。 上部注入阻止層 1 06は、 上部からの電荷の注入を低 し、 畨電性'を向 上させる目的で設けられた層で、 この構成は負番電用電子写真感光体に特に好 適である。
図 1 Cに示す電子写真感光体 1 00の感光層 1 0 2は、 図 1.Aと同様に、 導 電性基体 1 0 1上に下部注入阻止層 105、 光導電層 1 0 3および表面領域層 1 04 bがこの順に形成されている。 図 1 Cの表面領域層 1 04 bは、 光導電 層 1 03側から順に、 変化層 1 0 8および表面層 1 07が形成されている。 変 化層 1 08は、 表面領域層 1 04が光導電層 1 0 3との間で、 屈折率の変ィ匕が 連続的になるように設けられた層である。 変化層 1 08は、 上部注入阻止層 1 0 6の機能を持った層とすることが好ましい。
図 1 Cに示すように、 表面層 1 07の屈折率と光導電層 1 03の屈折率とを 変化層 1 08を介してなだらかに接続する事により、 層界面における光の反射 が抑えられ、 可干渉光を露光に用いた場合の表面での干渉を防ぐ事が出来る。 また、 変化層 108に上部注入阻止層の機能を持たせると、 光導電層 1 0 3 と表面層 1 0 7の間で組成変化をなだらかに行う事で屈折率の差に起因する 層界面を無くすと共に上部からの電荷の注入を低減し、 帯電性を向上する事が 出来る
図 1 Dに示す電子写真感光体は、 導電性基体 1 0 1の上に光導電層 1 0 3、 第 1の上部注入阻止層 (TBL— 1) 1 06 aと中間層 1 09と第 2の上部注 入阻止層 (TBL— 2) 1 0 6 bと表面保護層 (SL) 1 10から.なる表面領 域層 104 cがこの順に形成されている。
図 1 Bのように表面層 1 0 7と光導電層 1 0 3との間に上部注入阻止層 1 0 6を設ける場合、 上部注入阻止層 106と光導電層 1 03との屈折率差が大 きい場合には、 上部注入阻止層 1 06と光導電層 1 03との間に屈折率のなだ らかに変化する変化領 ¾を設けても良い。
次に、 前述した本発明における各層について詳細に説明する。 ぐ表面領域層 >
表面領域層 1 0 4〜 1 0 4 cは、 主に短波長光透過性、 .高解像度、 連続繰り 返し使用耐性、 耐湿性、 使用環境耐 、 良好な電気特性な に関して良好な特 性を得るために設けられている。
負帯電用電子写真感光体の場合は、 表面領域層に上部注入 止機能を設け帯 ' 電保持層としての役割を持つものであるが、 後述する上部注入阻止層を設けて 帯電保持の機能を持たせる事も有効である。
本発明における表面領域層の材質は、 シリコン原子と窒素原子を母体とし周 期表 1 3族元素と炭素原子とを含有した非単結晶材料からなる。 また、 水素原 子、 酸素原子及び Zまたはフッ素原子を膜中に適宜含んでいることが好ましい。 表面領域層は、 表面層 1 0 7と変化層 1 0 8を有しているが、 上部注入阻止 層 1 0 6を変化層の変わりに設けるあるいは表面層と変化層の間に設けるこ とも有効である。
このような a— S i N系材料よりなる表面領域層を、 例えば、 グロ 放電法 によって形成するには、 基本的にはシリコン原子 (S i ) を供給し得る S i供 給用の原料ガスと、 窒素原子 (N) を供給し得る N供給用の原料ガスと、 炭素 原子 (C) を供給し得る C供給用の原料ガスと、 周期表 1 3族元素の原子を供 給し得る原料ガスとを、 内部を減圧し得る反応容器内に所望の比率で導入し、 反応容器内にグロ一放電を生起させ、 あらかじめ所定の位置に設置された光導 電層などを形成した基体上に a _ S i N系材料からなる層を形成すればよい。 このとき、 表面領域層に含まれる窒素量は、 前述したようにシリコン原子と 窒素原子の和に対して 3 0 a t m%から 7 0 a t m%の範囲が好ましい。 また、 炭素原子の含有量に関しては、 2 . 0 X 1 0 17個 Z c m3以上 5 . 0 X 1 0 2°個 c m3以下の範囲が好ましい。
本発明の表面領域層は、 周期表 1 3族元素の含有率が膜の厚さ方向で極大値 を少なくとも 2つ持った分布になるようにする必要がある。 その時、 帯電能な. どの電気特性や、 ドット再瑱性など解像度の向上のためには、' 周期表 1 3族元 素の含有率の隣接する 2つの極大磕間距離が、 膜の厚さ方向で 1 0 0 nm以上 1 0 0 O nm以下の範囲と'なるようにすることが好ましい。,
また、帯電能などの電気特性や、 ドット再現性など解像度の向上のため ίこ 、 周期表 1 3族元素の最も光導電層側に位置する極大値が、 5 . 0 X 1 0 18個/ c m3以上でありの隣接する 2つの極大値の間に存在する周期表 1 3族元素の 最小値が、 2 . 5 X 1 0 18個/ c m3以下となるように分布させることも好まし い。
図 4は、 表面領域層の各元素の模式的濃度プロファイルである。
図 4に示すように、 表面領域層でのボロン (周期表 1 3族原子) 、 炭素、 フ ッ素および酸素原子は、 最表面側にボロン (周期表 1 3族原子) 、 炭素、 フッ 素および酸素原子の極大値が、 更に深い、 光導電層側に近い位置にボロンの極 大値が形成されている。 ゥまり、 炭素、 フッ素および酸素原子の極大値は 1ケ 所で観測され、 ポ ψンの極大値は 2ケ所で観測されている。
ここ^、 図 2 2および図 2 3を用いて本発明の極大値について説明する。 本発明で、 周期表 1 3族元素や炭素原子の含有量の分布は、 図 2 2に示され るように、 極大値が頂部に存在する、 一定領域を持たない形状を示すこと 好 ましいが、 図 2 3に示すように一定の幅を持った一定領域に存在する場合も最 表面側の元素の含有率が隣接する一定領域の元素の含有率よりも大きい場合 には有効である。 この一定領域のこと極大領域という。 、
一定領域を持たない形状の場合、 極大値は、 頂部の原子の含有率で表され、 極大領域の場合、 極大値は、 極大領域の厚さ方向の 1 2の位置 (中間点) で の原子の含有率で表す
一定領塽を持たない形状の場合、 極大値間の距離は頂部の間隔の距離で表さ れ、 極大領域を有する場合極大値間の距離は 2つの中間点の間の距離で表す。 なお、 1つの一定領域を持たない形状と 1つの極大領域とを有する場合、 極 大値間の距離は、 各々の領¾の極大値の間の距離で表される。
また、 本発明において、 酸素原子およびダまたはフッ素原子の含有量の分布 も、 一定領域を持たない形状を示すことが好ましい。
a— S i Nなどの材料で構成された応力の大きい膜は、 極大値に頂部が存在 する、 一定領域を持たない形状であるほうが、 極大領域を持つ形状よりも応力 を効果的に緩和する局所的な領域が出来るので、 結果として膜全体の応力緩和 が効率的に進むと考えられる。 更に、 一定領域を持たない形状の方が、 像露光 時のフォ卜キャリアの移動の際、 ドット再現性や細線再現性を低下させるキヤ リアの拡がりやすい領域が局所的に設けられ、 キャリアの拡がりを小さく押さ えられると考える。
表面領域層における周期表第 1 3族元素および窒素原子の含有率の厚さ方 向における極大値の数は、それぞれ少なくとも 2つ以上であればよく、例えば、 各 2つ、 各 3つ、 あるいは一方が 2つ他方が 3つ若しくは 4つなど、 異なる数 であってもよい。 これらの極大値は表面領域層の厚さ方向におけるいずれに位 置していてもよく、 例えば、 図 2 4の周期表第 1 3族元素および窒素原子の含 有量を表すグラフに示すように、 それぞれの原子の極大値が厚さ方向において、 同じ位置に存在してもよいが、 窒素原子、 周期表第 1 3族元素の含有量の さ 方向における極大値が、 交互に位置することが好ましい。 この場合光導電層側 に周期表第 1 3族元素の含有率の極大値を有すると、 感光体の帯電能を向上さ せることができ好ましく、 自由表面側に窒素原子の含有率の極大値.を有すると、 感光体の耐傷性、 耐磨耗性の点から特に好ましい。 このような極大値を有する 表面領域層としては、 厚さ方向において周期表第 1 3族元素の含有率の極大値 を 1つずつ有する 2以上の上部注入阻止層と、 厚さ方向において窒素原子の含 有率の極大値を 1つずつ有する 1または 2以上の中間層とが光導電層上に交 互に設けられ; 自由表面を有する最外層として、 厚さ方向において窒素原子の 含有率の極大値を 1つ有する表面保護層が設けられた層構成とすることがで きる。 そのような層構成と υては、 光導電層 1 0 3の上に、 第 ίの上部注入阻 止層、 中間層、 第 2の上部注入阻止層、 表面層 1 0 7の 4層をこの順に設けた ものを例示することができる。
ここで、 表面領域層における窒素原子、 周期表第 1 3族元素、 及び 炭素原 子の極大値について説明する。 表面領域層において、 窒素原子の含有率の厚さ 方向における極大値は、 図 2 5 Α、 図 2 5 C、 図 2 5 Dに示す中間層中の極大 値のように、 ピーク形状でもよく、 図 2 5 Bに示す中間層や図 2 5 A〜2 5 D に示す表面層 (S L) 中の極大値のように、 厚さ方向の一定長において一定の 値 (極大領域と呼ぶ) を持つ形状でもよい。 このような極大領域を持つ場合、 極大値は、 極大領域の厚さ方向の 1 Z 2の位置 (中間点) における原子の含有 率で表し、 極大値と極大値間の最小値との間の距離は、 中間点を起点とする鉅 離で表す。 かかる窒素原子の極大値における窒素原子の含有量は、 N/ ( S i + N) = 3 0 a t m%以上で、 かつ窒素原子の含有率の極大値と含有率の最小 値 (上部注入阻止層に存在) との比 (極大値/最小値)が、 1 . 1' 0であること が感度や、 耐摩耗性や耐傷性を向上させる上で好ましい。 このような窒素原子 含有率の厚さ方向における隣接する極大値のうち光導電層側の極大値と極大 値間の最小値との間の距離は、 帯電能向上および短波長光に対する感度の卓か ら 4 O nm以上 3 0 0 nm以下にすることがより好ましい。 かかる窒素原子の 含有率の極大値と最小値間の距離は上部注入阻止層の厚さを変化させること により調整することができる。
また、 表面領域層において、 周期表第 1 3族元素の含有率の厚さ方向におけ る極大値は、 図 2 6 A及び図 2 6 C〜 2 6 Eに示すように、 ピーク形状でもよ く、図 2 6 Bに示すように、厚さ方向の一定長において一定の値を持つ形状(極 大領域と呼ぶ) でもよい。
このような極大領域を持つ場合、 極大値としては、 極大領域の厚さ方向の 1 Z 2の位置 (中間点) における原子の含有率で表し、 極大値間距離は、 中間点を 起点とする距離で表す。.な: έ、 表面領域層において 1つの極大値と 1つの極大 領域を有する場合には、 極大領域の中間点の位置と極大値との距離を極大値間 距離とする。 このような周期表第 1 3族元素の含有率の極大値または極大領域 のうち、 最も光導電層側に位置する極大値または極大領域が 番大きい と (図 2 6 Ε) が好ましい。 具体的には、 最も光導電層側に位置する極大値にお ける周期表第 1 3族元素の含有量が 5. 0 X 1 0 18個/ c m3以上であることが 好ましく、 隣接する 2つの極大値間に存在する周期表第 1 3族元奉の含有率の 最小値における周期表第 1 3族元素の含有量が、 2 . 5 X 1 0 18個/ c m3以下で あることが感度および帯電能、 解像度という観点で好ましい。 ここで、 「最小 値」 とは極大値間に存在する周期表第 1 3族元素含有率のうち最も小さい値を 表し、 例えば、 極大値が 3つ以上存在する場合、 極大値間に存在する 2つ以上 の周期表第 1 3族元素含有率の極小値のうち最も小さいものを表す。 中間層と 表面層における周期表第 1 3族元素の含有率に関しては、 図 2 6 A〜2 6 E中 では、 極小値をべ一ス値で表したが、 これらの層中に周期表第 1 3族元素を含 有させない場合においては、 ベース値は、 含有率分析手段での検出限界値を表 す。 表面領域層における周期表第 1 3族元素含有率の厚さ方向における隣接す る極大値間の距離は、 ドット再現性や細線再現性の点から lOO n m以上 1000 η m以下にすることが好ましい。 かかる周期表第 1 3族元素の含有率の極大値間 距離は中間層の厚さを変化させることにより調整することができる。
このような表面領域層における上記周期表第 1 3族元素の含有 の極大値 と窒素原子の含有率の極大値は、 厚さ方向において交互に存在していること、 及び光導電層から自由表面へ向かって、 周期表第 1 3族元素の含有率の極大値 と窒素原子の含有率の極大値の順に存在していることが感光体の耐傷性、 耐磨 耗性の点から好ましい。
また、 表面領域層において、 炭素原子の含有率は、 図 2 7 A〜2 7 Dに示す ように極大値を持つことが好ましい。 炭素原子の含有率の厚さ方向における極 大値は、 中間層、 上部注入且止層、 表面層のいずれに存在してもよく、 その分 布の形状としては、 図 2 7 B、 図 2 7 Cに示すように、 ピ^ "ク形状でもよく、 図 2 7 Aに示すように、 厚さ方向の一定長において一定の値を持つ形状 (極大 領域と呼ぶ) でもよい。 このような極大領域を持つ場合、 極大値は、 極大領域 の厚さ方向の 1 Z 2の位置 (中間点) における原子の含有率で表す。 また、 表 面領域層における炭素原子の含有率に関しては、 図 2 7 A〜2 7 D中では、 極 小値をベース値で表したが、 表面領域層の全域に亘つて炭素原子を含有させる 必要はなく、 炭素原子を含有しない層領域が存在してもよい。 そのような場合 においては、 かかるベース値は、 含有率分析手段での検出限界値を表す。
また、 表面領域層中に水素原子が含有されることが好ましい。 水素原子はシ リコン原子の未結合手を補償し、 層品質の向上、 特に光導電性特性および電椅 保持特性を向上させる。 水素含有量は、 構成原子の総量に対して通常の場合、 膜中の平均値として 5〜7 0 a t m%であることが好ましく、 8〜6 0 a t m%であることがより好ましく、 1 0〜5 0 a t m%であることが更に好まし い。
表面領域層の形成において使用されるシリコン (S i ) 供給用ガスとなり得 る物質としては、 S i H4、 S i 2H6、 S i 3H8、 S i 4Η等のガス状物、.まこは ガス化し得る水素化ケィ素 (シラン類) が有効に使用されるものとして挙げら れ、 更に層作製時の取り扱い易さ、 S i供給効率の良さ等の点で S i H4、 S i 2H6が好ましいものとして挙げられる。 また、 これらの S i供給 の原料ガ スを必要に応じて H2、 H e、 A r、 N e等のガスにより希釈して使用してもよ い。
窒素供給用ガスとなり得る物質としては、 N2、 NH3、 N O、 N20、 N02、 等のガス状物、 またはガス化し得る化合物が有効に使用されるものとして挙げ られる。 炭素供給用ガスとなり得る物質としては、 C H4、 C2H2、 C F4、 C2 F6、 C〇、 C 02、 等のガス状物、 またはガス化し得る化合物が有効に使用さ れるものとして挙げられる。
中でも、 窒素供給用ガスとして 窒素が最も良好な特性が得られるため好ま しい。炭素供給用ガスとしては同様に (3114が好ましい。 また、酸素供給用ガス + としては同様に N.Oが好ましい。
また、これらの窒素、炭素、酸素供給用の原料ガスを必要に応じて H2、 He、 Ar、 Ne等のガスにより希釈して使用してもよい。 特に酸素を微量添加する 場合、 例えば NOガスを Heガスで予め希釈して供給する事で、 流量の正確な 制御が可能となる。
また、 酸素供給用ガスとなり得る物貧としては 02、 CO、 C02、 NO、 N2 0、 N02等のガス状物、 またはガス化し得る化合物が有効に使用されるものと ■ して挙げられる。
酸素供給用ガスとしては最も良好な特性が得られる N Oが好ましい。
フッ素原子供給のために、 フッ素ガス (F2) 、 B r F、 C 1 F、 C 1 F3、 B rF3、 B r F5、 I F3、 I F7等のハロゲン間化合物や、 S i F4、 S .i2F6等 のフッ化ケィ素を導入してもよい。
周期表第 13族原子導入用の原料物質としては具体的には、 ホウ素原子導入 用としては、 B2H6、 B4H,。ゝ B5H9、 B5H,い B6H,。、 B6HI2、 B6H14等 φ水 素化ホウ素、 BF3、 BC 13、 BB r 3等のハロゲン化ホウ素等の他、 A 1 C 13、 GaC l3、 Ga (CH3) 3、 I n C 13、 T 1 C 13等を挙げることができる。 表面領域層 104を形成するには、 反応容器のガス圧、 放電電力.、 ならびに 基体の温度を適宜設定することが必要である。 基体温度は、 層設計に従って最 適範囲が適宜選択されるが、 通常の場合、 150 以上 350で以下であるこ とが好ましく、 180 以上 33 O 以下であることがより好ましく、 20 0で以上.300 以下であることが更に好ましい。 ·
反応容器内の圧力も同様に層設計にしたがって最適範囲が適宜選択される が、 通常の場合 1 X 10— 2P a以上 1 X 103P a以下であることが好ましく、 5 X 10—2P a以上 5 X 102P a以下であることがより好ましく、 1 X I Ό一1 P a以上 1 X 102P a以下であることが更に好ましい。 .
本発明においては、 表面領域層を形成するための導電性基体の温度、 ガス圧 の好ましい数値範囲として前記した範囲が挙げられるが、 条件は通常は雜立的 に別々に決められるものではなく、 所望の特性を有する感光体を形成すべく相 互的且つ有機的関連性に基づいて最適値を決めるのが好ましい。
また、 例えば RF帯の高周波を用いたグロ一放電法にて表面領域層を作成す る場合には、 放電電力としては 10W〜5000W、 力ソード電極面積 (c m2) あたりに換算すると 2mWZcm2から 1. 4 WZ c m2程度の範囲が好適 である。 中でも、 前述した窒素範囲を実現する事で透過率の良好な a— S i N 系の膜を得るためには、.シリコン含有ガスの流量 FSi (単位: mL/mi n (n o rma 1) ) 、 窒素含有ガスの流量 FN (単位: mLZmi n (no rma 1) ) および放電電力 W (単位: W) を適切な関係にする必要がある。 即ち、 単位ガス.量あたりの電力、 特にシリコン原子含有ガスの単位ガズ量に対する電 力 (WZFS i) と、 窒素含有ガスとシリコン含有ガスのガス濃度比 (FNZ FS i) との積である W' FN/FS i2が 5 OW'm i n/mL (no rma 1 )以上 30 OW'mi n/mL (no rma 1 )以下であることが好ましく、 8 OW · m i n/mL (no rma l) 以上 20 OW · m i n/mL (no r ma 1) 以下とすることがより好ましいことが分かった。
上記の構成の表面領域層で上記の製造条件で製造することで、' 波長の光を 効率よく透過できる、表面領域層に好適な膜が作成できる。この表面領域層は、 膜の光学的パンドギャップが 2. 8 eV以上程度となり、 吸収係数も 5000 cm—1以下とすることが出来る。 この電力と流量比の積が 5 OW- mi n/m L (no rma l) より小さくなると、 吸収が大きくなり短波長が透過しにく くなる。また、'この値が 30 OW-m i n/mL (no rma 1)を超えると、 膜の硬度が小さくなる傾向にある。 .この理由としては膜作成中にプラズマから のダメージが導入されるためと考えている。
上記の製造条件の範囲が好適な a由は明らかではないが > 次のように考えて いる。 所望の膜を得るためには、 プラズマ中に存在する原料物質のラジカルが 適切なバランスをとっている必要がある。 原料ガスが分解された際のラジカル の濃度は、 複数の原料ガスを使用する場合、 原料ガス濃度比と電力によって決 まると考えられるが、 ガス種によって分解効率に差があるため、 電力値とガス 流量比を逾切な範囲にしないと、 ラジカルの濃度が適切な範囲にならないと考 えている。
さらに本発明においては、 表面領域磨中に、 周期表 13族元素の含有量が極 大値を持つように制御することが好ましい。 更に、 炭素原子、 酸素原子および フッ素原子の含有量も極大値を持つように制御することがより好ましい。 極大値を形成するには、 表面領域層を形成している途中で、 周期表 13族元 素供給用ガス、 炭素原子、 酸素原子およびフッ素原子を供給する原料ガスを制 御することで達成することができる。 極大値を形成するための原料ガスの制御 には、 例えば、 ガス濃度またはガス流量や高周波電力や基体温度といった堆積 膜形成条件を適宜制御することをも含む。
酸素原子、 フッ素原子の最大含有量をそれぞれ Om a x、 Fmax、 酸率原 子及びフッ素原子の表面領域層全体の最小含有量を Om i n、 Fm i nとした ときに、 最小含有量に Omi n、 Fmi n対する最大含有量 Omax、 Fma xの比率が、 各々 2≤Oma xZOm i n、 2≤Fma xZFm i nの関係を 満たすことが好ましい。 ここで定義した最小含有量とは、 任意に挿入される変 化領域 107などを含まない考面領域層での最小含有量の値を指す。 図 4にお いては、 グラフの右端が表面領域層の堆積開始部分に相当し、 この領域での値 が〇mi n、 Fm i nに相当する。
表面領域層中の酸素原子の含有量は、 O/ (S i +N + O) という形式で表 した場合、 膜中の平均濃度が 0. O l a tm%以上 20 a tm%以下、 好まし ' くは 0. 1 a tm%以上 10 a tm%以下、 最適には 0. 5 a tm% 8'a tm%以下であることが好ましい。 このような範囲で含有量を調整するために
' は、 例えば NOのような酸素原子含有ガスを Heなどのガスで希釈したものを、 マスフ口一コントローラ一を介して正確に流量制御して添加すればよ :い。 . :. 表面領域層中のフッ素原子の含有量は、 F/ (S i +N+F) という形式で 表した場合、 膜中の平均濃度が 0. 01 a tm%以上 20 a tm%以下が好ま しく、 0. 1 a tm%以上 10 a tm%以下がより好ましく、 0. 5 a tm% 以上 8 a tm%以下であることが更に好ましい。
- このような範囲で含有量を調整するためには、 例えば S i F4、 CF4のよう なフッ素原子含有ガスを Heなどのガスで希釈したものを、 マスフ口一コント ローラ—を介して正確に流量制御して添加すればよ、 ^。 表面領域層の層厚としては、 通常 0. 01以上 5^m以下が好ましく、 0. 05以上 3 m以下がより好ましく、 0. 1〜1 mであることが更に好まし い。 層厚が 0. 01 /mよりも厚ければ光受容部材を使用中に磨耗等の理由に より表面側層領域が失われることがなく、. 5 mを越えなければ残留電位の増 加等の電子写真特性の低下が発生することがない。
以上の様な表面領域層を形成するには、 基体の温度、 反応容器內のガス圧等 を所望にしたがって、 適宜設定する必要がある。
基体の温度は、 層設計にしたがって適宜最適範囲が選択されるが、 通常の場 合、 200で以上 35 Ot:以下が好ましく、 230 以上 330 以下がより 好ましく、 250で以上 300で以下が更に好ましい。
反応容器内のガス圧も同様に層設計にしたがって適宜最適範囲が選択され るが、 通常の場合、 好ましくは 1 X 10—2以上 2 X 1 03Pa以下が好ましく、 5X 10—1以上 5 X 10?P a以下がより好ましく、 ΓΧ 101以上 1 X 10ZP a 以下が更に好ましい。 ·
表面領域層を形成する めの基体温度、 ガス圧の好ましい数値範囲として前. 記した範囲が挙げられるが、 条件は通常は独立的に別々に決められるもの^は なく、 所望の特性を有する電子写真感光体を形成すべく相互的かつ有機的関連 性に基づいて最適値を決めるのが好ましい。 表面領域層内に形成される各層に ついて説明する ώ
<表面層>
表面層 1 0 7は、 表面領域層のシリコン原子と窒素原子の組成比が略一定な 部分であり、 主に表面の保護膜として、 短波長光透過性、 高解像度、 連続繰り 返し使用耐性、 耐湿性、 使用環境耐性などに関して良好な特性を得るために設 けられている。
ぐ表面保護層 >
本発明における表面領域層に設けられる表面保護層は自由表面を有し、 シリ コン原子と窒素原子を母材とする非単結晶窒化シリコン膜からなり、 窒素原子 の厚さ方向における含有率の極大値を 1つ有し、 感光体に耐湿性、 連続繰り返 し使用特性、 電気的耐圧性、 使用環境特性、 耐久性を付与する。 窒素原子の含 有率の厚さ方向における極大値、 その形状、 極大値と、 上部注入阻止層におけ る窒素原子の含有率の最小値との関係、 窒素原子の平均含有量などにづいては、 後述する中間層と同様である。
表面保護層には、 上部注入阻止層や中間層との関係から、 炭素原子や、 必要 に応じて酸素原子、 フッ素原子などのハロゲン原子、 水素原子などが含有され る。表面層に含まれる窒素原子と酸素原子の平均濃度(N/ S i十 N) ) ( a t m%) は、 3 0 a t m%≤N/ ( S i十 N) ≤7 0 a t m%の範囲が感度や 歩留まりの点から好ましい。 表面保護層中の水素および/またはハロゲンは、 シリコンなどの構成原子の未結合手を補償し、 層品質の向上、 特に光導電性特 性および電荷保持特性を向上させる。 このような観点から、 水素原子の含有率 は、 構成原芋め総量に対して好ましくは 3 0 a t m%以上 7 0 a t m%以下、 より好ましくは 3 5 a t m%以上 6 5 a t m%以下、 更に好ましくは 4 0 a t m%以上 60 a tm%以下である。 また、 ハロゲンとしては例えばフッ素慮子 の含有率は、 0. ひ 1 a tm%以上 15 a tm%以下、好適には 0. 1 a tm% 以上 10 a tm%以下、 より好ましくは 0. 6 a 111%以±4 a tm%以下で ある。
表面保護層の層厚としては、 10 nm以上 3000 nm以下、 好適には 50 nm以上 2000 nm以下、 より好ましくは 100 nm以上 1000 nm以下 である。 層厚が 10 nm以上であると感光体を使用中に摩耗等の理由により表 面層が失われることがなく、 3000 nnl以下であると残留電位増加等がなく 優れた電子写真特性を得ることができる。
本発明の目的を達成し得る特性を有する表面保護層を形成するには、 グロ一 放電法などによることができ、 かかるグロ一放電法による表面保護層の形成に おいては、 基体の温度、 反応容器内のガス圧を所望により適宜設定することが できる。 基体温度 (Ts) は、 層設計にしたがって最適範囲が適宜選択される が、 例えば 150で以上 350 以下とすることができ、 好ましぐは 180V 以上 330 以下、 より好ましくは 200 以上 300 以下である。 反応容 器内の圧力も同様に層設計にしたがって最適範囲が適宜選択されるが、 1 X I (T2Pa 上 1 X 103Pa以下、 好ましくは 5X 10—2Pa以上 5X 102P a 以下、 より好ましくは 1 X 1 Q— a以上 1 X 102P a以下である。 表面保護 層を形成するための基体温度、 ガス圧の望ましい数値範囲として前記した範囲 が挙げられるが、 条件は通常は独立的に別々に決められるもので «_なく、 所望 の特性を有する感光体を形成すべく相互.的且つ有機的関連性に基づいて最適 値を決めるのが好ましい。
<変化層 >
変化層 108は、 表面領域層のシリコン原子と窒素原子の組成比が変化する 部分であり、'主に表面の保護膜としての表面層 107と光導電層 103及び/ または上部注入阻止層 106との間で、 光学的な連続性が形成されるように設. 8
33
けられる層である。 変化層を設けることで表面層と光導電層の密着性を向 itさ せ、 光キャリアの表面への移動がスムーズになるとともに光導電層と表面層の 界面での光の反射による干渉の影響をより少なくすることができる。
波長 350 nmから 680 nmの範囲の反射率 (%)' の最小値 (lv£ i n) と 最大値 (Max) が 0%≤Max ( ) ≤20%かっ0≤ (Max—Mi n) / (100-Max) ≤0. 15を満たすように、 光学的に連続するように設 けることが好ましい。
上記の範囲となるように変化層 108を設けることで、 露光の干渉防止効果 だけでなく、 電気的な接続性も改善し、 感度、 ゴーストや、 像露光によるフォ トキャリアの移動性も改善し、 高解像度などに関して良好な特性を効果的にえ ることができる。
また、 変化層 108は、 周期表 13族元素及び炭素原子の含有量が極大値を 持つようにすることも有効である。 変化層 108に周期表 13族元素及び炭素 原子の含有量が極大値を持つように含有させ、 上部注入阻止能を変化層に持た せることが、 良好な電気特性として帯電能や残留電位、 暗 ·明減衰電位を得る ために好ましい。
く上部注入阻止層〉
図 1 Bに示すように、 表面領域層 104内の光導電層 103側に上部注入阻 止層 106を設けることも有効である p また、 図 1Dに示すように、 中間層を 介して 2以上設けることもできる。 .
上部注入阻止層 106 a、 106 bの櫸能は、上部から (即ち表面層側から) の電荷の侵入を阻止し、 帯電能を向上させることである。
周期表 13族元素としては、具体的には、硼素(B)、アルミニウム(A 1)、 ガリウム. (Ga) 、 インジウム.(I n) 、 タリウム (T 1) 等があり、 特に硼 素が好適である。
上部注入阻止層に周期表 13族元素を含有^ることで伝導性を制御するこ とができる。 周期表 13族元素の原子の含有量は、 極大値を持つように分布す ることが好ましいが、 一定領域をもつ極大領域であっても有効であり、 この場 合、 極大値は 5X1018個 Zcm3以上とすることが好まし 。
図 1Dに示す表面嶺域層において 2つ 上設けられる第 1、 第 2、:' - ±. 注入層 106 a、 10.6b, においては、 上部注入阻止層の構成原子の総量に 対する周期表第 13族元素の含有率の極大値が 50 a tm ppm以上 300 0 a tm p pm以下とされることが好ましく、 より好ましくは 100 a t m ppm以上 1500 a tm ppm以下である。
上部注入阻止層に周期表 13族元素を含有することで伝導性を制御するこ とができる。 周期表 13族元素の原子は、 基体の表面と平行面内方向において は、 均一な分布で含有されることで面内方向における特性の均一化を図ること ができる。
上部注入阻止層は、 シリコン原子と窒素原子を母体とし、 期表 13族元素
と炭素原子を含有した非単結晶材料から構成され、 水素原子、 酸素原子及び/ またはフッ素原子を膜中に適宜含んでいることが好ましい。
上部注入阻止層 106に含有される窒素原子の含有量は、 構成原子のシリコ ン原子と窒素原子の総和に対して 5 a tm%以上 35 a tm%以下の範囲と するのが好ましく、 10 a tm%以上 30 a tm%以下がより好ましく、 15 a tm%以上 30 a t m%以下であることが更に好ましい。
また、上部注入阻止層 106 a、 106 bに含有される窒素原子、炭素原子、 酸素原子の含有率は、 中間層や、 表面保導層におけるこれらの原子の含有率と も関連し本発明の目的が効果的に達成されるように適宜決定されるが、 1種類 の場合はその量として、 2種類以上の場合はその総和量として、 シリコンとの 総和に対して 10 a tm%以上 70 a t m%以下の範囲とするのが好ましい。 より好ましくは 15 a tm%以上 65 a tm%以下、 更に好ましくは 20 a t m%以上 60 a tm%以下である。 " また、 上部注入阻止層には、 水素原子が含有されることが好ましい。.水素原 子はシリコン原子の未結合手を補償し、 層品質の向上、 特に光導電性特性およ び電荷保持特性を向上させるために必須不可欠である。 水素原子の含有量は、 上部注入阻止層中の構成原子の総量に対して通常の場合 30. a t M%以上 7 0 a tm%以下が好ましく、 35 a tm%以上 65 a tm%以下がより好まし く、 40 a tm%以上 60 a tm%以下が更に好ましい。
本発明において、 上部注入阻止層の層厚は、 所望の電子写真特性が得られ、 かつ、 経済的効果等の点から 5 nm以上 1000 nm以下が好ましく、 10 n m以上 80 Onm以下がより好ましく、 15nm以上 50 Onm以下が更に好 ましい。層厚が 5 nm以上であれば、表面側からの電荷の注入阻止能は充分で、 充分な帯電能が られ、 電子写真特性の低下を招くことはない。 また、 100 O nmを超えなければ、 感度等の電子写真特性の低下を招くことはない。 · 上部注入阻止層と.光導電層 103側から表面領域層 104に向かって組成 を連続的に変化させることも好ましく、 密着性の向上や干渉防止等に効果があ る。
上記の目的を達成し得る特性を有する上部注入阻止層を形成するには、 シリ コン原子供給用のガスと窒素原子供給用のガスとの混合比、 反応容器内のガス 圧、 放電電力ならびに基体の温度を適宜設定することが必要である。
反応容器内の圧力も同様に層設計にしたがって最適範囲が適宜選択される が、 通常の場合 1 X 10— 2P a以上 1 X 103P a以下が好ましく、 5 X 10_2 Pa以上 5 X I 02P a以下がより好ましく、 1 X 1 Ο—'Pa以上 1X 102P a 以下が更に好ましい。
さらに、 基体の温度は、 層設計にしたがって最適範囲が適宜選択されるが、 通常の場合、 150*C以上 350で以下が好ましく、 · 180 以上 33.0^以 下がよりより好ましく.、 200 以上 300 以下が更に好ましい。.
〈中間層〉 本発明の表面領域層に設けられる中間層は、 シリコン原子と窒素原子を母材 とする非単結晶窒化シリコン膜からなり、 窒素原子の厚さ方向における含有率 の極大値を 1つ有する。 かかる中間層を第 1の上部注入阻止層(T B L— 1 )と 第 2の上部注入阻止層の間、 第 2の上部注入阻止層(T B L一 2.)と第 3·の上部注 入阻止層(T B L— 3 )の間に設けることで、一表面領域層内に構成原子の総数に 対する周期表第 1 3族元素の含有率が、 表面領域層の厚さ方向で極大値又は極 大領域を少なくとも 2つ以上持ち、 かかる 2つの極大値間に必然的に形成され る極小値をもち、 更に、 後述する表面保護層に有する窒素原子の含有率の極大 値と共に、 窒素原子の含有率が、 表面領域層の厚さ方向において極大値.を 2つ 以上持った分布が形成される。
中間層に含有される窒素原子、 炭素原子および/または酸素原子は、 好まし くは、 1つの中間層を構成する全ての原子総量に対して 1 0 a t m%以上 9 0 ' a t m%以下を含有するのが感度特性や電気的特性の点から好ましい。 より好 ましくは 1 5 a t m%以上 8 5 a t m%以下、 更に好ましくは 2 0 a 1: .111%以 上 8 0 a t m%以下である。 しかしながら、 いずれの場合にも基体の表面と平 行面内方向においては、 均一な分布で満遍なく含有されることが面内方向にお ける特性の均一化を図る点からも必要である。 また、 窒素原子については第 1 又は第 2の上部注入阻止層よりは多く含有していることが好ましい。 更に、 中 間層には、 周期表第 1 3族元素を含有させてもよいが、 含有量を、 2 . 5 X 1 0 18個/ c m3以下にすることが感度特性の点からより好ましい。 - 力、かる中間層を形成するにはグロ一放電法などによる'ことができ、 かかるグ ロー放電法による中間層の形成においては、 上部注入阻止層の形成と同様の原 料ガスなどを使用し、 ガスとの混合比、 反応容器内のガス圧、 放電電力ならぴ に基体の温度を適宜設定することができる。
く基体〉 ' '
本発明において使用される導電性基体としては、 Aし C r、 M o、 A u、 I n、 N b、 T e、 V、. T i、 P t、 P d、 F .c等の金属、 およびこれらの合 金、 例えばステンレス等を挙げることができる。 .
また、 ポリエステル、 ポリエチレン、 ポリ力一ポネート、 セルロースァセテ ート、 ポリプロピレン、 ポリ塩化ビニル、 ポリスチレン、 ポリアミド等の合成 樹脂のフィルムまたはシート、 ガラス、 セラミック等の電気絶縁性基体の、 少 なくとも光受容層を形成する側の表面は、 導電処理されたものが使用される。 基体の形状は平滑な表面または凹凸状の表面をレた円筒状または無端ベル ト状であることができ、 その厚さは、 所望通りの光受容部材を形成し得るよう に適宜決定するが、 光受容部材としての可撓性が要求される場合には、 基体と しての機能が充分発揮できる範囲内で可能な限り薄くすることができる。 しか しながら、 基体は製造上および取り扱い上、 機械的強度等の点から通常は 1 Ό m以上とされる。
<光導電層〉
基体上に例えばグロ一放電法によって光導 層を形成するには、 基本的には シリコン原子 (S i ) を供給する S i供給用の原料ガスと、 水素原子 (H) を 供給する H供給用の原料ガスと、 必要に応じてハロゲン原子 (X) を供給する X供給用の原料ガスとを、 内部を減圧できる反応容器内に所望のガス状態で導 入して、 反応容器内にグロ一放電を生起させ、 あらかじめ所定の位置に設置さ れてある所定の基体上に a— S i : H, Xからなる層を形成すればよい。
光導電層中の水素原子、 更に必要に応じて添加されるハロゲン原子は、 シリ コン原子の未結合手を補償し、 層品質の向上、 特に光導電性および電荷保持特 性を向上させる。
水素原子の含有量は、 特に制限はな が、 シリコン原子と水素原子の和に対 して 1 0〜4 0 a t m%とされるのが好ましい。 また、 その分布形状に関して も、 露光系の波長に合わせて含有量を変化させるなど、 適宜調整することが好 ましい。 特に、 水素原子やハロゲン原子の含有量をある程度多くすると、 光学的バン ドギャップが大きくなり、 感度のピークが短波長側にシフ.トすることが知られ ている。 このような光学的バンドギャップの拡大は、 短波長の露光を用いる際 には好ましく、 その場合には、 水素原子をシリコンと水素原子の和に :対して 1 5 a t m%以上とすることが好ましい。
S i供給用ガスとなり得る物質としては、 S i H4、 S i 2H6、 S i 3H8、 S i 4H,。等のガス状態、 またはガス化し得る水素化ケィ素 (シラン類) が有効に 使用されるものとして挙げられ、 更に層作製時の取り扱い易さ、 S i供給効率 の良さ等の点で S i H4、 S i 2H6が好ましいものとして挙げられる。 なお、 各 ガスは単独種のみでなく所定の混合比で複数種混合しても差し支えない。 更に、 膜の物性の制御性、 ガスの供給の利便性などを考慮し、 これらのガス に更に、 H2、 H e及び水素原子を含むケィ素化合物から選ばれる 1種以上のガ スを所望量混合して層形成することも出来る。 ハロゲン原子供給用の原料ガス としては、 具体的には、 フッ素ガス (F2) 、 B r F、 C 1 F、 C I F3, B r F3、 B r F5、 I F3、 I F7等のハロゲン化合物、 S i F4、 S i 2F6等のフッ化 ケィ素が好ましいも ®として挙げることができる。 '
光導電層中に含有されるハロゲン元素の量を制御するには、 例えば、 基体の 温度、 ハロゲン元素を含有させるために使甩される原料物質の反応容器内へ導 入する量、 放電空間の圧力、 放電電力等を制御すればよい。
加えて、 光導電層には伝導性を制御する原子を光導電層の廇厚方向に不均一 な分布状態で含有することが好ましい。 これは、 光導電層のキヤリァの走行性 を調整し、 また或は補償して走行性を高次元でバランスさせることにより、 帯 電能の向上、 光メモリ低減、 感度の向上のために有効である。
伝導性を制御する原子の含有量は、 特に制限されないが、 一般には 0 . 0 5 〜5. a t m p p mとするのが好ましい。 また、 光の到達する範囲においては、 伝導性を制御する原子を実質的に含有しないように制御を行う (積極的な添加 を行わない) ことも出来る。'
この伝導性制御原子の含有量が、 膜厚方向に連続的に、 又は段階的に変化す る領域を含んでいてもよく、 含有量が膜厚方向で一定の領域を含んでいてもよ い。
伝導性を制御する原子として、 周期表 13族に属する原子 (13族原子とも 略記する) 、 又は周期表 15族に属する原子 (15族原子とも略記する) を用 いることができる。
13族原子としては、 具体的には、 ホウ素 (B) 、 アルミニウム (A 1) 、 ガリウム (Ga) 、 インジウム (I n)、 タリウム (T 1)等があり、 特に B、 A l、 G aが好適である。
そのような 13族原子導入用の原料物質としては具体的には、 ホウ素原子導 入用としては、 B2H6、 B4H10、 B5H9、 B5Hn、 B6H,。、 B6H12、 B6H14等の 水素化ホウ素、 BF3、 BC 13、 BB r 3等のハロゲン化ホウ素等が挙げられる。 この他、 A1 C 13、 GaC l3、 Ga (CH3) 3、 I n C 13、 T 1 C 13等も挙 げることができる。 15族原子として、具体的には、 窒素(N) 、 リン(P) 、 ヒ素 (As) 、 アンチモン (Sb) 、 ビスマス (B i) 等があり、 特に P、 A s、 Sbが好適である。
15族原子導入用の原料物質として有効に使用されるのは、 リン原子導入用 としては、 PH3、 P2H4等の水素化リン、 PH4I、 PF3、 PF5、 PC15、 P B r3、 PBr5、 P 13等のハロゲン化リンが挙げられる。 この他、 s H3、 A s F3、 As C l3、 As B r3、 A s F5、 SbH3、 S bF3、 S bF5、 S b C 13、 S b C 15、 B i H3、 B i C 13、 B i B r3等も 15族原子導入用の出発物 質の有効なものとして挙げることができる。
また、 これらの伝導性を制御する原子導入用の原料物質を必要に応じて H2 および Zまたは Heにより希釈して使用してもよい。
光導電層の層厚は所望の電子写真特性が得られること及び経済的効果等の 点から適宜所望にしたがつ T決定され、 5〜5.0 z mが好ましく、 1 0 ^ 4 5 mがより好ましく、 2 0〜4 0 mが更に好ましい。 .
層厚が 5 ii mより薄くなければ、 帯電能や感度等の電子写真特性が実用上充 分であり、 5 0 mより厚くなければ、 光導電層の作製時間が長ぐなつて' 造 コス卜が高くなることはない。
所望の膜特性を有する光導電層を形成するには、 S i供給用、 八ロゲン添加 用等のガスと希釈ガスとの混合比、 反応容器内のガス圧、 放電電力ならびに基 体温度を適宜設定することが好ましい。
希釈ガスとして使用する H2および/または H eの流量は、層設計にしたがつ て適宜最適範囲が選択されるが、 H eの流量は、 S i供給用ガスに対し、 通常 の場合 3〜 3 0倍が好ましく、 4〜1 5倍がより好ましく、 5〜1 0倍の範囲 に制御することが更に好ましい。
反応容器内のガス圧も同様に層設計にしたがって適宜最適範囲が選択され るが、 通常の場合 1 X 1 0— 2〜: L X 1 03P aが好ましく、 5 X 1 0— 2〜5 X 1 0 2P aがより好ましく、 1 X 1 0 -1〜 2 X 1 02P aが更に好ましい。
放電電力もまた同様に層設計にしたがって適宜最適範囲が選択されるが、 S i供給用のガスの流量に対する放電電力の比を、 0 . 5〜 8に設定するこ^が 好ましく、 2〜6の範囲に設定することがより好ましい。
さらに、 基体の温度は、 層設計にしたがって適宜最適範囲が選択されるが、 2 0 0〜3 5 0 が好ましく、 2 1 0〜3 3 0 がより好ましく、 , 2 2 0〜3 o o tとするのが更に好ましい。 、
光導電層を形成するための基体温度、 ガス圧の好ましい数値範囲として前記 した範囲が挙げられるが、 条件は通常は独立的に別々に決められるものではな く、 所望の特性を有する光受容部材を形成すべく相互的かつ有機的関連性に基 づいて最適値を決めるのが好ましい。
ぐ下部注入阻止層 > 図 1 Aから図 1 Cに示すように、 導電性基体 101の上層 (こは、 基体 101 側がらの電荷の注入を阻止する働きのある下部注入阻止層 105を設けるの が効果的である。 下部注入阻止層 105は感光層 102が一定極性の帯電処理 をその自由表面に受けた際、 基体 1 G 1側より光導電層 103側に電荷が注入 されるのを阻止する機能を有している。
下部注入阻止層 105には、 シリコン原子を母材として導電性を制御 る元 素を含有させることで得られる。 下部注入阻止層 105は、 光導電層 103に 比べて導電性を制御する元素を比較的多く含有させることが好ましい。
負帯電用電子写真感光体の場合、 下部注入阻止層 105に含有される不純物 元素としては、 周期表 15族元素を用いることが出来る。 下部注入阻止層 10 5中に含有される導電性を制御する元素の含有量は、 本発明の目的が効果的に 達成できるように所望にしたがって適宜決定されるが、 下部注入阻止層中の構 成原子の総量に対して 10 a tmp pm以上 10000 a tmp pm以下が 好ましく、 50 a tmp pm以上 7000 a tmp pm以下がより好ましく、 100 a tmp pm以上 5000 a tmp pm以下が更に好ましい。
更に、 下部注入阻止層 105には、 炭素、 窒素及び 素を含有させることに よって、 下部注入阻止層 105と基体 101との間の密着性の向上を図る.こと が可能となる。 また、 負帯電用電子写真感光体の場合には、 下部注入阻止層 1 05が導電性を制御する元素を含有しなくても窒素および酸素を最適に含有 させることで優れた下部注入阻止能を付与することも可能と る。 .
具体的に、 下部注入阻止層 105の全層領域に窒素原子および酸素原子を含 有させることで下部注入阻止能を向上させることができる。 この場合、 含有さ れる窒素原子および酸素原子の含有量は、 窒素および酸素の和が下部注入阻止 層中の構成原子の総量に対して、 0. 1 a tm%以上 40 a tm%以下が好ま しく、 1. 2 a tm%以上 20 a tm%以下がより好ましい。
また、 本発明【 おける下部注入阻止層 105には水素原子を含有させるのが 好ましく、 この場合、 含有される水素原子は、 層内に存在する未結合手を補償 し膜質の向上に効果を奏する。 下部注入阻止層 105中に含有される水素原子 の含有量は、 下部注入阻止層中の構成原子の総量に対して 1 a tm%以上 50 a tm%以下が好ましく、 5 a tm%以上 40 a tm%以下がより好ましく、 10 a tm%以上 30 a tm%以下が更に好ましい。
さらに、 本発明における下部注入阻止層 105には炭素原子を含有させるの が好ましい。 この場合、 含有される炭素原子は、 層内に存在する未結合手を補 償し膜質の向上に効果を奏する。 下部注入阻止層 105中に含有される水素原 子の含有量は、 下部注入阻止層中の構成原子の総量に対して 1 a tm%以上 5 0 a tm%以下が好ましく、 5 a tm%以上 40 a tm%以下がより好ましく、 10 a tm%以上 30 a tm%以下が更に好ましい。
本発明において、 下部注入阻止層 105の層厚は所望の電子写真特性が得ら れること、 及び経済的効果等の点から、 10 Onm以上 5000 nm以下が好 ましく、 300 nm以上 4000 nm以下がより好ましく、 50 Onm以上 3 000 nm以下とすることが更に好ましい。
層厚を 100 nm以上 5000 nm以下とすることにより、 基体 101から の電荷の注入阻止能が充分となり、 充分な帯電能が得られると共に電子写真特 性の向上が期待でき、 残留電位の上昇などの弊害が発生しない。
下部注入阻止層 105を形成するには、 反応容器内のガス圧、 放電電力なら びに基体の温度を適宜設定することが必要である。導電性基体温度 (T s )は、 層設計にしたがって最適範囲が適宜選択されるが、 通常の場合、 150 以上 350で以下が好ましく、 180で以上 33 O :以下がより好ましく、 20 0 以上 300 以下とすることが更に好ましい。
反応容器内の圧力も同様に層設計にしたがって最適範囲が適宜選択される が、 通常の場合 lX i.O_2P a以上 1 X 103Pa以下が好ましく、 5X 10_2 P a以上 5 X 102P a以下がより好ましく、 最適には 1 X 10"'P a以上 1 X 102P a以下とするのが更に好ましい。
く電子写真感光体の製造装置〉
次に、 本発明の光受容層 102を作製するための装置及び膜形成方法につい て詳述する。
図 2は、 電源周波数として RF帯を用いた高周波プラズマ CVD法 (RF— PCVDとも略記する) による電子写真感光体の製造装置の一例を示す模式的 な構成図である。 図 2に示す製造装置の構成は以下の通りである。
この装置は大別すると、 堆積装置 2100、 原料ガスの供給装置 2200、 反応容器 2111内を減圧にするための排気装置 (図示せず) から構成されて いる。 堆積装置 2100中の反応容器 2111内には円筒状基体 2112、 基 体加熱用ヒ一夕一 2113、 原料ガス導入管 2114力 S設置され、 さらに高周 波マッチングボックス 2115が接続されている。
原料ガス供給装置 2200は、 S iH4、 GeH4、 H2、 CH4、 B2H6、 PHS 等の原料ガスのボンべ 2221〜2226とバルブ 2231〜2236.、 22 41〜2246、 2251〜2256及びマスフローコント口一ラー 221 1 〜2216から構成され、 各原料ガスのボンべは M助バルブ 2260を介して 反応容器 2111内のガス導入管 2114に接続されている。
この装置を用いた堆積膜の形成は、 '例えば以下のように行なうことができ る。
先ず、 反応容器 2111内に円筒状基体 2112を設置し、 不図示の排気装 置 (例えば真空ポンプ) により反応容器 2111内を排気する。 続いて、 基体 加熱用ヒ一夕一 2113 ίこより円筒状基体 211.2の温度を 15 Ot乃至 3 50 の所定の温度に制御する。
堆積膜形成用の原料ガスを反応容器 2111に流入させるには、 ガスボンベ のバルブ 2231〜 2.236、 反応容器のリークバルブ 2117が閉じられて いることおよびガス流入バルブ 22.41 2246、 流出バルブ 2251〜2 2 5 6、 補助バルブ 2 2 6 0が開かれていることを.確認して、 まずメインノ レ ブ 2 1 1 8を開いて反応容器 2 1 1 1及び原料ガス配管内 2 1 1 6を排気す る。
次に、 真空計 2 1 1 9の読みが約 0 . 1 P a以下になった時点で補助バルブ 2 2 6 0、 ガス流出バルブ 2 2 5 1〜2 2 5 6を閉じる。 その後、 ガスボンベ 2 2 2 1〜 2 2 2 6より各ガスを原料ガスボンベバルブ 2 2 3 1〜2 2 3 6 を開いて導入し、 圧力調整器 2 2 6 1〜2 2 6 6により各ガス圧を 0 . 2 M P aに調整する。 次に、 ガス流入バルブ 2 2 4 1〜2 2 4 6を徐々に開いて、 各 ガスをマスフローコント口一ラー 2 2 1 1〜2 2 1 6内に導入する。
以上のようにして成膜の準備が完了した後、 以下の手順で各層の形成を行う。 円筒状基体 2 1 1 2が所定の温度になったところで流出バルブ 2 2 5 1〜 2 2 5 6のうちの必要なもの及び補助バルブ 2 2 6 0を徐々に開き、 ガスポン ベ 2 2 2 1〜2 2 2 ,6 6から所定のガスを、 原料ガス導入管 2 1 1 4を介して 反応容器 2 1 1 1内に導入する。 次にマスフローコントローラー 2 2 1 1〜2 2 1 6によって各原料ガス;^所定の流量になるように調整する。 その際、 反応 容器 2 1 1 1内の圧力が 1 X 1 0 2 P a以下の所定の圧力になるように真空計 2 1 1 9を見ながらメインバルブ 2 1 1 8の開口を調整する。 内圧が安定した ところで、 周波数 1 3 . 5 6 MH zの R F電源 (不図示) を所望の電力に設定 して、 高周波マッチングボックス 2 1 1 5を通じて反応容器 2 1 1 1内に R F 電力を導入し、 グロ一放電を生起させる。 この放亀エネルギ よって反応容 器内に導入された原料ガスが分解され、 円筒状基体 2 1 1 2上に所定のシリコ ンを主成分とする堆積膜が形成されることになる。 所望の膜厚の形成が行われ た後、 R F電力の供給を止め、 流出バルブを閉じて反応容器へのガスの流入を 止め、 堆積腠の形成を終える。
同様の操作を複数 0繰り返すことによって、 所望の多層構造の光受容層が形 成される。 それぞれの層を形成する際には必要なガス以外の流出バルブはすべ て閉じられていることは言うまでもなく、 また.、 それぞれのガスが反応容器 2 1 1 1内、 流出バルブ 2 2 5 1〜2 2 5 6から反応容器 2 1 1 1に至る配管内 に残留することを避けるために、 流出バルブ 2 2 5 1〜2 2 5 6'を閉じ、 補助 バルブ 2 2 6 0を開き、 さらにメインバルブ 2 1 1 8を全開にして系内を 旦' 高真空に排気する操作を必要に応じて行う。
また、 膜形成の均一化を図るために、 層形成を行なっている間は、 円筒状基 体 2 1 1 2を駆動装盧 (不図示) によって所定の速度で回転させることも有効 である。
さらに、 上述のガス種及びバルブ操作は各々の層の作製条件に従って変更が 加えられることは言うまでもな 。
基体の加熱方法は、 真空仕様である発熱体であればよく、 より具体的にはシ ース状ヒータ一の巻き付けヒータ一、 板状ヒータ一、 セラミックヒ一夕一等の 電気抵抗発熱体、 ハロゲンランプ、 赤外線ランプ等の熱放射ランプ発熱体、 液 体、 気体等を熱媒体とした熱交換手段による発熱体等が挙げられる。 加熱手段 の表面材質としては、 ステンレス、 ニッケル、 アルミニウム、 銅等の金属類、 セラミックス、 耐熱性高分子樹脂等を使用することができる。
上記以外にも、 反応容器以外に加熱専用の容器を設け、 加熱した後、 反応容 器内に真空中で基体を搬送する方法が用いられる。
<電子写真装置 >
図 3は、 フィルム状の誘電体ベルトからなる中間転写ベルト 3 0 5を用いて 転写を行う電子写真プロセスを利用したカラ一画像形成装置 (複写機またはレ ザ一ビームプリン夕一) の模式図である。
この画像形成装置は、 表面に静電潜像が形成され、 この静電潜像上にトナー が付着されてトナ一像が形成される第 1の画像担持体が、 繰り返し使用される 回転ドラム型の電子写真感光体がらなる感光体ドラム 3 0 1から構成されて いる。 感光体ドラム 3 0 1の周りには、 感光体ドラム 3 .0 1の表面を所定の極性 · 電位に一様に帯電させる 1次帯電器 3.0 2と、 帯電された感光体ドラム 3 0 1 の表面に画像露光 3 0 3を行って静電潜像を形成する、 不図示の画像露光装置 とが配置され、 更に、 形成された静電潜像上にトナーを付着させて現像する現 像器として、 ブラックトナー (B) を付着させる第 1現像器 3 0 4 aと、 ィ: L 口一トナー (Y) を付着させる現像器と、 マゼン夕トナー (M) を付着させる 現像器と、 シアン.トナー (C) を付着させる現像器とを内蔵した回転型の第 2 の現像器 3 0 4 bが配置されている。 さらに、. 中間転写ベルト 3 0 5にトナー 像を転写した後、 感光体ドラム 3 0 1上をクリーニングする感光体クリーナ 3 0 6、 及び、 感光体ドラム 3 0 1の除電を行う除電露光 3 0 7が設けられてい る。
中間転写ベルト 3 0 5は、 感光体ドラム 3 0 1に当接ニップ部を介して駆動 するように配置されており、 内側には感光体ドラム 3 0 1上に形成された卜ナ 一像を中間転写ベルト 3 0 5に転写するための一次転写ローラ 3 0 8.が配備 されている。 一次転写ローラ 3 0 8には、 感光体ドラム 3 0 1上のトナー像を 中間転写ベルト 3 0 5に転写するための一次転写バイアスを印加するバイァ ス電源 (不図示) が接続されている。 中間転写ベルト 3 0 5の周りにほ、 中間 転写ベルト 3 0 5に転写されたトナー像を記録材 3 1 3にさらに転写するた めの二次転写ローラ 3 0 9が、 中間転写ベルト 3 0 5の下面部に接触するよう に設けられている。
二次転写ローラ 3 0 9には、 中間転写ベル卜 3 0 5上のトナ一像を記録材 3 1 3に転写するための二次転写バイアスを印加するバイアス電源が接続され ている。 また、 中間転写ベルト 3 0 5上のトナー像を記録材 3 1 3に転写した 後、 中間転写ベルト 3 0 5の表面上に残留した転写残トナーをクリーニングす るための中間転写ベルドクリーナ 3 1 0が設けられている。
また、 この画像形成装置は、 画像が形成される複数の記録材 3 1 3を保持す る給紙力セット 3 1 4と、 記録材 3 1 3を給紙力セット 3 1 4から中間転写べ ルト 3 0 5と二次転写口一ラ 3 0 9との当接エップ部を介して搬送する搬送 機構とが設けられている。 記録材 3 1 3の搬送経路上には、 記録材 3 1 3上に 転写きれたトナ一像を記録材 3 1 3上に定着させる定着器 3.1 5が配置され ている。 〖
一次帯電器 3 0 2としては磁気ブラシ方式の帯電器などが用いられる。 画像 露光装置としては、 カラ一原稿画像の色分解,結像露光光学系や、 画像情報の 時系列電気デジタル画素信号に対応して変調されたレーザービームを出力す るレーザ一スキャナによる走査露光系などが用いられる。
次に、 この画像形成装置の動作について説明する。
まず、 図 3に矢印で示すように、 感光体ドラム 3 0 1が、 時計方向に所定の ' 周速度 (プロセススピード) で回転駆動され、 中間転写ベル卜 3 0 5が、 反時 計方向に、 感光体ドラム 3 0 1と同じ周速度で回転駆動される。
感光体ドラム 3 0 1は、 回転過程で、 一次帯電器 3 0 2により所定の極性 · 電位に一様に帯電処理され、 次いで、 画像露光 3 0 3を受け、 これにより感光 体ドラム 3 0 1の表面上には、 目的のカラー画像の第 1の色成分像 (例えばマ ゼンタ成分像) に対応した静雩潜像が形成される。 次いで、 第 2現像器が回転 し、 マゼン夕トナー (M) を付着させる現像器が所定の位置にセットされ、 そ の静電潜像が第 1色であるマゼンタトナ一 (M) により現像される。 この時、 第 1現像器 3 0 4 aは、 作動オフになっていて感光体ドラム 3 0 1には作用せ ず、 第 1色のマゼン夕トナー像に影響を与えることはない。
このようにして、 感光体ドラム 3 0 1上に形成担持された第 1色のマゼン夕 トナー像は、 感光体ドラム 3 0 1と中間転写ベルト 3 0 5との ップ部を通過 する過程で、 一次転写バイアスがバイアス電源 (不図示) から一次転写ローラ 3 0 8に印加されるこ.とによって形成される電界により、 中間転写ベルト 3 0 5外周面に順次中間転写される。 · 中間転写ベルト 3 0 5に第 1色のマゼンタトナー像を転写し終えた感光体 ドラム 3 0 1の表面は、 感光体クリーナ 3 0 6によりクリーニングされる。 次 に、 感光体ドラム 3 0 1の清掃された表面上に、 第 1色のトナ一像の形成と同 様に、 第 2色のトナー像 (例えばシアントナ一像) が形成され、 この第 2色の トナー像が、 第 1色のトナー像が転写された中間転写ベルト 3 0 5の表面上に 重畳転写される。以下同様に、第 3色のトナー像(例えばイエロ一トナー像)、 第 4色のトナ一像 (例えばブラックトナー像) が中間転写ベルト 3 0 5上に^! 次重畳転写され、 目的のカラ一画像に対応した合成力ラートナ一像が形成され る。
次に、 給紙カセット 3 1 4から中間転写ベルト 3 0 5と二次転写ローラ 3 0 9との当接ニップ部に所定のタイミングで記録材 3 1 3が給送され、 二次転写 ローラ 3 0 9が中間転写ベルト 3 0 5に当接されると共に、 二次転写バイアス がバイアス電源から二次転写ローラ 3 0 9に印加されることにより、 中間転写 ベルト 3 0 5上に重畳転写された合成カラ一トナ一像が、 第 2の面像担持体で ある記録材 3 1 3に転写される。 記録材 3 1 3へのトナー像の転写終了後、 中 間転写ベルト 3 0 5上の転写残トナ一は中間転写ベルトクリーナ 3 1 0によ りクリーニングされる。 トナー像が fe写された記録材 3 1 3は定着器 3 1 .5に 導かれ、 ここで記録材 3 1 3上にトナー像が加熱定着され 。
本画像形成装置の動作において、 感光体ドラム 3 0 1から中間転写ベルト 3 0 5への第 1〜第 4色のトナー像の順次転写実行時には、 二次 写ローラ 3 0 9および中間転写ベルトクリーナ 3 1 0は中間転写ベルト 3 0 5から離間さ せるようにてもよい。
このような中間転写ベルトを用いた電子写真によるカラー画像形成装置は、 以下に示す特徴を有している。
'第一に、 重ね合わせ時に各色のトナー像の形成位置がずれる色ズレが少ない。 また、 図 3に示すように、 記録材 3 .1 3をなんら加工、 制御 (例えばグリッパ 一に把持する、 吸着する、—曲率を持たせるなど) する必要なしに、 中間転写べ ルト 3 0 5からトナー像を転写させることができ、 記録材 3 1 3として多種多 様なものを用いることができる。 例えば、 薄い紙 (4 0 gZm2紙)から厚い紙 ( 2 0 0 gZm2紙)までの種々の厚みのものを選択して記録材.3 1 3:として使 用可能である。 また、 幅の広狭または長さの長短によらず種々の大きさのもの を記録材 3 1 3として使用可能である d さらには、 封筒、 ハガキ、 ラベル紙な どを記録材 3 1 3として使用可能である。 ,
また、 中間転写ベルト 3 0 5は、 柔軟性に優れており、 感光体ドラム 3 0 1 や記録材 3 1 3との二ップを自由に設定することができるため、 設計の自由度 が高く、 転写効率などを最適化しやすいといった特徴がある。
このように、 中間転写ベルト 3 0 5を用いた画像形成装置には種々の利点が める
実施例
以下実施例により本発明を更に詳細に説明するが、 本発明はこれらによって 何ら限定されるものではない。
(実施例 1 )
図 2に示したプラズマ C VD装置を用い、 直径 8 4 mm、 長さ 3 8 1 m:mの 鏡面加工を施しだアルミニウムシリンダ一 (支持体) 上に、 表 1に示した条件 で堆積膜を順次積層し、 上部注入阻止層、 表面層からなる感光体を作製した。 下部注入阻止層と光導電層は、 共通条件としてすベて表 1に示した条件で作製 し、 表面層は、 S i H4のガス流量、 S i H4と N2の混合比、 S i H4ガ 量あ たりの電力量を表 2に示す条件で、 それ以外は表 1に示す条件で作製し、 表面 層中における窒素原子濃度が異なる感光体 A〜Hを作製した。
このようにして製作した感光体 A〜Hは以下の評価を行った。
電子写真特性の評価には、 電子^真方式の画像形成装置 (キャノン製電子写 真装置 i R C 6 8 0 0を実験用に帯電器を磁気ブラシ方式に改造し、 帯電極性 を変更可能に改造し、 画像露光方式を I AE方式に改造し、 画像露光の光源を 発振波長 405 nmの青色発光半導体レーザ一に改造し、 ドラム面照射スポッ ト径が調整可能に画像露光の光学系を改造した機械 (以下、 i. RC 6800、一
405 nm改造機という。 ) ) にセットし、 以下に示す評価項目について評価 を行った。 測定結果は表 2に示した。
(1) 表面層中における実際の窒素原子濃度
最表面をおよそ 20 nm程度除去し最表面の環境の影響を受けた部分を取 り除いた上で S IMS (二次イオン質量分析法) [CAMECA社製: IMS -4F] により分析した。
(2) 表面層膜厚
干渉膜厚計 (大塚電子製: MCPD— 2000) によって軸方向 10点、 周 方向 6点の 60点に対して測定し、 最大値一最小値の値を平均膜厚で割った値 を膜厚ムラ (単位%) として表示した。
膜厚ムラが 30%を超えてくると、 硬度や抵抗のムラも大きくなつてくるが、 実用上は問題なかった。 さらに膜厚ムラが 40%を超えると硬度、 抵抗ムラも 大きく、 連続使用で部分的にスジ上に削れる現象が起こ,り、 好ましくない。
(3) 405 nm光の透過性
405 nm光の透過性は、 405 nm光に対する分光感度によって評価を行 つた。 すなわち、 製作した感光体 A〜Hに対して分光感度特性を測定し、 分光 感度が最大になる波長の分光感度 (分光感度のピーク値) を ¾準として、 40
5 nm光の分光感度を規格化した値によって、 それぞれの感光体について、 4 05 nm光の透過性の評価を行った。
ここでいう分光感度とは、 感光体の表面を一定電位、 例えば 450 Vに帯電 させ、 その後さまざまな波長の光を当てたとき、 単位光量 (単位面積) あたり の表面電位減衰分 (単位は V · cmV ) を指している。 この表面電位減衰 分の測定は、 梶田ら (電子写真学会誌、 第 22卷、 第 1号、 1983) の方法 に準じた方法により行った。 簡単に説明すると、 複写機内での挙動を再現する ため、 感光体表面に I T O電極な 透明な電極を密着させ、 複写機内のシーケ ンスを摸して露光や電圧印加を行い、 表面の電位変化を測定する。 表面の電位 を測定する場合には、 感光体をコンデンサ一と見なし、' 既知の容量と直列接続 して電位を印加することで、 感光体の帯電能の情報を得ることも可能となるの で、 好ましい。 梶田らの方法では透明絶縁膜を感光体と I T O電極の間に挟む 方法を用いているが、 電気回路を工夫する事で固定コンデンサーを用いても良 レ 具体的には、まず除電光(例えば 5 O mW/ c m2)を一定時間(例えば 0 . 1秒) 照射したあと、 一定時間 (例えば 0 . 0 1秒) 経過後、 電圧を印加 (例 えば 2 0 m s e c程度) して表面を帯電させる。 電圧付与をなくしてから一定 時間 (0 . 1〜0 . 5秒程 S、 例えば 0 . 2 5秒) 経てから、 I T O電極につ ないだ導電体の表面を電位計で測定する。 この時間は複写機内で感光体の電位 を付与した部分が現像器に到達するタイミングに相当するので、 現像器位置に おける電位に相当する。 次に、 同様のシーケンスで電圧付与と電位測定の間に 様々な波長の光を露光 (例えば電圧付与から 0 . 1秒後) し、 同様に現像器位 置に相当するタイミングの電位を測定し、 光を当てる場合と当てない場合との 差分を計算して求める。 これは、 現像器位置での、 露光光による電位減衰分を 測定していることに相当する。 このような感光体の感度は波長によって異なる ものとなる。 囟 6は、 横軸に波長、 縦軸に分光感度を、 その値が最大となる波 長における分光感度を基準として規格化した値として、 プロットしたグラフで ある。 更に、 図 7に、 表面層中における窒素原子濃度と 4 0 5 nmの光に対す る分光感度との関係についてプロットしたグラフを示す。 図 7から明らかなよ うに、 窒素原子濃度と 4 0 5 nmの光に対する分光感度との間には、 明確な相 関が見られ、 概ね窒素原子濃度が高くなるにつれて、 4 0 5 nmの光に対する 分光感度が良くなる傾向を示すことがわかる。
電子写真プロセスにおいて必要とされる感度の値は、 使用するレーザー素子 や光学系の性能に依存するものであり、 一概に、 その絶対値に言及する とは 難しい。 ここでは、 感光体 Bを、 評価用の画像形成装置に設置し、 現像器位置 における表面電位が— 4 5 0 V (暗電位) になるように帯電器を調整した後、 4 0 5 n mの像露光を照射し、 像露光光源の光量を調整して、 .表面電位が— 1 0 0 V (明電位) となるようにし、 そのときの露光量を基準露光量とした。 そ' の他の感光体については、 同様に評価用の画像形成装置に設置し、 4 0 5 nm の像露光を基準露光量で照射たときの電位が— 1 0 0 V以下にならない場合 は、 感度不足と判断した。
このようにして、 感度について本発明者らのさまざまな検討の結果、 図 6に 示したような分光感度のピーク値で規格化した指標で、 3 0 %以上の感度を有 することが好ましく、 望ましくは 4 0 %以上の感度を有することがより好まし いことがわかった。
従って、 そのような感度を有する感光体としては、 表面層中の窒素原子濃度 を、 3 0 a t m%以上、より好ましくは 3 5 a t m%以上とすることによって、 青色発光半導体レーザーのような 4 0 5 nm付近の短波長レーザー光に対す る感度を有するという更なる効果を有することが明らかとなった。
その一方、 表 2から明らかなように、 感光体 Gでは膜厚ムラが大きく、 表面 層として使用する際には窒素濃度が高すぎないことが望ましいことが分かつ た。 このような観点において、 表面層中の窒素原子濃度は、 好ましくは 7 0 a t m%以下、 より好ましくは 6 0 a t m%以下が好適であることがわかった。 表 1
Figure imgf000055_0001
表 2
Figure imgf000055_0002
<実施例 2 > - 図 2に示したプラズマ C ViD装置を用い、 直径 8 4 mm、 長さ 3 8 l mmの 鏡面加工を施したアルミニウムシリンダ一 (支持体) 上に、 表 3に示した条件 で、. 下部注入阻止層、 光導電層、 及び、 上部注入阻止層、 表面層からなる堆積 膜を順次積層し、 感光体を製作した。 下部注入阻止層と光導電層は、 共通条件 としてすベて表 1に示じた条件で 膜し、 表面層に関しては、 表 4に挙げたよ うに C Hのガス流量をさまざまに変化させて成膜し、表面層中における炭素原 子濃度が異なる感光体 2 A〜 2 Hを製作した。 .
このようにして製作した感光体 2 Α〜 2 Ηについては、 実施例 1と同様に (1)窒素原子濃度、 (3) 405 nmの透過性に加えて以下の評価を行った。
(4) 表面層中における実際の炭素原子濃度
最表面をおよそ 2 Onm程度除去する事で最表面の影響を取り除いた上で S IMS (二次イオン質量分析法) [CAMECA社製: IMS— 4F] によ り分析した。
(5) 残留電位
作製した電子写真感光体について、 現像器位置における表面電位が一 450 V (暗電位) になるように帯電器 調整した後、 像露光光源の光量を最大にな るように調整して、 像露光を照射し、 現像器位置に設置した表面電位計により 電子写真感光体の表面電位を測定し残留電位とした。 評価は、 感光体 2 Aをリ ファレンスとし、 以下に示す判断基準によってランク付けすることによって行 つ/こ。
☆: リファレンスに比べて 10%以上向上し、 非常に良いレベル
◎: リファレンスに比べて 5%以上向上し、 良いレベル
〇: リファレンスと同等! ル
(6) 電位ムラ
作製した電子写真感光体について、 現像器位置における暗部電位が一 450 Vになるように帯電器を調整し、 現像器位置における明部電位が一 1ひ 0 Vに なるように像露光光源の光量を調整した状態において、 暗部電位と明部電位の 面内分布を測定し、 その最大値と最小値の差を電位ムラとした。 評価は、 感光 体 2 Aをリファレンスとし、 以下に示す判断基準によってランク付けすること によって行った。
☆: リファレンスに比べて 10%以上向上し、 非常に良いレベル
◎ : リファレンスに比べて 5%以上向上し、 良いレベル 〇:.リファレンスと同等レベル
評価結果を、 表 4に示す。 '
評価結果より、 炭素原子を微量含有させることで、 残留電位および電位ムラ. に関する特性が改善されることがわかる。
表 3
Figure imgf000057_0001
(*) : 表 4參照
表 4
Figure imgf000057_0002
( * * )の 1定值は限定賊界と考えられる。 く実施例 3> ·
図 2に示したプラズマ CVD装置を用い、 直径 84mm、 長さ 38 lmmの 鏡面加工を施したアルミニウムシリンダ一 (支持体) 上に、 表 5に示した条件 で、 下部注入阻止層、 光導電層、 皮び、 表面領域層からなる堆積膜を順次積層 し、 感光体を製作した。
このとき、 表 5に示すように、 表面領域層の形成途中で <3 ガスと. B2H6ガ スの導入量を変化させる事で炭素原子濃度と周期表 1 3族元素のホウ素原子 ' 濃度が極大値を持つようにした。 表 3の表面領域層に極大値を形成するための ガスの導入方法としては、 変化層と表面層との形成時に、 表 5に示すように、 C H4ガスと B2H6ガスとを、 所定時間を掛けて一定値から直線的に増加させ、 その後同じ速度で再び初期の一定値まで直線的に減少させた。 さらに, NOガ ス、 S i F4ガスの導入量を変化させて同様に、 極大値を持つようにした。
このようにすることで炭素原子と硼素原子の含有量が図 1 0に示すような 極大値を持つ分布であることが S I M S測定によって確かめられた。
なお、 炭素原子の極大値は 1 . 0 X 1 02個/ c m3であり、 硼素原子の極大 値は、 光導電層側から、 2 . 1 X 1 0 18i@/ c m\ 6 . 5 X 1 0'18個 m3で あった。 硼素原子の極大値間隔は 2 5 0 n mであった。
また、表面層の窒素の量は NZ ( S i + N)の表記で 4 3 a t m%であった。
表 5
Figure imgf000059_0001
得られた感光体を、 電子写真方式の画像形成装置 (キャノン製電子写真装置 i R C 6800を実験用に帯電器を磁気ブラシ方式に改造し、 帯電極性を変 更可能に改造し、 画像露光方式を IAE方式に改造し、 画像露光の光源を発振 波長 405 nmの青色発光半導体レーザ一に改造し、 ドラム面照射スポット径 が調整可能に画像露光の光学系を改造した機械) にセットして、 以下の評 を 行った。 評価結果は、 後述の比較例 1および実施例 4とともに表 8に示されて いる。
(1) 解像度 - パソコンで、 2ポイントサイズ、 及び、 3ポイントサイズのアルファベット ■ (A〜Z) 、 及び、 複雑な漢字 (電、 驚など) を 1200 d p iの解像度で配 列したテストチャートを作成し、 そのテストチャートをプリン卜アウトした画 像によって感光体の解像度の評価を行った。 具体的には、 出力画像をスキャナ ― (キヤノン製 C a n.o'S c an 9900 F) を使って 1600 d p iの解像 度で読み取り、 読み取つた画像データとテストチャートの元データを比較して、 テスト原稿の文字からのズレ部分 (太り、 細り.) の面積を算出し、 その数値に よって感光体の解像度の評価を行った。 評価は、 後述する.比較例 1に示す層構 成の感光体の値をリファレンス (1 0 0 %) とした場合の相対評価でランク付 けをすることによって行った。
☆ : 8 0 %未満で、 リファレンスに比べて、 非常に良いレベル
◎ : 8 0 %以上、 9 5 %未満で、 リファレンスに比べて、 良いレベル 〇: リファレンスと同等レベル
( 2 ) 帯電能
作製した電子写真感光体を電子写真装置に設置して 電を行ない、 現像器位 置に設置した表面電位計により電子写真感光体の暗部表面電位を測定し帯電 能とした。 このとき、 比較のために帯電条件 (帯電器への D C印加電圧、 重畳 A C振幅、 周波数など) は一定とした。 評価は、 後述する比較例 1に示す層構 成の感光体をリファレンスとし、 以下に示す判断基準によってランク付けをす ることによって行った。
☆ : リファレンスに比べて 1 0 %以上向上し、 非常に良いレベル
◎: リファレンスに比べて 5 %以上向上し、 良いレベル
〇: リファレンスと同等レベル
( 3 ) 残留電位
作製した電子写真感光体について、 現像器位置における表面電位が— 4 5 0 V (暗電位) になるように帯電器を調整した後、 像露光光源の光量,を最大にな るように調整して、 像露光を照射し、 現像器位置に設置した表面電位計により 電子写真感光体の表面電位を測定し残留電位とした。 評価は、 後述する比較例 1に示す層構成の感光体をリファレンスとし、 以下に示す判断基準によってラ ンク付けをすることによって行った。
☆: リフ 7レンスに比べて 1 0 %以上向上し、 非常に良いレベル
◎: リファレンスに比べて 5 %以上向上し、 良いレベル 〇: リファレンスと同等レベル
( 4 ) 感度
作製した電子写真感光体について、 現像器位置における表面電位が一 4 5 0 V (暗電位) になるように帯電器を調整した後、 像露光を照射し、 像露 光源 の光量を調整して、 表面電位が一 1 0 0 V (明電位) となるようにし、 そのと きの露光量を感度とした。 評価は、 後述する比較例 1に示す層構成の感光体を リファレンスとし、 以下に示す判断基準によってランク付けすることによって 行った。
☆: リファレンスに比べて 1 0 %以上向上し、 非常に良いレベル
◎: リファレンスに比べて 5 %以上向上し、 良いレベル
〇: リファレンスと同等レベル
( 5 ) 電位ムラ
作製した電子写真感光体について、 現像器位置における暗部電位が— 4 5 0 Vになるように帯 ¾器を調整し、 現像器位置における明部電位が— 1 0. 0 Vに なるように像露光光源の光量を調整した状態において、 暗部電位と明部電位の 面内分布を測定し、 その最大値と最小値の差を電位ムラとした。 評価は、 後述 する比較例 1に示す層構成の感光体をリファレンスとし、 以下に示す判断基準 によってランク付けすることによって行った。
☆ : リファレンスに比べて 1 0 %以上向上し、 非常に良いレベル
◎: リファレンスに比べて 5 %以上向上し、 良いレベル
〇: リファレンスと同等レベル
( 6 ) 光メモリ
現像器位置における暗部電位が— 4 5 0 Vになるように帯電器を調整し、 現 像器位置における明部電位が一 1 0 0 Vになるように像露光光源の光量を調 整した状態において、 .同様の電位センサーにより非像露光状態での表面電位と 一旦像露光した後に再度帯電した時との電位差を測定し、 光メモリとした。 評 価は、 後述する比較例 1に示す層構成の感光体をリファレンスとし、 以下に示 す判断基準によってランク付けす.ることによって行った。
☆:リファレンスに比べて 10%以上向 ±し、 非常に良いレベル
◎:リファレンスに比べて 5%以上向上し、 良いレベル
0:リファレンスと同等レベル
(7) 405 nm光の透過性
分光感度特性は、 一定暗部電位から一定明部駕位まで光減衰させるのに必要 な光量の逆数、 即ち、 光の単位エネルギー量当たりの電位減衰量をその露光波 長に対する分光感度とし、 露光波長を変化させた時の各波長における分光感度 を測定して、 分光感度が最大になる波長の分光感度 (分光感度のピーク値) に よって規格化した数値によって評価した'。 より具体的には、 405nm光の透 過性を評価するために、 405 nm光の分光感度によって透過性の評価を行つ た。
(8) クリーニング性 (CLN性と略記)
CLN性は、 クリーニング残トナーが発生し始めるクリーニングブレード圧 力によって評価を行った。 具体的には、 A4コピー紙 1000枚の通紙耐久を 行った後の、 感光体表面を観察し、 クリーニング残トナーの有無を判定する実 験を、 クリーニングブレード圧力を徐々に低くしながら繰り返して、 クリ一二 ング残トナーが発生し始めるクリーニングブレード圧力を調べた。 評価は、 後 述する比較例 1に示す層構成の感光体の値をリファレンス (100%) としすこ 場合の相対評価でランク付けすることによって行った。 クリーニング残トナー が発生し始めるクリーニングブレード圧力は、 低い方がクリ一ニングのラチチ ユードが広く、 C L N性に優れると解釈することができる。
☆ : 80%未満で、 リファレンスに比べて、 非常に良いレベル
©: 80%以上、 9.5%未満で、 リファレンスに比べて、 良いレベル 〇: リファレンスと同等レベル ぐ比較例 1 >
実施例 3と同様に、図 2に示した'プラズマ C VD装置を用い、直径 8 4 mm、 長さ 3 8 1 mmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 6に示レた条件で、 下部注入阻止層、'光導電層、 及び、 上部注入阻止層、 表 面層からなる堆積膜を順次積層し、 感光体を製作した。
作成した感光体について、 実施例 3と同様の評価を行った。
評価結果は、 表 8に示す。
含有量は図 1 1に示すような極大値、 分布となるようにした。
表 6
Figure imgf000063_0001
ぐ実施例 4 >
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4 mm、 長さ 3 8 1 mmの鏡面加工を施.したアルミニウム リンダー (支持体) 上に、 表 7に示した条件で、 図 1 Bに示した層構成となるように、 下部注入阻止層、 光導電層、 及び、 上部注入阻止層、 表面層からなる堆積膜を順次積層し、 感光 体を製作した。'
このとき、 表 7に示したように、 表面領域層に NOガス、 S i F4ガスを用い なかった。 それ以外は、.実施例 3と同じ条件で製作した。
作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 実施例 3、 比較例 1を合わせて表 8に示す。
含有量は囪 1 2に示すような極大値、 分布となるようにしだ。
表 7
Figure imgf000064_0001
表 8
Figure imgf000064_0002
表 8から明らかなように、 青色半導体レーザー (4 0 5 nm) で、 1 2 0. 0 d p iの解像度で配列したテストチャートの画像では、 解像度が向上した。 こ れは、 表面領域層の硼素原子の分布が 2齒所に極大値を持つようにし、 かつ炭 素原子、 酸素原子及びフッ素原子め分布が 1箇所の極大値を持つように作成さ れた実施例 3および表面領域層の硼素原子の分布が 2箇所に極大値を持つよ うにし、 かつ炭素原子の分布が 1箇所の極大値を持つように作成された実施例 4のような表面領域層を用いると、 ドット再現性を向上させ ¾ことが出来、'本 来のスポット径を絞った効果が十分に発揮される事がわかった。
実施例 3および 4のように、 表面領域層の硼素原子の分布が 2箇所に極大値' を持つような感光体は、 評価した全項目で特性の改善が見られた。 実施例' 4で は炭素元素の分布が 1箇所に極大値を持っていたが、 実施例 3のように炭素、 ' 酸素およびフッ素原子の分布が、 1箇所に極大値を持った構成とすることで更 に解像度、 残留電位、 光メモリ及び C L N性が向上することが分かる。
く実施例 5 >
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4 mm, 長さ 3 8 l mmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 9に示した条件で、 図 1 Cに示した層構成となるように、 下部注入阻止層、 光導電層、 及び、 変化層、 表面層からなる堆積膜を順次積層し、 感光体を製作 した。
このとき、 表 9に示したように、 表面領域層に導入する、 S i H4および B2 H6ガスの流量を変化させて、含有量及び極大値を変化させて、数種の感光体を 作成した。 その時の含有量及び極大値は表 1 3に示す。 それ以外の条件は、 実 施例 3と同じ条件で製作した。
作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 表 1 4に示す。
含有量は図 1 3に示すような極大値、 分布を有していた。 表 9
Figure imgf000066_0001
( * )流量が多いほうが極大値が大きい。 実施例 6 > ,
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4mm, 長さ 3 8 1 mmの鏡面加工を施したアルミニウムシリンダ一 (支持体) 上に、 表 1 0に示した条件で、図 1 Cに示した層構成となるように、下部注入阻止層、 光導電層、 及び、 変化層、 表面層からなる堆積膜を順次積層し、 感光体を製作 した。 . '
このとき、 表 1 0に示したように、 表面領域層に導入する、 B2H6ガスの流 量を変化させて、 表面側の極大値 >光導電層側の極大値となるように作成した。 その時の含有量及び極大値は表 1 3に示す。 それ以外の条件は、 実施例 3と同 じ条件で製作した。
作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 表 1 4に示す。
含有量は図 1 4に示ずような極大値、 分布を有していた。 表 1 0
Figure imgf000067_0001
( * )流量が多いほうが極大値が大きい。
<実施例 7 >
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4 mm、 長さ 3 8 l mmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 1 1に示した条件で、図 1 Cに示した層構成となるように、下部注入阻止層、 光導電層、 及び、 変化層、 表面層からなる堆積膜を順次積層し、 感光体を製作 した。
このとき、 表 1 1に示したように、 表面領域層に導入する、 B 2 H 6ガスの流 量が最大値の時に、 一定時間変化させずに、 極大領域となるようにして作成し た。 その B#の含有量及び極大値を表 1 3に示す。 それ以外の条件は、 実施例 3 と同じ条件で製作した。 .
作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 表 1 4に示す。 - 含有量は図 1 5に示ずような極大値、 分布を有していた。 表 1 1
Figure imgf000068_0001
( * )流量が多いほうが極大値が大きい。
<実施例 8 >
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4mm、 長さ 3 8 1 mmの鏡面加工を施したアルミニウムシリンダ一 (支持体) 上に、 表 1 2に示した条件で、図 1 Cに示した層構成となるように、下部注入阻止層、 光導電層、 及び、 ·変化層、 表面層からなる堆積膜を順次積層し、 感光体を 作 した。
このとき、 表 1 2に示したように、 表面領域層に導入する、 B2H6ガスの流 量を変化させて、 極大値と極大値の間隔を変えて作成した。 その時 含有量及 び極大値は表 1 3に示す。それ以外の条件は、実施例 3と同じ条件で製作した。 作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 表 1 4に示す。
含有量は図 1 6に示すような極大値、 分布となるようにした。 表 12
Figure imgf000069_0001
( * )流量が多いほうが極大値が大きい。 表 13は、 実施例 5 8で作成した感光体の表面領域層の、 ボロン原子の含 有量の表面側の極大値、 光導電層側の極大値、 極大値間のボロンの含有量の最 小値、 極大値間隔、 Nノ (S i +N) で現される表面層の窒素の量および炭素 原子の含有量の極大値を示している。
表 13 , 表面側の 光導電層側の 極大偕間の 大値
N/(Si+N) C 極大値 感光体 搔大偕 極大値 最小偕 間隔
atm% 個 Zcm3 個/ cm3 個/ cm3 /cm3 ΏΙύ
実施例 5 - A 4.5 X1018 5.0 X 1018 2.5 XlO18 480nm 55 ' 1.2 xlO20 実施例 5 - B 4.5 1018 4.8 lO18 1.2 xlO18 480nm 55 - 1.2 XlO20 ' 実旄例 5— C 4.1X1018 5.8 xlO18 2.7 X lO18 520 55 1.2 x 1020 実施例 5— D 3.9 lO18 4.6 XlO18 3.1 xlO18 500nm- 55 1.2 x 1020 実施例 6 - A 4.2X10" 5.5 lO18 1.4X10 470nm 55 1.2 xlO20 実施例 6— B 5.3 X1018 7.2 lO18 2.1 XlO18 550nm 55 1.2 XlO20 実施例 7 A 4.8 1018 4.2X 1018 1.3 ΐΟίβ 460nm 55 1.2 lO20 実施 B 4.2 lO18 5.2 lO18 1.6 XlO18 520 55 1.2 x 1020 実施 8 - A 4.5 1018 5.5 xlO18 1.2X 10,S lOOnm 55. 1.2 xlO20 実施例 8— B 4.5 xlO'8 , 5.5 lO18 . - 1.2 XlO18 90nm 55 1.2 x 1020 実施 8 - C • 4.¾ ΐ0 5.5 xlO18 1.2 lO18 lOOOnm , 55 1.2 XlO20 実施例 8—!) 4.5 xlO18 5.5 XlO18 1.2X 101'8 1020nm 55 1.2 XlO20 表 14
Figure imgf000070_0001
表 14の実施例 5の評価結果から、 光導電層側の極大値を 5 X1018個/ c m3以上にすることで、 帯電能が向上し、 極大値間の含有量を 2. 5 X 1 018個 / c m3以下にすることで、解像度の向上が図れることがわがる。極大値間の含 有量の最小値が 2. 5 X 1 018個 Zcm3よりも多くなると、 極大値が実質的に 1個と同じになり解像度改善の効果が見られない。
また、 実施例 6の結果から、 周期表 13族元素を極大領域となる形で含有さ せても、 本発明の効果は得られて、 すべての項目で比較例よりも向上すること がわかる。 さらに、 極大値を持つように含有させた方が、 より解像度が向上す ることがわかる。
実施例 7の結果から、 表面側の極大値よりも光導電層側の極大値を大きくし て、かつ光導電層側の極大値を 5 X 1018個ノ cm3以上にすることで、解像度、 帯電能が改善することがわかる。
実施例 8の結果から、 極大値間隔が 10 O nmよりも小さくなると、 極大値 が実質的に 1個と同じになり、そのために解像度、帯電能、残留電位の改善が、 ほとんど見られなくなる'。 さらに、 1000 nmよりも大きくなると、 解像度 や残留電位、 感度に改善効'果がやや低下してくることがわかる。 以上から、 周期表 13族元素の極大値を少な.くとも 2個有するようにするこ' とで、 解像度が向上し、 さらに光導電層側の極大値を 5X 1018個/ cm3より も大きくし、 極大値間隔を 100 nm以上 100 Onm以下にすることで、 帯 電能ゃ残留電位、 感度といった電気特性を改善することができる。 : く実施例 9 >
実施例 3と同様に、図 2に示したプラズマ CVD装置を用い、直径 84mm、 長さ 38 lmmの鏡面加工を施しだアルミニウムシリンダ一 (支持体) 上に、 表 15に示した条件で、 下部注入阻止層、 光導電層、 及び、 変化層、 表面層か らなる堆積膜を順次積層し、 感光体を製作した。
このとき、 変化層の S i H4ガス流量は漸減させる変化パターンで、 N2ガス 流量は漸増させる変化パターンでの組み合わせを種種変えて、 表面層と光導電 層を光学的に連続するように作製した。 それ以外の条件は、 実施例 3と同じ条 件で製作した。
作成した感光ドラムについて、 分光反射スペクトルを測定し、 光学的な連続 性を評価した。
分光反射スペクトルは、 入射光波長に対する反射率であり、 分光光度計 (大 塚竃子社製 MCPD— 2000) も用いて測定した反射率 (百分率) の値をさ す。 具体的には、 分光器の光源の分光発光強度 I (o) をとり、 次いで感光体 の分光反射光度 I (D) をとり、 反射率 R= I (D) /\ (o) を求めたもの である。
分光反射スペクトルの測定結果を図 8 A、 図 8 Bに示す。
作成した感光体を、 実施例 3と同様の評価を行った。
なお、 炭素原子の極大値は、 1. 7X 102D個/ cm3であり、 硼素原子の極 大値は、 光導電層側から、 7. 3X 1018個ノ c m - 6. 4X 1018個/ c m3 であった。 硼素原子 φ.極大値間隔は、 40 O nmであった。 また、 表面層の窒 素の量は NZ (S i +N) の表記で 69 a tm%であった。 評価結果は、 表 16に示す。
含有量は図 17に示すような極大値、 分布を有していた。
表 15
Figure imgf000072_0001
表 16
Figure imgf000072_0002
図 8 Aに、 実施例 9— Aから実施例 9—Dの分光反射スぺクトルを示す。 この 4丰の感光体の分光反射スぺクトルは、 波長 350 nmから 680 nm の範囲の反射率 (%) の最小値 (Mi n) と最大値 (Max) が 0%≤Max (%) ≤20%かつ 0≤ (Max— M i n) Z (100— Max) ≤0. 15 を満たしている。
また、 図 8Bには、 実施例 9— Eから実施例 9— Hの分光反射スペクトルが 示されているが、 上記条件範囲外となった感光体である。
表 16の結果から、 分光反射スペクトルを上 条件範囲内になるように、 光 導電層から表面層を光学的に連続するように作成することで、 電位ムラが向上 する事がわかった。 電位ムラの中でも特に、 露光 Λラが向上することが分かつ た。
また、 実施例 9以外の実施例では、 図 9に示すように、 感光体が、 反射率の 関係が条件範囲内になるように作製されている。
<実施例 10 >
実施例 3と同様に、図 2 こ示したプラズマ C V D装置を用い,、.直径 84 mm、 長さ 38 lmmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 17に示した条件で、図 1 Cに示した層構成となるように、下部注入阻止層、 光導電層、 及び、 変化層、 表面層からなる堆積膜を順次積層し、 感光体を製作 した。
このとき、 CH4ガスの流量を変えて、炭素原子の極大値の異なる感光体を作 製した。
それ以外の条件は、 実施例 3と同じ条件で製作した。
作成した感光体を、 実施例 3と同様の評価を行った。
含有量は図 18に示すような極大値、 分布となるようにした。 , なお、 炭素原子の極大値は、 9. 8X 1019個 Zcm3であり、 硼素原子の極 大値は、 光導電層側から、 7. 3X1018個 cm3、 6. 4X1 O180/cm3 であった。 硼-素原子の極大値間隔は、 300 nmであった。 また、 表面層の窒 素の量は NZ (S i +N) の表記で 48 a tm%であった。
評価結果は、 表 18に示す。 表 1 Ί
Figure imgf000074_0001
表 1 8
Figure imgf000074_0002
表 1 8と表 8の実施例 3を比較すると、 炭素原子の含有量が 1 . 0 X 1 0 2(1 個 Z c m3よりも少なくなると、 C L N性の改善がみられなくなるとが、解像度、 帯電能等は実施例 3と同様に良好な結果が得られた。
く実施例 1 1 >
実施例 3と同様に、図 2に示したプラズマ C VD装置を用い、直径 8 4 mm、 長さ 3 8 l mmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 1 9に示した条件で、図 1 Cに示した層構成となるように、下部注入阻止層、 光導電層、 及び、 変化層、 表面層からなる堆積膜を順次積層し、 感光体を製作 した。
このとき、変化層部分で C H4ガスの流量を変えて、 ·炭素原子の含有量が極大 値を持つようにした。 それ以外の条件は、 実施例 3と同じ条件で製作した。 作成した感光体を、 実施例 3と同様の評価を行った。 なお、炭素原子の極大値は、光導電層側から、. 1. 1 X 102,Zc.m3、 .1. 5 X 10個 Zcm3であり、 硼素原子の極大値は、 光導電層側から、 7. 1 X 1018i@/cm\ 6. 5 X 1018個 Z c m3であった。硼素原子の極大値間隔は、 28 Onmであった。 また、 表 層の窒素の量は Ν/· (S i + N) の表記で 4 8a tm%であった。
評価結果は、 表 20に示す。
含有量は図 19に示すような極大値、 分布となるようにした。
表 19
Figure imgf000076_0001
表 20
Figure imgf000076_0002
表 20から、 変化層部分と表面層部分に、 炭素原子の含有量が 1. 0 X 1 02°個 Z c m3以上のピークを 2個もつようにしても、 実施例 3と同様に全ての 特性で良好な結果が得られた。
<実施例 12>
実施例 3と同様に、図 2に示したプラズマ CVD装置を用い、直径 84mm、 長さ 38 lmmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 21に示した条件で、 図 1 Cに示した下部注入阻止層、 光導電層、 及び、 変 化層、 表面層からなる層構成となるように、 堆積膜を順次積層し、 感光体を製 作した。
表 21に示したように、 変化層での S i H4ガスの流量と N2ガスの流量をほ ぼ一定として、その部分で CH4ガスの流量を変えて、 炭素原子の含有量が極大 値を持つようにした。 それ以外の条件は、 実施例 3と同じ条件で製作した。 作成した感光体を、 実施例 3と同様の評価を行った。
なお、 炭素原子の極大値は、光導電層側から、 1. ひ X 102»個 Zc:m3、.'2. 2X 102fl個 Z cm3であり、 硼素原子の極大値は、 光導電層側から、 7. 1 X 1018f@/cm\ 6. 5X 1。 個 じ!^でぁった。硼素原子の極大値間隔は、 400 nmであった。 また、 表面層の窒素の量は NZ (S i +N) の表記で 4 8 a tm%であった。
評価結果は、 表 22に示す。
含有量は図 20に示すような極大値、 分布となるようにした。
表 21
Figure imgf000077_0001
表 22
Figure imgf000077_0002
表 22 ら、 変化層を一定層としても、 周期表 13族元素の含有率が膜の厚 さ方向で極大値を少なくとも 2つ持ち、 かつ炭素原子と酸素原子、 フッ素元素 の含有率が極大値を持つようにすることによって、 実施例.3と同様に全ての特 性で良好な結果が得られた。
<実施例 13 >
実施例 3と同様に、図 2に示したプラズマ CVD装置を用い、直径 84mm、 長さ 38 lmmの鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 23に示した条件で、 図 1 Cに示した下部注入阻止層、 光導電層、 及び、 変 化層、 表面層からなる層構成となるように、 堆積膜を順次積層し、 感光体を製 作した。
このとき、 下部注入阻止層を実施例 3の S i系から S i N系に変えた以外の 層構成は実施例 3と同じ構成とした。
変化層の窒素、 ボロン、 フッ素、 酸素および炭素の含有量の分布が、 図 21 に示すような極大値、 分布となるようにガス流量を制御し、 図 21に示す分布 が得られた。
ここで、 炭素原子の極大値は、 2. 8X 102個 Zcm3であり、 硼素原子の 極大値は、 光導電層側から、 9. 4X 1018個 Zcm3、 5. 2 X 1018個 Zc m3であった。 硼素原子の極大値間隔は、 480 nmであった。 また、 表面層の 窒素の量は (S i +N) の表記で 58 a tm%であった。 .
作成した感光体を、 実施例 3と同様の評価を行った。
評価結果は、 表 24に示す。 表 23
Figure imgf000079_0001
表 24
Figure imgf000079_0002
表 24から、 下部注入阻止層を S iN系にしても、 実施例 3と同様に全ての 特性で良好な結果が得られた。
[実施例 14]
図 2示したプラズマ CVD装置を用い、 直径 84mm、 長さ 38 lmmの鏡 面加工を施したアルミニウムシリンダー (支持体) 上に、 表 25に示した条件 で堆積膜を順次積層し、表面領域層が上部注入阻止層(T B L— 1 )、中間層、 上部注入阻止層(TBL— 2)表面保護層(Si)からなる感光体を作製した。 下部注入阻止層と光導電層は、 共通条件としてすベて表 25に示した条件で作 製し、 表面保護層は、 S iH4のガス流量、 S iH4tN2の混合比、 S i H4ガス 量あたりの電力量を表 26に示す条件で、 それ以外は表 25に示す条件で作製 し、 表面保護層中にお.ける窒素原子濃度が異なる感光体 14A〜14Hを作製 した。 このようにして製作した感光体 1 4 A〜l 4 Hについて、 実施例 1と同様の 評価を行った。
評価結果を表 2. 6に示した。
本実施例においても、 実施例 1と同様の結果がえられた。 即ち、 図 6に し たような分光感度のピーク値で規格化した指標で、 3 0 %以上の感度を有する ことが好ましく、 望ましくは 4 0 %以上の感度を有することがより好ましいこ とがわかった。
従って、 そのような感度を有する感光体としては、 表面保護層中の窒素原子 濃度は、 3 0 a t m%以上、 より好ましくは 3 5 a t m%以上とすることによ つて、 青色発光半導体レーザ一のような 4 0 5 n m付近の短波長レーザー光に 対する感度を有するという更なる効果を有することが明らかとなった。
その一方、表 2 6から明らかなように、感光体 1 4 Gでは膜厚ムラが大きぐ 表面保護層として使用する際には窒素濃度が高すぎないことが望ましいこと が分かった。.'このような観点において、 表面保護層中の窒素原子濃度は、 好ま しくは 7 0 a t m%以下、 より好ましくは 6 0 a t m%以下が好適であること がわかった。
表 2 5 下部注入 表面锾域層
ガス種及び流量 IS 光導電層
止層 TBL-1 中間層 TBL-2 SL ,
SiHL OmL/ min、normal ] 150 . 200 10 30 10 10〜50
H2 &D.L/miiw.noniial)] 600 1200 一 一 - ' ―
B2H6 [ppm (対 SiH^ ] - - 1000 ' . ― 500 ―
N2 [m L/m in(no rm al)] - 一 300 500 300 20〜脚 0
NO [%(対 SiH ] 8. - 一 一 一 一
CH4 LmL/min(normal)] 600 ― 10 10 50 10 支持体温度 rc] 270 260 260 260 220 220 圧力 ΰ¾] 75 7.8 52 50 52 50
RF電力 [W] 150 400 200 300 200 150~300 層 JfLtim] 2 30 0.1 0.2 0.1 0.6 表 26
Figure imgf000081_0001
[実施例 15]
図 2に示したプラズマ CVD装置を用い、 直径 84mm、 長さ 38 lmmの 鏡面加工を施したアルミニウムシリンダー (支持体) 上に、 表 27に示した条 件で堆積膜を順次積層し、 下部注入阻止層、 光導電層、 上部注入阻止層(TB L— 1)、 中間層、 上部注入阻止層(TBL— 2)、 及び表面保護層からなる感 光体を作製した。 下部注入阻止層と光導電層は、 共通条件としてすベて表 27 に示した条件で作製し、表面保護層は、 CH4のガス流量を表 28に示す条^で、 それ以外は表 27に示す条件で作製し、 表面保護層中における炭素原子濃度が 異なる感光体 15A〜15Hを作製した。 このようにして製作した感光体 15 A〜15Hについて、 実施例 2と同様に評価を行った。 このときレ ァレンス は感光体 15 Aとした。 測定結果は、 表 28に示す。
結果から明らかなように、 炭素原子を微量含有させることで、 表面領域層起 因の残留電位を低減できることがわかった。 この結果、 短波長露光の効果が得 られて解舉虔の向上が達成される。 その一方で、 含有させた炭素原子の量が多 くなると、 電位厶ラの感度のムラが大きくなる傾向が見られ、 また、 やや短波 長光の透過性が低下する傾向が見られた。 これは、 S i一 C結合が増加したた めと推測される。
表 2 7
Figure imgf000082_0001
) : 表 28参照
表 2 8
Figure imgf000082_0002
( * * )の測定値は限定限界と考えられる。
[実施例 1 6 ]
図 2に示したプラズマ C VD装置を用い、 直径 8 4mm、 長さ 3 8 l mmの 鏡面加工を施し ^アルミニウムシリンダー (支持体) 上に、 表 2 9に示した条 件で堆積膜を順次積層し、 下部注入阻止層、 光導電層、 及び、 表面領域層から なる感光体を作製した。 表 5に示すように、 表面領域層は第 1の上部注入阻止 層(TBL— 1)、 中間層、 第 2の上部注入阻止層(TBL— 2)および表面保護 層 (SL) とした。 また、 表面領域'層の形成途中で N2ガス、 B2H6ガス、 CH4 ガスの導入量を変化させた。
作製した感光体の表面領域層について、 実施例 1と同様にして、 S:IM.S測 定を行った。 窒素原子、 ホウ素原子、 炭素原子の含有量について、 図 25B、. 図 26 E、図 27 Bに示すピークを持つことが分かった。窒素原子の極大値は、 光導電層側から、 NZ (S ί +Ν) の表記で 38a tm%、 43a tm%であり、 ホウ素原子の極大値は、 光導電層側から、 6. 5 X 1
Figure imgf000083_0001
2. I X 1 0 is個 / c m3であり、炭素原子の極大値は 1. 0 X 1 020個 Zcm3であり、 窒素原子の極大値と最小値との間隔は 150 nmであり、 ホウ素原子の極大値 間隔は 300 nmであった。
表 29
Figure imgf000083_0002
得られた感光体を、 i RC6800— 405'nm改造機にセットして、 実施 例 3と同様以の評価を行った。 このときレファレンスは後述の比較例 2の感光 体とした。.評価結果は、 表 32に示す。
[比較例 2] '
実施例 16と同様にして、 表 30に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、.及び、 上部注入阻止層.、 表面層からなる感光体を作製 した。作製した感光体を、実施例 1と同様に S IMS測定を行った。窒素原子、 ホウ素原子の含有量は、 図 25E、 図 26.Fに示すピークを持つことが分かつ た。
製作した感光体について、 実施例 16と同様の評価を行った。 その結果を、 表 32に示す。
表 30
Figure imgf000084_0001
[実施例 17]
実施例 16と同様にして、 表 31に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL_ 1、 中間層、 TBL— 2、 SL)からなる感光体を製作した。表面領域層に NOガス、 SiF4ガス、を用いなか つた他は、 実施例 16と同様にして感光体を製作した。 作製した感光体の表面 領域層について、 実施例 1と同様にして、 S IMS測定を行った。 窒素原子、 ホウ素原子、 炭素原子の含有量について、 図 25B、 図 26E、 図 27 Bに示 すピークを持つことが分かった。 窒素原子の極大値は、 光導電層側から、 NZ (S i +N) の表記で 38 a tm%、 43 a tm%であり、 ホウ素原子の樺大 値は、 光導電層側から、 6. 5X 1018個 Z cm3, 2. 1 X 1018個/ c m3で あり、 炭素原子の極大値は、 . 1 . 0 X 1.0211個 Z c m3であり、 窒素原子の極大 値と最小値との間隔は、 1 5 O nmであり、 ホウ素原子の極大値間隔は、 3 0 0 nmであった。
作製した感光体について、 実施例 1 6と同様の光電特性の評価を佇った。. .評 価結果を、 実施例 1 6、 比較例 2合わせて表 3 2に示す。
表 3 1
Figure imgf000085_0001
表 3 2
Figure imgf000085_0002
上記の結果から明らかなように、 青色半導体レーザー (4'0 5 nm) で、 1 2 0 0 d p iの画像では、 解像度が向上した。 表面側層領域にホウ素原子、 及 び、 窒素原子の極大値を 2個持つようにし、 且つ、 炭素原子、 酸素原子及びフ ッ素原子の極大値を持つ実施例?のような表面領域層を用いると、 ドッ卜再現 性を向上させることができ、 本来のスポット径を絞った効果が十分に発揮され ることがわかった。 また、 実施例 1 6の表面領域層を持つ感光体は優れた光導 電特性を有することが分かった。
さらに、 酸素原子及びフッ素原子の極大値を持つように作成したほうが、 解 像度、 残留電位、 光メモリ及び CLN性が向上することが分かった。
[実施例 18]
実施例 16と同様にして、 表 33に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL— 1、 中間層、 TBL— 2、 SL.)からなる感光体を作製した。 表面領域層に導入する、 B2H6ガスの流量を変 化させた他は実施例 3と同様にして、 6種の感光体を作製した。 作製した感光 体の表面領域層について、 実施例 1と商様にして、 S IMS測定を行った。 窒 素原子、 ホウ素原子、 炭素原子の含有量について、 図 25B、 図 26 Cまたは 26B、 図 27 Aに示すピークを持つことが分かった。 窒素原子の極大値は、 光導電層側から、 N/ (S i + N) の表記で 38 a tm%、 43 a tm%であ り、 炭素原子の極大値は 1. OX 10 個 Zcm3であり、 窒素原子の極大値と 最小値との間隔は 1 Ί 5 nmであり、 ホウ素原子の極大値間隔は' 35 O.nmで あった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評価 結果を、 表 35に示す。
表 33
Figure imgf000087_0001
表 34
Figure imgf000087_0002
表 35
Figure imgf000087_0003
上記の結果から明らかなように、 最も光導電層側に位置する周期表第 13族 元素の極大値が、 5.0X 1018個/ cm3以上であると、解像度や帯電能に於いて、 更なる特性の向上が図られ、 周期表第 13族元素の隣接する 2つの極大値め間 に存在する周期表第 13族元素の最小値が、 2.5X 1018個/ cm3以下であると、 " 帯電能について、 更なる特性の向上が認められた。 また、 周期表第 13族元素 が、 極大領域として含まれていても、 ピークとして含まれている ¾合と同镲の 光電特性の効果が得られることが分かった。
[実施例 19]
実施例 16と同様にして、 表 36に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL_ 1、 中間層、 TBL— 2、 SL)からなる感光体を作製した。 表面領域層に導入する、 B2H6ガスの流量を 変化させた以外は実施例 1と同様にして感光体を作製した。 作製した感光体の 表面領域層について、 実施例 1と同様にして、 S IMS測定を行った。 ホウ素 原子の含有量について、 図 26 Dに示すピークを持つことが分かった。 窒素原 子の極大値は、 光導電層側から、 NZ (S i +N) の表記で 38 a tm%、 4 3 a tm%であり、 ホウ素原子の極大値は、 光導電層側から、 4. 0X10,18 個/ cm3、 6. 0 X 1018個 Zcm3であり、 炭素原子の極大値は 1. 0 X 1 02Q個/ cm3であり、 窒素原子の極大値と最小値との間隔は 9.0 nmであり、 ホウ素原子の極大値間隔は 180 nmであった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 37に示す。
表 36
Figure imgf000089_0001
表 37
Figure imgf000089_0002
上記の結果から明らかなように、 表面領域層に含まれる 2つの周期表第 13 族元素極大値のうち、 自由表面側の極大値が大きくなるように含有させた場合 においても、 特性の改善が見られ、 特に、 電位ムラ、 光メモリ、 透過性、 CL N性、 画像欠陥の点において、 特性の改善が見られることがわかった。
[実施例 20]
実施例 16と同様にして、 表 38に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL— 1、 中間層 >て BL— 2、 SL)からなる感光体を作製した。 表面領^層のうち中間層の成膜時間を変化 させ、 表面領域層に含まれる 2つの周期表第 13族元素極大値の極大値間距離 を変化させた他は実施例 16と同様にして 5種の感光体を作製した。 作製した 感光体の表面領域層について、実施例 1と同様にして、 S I MS測定を行った。 窒素原子の極大値は、光導電層側から、 N/(S i +N)の表記で 38 a tm%, 43 a tm%であり、 ホウ素原子の極大値は、 光導電層側から、 6. 5 X 1 018個 Zcm3、 2. 1 X 1018個 Zcm3であり、 炭素原子の極大値は 1. 102°個/ cm3であった。 '
作製した感光体について、 実施例 3と同様に光電特性の評価を行った。 評 結果を、 表 40に示す。
表 38
Figure imgf000090_0001
表 39
Figure imgf000090_0002
表 40·
Figure imgf000090_0003
上記の結果から明らかなように、 表面領域層に含まれる 2つの周期表第 13 族元素極 値の極大値間距離は、.膜の厚さ方向で 100 nm以上 1000 nm 以下の範囲にあることが'、 解像度や帯電能、 残留電位、 感度の点からより好ま しいことが分かる。 [実施例 21]
実施例 16と同様にして、 表 41に示した条件で堆積膜を順^積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL— 1、 中間層、 TBL— 2、 SL)からなる感光体を作製した。 表面領域層の中間層に導入する、 N2ガスの 流量を変化させ、 表 42にしめしたように表面領域層に含まれる窒素原子含有 率の極大値と最小値との比 (極大地/最小値)、,及び、 窒素原子含有率の分布を 変化させた他は実施例 16と同様にして、 5種の感光体を作製した。 作製した 感光体の表面領域層について、実施例 1と同様にして、 S I MS測定を行った。 窒素原子の極大値は、光導電層側から、 N/(S i +N)の表記で 38 a tm%、 43 a tm%であり、 ホウ素原子の極大値は、 光導電層側から、 6. 5X 1 018個 (:1113、 2. 1 X 1018個 Zcm3であり、 炭素原子の極大値は 1. Ό X 102°個/ cm3であり、 窒素原子の極大値と最小値との間隔は 150 nmであ り、 ホウ素原子の極大値間隔は、 300 nmであった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 43に示す。
表 41 下部注入 表面锾域層
ガス蘀及び流量 光導電層
RS止層 TBL-1 中間層 TBL-2 SL
SiH4 LmL/mim.normal)] 170 170 20 50 20 50
H2 [mL/min(norma ] 600 1000 ― 一 - -
B2H6 [ppm (対 SiH^)] - - 1000 - 1000
N2 [mL/min(normal)] 一 - 600 可変 600 - 1000
CH4 OnL/min(normal)] 300 ' - 10 10 50 10
NO [% (対 SiH4>] 5 - 2 2 5 2
SiF4 QnL/ min(normal)] - ― 8 8 20 8 支持体温度 c] 270 260 260 260 220 220 庄カ CPa] 80 75 52 50 52 50 '
RF電力 [W] 200 400 200 - 300 . 200 300
2.5 30 0.1 0.2 0.1 0.6 表 42
Figure imgf000092_0001
表 43
Figure imgf000092_0002
上記の結果から明らかなように、 表面領域層に含まれる窒素原子含有率の極 大値と最小値との比は、 1. 10以上であることが、 画像欠陥の点からより好 ましいことが分かる。 また、 窒素原子は、 一定部を持つような極大領域として 含まれていても、 ピ一クとして含まれている場合と同様の効果を得られること が分かった。 ,,
[実施例 22]
実施例 16と同様にして、 表 44に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL— 1、 中間層、 TBL— 2、 SL)からなる感光体を作製した。 表面領域層の中間層および第 2の上部阻止 層 (TBL— 2) の成膜時間を変化させ、 隣接する 2つの窒素原子極大値間の 最小値と光導電層側の極大値との距離を変化させた他は実施例 16と同様に して、 6 aの感光体を作製した。.作製した感光体の表面領域層について、 実施 例 1と同様にして、 S IMS測定を行った 窒素原子の極大値は、 光導電層御 J から、 NZ (S i +N) の表記で 38 a tm%、 43 a tm%であり、 ホウ素 原子の極大値は、 光導電層 から、 6. 5 X 1.018個ノ cm3, 2. 1 X1018 個 Z cm3であり、 炭素原子の極大 ί直は 1. 0X102()個 Zcm3であった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 46に示す。
表 44
Figure imgf000093_0001
*光導電側の極大値と瞵接する極大値間にある最小値との間の距離が、 表 45の値になるように、 成膜時間を調整して各層の膜厚を変化させた。
表 45
Figure imgf000093_0002
上記の結果から明らかなように、 表面領域層に含まれる隣接する 2つの窒素 原子極大値の極大値間の最小値と光導電層側の極大値と間距離は、 膜の厚さ方 向で 40 nm以上 300 um以下の範囲にあることが、 画像欠陥の点からより好ま しいことが分かる。
[実施例 23]
実施例 16と同様にして、 表 47に示した条件で堆積膜を順次積層し、 ^部 注入阻止層、 光導電層、 及び、 表面領域層(T B L— 1、 中間層、 T B L— 2、 ' S L )からなる感光体を製作した。表面領域層に導入する B 2H6ガスの流量を変 化させ、 表面領域層の全域にわたって周期表第 13族先素を含ませた上で、 周 期表第 13族元素が 2つの極大値を持つようにした他は実施例 16と同様に して感光体を作製した。 作製した感光体の表面領域層について、 実施例 1と同 様にして、 S IMS測定を行った。 ホウ素原子の含有量について、 図 26Cに 示すピークを持つことが分かった。 窒素原子の極大値は、 光導電層側から、 N / (S i +N) の表記で 38 a tm%、 43 a tm%であり、 ホウ素原子の極 大値は、 光導電層側から、 6. 5 X 10,8ii/cm3, 2. 1 X 1018i@/cm3 であり、 炭素原子の極大値は 1. 0X102D個 Zcm3であり、 窒素原子の極大 値間隔は 150 nmであり、 ホウ素原子の極大値間隔は 300 nmであった。 作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 48に示す。
表 47
Figure imgf000095_0001
表 48
Figure imgf000095_0002
上記の結果から明らかなように、 表面領域層のすべてに周期表第 13族元素 を含ませた上で、 周期表第 13族元素が 2つの極大値を持つような場合におい ても、 評価した全項目で光電特性の改善が見られることが分かつた。
[実施例 24]
実施例 16と同様にして、 表 49に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL - 1、 中間層 >TBL— 2、 SL)からなる感光体を作製した。 表面領域層に導入する N2ガス 流量、 B2 H6ガスの流量を変化させ、表面領域層において窒素原子の含有率と周期表第 1 3族元素含有率元素の含有率が同位相でピークを持つようにした他は実施例 16と同様にして感 体を作製した。 作製した感光体の表面領域層について、 実施例 1と同様にして、 S IMS測定を行った。 窒素原子とホウ素原子の含有 量について、図 24に示すピークを持つことが分かった。窒素原子の極大値.は、 光導電層側から、 NZ (S i +N) の表記で 38 a tm%、 43 a tm%であ り、 ホウ素原子の極大値は、 光導電層側から、 .6. 5X 10i8l@/c m3, 2. 1 X 1 018個 Z c m3であり、 炭素廐子の極大値は 1. 0 X 1 02。個/ c m3であ り、 窒素原子の極大値と最小値との間隔は 15 Onmであり、 ホウ素原子の極 大値間隔は、 50 Onmであった。
作製した感光体について、 実施例 1 6と同様に光電特性の評価を行った。 評 価結果を、 表 50に示す。
表 49
Figure imgf000096_0001
表 50
Figure imgf000096_0002
上記の結果から明らかなように、 表面領域層において周期表第 1,3族元素含 有率と窒素元素の含有率が同位相でピークを持つような場合には、 画像欠陥以 外で特性の改善が見られることが分かった。
[実施例 25]
実施例.16と同様にして、 表 51に示した条件で堆積膜を順次積層し、 下部 注入阻止層、' 光導電層、 及び、 表面領域層(TBL— 1、 中間層、 TBL— 2、 SL)からなる感光体を作製した。 表面保護層 (SL) 側の上部電荷注入阻止" 層 (TBL— 2) に導入する、 CH4ガスの流量を変化させて: 表面領域層にお' ける炭素原子含有率の極大値を変化させた他は実施例 16と同様にして 4種 の感光体 ¾作製した。 作製した感光体の表面領域層について、 実施例 1と同様 にして、 S IMS測定を行った。 窒素原子の極大値は、 光導電層側から、.
(S i +N) の表記で 38 a tm%、 43 a t m%であり、 ホウ素原子の極大 値は、 光導電層側から、 6. 5X 1018個/ cm3、 2. 1 X 1018個 Zcm3で あり、 炭素原子の極大値は 1. OX 102D個/ cm3であり、 窒素原子の極大値 と最小値との間隔は 150 nmであり、 ホウ素原子の極大値間隔は 300 nm であった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 53に示す。
表 51
Figure imgf000097_0001
表 52 感光休 25A 25B 25C 25D 炭素原子の極大値 (個 m3) 1.5X10'7 2.5X10' 7 4.6X1018 8.3X1019 表 53
Figure imgf000098_0001
上記の結果から明らかなように、 表面領域層に含まれる 2つの炭素原子の極 大値が、 2. 5Χ 10'8個/ cm3以上であることが、 残留電位、 CLN性の点から より好ましいことが分かる。
[実施例 26]
実施例 16と同様にして、 表 54に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及ぴ、 表面領域層(TBL— 1、 中間層、 TBL— 2、 SL)からなる感光体を製作した。 表面領域層に導入する CH4ガスの流量や成 膜時間を変化させ、 2つ極大値を持つようにした他は実施例 16と同様にして 感光体を作製した。 作製した感光体の表面領域層について、 実施例 1と同様に して、 S IMS測定を行った。 炭素原子の含有量について、 図 27 Cに示すピ —クを持つことが分かった。 窒素原子の極大値は、 光導電層側から、 NZ (S i +N)の表記で 38 a tm%、 43 a t m%であり、ホウ素原子の極大値 、 光導電層側から、 6. 5 X 1 Ol8f@/cm3, 2. 1 X 1018個ノ c m3であり、 炭素原子の極大値は、 光導電層側から、 1. Ι,Χ 102°個/ cm3、 1. 5X 1 02°個 Z cm3であり、窒素原子の極大値と最小値との間隔は 15 On. mであり、 ホウ素原子の極大値間隔は 30 Onmであった。
作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 55に示す。 表 54
Figure imgf000099_0001
表 55
Figure imgf000099_0002
上記の結果から明らかなように、 表面領域層において炭素原子含有率^、 2 つ極大値を持つような感光体の場合においても、 評価した全項目で特性の改善 が見られることが分かった。
[実施例 27]
' 実施例 16と同様にして、 表 56に示した条件で堆積膜を順次積層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層(TBL— 1、 中間層、 TBL— 2、 S L)からなる感光体を作製した。 下部注入阻止層に導入する N2ガ の流量を 変化させ、 下部注入阻止層に窒素原子を導入した他は実施例 16と同様にして 感光体を作製した。 作製した感光体の表面領域層について、 実施例 1と同様に して、 S IMS測定を行った。窒素原子の極大値は、光導電層側から、 (S i +N)の表記で 38 a tm%、 43 a tm%であり;ホウ素原子の極大値は、 光導電層側から、 6. .5 X 1018個/ cm3, 2. 1 X 1018個 Z c m3であり、 炭素原子の極大値は 1. 0X 102(1個 Z c m3であり、 窒素原子の極大値と最小 値間隔は 150 nmであり、 ホウ素原子の極大値間隔は 300 nmであった。 · 作製した感光体について、 実施^ 16と同様に光電特性の評価を行った。 評 価結果を、 表 57に示す。
表 56
Figure imgf000100_0001
表 57
Figure imgf000100_0002
上記の結果から明らかなように、 下部注入阻止層に窒素原子を導入した 合 においても、 評価した全項目で特性の改善が見られることが分かった。
[実施例 28]
実施例 16と同様にして、 表 58に示した条件で堆積膜を順次積,層し、 下部 注入阻止層、 光導電層、 及び、 表面領域層 (変化層、 TBL— 1、 中間層、 TB L— 2、 SL)からなる感光体を製作した。 表面領域層の初めに変化層を導入 し、 ガス流量を変化させることで光導電層と第 1の上部注入阻止層(T B L— 1)を光学的に連続するように他は実施例 16と同様にして感光体を作製した。 作製した感光体の表面領域層について、 実施例 1と同様にして、 S IMS測定 を行った。 窒素原子の極大値は、 光導電層側から、 NZ (S i +N) の表記で 38 a tm%、 43 a t m%であり、ホウ素原子の極大値は、光導電層側から、 6. 5X 1018個 Zcm3、 2. 1 X 1018個 Zcm3であり、 炭素原子の極大値 は 1. 0X 10 n< c m3であり、 窒素原子の極大値と最小値との間隔は 15 Onmであり、 ホウ素原子の極大値間隔は 300 nmであった。
作製した感光ドラムについて、 分光反射スペクトルを測定し、 光学的な連続 性を評価した。 分光反射スペクトルは、 入射光波長に対する反射率であり、 分 光光度計 (大塚電子社製 MCPD— 2000) を用いて測定した反射率 (百分 率) の値をさす。 具体的には、 分光器の光源の分光発光強度 I (o) をとり、 次いで感光体の分光反射光度 I (D) をとり、 反射率 R=I (D) /\ (o) を求めたものである。 感光体 28 A〜 28 Dの分光反射スペクトルの測定結果 を図 28 A及び 28 Bに、 感光体 28E〜28 Hの分光反射スぺクトルの測定 結果を図 28 C及び 28 Dに示す。
感光体 28A〜28Dは、 波長 350 nmから 68 Onmの範囲の反射率 (%)の最小値 (Mi n) と最大値 (Max) が 0%≤Max (%) ≤20%か つ 0≤ (Max— M i n) / (100— Max) ≤ 0.15を満たしており、 感光体 28 Ε〜2 δΗは波長 350 nmから 680 nmの範囲の反射率(%) の最小値 (Mi n) と最大値 (Max) が上記関係を満たしていなかった ^ 作製した感光体について、 実施例 16と同様に光電特性の評価を行った。 評 価結果を、 表 59に示す。
表 58
Figure imgf000102_0001
, 上記の結果から、 光導電層から上部注入阻止層を光学的に連続とし、 波長 3 50 nmから 680 nmの範囲の反射率(%)の最小値 (M i n) と最大値 (M ax) が上記関係を満たしている感光体は、 電位ムラが改良し、 特.に、 電位ム ラの中の露光ムラによる電位ムラが改良されることが分かつた。 実施例 1〜 2 8の感光体は、 波長 350 nmから 680 nmの範囲の反射率(%)の最小値 (M i n) と最大値 (Max) が上記関係を満たしていた。
本実施例は、 全てアモルファスで行なったが、 多結晶膜であっても同様の効 果が得られることは明ちかである。 この出願は 200·4年 12月 10日に出願された日本国 許出願番号第 2 004-358096及び 200 '4年 12月 10日に出願された日本国特許 出願番号第 2004-358098からの優先権を主張するものであり、 その 内容を引用してこの出願の一部とするものである。 ·

Claims

請 求 の 範 囲
1 . 導電性基体上に、 少なくともシリコン原子を母材とする非単結晶シリ コン膜で構成される光導電層と、 前記光導電層上に積層されたシリコ :ン原 と 窒素原子を母材とし、 少なくとも一部に周期表 1 3族元素と炭素原子を含有し た非単結晶窒化シリコン膜からなる表面領域層を有する電子写真感光体にお いて、 前記表面領域層内に、 構成原子の総量に対する周期表 1 3族元素の含有 率が膜の厚さ方向で極大値を少なくとも 2つ持つた分布を有することを特徴 とする電子写真感光体。
2 . 前記表面領域層内に構成原子の総数に対する窒素原子の含有率の厚さ 方向における極大値または'極大値が一定の領域に一定の幅を持って存在する 極大領域を少なくとも 2つ持つことを特徴とする請求項 1に記載の電子写真 感光体。
3 . 前記表面領域層内の炭素原子の含有率が、 膜の厚さ方向で極大値を少 なくとも 1つ持った分布を有することを特徴とする請求項 1または請求項 2 に記載の電子写真感光体。
4. 前記表面領域層内において、炭素原子の含有量が前記極大値におい.て、 2 . O X 1 0 17個 c m3以上
5 . 0 X 1 02(1個/ c m3以下であることを特徴と する請求項 3に記載の電子写真感光体。 - 5 . 前記表面領域層が、 構成原子の総数に対する窒素原子の含有率の厚さ 方向における極大値と周期表第 1 3族元素の含有率の厚さ方向における極大 値を、 交互に有することを特徴とする請求項 2乃至請求項 4のいずれか 1項に 記載の電子写真感光体。
6. 前記表面領域層が、 構成原子の総数に対する窒素原子の含有率の厚さ 方向における極大値と周期表第 1 3族元素の含有率の厚さ方向における極大 値とを、 前記光導電層から自由表面側に向かって、 周期表第 1 3族元素の含有 率の極大値、 窒素原子の含有率の極大値の順に有することを特徴とする請求項
' 5記載の電子写真感光体。 ' .
7. 前記周期表 13族元素の含有率の隣接する 2つの極大値間の距離が、 1 0.0 nm以上 1000 nm以下の範囲にあることを特徴とする請求項 1乃 5 至請求項 6のいずれかに 1項に記載の電子写真感光体。
8. 前記周期表 13族元素の最も光導電層側に位置する極大値における含 有量が 5. 0X 1018個 Z c m3以上であり、 前記最も光導電層側に位置する極 大値と隣接する極大値間の前記周期表 13族元素の含有量の最小値が 2. 5 X 1 018個 Z c m3以下であることを特徴とする請求項 1乃至請求項 Ίのいずれか0 1項に記載の電子写真感光体。
9. 前記周期表 13族元素の含有率は、 最も光導電層側に位置する極大値 が最大であることを特徴とする請求項 8に記載の電子写真感光体。
10. 前記表面領域層の一定領域における窒素原子の平均濃度 (N/ (S i +N) .) (a tm%) が、 30 a t m%≤Nノ (S i +N) ≤ 70 a t m%5 を満たす請求項 1乃至請求項 9のいずれか 1項に記載の電子写真感光体。
1 1. 前記表面領域層が、 シリコン原子と窒素原子の組成比が変化してい る変化層と組成比が一定な表面層とからなることを特徴とする請求項 1乃至 請求項 10のいずれか i項に記載の電子写真感光体。
12. 前記電子写真感光体は、 波長 350 nm以上 680 nm以下の範囲0 の反射率 (%) の最小値 (Mi n) と最大値 (Max) とが 0%≤Max (%)
≤20%かっ0≤ (Max-M i n) / (100—Max) ≤0. 15を満た すことを特徴とする請求項 1乃至請求項 1 1のいずれか 1項に記載の電子写 真感光体
13. 前記表面領域層内の構成原子の総量に対する酸素原子及び Zまたは5 フッ素原子の含有率が虞の厚さ方向で極大値を少なくとも一つ持つことを特 徴とする請求項 1から請求項 12のいずれかに記載の電子写真感光体。
14. 表面領域層において、 構成原子の総数に対する窒素原子の含有率の 厚さ方向における隣接する 2つの極大値のうち光導電層側の極大値と、 2つの 極大値間の最小値との間の距離が 40 nm以上 300 nm以下であることを 特徴とする請求項 2乃至請求項 13のいずれか 1項に記載の亀子写真感光体。
15. 前記表面領域層において、 窒素原子の含有率の厚さ方向における極' 大値が、 NZ (S i +N) ≥30 a t om%の関係式を満足し、 かつ極大値間 に存在する最小値の 1 10%以上であることを特徴とする請求項 2から請求 項 14のいずれか記載の電子写真感光体。
PCT/JP2005/023188 2004-12-10 2005-12-12 電子写真感光体 WO2006062260A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/396,798 US7255969B2 (en) 2004-12-10 2006-04-04 Electrophotographic photosensitive member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-358096 2004-12-10
JP2004-358098 2004-12-10
JP2004358096 2004-12-10
JP2004358098 2004-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/396,798 Continuation US7255969B2 (en) 2004-12-10 2006-04-04 Electrophotographic photosensitive member

Publications (1)

Publication Number Publication Date
WO2006062260A1 true WO2006062260A1 (ja) 2006-06-15

Family

ID=36578060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023188 WO2006062260A1 (ja) 2004-12-10 2005-12-12 電子写真感光体

Country Status (2)

Country Link
US (1) US7255969B2 (ja)
WO (1) WO2006062260A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260517A1 (en) * 2007-08-29 2010-10-14 Kyocera Corporation Electrophotographic Photosensitive Body and Image Forming Device Having an Electrophotographic Photosensitive Body
US8088543B2 (en) * 2008-01-07 2012-01-03 Canon Kabushiki Kaisha Electrophotographic photosensitive member and electrophotographic apparatus
EP2282234B1 (en) * 2008-05-21 2015-08-19 Canon Kabushiki Kaisha Electrophotographic photoreceptor for negative electrification, method for image formation, and electrophotographic apparatus
JP5121785B2 (ja) * 2008-07-25 2013-01-16 キヤノン株式会社 電子写真感光体および電子写真装置
JP4580028B2 (ja) * 2008-07-25 2010-11-10 キヤノン株式会社 画像形成方法及び画像形成装置
JP4612913B2 (ja) * 2008-12-26 2011-01-12 キヤノン株式会社 画像形成方法
JP4599468B1 (ja) 2009-04-20 2010-12-15 キヤノン株式会社 電子写真感光体および電子写真装置
JP5607499B2 (ja) * 2009-11-17 2014-10-15 キヤノン株式会社 電子写真感光体および電子写真装置
JP5653186B2 (ja) * 2009-11-25 2015-01-14 キヤノン株式会社 電子写真装置
JP5675289B2 (ja) * 2009-11-26 2015-02-25 キヤノン株式会社 電子写真感光体および電子写真装置
JP5675287B2 (ja) * 2009-11-26 2015-02-25 キヤノン株式会社 電子写真感光体および電子写真装置
JP5675292B2 (ja) * 2009-11-27 2015-02-25 キヤノン株式会社 電子写真感光体および電子写真装置
JP5777419B2 (ja) 2010-06-28 2015-09-09 キヤノン株式会社 電子写真感光体および電子写真装置
JP6546353B2 (ja) * 2016-09-14 2019-07-17 富士フイルム株式会社 評価システム及び評価方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632062A (ja) * 1986-06-23 1988-01-07 Canon Inc 超薄膜積層構造を有する光受容部材
JPH01289963A (ja) * 1988-05-17 1989-11-21 Konica Corp 感光体
JP2002023401A (ja) * 2000-07-12 2002-01-23 Canon Inc 光受容部材及びそれを用いた電子写真装置
JP2004133399A (ja) * 2002-08-09 2004-04-30 Canon Inc 電子写真感光体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150532A (ja) 1991-12-02 1993-06-18 Hitachi Koki Co Ltd アモルフアスシリコン感光体の作製方法
JPH08171220A (ja) 1994-12-15 1996-07-02 Fuji Xerox Co Ltd 電子写真感光体及びその製造方法
JP2000258938A (ja) 1999-03-10 2000-09-22 Fuji Xerox Co Ltd 画像形成装置
JP2002311693A (ja) 2001-04-12 2002-10-23 Canon Inc 電子写真装置
EP1811343B1 (en) * 2001-04-24 2009-02-25 Canon Kabushiki Kaisha Negative-charging electrophotographic photosensitive member
EP1388761B1 (en) * 2002-08-09 2006-10-25 Canon Kabushiki Kaisha Electrophotographic photosensitive member
JP2005062846A (ja) * 2003-07-31 2005-03-10 Canon Inc 電子写真感光体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632062A (ja) * 1986-06-23 1988-01-07 Canon Inc 超薄膜積層構造を有する光受容部材
JPH01289963A (ja) * 1988-05-17 1989-11-21 Konica Corp 感光体
JP2002023401A (ja) * 2000-07-12 2002-01-23 Canon Inc 光受容部材及びそれを用いた電子写真装置
JP2004133399A (ja) * 2002-08-09 2004-04-30 Canon Inc 電子写真感光体

Also Published As

Publication number Publication date
US7255969B2 (en) 2007-08-14
US20060194131A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2006062260A1 (ja) 電子写真感光体
WO2006062256A1 (ja) 電子写真感光体
WO2006049340A1 (ja) 電子写真感光体
WO2006049327A1 (ja) 電子写真感光体及びこれを用いた電子写真装置
US7211357B2 (en) Electrophotographic photosensitive member
JPWO2009142164A1 (ja) 負帯電用電子写真感光体、画像形成方法および電子写真装置
JP2002123020A (ja) 負帯電用電子写真感光体
JP2003337437A (ja) 負帯電用電子写真感光体およびそれを用いた電子写真装置
JP2006189823A (ja) 電子写真感光体
JP4683637B2 (ja) 電子写真感光体および電子写真装置
JP2006189822A (ja) 電子写真感光体
US5945241A (en) Light receiving member for electrophotography and fabrication process thereof
JP2002091040A (ja) 電子写真感光体及び電子写真装置
JPH09311495A (ja) 光受容部材
JP4235593B2 (ja) 電子写真用光受容部材
JP3862334B2 (ja) 電子写真用光受容部材
JP3606395B2 (ja) 電子写真用光受容部材
JP2000171995A (ja) 電子写真用光受容部材
JP2010102131A (ja) 画像形成方法
JP2006133522A (ja) 電子写真感光体
JP2002236379A (ja) 電子写真用光受容部材およびそれを用いた電子写真装置
JPH1165146A (ja) 電子写真用光受容部材
JP2001324828A (ja) 電子写真感光体とその作製方法及び装置
JP2006163219A (ja) 電子写真感光体
JP2002116569A (ja) 電子写真用光受容部材および電子写真装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11396798

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11396798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816556

Country of ref document: EP

Kind code of ref document: A1