WO2006056673A1 - Procede et installation de fabrication de recipients - Google Patents

Procede et installation de fabrication de recipients Download PDF

Info

Publication number
WO2006056673A1
WO2006056673A1 PCT/FR2005/002826 FR2005002826W WO2006056673A1 WO 2006056673 A1 WO2006056673 A1 WO 2006056673A1 FR 2005002826 W FR2005002826 W FR 2005002826W WO 2006056673 A1 WO2006056673 A1 WO 2006056673A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
blank
heating unit
heating
installation according
Prior art date
Application number
PCT/FR2005/002826
Other languages
English (en)
Inventor
Guy Feuilloley
Luc Desoutter
Original Assignee
Sidel Participations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations filed Critical Sidel Participations
Priority to MX2007006152A priority Critical patent/MX2007006152A/es
Priority to JP2007542034A priority patent/JP4555344B2/ja
Priority to US11/667,958 priority patent/US20080099961A1/en
Priority to CN2005800399913A priority patent/CN101060970B/zh
Priority to EP05817444.2A priority patent/EP1824659B1/fr
Publication of WO2006056673A1 publication Critical patent/WO2006056673A1/fr
Priority to US12/432,824 priority patent/US8303290B2/en
Priority to US12/560,417 priority patent/US20100007061A1/en
Priority to US12/561,198 priority patent/US8354051B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • B29B13/024Hollow bodies, e.g. tubes or profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6445Thermal conditioning of preforms characterised by temperature differential through the preform length
    • B29C49/645Thermal conditioning of preforms characterised by temperature differential through the preform length by cooling the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • B29C49/6835Ovens specially adapted for heating preforms or parisons using reflectors

Definitions

  • the invention relates to the manufacture of containers.
  • It relates more particularly to a process, as well as an installation, for the manufacture of containers - in particular bottles - from blanks of thermoplastic material.
  • Such a method comprises a first step during which the blanks are heated, within an appropriate heating unit, then a second step during which the blanks are introduced hot into a blow molding or stretch-blow molding unit. multiple to be made into containers.
  • the containers thus formed will be directed either to a storage unit while waiting to be filled later, or directly to a filling unit.
  • a container blank includes a neck, intended to receive the cap closing the unborn container and already having its final dimensions, extended by a body whose shaping will lead to the container itself.
  • the blanks are generally heated in an oven equipped with a battery of tubular halogen lamps in front of which the blanks pass, while being rotated on themselves. More specifically, an oven contains several elementary modules, each containing several lamps, each of the lamps being controlled individually so that, ultimately, at the outlet of the oven, the temperature of the body of each of the blanks is higher than the glass transition temperature of their constituent material and that a heating profile is obtained on each blank, which profile is predetermined so that the distribution of the material is optimized on the container to be obtained.
  • This heating mode has a certain number of drawbacks.
  • the heating profile i.e. the temperature curve measured over the length of the blank
  • the radiation from the lamps interferes, so it is unrealistic to want to precisely regulate the intensity of the radiation accumulated at a given distance from the lamps.
  • the process according to the invention for manufacturing a container from a blank made of thermoplastic material comprises:
  • an installation for the manufacture of containers from blanks made of thermoplastic material which comprises a unit for heating blanks with a view to forming the containers from blanks thus heated.
  • the installation defines a path intended to be followed by the blanks within the heating unit, which comprises at least one source of coherent electromagnetic radiation directed towards an area located on the path of the blanks.
  • the beam of electromagnetic radiation (such as a laser emitted for example by a laser diode) is preferably directed towards the body of the blank.
  • the radiation is preferably emitted in the short infrared, in other words at a wavelength between 700 nm and 1600 nm approximately.
  • the heating of the blank is preferably carried out by means of a plurality of adjacent and / or superimposed beams of electromagnetic radiation.
  • the heating can be carried out by means of a plurality of juxtaposed and / or superimposed laser diodes, for example in the form of one or more bars.
  • the or each beam can be linear, or planar; it is for example directed in a predetermined general direction, while the blank is made to follow, at least locally, a path is substantially perpendicular, or substantially parallel to the direction of the beam.
  • the blank is preferably driven in rotation about a predetermined axis, for example coincident with an axis of revolution of the blank, in order to obtain a uniform heating around the circumference thereof.
  • the neck of the blank can be ventilated in order to evacuate the overflow of hot air.
  • the beam undergoes at least one reflection on a reflecting surface.
  • the heating unit includes for example an enclosure comprising first and second facing walls substantially parallel to the path of the blanks, placed on either side thereof and jointly delimiting an internal volume, the first wall being provided with a plurality of parallel slots superimposed opposite each of which is placed, on the side opposite the internal volume, a row of radiation sources.
  • the second wall at least has, on the side of the internal volume, a reflecting internal surface.
  • the heating unit may include a ventilation system capable of generating a flow of air passing through an area located directly above said enclosure.
  • the installation comprises two successive heating units of this type.
  • the heating unit comprises a plurality of successive enclosures arranged along the path, each enclosure having two opposite cylindrical walls arranged on either side of the path and jointly defining an internal cavity, each wall having several adjacent reflecting facets facing the cavity, the source of electromagnetic radiation being directed towards one of these facets.
  • the heating unit includes, for example, an opaque screen adjacent to one of the facets, to absorb the beam after it has undergone several reflections on the facets.
  • the heating unit preferably comprises means for driving the blanks in rotation about their axis of revolution.
  • Figure 1 is a schematic view of an installation for the manufacture of containers from blanks of thermoplastic material
  • Figures 2 and 3 are perspective views of a block and an array of laser diodes which can, optionally, equip an installation according to the invention
  • Figure 4 is a schematic perspective view showing the internal structure of an array of laser diodes
  • FIG. 5 is a diagram illustrating the comparative efficiency of three different laser sources for heating a PET;
  • - Figure 6 is a schematic perspective view illustrating a heating unit for a container manufacturing installation, according to a first embodiment;
  • Figure 7 is a sectional elevation view illustrating the heating unit of Figure 6;
  • Figure 8 is a schematic perspective view showing a container blank exposed to a laser beam in a heating unit as shown in Figure 7;
  • - Figure 9 is a schematic perspective view illustrating a heating unit for a container manufacturing installation, according to a second embodiment;
  • Figure 10 is a schematic perspective view similar to Figure 9, also illustrating a heating unit, according to a variant of the second embodiment;
  • FIG. 11 is a schematic plan view from above illustrating a heating unit for an installation for manufacturing containers, according to a third exemplary embodiment
  • Figure 12 is a top plan view, on a larger scale, of a detail of the heating unit shown in Figure 11
  • FIG. 13 is a view illustrating in perspective the detail shown in FIG. 12.
  • Figure 1 an installation 1 for manufacturing containers, such as bottles, from blanks 2, here preforms, of thermoplastic material.
  • blanks 2 here preforms, of thermoplastic material.
  • blank covers not only a preform, but also any intermediate piece between the preform and the final container.
  • Certain methods in fact comprise two successive forming steps, namely a first step of forming an intermediate container from the preform, then, after a certain period of time, a second step of forming the final container from the container intermediate.
  • a preform 2 in the form of a preform is shown on a large scale in FIG. 8. It is a molded part in the form of a test piece, having a symmetry of revolution around an axis A and which has a neck. 3, intended, as far as possible, to undergo no deformation during the forming of the container, as well as a body 4 terminated by a bottom 5 and intended to be heated and then shaped. Without being limited to such an application, it is assumed in the following description that the containers are formed directly from the preforms, so that for convenience this term will be used interchangeably to designate the blanks or the preforms.
  • installation 1 comprises a feed unit 10 which supplies the preforms 2 to a forming unit 6.
  • the feed unit 10 comprises for example a hopper 11 in which the preforms 2, previously produced by molding, are put in bulk, this hopper 11 being connected to a . inlet 12 of the forming unit 6 by a sorter 13 which isolates and positions the preforms 2 (cold, that is to say at room temperature) on a slide 14.
  • the preforms 2 are then mounted on a transfer chain 15, then heated on the run in a heating unit 16 before being introduced hot into a blowing unit 17 (or stretch-blowing) of the carousel type. with multiple molds.
  • the containers are then transferred, by means of a conveyor 18 ' , such as a wheel provided with imprints, from the molds of the blowing unit 17 to an outlet of the forming unit 6.
  • a conveyor 18 ' such as a wheel provided with imprints
  • the preforms 2 are heated by means of at least one bundle 22 of. coherent electromagnetic radiation.
  • the installation 1 defines within the heating unit 16 a predetermined path 23 followed by the preforms 2 during the heating step. More specifically, this path 23 is defined by a conveyor chain (not shown) provided with links articulated with respect to each other and to which the preforms 2 are suspended.
  • each link comprises hooking means in the form of a suspensor, called a "spinner" in the common language of the technique, which fits into or on the neck 3 of the preform 2, this suspensor having a part shaped like a pinion which meshes with a fixed rack running along the chain, so that as as it advances, the suspensors are driven - with their preforms - in rotation.
  • spinner hooking means in the form of a suspensor
  • the heating unit 16 comprises at least one source 24 of coherent electromagnetic radiation directed towards a target area 25 located on the path 23 of the preforms 2, and through which these pass, as we will see below.
  • thermoplastic material such as PET (material in which the container preforms are conventionally produced for the most common applications) is located in the short infrared range, that is to say for wavelengths between 700 nm and 1600 nm.
  • a PET preform generally has a wall thickness of between 1 mm and 3 mm, depending on the type of container that it is desired to obtain.
  • a first test was carried out by the inventors on 3 mm thick PET test pieces with three laser sources emitting in the near infrared, namely: 1.
  • an Nd: YAG type laser (this type of laser includes an aluminum garnet and yttrium amplifier • doped with Neodymium; the abbreviation is the acronym for “Yttrium Aluminum Garnet”), with a power of 4.4 kW, generating an infrared beam with a wavelength of 1064 nm,
  • the diagram in FIG. 5 shows for each of these lasers the curve of the time taken by the material to reach the temperature of 130 ° C. at heart (it is in fact the temperature at which it is desired to heat PET preforms) , depending on the power density transmitted. It can be seen that, if the efficiency of the Nd: YAG laser appears to be greater than that of the diode lasers, the curves are nonetheless similar, which shows that the laser can be chosen as a function of parameters other than just efficiency, in particular the shape of the beam, the size of the source and, of course, its cost.
  • beam shape, energy profile, power density have a significant impact on the quality of heating.
  • the first embodiment uses a plane beam 22, generated by a laser diode 26 to which is added a spreading lens.
  • Various manufacturers offer laser diodes which can be presented alone or assembled in strips, as shown in FIGS. 2 and 3.
  • FIG. 2 shows a block 27 of stacked diodes 26 with a total power of 1200 W, sold by the company Tha ⁇ es under the references TH-C17xx-Ml or TH-C55xx-Ml.
  • Each diode 26 generates a planar laser beam, so that the block generates several superimposed planar beams which can be parallel or divergent.
  • FIG 3 is shown a strip 28 of diodes 26 with a power of 40 W each, each diode 26 generating a planar beam.
  • the strip 28 thus generates a planar beam, formed by the juxtaposition of the beams generated by all the diodes.
  • a bar of this type is sold by the company Tha ⁇ es, under the references TH-C1840-P or TH-C1841-R.
  • the block 27 and the bar 28 are both provided with an internal water cooling circuit, the supply and discharge pipes 29 of which can be seen in the figures. the water.
  • Figure 4 is shown schematically the structure of a strip 28 of diodes 26.
  • the diodes 26 are jointly mounted and welded on a support 31 provided with pipes 32 perpendicular to the beams 22 and traversed by the coolant.
  • the heating unit is now described in more detail according to three distinct embodiments, with reference to FIGS. 6 to 11.
  • the first exemplary embodiment is described with reference to FIGS. 6 to 8.
  • the path 23, represented by a dashed line, followed by the preforms 2 within the heating unit 16, is substantially rectilinear and defines a direction L called longitudinal.
  • the heating unit 16 comprises an enclosure 33 comprising a first and a second wall
  • the enclosure 33 is open downwards to allow the circulation of an air flow upward 37 ensuring a certain ventilation of the enclosure 33 to eliminate the heat emitted by the body 4 of the heated blank 2.
  • Each wall 34, 35 has an internal face 38, 39, respective facing the internal volume 36, as well as an external face 40, 41 respective, opposite.
  • the first wall 34 is provided with a plurality of slots, parallel, horizontal, superimposed, facing each of which is placed, on the side of the external face 40, a strip 28 of laser diodes, as described above.
  • the heating unit thus comprises a matrix 43 of laser diodes formed of a plurality of superimposed bars 28, which extends substantially opposite the entire height of the bodies 4 of the preforms 2.
  • the bars 28 can be cooled by means of clean circuits, connected to a common supply and discharge pipe 29 and coolant 30.
  • Each diode emits a beam 22 oriented in a general direction T transverse to the path 23, and extending in a horizontal median plane P parallel to this path 23.
  • Each slot 42 subjects the beam 22 which passes through it to a diffusion effect so that the beam 22 tends to diverge on either side of the horizontal median plane P.
  • the internal faces 38, 39 of the walls 34, 35 are reflective, so that the beam 22 undergoes several successive reflections and, consequently, passes through the preform 2 several times before losing its energy. This results in an improvement in energy efficiency and a reduction in the heating time of the preforms 2.
  • the drive-in rotation of the preform 2 around its axis A allows, at the outlet of the heating unit, to obtain a temperature profile which is substantially constant over the circumference of the body 4.
  • the central bars 28 will be adjusted to a power lower than that of the lower and upper bars 28, in order to maintain the central part of the body 4 at a lower temperature (for example around 115 ° C.) than that of its extreme parts (which will be brought to around 130 ° C.).
  • the phenomenon of thermal convection in the enclosure 33 is limited due to the use of coherent radiation, in particular so that the neck 3 does not undergo a heating capable of softening it and causing an alteration in its dimensions dimensional during blowing (which, as has been observed, can orient the preforms 2 necks up), it may appear preferable to ventilate the upper part of the enclosure 33 to a minimum, in order to create a flow of fresh air around the neck 3.
  • the heating unit 16 is equipped with a ventilation system 44 generating an air flow 45 which, perpendicular to the enclosure 33, circulates transversely to clear out the calories drained by the upward air flow 37 due to natural thermal convection.
  • This ventilation system 44 comprises for example a fan 46 disposed in a housing 47 placed on the side of the external face 41 of the second wall 35 and having an opening 48 extending directly above an upper edge 49 of the wall 35, capable of channeling the air flow 37 coming from the fan 46 transversely.
  • each preform 2 is carried out as follows.
  • the preform 2 coming from the supply unit 10, enters the heating unit 16 by following the longitudinal path 23 defined locally by the conveyor chain.
  • the preform 2 is rotated around its axis A. It is struck by the laser beams 22 emitted by the diodes 26 along the path it travels in the enclosure 33. Initially at room temperature, the body 4 of the preform 2 is quickly brought to a temperature in the region of 120 ° C., while its neck 3 is maintained at ambient temperature.
  • the preform 2 is transferred to the stretch-blowing unit 18 to be shaped into a container.
  • FIG. 9 The second exemplary embodiment is now described with reference to FIGS. 9 and 10.
  • This second example comprises a first embodiment, illustrated in FIG. 9, according to which the installation 1 comprises a single heating unit 16, as well as a second embodiment which, illustrated in FIG. 10, constitutes a variant of the first in that the installation 1 comprises two successive heating units 16.
  • the path 23 followed by the preforms 2 within the heating unit 16 is locally rectilinear, in a longitudinal direction L, between an upstream transfer zone 50 where the cold preforms 2 are brought to the heating unit 16 by an upstream transfer wheel 51, and a downstream transfer zone 52 where the hot preforms 2 are removed from the heating unit 16 by a downstream transfer wheel 53.
  • the heating unit 16 comprises several 24 superimposed laser sources arranged at a downstream end of the path 23, in the axis thereof.
  • the sources 24 are here constituted by collimating optics 54 each connected by an optical fiber 55 to a diode laser generator 56, and together form a vertical block 57 of a height substantially equal to that of the bodies 4 of the preforms 2.
  • the optics 54 are oriented so as to generate longitudinal beams 22 (linear or planar) which successively strike the preforms 2 before encountering an opaque screen 58 forming an energy sink, arranged transversely in the extension of the path 23, beyond the upstream transfer wheel 51.
  • each preform 2 is gradually heated by the laser beams 22 whose energy, successively transferred to the preforms 2 which they strike and cross, is first, from the point of view of the preform, weak at the output of the upstream transfer wheel 51, then increases as the preform 2 approaches the sources 24, before being maximum at in the vicinity of these, before the preform 2 is loaded on the downstream transfer wheel 53.
  • the laser used here is a diode laser of the type presented above (Cf ⁇ 1), with a unit power of 500 W.
  • the heating unit 16 comprises a confinement enclosure 59 comprising two facing walls 60, 61, arranged on either side of the path 23 between the upstream transfer wheels 51 and downstream 53.
  • the heating unit 16 can be equipped with a ventilation system similar to that described above in the first exemplary embodiment.
  • the installation 1 comprises two heating units 16 similar to the heating unit 16 described above in the first embodiment, and arranged successively on the path of the preforms 2, namely a first heating unit 16a designed to bring the preforms 2 to an intermediate temperature (that is to say between room temperature, corresponding to the initial temperature of the preforms - around 20 ° C.) and the final temperature, prior to forming - around 120 ° C.), and a second heating unit 16b arranged to bring the preforms 2 to their final temperature (around 12 O 0 C).
  • a first heating unit 16a designed to bring the preforms 2 to an intermediate temperature (that is to say between room temperature, corresponding to the initial temperature of the preforms - around 20 ° C.) and the final temperature, prior to forming - around 120 ° C.)
  • a second heating unit 16b arranged to bring the preforms 2 to their final temperature (around 12 O 0 C).
  • the path 23a followed by the preforms 2 within the first heating unit 16a is locally rectilinear, in a longitudinal direction L, between an upstream transfer zone 51 where the cold preforms 2 are brought to the first heating unit 16a by a wheel upstream transfer 51, and an intermediate transfer zone 62 where the 2 warm preforms are transferred from the first heating unit 16a to the second 16b.
  • the heating units 16a, 16b are arranged parallel to each other, and the path 23b followed by the preforms in the intermediate transfer zone 62 is curved. This arrangement makes it possible to avoid interference between the bundles 22 of the first heating unit 16a and those of the second 16b.
  • the path 23c followed by the preforms 2 within the second heating unit 16b is also locally rectilinear and longitudinal, between the intermediate transfer zone 62 and a downstream transfer zone 52 where the hot preforms 2 are loaded transversely by a downstream transfer wheel 53.
  • Each heating unit 16a, 16b comprises a block 27 of superimposed laser diodes, of a height substantially equal to that of the bodies 4 of the preforms 2, and disposed at a downstream end of the corresponding path 16a, 16c, in the axis of that -this.
  • the blocks 27 of diodes are for example of the type of that presented above (cf. ⁇ 1) and illustrated in FIG. 2.
  • the first heating unit 16a comprises an opaque screen 58 forming an energy well, which the laser beams 22 strike after having successively passed through the preforms 2 present on the path 23a, and arranged transversely in the extension of the path 23a beyond the upstream transfer wheel 51.
  • the second heating unit 16b also includes such an opaque screen 58, arranged in its extension of the path 23c on the side of the intermediate transfer zone 62.
  • each heating unit 16a, 16b comprises a confinement enclosure 59 whose reflective walls 60, 61, placed on either side of the corresponding path 23a, 23c, prevent dispersion side of laser beams 22.
  • the preforms 2 are first brought to an intermediate temperature, for example around 80 ° C., within the first heating unit 16a, then, from there, to a final temperature of approximately 120 ° C. within from the second heating unit 16b before being transferred to the stretch-blowing unit 18.
  • an intermediate temperature for example around 80 ° C.
  • the path 23 of the blanks 2 within the heating unit 16 is substantially circular and, as can be seen in FIG. 11, the heating unit 16 comprises a plurality of adjacent chambers 63 arranged along of path 23, through which the preforms 2 pass successively.
  • the path 23 is defined between an upstream transfer wheel 51, which brings the preforms 2 from the supply unit 10, and a downstream transfer wheel 53 bearing the stretch blow molds.
  • Each enclosure 63 has two opposite cylindrical walls, namely an internal wall 64 and an external wall 65, arranged on either side of the path 23 and jointly defining an internal cavity 66 in which the preform 2, the axis A of 1, the latter then being momentarily merged, with an axis of symmetry of the enclosure 63.
  • Each wall 64, 65 has several facets 64a, 64b, 64c, 65a, 65b, 65c, reflecting, adjacent, facing the cavity 66, each facet 64a, 64b, 64c of a wall 64 being arranged facing a facet 65a, 65b, 65c corresponding to the opposite wall 65, these facets 64a, 64b, 64c, 65a, 65b, 65c not being exactly parallel in pairs but jointly defining an angular opening ⁇ of a few degrees, as can be seen in the figure 12.
  • An upstream gap 67 and a downstream gap 68 are defined between the walls 64, 65, gaps 67, 68 through which each preform 2 enters and then leaves successively.
  • the heating unit 16 comprises, for each enclosure 63, an opaque screen 58 adjacent to a facet 64c of the internal wall 64, on the side of the downstream gap 68.
  • the heating unit 16 comprises, for each enclosure 63, a block 27 of stacked laser diodes, disposed opposite one 64a of the facets of the internal wall 64, bordering the upstream gap 67.
  • the laser diodes, directed towards this facet 64a, are each arranged to generate a bundle 22, either linear, or contained in a vertical plane, transverse with respect to the path 23 of the preforms 2, the bundle 22 forming with the normal to the facet 64a an acute angle (FIG. 12).
  • each beam 22 undergoes several successive reflections on the facets 64a, 65a, 64b, 65b, 64c, 65c, before striking the screen 58 which, forming an energy sink, completely absorbs the beam 22 (FIG. 12).
  • each beam 22 thus strikes it several times in distinct zones distributed around its circumference, as shown in FIG. 12.
  • each preform 2 passes successively through all of the speakers 63, and the diodes can be adjusted so that their power increases along the path 23, the temperature of the preforms 2 consequently increasing at as they advance within the heating unit 16.
  • the preforms 2 can be driven in rotation about their axis of revolution A, their advance within the heating unit 16 preferably being carried out step by step, each preform 2 remaining for example a fraction of a second in each enclosure 63.
  • the different settings will be chosen by a person skilled in the art according to the material selected for the preforms, as well as the machine speed imposed by production.
  • the precision of the heating makes it possible to obtain a vertical heating profile which corresponds more exactly to the desired profile. More precisely, this precision makes it possible to produce heating profiles hitherto impossible to obtain. This makes it possible in particular to revise the design of the preforms so as to distribute the weight (that is to say, in practice, the wall thickness) of the latter according to the temperature profile desired for a particular profile of container.
  • the low heating of the ambient air also makes it possible to maintain the neck orientation at the top of the preforms throughout the process for manufacturing the containers, which avoids the inversion operations.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

L'invention propose un procédé de fabrication d'un récipient à partir d'une ébauche (2) en matière thermoplastique, qui comporte : - une étape de chauffe de l'ébauche (2) au moyen d'au moins un faisceau (22) de rayonnement électromagnétique cohérent, puis - une étape de formage du récipient à partir de l'ébauche (2) ainsi chauffée. L'invention propose également une installation (1) de fabrication de récipients (2) , qui comporte une unité de chauffe (16) des ébauches (2) en vue du formage des récipients à partir des ébauches (2) ainsi chauffées, l'installation (1) définissant un chemin (23) destiné à être suivi par les ébauches (2) au sein de l'unité de chauffe (16) , l'unité de chauffe (16) comportant au moins une source (26) de rayonnement électromagnétique cohérent dirigée vers une zone (25) située sur le chemin (23) des ébauches (2) .

Description

Procédé et installation de fabrication de récipients
L'invention a trait à la fabrication des récipients.
Elle concerne plus particulièrement un procédé, ainsi qu'une installation, pour la fabrication des récipients - notamment des bouteilles - à partir d'ébauches en matière thermoplastique.
Un tel procédé comporte une première étape lors de laquelle les ébauches sont chauffées, au sein d'une unité de chauffe appropriée, puis une seconde étape lors de laquelle les ébauches sont introduites chaudes dans une unité de soufflage ou d'étirage-soufflage à moules multiples pour être conformées en récipients.
En sortie de l'unité de soufflage ou d'étirage- soufflage, les récipients ainsi formés seront dirigés soit vers une unité de stockage dans l'attente d'être remplis ultérieurement, soit directement vers une unité de remplissage.
Rappelons qu'une ébauche de récipient comprend un col, destiné à recevoir le bouchon fermant le récipient à naître et possédant déjà ses cotes finales, prolongé par un corps dont la mise en forme conduira au récipient proprement dit.
La chauffe des ébauches est généralement réalisée au sein d'un four équipé d'une batterie de lampes halogènes tubulaires devant lesquelles défilent les ébauches, tout en étant mises en rotation sur elles-mêmes. Plus précisément, un four contient plusieurs modules élémentaires, contenant chacun plusieurs lampes, chacune des lampes étant pilotée individuellement pour que, en définitive, à la sortie du four, la température du corps de chacune des ébauches soit supérieure à la température de transition vitreuse de leur matière constitutive et qu'un profil de chauffe soit obtenu sur chaque ébauche, lequel profil est prédéterminé pour que la répartition de la matière soit optimisé sur le récipient à obtenir.
Ce mode de chauffe présente un certain nombre d' inconvénients.
Premièrement, son rendement énergétique (c'est-à-dire le rapport de la puissance absorbée par les ébauches à la puissance consommée par les lampes) est extrêmement faible, de l'ordre de 11 à 15 %. Cela tient à la diffusion spatiale du rayonnement émis par les lampes, dont une fraction seulement rencontre le corps des ébauches. La faiblesse de ce rendement grève les cadences de production.
Ensuite, le profil de chauffe (c'est-à-dire la courbe des températures mesurées sur la longueur de l'ébauche) ne peut être obtenu de manière précise. En effet, compte tenu de l'effet de diffusion les rayonnements des lampes interfèrent, de sorte qu'il est chimérique de vouloir régler précisément l'intensité du rayonnement cumulé à une distance donnée des lampes. •
Pour pallier cet inconvénient, on a déjà pensé à faire défiler les ébauches à une distance des lampes aussi faible que possible. Mais on assiste alors à un indésirable problème de surchauffe à la surface des ébauches, phénomène qui ne peut être atténué que par l'installation et la mise en œuvre d'un imposant système de ventilation.
Par ailleurs, on assiste également à un important phénomène de convection thermique, par lequel les courants d'air ascendants transfèrent une partie du rayonnement émis vers la partie sommitale de l'ébauche. Or il est nécessaire de maintenir le col de cette dernière à une température modérée afin d'en conserver les cotes originelles.
Aussi, afin de limiter la chauffe incidente du col par convection thermique, est-il apparu judicieux d'orienter les ébauches col en bas. Cette mesure s'étant avérée insuffisante dans certains cas, on l'a assortie d'une ventilation du col. Quoi qu'il en soit, cette orientation des ébauches nécessite, en entrée de l'unité de chauffe, une opération de retournement des préformes, car les préformes sont généralement introduites col en haut dans le four, de même qu'une opération de retournement, soit des préformes avant leur introduction dans le moule lorsque l'étape d'étirage-soufflage est réalisée col en haut (ce qui est le cas le plus courant) , soit des récipients en sortie d'installation, en vue de leur stockage ou de leur remplissage. Ces opérations de retournement nécessitent l'installation et la mise en œuvre de dispositifs appropriés qui alourdissent l'installation et en grèvent le coût. Afin de pallier notamment aux inconvénients précités, le procédé, suivant l'invention, de fabrication d'un récipient à partir d'une ébauche en matière thermoplastique, comporte :
- une étape de chauffe de l'ébauche réalisée au moyen d'au moins un faisceau de rayonnement électromagnétique cohérent, puis
— une étape de formage du récipient à partir de l'ébauche ainsi chauffée.
Il est également proposé, suivant l'invention, une installation pour la fabrication de récipients à partir d'ébauches en matière thermoplastique, qui comporte une unité de chauffe des ébauches en vue du formage des récipients à partir des ébauches ainsi chauffées. L'installation définit un chemin destiné à être suivi par les ébauches au sein de l'unité de chauffe, laquelle comporte au moins une source de rayonnement électromagnétique cohérent dirigée vers une zone située sur le chemin des ébauches.
L'on peut ainsi concentrer le rayonnement sur une partie localisée de l'ébauche, ce qui permet d'obtenir un profil de température proche d'un profil prédéterminé, l'absence quasi-totale de diffusion et de convection thermique permettant de chauffer l'ébauche alors qu'elle est orientée avec son col en haut sans que celui-ci ne subisse de chauffe incidente susceptible d'altérer ses cotes.
Plus précisément, . le faisceau de rayonnement électromagnétique (tel qu'un laser émis par exemple par une diode laser) est de préférence dirigé vers le corps de l'ébauche. Le rayonnement est de préférence émis dans l'infrarouge court, autrement dit à une longueur d'onde comprise entre 700 nm et 1600 nm environ.
La chauffe de l'ébauche est de préférence réalisée au moyen d'une pluralité de faisceaux de rayonnement électromagnétique adjacents et/ou superposés. En pratique, la chauffe peut être réalisée au moyen d'une pluralité de diodes laser juxtaposées et/ou superposées, par exemple sous forme d'une ou plusieurs barrettes.
Le ou chaque faisceau peut être linéaire, ou plan ; il est par exemple dirigé dans une direction générale prédéterminée, tandis que l'on fait suivre à l'ébauche, au moins localement, un chemin soit sensiblement perpendiculaire, soit sensiblement parallèle à la direction du faisceau. Dans l'étape de chauffe, on entraîne de préférence l'ébauche en rotation autour d'un axe prédéterminé, par exemple confondu avec un axe de révolution de l'ébauche, afin d'obtenir une chauffe uniforme sur la circonférence de celle-ci. En outre, on peut ventiler le col de l'ébauche, afin d'évacuer le trop-plein d'air chaud.
Suivant un mode de réalisation, dans l'étape de chauffe, le faisceau subit au moins une réflexion sur une surface réfléchissante. L'unité de chauffe comporte par exemple une enceinte comprenant une première et une deuxième parois en regard sensiblement parallèles au chemin des ébauches, placées de part et d'autre de celui-ci et délimitant conjointement un volume interne, la première paroi étant munie d'une pluralité de fentes parallèles superposées en regard de chacune desquelles est placée, du côté opposé au volume interne, une rangée de sources de rayonnement.
Suivant un mode de réalisation, la seconde paroi au moins présente, du côté dû volume interne, une surface interne réfléchissante.
Afin de réaliser la ventilation du col de l'ébauche, l'unité de chauffe peut comporter un système de ventilation propre à générer un flux d'air transitant par une zone située à l'aplomb de ladite enceinte. Suivant une variante de réalisation, l'installation comprend deux unités de chauffe successives de ce type.
Suivant un autre mode de réalisation, le chemin des ébauches étant sensiblement circulaire, l'unité de chauffe comporte une pluralité d'enceintes successives disposées le long du chemin, chaque enceinte présentant deux parois cylindriques en regard disposées de part et d'autre du chemin et définissant conjointement une cavité interne, chaque paroi présentant plusieurs facettes réfléchissantes adjacentes tournées vers la cavité, la source de rayonnement électromagnétique étant dirigée vers l'une de ces facettes .
L'unité de chauffe comprend par exemple un écran opaque adjacent à l'une des facettes, pour absorber le faisceau après que celui-ci a subi plusieurs réflexions sur les facettes.
Quel que soit le mode de réalisation retenu, l'unité de chauffe comprend de préférence des moyens pour entraîner les ébauches en rotation autour de leur axe de révolution. D'autres objets et avantages de l'invention apparaîtront à la lumière de la description faite ci-après en référence aux dessins annexés dans lesquels : la figure 1 est une vue schématique d'une installation pour la fabrication de récipients à partir d'ébauches en matière thermoplastique ; les figures 2 et 3 sont des vues en perspective d'un bloc et d'une barrettes de diodes laser pouvant, au choix, équiper une installation suivant l'invention ; la figure 4 est une vue schématique en perspective montrant la structure interne d'une barrette de diodes laser ; la figure 5 est un diagramme illustrant l'efficacité comparée de trois sources laser différentes pour le chauffage d'un PET ; - la figure 6 est une vue schématique en perspective illustrant une unité de chauffe pour une installation de fabrication de récipients, suivant un premier exemple de réalisation ; la figure 7 est une vue d'élévation en coupe illustrant l'unité de chauffe de la figure 6 ; la figure 8 est une vue schématique en perspective montrant une ébauche de récipient exposée à un faisceau laser dans une unité de chauffe telle que représentée sur la figure 7 ; - la figure 9 est une vue schématique en perspective illustrant une unité de chauffe pour une installation de fabrication de récipients, suivant un deuxième exemple de réalisation ; la figure 10 est une vue schématique en perspective similaire à la figure 9, illustrant également une unité de chauffe, suivant une variante du deuxième exemple de réalisation ; la figure 11 est une vue schématique en plan de dessus illustrant une unité de chauffe pour une installation de fabrication de récipients, suivant un troisième exemple de réalisation ; la figure 12 est une vue en plan de dessus, à échelle supérieure, d'un détail de l'unité de chauffe représenté sur la figure 11 ; - la figure 13 est une vue illustrant en perspective le détail représenté sur la figure 12.
Sur la figure 1 est représentée une installation 1 de fabrication de récipients, tels que des bouteilles, à partir d'ébauches 2, ici des préformes, en matière thermoplastique. Il est rappelé ici que le terme « ébauche » couvre non seulement une préforme, mais également toute pièce intermédiaire entre la préforme et le récipient final . Certains procédés en effet comportent deux étapes de formage successives, à savoir une première étape de formage d'un récipient intermédiaire à partir de la préforme, puis, après un certain laps de temps, une seconde étape de formage du récipient final à partir du récipient intermédiaire.
Une ébauche 2, en forme de préforme, est représentée à grande échelle sur la figure 8. Il s'agit d'une pièce moulée en forme d'éprouvette, présentant une symétrie de révolution autour d'un axe A et qui comporte un col 3, destiné, dans toute la mesure du possible, à ne subir aucune déformation lors du formage du récipient, ainsi qu'un corps 4 terminé par un fond 5 et destiné à être chauffé puis mis en forme. Sans pour autant se limiter à un telle application, on suppose dans la suite de la description que les récipients sont formés directement à partir des préformes, de sorte que par commodité ce terme sera employé indifféremment pour désigner les ébauches ou les préformes.
Les récipients sont par exemple réalisés en polyéthylènetherephtalate (PET) , en polyéthylènenaphtalate (PEN) , ou toute autre matière thermoplastique appropriée. Comme représenté sur la figure 1, l'installation 1 comprend une unité d'alimentation 10 qui fournit les préformes 2 à une unité de formage 6. L'unité d'alimentation 10 comporte par exemple une trémie 11 dans laquelle sont mises en vrac les préformes 2, fabriquées préalablement par moulage, cette trémie 11 étant reliée à une. entrée 12 de l'unité de formage 6 par un trieur 13 qui isole et positionne les préformes 2 (froides, c'est-à-dire à température ambiante) sur une glissière 14.
Les préformes 2 sont ensuite montées sur une chaîne de transfert 15, puis chauffées au défilé' au sein d'une unité de chauffe 16 avant d'être introduites chaudes dans une unité de soufflage 17 (ou d'étirage-soufflage) du type carrousel à moules multiples.
Les récipients sont ensuite transférés, au moyen d'un convoyeur 18', tel qu'une une roue munie d'empreintes, depuis les moules de l'unité de soufflage 17 à une sortie de l'unité de formage 6.
Au sein de l'unité de chauffe 16, le chauffage des préformes 2 est réalisée au moyen d'au moins un faisceau 22 de . rayonnement électromagnétique cohérent.
. A cet effet, l'installation 1 définit au sein de l'unité de chauffe 16 un chemin 23 prédéterminé suivi par les préformes 2 lors de l'étape de chauffe. Plus précisément, ce chemin 23 est défini par une chaîne transporteuse (non représentée) munie de maillons articulés les uns par rapport aux autres et auxquels sont suspendues les préformes 2. Cette technique d'entraînement est bien connue de l'homme du métier et ne sera pas décrite en détails ; précisons toutefois que chaque maillon comprend des moyens d'accrochage sous la forme d'un suspensoir, appelé « tournette » dans le langage commun de la technique, qui vient s'emboîter dans ou sur le col 3 de la préforme 2, ce suspensoir présentant une partie conformée en pignon qui engrène une crémaillère fixe longeant la chaîne, en sorte qu'au fur et à mesure de l'avancée de celle-ci les suspensoirs sont entraînés - avec leurs préformes - en rotation.
L'unité de chauffe 16 comporte au moins une source 24 de rayonnement électromagnétique cohérent dirigée vers une zone cible 25 située sur le chemin 23 des préformes 2, et par laquelle celles-ci transitent, comme nous le verrons ci-après.
Dans ce qui suit, on présente, dans un premier temps, le choix de la source 24 de rayonnement électromagnétique pour la chauffe des préformes (§1) , puis, dans un deuxième temps, on décrit l'unité de chauffe 16 ainsi que le procédé de chauffe correspondant, suivant trois exemples de réalisation (§2) .
1. Choix de la source de rayonnement électromagnétique
Des essais ont démontré que, sur l'ensemble du spectre lumineux, le rayonnement utile pour la chauffe d'une matière thermoplastique tel qu'un PET (matière dans laquelle sont classiquement réalisée les préformes de récipients pour les applications les plus courantes) se situe dans le domaine infrarouge court, c'est-à-dire pour des longueurs d'onde comprises entre 700 nm et 1600 nm.
Plusieurs lasers disponibles sur le marché se sont révélés donner satisfaction pour l'application à la chauffe des thermoplastiques (les essais conduits par les inventeurs ont été effectués avec un PET) .
Une préforme en PET présente généralement une épaisseur de paroi comprise entre 1 mm et 3 mm, tout dépendant du type de récipient que l'on souhaite obtenir.
Un premier essai a été conduit par les inventeurs sur des éprouvettes en PET d'une épaisseur de 3 mm avec trois sources laser émettant dans l'infrarouge proche, à savoir : 1. premièrement, un laser de type Nd:YAG (ce type de laser comporte un amplificateur à grenat d'aluminium et d'yttrium • dopé au Néodyme ; l'abréviation est l'acronyme de l'anglais « Yttrium Aluminium Garnet ») , d'une puissance de 4,4 kW, générant un faisceau infrarouge d'une longueur d'onde de 1064 nm,
2. deuxièmement, un laser diode de type mixte, d'une puissance de 3 kW, générant un faisceau infrarouge combinant deux longueurs d'onde de 808 nm et 940 nm respectivement, et
3. troisièmement, un laser diode d'une puissance de 500 W générant un faisceau infrarouge d'une longueur d'onde de 808 nm.
Le diagramme de la figure 5 montre pour chacun de ces lasers la courbe du temps mis par le matériau pour atteindre la température de 1300C à cœur (il s'agit en fait de la température à laquelle on souhaite chauffer des préformes en PET) , en fonction de la densité de puissance transmise. On constate que, si l'efficacité du laser Nd:YAG apparaît supérieure à celle des lasers diode, les courbes sont néanmoins voisines, ce qui montre que l'on peut choisir le laser en fonction d'autres paramètres que .la seule efficacité, notamment la forme du faisceau, l'encombrement de la source et, bien évidemment, son coût.
En outre, il s'est avéré que le choix du laser dépend également de la nécessité de préserver le matériau d'une cristallisation incontrôlée. Un compromis est donc nécessaire. Bien que le Nd:YAG ait prouvé son efficacité, on lui préférera donc le laser diode, moins onéreux et moins encombrant, pour une différence d'efficacité imperceptible dans l'application à la chauffe des préformes en matière thermoplastique.
Si les essais ont montré que le domaine retenu pour le rayonnement est celui de l'infrarouge court, ils ont également montré que, en deçà de 1000 nm, le choix de la longueur d'onde a peu d'impact sur la qualité de chauffe
(par « chauffe de qualité », on entend une chauffe qui permet non seulement un temps d'exposition réduit, mais également une bonne précision et une bonne diffusion du rayonnement dans l'épaisseur du matériau) .
Par contre, à longueur d'onde égale, les paramètres suivants . : forme du faisceau, profil énergétique, densité de puissance, ont une incidence importante sur la qualité de chauffe.
Comme nous le verrons ci-après, le premier exemple de réalisation met en œuvre un faisceau 22 plan, généré par une diode 26 laser à laquelle est adjointe une lentille d'étalement. , Divers constructeurs proposent des diodes laser qui peuvent se présenter seules ou assemblées en barrettes, comme représenté sur les figures 2 et 3.
Sur la figure 2 est représenté un bloc 27 de diodes 26 empilées d'une puissance totale de 1200 W, commercialisé par la société Thaïes sous les références TH-C17xx-Ml ou TH-C55xx-Ml. Chaque diode 26 génère un faisceau laser plan, en sorte que le bloc génère plusieurs faisceaux plans superposés qui peuvent être parallèles ou divergents.
Sur la figure 3 est représentée une barrette 28 de diodes 26 d'une puissance de 40 W chacune, chaque diode 26 générant un faisceau plan. La barrette 28 génère ainsi un faisceau plan, formé par la juxtaposition des faisceaux générés par toutes les diodes. Une barrette de ce type est commercialisée par la société Thaïes, sous les références TH-C1840-P ou TH-C1841-R.
Comme cela est visible sur les figures 2 et 3, le bloc 27 et la barrette 28 sont tous deux munis d'un circuit interne de refroidissement à eau, dont on aperçoit sur les figures les canalisations d'amenée 29 et d'évacuation 30 de l'eau. Sur la figure 4 est représentée de manière schématique la structure d'une barrette 28 de diodes 26. Les diodes 26 sont conjointement montées et soudées sur un support 31 muni de canalisations 32 perpendiculaires aux faisceaux 22 et parcourues par le liquide de refroidissement.
2. Réalisation de l'unité de chauffe
L'on décrit à présent plus en détails l'unité de chauffe suivant trois exemples distincts de réalisation, en référence aux figures 6 à 11.
2.1. Exemple 1
Le premier exemple de réalisation est décrit en référence aux figures 6 à 8.
Comme cela est visible sur la figure 6, le chemin 23, représenté par une ligne en traits mixtes, suivi par les préformes 2 au sein de l'unité de chauffe 16, est sensiblement rectiligne et définit une direction L dite longitudinale.
Dans cet exemple, l'unité de chauffe 16 comporte une enceinte 33 comprenant une première et une deuxième parois
34, 35 verticales en regard, qui s'étendent sensiblement parallèlement au chemin 23 en étant placées de part et d'autre de celui-ci.
Les parois 34, 35 délimitent conjointement un volume interne 36 dans lequel défilent longitudinalement les préformes 2. Comme cela est visible sur la figure 7, les parois 34,
35 s'étendent sur une hauteur sensiblement égale à la longueur du corps 4 de la préforme 2. Celle-ci est orientée col en haut, le col 3 dépassant de l'enceinte 33 au-dessus des parois 34, 35. L'enceinte 33 est ouverte vers le bas pour permettre la circulation d'un flux d'air ascendant 37 assurant une certaine ventilation de l'enceinte 33 pour éliminer la chaleur émise par le corps 4 de l'ébauche 2 chauffée.
Chaque paroi 34, 35 présente une face interne 38, 39, respective tournée vers le volume interne 36, ainsi qu'une face externe 40, 41 respective, opposée.
La première paroi 34 est munie d'une pluralité de fentes 42 parallèles, horizontales, superposées, en regard de chacune desquelles est placée, du côté de la face externe 40, une barrette 28 de diodes laser, telle que décrite ci-dessus.
Comme cela est visible sur la figure 6, l'unité de chauffe comporte ainsi une matrice 43 de diodes laser formée d'une pluralité de barrettes 28 superposées, qui s'étend sensiblement en regard de toute la hauteur des corps 4 des préformes 2. Les barrettes 28 peuvent être refroidies au moyen de circuits propres, raccordés à une canalisation d'amenée 29 et d'évacuation 30 communes du liquide de refroidissement. Chaque diode émet un faisceau 22 orienté dans une direction générale T transversale par rapport au chemin 23, et s'étendant dans un plan médian P horizontal parallèle à ce chemin 23.
Chaque fente 42 soumet le faisceau 22 qui la traverse à un effet de diffusion en sorte que le faisceau 22 a tendance- à diverger de part et d'autre du plan médian horizontal P.
Par ailleurs, les faces internes 38, 39 des parois 34, 35 sont réfléchissantes, en sorte que le faisceau 22 subit plusieurs réflexions successives et, par conséquent, traverse plusieurs fois la préforme 2 avant de perdre son énergie. Il en résulte une amélioration du rendement énergétique et une réduction du temps de chauffe des préformes 2. Pour la réalisation de la matrice 43 de diodes, on pourra utiliser plusieurs barrettes 28 superposées de diodes de 4OW, du type de celle présentée ci-dessus (Cf. §1) et illustrée sur la figure 3.
Sur la figure 7, l'angle de divergence du faisceau 22 est exagéré afin de rendre visible ce double phénomène de divergence et de réflexion.
L'entraînement -en rotation de la préforme 2 autour de son axe A permet, en sortie d'unité de chauffe, d'obtenir un profil de température sensiblement constant sur la circonférence du corps 4.
En outre, il est possible de réguler la puissance des diodes 26 de manière à obtenir un profil souhaité de température qui soit non uniforme sur la longueur de la préforme 2, par exemple en vue d'obtenir in fine un récipient de forme cintrée. Dans un tel exemple, on réglera les barrettes 28 médianes à une puissance inférieure à celle des barrettes 28 inférieures et supérieures, afin de maintenir la partie centrale du corps 4 à une température inférieure (par exemple aux environs de 115°C) à celle de ses parties extrêmes (qui seront portées aux environs de 1300C) .
Bien que le phénomène de convection thermique dans l'enceinte 33 soit limité du fait de l'utilisation d'un rayonnement cohérent, en sorte notamment que le col 3 ne subit pas un échauffement susceptible de le ramollir et de provoquer une altération de ses cotes dimensionnelles lors du soufflage (ce qui permet, comme on l'a constaté, d'orienter les préformes 2 col en haut), il peut apparaître préférable de ventiler un minimum la partie supérieure de l'enceinte 33, afin de créer un flux d'air frais autour du col 3.
Aussi, comme cela est représenté sur la figure 7, l'unité de chauffe 16 est-elle équipée d'un système de ventilation 44 générant un flux d'air 45 qui, à l'aplomb de l'enceinte 33, circule transversalement pour évacuer les calories drainées par le flux d'air 37 ascendant dû à la convection thermique naturelle. Ce système de ventilation 44 comprend par exemple un ventilateur 46 disposé dans un boîtier 47 placé du côté de la face externe 41 de la deuxième paroi 35 et présentant une ouverture 48 s'étendant à l'aplomb d'un bord supérieur 49 de la paroi 35, propre à canaliser transversalement le flux d'air 37 en provenance, du ventilateur 46.
La chauffe de chaque préforme 2 s'effectue de la manière suivante.
La préforme 2, en provenance de l'unité d'alimentation 10, entre dans l'unité de chauffe 16 en suivant' le chemin 23 longitudinal défini localement par la chaîne transporteuse. La préforme 2 est entraînée en rotation autour de son axe A. Elle est frappée par les faisceaux laser 22 émis par les diodes 26 tout au long du trajet qu'elle parcourt dans l'enceinte 33. Initialement à température ambiante, le corps 4 de la préforme 2 est rapidement porté à une température voisine de 1200C, tandis que son col 3 est maintenu à température ambiante.
En sortie de l'enceinte 33, la préforme 2 est transférée vers l'unité d'étirage-soufflage 18 pour être conformée en récipient.
2.2. Exemple 2
Le deuxième exemple de réalisation est décrit à présent en référence aux figures 9 et 10. Ce deuxième exemple comprend un premier mode de réalisation, illustré sur la figure 9, suivant lequel l'installation 1 comprend une unique unité de chauffe 16, ainsi qu'un second mode de réalisation qui, illustré sur la figure 10, constitue une variante du premier en ce que l'installation 1 comprend deux unités de chauffe 16 successives. Suivant le premier mode de réalisation, le chemin 23 suivi par les préformes 2 au sein de l'unité de chauffe 16 est localement rectiligne, suivant une direction longitudinale L, entre une zone de transfert amont 50 où les préformes 2 froides sont amenées à l'unité de chauffe 16 par une roue de transfert amont 51, et une zone de transfert aval 52 où les préformes 2 chaudes sont évacuées de l'unité de chauffe 16 par une roue de transfert aval 53. L'unité de chauffe 16 comprend plusieurs sources 24 laser superposées disposées à une extrémité aval du chemin 23, dans l'axe de celui-ci. Les sources 24 sont ici constituées par des optiques 54 de collimation reliées chacune par une fibre optique 55 à un générateur laser 56 à diode, et forment ensemble un bloc vertical 57 d'une hauteur sensiblement égale à celle des corps 4 des préformes 2.
Comme cela est visible sur la figure 9, les optiques 54 sont orientées de manière à générer des faisceaux 22 longitudinaux (linéaires ou plans) qui viennent successivement frapper les préformes 2 avant de rencontrer un écran 58 opaque formant puits d'énergie, disposé transversalement dans le prolongement du chemin 23, au- delà de la roue de transfert amont 51. Ainsi, le long du chemin 23, chaque préforme 2 est progressivement chauffée par les faisceaux 22 laser dont l'énergie, transférée successivement aux préformes 2 qu'ils frappent et traversent, est d'abord, du point de vue de la préforme, faible à la sortie de la roue de transfert amont 51, puis croît au fur et à mesure que la préforme 2 approche des sources 24, avant d'être maximale au voisinage de celles-ci, avant que la préforme 2 ne soit embarquée par la roue de transfert aval 53.
Il est ainsi possible de réaliser un chauffage progressif des préformes 2 en n'utilisant qu'un bloc de sources laser, au lieu d'une matrice comme exposé dans le premier exemple décrit ci-dessus.
Toutefois, afin d'éviter une dissipation trop rapide de l'énergie des faisceaux laser, il est préférable d'utiliser des diodes laser de puissance supérieure. Ainsi, le laser retenu ici est un laser diode du type présenté ci-dessus (Cf §1) , d'une puissance unitaire de 500 W.
Comme cela est illustré sur la figure 9, l'unité de chauffe 16 comprend une ' enceinte de confinement 59 comportant deux parois 60, 61 en regard, disposées de part et d'autre du chemin 23 entre les roues de transfert amont 51 et aval 53.
Ces parois 60, 61 présentent des faces internes réfléchissantes, qui confinent les faisceaux 22 laser en réfléchissant leurs composantes transversales issues de la diffraction par les préformes 2. On limite ainsi les pertes d'énergie tout en améliorant la sécurité de 1' installation. Bien que cela n'apparaisse pas sur la figure 9, l'unité de chauffe 16 peut être équipée d'un système de ventilation analogue à celui décrit ci-dessus dans le premier exemple de réalisation.
Suivant le second mode de réalisation, l'installation 1 comprend deux unités de chauffe 16 similaires à l'unité de chauffe 16 décrite ci-dessus dans le premier mode de réalisation, et disposées successivement sur le trajet des préformes 2, à savoir une première unité de chauffe 16a agencée pour porter les préformes 2 à une température intermédiaire (c'est-à-dire comprise entre la température ambiante, correspondant à la température initiale des préformes - aux environs de 200C - et la température finale, préalable au formage - aux environs de 1200C) , et une seconde unité de chauffe 16b agencée pour porter les préformes 2 à leur température finale (aux environs de 12 O 0C) .
Le chemin 23a suivi par les préformes 2 au sein la première unité de chauffe 16a est localement rectiligne, suivant une direction longitudinale L, entre une zone de transfert amont 51 où les préformes 2 froides sont amenées à la première unité de chauffe 16a par une roue de transfert amont 51, et une zone de transfert intermédiaire 62 où les préformes 2 tièdes sont transférées depuis la première' unité de chauffe 16a vers la seconde 16b. Dans l'exemple représenté sur la figure 10, les unités de chauffe 16a, 16b sont disposées parallèlement l'une par rapport à l'autre, et le chemin 23b suivi par les préformes dans la zone de transfert intermédiaire 62 est courbe. Cette disposition permet d'éviter, les interférences entre les faisceaux 22 de la première unité de chauffe 16a et ceux de la seconde 16b.
Le chemin 23c suivi par les préformes 2 au sein de la seconde unité de chauffe 16b est, également, localement rectiligne et longitudinal, entre la zone de transfert intermédiaire 62 et une zone de transfert aval 52 où les préformes 2 chaudes sont embarquées transversalement par une roue de transfert aval 53.
Chaque unité de chauffe 16a, 16b comprend un bloc 27 de diodes laser superposées, d'une hauteur sensiblement égale à celle des corps 4 des préformes 2, et disposé à une extrémité aval du chemin 16a, 16c correspondant, dans l'axe de celui-ci.
Les blocs 27 de diodes sont par exemple du type de celui présenté ci-dessus (Cf. §1) et illustré sur la figure 2.
Comme cela est visible sur la figure 10, la première unité de chauffe 16a comprend un écran 58 opaque formant puits d'énergie, que viennent frapper les faisceaux 22 laser après avoir traversé successivement les préformes 2 présentes sur le chemin 23a, et disposé transversalement dans le prolongement du chemin 23a au-delà de la roue de transfert amont 51.
La seconde unité de chauffe 16b comprend également un tel écran 58 opaque, disposé quant à lui dans le prolongement du chemin 23c du côté de la zone de transfert intermédiaire 62.
Par ailleurs, comme cela est visible sur la figure 10, chaque unité de chauffe 16a, 16b comprend une enceinte de confinement 59 dont les parois 60, 61 réfléchissantes, placées de part et d'autre du chemin 23a, 23c correspondant, évitent la dispersion latérale des faisceaux laser 22.
Ainsi, les préformes 2 sont d'abord portées à une température intermédiaire, par exemple aux environs de 800C, au sein de la première unité de chauffe 16a, puis, de là, à une température finale de 1200C environ au sein de la seconde unité de chauffe 16b avant d'être transférées vers l'unité d'étirage-soufflage 18.
Il convient de noter que plus de deux unités de chauffe seraient envisageables pour des applications particulières.
2.3. Exemple 3
Le troisième exemple de réalisation est à présent décrit, en références aux figures 11 à 13.
Dans cet exemple, le chemin 23 des ébauches 2 au sein de l'unité de chauffe 16 est sensiblement circulaire et, comme cela est visible sur la figure 11, l'unité de chauffe 16 comporte une pluralité d'enceintes 63 adjacentes disposées le long du chemin 23, par lesquelles les préformes 2 transitent successivement.
Le chemin 23 est défini entre une roue de transfert amont 51, qui amène les préformes 2 depuis l'unité d'alimentation 10, et une roue de transfert aval 53 portant les moules d'étirage-soufflage.
Chaque enceinte 63 présente deux parois cylindriques en regard, à savoir une paroi interne 64 et une paroi externe 65, disposées de part et d'autre du chemin 23 et définissant conjointement une cavité interne 66 dans laquelle vient se positionner la préforme 2, l'axe A de1 cette dernière étant alors momentanément confondu, avec un axe de symétrie de l'enceinte 63.
Chaque paroi 64, 65 présente plusieurs facettes 64a, 64b, 64c, 65a, 65b, 65c, réfléchissantes, adjacentes, tournées vers la cavité 66, chaque facette 64a, 64b, 64c d'une paroi 64 étant disposée face à une facette 65a, 65b, 65c correspondante de la paroi opposée 65, ces facettes 64a, 64b, 64c, 65a, 65b, 65c n'étant pas exactement parallèles deux à deux mais définissant conjointement une ouverture angulaire α de quelques degrés, comme cela est visible sur la figure 12.
Un interstice 67 amont et un interstice 68 aval sont définis entre les parois 64, 65, interstices 67, 68 par lesquels entre, puis sort, successivement, chaque préforme 2.
En outre, l'unité de chauffe 16 comprend, pour chaque enceinte 63, un écran 58 opaque adjacent à une facette 64c de la paroi interne 64, du côté de l'interstice aval 68. L'unité de chauffe 16 comprend, pour chaque enceinte 63, un bloc 27 de diodes laser empilées, disposé en regard de l'une 64a des facettes de la paroi interne 64, bordant l'interstice amont 67. Les diodes lasers, dirigées vers cette facette 64a, sont agencées pour générer chacune un faisceau 22, soit linéaire, soit contenu dans un plan vertical, transversal par rapport au chemin 23 des préformes 2, le faisceau 22 formant avec la normale à la facette 64a un angle aigu (figure 12) .
Ainsi, chaque faisceau 22 subit plusieurs réflexions successives sur les facettes 64a, 65a, 64b, 65b, 64c, 65c, avant de venir frapper l'écran 58 qui, formant un puits énergétique, absorbe complètement le faisceau 22 (figure 12) .
Lorsqu'une préforme 2 est placée au centre de l'enceinte 63, col en haut, chaque faisceau 22 la frappe ainsi plusieurs fois dans des zones distinctes réparties sur sa circonférence, comme cela est représenté sur la figure 12.
Comme il ressort de la figure 11, chaque préforme 2 transite successivement par l'ensemble des enceintes 63, et l'on peut régler les diodes de manière que leur puissance croisse le long du chemin 23, la température des préformes 2 croissant par conséquent au fur et à mesure qu'elles avancent au sein de l'unité de chauffe 16. De même que précédemment, les préformes 2 peuvent être entraînées en rotation autour de leur axe de révolution A, leur avance au sein de l'unité de chauffe 16 étant de préférence réalisée au pas à pas, chaque préforme 2 restant par exemple une fraction de seconde dans chaque enceinte 63.
Il est parfaitement envisageable que l'avance des préformes au sein de l'unité de chauffe 16 soit réalisée en continu, du fait de la forte capacité de pénétration des faisceaux laser au travers de la matière constitutive du corps des préformes.
Bien entendu, quel que soit l'exemple de réalisation retenu, il est possible de régler la vitesse de défilement des préformes 2 au sein de l'unité de chauffe.
De fait, les différents réglages (vitesse de défilement, puissance des diodes, longueur de l'enceinte) seront choisis par l'homme du métier en fonction du matériau retenu pour les préformes, ainsi que de la cadence machine imposée par la production.
Comme nous l'avons vu, le procédé et l'installation précédemment décrits permettent de chauffer des ébauches, teles que des préformes, de manière à la fois plus rapide et plus précise que par les procédés et installations connus.
Cette rapidité permet de limiter l'encombrement de l'unité de chauffe, tandis que les essais ont montré qu'il est possible, au moyen dé faisceaux électromagnétiques' cohérents, d'atteindre un rendement énergétique de 50%, ce qui paraissait impensable avec les procédés et installations connus. Les essais ont en fait montré une pénétration énergétique du laser, dans les matériaux utilisés couramment dans cette application, supérieure à celle du rayonnement des lampes halogènes classiquement employés pour le chauffage, ce qui accroît l'uniformité de la température du matériau dans l'épaisseur de la préforme.
La précision du chauffage permet d'obtenir un profil vertical de chauffe qui corresponde de manière plus exacte au profil souhaité. Plus précisément, cette précision permet de réaliser des profils de chauffe jusqu'à présent impossibles à obtenir. Cela permet notamment de réviser la conception des préformes de manière à répartir différemment le poids (c'est-à-dire, en pratique, l'épaisseur de paroi) de celle-ci en fonction du profil de température souhaité pour un profil particulier de récipient.
En outre, le faible échauffement de l'air ambiant permet, de plus, de conserver l'orientation col en haut des préformes tout au long du procédé de fabrication des récipients, ce qui évite les opérations de retournement.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un récipient à partir• d'une ébauche (2) en matière thermoplastique, qui comporte :
- une étape de chauffe de l'ébauche (2), puis
- une étape de formage du.. récipient, à partir de l'ébauche (2) ainsi chauffée, procédé caractérisé en ce que la chauffe de l'ébauche (2) est réalisée au moyen d'au moins un faisceau (22) de rayonnement électromagnétique cohérent.
2. Procédé selon la revendication 1, dans lequel la chauffe de l'ébauche. (2) est réalisée au moyen d'une pluralité de faisceaux (22) de rayonnement électromagnétique adjacents.
3. Procédé selon la revendication 1 ou 2, dans lequel la chauffe de l'ébauche (2) est réalisée au moyen d'une pluralité de faisceaux (22) de rayonnement électromagnétique superposés.
4. Procédé selon l'une des revendications 1 à 3, dans lequel le ou chaque faisceau (22) est plan.
5. Procédé selon l'une des revendications 1 à 4, dans lequel le ou chaque faisceau (22) est dirigé dans une direction générale prédéterminée, et dans lequel, lors de l'étape de chauffe, on fait suivre à l'ébauche (2), au moins localement, un chemin (23) sensiblement perpendiculaire à la direction du faisceau (22) . 6. Procédé selon l'une des revendications 1 à 4, dans lequel le ou chaque faisceau (22) est dirigé dans une direction générale prédéterminée, et dans lequel, dans l'étape de chauffe, on fait suivre à l'ébauche (2), au moins localement, un chemin (23) sensiblement parallèle à la direction générale, du faisceau (22) . 7. Procédé selon l'une des revendications 1 à 6, dans lequel, dans l'étape de chauffe, on entraîne l'ébauche (2) en rotation autour d'un axe prédéterminé.
8. Procédé selon la revendication 7, dans lequel ledit axe de rotation est confondu avec un axe (A) de révolution de l'ébauche (2).
9. Procédé selon l'une des revendications 1 à 8, dans lequel, l'ébauche (2) présentant un col (3) et un corps (4) , le faisceau de rayonnement électromagnétique est dirigé vers le corps (4) de l'ébauche (2) .
10. Procédé selon la revendication 9, dans laquelle, lors de l'étape de chauffe, le col (3) de l'ébauche (2) est orienté vers le haut.
11. Procédé selon la revendication 9 ou 10,, dans lequel ont ventile le col (3) de l'ébauche (2) .
12. Procédé selon l'une des revendications 1 à 11, dans lequel, dans l'étape de chauffe, le faisceau (22) subit au moins une réflexion sur une surface réfléchissante. 13. Procédé selon l'une des revendications 1 à 12, dans lequel ledit faisceau (22) est un faisceau laser.
14. Procédé selon l'une des revendications 1 à 13, dans lequel le rayonnement du faisceau est un rayonnement infrarouge. 15. Procédé selon la revendication 14, dans lequel la longueur d'onde du rayonnement est inférieure ou égale à 1600 nm environ.
16. Procédé selon la revendication 15, dans lequel la longueur d'onde du rayonnement est comprise entre 780 nm et 1600 nm environ.
17. Installation pour la fabrication de récipients à partir d'ébauches (2) en matière thermoplastique, qui comporte une unité de chauffe (16) des ébauches (2) en vue du formage des récipients à partir des ébauches (2) ainsi chauffées, l'installation (1) définissant un chemin (23) destiné à être suivi par les ébauches (2) au sein de l'unité de chauffe (16), caractérisée en ce que l'unité de chauffe (16) comporte au moins une source (24) de rayonnement électromagnétique cohérent dirigée vers une zone (25) située sur le chemin (23) des ébauches (2) .
18. Installation selon la revendication 17, dans laquelle, le chemin (23) des ébauches (2) étant sensiblement linéaire, ladite source (2624 de rayonnement est dirigée transversalement par rapport audit chemin (23) .
19. Installation selon la revendication 18, dans laquelle l'unité de chauffe (16) comporte une rangée de sources de rayonnement adjacentes disposées parallèlement au chemin. 20. Installation selon la revendication 19, dans laquelle l'unité de chauffe (16) comporte plusieurs rangées superposées de sources de rayonnement disposées parallèlement au chemin.
21. Installation selon la revendication 20, dans laquelle l'unité de chauffe (16) comporte une enceinte
(33) comprenant une première et une deuxième parois (34, 35) en regard sensiblement parallèles au chemin (23) des ébauches (2), placées de part et d'autre de celui-ci et délimitant conjointement un volume interne (36) , la première paroi (34) étant munie d'une pluralité de fentes (42) parallèles superposées en regard de chacune desquelles est placée, du côté opposé au volume interne (36) , une rangée de sources de rayonnement.
22. Installation selon la revendication 21, dans laquelle la seconde paroi (35) au moins présente, du côté du volume interne (36) , une surface interne (39) réfléchissante.
23. Installation selon la revendication 21 ou 22, dans laquelle l'unité de chauffe (16) comporte un système de ventilation (44) propre à générer un flux d'air (45) transitant par une zone située à l'aplomb de ladite enceinte (33) .
24. Installation selon la revendication 17, dans laquelle, le chemin (23) des ébauches (2) étant sensiblement linéaire, ladite source de rayonnement est dirigée parallèlement audit chemin.
25. Installation selon la revendication 24, dans laquelle l'unité de chauffe (16) comporte une pluralité de sources de rayonnement superposées. 26. Installation selon la revendication 24 ou 25, qui comprend un écran (58) opaque, placé en regard de la source de rayonnement.
27. Installation selon l'une des revendications 24 à 26, qui comprend au moins deux unités de chauffe (16a, 16b) successives.
28. Installation selon la revendication 17, dans laquelle, le chemin (23) des ébauches (2) étant sensiblement circulaire, l'unité de chauffe (16) comporte une pluralité d'enceintes (63) successives disposées le long du chemin (23) , chaque enceinte (63) présentant deux parois (64, 65) cylindriques en regard, disposées de part et d'autre du chemin (23) et définissant conjointement une cavité interne (66) , chaque paroi (64, 65) présentant plusieurs facettes (64a, 64b, 64c ; 65a, 65b, 65c) réfléchissantes adjacentes tournées vers la cavité (66) , la source de rayonnement électromagnétique étant dirigée vers l'une de ces facettes, et les facettes (64a, 64b, 64c, 65a, 65b, 65c) n'étant pas exactement parallèles deux à deux mais définissant conjointement une ouverture angulaire de quelques degrés.
29. Installation selon la revendication 28, qui comprend un écran (58) opaque adjacent à l'une des facettes (64c) .
30. Installation selon l'une des revendications 17 à 29, dans laquelle, les ébauches (2) présentant un axe (A) de révolution, l'unité de chauffe (16) comprend des moyens pour entraîner les ébauches (2) en rotation autour de leur axe (A) .
31. Installation selon l'une des revendications 17 à 29, dans laquelle la source (24) de rayonnement électromagnétique cohérent est une source laser.
32. Installation selon la revendication 31, dans laquelle la source de rayonnement électromagnétique cohérent est une diode laser. 33. Installation selon la revendication 32, dans laquelle la diode laser est agencée pour émettre un faisceau (22) laser plan.
34. Installation selon la revendication 32 ou 33, dans lequel l'unité de chauffe (16) comporte au moins un bloc (27) ou une barrette (28) de diodes laser juxtaposées.
PCT/FR2005/002826 2004-11-22 2005-11-15 Procede et installation de fabrication de recipients WO2006056673A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2007006152A MX2007006152A (es) 2004-11-22 2005-11-15 Proceso e instalacion de fabricacion de recipientes.
JP2007542034A JP4555344B2 (ja) 2004-11-22 2005-11-15 容器を製造する方法およびその装置
US11/667,958 US20080099961A1 (en) 2004-11-22 2005-11-15 Method and Installation for the Production of Containers
CN2005800399913A CN101060970B (zh) 2004-11-22 2005-11-15 用于制造容器的方法和设备
EP05817444.2A EP1824659B1 (fr) 2004-11-22 2005-11-15 Procede et installation de fabrication de recipients
US12/432,824 US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers
US12/560,417 US20100007061A1 (en) 2004-11-22 2009-09-15 Method and installation for the production of containers
US12/561,198 US8354051B2 (en) 2004-11-22 2009-09-16 Method and installation for the production of containers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0412372 2004-11-22
FR0412372A FR2878185B1 (fr) 2004-11-22 2004-11-22 Procede de fabrication de recipients comprenant une etape de chauffe au moyen d'un faisceau de rayonnement electromagnetique coherent

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US11/667,958 A-371-Of-International US20080099961A1 (en) 2004-11-22 2005-11-15 Method and Installation for the Production of Containers
US12/432,824 Division US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers
US12/560,417 Continuation US20100007061A1 (en) 2004-11-22 2009-09-15 Method and installation for the production of containers
US12/561,198 Continuation US8354051B2 (en) 2004-11-22 2009-09-16 Method and installation for the production of containers

Publications (1)

Publication Number Publication Date
WO2006056673A1 true WO2006056673A1 (fr) 2006-06-01

Family

ID=34953542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/002826 WO2006056673A1 (fr) 2004-11-22 2005-11-15 Procede et installation de fabrication de recipients

Country Status (7)

Country Link
US (4) US20080099961A1 (fr)
EP (1) EP1824659B1 (fr)
JP (1) JP4555344B2 (fr)
CN (1) CN101060970B (fr)
FR (1) FR2878185B1 (fr)
MX (1) MX2007006152A (fr)
WO (1) WO2006056673A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061334A1 (de) * 2005-12-21 2007-06-28 Advanced Photonics Technologies Ag Streckblasanlage und Verfahren zum Streckblasen
EP1798017A3 (fr) * 2005-12-15 2007-08-15 SIG Technology Ltd. Procédé et appareil pour fabriquer des récipients par soufflage
DE102006042711A1 (de) * 2006-09-12 2008-03-27 Krones Ag Verfahren und Vorrichtung zur Herstellung von Kunststoffverpackungsbehältern
WO2008075280A1 (fr) * 2006-12-19 2008-06-26 Philips Intellectual Property & Standards Gmbh Système et procédé de chauffage d'objets dans une chaîne de production
FR2913210A1 (fr) * 2007-03-02 2008-09-05 Sidel Participations Perfectionnements a la chauffe des matieres plastiques par rayonnement infrarouge
WO2008145331A1 (fr) * 2007-05-31 2008-12-04 Khs Ag Procédé et dispositif de fabrication d'emballages
JP2009051198A (ja) * 2007-06-11 2009-03-12 Sidel Participations 容器をブロー成形するためにプレフォームの本体を加熱する装置
US20090102083A1 (en) * 2007-06-08 2009-04-23 Cochran Don W Method and System for Wavelength Specific Thermal Irradiation and Treatment
JP2009539646A (ja) * 2006-06-07 2009-11-19 プレスコ テクノロジー インコーポレーテッド 波長特異的な熱放射及び処理を行う方法及びシステム
US20100127435A1 (en) * 2007-04-25 2010-05-27 Sidel Participations Method of heating preforms for the manufacture of containers
WO2011083263A1 (fr) 2010-01-06 2011-07-14 Sidel Participations Unité de traitement d'ébauches de corps creux, équipée d'une chambre formant piège à lumière
US8354051B2 (en) 2004-11-22 2013-01-15 Sidel Participations Method and installation for the production of containers
JP2013504457A (ja) * 2009-09-15 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ プレフォームを加熱する方法
EP2345482A3 (fr) * 2004-12-03 2013-11-06 Pressco Technology, Inc. Procédé et système d'application de rayonnements thermiques et de traitement thermique spécifiques de longueur d'onde
CN103619554A (zh) * 2011-06-23 2014-03-05 西德尔合作公司 外壁温度较低的容器粗坯的加热方法及粗坯的加热单元
EP3900911A1 (fr) 2020-04-22 2021-10-27 Sidel Participations Preforme et recipient a transmittances variables

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262116A1 (en) * 2008-07-25 2011-10-27 Speziallampenfabrik Dr. Fischer Gmbh Infrared filter of a light source for heating an object
DE102008057403A1 (de) * 2008-11-14 2010-05-20 Krones Ag Vorrichtung und Verfahren zum Herstellen von Kunststoffbehältnissen
FR2938789B1 (fr) * 2008-11-24 2013-03-29 Gregoire Lize Procede et dispositif de chauffage par infrarouge de preformes plastiques.
DE102008060572A1 (de) * 2008-12-04 2010-06-10 Krones Ag Vorrichtung zum Erwärmen von Kunststoffbehältnissen und Resonator hierfür
DE102009011361A1 (de) * 2009-03-05 2010-09-09 Krones Ag Ofen für Kunststoffvorformlinge mit teiltransparentem Strahler
CN102438806B (zh) * 2009-04-21 2015-05-27 皇家飞利浦电子股份有限公司 加热预型件主体的加热系统和方法
DE102009033902A1 (de) * 2009-07-16 2011-01-20 Khs Corpoplast Gmbh & Co. Kg Verfahren und Vorrichtung zur Blasformung von Behältern
DE102009047541A1 (de) * 2009-12-04 2011-06-09 Krones Ag Ofen zum Konditionieren von Vorformlingen
FR2957294B1 (fr) * 2010-03-10 2012-04-20 Sidel Participations Unite de traitement d'ebauches de corps creux par rayonnement, equipee d'un sas de confinement du rayonnement
DE102010015018A1 (de) * 2010-04-14 2011-10-20 Krones Ag Strahlerkühlung
EP2567393B1 (fr) 2010-05-07 2018-02-14 Pressco IP LLC Commande d'irradiation prismatique
FR2960816B1 (fr) * 2010-06-02 2012-07-13 Sidel Participations Four pour le conditionnement thermique de preformes et procede de commande d'un dispositif de refroidissement par air equipant un tel four
FR2964901B1 (fr) * 2010-09-20 2012-10-26 Sidel Participations Procede de formage d'un recipient par chauffe laser selective et soufflage libre.
IT1402720B1 (it) * 2010-11-19 2013-09-18 Sacmi Apparato per il riscaldamento di preforme in materiale termoplastico.
FR2976514B1 (fr) 2011-06-17 2013-07-12 Sidel Participations Procede de chauffe d'ebauches de recipients
FR2982790B1 (fr) 2011-11-21 2014-03-14 Sidel Participations Unite de traitement thermique d'ebauches de recipients a double paroi rayonnante en quinconce
EP2682243A1 (fr) * 2012-07-04 2014-01-08 Value & Intellectual Properties Management GmbH Dispositif destiné à fabriquer des corps creux et procédé destiné à fabriquer les corps creux
FR2993199B1 (fr) * 2012-07-13 2014-07-18 Sidel Participations Systeme de commande modulaire d’une installation de fabrication de recipients
DE102013100390A1 (de) 2013-01-15 2014-07-17 Krones Ag Vorrichtung zum Erwärmen von Kunststoffvorformlingen mit demontierbarer Lüftungsabschirmung
FR3001912B1 (fr) * 2013-02-14 2015-02-27 Sidel Participations "procede d'obtention d'un recipient marque comportant une etape de marquage d'une preforme"
US11135758B2 (en) * 2013-02-18 2021-10-05 Discma Ag Machine and method for forming containers from preforms carried by successive moulds
EP2813344B1 (fr) * 2013-06-10 2016-11-16 Discma AG Appareil et procédé de fabrication des récipients
FR3018724B1 (fr) * 2014-03-19 2016-12-09 Sidel Participations Unite de traitement d'ebauches equipee d'une section de confinement optique a parois convergentes
DE102014105675A1 (de) * 2014-04-23 2015-11-12 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Erwärmen von Kunststoffvorformlingen
DE102014006275A1 (de) * 2014-05-02 2015-11-19 Khs Corpoplast Gmbh Verfahren und Vorrichtung zum Temperieren von Vorformlingen
EP2977182A1 (fr) 2014-07-23 2016-01-27 Sidel Participations Module de traitement électromagnétique équipé d'éléments de confinement régulés thermiquement
FR3024069B1 (fr) * 2014-07-23 2017-02-17 Sidel Participations Unite de chauffe de corps creux, qui comprend une cavite a basse temperature
DE102015102722A1 (de) * 2015-02-25 2016-08-25 Krones Ag Vorrichtung zum Erwärmen von Kunststoffvorformlingen mit Lichtleiter und Verfahrenserwärmen von Kunststoffvorformlingen
FR3037850B1 (fr) 2015-06-26 2018-01-19 Sidel Participations Procede de chauffe hybride infrarouge et micro-ondes d'ebauches de recipients
FR3049489B1 (fr) * 2016-04-05 2018-04-13 Sidel Participations Procede de chauffe preferentielle d'un corps creux comportant une etape de marquage
US10069996B2 (en) * 2016-09-15 2018-09-04 Xerox Corporation System and method for utilizing digital micromirror devices to split and recombine a signal image to enable heat dissipation
EP3269531B1 (fr) * 2016-12-12 2019-05-22 Sidel Participations Circuit de déshydratation pour unité de traitement électromagnétique de corps creux
CN106738798B (zh) * 2016-12-20 2019-10-18 北京化工大学 一种基于吹塑技术的快速成型装置
IT201700007077A1 (it) * 2017-01-24 2018-07-24 Sacmi Imola Sc Apparecchiatura per il riscaldamento di preforme in materiale termoplastico.
FR3069477A1 (fr) * 2017-07-26 2019-02-01 Sidel Participations Unite de traitement d'ebauches comprenant une enceinte regroupant une zone de chauffage et une zone de pilotage
FR3070300B1 (fr) * 2017-08-24 2019-08-16 Sidel Participations Installation et procede de production de recipients, permettant de produire des le demarrage
CN109296781B (zh) * 2018-10-30 2023-09-22 世格流体控制(上海)有限公司 一种新型吹瓶组合阀
FR3097796A1 (fr) * 2019-06-25 2021-01-01 Sidel Participations Unité de chauffe de corps creux pour machine de fabrication de récipients en matière plastique
EP3769935B1 (fr) * 2019-07-22 2021-09-15 SMI S.p.A. Système de chauffage d'une préforme
IT202000001360A1 (it) * 2020-01-24 2021-07-24 Smi Spa Dispositivo di riscaldamento delle preforme
DE102020116681A1 (de) * 2020-06-24 2021-12-30 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Erwärmen von Kunststoffvorformlingen mit verstellbarer Fokussiereinrichtung
EP4204202A1 (fr) * 2020-08-03 2023-07-05 Société des Produits Nestlé S.A. Procédé de chauffage d'une préforme et procédé correspondant de formation d'un récipient
CN115534276B (zh) * 2022-09-27 2024-01-19 江苏新美星包装机械股份有限公司 一种塑料预型件的传送加热装置
CN115534277A (zh) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 一种塑料预型件的加热装置及加热方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780030A (en) * 1980-11-06 1982-05-19 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
JPS59184626A (ja) * 1983-04-06 1984-10-20 Mitsubishi Heavy Ind Ltd 吹き込み延伸パイプ成形方法
FR2561986A1 (fr) * 1984-03-28 1985-10-04 Pont A Mousson Dispositif de chauffage d'ebauches en materiau thermoplastique en vue de former, par soufflage, des corps creux
EP0564354A1 (fr) * 1992-04-03 1993-10-06 S I D E L Procédé de conditionnement thermique de préformes en matières thermoplastiques et dispositif pour la mise en oeuvre de ce procédé
EP0571262A1 (fr) * 1992-05-20 1993-11-24 Sidel Unité pour le traitement thermique de récipients en PET lors de la fabrication de ceux-ci
EP0620099A1 (fr) * 1993-04-15 1994-10-19 Sidel Procédé et installation pour le traitement thermique du corps d'une préforme ou d'un récipient intermédiaire en matériau thermoplastique
DE19603974A1 (de) * 1996-01-26 1997-08-07 Udo Prof Dr Ing Hellwig Verfahren zum Verformen von Körpern und Materialbahnen
FR2762799A1 (fr) * 1997-05-02 1998-11-06 Ca Greiner & Sohne Ges Mbh Dispositif pour le traitement posterieur d'au moins un objet extrude et calibre et/ou refroidi, ainsi que son procede de realisation
US20020062161A1 (en) * 1999-04-23 2002-05-23 Carsten Dusterhoft Automated method and apparatus for the non-cutting shaping of a body
DE10106607A1 (de) * 2001-02-13 2002-09-12 Carsten Duesterhoeft Laserstrahlbasiertes Erwärmverfahren und Vorrichtung zur Erzeugung einer genauen orts- und zeitabhängigen Temperaturverteilung auf thermoplastischem Rohmaterial zur Umformung in einer Form

Family Cites Families (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769117A (en) 1952-07-01 1956-10-30 Pirillo Santo Ozone producing device
US3309553A (en) * 1963-08-16 1967-03-14 Varian Associates Solid state radiation emitters
US5260258A (en) 1985-02-28 1993-11-09 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
US4720480A (en) * 1985-02-28 1988-01-19 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
US5270285A (en) 1965-02-28 1993-12-14 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
JPS61237691A (ja) * 1985-04-15 1986-10-22 Dainippon Printing Co Ltd 被熱転写シ−ト
US3640671A (en) * 1969-02-26 1972-02-08 Monsanto Co Apparatus for venting and releasing plastic articles from a blow mold
US3626143A (en) 1969-04-02 1971-12-07 American Can Co Scoring of materials with laser energy
US3627989A (en) 1969-12-11 1971-12-14 Thermal Quarr Schmelze Gmbh Infrared surface heater
US3768314A (en) 1972-01-20 1973-10-30 Stewart Warner Corp Modular gauge housing
CH580687A5 (fr) * 1973-08-22 1976-10-15 Spirig Ernst
US4050887A (en) * 1973-11-21 1977-09-27 Monsanto Company Method and apparatus for temperature conditioning parts
GB1483619A (en) * 1974-02-14 1977-08-24 Heidenreich & Harbeck Gmbh Method and apparatus for heating components of synthetic thermoplastics material
US4020232A (en) * 1974-05-17 1977-04-26 Mitsubishi Paper Mills, Ltd. Heat-sensitive recording sheets
US3974016A (en) 1974-11-04 1976-08-10 Bell Telephone Laboratories, Incorporated Bonding of thermoplastic coated cylinders
US4058699A (en) 1975-08-01 1977-11-15 Arthur D. Little, Inc. Radiant zone heating apparatus and method
DE2545133C3 (de) * 1975-10-08 1980-04-30 Gildemeister Corpoplast Gmbh, 2000 Hamburg Vorrichtung zum Blasformen von Behältern aus Vorf ormlingen
US4224096A (en) 1976-03-25 1980-09-23 W. R. Grace & Co. Laser sealing of thermoplastic material
US4079104A (en) * 1976-04-16 1978-03-14 Owens-Illinois, Inc. Method for heating plastic articles
US4135077A (en) * 1976-09-16 1979-01-16 Wills Kendall S Laser bread browning apparatus
US4097715A (en) * 1977-05-16 1978-06-27 General Refractories Company Laser jet bell kiln
US4204111A (en) * 1977-10-19 1980-05-20 Monsanto Company Heating improvements in a preform reheat system
US4234297A (en) * 1978-03-14 1980-11-18 Owens-Illinois, Inc. Apparatus for blow molding
US4163238A (en) 1978-06-09 1979-07-31 The United States Of America As Represented By The Secretary Of The Army Infrared semiconductor device with superlattice region
US4304978A (en) 1978-10-05 1981-12-08 Coherent, Inc. Heat treating using a laser
US4331858A (en) * 1980-02-14 1982-05-25 Pet Incorporated Open hearth oven
US4313720A (en) * 1980-03-03 1982-02-02 Emhart Industries, Inc. Parison transfer means
US4338114A (en) 1980-08-21 1982-07-06 Liberty Glass Company Laser treatment method for imparting increased mechanical strength to glass objects
DE3210676C2 (de) 1981-03-30 1984-12-06 Cincinnati Milacron Industries, Inc., Cincinnati, Ohio Verfahen zum Strahlungserwärmen von Vorformlingen
US4374678A (en) * 1981-06-01 1983-02-22 Texas Instruments Incorporated Process for forming HgCoTe alloys selectively by IR illumination
US4409455A (en) * 1982-03-05 1983-10-11 Cincinnati Milacron Inc. Dielectric heating section for blow molding machine
US4456811A (en) * 1982-06-21 1984-06-26 Avco Everett Research Laboratory, Inc. Method of and apparatus for heat treating axisymmetric surfaces with an annular laser beam
US4486639A (en) 1982-07-19 1984-12-04 Control Data Corporation Microwave oven quartz lamp heaters
US4459458A (en) 1982-08-30 1984-07-10 The Warner & Swasey Company Machine tool with laser heat treating
US4507538A (en) * 1982-10-22 1985-03-26 Mostek Corporation Laser hardening with selective shielding
US4481405A (en) 1983-04-27 1984-11-06 Malick Franklin S Cooking appliance
DE3339613A1 (de) 1983-11-02 1985-05-09 Vdo Adolf Schindling Ag, 6000 Frankfurt Anzeigeeinheit
IT1179063B (it) * 1984-08-20 1987-09-16 Fiat Auto Spa Apparecchiatura per effettuare trattamenti su pezzi metallici mediante laser di potenza
NL8402659A (nl) * 1984-08-31 1986-03-17 Optische Ind De Oude Delft Nv Werkwijze en inrichting voor het justeren van de gelijkloop van een vizierinrichting en een zwenkbaar orgaan.
FR2571201B1 (fr) 1984-10-02 1987-01-02 Valeo Procede de chauffage dans la masse d'une substance par exemple en vue d'une vulcanisation ou d'une polymerisation
GB2165493A (en) 1984-10-16 1986-04-16 Aeci Ltd Keyboard
US4672169A (en) * 1985-03-21 1987-06-09 Standard Oil Company (Indiana) Apparatus and method for heating materials with a laser heat source
DE3518204C1 (de) 1985-05-21 1986-10-16 Adam Opel AG, 6090 Rüsselsheim Armaturentafel
JPS6237350A (ja) 1985-08-12 1987-02-18 Toshiba Corp 表面熱処理装置
US4816694A (en) * 1985-08-15 1989-03-28 Sanders Associates, Inc. Radiation system
US4754141A (en) * 1985-08-22 1988-06-28 High Technology Sensors, Inc. Modulated infrared source
US4810092A (en) * 1986-02-21 1989-03-07 Midac Corporation Economical spectrometer unit having simplified structure
JPH074986B2 (ja) * 1986-05-26 1995-01-25 富士写真フイルム株式会社 感熱記録材料
JPH0717102B2 (ja) * 1986-10-08 1995-03-01 富士写真フイルム株式会社 感熱記録材料
DE3781259T2 (de) 1986-12-25 1993-03-11 Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa Verfahren zur herstellung eines waermeempfindlichen aufzeichnungsmaterials.
DE3721289A1 (de) * 1987-06-27 1989-01-12 Opel Adam Ag Armaturentafel fuer fahrzeuge, insbesondere kraftfahrzeuge
ATE57132T1 (de) * 1987-09-03 1990-10-15 Berstorff Gmbh Masch Hermann Einrichtung zum drehbaren transportieren von vorformlingen durch eine aufheizstation zu einer streckblasmaschine.
GB2210702B (en) * 1987-10-02 1991-11-06 Fuji Photo Film Co Ltd Heat sensitive recording material
JPH0741742B2 (ja) 1987-10-02 1995-05-10 富士写真フイルム株式会社 感熱記録材料
JPH06104385B2 (ja) * 1987-12-01 1994-12-21 富士写真フイルム株式会社 感熱記録材料
LU87192A1 (de) 1988-04-07 1989-11-14 Euratom Vorrichtung zum herstellen amorpher keramikstoffe oder metallegierungen
US5883362A (en) * 1988-05-19 1999-03-16 Quadlux, Inc. Apparatus and method for regulating cooking time in a lightwave oven
US4900891A (en) * 1988-06-20 1990-02-13 Roger Vega Laser ice removal system
US5260715A (en) 1988-06-28 1993-11-09 Fuji Photo Film Co., Ltd. Method of and apparatus for thermally recording image on a transparent heat sensitive material
US4989791A (en) * 1988-07-01 1991-02-05 Ridenour Ralph Gaylord Valve nozzle assembly
US4894509A (en) * 1988-12-13 1990-01-16 International Business Machines Corporation Laser assisted heater bar for multiple lead attachment
US4948937A (en) 1988-12-23 1990-08-14 Itt Corporation Apparatus and method for heat cleaning semiconductor material
EP0387737B1 (fr) 1989-03-14 1993-08-11 BEKUM Maschinenfabriken GmbH Procédé pour réchauffer des préformes injectées prélevées d'une réserve, pour les souffler enfin dans un moule de soufflage et en faire des corps creux et procédé pour le moulage par soufflage de préformes préfabriquées
GB2230740B (en) 1989-04-04 1993-09-29 Apple Computer Modular keyboard
NL8901257A (nl) * 1989-05-19 1990-12-17 Leeuwarder Papier Werkwijze voor het aanbrengen van verzwakkingslijnen in resp. het graveren van kunststofmateriaal, in het bijzonder verpakkingsmateriaal.
JPH0373814A (ja) * 1989-08-15 1991-03-28 Jujo Paper Co Ltd 光出力、主波長識別方法
US5010659A (en) * 1989-09-08 1991-04-30 W. R. Grace & Co.-Conn. Infrared drying system
US6638413B1 (en) 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
EP0431808A3 (en) 1989-12-08 1992-05-20 Tokyo Electric Co., Ltd. Tag printer
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
US5160556A (en) 1990-08-22 1992-11-03 United Container Machinery Group, Inc. Method of hardening corrugating rolls
CA2088270C (fr) * 1990-09-07 2000-04-25 Sam H. Jaberi Affichage adaptable pour vehicule
CA2068517C (fr) 1990-09-13 2001-01-16 Hubertus Mreijen Preforme pour bouteille de polyester
JPH04280915A (ja) * 1991-01-10 1992-10-06 Nippon Steel Corp 金属線材のレーザ熱処理法およびその装置
JP3132840B2 (ja) 1991-03-22 2001-02-05 コニカ株式会社 感熱転写記録用受像シートおよび感熱転写記録方法
FR2678542B1 (fr) 1991-07-01 1993-10-29 Sidel Procede et installation pour le chauffage, par rayonnement infrarouge, de preformes en matiere plastique, notamment en pet, destinees a la fabrication de recipients.
US5261415A (en) 1991-07-12 1993-11-16 Ciba Corning Diagnostics Corp. CO2 mainstream capnography sensor
US5163179A (en) 1991-07-18 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Platinum silicide infrared diode
US5206039A (en) * 1991-09-24 1993-04-27 Valyi Emery I Apparatus for conditioning pressure molded plastic articles
US5267959A (en) * 1991-11-29 1993-12-07 Schneider, Inc. Laser bonding of angioplasty balloon catheters
US5349211A (en) 1992-03-26 1994-09-20 Nec Corporation Semiconductor infrared emitting device with oblique side surface with respect to the cleavage
WO1994001269A1 (fr) * 1992-07-07 1994-01-20 Continental Pet Technologies, Inc. Procede de formation d'un recipient a paroi laterale a haute cristallinite et a base a faible cristallinite
DE4234342C2 (de) 1992-10-12 1998-05-14 Fraunhofer Ges Forschung Verfahren zur Materialbearbeitung mit Laserstrahlung
FR2700293B1 (fr) * 1993-01-08 1995-03-24 Settembrini Antoine Di Machine de fabrication de corps creux par soufflage.
US5382441A (en) * 1993-04-16 1995-01-17 The Pillsbury Company Method of processing food utilizing infrared radiation
JP2914847B2 (ja) * 1993-07-09 1999-07-05 株式会社東芝 半導体レーザ装置
US5457299A (en) 1993-10-29 1995-10-10 International Business Machines Corporation Semiconductor chip packaging method which heat cures an encapsulant deposited on a chip using a laser beam to heat the back side of the chip
US5394492A (en) 1993-11-19 1995-02-28 Applied Optronics Corporation High power semiconductor laser system
US5509733A (en) * 1993-12-21 1996-04-23 Ta Instruments, Inc. Infrared heated differential thermal analyzer
WO1995019808A1 (fr) 1994-01-21 1995-07-27 Erik Larsen Dispositif pour stimuler les cellules du corps au moyen de rayonnements electromagnetiques
JP2920904B2 (ja) 1994-03-28 1999-07-19 矢崎総業株式会社 メータモジュール組立体
EP0696517B1 (fr) 1994-07-22 1998-11-18 Fujicopian Co., Ltd. Matériau d'enregistrement à transfert par chaleur
DE4429913C1 (de) * 1994-08-23 1996-03-21 Fraunhofer Ges Forschung Vorrichtung und Verfahren zum Plattieren
JP2954858B2 (ja) 1994-09-16 1999-09-27 日精エー・エス・ビー機械株式会社 射出延伸ブロー成形装置及び方法
US5698866A (en) 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
IL111428A (en) * 1994-10-27 1997-07-13 Supercom Ltd Laminated plastic cards and process and apparatus for making them
JPH08142175A (ja) * 1994-11-17 1996-06-04 Kyodo Printing Co Ltd 二軸延伸ブロー成形用プリフォームの加熱方法及びその装置、並びにボトルの製造方法
US5565119A (en) 1995-04-28 1996-10-15 International Business Machines Corporation Method and apparatus for soldering with a multiple tip and associated optical fiber heating device
US5553391A (en) * 1995-06-05 1996-09-10 Bakalar; Sharon F. Method and apparatus for heat treating webs
JPH08337065A (ja) * 1995-06-13 1996-12-24 Fujicopian Co Ltd 熱転写記録材料
US5888644A (en) * 1995-07-17 1999-03-30 Fujicopian Co., Ltd. Thermal transfer recording material
US5589210A (en) 1995-08-23 1996-12-31 Centro De Investigacion Y De Estudios-Avanzados Del I.P.N. Method for cooking wheat flour products by using infrared radiation
US5740314A (en) * 1995-08-25 1998-04-14 Edison Welding Institute IR heating lamp array with reflectors modified by removal of segments thereof
US5964749A (en) * 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5618489A (en) * 1995-10-05 1997-04-08 Hoover Universal, Inc. Apparatus and process for blow molding containers
JPH0999644A (ja) * 1995-10-09 1997-04-15 Fujicopian Co Ltd 熱転写記録材料
JPH09142031A (ja) 1995-11-22 1997-06-03 Fujicopian Co Ltd 熱転写記録材料
CH690095A5 (fr) 1995-12-07 2000-04-28 Tetra Pak Plastics Ltd Tetra P Dispositif de chauffage pour machines de transformation de matières plastiques.
JPH09240319A (ja) 1995-12-28 1997-09-16 Yazaki Corp 電装モジュールの組付け構造
JP3672678B2 (ja) * 1996-04-05 2005-07-20 富士通株式会社 量子半導体装置およびその製造方法
US5780524A (en) 1996-05-14 1998-07-14 Olsen; Don E. Micro heating apparatus for synthetic fibers and related methods
GB2315450B (en) 1996-07-20 2000-10-11 Mckechnie Plastics Ltd Improved method and apparatus for shaping thermoplastic tubes
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US5976288A (en) 1997-01-10 1999-11-02 Ekendahl; Lars O. Method of forming a molded, multi-layer structure
JP3760045B2 (ja) * 1997-02-17 2006-03-29 日精エー・エス・ビー機械株式会社 耐熱容器の成形方法
US6151338A (en) 1997-02-19 2000-11-21 Sdl, Inc. High power laser optical amplifier system
US5820820A (en) 1997-04-18 1998-10-13 Pierce; Brian N. Method of thermally and selectively separating water and or solvents from solids under vacuum utilizing radiant heat
US5925710A (en) 1997-04-23 1999-07-20 Hoechst Celanese Corporation Infrared absorbing polyester packaging polymer
US5865546A (en) * 1997-08-29 1999-02-02 Compaq Computer Corporation Modular keyboard for use in a computer system
US6815206B2 (en) 1997-09-19 2004-11-09 Ethicon, Inc. Container monitoring system
US5834313A (en) 1997-09-19 1998-11-10 Johnson & Johnson Medical, Inc. Container monitoring system
US5953356A (en) 1997-11-04 1999-09-14 Wisconsin Alumni Research Foundation Intersubband quantum box semiconductor laser
US6482672B1 (en) 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
DE19750263A1 (de) 1997-11-13 1999-05-20 Iwk Verpackungstechnik Gmbh Verfahren und Vorrichtung zum Verschließen einer Kunststoff-Tube in einer Tubenfüllmaschine
US5981611A (en) 1997-11-24 1999-11-09 Prince Corporation Thermoformable foam with infrared receptors
US6246935B1 (en) * 1997-12-01 2001-06-12 Daimlerchrysler Corporation Vehicle instrument panel computer interface and display
US6069345A (en) * 1997-12-11 2000-05-30 Quadlux, Inc. Apparatus and method for cooking food with a controlled spectrum
US6104604A (en) 1998-01-06 2000-08-15 Gateway 2000, Inc. Modular keyboard
US20030161917A1 (en) 1998-01-20 2003-08-28 Ernest A. Voisin Process of elimination of bacteria in shellfish of shucking shellfish and an apparatus therefor
US6022920A (en) * 1998-01-23 2000-02-08 Eastman Chemical Company Method for the production of clear bottles having improved reheat
US6080146A (en) * 1998-02-24 2000-06-27 Altshuler; Gregory Method and apparatus for hair removal
US6503586B1 (en) * 1998-02-25 2003-01-07 Arteva North America S.A.R.L. Title improved infrared absorbing polyester packaging polymer
US6243035B1 (en) 1998-02-27 2001-06-05 Universal Electronics Inc. Key module for wireless keyboard
US6038786A (en) * 1998-04-16 2000-03-21 Excel Dryer Inc. Hand dryer
US6146677A (en) 1998-05-01 2000-11-14 Remco Techologies, Inc. High efficiency infrared oven
JP3268443B2 (ja) 1998-09-11 2002-03-25 科学技術振興事業団 レーザ加熱装置
US20040056006A1 (en) * 1998-10-01 2004-03-25 The Welding Institute Welding method
FR2785564B1 (fr) 1998-11-10 2000-12-08 Cebal Traitement de materiaux au laser, notamment de decoupage ou de soudure
US6507042B1 (en) * 1998-12-25 2003-01-14 Fujitsu Limited Semiconductor device and method of manufacturing the same
DE19901540A1 (de) 1999-01-16 2000-07-20 Philips Corp Intellectual Pty Verfahren zur Feinabstimmung eines passiven, elektronischen Bauelementes
DE29900811U1 (de) 1999-01-19 1999-03-18 Sator Laser GmbH, 22525 Hamburg Vorrichtung zum Verschweißen des Endes von rohrartigen Behältern aus Kunststoff, insbesondere von Tuben
US6174388B1 (en) 1999-03-15 2001-01-16 Lockheed Martin Energy Research Corp. Rapid infrared heating of a surface
DE19919191A1 (de) 1999-04-29 2000-11-02 Bielomatik Leuze & Co Verfahren und Vorrichtung zum Schweißen
AU4279600A (en) * 1999-04-30 2000-11-17 Powerlasers Limited Welding of carpet to panels
US6294769B1 (en) 1999-05-12 2001-09-25 Mccarter David Infrared food warming device
US6357504B1 (en) * 1999-07-29 2002-03-19 Owens Corning Fiberglas Technology, Inc. Technology for attaching facing system to insulation product
US6441510B1 (en) 1999-08-17 2002-08-27 Lear Corporation Reconfigurable modular instrument cluster arrangement
DE50005363D1 (de) 1999-12-03 2004-03-25 Siemens Ag Verfahren zum berührungslosen biegen von teilen aus einem thermoplastischen kunststoff und nach diesem verfahren gebogenes oder justiertes teil
IT1311733B1 (it) * 1999-12-23 2002-03-19 Sipa Spa Impianto perfezionato per il riscaldamento ad infrarossi di preformein plastica
ES2200460T3 (es) 1999-12-23 2004-03-01 Leister Process Technologies Procedimiento y dispositivo para el calentamiento de por lo menos dos elementos mediante rayos laser con elevada densidad de energia.
US6361301B1 (en) * 2000-02-21 2002-03-26 Plastipak Packaging, Inc. Heater assembly for blow molding plastic preforms
US6451152B1 (en) 2000-05-24 2002-09-17 The Boeing Company Method for heating and controlling temperature of composite material during automated placement
WO2001098870A2 (fr) 2000-06-20 2001-12-27 Cohen Morris S Systeme de clavier pour ordinateur portatif
DE20018500U1 (de) * 2000-10-28 2001-12-13 KRONES AG, 93073 Neutraubling Blasmaschine
JP3516233B2 (ja) * 2000-11-06 2004-04-05 日本板硝子株式会社 情報記録媒体用ガラス基板の製造方法
WO2002042023A1 (fr) 2000-11-27 2002-05-30 National University Of Singapore Procede et appareil permettant de creer une piece metallique en 3d par fusion laser directe a haute temperature
US7015422B2 (en) * 2000-12-21 2006-03-21 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
AUPR245001A0 (en) 2001-01-10 2001-02-01 Silverbrook Research Pty Ltd A method (WSM03)
CA2332190A1 (fr) 2001-01-25 2002-07-25 Efos Inc. Source lumineuse a reseau de semiconducteurs adressable permettant l'irradiation localisee
US7060942B2 (en) 2001-04-11 2006-06-13 Hardt Equipment Manufacturing Inc. Cooking apparatus and method therefor
US7009140B2 (en) * 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
JP2003011734A (ja) * 2001-04-26 2003-01-15 Denso Corp 車両用電気機器取付構造
GB0110447D0 (en) * 2001-04-28 2001-06-20 Genevac Ltd Improvements in and relating to the heating of microtitre well plates in centrifugal evaporators
CA2449508A1 (fr) 2001-05-21 2002-11-28 Pressco Technology, Inc. Appareil et procede d'imagerie infrarouge thermique instantanee utilises dans des applications automatisees de controle d'articles et de commande de processus
US6670570B2 (en) 2001-06-15 2003-12-30 L'air Liquide - Societe Anonyme A Directoire Et Couseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods and apparatus for localized heating of metallic and non-metallic surfaces
DE10131620B4 (de) 2001-06-29 2007-10-25 Adphos Advanced Photonics Technologies Ag Verfahren und Vorrichtung zum Trocknen und/oder Vernetzen oder Erwärmen mittels elektromagnetischer Strahlung
DE10145456A1 (de) * 2001-09-14 2003-05-22 Krones Ag Vorrichtung zum Erwärmen von mit einem Tragring versehenen Vorformlingen
EP1302735B1 (fr) * 2001-10-10 2014-01-01 Heidelberger Druckmaschinen Aktiengesellschaft Dispositif et procédé pour délivrer de l'énergie rayonnante sur un support d'impression dans une machine d'impression planographique
DE10149934A1 (de) 2001-10-10 2003-04-17 Kraft Maschb Gmbh Verfahren zum Herstellen von Oberflächen dreidimensionaler Formteile
US7540869B2 (en) * 2001-12-27 2009-06-02 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
DE10246198A1 (de) 2002-10-01 2004-04-22 Jenoptik Automatisierungstechnik Gmbh Anordnung zum Schweißen mittels Laserstrahlung
FR2848495B1 (fr) * 2002-12-12 2006-11-17 Sidel Sa Four pour chauffer au defile des ebauches de recipients en materiau thermoplastique
US6710281B1 (en) * 2002-12-20 2004-03-23 Duane H. Wachnuk Laser based heat exchanger
FR2848906B1 (fr) * 2002-12-23 2006-08-18 Sidel Sa Procede et installation de fabrication d'un recipient en matiere plastique
DE10307121A1 (de) * 2003-02-19 2004-09-02 Rodenstock Gmbh Neutralfarbener photochromer Kunststoffgegenstand
GB0305052D0 (en) 2003-03-05 2003-04-09 Rooney Jonathan P Modular control panel assembly
US6892927B2 (en) * 2003-04-24 2005-05-17 Intel Corporation Method and apparatus for bonding a wire to a bond pad on a device
US7307243B2 (en) 2003-05-09 2007-12-11 North Carolina State University Dynamic radiant food preparation methods and systems
US7155876B2 (en) * 2003-05-23 2007-01-02 Douglas Machine, Inc. Heat tunnel for film shrinking
US7063820B2 (en) 2003-06-16 2006-06-20 University Of Florida Research Foundation, Inc. Photoelectrochemical air disinfection
US7823366B2 (en) * 2003-10-07 2010-11-02 Douglas Machine, Inc. Apparatus and method for selective processing of materials with radiant energy
FR2863932B1 (fr) 2003-12-19 2007-07-06 Sidel Sa Four de chauffage d'une preforme equipe de deux ventilateurs de refroidissement
FR2863931B1 (fr) 2003-12-19 2006-03-10 Sidel Sa Module de chauffage d'une preforme equipe d'un deflecteur d'air profile de facon aerodynamique et four comportant au moins un tel module
US7220378B2 (en) 2004-01-07 2007-05-22 Pressco Technology Inc. Method and apparatus for the measurement and control of both the inside and outside surface temperature of thermoplastic preforms during stretch blow molding operations
US20050161866A1 (en) 2004-01-23 2005-07-28 Rajnish Batlaw Process of making two-stage injection stretch blow molded polypropylene articles
FR2871403B1 (fr) 2004-06-15 2007-11-23 Sidel Sas Circuit de refroidissement perfectionne pour un four a preformes et procede de mise en oeuvre d'un tel circuit
FR2872734B1 (fr) 2004-07-08 2008-02-22 Sidel Sa Sa Four de chauffage d'une preforme comportant un organe de commande du deplacement d'un moyen de chauffage entre des positions indexees
US7259131B2 (en) * 2004-07-20 2007-08-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Mild, moisturizing cleansing compositions
JP4823902B2 (ja) 2004-07-29 2011-11-24 三井化学株式会社 熱可塑性樹脂中空成形体の製造方法
US20060048881A1 (en) * 2004-09-08 2006-03-09 Evans Richard B Laser-assisted placement of veiled composite material
GB2418094B (en) * 2004-09-10 2010-05-12 Medicsight Plc User interface for CT scan analysis
FR2876943B1 (fr) 2004-10-22 2008-08-15 Sidel Sas Procede et dispositif de chauffage d'ebauches en matiere thermoplastique
FR2878185B1 (fr) * 2004-11-22 2008-11-07 Sidel Sas Procede de fabrication de recipients comprenant une etape de chauffe au moyen d'un faisceau de rayonnement electromagnetique coherent
EP1662546A1 (fr) 2004-11-25 2006-05-31 The European Community, represented by the European Commission Appareil de traitement par plasma à couplage inductif
US10687391B2 (en) 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US7425296B2 (en) 2004-12-03 2008-09-16 Pressco Technology Inc. Method and system for wavelength specific thermal irradiation and treatment
US20070188023A1 (en) 2006-02-10 2007-08-16 Visteon Global Technologies, Inc. Modular building block instrument cluster
FR2915418B1 (fr) * 2007-04-25 2012-11-16 Sidel Participations Procede de chauffe d'ebauches pour la fabrication de recipients
MX2009012601A (es) 2007-06-08 2010-04-21 Pressco Tech Inc Un metodo y sistema para irradiacion y tratamiento termico especifico de longitud de onda.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780030A (en) * 1980-11-06 1982-05-19 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
JPS59184626A (ja) * 1983-04-06 1984-10-20 Mitsubishi Heavy Ind Ltd 吹き込み延伸パイプ成形方法
FR2561986A1 (fr) * 1984-03-28 1985-10-04 Pont A Mousson Dispositif de chauffage d'ebauches en materiau thermoplastique en vue de former, par soufflage, des corps creux
EP0564354A1 (fr) * 1992-04-03 1993-10-06 S I D E L Procédé de conditionnement thermique de préformes en matières thermoplastiques et dispositif pour la mise en oeuvre de ce procédé
EP0571262A1 (fr) * 1992-05-20 1993-11-24 Sidel Unité pour le traitement thermique de récipients en PET lors de la fabrication de ceux-ci
EP0620099A1 (fr) * 1993-04-15 1994-10-19 Sidel Procédé et installation pour le traitement thermique du corps d'une préforme ou d'un récipient intermédiaire en matériau thermoplastique
DE19603974A1 (de) * 1996-01-26 1997-08-07 Udo Prof Dr Ing Hellwig Verfahren zum Verformen von Körpern und Materialbahnen
FR2762799A1 (fr) * 1997-05-02 1998-11-06 Ca Greiner & Sohne Ges Mbh Dispositif pour le traitement posterieur d'au moins un objet extrude et calibre et/ou refroidi, ainsi que son procede de realisation
US20020062161A1 (en) * 1999-04-23 2002-05-23 Carsten Dusterhoft Automated method and apparatus for the non-cutting shaping of a body
DE10106607A1 (de) * 2001-02-13 2002-09-12 Carsten Duesterhoeft Laserstrahlbasiertes Erwärmverfahren und Vorrichtung zur Erzeugung einer genauen orts- und zeitabhängigen Temperaturverteilung auf thermoplastischem Rohmaterial zur Umformung in einer Form

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 163 (M - 152) 26 August 1982 (1982-08-26) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 046 (M - 360) 27 February 1985 (1985-02-27) *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354051B2 (en) 2004-11-22 2013-01-15 Sidel Participations Method and installation for the production of containers
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
EP2345482A3 (fr) * 2004-12-03 2013-11-06 Pressco Technology, Inc. Procédé et système d'application de rayonnements thermiques et de traitement thermique spécifiques de longueur d'onde
EP2345521A3 (fr) * 2004-12-03 2013-12-11 Pressco Technology, Inc. Procédé et système d'application de rayonnements thermiques et de traitement thermique specifiques de longueur d'onde
US11072094B2 (en) 2004-12-03 2021-07-27 Pressco Ip Llc Method and system for wavelength specific thermal irradiation and treatment
EP1798017A3 (fr) * 2005-12-15 2007-08-15 SIG Technology Ltd. Procédé et appareil pour fabriquer des récipients par soufflage
DE102005061334A1 (de) * 2005-12-21 2007-06-28 Advanced Photonics Technologies Ag Streckblasanlage und Verfahren zum Streckblasen
DE102005061334B4 (de) * 2005-12-21 2016-12-29 Khs Corpoplast Gmbh Streckblasanlage und Verfahren zum Streckblasen
JP2009539646A (ja) * 2006-06-07 2009-11-19 プレスコ テクノロジー インコーポレーテッド 波長特異的な熱放射及び処理を行う方法及びシステム
DE102006042711A1 (de) * 2006-09-12 2008-03-27 Krones Ag Verfahren und Vorrichtung zur Herstellung von Kunststoffverpackungsbehältern
US8404175B2 (en) 2006-09-12 2013-03-26 Krones Ag Method and device for the production of plastic packaging containers
DE102006042711B4 (de) * 2006-09-12 2012-06-14 Krones Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung von Kunststoffverpackungsbehältern
WO2008075280A1 (fr) * 2006-12-19 2008-06-26 Philips Intellectual Property & Standards Gmbh Système et procédé de chauffage d'objets dans une chaîne de production
US9789631B2 (en) 2006-12-19 2017-10-17 Koninklijke Philips N.V. System for and method of heating objects in a production line
WO2008113908A2 (fr) * 2007-03-02 2008-09-25 Sidel Participations Perfectionnements a la chauffe des matieres plastiques par rayonnement infrarouge
JP2010520084A (ja) * 2007-03-02 2010-06-10 シデル パーティシペイションズ 赤外線放射によるプラスチック加熱の改善
WO2008113908A3 (fr) * 2007-03-02 2008-11-13 Sidel Participations Perfectionnements a la chauffe des matieres plastiques par rayonnement infrarouge
FR2913210A1 (fr) * 2007-03-02 2008-09-05 Sidel Participations Perfectionnements a la chauffe des matieres plastiques par rayonnement infrarouge
US8546277B2 (en) 2007-03-02 2013-10-01 Sidel Participations Heating plastics via infrared radiation
US9296148B2 (en) 2007-04-25 2016-03-29 Sidel Participations Method of heating preforms for the manufacture of containers
US20100127435A1 (en) * 2007-04-25 2010-05-27 Sidel Participations Method of heating preforms for the manufacture of containers
DE102007025527A1 (de) * 2007-05-31 2008-12-04 Khs Ag Verfahren und Anlage zum Herstellen von Packmitteln
WO2008145331A1 (fr) * 2007-05-31 2008-12-04 Khs Ag Procédé et dispositif de fabrication d'emballages
CN103624966A (zh) * 2007-06-08 2014-03-12 普瑞斯克技术公司 一种用于特定波长热照射和处理的方法和系统
US20090102083A1 (en) * 2007-06-08 2009-04-23 Cochran Don W Method and System for Wavelength Specific Thermal Irradiation and Treatment
CN103624966B (zh) * 2007-06-08 2018-01-19 普瑞斯克技术公司 一种用于特定波长热照射和处理的方法和系统
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
CN101323170B (zh) * 2007-06-11 2010-06-02 赛德尔参与公司 用于吹塑容器的预制坯坯体的加热装置
JP2009051198A (ja) * 2007-06-11 2009-03-12 Sidel Participations 容器をブロー成形するためにプレフォームの本体を加熱する装置
JP2013504457A (ja) * 2009-09-15 2013-02-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ プレフォームを加熱する方法
WO2011083263A1 (fr) 2010-01-06 2011-07-14 Sidel Participations Unité de traitement d'ébauches de corps creux, équipée d'une chambre formant piège à lumière
CN103619554A (zh) * 2011-06-23 2014-03-05 西德尔合作公司 外壁温度较低的容器粗坯的加热方法及粗坯的加热单元
EP3900911A1 (fr) 2020-04-22 2021-10-27 Sidel Participations Preforme et recipient a transmittances variables
FR3109554A1 (fr) 2020-04-22 2021-10-29 Sidel Participations Préforme et récipient à transmittances variables

Also Published As

Publication number Publication date
US20090214690A1 (en) 2009-08-27
FR2878185A1 (fr) 2006-05-26
EP1824659B1 (fr) 2013-10-02
US20080099961A1 (en) 2008-05-01
US20100007061A1 (en) 2010-01-14
EP1824659A1 (fr) 2007-08-29
CN101060970A (zh) 2007-10-24
US20100072673A1 (en) 2010-03-25
MX2007006152A (es) 2007-07-19
US8303290B2 (en) 2012-11-06
JP4555344B2 (ja) 2010-09-29
JP2008520467A (ja) 2008-06-19
CN101060970B (zh) 2012-04-18
FR2878185B1 (fr) 2008-11-07
US8354051B2 (en) 2013-01-15

Similar Documents

Publication Publication Date Title
EP1824659B1 (fr) Procede et installation de fabrication de recipients
EP2782741B1 (fr) Unité de traitement thermique d'ébauches de récipients à double paroi rayonnante en quinconce
EP2392442B1 (fr) Four pour le conditionnement thermique de préformes et procédé de commande d'un dispositif de refroidissement par air équipant un tel four
EP0910772B1 (fr) Dispositif emetteur/reflecteur de rayonnements electromagnetiques, appareil et procede mettant en oeuvre un tel dispositif
US20100230863A1 (en) System for and method of heating objects in a production line
CH690095A5 (fr) Dispositif de chauffage pour machines de transformation de matières plastiques.
EP2544877B1 (fr) Unite de traitement d'ebauches de corps creux par rayonnement equipee d'un sas de confinement du rayonnement
EP3439849B1 (fr) Procede de chauffe preferentielle d'un corps creux comportant une etape de marquage
FR2917005A1 (fr) Installation de chauffage des corps de preformes pour le soufflage de recipients
FR2938789A1 (fr) Procede et dispositif de chauffage par infrarouge de preformes plastiques.
WO2015121122A1 (fr) Installation de conditionnement thermique de préformes avec refroidissement d'une portion de la préforme par une lame d'air pulsé
EP3363615B1 (fr) Unite de traitement d'ebauches equipee d'une section de confinement optique a parois convergentes
FR3088026A1 (fr) Procede de gestion de preformes immobilisees dans une station de chauffage
EP3461616B1 (fr) Procede et unite de conditionnement thermique, qui comprend des emetteurs a allumage et extinction progressifs
WO2019122756A1 (fr) Dispositif et methode de soudure pour souder des films thermoretractables enrobant des lots d'objets dans une installation de fardelage
EP2521642B1 (fr) Unité de traitement d'ébauches de corps creux, équipée d'une chambre formant un piège à lumière
EP3172031B1 (fr) Unite de chauffe de corps creux, qui comprend une cavite a basse temperature
FR2934196A1 (fr) Four de conditionnement thermique de preformes en matiere thermoplastique de construction modulaire
FR3097796A1 (fr) Unité de chauffe de corps creux pour machine de fabrication de récipients en matière plastique
FR3136395A1 (fr) Station de chauffage de preformes comportant des moyens de refroidissement
WO2022248315A1 (fr) Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite
FR2799267A1 (fr) Element dioptrique pour dispositif d'eclairage, et son procede de realisation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005817444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007542034

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/006152

Country of ref document: MX

Ref document number: 200580039991.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11667958

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005817444

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11667958

Country of ref document: US