WO2022248315A1 - Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite - Google Patents

Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite Download PDF

Info

Publication number
WO2022248315A1
WO2022248315A1 PCT/EP2022/063471 EP2022063471W WO2022248315A1 WO 2022248315 A1 WO2022248315 A1 WO 2022248315A1 EP 2022063471 W EP2022063471 W EP 2022063471W WO 2022248315 A1 WO2022248315 A1 WO 2022248315A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite part
mask
heating
zone
thermoplastic polymer
Prior art date
Application number
PCT/EP2022/063471
Other languages
English (en)
Inventor
Benjamin MASSETEAU
Franck Bellon
Thomas PERRET
Guillaume VINCENT
Original Assignee
Institut De Recherche Technologique Jules Verne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut De Recherche Technologique Jules Verne filed Critical Institut De Recherche Technologique Jules Verne
Priority to EP22729604.3A priority Critical patent/EP4347213A1/fr
Publication of WO2022248315A1 publication Critical patent/WO2022248315A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0266Local curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds
    • B29C35/0894Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds provided with masks or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0283Thermal pretreatment of the plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/1418Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure
    • B29C2045/14286Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the inserts being deformed or preformed, e.g. by the injection pressure means for heating the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • B29C2045/14877Pretreatment of the insert, e.g. etching, cleaning preheating or precooling the insert for non-deforming purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7343Heating or cooling of the mould heating or cooling different mould parts at different temperatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0288Controlling heating or curing of polymers during moulding, e.g. by measuring temperatures or properties of the polymer and regulating the process

Definitions

  • the present invention relates to a heating apparatus for carrying out localized thermal activation, also called localized heating, of a predetermined zone of a composite part with a thermoplastic polymer matrix as well as a heating method for the localized thermal activation of a predetermined zone of a composite part with a thermoplastic polymer matrix.
  • the invention also relates to an installation for supplying material, in particular by overmolding or welding, allowing the localized supply of at least one thermoplastic polymer, to a predetermined zone of a composite part, comprising such a heating device as well as a process for supplying material.
  • thermoplastic polymer matrix with a view to attaching and welding another thermoplastic polymer to it, by overmolding or welding or another process for adding material, the use of processes involving conduction or induction, the use of a plasma torch or even a laser.
  • the use of these types of heating has a number of disadvantages. Indeed, either the heating is too diffuse or, in the case of conduction, the heating induces, due to the contact between the heating element and the part, surface defects.
  • the travel time of the laser beam between the two ends of the zone to be heated of the part can induce significant temperature differences between these ends which are the cause of disparities in terms of mechanical resistance to level of the interface between the part and the added thermoplastic polymer.
  • CA2457743 Known from CA2457743 is an infrared emitter comprising a first parabolic reflector and a lower reflector having a lower opening through which all the radiation is directed.
  • DE 202013 001996 and FR 2777 496 describe infrared heating systems.
  • thermoplastic polymer matrix a localized zone of a composite part with a thermoplastic polymer matrix
  • a heating apparatus for carrying out localized thermal activation of a predetermined zone of a composite part with a thermoplastic polymer matrix, comprising: a heating device with emitter(s) infrared, a mask comprising at least one perforated zone, the mask being arranged relative to the composite part, in particular parallel thereto, without contact with the latter and so as to at least partially superimpose said at least one perforated zone with said predetermined zone, the mask being interposed between the composite part and the heating device, a control member of the heating device, the apparatus being configured in order on the one hand to allow localized thermal activation of said predetermined zone through said mask at a temperature at least equal to the melting temperature of the thermoplastic polymer, and on the other hand to preserve the other zones of the composite part from the tem deconsolidation period of the composite part.
  • the mask is preferably made of metal, in particular of aluminum or of steel, in particular of stainless steel.
  • the mask is designed to withstand a high temperature, in particular above 600°C. It advantageously comprises a metal sheet.
  • the mask preferably has a flat shape.
  • the mask may alternatively have a three-dimensional shape.
  • the thickness of the mask can be between 1 and 10 mm, being for example 5 mm, in a non-limiting manner, a wide range of thicknesses being possible.
  • Said at least one perforated zone of the mask advantageously has a shape or geometry similar to that of said predetermined zone of the composite part.
  • the perforated zone can form a slot or any other shape which depends at least in part on the surface to be heated, that is to say on said predetermined zone of the composite part.
  • the or each perforated zone preferably has, at least on the side of the mask which faces the composite part, a surface less than or equal to that of the corresponding predetermined zone.
  • the surface of the perforated zone can be between 20% and 90%, preferably between 50% and 80%, of the surface of the predetermined zone. This surface is chosen in particular as a function of the shape of the perforated zone, and therefore of the predetermined zone, of the distance between the mask and the composite part to be heated locally and of the surface power generated by the heating device.
  • Said at least one perforated zone can be produced by any cutting means making it possible to obtain a clean cut in order to avoid or limit edge effects, in particular diffraction, such as for example machining or water jet cutting. .
  • said at least one perforated zone may include at least one chamfer made inside it, aimed at ensuring that the surface of the perforated zone on the side of the mask which faces the composite part is less than that of the opposite side of the mask facing the heating device. This can make it possible to reduce the width of the beam of infrared radiation coming to heat the composite part in the interval between the mask and the composite part and therefore to limit the surface of the deconsolidated zone of the composite part.
  • the relative positioning of the mask and of the heating device and/or the positioning of this assembly of the mask and of the heating device relative to the composite part are preferably provided so as to allow heating to the desired temperature of said predetermined zone through of said at least one perforated zone.
  • the distance between the composite part and the mask can be between 5 and 40 mm, preferably between 5 and 20 mm, for example equal to 20 mm.
  • This distance depends in particular on the surface of the predetermined zone which is heated to the desired temperature. This distance also depends on the desired heat diffusivity in and around the predetermined area, therefore also of the type of fiber and thermoplastic polymer.
  • the distance between the mask and the heating device with infrared emitter(s), or infrared lamp(s), can be between 5 and 50 mm, preferably between 15 and 30 mm, for example equal to 30 mm. This distance may depend in particular on the type of infrared emitter, its geometry and the surface of the perforated area.
  • the heating device with infrared emitter(s) can be arranged in a plane parallel to the mask.
  • the mask can reflect at most 10%, better still at most 5%, of infrared, in particular of wavelength between 700 nm and 1 mm.
  • the device may include a movable frame relative to the composite part.
  • the assembly of the mask and the heating device is preferably carried by the frame of the apparatus.
  • the distance between the mask and the heating device can be adjustable although they are both integral with each other, being fixed to the frame. Alternatively, the distance between the mask and the heating device within the frame is not adjustable, being for example fixed at 30 mm.
  • the composite part may have a substantially planar shape.
  • the mask also plane in this case, can be arranged substantially parallel to the composite part.
  • the composite part may as a variant have a non-planar shape.
  • the mask may also be non-planar, the three-dimensional shape being obtained by a surface offset, in order to be able to be positioned parallel at any point to the surface of the composite part to be heated.
  • the infrared emitter placed behind the mask can be positioned tangent to the surface of the composite part to be thermally activated.
  • the composite part can be made of a composite laminate.
  • a composite laminate is for example obtained by superimposing plies of fibers, pre-impregnated with the thermoplastic polymer matrix, the plies of fibers possibly having different fiber orientations, for example oriented at 0°, +45°, -45° and 90°.
  • the composite part can be carried by a support and/or placed in a mold. No element is preferably placed between the mask and the composite part during heating using the device.
  • the thermoplastic polymer of the composite part is for example chosen from the group consisting of polyamides (PA), polyaryletherketones (PAEK), polycarbonates (PC), polyetherimides (PEI), polypropylenes (PP), polyethylenes (PE ), polyphenylene sulphides (PPS), acrylonitrile butadiene styrene (ABS), polyformaldehydes (POM), styrene-acrylonitriles (SAN), polyphenylene sulphides (PPS), polypropylenes (PP), polyethylenes (PE ) and polyethylene terephthalates (PET).
  • PA polyamides
  • PAEK polyaryletherketones
  • PC polycarbonates
  • PEI polyetherimides
  • PP polypropylenes
  • PE polyethylenes
  • PPS poly
  • the composite part generally includes reinforcing fibers.
  • the fibers of the composite part are for example chosen from the group consisting of fibers of glass, aramid, in particular Kevlar®, carbon, basalt, natural fibers, in particular flax, preferably carbon fibers and of glass.
  • the composite part can be of large dimensions, being for example intended for the aeronautical, space, wind power, automotive sector or for another industrial sector, in particular sports and leisure.
  • the apparatus may include at least one temperature sensor, in particular a pyrometer, configured to measure the surface temperature of the composite part, at least in said predetermined zone.
  • at least one temperature sensor in particular a pyrometer, configured to measure the surface temperature of the composite part, at least in said predetermined zone.
  • the control member is preferably configured to control the heating device according to a heating cycle comprising at least one temperature rise ramp and possibly a plateau, the heating cycle preferably lasting less than or equal to 3 min, in particular less than or equal to 2 min, more preferably less than or equal to 1 min and 30 s, or even less than or equal to 1 min.
  • said at least one temperature sensor can be configured to supply at least one piece of information to the control member relating to the temperature at least in said predetermined zone , the control member being configured to program and/or adapt the heating cycle as a function of said at least one item of information, said at least one item of information possibly being in particular a PID type regulation.
  • this can make it possible to prevent the temperature of said predetermined zone from exceeding the setpoint temperature given by the chosen ramp or even from exceeding the degradation temperature of the composite part, in particular of the thermoplastic polymer of the part. composite.
  • “Composite part deconsolidation temperature” means the temperature at which the composite part loses its material health, at which it degrades reversibly.
  • the composite part can be heated and compressed again to regain its initial material health.
  • deconsolidation consists of the appearance of porosity, the increase in the thickness of the composite part and the reduction in its mechanical properties, which is possible if the thermoplastic polymer has come too close to its temperature of merger.
  • the deconsolidation temperature of the composite part is synonymous with the deconsolidation temperature of the thermoplastic polymer matrix composite of the composite part.
  • the thermoplastic polymer of the matrix of the composite part is PEKK, the latter has a melting point Tm of 337°C. Deconsolidation of the composite takes place around 310°C, slightly below Tf. This deconsolidation temperature does not only depend on the melting temperature of the thermoplastic polymer, but also on the type of fibers, the type of textile used, the process implemented to produce the composite part.
  • degradation temperature is meant the temperature from which the thermoplastic polymer matrix contained in the composite part begins to degrade irreversibly, with a loss of mechanical properties and other physico-chemical properties. Indeed, “degradation” concerns a set of chemical modifications (oxidation and cross-linking of certain chains of the thermoplastic polymer). The degradation appears at high temperature (often well above the melting temperature T f ). This is irreversible damage to the polymer.
  • the apparatus is preferably configured so that the temperature reached by said predetermined zone is at least higher than the melting point T f of the thermoplastic polymer constituting the matrix of the composite part, and lower than the degradation temperature of the matrix contained in the composite part.
  • the heating is localized and therefore the deconsolidation temperature of the composite part is not reached in areas other than said predetermined area.
  • the deconsolidation temperature of the composite part is approximately 310°C, that is to say approximately 30°C below the melting temperature T f of the matrix.
  • the control member is preferably configured, in particular programmed, so as to control the heating device so as not to exceed this or these conditions.
  • the infrared emitter or emitters of the heating device comprise double filaments, in particular arranged between them to have a cross-section in the shape of an “8”.
  • the infrared emitter or emitters are monofilaments.
  • the wavelength, the type of emitter(s) and/or the surface heating power are preferably chosen according to the nature of the thermoplastic matrix composite making up the composite part (in particular the type of fibers), the its thickness, the heating rate required, the distance between the mask and the infrared emitters and the distance between the mask and the composite part.
  • the number of infrared emitters can vary according to the surface of the composite part to be heated, that is to say the surface of said predetermined zone, according to the planar or non-planar shape of the composite part, the nature of the part composite, the heating rate required, or the type of emitters used.
  • the number of transmitters can be between one and five per perforated area, preferably between one and three per perforated area.
  • the surface heating power can be between 50 and 500 kW/m 2 . This surface heating power is preferably chosen so as to allow heating of said predetermined zone which is as rapid as possible.
  • This surface power can be chosen according to the nature of the composite part to be heated and/or its thickness. It can be chosen so as to obtain a heating rate, in particular in the temperature rise ramp of the heating cycle, of between 2° C./s and 10° C./s.
  • a material supply installation allowing the localized supply of at least one thermoplastic polymer, to a predetermined zone of a part. composite
  • the installation comprising a heating device as defined above and a device for supplying material, in particular by overmolding or welding, to allow the supply of said at least one thermoplastic polymer, preferably chosen to be compatible with the thermoplastic polymer of the composite part, in said predetermined zone after heating the latter using the heating device.
  • the installation comprises a mold arranged to support the composite part during or after the localized thermal activation, said mold being a stamping mold for the 3D shaping of the composite part or a mold for injection having a cavity for the composite part.
  • the material supply device comprises said stamping mold, the mold also being configured to allow the addition of the thermoplastic polymer, in particular by overmolding or welding.
  • the material supply device comprises another mold configured to carry out the supply of said at least one thermoplastic polymer, in particular by overmolding or welding.
  • thermoplastic in particular implementing a heating device as defined above, the method comprising the following steps: a) Step a: positioning at a non-zero distance from the composite part a mask comprising at least one perforated zone, so as to at least partially superimposing said at least one perforated zone with said predetermined zone, b) Step b: heating, using a heating device with infrared emitter(s) separated from the composite part by said mask, through said at least one perforated zone, said predetermined zone of the composite part at a temperature greater than or equal to the melting temperature of the thermoplastic polymer, the other zones of the composite part being preserved from e the deconsolidation temperature of the thermoplastic polymer.
  • the mask can be arranged substantially parallel to such a plane of the composite part, at a predetermined distance between 5 mm and 40 mm, preferably between 5 mm and 20 mm, for example equal to 20 mm.
  • Step b can be controlled by a control member of the heating device according to a heating cycle, predetermined or adapted in particular according to the part composite, the heating cycle comprising in particular a heating ramp and a plateau, the duration of the heating cycle being preferably less than or equal to 3 min, in particular less than or equal to 2 min, more preferably less than or equal to 1 min 30 s , or even less than or equal to 1 min.
  • the heating device may comprise at least one temperature sensor, in which case the method advantageously comprises the step consisting in allowing the sending, by the temperature sensor, of at least one item of information relating to the temperature of said predetermined zone to the control member of the heating device, in particular a PID type regulation.
  • Another subject of the invention is a process for adding material allowing the localized addition of at least one thermoplastic polymer to a heated composite part of localized manner using the heating process as defined above, in particular using an installation as defined above, comprising the step consisting in carrying out the supply of said at least one thermoplastic polymer, in particular by overmolding or welding.
  • thermoplastic polymer is preferably of the same nature as that of the matrix of the composite part or is at least compatible with the latter, being filled or not.
  • thermoplastic polymer which is welded or overmolded on the composite part can be loaded so as to provide additional properties to the thermoplastic polymer alone.
  • fillers may include, for example, short reinforcing fibers (carbon, glass or other) to improve the mechanical properties, fillers improving fire resistance, fillers improving the thermal and/or electrical conductivity of the polymer or even elastomeric fillers. to improve impact resistance properties or a mixture thereof.
  • the addition of material makes it possible to provide an additional function to the composite part, for example a fixing support, a stiffening rib, or any other function.
  • the addition of material may consist in forming a stiffening rib on the predetermined zone, after it has been heated, the width of the rib preferably being less than or equal to the width of the predetermined zone.
  • FIG 1 Figure 1 schematically shows in perspective an example of a heating device according to the invention
  • FIG 2 figure 2 schematically represents a block diagram illustrating the steps of an example of a heating method according to the invention
  • Figure 3 represents a graph of the temperature as a function of time of an example of a heating cycle implemented using the apparatus of Figure 1,
  • FIG 4 figure 4 schematically and partially represents the temperature gradients at the level of the predetermined heating zone in the composite part seen from the front after heating using the apparatus of figure 1,
  • FIG 5 Figure 5 schematically shows the temperature gradients in the composite part seen in cross section after heating using the apparatus of Figure 1,
  • Figure 6 shows in schematic cross section an example of an apparatus according to the invention
  • FIG 7 is a view similar to Figure 6 of another example of apparatus according to the invention.
  • FIG. 7 schematically represents a block diagram illustrating the steps of an example of a process for supplying material according to the invention.
  • Figure 9 shows schematically and partially in front view the composite part of Figure 1 after implementation of the steps of the method of Figure 8.
  • FIG. 1 An example of a heating apparatus 1 for performing localized thermal activation of a predetermined zone Z of a composite part P with a thermoplastic polymer matrix, which is a PAEK in the example illustrated.
  • the device 1 comprises a heating device 2 with infrared emitter(s).
  • the device 1 also comprises a metal mask 3 comprising at least one perforated zone 4, in the example illustrated four slots together forming a square.
  • the mask 3 is arranged relative to the composite part P without contact with the latter and so as to superimpose along an axis Y substantially perpendicular to the plane of the mask, at least partially the or each perforated zone 4 with the predetermined zone P. As visible , the mask 3 is interposed between the composite part P and the heating device 2.
  • the device 1 further comprises a control member 5 of the heating device 2, shown in dotted lines in Figure 1.
  • the apparatus 1 is configured in order on the one hand to allow the localized thermal activation of the predetermined zone Z through the mask 3 at a temperature at least equal to the melting temperature T f of the thermoplastic polymer and d on the other hand to preserve the other zones Za of the composite part P from the deconsolidation temperature of the composite part with a thermoplastic polymer matrix.
  • the deconsolidation temperature of the composite part is approximately 310°C in this example, i.e. approximately 30°C below the melting temperature Tf of the matrix of the composite part P.
  • the mask 3 forms a metal sheet, in this example aluminum, and with a flat surface.
  • the composite part P has a flat shape in this example. It constitutes a composite laminate produced by superimposing plies of fibers pre-impregnated with the matrix consisting of the thermoplastic polymer, PAEK in this example.
  • the predetermined zone Z to be heated on the composite part P forms a square frame with four sides B of equal length.
  • the sides B are extended slightly at the corners C of the frame.
  • the perforated zone(s) 4, in this example the four slots 4, have the same geometry as the predetermined zone Z and therefore form between them a square frame, each perforated zone 4 forming one side of the square.
  • the perforated areas 4 are made in the mask 3 by water jet cutting, but they can be made differently without departing from the scope of the invention.
  • the infrared emitters 6 of the heating device 2 are four in number arranged in a square, being formed of infrared lamps, each being cylindrical in shape, being bi-filaments with an 8-shaped section, all having in this example the same diameter and being of identical length.
  • the infrared emitters 6 are arranged in a square in a plane parallel to the plane of the mask 3, perpendicular to the Y axis.
  • Each infrared emitter 6 is arranged in a parallel manner, translated along the Y axis, with respect to one of the zones openwork 4 corresponding.
  • Fixing supports 7, extending parallel to the Y axis in this example, are provided between the heating device 2 and the mask 3, substantially at the corners of the square formed by the infrared emitters 6 and the perforated zones 4.
  • Mounting brackets 7 are eight in number and hold each infrared emitter 6 close to its ends.
  • the distance between the heating device 2 and the mask 3, in particular the perforated zones 4 of the mask 3 is fixed, being in this example equal to 30 mm.
  • the distance between the heating device 2 and the mask 3 is adjustable.
  • the apparatus 1 further comprises a frame 10, part of which is visible in FIG. 1, making it possible to support the assembly formed by the mask 3 and the heating device 2.
  • the frame 10 retains the mask 3 at one end upper of it.
  • the positioning of the apparatus 1 comprising the mask 3 and the heating device 2 relative to the composite part P is provided so as to allow the heating to the desired temperature of the predetermined zone Z through the perforated zones 4. In the example shown, this positioning can be adjusted using the frame 10.
  • the distance between the mask 3 and the composite part P is in this example equal to 20 mm.
  • the mask 3 and the composite part P are arranged parallel to each other.
  • the mask 3 is arranged relative to the composite part P so that each perforated zone 4 is parallel, translated along the Y axis, with respect to one of the sides B of the square formed by the predetermined zone Z.
  • the device 1 comprises a temperature sensor 11 consisting of a pyrometer to measure the surface temperature of the composite part P at least in the predetermined zone Z.
  • the control member 5 is configured to control the heating device 2 according to a predetermined heating cycle, such as that which is illustrated in FIG. 3, comprising at least one temperature rise ramp R and a plateau E, the cycle of heating being planned to last less than 2 minutes.
  • the temperature rise in the ramp of the cycle can be equal to 2° C./s for example.
  • the duration of stage E can be between 10s and 30s, being 30s in the example shown.
  • the duration of the temperature rise ramp R is in this example equal to 1 min 30 s.
  • the temperature sensor 11 is provided to provide information to the control unit 5 relating to the temperature at least in the predetermined zone Z and the control unit 5 can then regulate the power delivered to the infrared emitters in order to precisely follow the heating cycle based on this information.
  • the principle of the invention which is implemented by the apparatus 1, thus consists in heating only the predetermined zone Z to a temperature at which the thermoplastic matrices in contact will be able to weld together, typically higher than the melting temperature T f of the thermoplastic polymer of the composite part P and that of the added material and not to heat beyond the deconsolidation temperature of the composite part P the remaining areas Za of the composite part P.
  • the aim is to obtain the following temperatures:
  • the surface heating power is between 100 and 500 kW/m 2 , being chosen so as to allow rapid heating of the predetermined zone Z, being a function of the nature of the composite part P and/or of its thickness.
  • the heating method aims to heat in a localized manner a predetermined zone Z of a composite part P with a thermoplastic polymer matrix, without deconsolidating the composite part P in the other zones Za.
  • the heating method implements the heating apparatus 1 illustrated in Figure 1.
  • the method comprises a step 20 consisting in positioning the mask 3 at a non-zero distance from the composite part P so as to at least partially superimpose the perforated zones 4 with the predetermined zone Z, in this example by translation along the Y axis, perpendicular to the plane of the mask 3.
  • the heating device 1 can translate laterally or vertically to face the predetermined zone Z.
  • the next step 21 of the method consists in heating using the heating device 2 with infrared emitters 6, separated from the composite part P by the mask 3, through the perforated zones 4 the predetermined zone Z of the composite part P at a temperature greater than or equal to the melting point T f of the thermoplastic polymer, the other zones Za of the composite part P being preserved from the deconsolidation temperature of the composite part with a thermoplastic polymer matrix.
  • the method may also include a preliminary step 19 consisting in programming the control member 5 of the heating device 2 according to a heating cycle that is predetermined or adapted according to the composite part P and the various parameters.
  • a heating cycle can be as illustrated in FIG. 3 with the temperature of the predetermined zone Z as a function of time (in seconds), with a temperature rise ramp R and a plateau E.
  • the predetermined zone Z is heated at a heating rate of between 2° C./s and 10° C./s, 2° C./s for 90 s in this example.
  • Stage E consists in maintaining, for example for a period equal to 30 s or even less, in particular less than 5 s, the temperature of the predetermined zone Z at the desired temperature, reached at the top of the temperature rise ramp R.
  • the duration of the plateau E is preferably short to avoid remaining a long time at the temperature plateau because the thermal energy is then dissipated in the zones Za which could gradually lead to the deconsolidation of the composite part P. It is preferable to plan a heating cycle with the fastest possible heating and a very short soak time. As a variant, the heating cycle can comprise only a temperature rise ramp and no plateau.
  • the duration of the heating cycle in this example is less than 2 min as seen.
  • FIG. 4 There is shown in Figure 4 the diagram of the temperature gradients reached at the bearing E on a part of the composite part P.
  • the temperatures range between a maximum temperature T1 and a minimum temperature T7 with decreasing intermediate temperatures ranging from T2 to T6.
  • the minimum temperature T7 is approximately 300°C.
  • the temperature T6 is about 310°C.
  • the temperature T5 is about 320°C.
  • the temperature T4 is between 330° C. and 340° C., corresponding to the melting temperature T f .
  • the temperature T3 is between 350°C and 370°C.
  • the temperature T2 is between 370 and 380°C while the temperature T1 is above 380°C.
  • the width L of the predetermined zone Z is equal to 12 mm in this example.
  • the zone which is heated beyond the deconsolidation temperature of the composite part P, that is to say at 310° C., is limited to the single predetermined zone Z.
  • the width of the perforated zones 4 is equal to 8 mm.
  • the thickness of the composite part P is 2.5 mm in this example.
  • the zone heated to more than 350°C has been circled. It encompasses the predetermined zone Z and its periphery, as visible.
  • the surface SI corresponds to the surface of the composite part P which faces the mask 3.
  • the mask 3 is cut internally for example using a water jet cut to form each perforated area 4.
  • the area perforated 4 is of constant width h in the thickness of the mask 3.
  • the radiation beam L emitted by the infrared emitter 6 which extends in a flared shape as far as the mask 3 is stopped by the latter, not crossing the mask 3 only in the zone occupied by the perforated zone 4 which lets it pass.
  • the beam L resumes a flared shape so that the zone of the composite part P which is affected by this radiation is wider than the width of the perforated zone 4.
  • a width of perforated zones h equal to 8 mm will thus lead, for example, to a heating width h of 12 mm (which corresponds to the width of the deconsolidated zone), for a distance between mask 3 and composite part P of 20 mm and for a thickness of the mask of 5 mm.
  • Figure 7 an alternative way of making the cutout of the mask 3 so as to form a chamfer in the thickness of the mask 3 at the level of the perforated zone 4 such that the width of the perforated zone 4 goes in narrowing from the side 31 of the mask facing the heating device 2 going towards the opposite side 32 of the mask 3 facing the composite part P.
  • the flared shape of the beam F at the exit of the mask 3 going towards the composite part P has a width less than that of FIG. 6, due to this chamfer reducing the width of the perforated zone.
  • a heating width h equal to 10 mm (which corresponds to the width of the deconsolidated zone), i.e. a width less than that, h , of the embodiment of figure 6.
  • FIG 8 different steps of a material supply process allowing the localized supply, in particular by overmolding or welding, of at least one thermoplastic polymer on the composite part P heated in a localized manner using of the heating method described above with particular reference to Figure 2 and using the heating apparatus 1 illustrated in Figure 1.
  • the process for supplying material comprises step 40 of shaping in a mould, in particular stamping, of the composite part P passing from a flat 2D shape to a 3D shape in a first mould. It is not beyond the scope of the invention if this step 40 is not provided for in the method.
  • the composite part P is demolded and positioned in a second mold.
  • a subsequent step 42 the composite part P is locally heated to the desired temperature above the melting temperature of the thermoplastic polymer of the composite part P as explained above.
  • material is added, in this example overmoulding, for example by injection of a thermoplastic polymer, or local welding on the predetermined zone Z, for example in the form of a rib of stiffening.
  • thermoplastic polymer used for the supply of material in this example the overmolding is of the same nature as the thermoplastic polymer of the composite part P, in this example a PAEK, or at least corresponds to a thermoplastic polymer compatible with it .
  • steps 40 and 41 are carried out in a single step, simultaneously, within the same mold.
  • FIG. 9 a part of the composite part P on which a stiffening rib 45 has been overmolded above the predetermined zone Z heated.
  • the composite part P is locally heated to a temperature above the melting point of the thermoplastic polymer of the composite part P, such that only the predetermined localized zone Z is deconsolidated in order to make it possible to produce quality overmolding or welding with an added thermoplastic polymer in fusion, without deconsolidating the rest of the thermoplastic polymer matrix of the composite part P placed outside this predetermined zone Z.
  • the rib 45 has been molded having a width h of 4 mm.
  • the width L is greater than the width h in this example in particular to compensate for a possible bad positioning of the mask 3 with respect to the composite part P which could cause overmolding on a zone not thermally activated for example. Thanks to this difference in width, it is possible to ensure that the stiffening rib is actually overmoulded in the predetermined zone Z thermally activated and not next to it.
  • the width L may be less, being at least greater than or equal to the width of the rib 45 or of any other part to be overmolded/welded.
  • thermoplastic polymer which is welded or overmolded on the composite part P can be loaded so as to provide additional properties to the thermoplastic polymer alone.
  • fillers may include, for example, short reinforcing fibers (carbon, glass or other) to improve the mechanical properties, fillers improving fire resistance, fillers improving thermal conductivity and/or electric polymer or elastomeric fillers to improve the impact resistance properties or a mixture thereof.
  • thermoplastic polymer added by overmolding or welding is unfilled.
  • the predetermined zone Z can be formed by a continuous zone as in the example illustrated, or discontinuous with zone portions not touching, of identical shapes to each other or not.

Abstract

Appareil (1) de chauffage pour réaliser une activation thermique localisée d'une zone prédéterminée (Z) d'une pièce composite (P) à matrice polymère thermoplastique, comportant : - un dispositif de chauffage (2) à émetteur(s) infrarouge (6), - un masque (3) comportant au moins une zone ajourée (4), le masque (3) étant disposé relativement à la pièce composite (P) sans contact avec celle-ci et de manière à superposer au moins partiellement ladite au moins une zone ajourée (4) avec ladite zone prédéterminée (Z), le masque (3) étant interposé entre la pièce composite (P) et le dispositif de chauffage (2), - un organe de commande (5) du dispositif de chauffage (2), l'appareil (1) étant configuré afin d'une part de permettre l'activation thermique localisée de ladite zone prédéterminée (Z) au travers dudit masque (3) à une température au moins égale à la température de fusion du polymère thermoplastique, et d'autre part de préserver les autres zones (Za) de la pièce composite (P) de sa température de déconsolidation.

Description

Description
Titre : Appareil de chauffage pour réaliser une activation thermique localisée d’une pièce composite Domaine technique
La présente invention concerne un appareil de chauffage pour réaliser une activation thermique localisée, encore appelée chauffage localisé, d’une zone prédéterminée d’une pièce composite à matrice polymère thermoplastique ainsi qu’un procédé de chauffage pour l’activation thermique localisée d’une zone prédéterminée d’une pièce composite à matrice polymère thermoplastique. L’invention a encore pour objet une installation d’apport de matière, notamment par surmoulage ou soudage, permettant l’apport localisé d’au moins un polymère thermoplastique, sur une zone prédéterminée d’une pièce composite, comportant un tel appareil de chauffage ainsi qu’un procédé d’apport de matière. Technique antérieure
Pour réaliser une activation thermique localisée d’une pièce en matériau composite à matrice polymère thermoplastique en vue de rapporter et souder dessus un autre polymère thermoplastique, par surmoulage ou soudage ou autre procédé d’apport de matière, on connaît l’utilisation de procédés mettant en œuvre la conduction ou l’induction, l’usage d’une torche plasma ou encore d’un laser.
Cependant, l’usage de ces types de chauffage présente un certain nombre d’inconvénients. En effet, soit le chauffage est trop diffus soit, dans le cas de la conduction, le chauffage induit, du fait du contact entre l’élément chauffant et la pièce, des défauts de surface. Pour ce qui concerne le laser, le temps de parcours du faisceau laser entre les deux extrémités de la zone à chauffer de la pièce peut induire des différences de température importantes entre ces extrémités qui sont à l’origine de disparités en termes de tenue mécanique au niveau de l’interface entre la pièce et le polymère thermoplastique rapporté.
On connaît encore l’usage d’émetteurs infrarouge dont les formes sont adaptées pour un activation thermique localisée de la pièce. Cependant, il y a sur le marché un choix limité dans les formes de tels émetteurs, notamment pour la surface minimale à chauffer, et leur coût est très élevé du fait de leurs formes spécifiques.
On connaît par CA2457743 un émetteur infrarouge comportant un premier réflecteur parabolique et un réflecteur inférieur ayant une ouverture inférieure à travers laquelle tout le rayonnement est dirigé. DE 202013 001996 et FR 2777 496 décrivent des systèmes de chauffage à infrarouge.
Il existe ainsi un besoin pour bénéficier d’un appareil de chauffage, d’un procédé de chauffage permettant de chauffer efficacement et à coût moindre une zone localisée d’une pièce composite à matrice polymère thermoplastique, ainsi que d’une installation et d’un procédé d’apport de matière permettant de venir rapporter sur cette zone un polymère thermoplastique, par surmoulage ou soudage ou autre procédé d’apport de matière.
Exposé de l’invention
L’invention répond à tout ou partie de ce besoin. Elle y parvient grâce à, selon l’un de ses aspects, un appareil de chauffage pour réaliser une activation thermique localisée d’une zone prédéterminée d’une pièce composite à matrice polymère thermoplastique, comportant : un dispositif de chauffage à émetteur(s) infrarouge, un masque comportant au moins une zone ajourée, le masque étant disposé relativement à la pièce composite, notamment parallèlement à celle-ci, sans contact avec celle-ci et de manière à superposer au moins partiellement ladite au moins une zone ajourée avec ladite zone prédéterminée, le masque étant interposé entre la pièce composite et le dispositif de chauffage, un organe de commande du dispositif de chauffage, l’appareil étant configuré afin d’une part de permettre l’activation thermique localisée de ladite zone prédéterminée au travers dudit masque à une température au moins égale à la température de fusion du polymère thermoplastique, et d’autre part de préserver les autres zones de la pièce composite de la température de déconsolidation de la pièce composite.
Le masque est de préférence réalisé en métal, notamment en aluminium ou en acier, notamment en acier inoxydable. Le masque est prévu pour avoir une tenue à une température élevée, notamment supérieure à 600°C. Il comporte avantageusement une tôle métallique. Le masque présente de préférence une forme plane. Le masque peut présenter en variante une forme tridimensionnelle. L’épaisseur du masque peut être comprise entre 1 et 10 mm, étant par exemple de 5 mm, de manière non limitative, une large gamme d’épaisseurs étant envisageable.
Ladite au moins une zone ajourée du masque présente avantageusement une forme ou géométrie similaire à celle de ladite zone prédéterminée de la pièce composite. La zone ajourée peut former une fente ou tout autre forme qui dépend en partie au moins de la surface à chauffer, c’est-à-dire de ladite zone prédéterminée de la pièce composite.
La ou chaque zone ajourée présente de préférence, au moins du côté du masque qui fait face à la pièce composite, une surface inférieure ou égale à celle de la zone prédéterminée correspondante. La surface de la zone ajourée peut être comprise entre 20% et 90%, de préférence entre 50% et 80%, de la surface de la zone prédéterminée. Cette surface est choisie notamment en fonction de la forme de la zone ajourée, et donc de la zone prédéterminée, de la distance entre le masque et la pièce composite à chauffer localement et de la puissance surfacique générée par le dispositif de chauffage.
Ladite au moins une zone ajourée peut être réalisée par tout moyen de découpe permettant d’obtenir une découpe nette afin d’éviter ou limiter les effets de bords, notamment la diffraction, comme par exemple l’usinage ou la découpe au jet d’eau.
Dans un mode de réalisation particulier, ladite au moins une zone ajourée peut comporter au moins un chanfrein réalisé à l’intérieur de celle-ci, visant à ce que la surface de la zone ajourée du côté du masque qui fait face à la pièce composite soit inférieure à celle du côté opposé du masque qui fait face au dispositif de chauffage. Cela peut permettre de réduire la largeur du faisceau de rayonnement infrarouge venant chauffer la pièce composite dans l’intervalle entre le masque et la pièce composite et donc de limiter la surface de la zone déconsolidée de la pièce composite.
Le positionnement relatif du masque et du dispositif de chauffage et/ou le positionnement de cet ensemble du masque et du dispositif de chauffage relativement à la pièce composite sont de préférence prévus de manière à permettre le chauffage à la température souhaitée de ladite zone prédéterminée au travers de ladite au moins une zone ajourée.
En particulier, la distance entre la pièce composite et le masque peut être comprise entre 5 et 40 mm, de préférence entre 5 et 20 mm, par exemple égale à 20 mm. Cette distance dépend notamment de la surface de la zone prédéterminée qui est chauffée à la température désirée. Cette distance dépend également de la diffusivité de chaleur voulue dans et autour de la zone prédéterminée, donc aussi du type de fibre et de polymère thermoplastique.
La distance entre le masque et le dispositif de chauffage à émetteur(s) infrarouge, ou lampe(s) infrarouge, peut être comprise entre 5 et 50 mm, de préférence entre 15 et 30 mm, par exemple égale à 30 mm. Cette distance peut dépendre notamment du type d’émetteur infrarouge, de sa géométrie et de la surface de la zone ajourée.
Le dispositif de chauffage à émetteur(s) infrarouge peut être disposé dans un plan parallèle au masque.
Le masque peut réfléchir au plus 10%, mieux au plus 5%, des infrarouges, notamment de longueur d’onde comprise entre 700 nm et 1 mm.
L’appareil peut comporter un châssis mobile relativement à la pièce composite. L’ensemble du masque et du dispositif de chauffage est de préférence porté par le châssis de l’appareil. La distance entre le masque et le dispositif de chauffage peut être réglable bien qu’ils soient tous deux solidaires entre eux, étant fixés au châssis. En variante, la distance entre le masque et le dispositif de chauffage au sein du châssis n’est pas réglable, étant par exemple fixée à 30 mm.
La pièce composite peut présenter une forme sensiblement plane. Dans ce cas, le masque, également plan dans ce cas, peut être disposé sensiblement parallèlement à la pièce composite.
La pièce composite peut en variante présenter une forme non plane. Dans ce dernier cas, le masque peut lui aussi être non plan, la forme tridimensionnelle étant obtenue par un décalage de surface, pour pouvoir être positionné parallèlement en tout point à la surface de la pièce composite à chauffer. Toujours dans ce cas, l’émetteur infrarouge placé dernière le masque pourra être positionné de manière tangente à la surface de la pièce composite à activer thermiquement.
La pièce composite peut être constituée d’un laminé composite. Un tel laminé est par exemple obtenu par superposition de plis de fibres, pré-imprégnées de la matrice à polymère thermoplastique, les plis de fibres pouvant présenter des orientations de fibres différentes, par exemple orientées à 0°, +45°, -45° et 90°.
La pièce composite peut être portée par un support et/ou disposée dans un moule Aucun élément n’est de préférence disposé entre le masque et la pièce composite pendant le chauffage à l’aide de l’appareil. Le polymère thermoplastique de la pièce composite est par exemple choisi dans le groupe constitué par les polyamides (PA), les polyaryléthercétones (PAEK), les polycarbonates (PC), les polyétherimides (PEI), les polypropylènes (PP), les polyéthylènes (PE), les polysulfures de phénylène (PPS), les acrylonitriles butadiène styrène (ABS), les polyformaldéhydes (POM), les styrène-acrylonitriles (SAN), les polysulfures de phénylène (PPS), les polypropylènes (PP), les polyéthylènes (PE) et les polytéréphtalates d'éthylène (PET).
La pièce composite comporte généralement des fibres de renfort. Les fibres de la pièce composite sont par exemple choisies dans le groupe constitué par les fibres de verre, d’aramide, notamment de Kevlar®, de carbone, de basalte, les fibres naturelles, notamment de lin, de préférence les fibres de carbone et de verre.
La pièce composite peut être de grandes dimensions, étant par exemple destinée au secteur aéronautique, spatial, éolien, automobile ou à un autre secteur industriel, notamment de sport et de loisirs.
L’appareil peut comporter au moins un capteur de température, notamment un pyromètre, configuré pour mesurer la température en surface de la pièce composite, au moins dans ladite zone prédéterminée.
L’organe de commande est de préférence configuré pour contrôler le dispositif de chauffage selon un cycle de chauffe comportant au moins une rampe de montée en température et éventuellement un palier, le cycle de chauffe étant de préférence d’une durée inférieure ou égale à 3 min, notamment inférieure ou égale à 2 min, de préférence encore inférieure ou égale à 1 min et 30s, voire inférieure ou égale à 1 min.
Dans ce cas, et dans le cas où l’appareil comporte un capteur de température, ledit au moins un capteur de température peut être configuré pour fournir au moins une information à l’organe de commande relative à la température au moins dans ladite zone prédéterminée, l’organe de commande étant configuré pour programmer et/ou adapter le cycle de chauffe en fonction de ladite au moins une information, ladite au moins une information pouvant être notamment une régulation de type PID. En particulier, cela peut permettre d’empêcher que la température de ladite zone prédéterminée dépasse la température de consigne donnée par la rampe choisie ou encore qu’elle ne dépasse pas la température de dégradation de la pièce composite, notamment du polymère thermoplastique de la pièce composite. Par « température de déconsolidation de la pièce composite », on entend la température à laquelle la pièce composite perd sa santé matière, à laquelle elle se dégrade de manière réversible. La pièce composite peut être chauffée et compressée une nouvelle fois pour retrouver sa santé matière initiale. En effet, la « déconsolidation » consiste en l’apparition de porosité, l’augmentation de l’épaisseur de la pièce composite et la diminution de ses propriétés mécaniques, qui est possible si le polymère thermoplastique s’est trop rapproché de sa température de fusion. La température de déconsolidation de la pièce composite est synonyme de la température de déconsolidation du composite à matrice polymère thermoplastique de la pièce composite. Dans le cas où le polymère thermoplastique de la matrice de la pièce composite est du PEKK, celui-ci a une température de fusion Tf de 337°C. La déconsolidation du composite a lieu vers 310°C, légèrement sous Tf. Cette température de déconsolidation ne dépend pas que de la température de fusion du polymère thermoplastique, mais également du type de fibres, du type de textile utilisé, du procédé mis en œuvre pour réaliser la pièce composite.
Par « température de dégradation », on entend la température à partir de laquelle la matrice polymère thermoplastique contenue dans la pièce composite commence à se dégrader de manière irréversible, avec une perte de propriétés mécaniques et des autres propriétés physico-chimiques. En effet, la « dégradation » concerne un ensemble de modifications chimiques (oxydation et réticulation de certaines chaînes du polymère thermoplastique). La dégradation apparaît à haute température (souvent bien supérieure à la température de fusion Tf). C’est un dommage irréversible du polymère.
L’appareil est de préférence configuré pour que la température atteinte par ladite zone prédéterminée soit au moins supérieure à la température de fusion Tf du polymère thermoplastique constituant la matrice de la pièce composite, et inférieure à la température de dégradation de la matrice contenue dans la pièce composite.
Grâce à l’invention, la chauffe est localisée et donc la température de déconsolidation de la pièce composite n’est pas atteinte dans les autres zones que la ladite zone prédéterminée.
Dans un exemple particulier où le polymère thermoplastique de la matrice de la pièce composite est un PAEK, la température de déconsolidation de la pièce composite est d’environ 310°C, c’est-à-dire environ 30°C en-dessous de la température de fusion Tf de la matrice. Pour cela, l’organe de commande est de préférence configuré, notamment programmé, de manière à piloter le dispositif de chauffage afin de ne pas dépasser cette ou ces conditions.
Dans un mode de réalisation particulier, le ou les émetteurs infrarouge du dispositif de chauffage comportent des doubles filaments, notamment agencés entre eux pour présenter une section transversale en forme de « 8 ». En variante, le ou les émetteurs infrarouge sont mono-filaments.
La longueur d’onde, le type d’émetteur(s) et/ou la puissance surfacique de chauffage sont de préférence choisis en fonction de la nature du composite à matrice thermoplastique composant la pièce composite (notamment type de fibres), de l’épaisseur de celle-ci, de la vitesse de chauffe requise, de la distance entre le masque et les émetteurs infrarouge et de la distance entre le masque et la pièce composite.
Le nombre d’émetteurs infrarouge peut varier selon la surface de la pièce composite à chauffer, c’est-à-dire la surface de ladite zone prédéterminée, selon la forme plane ou non plane de la pièce composite, de la nature de la pièce composite, de la vitesse de chauffe requise, ou encore du type d’émetteurs utilisé. Le nombre d’émetteurs peut être compris entre un et cinq par zone ajourée, de préférence entre un et trois par zone ajourée. La puissance surfacique de chauffage peut être comprise entre 50 et 500kW/m2. Cette puissance surfacique de chauffage est de préférence choisie de manière à permettre un chauffage de ladite zone prédéterminée qui soit le plus rapide possible. Cette puissance surfacique peut être choisie en fonction de la nature de la pièce composite à chauffer et/ou de son épaisseur. Elle peut être choisie de manière à obtenir une vitesse de chauffage, notamment dans la rampe de montée en température du cycle de chauffe, comprise entre 2°C/s et 10°C/s.
L’invention a encore pour objet, selon un autre de ses aspects, en combinaison avec ce qui précède, une installation d’apport de matière permettant l’apport localisé d’au moins un polymère thermoplastique, sur une zone prédéterminée d’une pièce composite, l’installation comportant un appareil de chauffage tel que défini plus haut et un appareil d’apport de matière, notamment par surmoulage ou soudage, pour permettre l’apport dudit au moins un polymère thermoplastique, choisi de préférence pour être compatible avec le polymère thermoplastique de la pièce composite, dans ladite zone prédéterminée après chauffage de celle-ci à l’aide de l’appareil de chauffage. Selon un mode de réalisation, l’installation comporte un moule agencé pour supporter la pièce composite pendant ou après l’activation thermique localisée, ledit moule étant un moule d’estampage pour la mise en forme en 3D de la pièce composite ou un moule d’injection présentant une cavité pour la pièce composite.
Dans ce cas, l’appareil d’apport de matière comporte ledit moule d’estampage, le moule étant également configuré pour permettre l’ajout du polymère thermoplastique, notamment par surmoulage ou soudage.
En variante, l’appareil d’apport de matière comporte un autre moule configuré pour réaliser l’apport dudit au moins un polymère thermoplastique, notamment par surmoulage ou soudage.
L’invention a encore pour objet, selon un autre de ses aspects, en combinaison ou non avec ce qui est défini plus haut, un procédé de chauffage pour l’activation thermique localisée d’une zone prédéterminée d’une pièce composite à matrice polymère thermoplastique, notamment mettant en œuvre un appareil de chauffage tel que défini plus haut, le procédé comportant les étapes suivantes : a) Etape a : positionner à une distance non nulle de la pièce composite un masque comportant au moins une zone ajourée, de manière à superposer au moins partiellement ladite au moins une zone ajourée avec ladite zone prédéterminée, b) Etape b : chauffer, à l’aide d’un dispositif de chauffage à émetteur(s) infrarouge séparé de la pièce composite par ledit masque, au travers de ladite au moins une zone ajourée, ladite zone prédéterminée de la pièce composite à une température supérieure ou égale à la température de fusion du polymère thermoplastique, les autres zones de la pièce composite étant préservées de la température de déconsolidation du polymère thermoplastique.
Lorsque la pièce composite comporte un laminé composite sensiblement plan, le masque peut être disposé sensiblement parallèlement à un tel plan de la pièce composite, à une distance prédéterminée comprise entre 5 mm et 40 mm, de préférence entre 5 mm et 20 mm, par exemple égale à 20 mm.
L’étape b peut être pilotée par un organe de commande du dispositif de chauffage selon un cycle de chauffe, prédéterminé ou adapté notamment en fonction de la pièce composite, le cycle de chauffe comportant notamment une rampe de chauffe et un palier, la durée du cycle de chauffe étant de préférence inférieure ou égale à 3 min, notamment inférieure ou égale à 2 min, de préférence encore inférieure ou égale à 1 min 30s, voire inférieure ou égale à 1 min.
L’appareil de chauffe peut comporter au moins un capteur de température, auquel cas le procédé comporte avantageusement l’étape consistant à permettre l’envoi, de la part du capteur de température, d’au moins une information relative à la température de ladite zone prédéterminée à l’organe de commande du dispositif de chauffage, notamment une régulation de type PID.
L’invention a encore pour objet, selon un autre de ses aspects, en combinaison avec ce qui est défini plus haut, un procédé d’apport de matière permettant l’apport localisé d’au moins un polymère thermoplastique sur une pièce composite chauffée de manière localisée à l’aide du procédé de chauffage tel que défini plus haut, notamment à l’aide d’une installation telle que définie plus haut, comportant l’étape consistant à réaliser l’apport dudit au moins un polymère thermoplastique, notamment par surmoulage ou soudage.
Ledit au moins un polymère thermoplastique est de préférence de même nature que celui de la matrice de la pièce composite ou est au moins compatible avec celui-ci, étant chargé ou non.
Le polymère thermoplastique qui est soudé ou surmoulé sur la pièce composite peut être chargé de manière à apporter des propriétés supplémentaires au polymère thermoplastique seul. De telles charges peuvent comprendre par exemple des fibres courtes de renfort (carbone, verre ou autre) pour améliorer les propriétés mécaniques, des charges améliorant la résistance au feu, des charges améliorant la conductivité thermique et/ou électrique du polymère ou encore des charges élastomères pour améliorer les propriétés de résistance aux chocs ou un mélange de celles-ci.
L’apport de matière permet d’apporter une fonction supplémentaire à la pièce composite, par exemple un support de fixation, une nervure de raidissage, ou tout autre fonction.
L’apport de matière peut consister à former une nervure de raidissage sur la zone prédéterminée, après son chauffage, la largeur de la nervure étant de préférence inférieure ou égale à la largeur de la zone prédéterminée. Grâce à l’invention, le polymère thermoplastique rapporté vient créer de l’adhésion avec la pièce composite par le phénomène de cicatrisation des matrices en contact, améliorée avec le chauffage décrit plus haut. L’invention permet d’activer thermiquement localement la pièce composite de manière bien meilleure en termes de performance et de reproductibilité que dans l’art antérieur.
Brève description des dessins
[Fig 1] la figure 1 représente de manière schématique et en perspective un exemple d'appareil de chauffage selon l'invention,
[Fig 2] la figure 2 représente de manière schématique un schéma bloc illustrant des étapes d’un exemple de procédé de chauffage selon l’invention,
[Fig 3] la figure 3 représente un graphe de la température en fonction du temps d'un exemple de cycle de chauffe mise en œuvre à l'aide de l'appareil de la figure 1,
[Fig 4] la figure 4 représente de manière schématique et partielle les gradients de température au niveau de la zone prédéterminée de chauffage dans la pièce composite vue de face après chauffage à l’aide de l'appareil de la figure 1,
[Fig 5] la figure 5 représente de manière schématique les gradients de température dans la pièce composite vue en section transversale après chauffage à l'aide de l'appareil de la figure 1,
[Fig 6] la figure 6 représente en section transversale schématique un exemple d’appareil selon l'invention,
[Fig 7] la figure 7 est une vue similaire à la figure 6 d'un autre exemple d'appareil selon l'invention,
[Fig 8] la figure 7 représente de manière schématique un schéma bloc illustrant des étapes d’un exemple de procédé d’apport de matière selon l’invention, et
[Fig 9] la figure 9 représente de manière schématique et partielle en vue de face la pièce composite de la figure 1 après mise en œuvre des étapes du procédé de la figure 8.
Description détaillée
On a illustré à la figure 1 un exemple d'appareil 1 de chauffage pour réaliser un activation thermique localisée d’une zone prédéterminée Z d'une pièce composite P à matrice polymère thermoplastique, qui est un PAEK dans l’exemple illustré. L'appareil 1 comporte un dispositif de chauffage 2 à émetteur(s) infrarouge. L'appareil 1 comporte encore un masque 3 métallique comportant au moins une zone ajourée 4, dans l’exemple illustré quatre fentes formant ensemble un carré.
Le masque 3 est disposé relativement à la pièce composite P sans contact avec celle-ci et de manière à superposer selon un axe Y sensiblement perpendiculaire au plan du masque, au moins partiellement la ou chaque zone ajourée 4 avec la zone prédéterminée P. Comme visible, le masque 3 est interposé entre la pièce composite P et le dispositif de chauffage 2.
L'appareil 1 comporte encore un organe de commande 5 du dispositif de chauffage 2, représenté en pointillés sur la figure 1.
Selon l'invention, l'appareil 1 est configuré afin d'une part de permettre le activation thermique localisée de la zone prédéterminée Z au travers du masque 3 à une température au moins égale à la température de fusion Tf du polymère thermoplastique et d'autre part de préserver les autres zones Za de la pièce composite P de la température de déconsolidation de la pièce composite à matrice polymère thermoplastique. La température de déconsolidation de la pièce composite est d’environ 310°C dans cet exemple, c’est-à-dire environ 30°C en-dessous de la température de fusion Tf de la matrice de la pièce composite P.
Comme visible, le masque 3 forme une tôle métallique, dans cet exemple en aluminium, et de surface plane.
La pièce composite P présente une forme plane dans cet exemple. Elle constitue un laminé composite réalisé par superposition de plis de fibres pré-imprégnées par la matrice constituée par le polymère thermoplastique, le PAEK dans cet exemple.
Dans l'exemple illustré, la zone prédéterminée Z à chauffer sur la pièce composite P forme un cadre carré avec quatre côtés B d’égale longueur. Les côtés B sont prolongés légèrement au niveau des angles C du cadre. La ou les zones ajourées 4, dans cet exemple les quatre fentes 4, présentent la même géométrie que la zone prédéterminée Z et forment donc entre elles un cadre carré, chaque zone ajourée 4 formant un côté du carré. Dans cet exemple, les zones ajourées 4 sont réalisées dans le masque 3 par découpe au jet d'eau, mais elles peuvent être réalisées différemment sans sortir du cadre de l'invention.
Toujours dans cet exemple, les émetteurs infrarouges 6 du dispositif de chauffage 2 sont au nombre de quatre agencés en carré, étant formés de lampes infrarouges, étant chacun de forme cylindrique, étant bi-filaments avec une section en forme de 8, présentant tous dans cet exemple le même diamètre et étant de longueur identique. Les émetteurs infrarouge 6 sont agencés en carré dans un plan parallèle au plan du masque 3, perpendiculairement à l’axe Y. Chaque émetteur infrarouge 6 est disposé de manière parallèle, translatée selon l’axe Y, par rapport à l’une des zones ajourées 4 correspondante.
Des supports de fixation 7, s’étendant parallèlement à l’axe Y dans cet exemple, sont prévus entre le dispositif de chauffage 2 et le masque 3, sensiblement aux angles du carré formé par les émetteurs infrarouges 6 et les zones ajourées 4. Les supports de fixation 7 sont au nombre de huit et maintiennent chaque émetteur infrarouge 6 à proximité de ses extrémités. Dans cet exemple, la distance entre le dispositif de chauffage 2 et le masque 3, notamment les zones ajourées 4 du masque 3 est fixe, étant dans cet exemple égal à 30 mm.
On ne sort pas du cadre de l’invention si la distance entre le dispositif de chauffage 2 et le masque 3 est réglable.
L’appareil 1 comporte encore un châssis 10 dont une partie est visible sur la figure 1 permettant de supporter l'ensemble formé par le masque 3 et le dispositif de chauffage 2. Dans cet exemple, le châssis 10 retient le masque 3 à une extrémité supérieure de celui-ci.
Le positionnement de l'appareil 1 comportant le masque 3 et le dispositif de chauffage 2 relativement à la pièce composite P est prévu de manière à permettre le chauffage à la température souhaitée de la zone prédéterminée Z au travers des zones ajourées 4. Dans l'exemple illustré, on peut régler ce positionnement à l'aide du châssis 10. La distance entre le masque 3 et la pièce composite P est dans cet exemple égale à 20 mm. Le masque 3 et la pièce composite P sont disposés parallèlement entre eux. Le masque 3 est disposé relativement à la pièce composite P de manière à ce que chaque zone ajourée 4 soit parallèle, translatée selon l’axe Y, par rapport à l’un des côtés B du carré formé par la zone prédéterminée Z.
Il est à noter qu’on peut prévoir un carter métallique qui recouvre l’ensemble du dispositif de chauffage 2 côté émetteurs infrarouge afin que l’énergie ne soit pas dissipée vers l’arrière, à l’opposé du masque 3, et que les rayonnements partent le plus possible au travers des zones ajourées 4. Dans l'exemple illustré, l'appareil 1 comporte un capteur de température 11 constitué par un pyromètre pour mesurer la température en surface de la pièce composite P au moins dans la zone prédéterminée Z.
L'organe de commande 5 est configuré pour contrôler le dispositif de chauffage 2 selon un cycle de chauffe prédéterminé, comme celui qui est illustré sur la figure 3, comportant au moins une rampe de montée en température R et un palier E, le cycle de chauffe étant prévu pour durer moins de 2 minutes. La montée en température dans la rampe du cycle peut être égale à 2°C/s par exemple. La durée du palier E peut être comprise entre 10s et 30s, étant de 30s dans l’exemple illustré. La durée de la rampe de montée en température R est dans cet exemple égale à 1 min 30s.
Le capteur de température 11 est prévu pour fournir une information à l'organe de commande 5 relative à la température au moins dans la zone prédéterminée Z et l'organe de commande 5 peut alors réguler la puissance délivrée aux émetteurs infrarouge afin de suivre précisément le cycle de chauffe en fonction de cette information.
On cherche à chauffer la zone prédéterminée Z au-dessus de la température de fusion Tf de la matrice contenue dans la pièce composite P à surmouler/souder afin de maximiser la cicatrisation des matrices en contact, mais en dessous de la température de dégradation de la pièce composite P, notamment du polymère thermoplastique de la pièce composite P. Le principe de l’invention, qui est mis en œuvre par l’appareil 1, consiste ainsi à chauffer uniquement la zone prédéterminée Z à une température à laquelle les matrices thermoplastiques en contact vont pouvoir se souder entre elles, typiquement supérieure à la température de fusion Tf du polymère thermoplastique de la pièce composite P et de celle de la matière ajoutée et de ne pas chauffer au-delà de la température de déconsolidation de la pièce composite P les zones restantes Za de la pièce composite P. Dans l’exemple illustré, avec une matrice PAEK, on vise à obtenir les températures suivantes :
- dans la zone prédéterminée Z, une température supérieure à la température de fusion Tf et typiquement supérieure ou égale à Tf + 20°C (360°C), de préférence supérieure ou égale à Tf + 60°C (390°C).
- dans les autres zones Za, une température inférieure à la température de déconsolidation de la pièce composite, c’est-à-dire inférieure ou égale à 310°C environ correspondant à Tf- 30°C. La puissance surfacique de chauffage est comprise entre 100 et 500 kW/m2, étant choisie de manière à permettre un chauffage rapide de la zone prédéterminée Z, étant fonction de la nature de la pièce composite P et/ou de son épaisseur.
On va maintenant décrire différentes étapes illustrées sur la figure 2 d'un procédé de chauffage conforme à l'invention à l'aide de l'appareil de la figure 1.
Le procédé de chauffage vise à chauffer de manière localisée une zone prédéterminée Z d'une pièce composite P à matrice polymère thermoplastique, sans déconsolider la pièce composite P dans les autres zones Za. Dans l'exemple illustré, le procédé de chauffage met en œuvre l'appareil 1 de chauffage illustré sur la figure 1.
Le procédé comporte une étape 20 consistant à positionner à une distance non nulle de la pièce composite P le masque 3 de manière à superposer au moins partiellement les zones ajourées 4 avec la zone prédéterminée Z, dans cet exemple par translation selon l’axe Y, perpendiculairement au plan du masque 3. En variante, l’appareil 1 de chauffage peut translater latéralement ou verticalement pour se mettre en face de la zone prédéterminée Z.
L'étape 21 suivante du procédé consiste à chauffer à l'aide du dispositif de chauffage 2 à émetteurs infrarouge 6, séparé de la pièce composite P par le masque 3, au travers des zones ajourées 4 la zone prédéterminée Z de la pièce composite P à une température supérieure ou égale à la température de fusion Tf du polymère thermoplastique, les autres zones Za de la pièce composite P étant préservées de la température de déconsolidation de la pièce composite à matrice polymère thermoplastique.
Le procédé peut encore comporter une étape préalable 19 consistant à programmer l'organe de commande 5 du dispositif de chauffage 2 selon un cycle de chauffe prédéterminé ou adapté en fonction de la pièce composite P et des différents paramètres. Un tel cycle de chauffe peut être tel qu’illustré sur la figure 3 avec la température de la zone prédéterminée Z en fonction du temps (en secondes), avec une rampe de montée en température R et un palier E. Pendant la rampe de montée en température R, on chauffe la zone prédéterminée Z à une vitesse de chauffage comprise entre 2°C/s et 10 °C/s, 2°C/s pendant 90s dans cet exemple. Le palier E consiste à maintenir, par exemple pendant une durée égale à 30 s voire inférieure, notamment inférieure à 5 s, la température de la zone prédéterminée Z à la température souhaitée, atteinte en haut de la rampe de montée en température R. La durée du palier E est de préférence courte pour éviter de rester un temps long en palier de température car l’énergie thermique se dissipe alors dans les zones Za ce qui pourrait mener progressivement à la déconsolidation de la pièce composite P. Il est préférable de prévoir un cycle de chauffe avec un chauffage le plus rapide possible et une durée de palier très court. En variante, le cycle de chauffe peut comporter uniquement une rampe de montée en température et aucun palier.
La durée du cycle de chauffe dans cet exemple est inférieure à 2 min comme visible.
On a représenté sur la figure 4 le diagramme des gradients de températures atteintes au niveau du palier E sur une partie de la pièce composite P. Les températures s’échelonnent entre une température maximale Tl et une température minimale T7 avec des températures intermédiaires décroissantes allant de T2 à T6. Dans l'exemple illustré, la température T7 minimale est d'environ 300°C. La température T6 est d'environ 310°C. La température T5 est d'environ 320°C. La température T4 est comprise entre 330°C et 340 °C, correspondant à la température de fusion Tf. La température T3 est comprise entre 350°C et 370°C. La température T2 est comprise entre 370 et 380°C tandis que la température Tl est supérieure à 380°C. La largeur L de la zone prédéterminée Z est égale à 12 mm dans cet exemple. Grâce à l'invention, on limite la zone qui est chauffée au-delà de la température de déconsolidation de la pièce composite P, c’est-à-dire à 310°C à la seule zone prédéterminée Z. Dans cet exemple, la largeur des zones ajourées 4 est égale à 8 mm.
On retrouve ces températures Tl à T7 sur la figure 5 dans l'épaisseur de la pièce composite P. L’épaisseur de la pièce composite P est de 2,5 mm dans cet exemple. Sur cette figure, la zone chauffée à plus de 350°C a été entourée. Elle englobe la zone prédéterminée Z et son pourtour, comme visible. La surface SI correspond à la surface de la pièce composite P qui fait face au masque 3.
Comme on peut le voir sur la figure 6, le masque 3 est découpé intérieurement par exemple à l'aide d'une découpe à jet d'eau pour former chaque zone ajourée 4. Dans l'exemple illustré sur la figure 6, la zone ajourée 4 est de largeur constante h dans l'épaisseur du masque 3. Le faisceau de rayonnement L émis par l'émetteur infrarouge 6 qui s’étend selon une forme évasée jusqu'au masque 3 est arrêté par celui-ci, ne traversant le masque 3 que dans la zone occupée par la zone ajourée 4 qui le laisse passer. À la sortie de la zone ajourée, à nouveau le faisceau L reprend une forme évasée de telle sorte que la zone de la pièce composite P qui est touchée par ce rayonnement est plus large que la largeur de la zone ajourée 4. Une largeur de zones ajourées h égale à 8 mm aboutira ainsi par exemple à une largeur de chauffage h de 12mm (qui correspond à la largeur de la zone déconsolidée), pour une distance entre masque 3 et pièce composite P de 20 mm et pour une épaisseur du masque de 5 mm.
On a représenté sur la figure 7 une manière alternative de réaliser la découpe du masque 3 de manière à former un chanfrein dans l'épaisseur du masque 3 au niveau de la zone ajourée 4 de telle sorte que la largeur de la zone ajourée 4 va en rétrécissant depuis le côté 31 du masque faisant face au dispositif de chauffage 2 en allant vers le côté opposé 32 du masque 3 faisant face à la pièce composite P. Dans cet exemple, on constate que la forme évasée du faisceau F à la sortie du masque 3 en allant vers la pièce composite P a une largeur inférieure à celle de la figure 6, du fait de ce chanfrein réduisant la largeur de la zone ajourée. Pour une largeur initiale h de zone ajourée 4 du côté 31 du masque 3 égale à 8 mm qui se réduit à une largeur U de la zone ajourée 4 du côté 32 du masque 3 égale à 5mm, on obtient une largeur de chauffage h égale à 10 mm (qui correspond à la largeur de la zone déconsolidée), soit une largeur inférieure à celle, h , du mode de réalisation de la figure 6.
On a représenté sur la figure 8 différentes étapes d'un procédé d'apport de matière permettant l'apport localisé, notamment par surmoulage ou soudage, d’au moins un polymère thermoplastique sur la pièce composite P chauffée de manière localisée à l'aide du procédé de chauffage décrit plus haut en regard notamment de la figure 2 et à l'aide de l'appareil 1 de chauffage illustré sur la figure 1.
Le procédé d'apport de matière comporte l'étape 40 de conformation dans un moule, notamment d’estampage, de la pièce composite P en passant d’une forme plane en 2D à une forme en 3D dans un premier moule. On ne sort pas du cadre de l'invention si cette étape 40 n'est pas prévue dans le procédé.
On réalise ensuite, dans une étape 41, un démoulage de la pièce composite P et on la positionne dans un second moule.
Dans une étape ultérieure 42, on chauffe de manière localisée la pièce composite P à la température souhaitée supérieure à la température de fusion du polymère thermoplastique de la pièce composite P comme expliqué plus haut. Puis, dans une étape 43, on réalise un apport de matière, dans cet exemple un surmoulage, par exemple par injection d’un polymère thermoplastique, ou un soudage, local sur la zone prédéterminée Z, par exemple sous forme d’une nervure de raidissage.
Le polymère thermoplastique utilisé pour l'apport de matière, dans cet exemple le surmoulage est de même nature que le polymère thermoplastique de la pièce composite P, dans cet exemple un PAEK, ou correspond tout du moins à un polymère thermoplastique compatible avec celui-ci.
On ne sort pas de l'invention si les étapes 40 et 41 sont réalisées en une seule étape, simultanément, au sein d’un même moule.
On a représenté sur la figure 9 une partie de la pièce composite P sur laquelle on est venu surmouler une nervure 45 de raidissage au-dessus de la zone prédéterminée Z chauffée.
Grâce à l'invention, on chauffe de manière localisée la pièce composite P à une température supérieure à la température de fusion du polymère thermoplastique de la pièce composite P, de telle sorte que seule la zone prédéterminée Z localisée est déconsolidée afin de permettre de réaliser un surmoulage ou une soudure de qualité avec un polymère thermoplastique rapporté en fusion, sans déconsolider le reste de la matrice à polymère thermoplastique de la pièce composite P disposée en dehors de cette zone prédéterminée Z.
Dans l'exemple illustré, pour une largeur L de zone prédéterminée Z chauffée égale à 12 mm, on a surmoulé la nervure 45 présentant une largeur h de 4 mm.
La largeur L est supérieure à la largeur h dans cet exemple notamment pour palier un éventuel mauvais positionnement du masque 3 par rapport à la pièce composite P qui pourrait causer un surmoulage sur une zone non activée thermiquement par exemple. Grâce à cette différence de largeur, on peut s’assurer de surmouler la nervure de raidissage effectivement dans la zone prédéterminée Z activée thermiquement et non à côté. Dans un autre mode de réalisation, la largeur L peut être inférieure, étant au moins supérieure ou égale à la largeur de la nervure 45 ou de tout autre partie à surmouler/souder.
Le polymère thermoplastique qui est soudé ou surmoulé sur la pièce composite P peut être chargé de manière à apporter des propriétés supplémentaires au polymère thermoplastique seul. De telles charges peuvent comprendre par exemple des fibres courtes de renfort (carbone, verre ou autre) pour améliorer les propriétés mécaniques, des charges améliorant la résistance au feu, des charges améliorant la conductivité thermique et/ou électrique du polymère ou encore des charges élastomères pour améliorer les propriétés de résistance aux chocs ou un mélange de celles-ci.
En variante, le polymère thermoplastique rapporté par surmoulage ou soudage est non chargé. La zone prédéterminée Z peut être formée par une zone continue comme dans l’exemple illustré, ou discontinue avec des portions de zone ne se touchant pas, de formes identiques entre elles ou non.

Claims

Revendications
1. Appareil (1) de chauffage pour réaliser une activation thermique localisée d’une zone prédéterminée (Z) d’une pièce composite (P) à matrice polymère thermoplastique, comportant : un dispositif de chauffage (2) à émetteur(s) infrarouge (6), un masque (3) comportant au moins une zone ajourée (4), le masque (3) étant disposé relativement à la pièce composite (P) sans contact avec celle-ci et de manière à superposer au moins partiellement ladite au moins une zone ajourée (4) avec ladite zone prédéterminée (Z), le masque (3) étant interposé entre la pièce composite (P) et le dispositif de chauffage (2), un organe de commande (5) du dispositif de chauffage (2), l’appareil (1) étant configuré afin d’une part de permettre l’activation thermique localisée de ladite zone prédéterminée (Z) au travers dudit masque (3) à une température au moins égale à la température de fusion du polymère thermoplastique, et d’autre part de préserver les autres zones (Za) de la pièce composite (P) de la température de déconsolidation de la pièce composite (P) à matrice polymère thermoplastique.
2. Appareil (1) selon la revendication 1, le masque comportant une tôle métallique.
3. Appareil (1) selon l’une quelconque des revendications précédentes, dans laquelle ladite au moins une zone ajourée (4) du masque (3) présente une forme ou géométrie similaire à celle de ladite zone prédéterminée (Z) de la pièce composite (P).
4. Appareil (1) selon l’une quelconque des revendications précédentes, dans laquelle la ou chaque zone ajourée (4) présente, au moins du côté (32) du masque (3) qui fait face à la pièce composite (P), une surface inférieure ou égale à celle de la zone prédéterminée (Z) correspondante.
5. Appareil (1) selon l’une quelconque des revendications précédentes, le positionnement relatif du masque (3) et du dispositif de chauffage (2) et/ou le positionnement de cet ensemble du masque (3) et du dispositif de chauffage (2) relativement à la pièce composite (P) étant prévus de manière à permettre le chauffage à la température souhaitée de ladite zone prédéterminée (Z) au travers de ladite au moins une zone ajourée (4).
6. Appareil (1) selon l’une quelconque des revendications précédentes, la pièce composite (P) étant sensiblement plane, dans lequel le masque (3) est disposé sensiblement parallèlement à la pièce composite (P).
7. Appareil (1) selon l’une quelconque des revendications précédentes, comportant au moins un capteur de température (11), notamment un pyromètre, configuré pour mesurer la température en surface de la pièce composite (P), au moins dans ladite zone prédéterminée (Z).
8. Appareil (1) selon l’une quelconque des revendications précédentes, dans lequel l’organe de commande (5) est configuré pour contrôler le dispositif de chauffage (2) selon un cycle de chauffe comportant au moins une rampe de montée en température (R) et éventuellement un palier (E), le cycle de chauffe étant de préférence d’une durée inférieure ou égale à 3 min, notamment inférieure ou égale à 2 min, de préférence encore inférieure ou égale à 1 min et 30s, voire inférieure ou égale à 1 min.
9. Installation d’apport de matière permettant l’apport localisé d’au moins un polymère thermoplastique, sur une zone prédéterminée (Z) d’une pièce composite (P), l’installation comportant un appareil (1) de chauffage selon l’une quelconque des revendications précédentes et un appareil d’apport de matière, notamment par surmoulage ou soudage, pour permettre l’apport dudit au moins un polymère thermoplastique, choisi pour être compatible avec le polymère thermoplastique de la pièce composite (P), dans ladite zone prédéterminée (Z) après chauffage de celle-ci à l’aide de l’appareil (1) de chauffage.
10. Installation selon la revendication précédente, comportant un moule agencé pour supporter la pièce composite (P) pendant ou après l’activation thermique localisée, ledit moule étant un moule d’estampage pour la mise en forme en 3D de la pièce composite (P) ou un moule d’injection présentant une cavité pour la pièce composite (P).
11. Procédé de chauffage pour l’activation thermique localisée d’une zone prédéterminée (Z) d’une pièce composite (P) à matrice polymère thermoplastique, notamment mettant en œuvre un appareil (1) de chauffage selon l’une quelconque des revendications 1 à 8, le procédé comportant les étapes suivantes :
(a) Etape a : positionner à une distance non nulle de la pièce composite (P) un masque (3) comportant au moins une zone ajourée (4), de manière à superposer au moins partiellement ladite au moins une zone ajourée (4) avec ladite zone prédéterminée (Z), (b) Etape b : chauffer, à l’aide d’un dispositif de chauffage (2) à émetteur(s) infrarouge (6) séparé de la pièce composite (P) par ledit masque (3), au travers de ladite au moins une zone ajourée (4), ladite zone prédéterminée (Z) de la pièce composite (P) à une température supérieure ou égale à la température de fusion du polymère thermoplastique de la pièce composite (P), les autres zones (Za) de la pièce composite (P) étant préservées de la température de déconsolidation de la pièce composite (P) à matrice polymère thermoplastique.
12. Procédé selon la revendication précédente, dans lequel l’étape b est pilotée par un organe de commande (5) du dispositif de chauffage (2) selon un cycle de chauffe prédéterminé ou adapté notamment en fonction de la pièce composite (P), le cycle de chauffe comportant notamment une rampe de montée en température (R) et un palier (E), la durée du cycle de chauffe étant de préférence inférieure ou égale à 3 min, notamment inférieure ou égale à 2 min, de préférence encore inférieure ou égale à 1 min 30s.
13. Procédé d’apport de matière permettant l’apport localisé d’au moins un polymère thermoplastique sur une pièce composite (P) chauffée de manière localisée à l’aide du procédé de chauffage selon l’une des revendications 11 et 12, notamment à l’aide d’une installation selon la revendication 9 ou 10, comportant l’étape consistant à réaliser l’apport dudit au moins un polymère thermoplastique, notamment par surmoulage ou soudage.
14. Procédé selon la revendication précédente, ledit au moins un polymère thermoplastique étant de même nature que celui de la matrice de la pièce composite ou étant au moins compatible avec celui-ci, étant chargé ou non.
PCT/EP2022/063471 2021-05-25 2022-05-18 Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite WO2022248315A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22729604.3A EP4347213A1 (fr) 2021-05-25 2022-05-18 Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2105421 2021-05-25
FR2105421A FR3123245B1 (fr) 2021-05-25 2021-05-25 Appareil de chauffage pour réaliser une activation thermique localisée d’une pièce composite

Publications (1)

Publication Number Publication Date
WO2022248315A1 true WO2022248315A1 (fr) 2022-12-01

Family

ID=76920930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/063471 WO2022248315A1 (fr) 2021-05-25 2022-05-18 Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite

Country Status (3)

Country Link
EP (1) EP4347213A1 (fr)
FR (1) FR3123245B1 (fr)
WO (1) WO2022248315A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777496A1 (fr) 1998-04-17 1999-10-22 Sunkiss Aeronautique Procede d'obtention, reparation ou reconstruction d'un objet avec une piece ou materiau composite
CA2457743A1 (fr) 2003-04-18 2004-10-18 Extol, Inc. Methode et appareil de soudage infrarouge de pieces thermoplastiques
DE202013001996U1 (de) 2013-03-04 2013-04-15 Robert Bürkle GmbH Laminierpresse zum Herstellen von Faserverbundwerkstoff-Bauteilen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777496A1 (fr) 1998-04-17 1999-10-22 Sunkiss Aeronautique Procede d'obtention, reparation ou reconstruction d'un objet avec une piece ou materiau composite
CA2457743A1 (fr) 2003-04-18 2004-10-18 Extol, Inc. Methode et appareil de soudage infrarouge de pieces thermoplastiques
DE202013001996U1 (de) 2013-03-04 2013-04-15 Robert Bürkle GmbH Laminierpresse zum Herstellen von Faserverbundwerkstoff-Bauteilen

Also Published As

Publication number Publication date
EP4347213A1 (fr) 2024-04-10
FR3123245B1 (fr) 2024-01-19
FR3123245A1 (fr) 2022-12-02

Similar Documents

Publication Publication Date Title
EP2392442B2 (fr) Four pour le conditionnement thermique de préformes et procédé de commande d'un dispositif de refroidissement par air équipant un tel four
EP1817955B1 (fr) Installation et procédé de fabrication de tuyaux d'irrigation goutte à goutte
EP1824659B1 (fr) Procede et installation de fabrication de recipients
EP2566684B1 (fr) Dispositif d'assemblage de deux pieces en materiaux thermoplastiques par soudage laser par transparence, procede d'assemblage et embout de bridage associe
EP2969495B1 (fr) Procédé et dispositif de réalisation d'un profilé en matériau thermoplastique renforcé par des fibres, comprenant une étape de mise en tension des fibres au cours de leur imprégnation
FR2742688A1 (fr) Procede de reparation pour prolonger des aubes de turbine
FR2853362A1 (fr) Collecteur d'admission en resine
WO2017212190A1 (fr) Filament pour impression 3d, procede de fabrication d'un tel filament, et procede de fabrication d'un objet par impression 3d
CA2765219A1 (fr) Procede de realisation d'un profile de fibres en materiau composite ayant une section en demi tete de clou ou en tete de clou
FR2999970A1 (fr) Procede de realisation d'une preforme textile a fibres continues par circulation d'un flux de gaz chaud a travers un ensemble fibreux
EP2566683B1 (fr) Dispositif d'assemblage de deux pieces en materiaux thermoplastiques par soudage laser par transparence et procede d'assemblage associe
EP4347213A1 (fr) Appareil de chauffage pour réaliser une activation thermique localisée d'une pièce composite
EP3380309A1 (fr) Tete d'application de fibres avec rouleau souple muni d'une couche exterieure metallique
EP2199069B1 (fr) Fabrication de pièces composites complexes
FR2893971A1 (fr) Dispositif et procede pour le montage d'un meneau sur une entretoise
WO2001060588A1 (fr) Procede de fabrication de tubes par soudure au laser
EP3061595B1 (fr) Procédé de fabrication de profilé creux en matériaux composites
EP3740372B1 (fr) Outil de dépôt en 3 dimensions de matière par extrusion
WO2018115619A1 (fr) Sonotrode à canaux de refroidissement non linéaires
FR3046565A1 (fr)
WO2023001625A1 (fr) Equipement de recyclage d'une matiere thermoplastique
WO2015101746A1 (fr) Procede pour la fixation d'un element sur un pion
FR2871164A1 (fr) Composition thermoplastique destinee a la fabrication d'elements plats alveolaires par extrusion puis calandrage et elements ainsi obtenus
FR2983768A1 (fr) Embout de bridage equipe d'un accessoire de bridage pour un dispositif d'assemblage deux pieces par soudage laser par transparence et procede de remplacement d'un tel accessoire
FR3095609A1 (fr) Procédé et installation de renforcement d’élément en matériau polymère thermoplastique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22729604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022729604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022729604

Country of ref document: EP

Effective date: 20240102