US20080099961A1 - Method and Installation for the Production of Containers - Google Patents

Method and Installation for the Production of Containers Download PDF

Info

Publication number
US20080099961A1
US20080099961A1 US11/667,958 US66795805A US2008099961A1 US 20080099961 A1 US20080099961 A1 US 20080099961A1 US 66795805 A US66795805 A US 66795805A US 2008099961 A1 US2008099961 A1 US 2008099961A1
Authority
US
United States
Prior art keywords
installation
path
parison
heating
heating unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/667,958
Inventor
Guy Feuilloley
Luc Desouter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidel Participations SAS
Original Assignee
Sidel Participations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidel Participations SAS filed Critical Sidel Participations SAS
Assigned to SIDEL PARTICIPATIONS reassignment SIDEL PARTICIPATIONS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DESOUTTER, LUC, FEUILLOLEY, GUY
Publication of US20080099961A1 publication Critical patent/US20080099961A1/en
Priority to US12/432,824 priority Critical patent/US8303290B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/02Conditioning or physical treatment of the material to be shaped by heating
    • B29B13/023Half-products, e.g. films, plates
    • B29B13/024Hollow bodies, e.g. tubes or profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6445Thermal conditioning of preforms characterised by temperature differential through the preform length
    • B29C49/645Thermal conditioning of preforms characterised by temperature differential through the preform length by cooling the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/68Ovens specially adapted for heating preforms or parisons
    • B29C49/6835Ovens specially adapted for heating preforms or parisons using reflectors

Definitions

  • the invention relates to the production of containers.
  • It relates more particularly to a method and an installation for producing containers—especially bottles—from thermoplastic parisons.
  • Such a method involves a first step during which the parisons are heated, within an appropriate heating unit, then a second step during which the parisons are introduced, hot, into a multiple-mold blow-molding or stretch-blow-molding unit where they are shaped into containers.
  • the containers thus formed will be directed either toward a storage unit to await subsequent filling or directly toward a filling unit.
  • a container parison comprises a neck, intended to take the closure that seals the container that is to come and which is already at its final dimensions, extended by a body, the shaping of which will lead to the actual container proper.
  • the heating of the parisons is generally performed within an oven equipped with an array of tubular halogen lamps past which the parisons progress, while being rotated on themselves. More specifically, an oven contains several elementary modules, each containing several lamps, each of the lamps being controlled individually so that, ultimately, on leaving the oven, the temperature of the body of each of the parisons is above the glass transition temperature of their constituent material and a heating profile is obtained on each parison, which profile is predetermined such that the distribution of material is optimized in the container that is to be obtained.
  • This method of heating does have a certain number of disadvantages.
  • the heating profile (that is to say the plot of temperatures measured along the length of the parison) cannot be obtained precisely; given the diffusion effect, the radiation from the lamps interferes with each other which means that seeking precisely to regulate the intensity of the combined radiation at a given distance from the lamps is an extremely fanciful notion.
  • this orientation of the parisons entails, on entering the heating unit, an operation of inverting the preforms, because the preforms are generally introduced into the oven neck up, and also an operation of inverting either the preforms before they are introduced into the mold when the stretch-blow-molding step is performed neck up (which is the more common scenario), or of the containers as they leave the installation so that they can be stored or filled.
  • inverting operations entail installing and operating appropriate devices which make the installation more complicated and have a negative impact on cost.
  • the method according to the invention for producing a container from a thermoplastic parison involves:
  • the invention also proposes an installation for producing containers from thermoplastic parisons, which comprises a heating unit for heating the parisons with a view to forming the containers from the parisons thus heated.
  • the installation defines a path that the parisons are intended to follow within the heating unit, which comprises at least one source of coherent electromagnetic radiation directed toward a region situated on the path of the parisons.
  • the radiation can thus be concentrated on to a localized part of the parison, making it possible to obtain a temperature profile close to a predetermined profile, the almost-total absence of diffusion and thermal convection allowing the parison to be heated while it is oriented neck up without this neck experiencing incident heating liable to alter its dimensions.
  • the beam of electromagnetic radiation (such as a laser emitted for example by a laser diode) is preferably directed toward the body of the parison.
  • the radiation is preferably emitted in the near infrared, in other words at a wavelength ranging between about 700 nm and 1600 nm.
  • the heating of the parison is preferably performed by means of a plurality of adjacent and/or superposed beams of electromagnetic radiation.
  • heating may be performed by means of a plurality of juxtaposed and/or superposed laser diodes, for example, in the form of one or more arrays.
  • the or each beam may be linear or planar; it is, for example, directed in a predetermined overall direction, while the parison, at least locally is made to follow a path either substantially perpendicular or substantially parallel to the direction of the beam.
  • the parison is preferably rotated about a predetermined axis, for example, an axis that coincides with an axis of revolution of the parison, so as to obtain uniform heating around the circumference of this parison.
  • the neck of the parison may be ventilated in order to remove the overflow of hot air.
  • the beam is reflected at least once off a reflective surface.
  • the heating unit comprises, for example, a chamber comprising a first wall and a second wall facing one another and substantially parallel to the path of the parisons, these walls being positioned one on each side of this path and together delimiting an internal volume, the first wall being equipped with a plurality of superposed parallel slits facing each of which there is positioned, on the opposite side to the internal volume, a row of radiation sources.
  • the second wall at least has, on the same side as the internal volume, a reflective internal surface.
  • the heating unit may comprise a ventilation system able to generate an air flow passing through a region situated vertically in line with said chamber.
  • the installation comprises two successive heating units of this type.
  • the heating unit comprises a plurality of successive chambers positioned along the path, each chamber having two cylindrical walls facing each other and positioned one on each side of the path and together defining an internal cavity, each wall having several adjacent reflective facets facing toward the cavity, the source of electromagnetic radiation being directed toward one of these facets.
  • the heating unit for example comprises an opaque screen adjacent to one of the facets, to absorb the beam after it has been reflected several times off the facets.
  • the heating unit preferably comprises means for rotating the parisons about their axis of revolution.
  • FIG. 1 is a schematic view of an installation for producing containers from thermoplastic parisons
  • FIGS. 2 and 3 are perspective views of a block and of an array of laser diodes which may be chosen to equip an installation according to the invention
  • FIG. 4 is a schematic perspective view showing the internal structure of an array of laser diodes
  • FIG. 5 is a diagram illustrating the compared efficiency of three different laser sources for heating a PET
  • FIG. 6 is a schematic perspective view illustrating a heating unit for an installation for producing containers according to a first embodiment
  • FIG. 7 is an elevation in cross section illustrating the heating unit of FIG. 6 ;
  • FIG. 8 is a schematic perspective view showing a container parison exposed to a laser beam in a heating unit as depicted in FIG. 7 ;
  • FIG. 9 is a schematic perspective view illustrating a heating unit for an installation for producing containers according to a second embodiment
  • FIG. 10 is a schematic perspective view similar to FIG. 9 also illustrating a heating unit according to a variant of the second embodiment
  • FIG. 11 is a schematic plan view, from above, illustrating the heating unit for an installation for producing containers according to a third embodiment
  • FIG. 12 is a plan view, from above, on a larger scale, of a detail of the heating unit depicted in FIG. 11 ;
  • FIG. 13 is a view illustrating, in perspective, the detail depicted in FIG. 12 .
  • FIG. 1 depicts an installation 1 for producing containers, such as bottles, from parisons 2 , in this instance preforms, made of thermoplastic. It is recalled here that the term “parison” covers not only a preform, but also any intermediate part between the preform and the finished container. Some methods actually involve two successive shaping steps, namely a first step of forming an intermediate container from the preform then, after a certain time has elapsed, a second step of forming the finished container from the intermediate container.
  • a parison 2 in the form of a preform is depicted on a large scale in FIG. 8 . It is a molded component in the form of a test specimen exhibiting symmetry of revolution about an axis A and having a neck 3 intended, as far as possible, not to undergo any deformation during the forming of the container, and a body 4 ending in a bottom 5 and intended to be heated and then shaped. Without implying any limitation to such an application, it is assumed in the remainder of the description that the containers are formed directly from preforms, which means that, for the sake of convenience, this term will be used arbitrarily to denote parisons or preforms.
  • the containers are, for example, made of polyethylene terephthalate (PET), of polyethylene naphthalate (PEN), or another appropriate thermoplastic.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the installation 1 comprises a feed unit 10 which supplies the preforms 2 to a forming unit 6 .
  • the feed unit 10 comprises, for example, a hopper 11 into which the preforms 2 , produced beforehand by molding, are loaded loose, this hopper 11 being connected to an inlet 12 of the forming unit 6 by a sorting machine 13 which isolates and positions the preforms 2 (which are cold, that is to say at ambient temperature) on a slide 14 .
  • the preforms 2 are then mounted on a transfer line 15 then heated, as they pass through a heating unit 16 , before being introduced hot into a blow-molding unit 17 (or stretch-blow-molding unit) of the multiple-mold carousel type.
  • the containers are then transferred, by means of a conveyer 18 , such as a wheel with cavities, from the molds of the blow-molding unit 17 to an outlet of the forming unit 6 .
  • a conveyer 18 such as a wheel with cavities
  • the preforms 2 are heated by means of at least one beam 22 of coherent electromagnetic radiation.
  • the installation 1 defines, within the heating unit 16 , a predetermined path 23 that the preforms 2 follow during the heating step. More specifically, this path 23 is defined by a conveyer (not depicted) equipped with links articulated to one another and from which the preforms 2 are suspended.
  • This driving technique is well known to those skilled in the art and will not be described in detail; let us nonetheless specify that each link comprises attachment means in the form of a hanger, known as a “spinner” in the terms of the art, which fits into or on to the neck 3 of the preform 2 , this hanger having a pinion-shaped part which meshes with a fixed rack running alongside the line, so that as the line advances, the hangers, with their preforms are rotated.
  • the heating unit 16 comprises at least one source 24 of coherent electromagnetic radiation directed toward a target region 25 situated on the path 23 of the preforms 2 , and through which these pass, as we shall see later.
  • thermoplastic such as a PET (the material from which container preforms for the most common applications are conventionally made) lies in the field of the near infrared, that is to say at wavelengths ranging between 700 nm and 1600 nm.
  • a PET preform generally has a wall thickness ranging between 1 mm and 3 mm, entirely dependent on the type of container that is to be obtained.
  • a first test was conducted by the inventors on PET test specimens 3 mm thick using three laser sources emitting in the near infrared, namely:
  • a laser of the Nd:YAG type (this type of laser comprises a neodymium-doped yttrium aluminum garnet amplifier with a power of 4.4 kW, generating an infrared beam with a wavelength of 1064 nm,
  • a laser diode of the hybrid type with a power of 3 kW, generating an infrared beam combining two wavelengths of 808 nm and 940 nm respectively, and
  • a laser diode with a power of 500 W generating an infrared beam with a wavelength of 808 nm.
  • the diagram in FIG. 5 shows, for each of these lasers, the plot of the time taken for the material to reach the core temperature of 130° C. (this is in fact the temperature to which PET preforms need to be heated), as a function of the transmitted power density.
  • heating quality is to be understood as meaning heating which not only gives a lower exposure time, but also gives good accuracy and good diffusion of the radiation through the thickness of the material).
  • the first exemplary embodiment uses a planar beam 22 , generated by a laser diode 26 to which a spreading lens is added.
  • a laser diode 26 to which a spreading lens is added.
  • Various manufacturers offer laser diodes which either come individually or assembled into arrays as depicted in FIGS. 2 and 3 .
  • FIG. 2 depicts a block 27 of stacked diodes 26 with a total power of 1200 W, marketed by Thales, under the references TH-C17xx-M1 or TH-C55xx-M1.
  • Each diode 26 generates a planar laser beam so that the block generates several superposed planar beams which may be parallel or divergent.
  • FIG. 3 depicts an array 28 of diodes 26 with a power of 40 W each, each diode 26 generating a planar beam.
  • the array 28 thus generates a planar beam, formed by the juxtaposition of the beams generated by all the diodes.
  • An array of this type is marketed by Thales, under the references TH-C1840-P or TH-C1841-R.
  • the block 27 and the array 28 are both equipped with an internal water-cooling circuit, the water inlet 29 and outlet 30 pipes of which can be seen in the figures.
  • FIG. 4 schematically depicts the structure of an array 28 of diodes 26 .
  • the diodes 26 are jointly mounted and soldered onto a support 31 equipped with ducts 32 perpendicular to the beams 22 and through which the cooling fluid runs.
  • the heating unit is now described in greater detail according to three distinct exemplary embodiments with reference to FIGS. 6 to 11 .
  • the first exemplary embodiment is described with reference to FIGS. 6 to 8 .
  • the path 23 represented by a chain line, that the preforms 2 follow within the heating unit 16 is substantially rectilinear and defines a direction L termed the longitudinal direction.
  • the heating unit 16 comprises a chamber 33 comprising a first wall and a second wall 34 , 35 which are vertical and face one another and run substantially parallel to the path 23 , being positioned one on each side thereof.
  • the walls 34 , 35 together delimit an internal volume 36 through which the preforms 2 pass longitudinally.
  • the walls 34 , 35 extend over a height substantially equal to the length of the body 4 of the preform 2 .
  • This preform is oriented neck up, the neck 3 protruding out of the chamber 33 above the walls 34 , 35 .
  • the chamber 33 is open at the bottom to allow an ascending air flow 37 to circulate to provide the chamber 33 with a certain degree of ventilation in order to remove the heat emitted by the body 4 of the heated parison 2 .
  • Each wall 34 , 35 has a respective internal face 38 , 39 facing toward the internal volume 36 and a respective opposite external face 40 , 41 .
  • the first wall 34 is equipped with a plurality of superposed horizontal parallel slits 42 facing each of which there is positioned, on the external face 40 side, an array 28 of laser diodes, as described hereinabove.
  • the heating unit thus comprises a matrix 43 of laser diodes formed by a plurality of superposed arrays 28 , which runs substantially facing the entire height of the body 4 of the preforms 2 .
  • the arrays 28 may be cooled by means of their own circuits, which are connected to a common cooling liquid supply 29 and discharge 30 duct.
  • Each diode emits a beam 22 oriented in an overall direction T that is transverse to the path 23 , and runs in a horizontal mid-plane P parallel to this path 23 .
  • Each slit 42 subjects the beam 22 passing through it to a diffusion effect which means that the beam 22 has a tendency to diverge on each side of the horizontal midplane P.
  • the internal faces 38 , 39 of the walls 34 , 35 are reflective which means that the beam 22 undergoes several successive reflections and therefore crosses the preform 2 several times before it loses its energy. This results in an improvement in the energy efficiency and in a reduction in the time taken to heat the preforms 2 .
  • Rotating the preform 2 about its axis A makes it possible, on leaving the heating unit, to obtain a temperature profile that is substantially constant around the circumference of the body 4 .
  • the middle arrays 28 will be set to a lower power than the lower and upper arrays 28 so as to keep the central part of the body 4 at a temperature that is lower (for example at around 115° C.) than the temperature of its end parts (which will be raised to around 130° C.).
  • the phenomenon of thermal convection in the chamber 33 is limited because of the use of coherent radiation, particularly so that the neck 3 does not experience any heating liable to soften it and cause an alteration to its dimensions during the blowing (which, as has been stated, allows the preforms 2 to be oriented neck up), it may prove preferable to ventilate at least the upper part of the chamber 33 , so as to create a cool air flow around the neck 3 .
  • the heating unit 16 is equipped with a ventilation system 44 generating an air flow 45 which, vertically in line with the chamber 33 , circulates transversely in order to remove the heat energy drained away by the upward air flow 37 due to natural thermal convection.
  • This ventilation system 44 for example comprises a fan 46 arranged in a casing 47 positioned on the external face 41 side of the second wall 35 and having an opening 48 extending vertically in line with an upper edge 49 of the wall 35 , able to route the air flow 37 from the fan 46 transversely.
  • Each preform 2 is heated as follows.
  • the preform 2 originating from the feed unit 10 enters the heating unit 16 along the longitudinal path 23 locally defined by the conveyer.
  • the preform 2 is rotated about its axis A.
  • the laser beams 22 emitted by the diodes 26 strike it along the entire path that it follows through the chamber 33 .
  • the body 4 of the preform 2 is quickly raised to a temperature of around 120° C., while its neck 3 is kept at ambient temperature.
  • the preform 2 is transferred to the stretch-blow-molding unit 18 to be shaped into a container.
  • This second example comprises a first embodiment illustrated in FIG. 9 , whereby the installation 1 comprises a single heating unit 16 , and a second embodiment which, illustrated in FIG. 10 , constitutes a variant of the first in that the installation 1 comprises two successive heating units 16 .
  • the path 23 followed by the preforms 2 within the heating unit 16 is locally rectilinear, in a longitudinal direction L, between an upstream transfer region 50 where the cold preforms 2 are brought into the heating unit 16 by an upstream transfer wheel 51 , and a downstream transfer region 52 , where the hot preforms 2 are removed from the heating unit 16 by a downstream transfer wheel 53 .
  • the heating unit 16 comprises several superposed laser sources 24 positioned at a downstream end of the path 23 , along the axis thereof.
  • the sources 24 here consist of collimating lenses 54 each connected by an optical fiber 55 , to a diode laser generator 56 and together form a vertical block 57 of a height substantially equal to the bodies 4 of the preforms 2 .
  • the lenses 54 are oriented in such a way as to generate longitudinal (linear or planar) beams 22 which strike the preforms 2 in succession before encountering an opaque screen 58 forming an energy sink, positioned transversely in the continuation of the path 23 , beyond the upstream transfer wheel 51 .
  • each preform 2 is progressively heated by the laser beams 22 whose energy, transferred successively to the preforms 2 that they strike and pass through is, first of all, from the point of view of the preform, low at the exit of the upstream transfer wheel 51 , then increases as the preform 2 gradually nears the sources 24 before reaching a maximum in the vicinity of these sources before the preform 2 is taken up by the downstream transfer wheel 53 .
  • the laser adopted here is a diode laser of the type set out hereinabove (cf. ⁇ 1), with an individual power of 500 W.
  • the heating unit 16 comprises a confinement chamber 59 comprising two walls 60 , 61 facing each other and positioned one on each side of the path 23 , between the upstream 51 and downstream 53 transfer wheels.
  • These walls 60 , 61 have reflective internal faces which confine the laser beams 22 by reflecting their transverse components resulting from the diffraction through the preforms 2 . Thus energy losses are limited while at the same time improving the safety of the installation.
  • the heating unit 16 may be equipped with a ventilation system similar to the one described hereinabove in the first exemplary embodiment.
  • the installation 1 comprises two heating units 16 , similar to the heating unit 16 described hereinabove in the first embodiment and positioned in succession in the path of the preforms 2 , namely a first heating unit 16 a designed to raise the preforms 2 to an intermediate temperature (that is to say to a temperature between ambient temperature, which corresponds to the initial temperature of the preforms, around 20° C., and the final temperature, prior to forming, of around 120° C.), and a second heating unit 16 b designed to raise the preforms 2 to their final temperature (of around 120° C.).
  • a first heating unit 16 a designed to raise the preforms 2 to an intermediate temperature (that is to say to a temperature between ambient temperature, which corresponds to the initial temperature of the preforms, around 20° C., and the final temperature, prior to forming, of around 120° C.)
  • a second heating unit 16 b designed to raise the preforms 2 to their final temperature (of around 120° C.).
  • the path 23 a followed by the preforms 2 within the first heating unit 16 a is locally rectilinear, in a longitudinal direction L between an upstream transfer region 51 where the cold preforms 2 are supplied to the first heating unit 16 a by an upstream transfer wheel 51 , and an intermediate transfer region 62 where the warm preforms 2 are transferred from the first heating unit 16 a to the second 16 b.
  • the heating units 16 a , 16 b are arranged parallel to one another, and the path 23 b followed by the preforms in the intermediate transfer region 62 is curved. This arrangement makes it possible to avoid interference between the beams 22 of the first heating unit 16 a and those of the second 16 b.
  • the path 23 c followed by the preforms 2 within the second heating unit 16 b is, also, locally rectilinear and longitudinal, between the intermediate transfer region 62 and a downstream transfer region 52 where the hot preforms 2 are taken up transversely by a downstream transfer wheel 53 .
  • Each heating unit 16 a , 16 b comprises a block 27 of superposed laser diodes of a height substantially equal to that of the bodies 4 of the preforms 2 and arranged at a downstream e nd of the corresponding path 23 a , 23 c along the axis thereof.
  • the blocks 27 of diodes are, for example, of the kind set out hereinabove (cf. ⁇ 1) and illustrated in FIG. 2 .
  • the first heating unit 16 a comprises an opaque screen 58 forming an energy sink, that the laser beams 22 strike once they have passed in succession through the preforms 2 present on the path 23 a , and which is positioned transversely in the continuation of the path 23 a beyond the upstream transfer wheel 51 .
  • the second heating unit 16 b also comprises such an opaque screen 58 , for its part positioned in the continuation of the path 23 c , on the same side as the intermediate transfer region 62 .
  • each heating unit 16 a , 16 b comprises a confinement chamber 59 of which the reflective walls 60 , 61 , positioned one on each side of the corresponding path 23 a , 23 c , prevent the lateral dispersion of the laser beams 22 .
  • the preforms 2 are first of all raised to an intermediate temperature, for example of around 80° C., within the first heating unit 16 a , and then, from there, are raised to a final temperature of about 120° C. within the second heating unit 16 b before being transferred to the stretch-blow-molding unit 18 .
  • the third exemplary embodiment is now described with reference to FIGS. 11 to 13 .
  • the path 23 of the parisons 2 within the heating unit 16 is substantially circular and, as can be seen in FIG. 11 , the heating unit 16 comprises a plurality of adjacent chambers 63 arranged along the path 23 and through which the preforms 2 pass in succession.
  • the path 23 is defined between an upstream transfer wheel 51 which brings the preforms 2 from the feed unit 10 , and a downstream transfer wheel 53 carrying the stretch-blow-molding molds.
  • Each chamber 63 has two cylindrical walls facing each other, namely an internal wall 64 and an external wall 65 , positioned one on each side of the path 23 , and together defining an internal cavity 66 in which the preform 2 is positioned, its axis A therefore being temporarily coincident with an axis of symmetry of the chamber 63 .
  • Each wall 64 , 65 has several adjacent reflective facets 64 a , 64 b , 64 c , 65 a , 65 b , 65 c facing toward the cavity 66 , each facet 64 a , 64 b , 64 c of one wall 64 being positioned facing a corresponding facet 65 a , 65 b , 65 c of the wall 65 opposite, these facets 64 a , 64 b , 64 c , 65 a , 65 b , 65 c not being exactly parallel with their pair but together defining an angle a of a few degrees, as can be seen in FIG. 12 .
  • An upstream gap 67 and a downstream gap 68 are defined between the walls 64 , 65 , through which gaps 67 , 68 each preform 2 in turn enters and then leaves.
  • the heating unit 16 comprises, for each chamber 63 , an opaque screen 58 adjacent to one facet 64 c of the internal wall 64 , on the same side as the downstream gap 68 .
  • the heating unit 16 comprises a block 27 of stacked laser diodes positioned facing one 64 a of the facets of the internal wall 64 , bordering the upstream gap 67 .
  • the laser diodes, directed toward this facet 64 a are designed each to generate a beam 22 that is either linear or contained in a vertical plane that is transverse with respect to the path 23 of the preforms 2 , the beam 22 making an acute angle with the normal to the facet 64 a ( FIG. 12 ).
  • each beam 22 undergoes several successive reflections off the facets 64 a , 65 a , 64 b , 65 b , 64 c , 65 c before striking the screen 58 which, as it forms an energy sink, completely absorbs the beam 22 ( FIG. 12 ).
  • each beam 22 thus strikes it several times in distinct regions distributed at its circumference, as can be seen in FIG. 12 .
  • each preform 2 passes in succession through all the chambers 63 and the diodes can be set in such a way that their power increases along the path 23 , the temperature of the preforms 2 therefore increasing as they gradually progress through the heating unit 16 .
  • the preforms 2 may be rotated about their axis of revolution A, their progress within the heating unit 16 preferably being stepwise, each preform 2 for example remaining in each chamber 63 for a fraction of a second.
  • Tests have in fact demonstrated a laser energy penetration into the materials commonly used in this application, that is superior to that of the radiation of the halogen lamps conventionally employed for heating, thus improving the uniformity of the temperature of the material through the thickness of the preform.
  • the precision of the heating makes it possible to obtain a vertical heating profile which more precisely matches the desired profile. More specifically, this precision makes it possible to achieve heating profiles which hitherto were impossible to obtain. That in particular means that the design of the preforms can be revised so that the weight (which in practice means the wall thickness) of the preforms can be distributed differently according to the desired temperature profile for a particular profile of the container.
  • the small amount of heating of the ambient air additionally means that the preforms can be kept in the neck up orientation throughout the container production process, thus avoiding inverting operations.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

The invention relates to a method of producing a container from a thermoplastic blank (2), comprising: a step in which the blank (2) is heated using at least one beam (22) of coherent electromagnetic radiation, and a step in which the container is formed from the blank (2) thus heated. The invention also relates to an installation (1) which is used to produce containers (2) and which comprises a unit (16) for heating the blanks (2) in order to form containers from the blanks (2) thus heated. The inventive installation (1) defines a path (23) along which the blanks (2) travel inside the heating unit (16). In addition, the heating unit (16) comprises at least one coherent electromagnetic radiation source (26) which is directed towards a zone (25) that is located on the aforementioned path (23).

Description

    TECHNICAL FIELD
  • The invention relates to the production of containers.
  • It relates more particularly to a method and an installation for producing containers—especially bottles—from thermoplastic parisons.
  • BACKGROUND ART
  • Such a method involves a first step during which the parisons are heated, within an appropriate heating unit, then a second step during which the parisons are introduced, hot, into a multiple-mold blow-molding or stretch-blow-molding unit where they are shaped into containers.
  • On leaving the blow-molding or stretch-blow-molding unit, the containers thus formed will be directed either toward a storage unit to await subsequent filling or directly toward a filling unit.
  • Let us remember that a container parison comprises a neck, intended to take the closure that seals the container that is to come and which is already at its final dimensions, extended by a body, the shaping of which will lead to the actual container proper.
  • The heating of the parisons is generally performed within an oven equipped with an array of tubular halogen lamps past which the parisons progress, while being rotated on themselves. More specifically, an oven contains several elementary modules, each containing several lamps, each of the lamps being controlled individually so that, ultimately, on leaving the oven, the temperature of the body of each of the parisons is above the glass transition temperature of their constituent material and a heating profile is obtained on each parison, which profile is predetermined such that the distribution of material is optimized in the container that is to be obtained.
  • This method of heating does have a certain number of disadvantages.
  • First, its energy efficiency (that is to say the ratio of the power absorbed by the parisons to the power consumed by the lamps) is extremely low, of the order of 11 to 15%. This is because of the spatial diffusion of the radiation emitted by the lamps, only a fraction of which reaches the body of the parisons. The low value displayed by this efficiency has a negative impact on production rates.
  • Next, the heating profile (that is to say the plot of temperatures measured along the length of the parison) cannot be obtained precisely; given the diffusion effect, the radiation from the lamps interferes with each other which means that seeking precisely to regulate the intensity of the combined radiation at a given distance from the lamps is an extremely fanciful notion.
  • In order to alleviate this disadvantage, there has already been the idea to make the parisons file past the lamps at the closest possible range. However, this then gives rise to an undesirable problem of overheating at the surface of the parisons, which phenomenon cannot be lessened unless an expensive ventilation system is fitted and operated.
  • Furthermore, there is also a significant phenomenon of thermal convection whereby the ascending air streams transfer some of the emitted radiation to the capital part of the parison. Now, the neck of this parison needs to be kept at a modest temperature so that it maintains its original dimensions.
  • Hence, in order to limit the incident heating of the neck by thermal convection, it has become judicious to orient the parisons neck down. As such a precaution proved to be insufficient in certain instances, it was combined with ventilation of the neck. Whatever the case, this orientation of the parisons entails, on entering the heating unit, an operation of inverting the preforms, because the preforms are generally introduced into the oven neck up, and also an operation of inverting either the preforms before they are introduced into the mold when the stretch-blow-molding step is performed neck up (which is the more common scenario), or of the containers as they leave the installation so that they can be stored or filled. These inverting operations entail installing and operating appropriate devices which make the installation more complicated and have a negative impact on cost.
  • SUMMARY OF THE INVENTION
  • In order in particular to alleviate the aforementioned disadvantages, the method according to the invention for producing a container from a thermoplastic parison involves:
  • a step of heating the parison performed by means of at least one beam of coherent electromagnetic radiation, then
  • a step of forming the container from the parison thus heated.
  • The invention also proposes an installation for producing containers from thermoplastic parisons, which comprises a heating unit for heating the parisons with a view to forming the containers from the parisons thus heated. The installation defines a path that the parisons are intended to follow within the heating unit, which comprises at least one source of coherent electromagnetic radiation directed toward a region situated on the path of the parisons.
  • The radiation can thus be concentrated on to a localized part of the parison, making it possible to obtain a temperature profile close to a predetermined profile, the almost-total absence of diffusion and thermal convection allowing the parison to be heated while it is oriented neck up without this neck experiencing incident heating liable to alter its dimensions.
  • More specifically, the beam of electromagnetic radiation (such as a laser emitted for example by a laser diode) is preferably directed toward the body of the parison. The radiation is preferably emitted in the near infrared, in other words at a wavelength ranging between about 700 nm and 1600 nm.
  • The heating of the parison is preferably performed by means of a plurality of adjacent and/or superposed beams of electromagnetic radiation. In practice, heating may be performed by means of a plurality of juxtaposed and/or superposed laser diodes, for example, in the form of one or more arrays.
  • The or each beam may be linear or planar; it is, for example, directed in a predetermined overall direction, while the parison, at least locally is made to follow a path either substantially perpendicular or substantially parallel to the direction of the beam.
  • In the heating step, the parison is preferably rotated about a predetermined axis, for example, an axis that coincides with an axis of revolution of the parison, so as to obtain uniform heating around the circumference of this parison.
  • Furthermore, the neck of the parison may be ventilated in order to remove the overflow of hot air.
  • According to one embodiment, in the heating step, the beam is reflected at least once off a reflective surface.
  • The heating unit comprises, for example, a chamber comprising a first wall and a second wall facing one another and substantially parallel to the path of the parisons, these walls being positioned one on each side of this path and together delimiting an internal volume, the first wall being equipped with a plurality of superposed parallel slits facing each of which there is positioned, on the opposite side to the internal volume, a row of radiation sources.
  • According to one embodiment, the second wall at least has, on the same side as the internal volume, a reflective internal surface.
  • In order to ventilate the neck of the parison, the heating unit may comprise a ventilation system able to generate an air flow passing through a region situated vertically in line with said chamber.
  • According to an embodiment variant, the installation comprises two successive heating units of this type.
  • According to another embodiment, with the path of the parisons being substantially circular, the heating unit comprises a plurality of successive chambers positioned along the path, each chamber having two cylindrical walls facing each other and positioned one on each side of the path and together defining an internal cavity, each wall having several adjacent reflective facets facing toward the cavity, the source of electromagnetic radiation being directed toward one of these facets.
  • The heating unit, for example comprises an opaque screen adjacent to one of the facets, to absorb the beam after it has been reflected several times off the facets.
  • Whatever the embodiment adopted, the heating unit preferably comprises means for rotating the parisons about their axis of revolution.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects and advantages of the invention will emerge from the description given hereinafter with reference to the attached drawings in which:
  • FIG. 1 is a schematic view of an installation for producing containers from thermoplastic parisons;
  • FIGS. 2 and 3 are perspective views of a block and of an array of laser diodes which may be chosen to equip an installation according to the invention;
  • FIG. 4 is a schematic perspective view showing the internal structure of an array of laser diodes;
  • FIG. 5 is a diagram illustrating the compared efficiency of three different laser sources for heating a PET;
  • FIG. 6 is a schematic perspective view illustrating a heating unit for an installation for producing containers according to a first embodiment;
  • FIG. 7 is an elevation in cross section illustrating the heating unit of FIG. 6;
  • FIG. 8 is a schematic perspective view showing a container parison exposed to a laser beam in a heating unit as depicted in FIG. 7;
  • FIG. 9 is a schematic perspective view illustrating a heating unit for an installation for producing containers according to a second embodiment;
  • FIG. 10 is a schematic perspective view similar to FIG. 9 also illustrating a heating unit according to a variant of the second embodiment;
  • FIG. 11 is a schematic plan view, from above, illustrating the heating unit for an installation for producing containers according to a third embodiment;
  • FIG. 12 is a plan view, from above, on a larger scale, of a detail of the heating unit depicted in FIG. 11; and
  • FIG. 13 is a view illustrating, in perspective, the detail depicted in FIG. 12.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 depicts an installation 1 for producing containers, such as bottles, from parisons 2, in this instance preforms, made of thermoplastic. It is recalled here that the term “parison” covers not only a preform, but also any intermediate part between the preform and the finished container. Some methods actually involve two successive shaping steps, namely a first step of forming an intermediate container from the preform then, after a certain time has elapsed, a second step of forming the finished container from the intermediate container.
  • A parison 2 in the form of a preform is depicted on a large scale in FIG. 8. It is a molded component in the form of a test specimen exhibiting symmetry of revolution about an axis A and having a neck 3 intended, as far as possible, not to undergo any deformation during the forming of the container, and a body 4 ending in a bottom 5 and intended to be heated and then shaped. Without implying any limitation to such an application, it is assumed in the remainder of the description that the containers are formed directly from preforms, which means that, for the sake of convenience, this term will be used arbitrarily to denote parisons or preforms.
  • The containers are, for example, made of polyethylene terephthalate (PET), of polyethylene naphthalate (PEN), or another appropriate thermoplastic.
  • As depicted in FIG. 1, the installation 1 comprises a feed unit 10 which supplies the preforms 2 to a forming unit 6. The feed unit 10 comprises, for example, a hopper 11 into which the preforms 2, produced beforehand by molding, are loaded loose, this hopper 11 being connected to an inlet 12 of the forming unit 6 by a sorting machine 13 which isolates and positions the preforms 2 (which are cold, that is to say at ambient temperature) on a slide 14.
  • The preforms 2 are then mounted on a transfer line 15 then heated, as they pass through a heating unit 16, before being introduced hot into a blow-molding unit 17 (or stretch-blow-molding unit) of the multiple-mold carousel type.
  • The containers are then transferred, by means of a conveyer 18, such as a wheel with cavities, from the molds of the blow-molding unit 17 to an outlet of the forming unit 6.
  • Within the heating unit 16, the preforms 2 are heated by means of at least one beam 22 of coherent electromagnetic radiation.
  • For this, the installation 1 defines, within the heating unit 16, a predetermined path 23 that the preforms 2 follow during the heating step. More specifically, this path 23 is defined by a conveyer (not depicted) equipped with links articulated to one another and from which the preforms 2 are suspended. This driving technique is well known to those skilled in the art and will not be described in detail; let us nonetheless specify that each link comprises attachment means in the form of a hanger, known as a “spinner” in the terms of the art, which fits into or on to the neck 3 of the preform 2, this hanger having a pinion-shaped part which meshes with a fixed rack running alongside the line, so that as the line advances, the hangers, with their preforms are rotated.
  • The heating unit 16 comprises at least one source 24 of coherent electromagnetic radiation directed toward a target region 25 situated on the path 23 of the preforms 2, and through which these pass, as we shall see later.
  • The description which follows first of all sets out the choice of the source 24 of electromagnetic radiation for heating the preforms (§ 1), and then, describes the heating unit 16 and the corresponding heating method, in three exemplary embodiments (§ 2).
  • 1. Choice of the Source of Electromagnetic Radiation
  • Tests have shown that, across the light spectrum, the radiation that is of use for heating a thermoplastic such as a PET (the material from which container preforms for the most common applications are conventionally made) lies in the field of the near infrared, that is to say at wavelengths ranging between 700 nm and 1600 nm.
  • Several lasers available on the market have proved satisfactory in application to the heating of thermoplastics (the tests conducted by the inventors were conducted using a PET).
  • A PET preform generally has a wall thickness ranging between 1 mm and 3 mm, entirely dependent on the type of container that is to be obtained.
  • A first test was conducted by the inventors on PET test specimens 3 mm thick using three laser sources emitting in the near infrared, namely:
  • 1. first of all, a laser of the Nd:YAG type (this type of laser comprises a neodymium-doped yttrium aluminum garnet amplifier with a power of 4.4 kW, generating an infrared beam with a wavelength of 1064 nm,
  • 2. secondly, a laser diode of the hybrid type, with a power of 3 kW, generating an infrared beam combining two wavelengths of 808 nm and 940 nm respectively, and
  • 3. thirdly, a laser diode with a power of 500 W generating an infrared beam with a wavelength of 808 nm.
  • The diagram in FIG. 5 shows, for each of these lasers, the plot of the time taken for the material to reach the core temperature of 130° C. (this is in fact the temperature to which PET preforms need to be heated), as a function of the transmitted power density.
  • It can be seen that, while the efficiency of the Nd:YAG laser seems to be superior to that of the diode lasers, the plots are, nonetheless, similar, which shows that the laser can be chosen on the basis of parameters other than efficiency alone, particularly on the basis of the shape of the beam, the size of the source and, of course, its cost.
  • Furthermore, it has been found that the choice of laser is also dependent on the need to safeguard the material from uncontrolled crystallization. A compromise is therefore needed. Although the Nd:YAG has proven its efficiency, the diode laser will take preference over it, being less expensive and less bulky, for an imperceptible difference in efficiency in the application to the heating of thermoplastic preforms.
  • While tests have shown that the domain adopted for the radiation is that of the near infrared, they have also shown that, before 1000 nm, the choice in wavelength has little impact on the heating quality (“heating quality” is to be understood as meaning heating which not only gives a lower exposure time, but also gives good accuracy and good diffusion of the radiation through the thickness of the material).
  • By contrast, for the same wavelength, the following parameters: beam shape, energy profile, power density, have an important effect on the heating quality.
  • As we shall see hereinafter, the first exemplary embodiment uses a planar beam 22, generated by a laser diode 26 to which a spreading lens is added. Various manufacturers offer laser diodes which either come individually or assembled into arrays as depicted in FIGS. 2 and 3.
  • FIG. 2 depicts a block 27 of stacked diodes 26 with a total power of 1200 W, marketed by Thales, under the references TH-C17xx-M1 or TH-C55xx-M1. Each diode 26 generates a planar laser beam so that the block generates several superposed planar beams which may be parallel or divergent.
  • FIG. 3 depicts an array 28 of diodes 26 with a power of 40 W each, each diode 26 generating a planar beam. The array 28 thus generates a planar beam, formed by the juxtaposition of the beams generated by all the diodes. An array of this type is marketed by Thales, under the references TH-C1840-P or TH-C1841-R.
  • As can be seen in FIGS. 2 and 3, the block 27 and the array 28 are both equipped with an internal water-cooling circuit, the water inlet 29 and outlet 30 pipes of which can be seen in the figures.
  • FIG. 4 schematically depicts the structure of an array 28 of diodes 26. The diodes 26 are jointly mounted and soldered onto a support 31 equipped with ducts 32 perpendicular to the beams 22 and through which the cooling fluid runs.
  • 2. Producing the Heating Unit
  • The heating unit is now described in greater detail according to three distinct exemplary embodiments with reference to FIGS. 6 to 11.
  • 2.1 EXAMPLE 1
  • The first exemplary embodiment is described with reference to FIGS. 6 to 8.
  • As can be seen in FIG. 6, the path 23, represented by a chain line, that the preforms 2 follow within the heating unit 16 is substantially rectilinear and defines a direction L termed the longitudinal direction.
  • In this example, the heating unit 16 comprises a chamber 33 comprising a first wall and a second wall 34, 35 which are vertical and face one another and run substantially parallel to the path 23, being positioned one on each side thereof.
  • The walls 34, 35 together delimit an internal volume 36 through which the preforms 2 pass longitudinally.
  • As can be seen in FIG. 7, the walls 34, 35 extend over a height substantially equal to the length of the body 4 of the preform 2. This preform is oriented neck up, the neck 3 protruding out of the chamber 33 above the walls 34, 35. The chamber 33 is open at the bottom to allow an ascending air flow 37 to circulate to provide the chamber 33 with a certain degree of ventilation in order to remove the heat emitted by the body 4 of the heated parison 2.
  • Each wall 34, 35 has a respective internal face 38, 39 facing toward the internal volume 36 and a respective opposite external face 40, 41.
  • The first wall 34 is equipped with a plurality of superposed horizontal parallel slits 42 facing each of which there is positioned, on the external face 40 side, an array 28 of laser diodes, as described hereinabove.
  • As can be seen in FIG. 6, the heating unit thus comprises a matrix 43 of laser diodes formed by a plurality of superposed arrays 28, which runs substantially facing the entire height of the body 4 of the preforms 2. The arrays 28 may be cooled by means of their own circuits, which are connected to a common cooling liquid supply 29 and discharge 30 duct.
  • Each diode emits a beam 22 oriented in an overall direction T that is transverse to the path 23, and runs in a horizontal mid-plane P parallel to this path 23.
  • Each slit 42 subjects the beam 22 passing through it to a diffusion effect which means that the beam 22 has a tendency to diverge on each side of the horizontal midplane P.
  • Furthermore, the internal faces 38, 39 of the walls 34, 35 are reflective which means that the beam 22 undergoes several successive reflections and therefore crosses the preform 2 several times before it loses its energy. This results in an improvement in the energy efficiency and in a reduction in the time taken to heat the preforms 2.
  • To produce the matrix 43 of diodes, it is possible to use several superposed arrays 28 of 40 W diodes of the type explained hereinabove (cf. § 1) and illustrated in FIG. 3.
  • In FIG. 7, the angle of divergence of the beam 22 is exaggerated in order to demonstrate this dual phenomenon of divergence and reflection.
  • Rotating the preform 2 about its axis A makes it possible, on leaving the heating unit, to obtain a temperature profile that is substantially constant around the circumference of the body 4.
  • Furthermore, it is possible to regulate the power of the diodes 26 in such a way as to obtain the desired temperature profile which is non-uniform over the length of the preform 2, for example, with a view ultimately to obtaining a container of curved shape. In such an example, the middle arrays 28 will be set to a lower power than the lower and upper arrays 28 so as to keep the central part of the body 4 at a temperature that is lower (for example at around 115° C.) than the temperature of its end parts (which will be raised to around 130° C.).
  • Although the phenomenon of thermal convection in the chamber 33 is limited because of the use of coherent radiation, particularly so that the neck 3 does not experience any heating liable to soften it and cause an alteration to its dimensions during the blowing (which, as has been stated, allows the preforms 2 to be oriented neck up), it may prove preferable to ventilate at least the upper part of the chamber 33, so as to create a cool air flow around the neck 3.
  • Hence, as has been depicted in FIG. 7, the heating unit 16 is equipped with a ventilation system 44 generating an air flow 45 which, vertically in line with the chamber 33, circulates transversely in order to remove the heat energy drained away by the upward air flow 37 due to natural thermal convection. This ventilation system 44 for example comprises a fan 46 arranged in a casing 47 positioned on the external face 41 side of the second wall 35 and having an opening 48 extending vertically in line with an upper edge 49 of the wall 35, able to route the air flow 37 from the fan 46 transversely.
  • Each preform 2 is heated as follows.
  • The preform 2 originating from the feed unit 10 enters the heating unit 16 along the longitudinal path 23 locally defined by the conveyer.
  • The preform 2 is rotated about its axis A. The laser beams 22 emitted by the diodes 26 strike it along the entire path that it follows through the chamber 33. Initially at ambient temperature, the body 4 of the preform 2 is quickly raised to a temperature of around 120° C., while its neck 3 is kept at ambient temperature.
  • On leaving the chamber 33, the preform 2 is transferred to the stretch-blow-molding unit 18 to be shaped into a container.
  • 2.2 EXAMPLE 2
  • The second exemplary embodiment is now described with reference to FIGS. 9 and 10. This second example comprises a first embodiment illustrated in FIG. 9, whereby the installation 1 comprises a single heating unit 16, and a second embodiment which, illustrated in FIG. 10, constitutes a variant of the first in that the installation 1 comprises two successive heating units 16.
  • According to the first embodiment, the path 23 followed by the preforms 2 within the heating unit 16 is locally rectilinear, in a longitudinal direction L, between an upstream transfer region 50 where the cold preforms 2 are brought into the heating unit 16 by an upstream transfer wheel 51, and a downstream transfer region 52, where the hot preforms 2 are removed from the heating unit 16 by a downstream transfer wheel 53.
  • The heating unit 16 comprises several superposed laser sources 24 positioned at a downstream end of the path 23, along the axis thereof. The sources 24 here consist of collimating lenses 54 each connected by an optical fiber 55, to a diode laser generator 56 and together form a vertical block 57 of a height substantially equal to the bodies 4 of the preforms 2.
  • As can be seen in FIG. 9, the lenses 54 are oriented in such a way as to generate longitudinal (linear or planar) beams 22 which strike the preforms 2 in succession before encountering an opaque screen 58 forming an energy sink, positioned transversely in the continuation of the path 23, beyond the upstream transfer wheel 51.
  • Thus, along the path 23, each preform 2 is progressively heated by the laser beams 22 whose energy, transferred successively to the preforms 2 that they strike and pass through is, first of all, from the point of view of the preform, low at the exit of the upstream transfer wheel 51, then increases as the preform 2 gradually nears the sources 24 before reaching a maximum in the vicinity of these sources before the preform 2 is taken up by the downstream transfer wheel 53.
  • It is thus possible to heat the preforms 2 gradually using only a block of laser sources, rather than a matrix as explained in the first example described above.
  • However, in order to avoid excessively rapid dissipation of the energy of the laser beams, it is preferable to use laser diodes of a higher power. Thus, the laser adopted here is a diode laser of the type set out hereinabove (cf. § 1), with an individual power of 500 W.
  • As illustrated in FIG. 9, the heating unit 16 comprises a confinement chamber 59 comprising two walls 60, 61 facing each other and positioned one on each side of the path 23, between the upstream 51 and downstream 53 transfer wheels.
  • These walls 60, 61 have reflective internal faces which confine the laser beams 22 by reflecting their transverse components resulting from the diffraction through the preforms 2. Thus energy losses are limited while at the same time improving the safety of the installation.
  • Although this is not shown in FIG. 9, the heating unit 16 may be equipped with a ventilation system similar to the one described hereinabove in the first exemplary embodiment.
  • According to the second embodiment, the installation 1 comprises two heating units 16, similar to the heating unit 16 described hereinabove in the first embodiment and positioned in succession in the path of the preforms 2, namely a first heating unit 16 a designed to raise the preforms 2 to an intermediate temperature (that is to say to a temperature between ambient temperature, which corresponds to the initial temperature of the preforms, around 20° C., and the final temperature, prior to forming, of around 120° C.), and a second heating unit 16 b designed to raise the preforms 2 to their final temperature (of around 120° C.).
  • The path 23 a followed by the preforms 2 within the first heating unit 16 a is locally rectilinear, in a longitudinal direction L between an upstream transfer region 51 where the cold preforms 2 are supplied to the first heating unit 16 a by an upstream transfer wheel 51, and an intermediate transfer region 62 where the warm preforms 2 are transferred from the first heating unit 16 a to the second 16 b.
  • In the example depicted in FIG. 10, the heating units 16 a, 16 b are arranged parallel to one another, and the path 23 b followed by the preforms in the intermediate transfer region 62 is curved. This arrangement makes it possible to avoid interference between the beams 22 of the first heating unit 16 a and those of the second 16 b.
  • The path 23 c followed by the preforms 2 within the second heating unit 16 b is, also, locally rectilinear and longitudinal, between the intermediate transfer region 62 and a downstream transfer region 52 where the hot preforms 2 are taken up transversely by a downstream transfer wheel 53.
  • Each heating unit 16 a, 16 b comprises a block 27 of superposed laser diodes of a height substantially equal to that of the bodies 4 of the preforms 2 and arranged at a downstream e nd of the corresponding path 23 a, 23 c along the axis thereof.
  • The blocks 27 of diodes are, for example, of the kind set out hereinabove (cf. § 1) and illustrated in FIG. 2.
  • As can be seen in FIG. 10, the first heating unit 16 a comprises an opaque screen 58 forming an energy sink, that the laser beams 22 strike once they have passed in succession through the preforms 2 present on the path 23 a, and which is positioned transversely in the continuation of the path 23 a beyond the upstream transfer wheel 51.
  • The second heating unit 16 b also comprises such an opaque screen 58, for its part positioned in the continuation of the path 23 c, on the same side as the intermediate transfer region 62.
  • Furthermore, as can be seen in FIG. 10, each heating unit 16 a, 16 b comprises a confinement chamber 59 of which the reflective walls 60, 61, positioned one on each side of the corresponding path 23 a, 23 c, prevent the lateral dispersion of the laser beams 22.
  • Thus, the preforms 2 are first of all raised to an intermediate temperature, for example of around 80° C., within the first heating unit 16 a, and then, from there, are raised to a final temperature of about 120° C. within the second heating unit 16 b before being transferred to the stretch-blow-molding unit 18.
  • It should be noted that for particular applications, more than two heating units could be envisioned.
  • 2.3 EXAMPLE 3
  • The third exemplary embodiment is now described with reference to FIGS. 11 to 13.
  • In this example, the path 23 of the parisons 2 within the heating unit 16 is substantially circular and, as can be seen in FIG. 11, the heating unit 16 comprises a plurality of adjacent chambers 63 arranged along the path 23 and through which the preforms 2 pass in succession.
  • The path 23 is defined between an upstream transfer wheel 51 which brings the preforms 2 from the feed unit 10, and a downstream transfer wheel 53 carrying the stretch-blow-molding molds.
  • Each chamber 63 has two cylindrical walls facing each other, namely an internal wall 64 and an external wall 65, positioned one on each side of the path 23, and together defining an internal cavity 66 in which the preform 2 is positioned, its axis A therefore being temporarily coincident with an axis of symmetry of the chamber 63.
  • Each wall 64, 65 has several adjacent reflective facets 64 a, 64 b, 64 c, 65 a, 65 b, 65 c facing toward the cavity 66, each facet 64 a, 64 b, 64 c of one wall 64 being positioned facing a corresponding facet 65 a, 65 b, 65 c of the wall 65 opposite, these facets 64 a, 64 b, 64 c, 65 a, 65 b, 65 c not being exactly parallel with their pair but together defining an angle a of a few degrees, as can be seen in FIG. 12.
  • An upstream gap 67 and a downstream gap 68 are defined between the walls 64, 65, through which gaps 67, 68 each preform 2 in turn enters and then leaves.
  • Furthermore, the heating unit 16 comprises, for each chamber 63, an opaque screen 58 adjacent to one facet 64 c of the internal wall 64, on the same side as the downstream gap 68.
  • For each chamber 63, the heating unit 16 comprises a block 27 of stacked laser diodes positioned facing one 64 a of the facets of the internal wall 64, bordering the upstream gap 67. The laser diodes, directed toward this facet 64 a are designed each to generate a beam 22 that is either linear or contained in a vertical plane that is transverse with respect to the path 23 of the preforms 2, the beam 22 making an acute angle with the normal to the facet 64 a (FIG. 12).
  • Thus, each beam 22 undergoes several successive reflections off the facets 64 a, 65 a, 64 b, 65 b, 64 c, 65 c before striking the screen 58 which, as it forms an energy sink, completely absorbs the beam 22 (FIG. 12).
  • When a preform 2 is positioned at the center of the chamber 63, neck up, each beam 22 thus strikes it several times in distinct regions distributed at its circumference, as can be seen in FIG. 12.
  • As is apparent from FIG. 11, each preform 2 passes in succession through all the chambers 63 and the diodes can be set in such a way that their power increases along the path 23, the temperature of the preforms 2 therefore increasing as they gradually progress through the heating unit 16.
  • As before, the preforms 2 may be rotated about their axis of revolution A, their progress within the heating unit 16 preferably being stepwise, each preform 2 for example remaining in each chamber 63 for a fraction of a second.
  • It is perfectly conceivable for the progress of the preforms through the heating unit 16 to be continuous, because of the good ability that the laser beams have to penetrate through the material of which the bodies of the preforms are made.
  • Of course, irrespective of the embodiment adopted, it is possible to regulate the speed at which the preforms 2 travel through the heating unit.
  • In fact, the various settings (rate of travel, power of diodes, length of chamber) will be chosen by the person skilled in the art according to the material to be used for the preforms, and the machine rates dictated by production.
  • As we have seen, the method and the installation described hereinabove allow parisons, such as preforms, to be heated both more quickly and more precisely than can be achieved by the known methods and installations.
  • This speed means that the size of the heating unit can be limited, while tests have shown it is possible, using coherent electromagnetic beams, to achieve energy efficiencies of 50%, something which seemed unthinkable with the known methods and installations.
  • Tests have in fact demonstrated a laser energy penetration into the materials commonly used in this application, that is superior to that of the radiation of the halogen lamps conventionally employed for heating, thus improving the uniformity of the temperature of the material through the thickness of the preform.
  • The precision of the heating makes it possible to obtain a vertical heating profile which more precisely matches the desired profile. More specifically, this precision makes it possible to achieve heating profiles which hitherto were impossible to obtain. That in particular means that the design of the preforms can be revised so that the weight (which in practice means the wall thickness) of the preforms can be distributed differently according to the desired temperature profile for a particular profile of the container.
  • Furthermore, the small amount of heating of the ambient air additionally means that the preforms can be kept in the neck up orientation throughout the container production process, thus avoiding inverting operations.

Claims (33)

1-34. (canceled)
35. A method for producing a container from a thermoplastic parison, which involves:
a step of heating the parison performed by means of at least one beam of coherent electromagnetic radiation, then
a step of forming the container from the parison thus heated, the method being characterized in that the heating of the parison is performed by means of a plurality of superposed beams of electromagnetic radiation.
36. The method as claimed in claim 35, in which the heating of the parison is performed by means of a plurality of adjacent beams of electromagnetic radiation.
37. The method as claimed in claim 35, in which each beam is planar.
38. The method as claimed in claim 35, in which each beam is directed in a predetermined overall direction and in which, during the heating step, the parison is at least locally made to follow a path substantially perpendicular to the direction of the beam.
39. The method as claimed in claim 35, in which each beam is directed in a predetermined overall direction and in which, in the heating step, the parison is at least locally made to follow a path substantially parallel to the overall direction of the beam.
40. The method as claimed in claim 35, in which, in the heating step, the parison is rotated about a predetermined axis.
41. The method as claimed in claim 40, in which said axis of rotation coincides with an axis of revolution of the parison.
42. The method as claimed in claim 35, in which, with the parison having a neck and a body, the beam of electromagnetic radiation is directed toward the body of the parison.
43. The method as claimed in claim 42, in which, during the heating step, the neck of the parison is directed upward.
44. The method as claimed in claim 42, in which the neck of the parison is ventilated.
45. The method as claimed in claim 35, in which, in the heating step, the beam is reflected at least once off a reflective surface.
46. The method as claimed in claim 35, in which said beam is a laser beam.
47. The method as claimed in claim 35, in which the radiation from the beam is infrared radiation.
48. The method as claimed in claim 47, in which the wavelength of the radiation is less than or equal to about 1600 nm.
49. The method as claimed in claim 48, in which the wavelength of the radiation is between about 700 nm and 1600 nm.
50. An installation for producing containers from thermoplastic parisons, which comprises a heating unit for heating the parisons with a view to forming the containers from the parisons thus heated, the installation defining a path but the parisons are intended to follow within the heating unit, characterized in that the heating unit comprises at least one source of coherent electromagnetic radiation directed toward a region situated on the path of the parisons.
51. The installation as claimed in claim 50, in which, with the path of the parisons being substantially linear, said plurality of sources of radiation is directed transversely with respect to said path.
52. The installation as claimed in claim 51, in which the heating unit comprises a row of adjacent radiation sources arranged parallel to the path.
53. The installation as claimed in claim 52, in which the heating unit comprises several superposed rows of radiation sources arranged parallel to the path.
54. The installation as claimed in claim 53, in which the heating unit comprises a chamber comprising a first wall and a second wall facing one another and substantially parallel to the path of the parisons, these walls being positioned one on each side of this path and together delimiting an internal volume, the first wall being equipped with a plurality of superposed parallel slits facing each of which there is positioned, on the opposite side to the internal volume, a row of radiation sources.
55. The installation as claimed in claim 54, in which the second wall at least, on the same side as the internal volume, has a reflective internal surface.
56. The installation as claimed in claim 54, in which the heating unit comprises a ventilation system able to generate an air flow passing through a region situated vertically in line with said chamber.
57. The installation as claimed in claim 50, in which, with the path of the parisons being substantially linear, said source of radiation is directed parallel to said path.
58. The installation as claimed in claim 56, which comprises an opaque screen positioned facing the source of radiation.
59. The installation as claimed in claim 56, which comprises at least two successive heating units.
60. The installation as claimed in claim 50, in which, with the path of the parisons being substantially circular, the heating unit comprises a plurality of successive chambers positioned along the path, each chamber having two cylindrical walls facing each other and positioned one on each side of the path and together defining an internal cavity, each wall having several adjacent reflective facets facing toward the cavity, the source of electromagnetic radiation being directed toward one of these facets and the facets are not exactly parallel with their pair but together define an angle of a few degrees.
61. The installation as claimed in claim 60, which comprises an opaque screen adjacent to one of the facets.
62. The installation as claimed in claim 50, in which, with the parisons having an axis of revolution, the heating unit comprises means for rotating the parisons about their axis.
63. The installation as claimed in claim 50, in which the source of coherent electromagnetic radiation is a laser source.
64. The installation as claimed in claim 63, in which the source of coherent electromagnetic radiation is a laser diode.
65. The installation as claimed in claim 64, in which the laser diode is designed to emit a planar laser beam.
66. The installation as claimed in claim 64, in which the heating unit comprises at least one block or one array of juxtaposed laser diodes.
US11/667,958 2004-11-22 2005-11-15 Method and Installation for the Production of Containers Abandoned US20080099961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/432,824 US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0412372A FR2878185B1 (en) 2004-11-22 2004-11-22 PROCESS FOR MANUFACTURING CONTAINERS COMPRISING A HEATING STEP BY MEANS OF A COHERENT ELECTROMAGNETIC RADIATION BEAM
FR0412372 2004-11-22
PCT/FR2005/002826 WO2006056673A1 (en) 2004-11-22 2005-11-15 Method and installation for the production of containers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/002826 A-371-Of-International WO2006056673A1 (en) 2004-11-22 2005-11-15 Method and installation for the production of containers

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/432,824 Division US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers
US12/561,198 Continuation US8354051B2 (en) 2004-11-22 2009-09-16 Method and installation for the production of containers

Publications (1)

Publication Number Publication Date
US20080099961A1 true US20080099961A1 (en) 2008-05-01

Family

ID=34953542

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/667,958 Abandoned US20080099961A1 (en) 2004-11-22 2005-11-15 Method and Installation for the Production of Containers
US12/432,824 Active US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers
US12/560,417 Abandoned US20100007061A1 (en) 2004-11-22 2009-09-15 Method and installation for the production of containers
US12/561,198 Active US8354051B2 (en) 2004-11-22 2009-09-16 Method and installation for the production of containers

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/432,824 Active US8303290B2 (en) 2004-11-22 2009-04-30 Method and installation for the production of containers
US12/560,417 Abandoned US20100007061A1 (en) 2004-11-22 2009-09-15 Method and installation for the production of containers
US12/561,198 Active US8354051B2 (en) 2004-11-22 2009-09-16 Method and installation for the production of containers

Country Status (7)

Country Link
US (4) US20080099961A1 (en)
EP (1) EP1824659B1 (en)
JP (1) JP4555344B2 (en)
CN (1) CN101060970B (en)
FR (1) FR2878185B1 (en)
MX (1) MX2007006152A (en)
WO (1) WO2006056673A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096352A1 (en) * 2004-12-03 2007-05-03 Cochran Don W Method and system for laser-based, wavelength specific infrared irradiation treatment
US20080305203A1 (en) * 2007-06-11 2008-12-11 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
US20100127435A1 (en) * 2007-04-25 2010-05-27 Sidel Participations Method of heating preforms for the manufacture of containers
US20100230863A1 (en) * 2006-12-19 2010-09-16 Koninklijke Philips Electronics N.V. System for and method of heating objects in a production line
WO2010122469A1 (en) 2009-04-21 2010-10-28 Koninklijke Philips Electronics N.V. Heating system and method of heating a body of a preform
US20110219728A1 (en) * 2008-11-14 2011-09-15 Krones Ag Device and method for producing plastic containers
DE102010015018A1 (en) * 2010-04-14 2011-10-20 Krones Ag lamp cooling
US20110300497A1 (en) * 2010-06-02 2011-12-08 Sidel Participations Oven for the thermal conditioning of preforms and control method of an air cooling device fitted to such an oven
US20120267832A1 (en) * 2009-07-16 2012-10-25 Khs Corpoplast Gmbh Method and device for blow-molding containers
US20130011807A1 (en) * 2009-12-04 2013-01-10 Krones Ag Furnace for conditioning preforms
US20150306808A1 (en) * 2014-04-23 2015-10-29 Krones Ag Apparatus and method for heating plastic parisons
US20150321413A1 (en) * 2012-07-13 2015-11-12 Sidel Participations Modular control system of an installation for producing containers
US20150352772A1 (en) * 2013-02-14 2015-12-10 Sidel Participations Method for producing a marked container comprising a step for marking a preform
DE102015102722A1 (en) * 2015-02-25 2016-08-25 Krones Ag Apparatus for heating plastic preforms with optical fibers and process heating of plastic preforms
US20170043521A1 (en) * 2014-05-02 2017-02-16 Khs Corpoplast Gmbh Method and device for tempering preforms
EP3269531A1 (en) * 2016-12-12 2018-01-17 Sidel Participations Dehydration circuit for an electromagnetic processing unit of hollow bodies
US10137627B2 (en) * 2014-03-19 2018-11-27 Sidel Participations Unit for processing blanks provided with an optical confinement section having convergent walls
EP3446852A1 (en) * 2017-08-24 2019-02-27 Sidel Participations Installation and method for producing containers, allowing production from the start
CN110944822A (en) * 2017-07-26 2020-03-31 西得乐集团 Rough blank processing unit comprising a housing with a centralized heating zone and a manipulation zone
US11072094B2 (en) 2004-12-03 2021-07-27 Pressco Ip Llc Method and system for wavelength specific thermal irradiation and treatment
US11090856B2 (en) * 2016-04-05 2021-08-17 Sidel Participations Method for the preferential heating of a hollow body comprising a marking step
CN115534277A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Heating device and heating method for plastic preforms
CN115534276A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Conveying and heating device for plastic preforms

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878185B1 (en) 2004-11-22 2008-11-07 Sidel Sas PROCESS FOR MANUFACTURING CONTAINERS COMPRISING A HEATING STEP BY MEANS OF A COHERENT ELECTROMAGNETIC RADIATION BEAM
DE102005060429B4 (en) * 2005-12-15 2020-06-04 Khs Corpoplast Gmbh Method and device for blow molding containers
DE102005061334B4 (en) * 2005-12-21 2016-12-29 Khs Corpoplast Gmbh Stretch blow molding and stretch blow molding method
DE102006042711B4 (en) * 2006-09-12 2012-06-14 Krones Aktiengesellschaft Method and device for producing plastic packaging containers
FR2913210B1 (en) * 2007-03-02 2009-05-29 Sidel Participations IMPROVEMENTS IN THE HEATING OF PLASTIC MATERIALS BY INFRARED RADIATION
DE102007025527A1 (en) * 2007-05-31 2008-12-04 Khs Ag Method and plant for producing packaging materials
EP2167297A2 (en) * 2007-06-08 2010-03-31 Pressco Technology Inc. A method and system for wavelength specific thermal irradiation and treatment
WO2010010492A2 (en) * 2008-07-25 2010-01-28 Koninklijke Philips Electronics N.V. Infrared filter of a light source for heating an object
FR2938789B1 (en) * 2008-11-24 2013-03-29 Gregoire Lize METHOD AND DEVICE FOR INFRARED HEATING OF PLASTIC PREFORMS.
DE102008060572A1 (en) * 2008-12-04 2010-06-10 Krones Ag Apparatus for heating plastic containers and resonator therefor
DE102009011361A1 (en) * 2009-03-05 2010-09-09 Krones Ag Oven for plastic preforms with semi-transparent spotlight
JP5883789B2 (en) * 2009-09-15 2016-03-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. How to heat a preform
FR2954920B1 (en) 2010-01-06 2012-08-10 Sidel Participations UNIT FOR PROCESSING HOLLOW BODY LAMPS, EQUIPPED WITH A CHAMBER FORMING A LIGHT TRAP
FR2957294B1 (en) * 2010-03-10 2012-04-20 Sidel Participations UNIT FOR TREATMENT OF RADIATION HOLLOW BODIES, EQUIPPED WITH A RADIATION CONTAINMENT SAS
CN103430276B (en) * 2010-05-07 2017-03-29 派拉斯科Ip有限责任公司 Corner cubes radiation control
FR2964901B1 (en) * 2010-09-20 2012-10-26 Sidel Participations PROCESS FOR FORMING A SELECTIVE LASER HEATER CONTAINER AND FREE BLOWING.
IT1402720B1 (en) * 2010-11-19 2013-09-18 Sacmi APPARATUS FOR HEATING PREFORMATIONS IN THERMOPLASTIC MATERIAL.
FR2976514B1 (en) 2011-06-17 2013-07-12 Sidel Participations METHOD FOR HEATING RECOVERY RINKS
FR2976841B1 (en) * 2011-06-23 2013-08-02 Sidel Participations PROCESS FOR HEATING A CONTAINER BLANK WITH LOW EXTERNAL WALL TEMPERATURE
FR2982790B1 (en) * 2011-11-21 2014-03-14 Sidel Participations UNIT FOR THERMAL TREATMENT OF REFLECTIVE PLUGS WITH QUADRING DOUBLE-THREADED WALLS
EP2682243A1 (en) * 2012-07-04 2014-01-08 Value & Intellectual Properties Management GmbH Device for manufacturing hollow bodies and method for producing the hollow bodies
DE102013100390A1 (en) 2013-01-15 2014-07-17 Krones Ag Device for heating plastic preforms with detachable ventilation shield
CN105050795B (en) * 2013-02-18 2017-08-04 帝斯克玛股份有限公司 Machine and method for forming container from the prefabricated component carried by continuous mould
EP2813344B1 (en) 2013-06-10 2016-11-16 Discma AG Apparatus and method for fabricating containers
FR3024069B1 (en) 2014-07-23 2017-02-17 Sidel Participations HOLLOW BODY HEATING UNIT, WHICH INCLUDES A LOW TEMPERATURE CAVITY
EP2977182A1 (en) 2014-07-23 2016-01-27 Sidel Participations Electromagnetic processing module equipped with thermally regulated confinement elements
FR3037850B1 (en) 2015-06-26 2018-01-19 Sidel Participations INFRARED HYBRID HEATING METHOD AND MICROWAVE CONTAINER LAYERS
US10069996B2 (en) * 2016-09-15 2018-09-04 Xerox Corporation System and method for utilizing digital micromirror devices to split and recombine a signal image to enable heat dissipation
CN106738798B (en) * 2016-12-20 2019-10-18 北京化工大学 A kind of rapid molding device based on blow molding technology
IT201700007077A1 (en) * 2017-01-24 2018-07-24 Sacmi Imola Sc EQUIPMENT FOR HEATING PREFORMATIONS IN THERMOPLASTIC MATERIAL.
CN109296781B (en) * 2018-10-30 2023-09-22 世格流体控制(上海)有限公司 Novel bottle blowing combined valve
FR3097796A1 (en) * 2019-06-25 2021-01-01 Sidel Participations Hollow body heating unit for plastic container manufacturing machine
EP3769935B1 (en) * 2019-07-22 2021-09-15 SMI S.p.A. Preform heating system
IT202000001360A1 (en) * 2020-01-24 2021-07-24 Smi Spa PREFORM HEATING DEVICE
FR3109554B1 (en) 2020-04-22 2022-05-13 Sidel Participations Preform and container with variable transmittances
DE102020116681A1 (en) * 2020-06-24 2021-12-30 Krones Aktiengesellschaft Device and method for heating plastic preforms with adjustable focusing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975618A (en) * 1974-02-14 1976-08-17 Heidenreich & Harbeck Zweingniederlassung Der Gildemeister Ag Method and apparatus for heating synthetic plastic components
US4204111A (en) * 1977-10-19 1980-05-20 Monsanto Company Heating improvements in a preform reheat system
US4606723A (en) * 1984-03-28 1986-08-19 Sidel Method and apparatus for heating thermoplastic bottle preforms
US6361301B1 (en) * 2000-02-21 2002-03-26 Plastipak Packaging, Inc. Heater assembly for blow molding plastic preforms
US20020062161A1 (en) * 1999-04-23 2002-05-23 Carsten Dusterhoft Automated method and apparatus for the non-cutting shaping of a body
US20050193690A1 (en) * 2003-10-07 2005-09-08 Schoeneck Richard J. Apparatus and method for selective processing of materials with radiant energy

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2769117A (en) 1952-07-01 1956-10-30 Pirillo Santo Ozone producing device
US3309553A (en) * 1963-08-16 1967-03-14 Varian Associates Solid state radiation emitters
US4720480A (en) * 1985-02-28 1988-01-19 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
US5260258A (en) 1985-02-28 1993-11-09 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
US5270285A (en) 1965-02-28 1993-12-14 Dai Nippon Insatsu Kabushiki Kaisha Sheet for heat transference
JPS61237691A (en) * 1985-04-15 1986-10-22 Dainippon Printing Co Ltd Thermal transfer recording sheet
US3640671A (en) * 1969-02-26 1972-02-08 Monsanto Co Apparatus for venting and releasing plastic articles from a blow mold
US3626143A (en) 1969-04-02 1971-12-07 American Can Co Scoring of materials with laser energy
US3627989A (en) 1969-12-11 1971-12-14 Thermal Quarr Schmelze Gmbh Infrared surface heater
US3768314A (en) 1972-01-20 1973-10-30 Stewart Warner Corp Modular gauge housing
CH580687A5 (en) * 1973-08-22 1976-10-15 Spirig Ernst
US4050887A (en) * 1973-11-21 1977-09-27 Monsanto Company Method and apparatus for temperature conditioning parts
US4020232A (en) * 1974-05-17 1977-04-26 Mitsubishi Paper Mills, Ltd. Heat-sensitive recording sheets
US3974016A (en) 1974-11-04 1976-08-10 Bell Telephone Laboratories, Incorporated Bonding of thermoplastic coated cylinders
US4058699A (en) 1975-08-01 1977-11-15 Arthur D. Little, Inc. Radiant zone heating apparatus and method
DE2545133C3 (en) * 1975-10-08 1980-04-30 Gildemeister Corpoplast Gmbh, 2000 Hamburg Device for blow molding containers from preforms
US4224096A (en) 1976-03-25 1980-09-23 W. R. Grace & Co. Laser sealing of thermoplastic material
US4079104A (en) * 1976-04-16 1978-03-14 Owens-Illinois, Inc. Method for heating plastic articles
US4135077A (en) * 1976-09-16 1979-01-16 Wills Kendall S Laser bread browning apparatus
US4097715A (en) * 1977-05-16 1978-06-27 General Refractories Company Laser jet bell kiln
US4234297A (en) * 1978-03-14 1980-11-18 Owens-Illinois, Inc. Apparatus for blow molding
US4163238A (en) 1978-06-09 1979-07-31 The United States Of America As Represented By The Secretary Of The Army Infrared semiconductor device with superlattice region
US4304978A (en) 1978-10-05 1981-12-08 Coherent, Inc. Heat treating using a laser
US4331858A (en) * 1980-02-14 1982-05-25 Pet Incorporated Open hearth oven
US4313720A (en) * 1980-03-03 1982-02-02 Emhart Industries, Inc. Parison transfer means
US4338114A (en) 1980-08-21 1982-07-06 Liberty Glass Company Laser treatment method for imparting increased mechanical strength to glass objects
JPS5780030A (en) * 1980-11-06 1982-05-19 Mitsubishi Plastics Ind Ltd Manufacture of plastic bottle
DE3210676C2 (en) 1981-03-30 1984-12-06 Cincinnati Milacron Industries, Inc., Cincinnati, Ohio Process for radiant heating of preforms
US4374678A (en) * 1981-06-01 1983-02-22 Texas Instruments Incorporated Process for forming HgCoTe alloys selectively by IR illumination
US4409455A (en) * 1982-03-05 1983-10-11 Cincinnati Milacron Inc. Dielectric heating section for blow molding machine
US4456811A (en) * 1982-06-21 1984-06-26 Avco Everett Research Laboratory, Inc. Method of and apparatus for heat treating axisymmetric surfaces with an annular laser beam
US4486639A (en) 1982-07-19 1984-12-04 Control Data Corporation Microwave oven quartz lamp heaters
US4459458A (en) 1982-08-30 1984-07-10 The Warner & Swasey Company Machine tool with laser heat treating
US4507538A (en) * 1982-10-22 1985-03-26 Mostek Corporation Laser hardening with selective shielding
JPS59184626A (en) * 1983-04-06 1984-10-20 Mitsubishi Heavy Ind Ltd Molding method of blow orientation pipe
US4481405A (en) 1983-04-27 1984-11-06 Malick Franklin S Cooking appliance
DE3339613A1 (en) 1983-11-02 1985-05-09 Vdo Adolf Schindling Ag, 6000 Frankfurt Diplay unit
IT1179063B (en) * 1984-08-20 1987-09-16 Fiat Auto Spa EQUIPMENT FOR CARRYING OUT TREATMENTS ON METAL PIECES USING A POWER LASER
NL8402659A (en) * 1984-08-31 1986-03-17 Optische Ind De Oude Delft Nv METHOD AND APPARATUS FOR JUSTING THE SIMILARITY OF A VISOR DEVICE AND A SWIVEL ORGAN.
FR2571201B1 (en) 1984-10-02 1987-01-02 Valeo METHOD FOR HEATING IN THE MASS OF A SUBSTANCE FOR EXAMPLE FOR VULCANIZATION OR POLYMERIZATION
GB2165493A (en) 1984-10-16 1986-04-16 Aeci Ltd Keyboard
US4672169A (en) * 1985-03-21 1987-06-09 Standard Oil Company (Indiana) Apparatus and method for heating materials with a laser heat source
DE3518204C1 (en) 1985-05-21 1986-10-16 Adam Opel AG, 6090 Rüsselsheim Instrument panel
JPS6237350A (en) 1985-08-12 1987-02-18 Toshiba Corp Surface heat treating apparatus
US4816694A (en) * 1985-08-15 1989-03-28 Sanders Associates, Inc. Radiation system
US4754141A (en) * 1985-08-22 1988-06-28 High Technology Sensors, Inc. Modulated infrared source
US4810092A (en) * 1986-02-21 1989-03-07 Midac Corporation Economical spectrometer unit having simplified structure
JPH074986B2 (en) * 1986-05-26 1995-01-25 富士写真フイルム株式会社 Thermal recording material
JPH0717102B2 (en) * 1986-10-08 1995-03-01 富士写真フイルム株式会社 Thermal recording material
EP0273752B1 (en) 1986-12-25 1992-08-19 Fuji Photo Film Co., Ltd. Method of manufacturing heat sensitive recording material
DE3721289A1 (en) * 1987-06-27 1989-01-12 Opel Adam Ag DASHBOARD FOR VEHICLES, IN PARTICULAR MOTOR VEHICLES
EP0305699B1 (en) * 1987-09-03 1990-10-03 HERMANN BERSTORFF Maschinenbau GmbH Apparatus for rotatingly conveying preforms through a heating station to a stretch blow-moulding machine
US4999333A (en) * 1987-10-02 1991-03-12 Fuji Photo Film Co., Ltd. Heat sensitive recording material
JPH0741742B2 (en) 1987-10-02 1995-05-10 富士写真フイルム株式会社 Thermal recording material
JPH06104385B2 (en) * 1987-12-01 1994-12-21 富士写真フイルム株式会社 Thermal recording material
LU87192A1 (en) 1988-04-07 1989-11-14 Euratom DEVICE FOR PRODUCING AMORPHOUS CERAMIC MATERIALS OR METAL ALLOYS
US5883362A (en) * 1988-05-19 1999-03-16 Quadlux, Inc. Apparatus and method for regulating cooking time in a lightwave oven
US4900891A (en) * 1988-06-20 1990-02-13 Roger Vega Laser ice removal system
US5260715A (en) 1988-06-28 1993-11-09 Fuji Photo Film Co., Ltd. Method of and apparatus for thermally recording image on a transparent heat sensitive material
US4989791A (en) * 1988-07-01 1991-02-05 Ridenour Ralph Gaylord Valve nozzle assembly
US4894509A (en) * 1988-12-13 1990-01-16 International Business Machines Corporation Laser assisted heater bar for multiple lead attachment
US4948937A (en) 1988-12-23 1990-08-14 Itt Corporation Apparatus and method for heat cleaning semiconductor material
EP0387737B1 (en) 1989-03-14 1993-08-11 BEKUM Maschinenfabriken GmbH Method for heating injection-moulded preforms taken from a magazine for blowing them up to hollow parts in a blow mould and device for blow moulding prefabricated preforms
GB2230740B (en) 1989-04-04 1993-09-29 Apple Computer Modular keyboard
NL8901257A (en) * 1989-05-19 1990-12-17 Leeuwarder Papier METHOD FOR APPLYING WEIGHT LINES IN RESP. ENGRAVING OF PLASTIC MATERIAL, IN PARTICULAR PACKAGING MATERIAL.
JPH0373814A (en) * 1989-08-15 1991-03-28 Jujo Paper Co Ltd Method for identifying optical output and main wavelength
US5010659A (en) * 1989-09-08 1991-04-30 W. R. Grace & Co.-Conn. Infrared drying system
US6638413B1 (en) 1989-10-10 2003-10-28 Lectro Press, Inc. Methods and apparatus for electrolysis of water
EP0431808A3 (en) 1989-12-08 1992-05-20 Tokyo Electric Co., Ltd. Tag printer
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
US5160556A (en) 1990-08-22 1992-11-03 United Container Machinery Group, Inc. Method of hardening corrugating rolls
DE69025957T2 (en) * 1990-09-07 1996-10-24 Caterpillar Inc., Peoria, Ill. ADAPTIVE DISPLAY FOR VEHICLES
CA2068517C (en) 1990-09-13 2001-01-16 Hubertus Mreijen Preform for polyester bottle
JPH04280915A (en) * 1991-01-10 1992-10-06 Nippon Steel Corp Method and apparatus for applying laser beam heat treatment to metal wire rod
JP3132840B2 (en) 1991-03-22 2001-02-05 コニカ株式会社 Image receiving sheet for thermal transfer recording and thermal transfer recording method
FR2678542B1 (en) 1991-07-01 1993-10-29 Sidel PROCESS AND INSTALLATION FOR THE HEATING, BY INFRARED RADIATION, OF PLASTIC PREFORMS, PARTICULARLY PET, FOR THE MANUFACTURE OF CONTAINERS.
US5261415A (en) 1991-07-12 1993-11-16 Ciba Corning Diagnostics Corp. CO2 mainstream capnography sensor
US5163179A (en) 1991-07-18 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Platinum silicide infrared diode
US5206039A (en) * 1991-09-24 1993-04-27 Valyi Emery I Apparatus for conditioning pressure molded plastic articles
US5267959A (en) * 1991-11-29 1993-12-07 Schneider, Inc. Laser bonding of angioplasty balloon catheters
US5349211A (en) 1992-03-26 1994-09-20 Nec Corporation Semiconductor infrared emitting device with oblique side surface with respect to the cleavage
FR2689442B1 (en) * 1992-04-03 1995-06-23 Sidel Sa PROCESS FOR THERMAL CONDITIONING OF PREFORMS IN THERMOPLASTIC MATERIALS AND DEVICE FOR CARRYING OUT SAID METHOD.
FR2691401B1 (en) * 1992-05-20 1994-08-05 Sidel Sa UNIT FOR THE HEAT TREATMENT OF PET CONTAINERS DURING THE MANUFACTURE THEREOF.
EP0653982B2 (en) * 1992-07-07 2001-01-03 Continental Pet Technologies, Inc. Method of forming container with high-crystallinity sidewall and low-clystallinity base
DE4234342C2 (en) 1992-10-12 1998-05-14 Fraunhofer Ges Forschung Process for material processing with laser radiation
FR2700293B1 (en) * 1993-01-08 1995-03-24 Settembrini Antoine Di Blow molding machine.
FR2703944B1 (en) 1993-04-15 1995-06-23 Sidel Sa Method and installation for the heat treatment of the body of a preform of thermoplastic material.
US5382441A (en) * 1993-04-16 1995-01-17 The Pillsbury Company Method of processing food utilizing infrared radiation
JP2914847B2 (en) * 1993-07-09 1999-07-05 株式会社東芝 Semiconductor laser device
US5457299A (en) 1993-10-29 1995-10-10 International Business Machines Corporation Semiconductor chip packaging method which heat cures an encapsulant deposited on a chip using a laser beam to heat the back side of the chip
US5394492A (en) 1993-11-19 1995-02-28 Applied Optronics Corporation High power semiconductor laser system
US5509733A (en) * 1993-12-21 1996-04-23 Ta Instruments, Inc. Infrared heated differential thermal analyzer
CA2159226A1 (en) 1994-01-21 1995-07-27 Eric Larsen Device for stimulating body cells by electromagnetic radiation
JP2920904B2 (en) 1994-03-28 1999-07-19 矢崎総業株式会社 Meter module assembly
DE69506053T2 (en) * 1994-07-22 1999-05-20 Fuji Kagaku Shikogyo Thermal transfer recording material
DE4429913C1 (en) * 1994-08-23 1996-03-21 Fraunhofer Ges Forschung Device and method for plating
JP2954858B2 (en) 1994-09-16 1999-09-27 日精エー・エス・ビー機械株式会社 Injection stretch blow molding apparatus and method
US5698866A (en) 1994-09-19 1997-12-16 Pdt Systems, Inc. Uniform illuminator for phototherapy
IL111428A (en) * 1994-10-27 1997-07-13 Supercom Ltd Laminated plastic cards and process and apparatus for making them
JPH08142175A (en) * 1994-11-17 1996-06-04 Kyodo Printing Co Ltd Method and device for heating preform for biaxially orienting blow molding, and production of bottle
US5565119A (en) 1995-04-28 1996-10-15 International Business Machines Corporation Method and apparatus for soldering with a multiple tip and associated optical fiber heating device
US5553391A (en) * 1995-06-05 1996-09-10 Bakalar; Sharon F. Method and apparatus for heat treating webs
JPH08337065A (en) * 1995-06-13 1996-12-24 Fujicopian Co Ltd Heat transfer recording material
US5888644A (en) * 1995-07-17 1999-03-30 Fujicopian Co., Ltd. Thermal transfer recording material
US5589210A (en) 1995-08-23 1996-12-31 Centro De Investigacion Y De Estudios-Avanzados Del I.P.N. Method for cooking wheat flour products by using infrared radiation
US5740314A (en) * 1995-08-25 1998-04-14 Edison Welding Institute IR heating lamp array with reflectors modified by removal of segments thereof
US5964749A (en) * 1995-09-15 1999-10-12 Esc Medical Systems Ltd. Method and apparatus for skin rejuvenation and wrinkle smoothing
US5618489A (en) * 1995-10-05 1997-04-08 Hoover Universal, Inc. Apparatus and process for blow molding containers
JPH0999644A (en) * 1995-10-09 1997-04-15 Fujicopian Co Ltd Thermal transfer recording material
JPH09142031A (en) 1995-11-22 1997-06-03 Fujicopian Co Ltd Thermal transfer recording material
CH690095A5 (en) 1995-12-07 2000-04-28 Tetra Pak Plastics Ltd Tetra P A heating device for plastics processing machines.
JPH09240319A (en) 1995-12-28 1997-09-16 Yazaki Corp Electric component module assembling structure
DE19603974B4 (en) * 1996-01-26 2004-05-19 Udo Prof. Dr.-Ing. Hellwig Process for deforming bodies and material webs
JP3672678B2 (en) * 1996-04-05 2005-07-20 富士通株式会社 Quantum semiconductor device and manufacturing method thereof
US5780524A (en) 1996-05-14 1998-07-14 Olsen; Don E. Micro heating apparatus for synthetic fibers and related methods
GB2315450B (en) 1996-07-20 2000-10-11 Mckechnie Plastics Ltd Improved method and apparatus for shaping thermoplastic tubes
US5759200A (en) * 1996-09-04 1998-06-02 Azar; Zion Method of selective photothermolysis
US5976288A (en) 1997-01-10 1999-11-02 Ekendahl; Lars O. Method of forming a molded, multi-layer structure
JP3760045B2 (en) * 1997-02-17 2006-03-29 日精エー・エス・ビー機械株式会社 Molding method of heat-resistant container
US6151338A (en) 1997-02-19 2000-11-21 Sdl, Inc. High power laser optical amplifier system
US5820820A (en) 1997-04-18 1998-10-13 Pierce; Brian N. Method of thermally and selectively separating water and or solvents from solids under vacuum utilizing radiant heat
US5925710A (en) 1997-04-23 1999-07-20 Hoechst Celanese Corporation Infrared absorbing polyester packaging polymer
DE19815276B4 (en) 1997-05-02 2010-04-08 C.A. Greiner & Söhne Ges.m.b.H. Aftertreatment process for an extruded article
US5865546A (en) * 1997-08-29 1999-02-02 Compaq Computer Corporation Modular keyboard for use in a computer system
US5834313A (en) 1997-09-19 1998-11-10 Johnson & Johnson Medical, Inc. Container monitoring system
US6815206B2 (en) 1997-09-19 2004-11-09 Ethicon, Inc. Container monitoring system
US5953356A (en) 1997-11-04 1999-09-14 Wisconsin Alumni Research Foundation Intersubband quantum box semiconductor laser
US6482672B1 (en) 1997-11-06 2002-11-19 Essential Research, Inc. Using a critical composition grading technique to deposit InGaAs epitaxial layers on InP substrates
DE19750263A1 (en) 1997-11-13 1999-05-20 Iwk Verpackungstechnik Gmbh Closing of plastic tube e.g. for toothpaste, in tube-filling machine
US5981611A (en) 1997-11-24 1999-11-09 Prince Corporation Thermoformable foam with infrared receptors
US6246935B1 (en) * 1997-12-01 2001-06-12 Daimlerchrysler Corporation Vehicle instrument panel computer interface and display
US6069345A (en) * 1997-12-11 2000-05-30 Quadlux, Inc. Apparatus and method for cooking food with a controlled spectrum
US6104604A (en) 1998-01-06 2000-08-15 Gateway 2000, Inc. Modular keyboard
US20030161917A1 (en) * 1998-01-20 2003-08-28 Ernest A. Voisin Process of elimination of bacteria in shellfish of shucking shellfish and an apparatus therefor
US6022920A (en) * 1998-01-23 2000-02-08 Eastman Chemical Company Method for the production of clear bottles having improved reheat
US6080146A (en) * 1998-02-24 2000-06-27 Altshuler; Gregory Method and apparatus for hair removal
US6503586B1 (en) * 1998-02-25 2003-01-07 Arteva North America S.A.R.L. Title improved infrared absorbing polyester packaging polymer
US6243035B1 (en) 1998-02-27 2001-06-05 Universal Electronics Inc. Key module for wireless keyboard
US6038786A (en) * 1998-04-16 2000-03-21 Excel Dryer Inc. Hand dryer
US6146677A (en) 1998-05-01 2000-11-14 Remco Techologies, Inc. High efficiency infrared oven
JP3268443B2 (en) 1998-09-11 2002-03-25 科学技術振興事業団 Laser heating device
US20040056006A1 (en) * 1998-10-01 2004-03-25 The Welding Institute Welding method
FR2785564B1 (en) 1998-11-10 2000-12-08 Cebal TREATMENT OF LASER MATERIALS, IN PARTICULAR CUTTING OR WELDING
US6507042B1 (en) * 1998-12-25 2003-01-14 Fujitsu Limited Semiconductor device and method of manufacturing the same
DE19901540A1 (en) 1999-01-16 2000-07-20 Philips Corp Intellectual Pty Process for fine-tuning a passive, electronic component
DE29900811U1 (en) 1999-01-19 1999-03-18 Sator Laser GmbH, 22525 Hamburg Device for welding the end of tubular plastic containers, in particular tubes
US6174388B1 (en) 1999-03-15 2001-01-16 Lockheed Martin Energy Research Corp. Rapid infrared heating of a surface
DE19919191A1 (en) 1999-04-29 2000-11-02 Bielomatik Leuze & Co Welding method and apparatus
CA2372462A1 (en) * 1999-04-30 2000-11-09 Powerlasers Ltd. Welding of carpet to panels
US6294769B1 (en) 1999-05-12 2001-09-25 Mccarter David Infrared food warming device
US6357504B1 (en) * 1999-07-29 2002-03-19 Owens Corning Fiberglas Technology, Inc. Technology for attaching facing system to insulation product
US6441510B1 (en) 1999-08-17 2002-08-27 Lear Corporation Reconfigurable modular instrument cluster arrangement
WO2001039959A1 (en) 1999-12-03 2001-06-07 Siemens Aktiengesellschaft Method for non-contacting bending of components made of a thermosplastic plastic and a component bent or adjusted according to said method
ES2200460T3 (en) 1999-12-23 2004-03-01 Leister Process Technologies PROCEDURE AND DEVICE FOR THE WARMING OF AT LEAST TWO ELEMENTS BY LASER RAYS WITH HIGH ENERGY DENSITY.
IT1311733B1 (en) * 1999-12-23 2002-03-19 Sipa Spa IMPROVED PLANT FOR INFRARED HEATING OF PLASTIC PREFORMS
US6451152B1 (en) 2000-05-24 2002-09-17 The Boeing Company Method for heating and controlling temperature of composite material during automated placement
WO2001098870A2 (en) 2000-06-20 2001-12-27 Cohen Morris S Notebook computer keyboard system
DE20018500U1 (en) * 2000-10-28 2001-12-13 Krones Ag Blowing machine
JP3516233B2 (en) * 2000-11-06 2004-04-05 日本板硝子株式会社 Manufacturing method of glass substrate for information recording medium
AU2002222885A1 (en) 2000-11-27 2002-06-03 Kinergy Pte Ltd Method and apparatus for creating a three-dimensional metal part using high-temperature direct laser melting
US7015422B2 (en) * 2000-12-21 2006-03-21 Mattson Technology, Inc. System and process for heating semiconductor wafers by optimizing absorption of electromagnetic energy
AUPR245001A0 (en) 2001-01-10 2001-02-01 Silverbrook Research Pty Ltd A method (WSM03)
CA2332190A1 (en) 2001-01-25 2002-07-25 Efos Inc. Addressable semiconductor array light source for localized radiation delivery
DE10106607A1 (en) * 2001-02-13 2002-09-12 Carsten Duesterhoeft Laser heating of thermoplastics prior to e.g. moulding or drawing, comprises using a computer to control the laser, and determining the temperature distribution using measuring instruments
US7060942B2 (en) 2001-04-11 2006-06-13 Hardt Equipment Manufacturing Inc. Cooking apparatus and method therefor
US7009140B2 (en) * 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
JP2003011734A (en) * 2001-04-26 2003-01-15 Denso Corp Mounting structure of electrical apparatus for vehicle
GB0110447D0 (en) * 2001-04-28 2001-06-20 Genevac Ltd Improvements in and relating to the heating of microtitre well plates in centrifugal evaporators
JP2004529359A (en) 2001-05-21 2004-09-24 プレスコ テクノロジー インコーポレーテッド Apparatus and method for providing snapshot operated thermal infrared imaging within an automated process control article inspection application
US6670570B2 (en) 2001-06-15 2003-12-30 L'air Liquide - Societe Anonyme A Directoire Et Couseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Methods and apparatus for localized heating of metallic and non-metallic surfaces
DE10131620B4 (en) 2001-06-29 2007-10-25 Adphos Advanced Photonics Technologies Ag Method and device for drying and / or crosslinking or heating by means of electromagnetic radiation
DE10145456A1 (en) * 2001-09-14 2003-05-22 Krones Ag Device for heating preforms provided with a support ring
EP1302735B1 (en) * 2001-10-10 2014-01-01 Heidelberger Druckmaschinen Aktiengesellschaft Apparatus and process for supplying radiation energy onto printing material in a planographic printing machine
DE10149934A1 (en) 2001-10-10 2003-04-17 Kraft Maschb Gmbh Making three-dimensional skin moldings from plastic or metal powder, employs transparent mold and applies heat using laser beam
WO2003057059A1 (en) * 2001-12-27 2003-07-17 Palomar Medical Technologies, Inc. Method and apparatus for improved vascular related treatment
DE10246198A1 (en) 2002-10-01 2004-04-22 Jenoptik Automatisierungstechnik Gmbh Arrangement for welding using laser radiation
FR2848495B1 (en) * 2002-12-12 2006-11-17 Sidel Sa OVEN FOR THERMOPLASTIC MATERIAL CONTAINERS IN THE LATHE
US6710281B1 (en) * 2002-12-20 2004-03-23 Duane H. Wachnuk Laser based heat exchanger
FR2848906B1 (en) * 2002-12-23 2006-08-18 Sidel Sa METHOD AND INSTALLATION FOR MANUFACTURING A CONTAINER OF PLASTIC MATERIAL
DE10307121A1 (en) * 2003-02-19 2004-09-02 Rodenstock Gmbh Neutral colored photochromic plastic object
GB0305052D0 (en) 2003-03-05 2003-04-09 Rooney Jonathan P Modular control panel assembly
US6892927B2 (en) * 2003-04-24 2005-05-17 Intel Corporation Method and apparatus for bonding a wire to a bond pad on a device
US7307243B2 (en) 2003-05-09 2007-12-11 North Carolina State University Dynamic radiant food preparation methods and systems
US7155876B2 (en) * 2003-05-23 2007-01-02 Douglas Machine, Inc. Heat tunnel for film shrinking
US7063820B2 (en) 2003-06-16 2006-06-20 University Of Florida Research Foundation, Inc. Photoelectrochemical air disinfection
FR2863931B1 (en) 2003-12-19 2006-03-10 Sidel Sa MODULE FOR HEATING A PREFORM EQUIPPED WITH A PROFILER OF AERODYNAMICALLY PROFILED AIR DEFLECTOR AND OVEN COMPRISING AT LEAST ONE SUCH MODULE
FR2863932B1 (en) 2003-12-19 2007-07-06 Sidel Sa HEATING OVEN OF A PREFORM EQUIPPED WITH TWO COOLING FANS
US7220378B2 (en) 2004-01-07 2007-05-22 Pressco Technology Inc. Method and apparatus for the measurement and control of both the inside and outside surface temperature of thermoplastic preforms during stretch blow molding operations
US20050161866A1 (en) 2004-01-23 2005-07-28 Rajnish Batlaw Process of making two-stage injection stretch blow molded polypropylene articles
FR2871403B1 (en) 2004-06-15 2007-11-23 Sidel Sas IMPROVED COOLING CIRCUIT FOR A PREFORMED OVEN AND METHOD OF IMPLEMENTING SUCH CIRCUIT
FR2872734B1 (en) 2004-07-08 2008-02-22 Sidel Sa Sa PREFORM HEATER HAVING A CONTROLLER FOR DISPLACING A HEATING MEANS BETWEEN INDEXED POSITIONS
US7259131B2 (en) * 2004-07-20 2007-08-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Mild, moisturizing cleansing compositions
EP1779994B1 (en) 2004-07-29 2013-06-05 Mitsui Chemicals, Inc. Method of producing thermoplastic resin hollow molded product
US20060048881A1 (en) * 2004-09-08 2006-03-09 Evans Richard B Laser-assisted placement of veiled composite material
GB2418094B (en) * 2004-09-10 2010-05-12 Medicsight Plc User interface for CT scan analysis
FR2876943B1 (en) 2004-10-22 2008-08-15 Sidel Sas METHOD AND DEVICE FOR HEATING THERMOPLASTIC MATERIAL ELBOWS
FR2878185B1 (en) 2004-11-22 2008-11-07 Sidel Sas PROCESS FOR MANUFACTURING CONTAINERS COMPRISING A HEATING STEP BY MEANS OF A COHERENT ELECTROMAGNETIC RADIATION BEAM
EP1662546A1 (en) 2004-11-25 2006-05-31 The European Community, represented by the European Commission Inductively coupled plasma processing apparatus
US7425296B2 (en) 2004-12-03 2008-09-16 Pressco Technology Inc. Method and system for wavelength specific thermal irradiation and treatment
US10687391B2 (en) * 2004-12-03 2020-06-16 Pressco Ip Llc Method and system for digital narrowband, wavelength specific cooking, curing, food preparation, and processing
US10857722B2 (en) * 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US20070188023A1 (en) 2006-02-10 2007-08-16 Visteon Global Technologies, Inc. Modular building block instrument cluster
FR2915418B1 (en) * 2007-04-25 2012-11-16 Sidel Participations METHOD OF HEATING REELIES FOR THE MANUFACTURE OF CONTAINERS
EP2167297A2 (en) 2007-06-08 2010-03-31 Pressco Technology Inc. A method and system for wavelength specific thermal irradiation and treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975618A (en) * 1974-02-14 1976-08-17 Heidenreich & Harbeck Zweingniederlassung Der Gildemeister Ag Method and apparatus for heating synthetic plastic components
US4204111A (en) * 1977-10-19 1980-05-20 Monsanto Company Heating improvements in a preform reheat system
US4606723A (en) * 1984-03-28 1986-08-19 Sidel Method and apparatus for heating thermoplastic bottle preforms
US20020062161A1 (en) * 1999-04-23 2002-05-23 Carsten Dusterhoft Automated method and apparatus for the non-cutting shaping of a body
US6361301B1 (en) * 2000-02-21 2002-03-26 Plastipak Packaging, Inc. Heater assembly for blow molding plastic preforms
US20050193690A1 (en) * 2003-10-07 2005-09-08 Schoeneck Richard J. Apparatus and method for selective processing of materials with radiant energy

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072094B2 (en) 2004-12-03 2021-07-27 Pressco Ip Llc Method and system for wavelength specific thermal irradiation and treatment
US10857722B2 (en) 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
US20070096352A1 (en) * 2004-12-03 2007-05-03 Cochran Don W Method and system for laser-based, wavelength specific infrared irradiation treatment
US20100230863A1 (en) * 2006-12-19 2010-09-16 Koninklijke Philips Electronics N.V. System for and method of heating objects in a production line
US9789631B2 (en) * 2006-12-19 2017-10-17 Koninklijke Philips N.V. System for and method of heating objects in a production line
US20100127435A1 (en) * 2007-04-25 2010-05-27 Sidel Participations Method of heating preforms for the manufacture of containers
US9296148B2 (en) * 2007-04-25 2016-03-29 Sidel Participations Method of heating preforms for the manufacture of containers
US8662876B2 (en) 2007-06-11 2014-03-04 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
US20080305203A1 (en) * 2007-06-11 2008-12-11 Sidel Participations Installation for heating the bodies of preforms for blow-moulding containers
US20110219728A1 (en) * 2008-11-14 2011-09-15 Krones Ag Device and method for producing plastic containers
US9061873B2 (en) * 2008-11-14 2015-06-23 Krones, Ag Device and method for producing plastic containers
US20120273480A1 (en) * 2009-04-21 2012-11-01 Koninklijke Philips Electronics N.V. Heating system and method of heating a body of a preform
US9162373B2 (en) * 2009-04-21 2015-10-20 Koninklijke Philips N.V. Heating system and method of heating a body of a preform
WO2010122469A1 (en) 2009-04-21 2010-10-28 Koninklijke Philips Electronics N.V. Heating system and method of heating a body of a preform
US20120267832A1 (en) * 2009-07-16 2012-10-25 Khs Corpoplast Gmbh Method and device for blow-molding containers
US20130011807A1 (en) * 2009-12-04 2013-01-10 Krones Ag Furnace for conditioning preforms
US8983281B2 (en) 2010-04-14 2015-03-17 Krones Ag Method and device for cooling of IR emitters for preforms
DE102010015018A1 (en) * 2010-04-14 2011-10-20 Krones Ag lamp cooling
US20110300497A1 (en) * 2010-06-02 2011-12-08 Sidel Participations Oven for the thermal conditioning of preforms and control method of an air cooling device fitted to such an oven
US20150321413A1 (en) * 2012-07-13 2015-11-12 Sidel Participations Modular control system of an installation for producing containers
US10913197B2 (en) * 2013-02-14 2021-02-09 Sidel Participations Method for producing a marked container comprising a step for marking a preform
US20150352772A1 (en) * 2013-02-14 2015-12-10 Sidel Participations Method for producing a marked container comprising a step for marking a preform
US10137627B2 (en) * 2014-03-19 2018-11-27 Sidel Participations Unit for processing blanks provided with an optical confinement section having convergent walls
US20150306808A1 (en) * 2014-04-23 2015-10-29 Krones Ag Apparatus and method for heating plastic parisons
US10647048B2 (en) * 2014-05-02 2020-05-12 Khs Corpoplast Gmbh Method and device for tempering preforms
US20170043521A1 (en) * 2014-05-02 2017-02-16 Khs Corpoplast Gmbh Method and device for tempering preforms
DE102015102722A1 (en) * 2015-02-25 2016-08-25 Krones Ag Apparatus for heating plastic preforms with optical fibers and process heating of plastic preforms
US11090856B2 (en) * 2016-04-05 2021-08-17 Sidel Participations Method for the preferential heating of a hollow body comprising a marking step
US10836095B2 (en) 2016-12-12 2020-11-17 Sidel Participations Dehydration circuit for an electromagnetic processing unit of hollow bodies
EP3269531A1 (en) * 2016-12-12 2018-01-17 Sidel Participations Dehydration circuit for an electromagnetic processing unit of hollow bodies
CN110944822A (en) * 2017-07-26 2020-03-31 西得乐集团 Rough blank processing unit comprising a housing with a centralized heating zone and a manipulation zone
FR3070300A1 (en) * 2017-08-24 2019-03-01 Sidel Participations INSTALLATION AND METHOD FOR PRODUCING CONTAINERS FOR PRODUCING THE STARTER
EP3446852A1 (en) * 2017-08-24 2019-02-27 Sidel Participations Installation and method for producing containers, allowing production from the start
US10960596B2 (en) 2017-08-24 2021-03-30 Sidel Participations Facility and method for production of containers, making possible production immediately upon start-up
CN115534277A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Heating device and heating method for plastic preforms
CN115534276A (en) * 2022-09-27 2022-12-30 江苏新美星包装机械股份有限公司 Conveying and heating device for plastic preforms

Also Published As

Publication number Publication date
US20100007061A1 (en) 2010-01-14
MX2007006152A (en) 2007-07-19
US20090214690A1 (en) 2009-08-27
US8303290B2 (en) 2012-11-06
CN101060970A (en) 2007-10-24
FR2878185A1 (en) 2006-05-26
FR2878185B1 (en) 2008-11-07
EP1824659B1 (en) 2013-10-02
CN101060970B (en) 2012-04-18
US20100072673A1 (en) 2010-03-25
JP2008520467A (en) 2008-06-19
US8354051B2 (en) 2013-01-15
WO2006056673A1 (en) 2006-06-01
JP4555344B2 (en) 2010-09-29
EP1824659A1 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
US8303290B2 (en) Method and installation for the production of containers
US9296148B2 (en) Method of heating preforms for the manufacture of containers
JP6176459B2 (en) Method for heating preformed body of container having low outer wall temperature and heating unit for preformed body
ITPN990100A1 (en) IMPROVED PLANT FOR INFRARED HEATING OF PLASTIC PREFORMS
US9144934B2 (en) Method of heating a preform, a driving arrangement, a preform heating system and a computer program
US20200346393A1 (en) Method for fabricating containers
US20190070771A1 (en) Method for the preferential heating of a hollow body comprising a marking step
EP3172030B1 (en) Electromagnetic processing module equipped with thermally regulated confinement elements
US10821649B2 (en) Device and method for thermally conditioning preforms
JP4696736B2 (en) Light heating device
US10137627B2 (en) Unit for processing blanks provided with an optical confinement section having convergent walls
CN106536160B (en) Heating device for heating a hollow body comprising a low-temperature cavity
CN104149322A (en) Equipment for infrared heating of plastic preform
CN113524496A (en) Preform and container with variable transmission

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIDEL PARTICIPATIONS, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEUILLOLEY, GUY;DESOUTTER, LUC;REEL/FRAME:019561/0383

Effective date: 20070604

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION