WO2006046626A1 - 水溶性エラスチンとその製造方法及びそれを含む食品と医薬 - Google Patents

水溶性エラスチンとその製造方法及びそれを含む食品と医薬 Download PDF

Info

Publication number
WO2006046626A1
WO2006046626A1 PCT/JP2005/019751 JP2005019751W WO2006046626A1 WO 2006046626 A1 WO2006046626 A1 WO 2006046626A1 JP 2005019751 W JP2005019751 W JP 2005019751W WO 2006046626 A1 WO2006046626 A1 WO 2006046626A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastin
water
soluble
molecular weight
soluble elastin
Prior art date
Application number
PCT/JP2005/019751
Other languages
English (en)
French (fr)
Inventor
Kouji Okamoto
Hiroshi Yamada
Iori Maeda
Original Assignee
Kyushu Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute Of Technology filed Critical Kyushu Institute Of Technology
Priority to JP2006543232A priority Critical patent/JP4078431B2/ja
Priority to US11/666,443 priority patent/US7851441B2/en
Publication of WO2006046626A1 publication Critical patent/WO2006046626A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to high purity low molecular weight water soluble elastin and high molecular weight water soluble elastin which can obtain water soluble elastin, a method for producing them, and food and pharmaceutical use of low molecular weight water soluble elastin .
  • Elastin is a protein that is present together with collagen in the connective tissue of the dermis, ligaments, tendons, blood vessel walls and the like of the skin of animals, particularly mammals. Elastin usually exists as an insoluble protein in a three-dimensional network structure in vivo. It is widely known that water-soluble elastin can be obtained by hydrolyzing such elastin with acid or alkali or treating it with an enzyme. And since water-soluble elastin has the ability to hold a large amount of water, it is used as a cosmetic, especially as a moisturizer (eg, patent documents 1 to 3), and it has cosmetic effects such as giving elasticity to the skin. If it exists, it is also used as health food together with collagen etc. (for example, Patent Documents 4 to 6). Furthermore, water soluble elastin is in the field of regenerative medicine such as artificial blood vessels! Even so, its use is expected (for example, Patent Documents 7 to 10).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 60-258107
  • Patent Document 2 Japanese Patent Application Laid-Open No. 60-181005
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-205913
  • Patent Document 4 Japanese Patent Application Laid-Open No. 6-7092
  • Patent document 5 Unexamined-Japanese-Patent No. 2005-13123 gazette
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2005-13124
  • Patent Document 7 Japanese Examined Patent Publication No. 6-30616
  • Patent Document 8 JP-A-8-33661
  • Patent Document 9 Japanese Patent Application Laid-Open No. 9-173361
  • Patent Document 10 International Publication 2002Z96978 Pamphlet [0004] A variety of methods have been proposed for obtaining water-soluble elastin, but methods for obtaining high-purity water-soluble elastin having a suitable molecular weight are not yet sufficient. Elastin is extracted from biological tissues of animals. In this case, animal biological tissues that have been subjected to pretreatment such as removal of unnecessary parts and defatting are usually used. Then, insoluble elastin contained in animal biological tissue is fragmented by dissolving the pretreated tissue in an acid solution at a predetermined temperature containing formic acid and oxalic acid, or treating with an enzyme. A solubilization solution in which water-soluble elastin is dissolved is obtained.
  • Non-patent Document 1 water-soluble a elastin and ⁇ elastin can be obtained by subjecting purified insoluble elastin to extraction treatment with thermal oxalic acid.
  • Non-Patent Document 1 the molecular weight of ⁇ -elastin reported in Non-Patent Document 1 is 70, 000, and / 3 the molecular weight of elastin is 10, 000 or less, and the highly pure water-soluble elastin of the present invention described below It is different.
  • Patent Document 1 discloses that insoluble elastin is degraded by proteinase to obtain soluble elastin having a molecular weight of 15,000-300,000. However, this elastin has a very broad molecular weight range and is considered to be highly pure, including fragments of enzyme degradation and the like.
  • Patent Document 7 also reports that the insoluble elastin is pepsin decomposed to obtain a water-soluble elastin having a molecular weight of 8, 300 to 640, 000.
  • the amino acid composition of this product (especially proline, glycine, Judging from lanin and palin), it can not be considered as high in purity.
  • Patent Document 10 it is also reported in the above-mentioned Patent Document 10 that insoluble elastin is treated with heat oxalic acid to obtain water-soluble elastin, which is presumed to be of high purity according to the amino acid compositional power. Force In this document, the water soluble elastomer obtained is crosslinked in order to obtain a biocompatible functional material.
  • the amino acid composition of the purified insoluble elastin partially overlaps with that of the high-purity water-soluble elastin of the present invention, and 80 to 83% are proline, glycin, haranine and parin, and 2 to 3% Asparaginic acid and glutamic acid;
  • Non-Patent Document 2 It has been reported that 0% is lysine, histidine, arginine and 0.3 to 0.4% is a desmosine and isodesmosine potency (eg, Non-Patent Document 2).
  • Non-patent literature l Biochimica et Biophysica Acta, 310 (1973) 481-486
  • Non Patent Literature 2 nalytical Biochemistry, 64 (1975) 255-259
  • the object of the present invention is to provide a low molecular weight and high purity water soluble elastin that can be used as functional food and medicine, and a high molecular weight and high purity, water soluble elastin that can be used as cosmetics and medical materials. It is. Another object of the present invention is to provide a method for industrially producing high purity water-soluble elastin.
  • elastin 79 to 84% of the amino acids constituting elastin consist of proline, glycine, analanin and norrin, and 2 to 3% consist of aspartic acid and glutamic acid,
  • 3% consisting of lysine, histidine and arginine, and 0.2 to 0.4% also consisting of desmosin and isodesmosinka.
  • the content of asparaginic acid also includes asparagine
  • the content of Daltamic acid also includes glutamine.
  • 79 to 84% of the amino acids constituting elastin are composed of proline, daricin, aranin and norrin, and 2 to 3% is aspartic acid and glutamic acid, 0.7 to 7
  • a high molecular weight water soluble elastin having a molecular weight of about 3 to 300,000, of which 1.3% consists of lysine, histidine and arginine, and 0.2% to 0.4% both desmosine and isodesmosine.
  • the invention according to claim 3 relates to the method for producing water-soluble elastin according to claims 1 and 2. That is, in the method of producing water-soluble elastin of animal tissue, (1) insoluble elastin is obtained by subjecting animal tissue to collagen removal treatment Step (2) dissolving the insoluble elastin in a solubilizing solution to obtain an elastin dissolving solution; (3) separating the elastin dissolving solution from the upper layer into two layers by a phase separation operation; This method is a process for producing water-soluble elastin, which is also a process step of recovering water-soluble elastin and recovering high molecular weight water-soluble elastin from the lower layer.
  • the invention according to claim 8 relates to another method for producing the water-soluble elastin according to claims 1 and 2. That is, in the method of producing water-soluble elastin from animal biological tissue, (1) pretreating the animal biological tissue; (2) immersing the pretreated animal biological tissue in an alkaline solution; Alkaline extraction step of removing the solution containing collagen and other unwanted proteins extracted from the living body tissue, (3) after repeating the procedure of (2) above, it was released by dissolving animal body tissue residue (4) The solution containing the water-soluble elastin recovered in the alkali dissolution step is separated into two layers by phase separation operation, and the low molecular weight water-soluble elastin is separated from the upper layer It is a method for producing water-soluble elastin, which is also a process step of recovering and recovering high molecular weight water-soluble elastin from the lower layer.
  • 79 to 84% of the amino acids constituting elastin are also proline, glycine, analanin, and a linker, and 2 to 3% consist of aspartic acid and glutamic acid, 7 to 1.3% consists of lysine, histidine, arginine, 0.24 to 0.4% becomes desmosine and isodesmosinka, functions including low molecular weight water-soluble elastin with a molecular weight of about 1 to 30,000 It is a sex food.
  • elastin in the invention according to claim 14, 79 to 84% of the amino acids constituting elastin are composed of purine phosphate, glycine, analanin and norin, and 2 to 3% are composed of aspartic acid and glutamic acid, Low molecular weight water-soluble elastin with a molecular weight of about 1 to 30,000, consisting of 0.3 to 1. 3% consisting of lysine, histidine and arginine and 0.2 to 0.4% also desmosine and isodesmosine It is a medicine as an ingredient.
  • the invention according to claim 16 is an arteriosclerosis inhibitor
  • the invention according to claim 17 is an agent for improving dyslipidemia
  • the invention according to claim 18 is a thrombus formation. It is an inhibitor.
  • a low molecular weight, high molecular weight, water soluble elastin having a molecular weight of about 1 to 30,000 and a high molecular weight, high molecular weight, water soluble elastin having a molecular weight of about 3 to 300,000 are provided.
  • the low molecular weight water-soluble elastin of the present invention is highly digestible and absorbable, and thus can be used as functional food and medicine.
  • high molecular weight water soluble elastin can be used as a cosmetic or medical material.
  • insoluble elastin is first produced in a highly pure state by a collagen removal treatment for removing animal body tissue collagen. That is, first, most of the remaining components of the animal tissue of the living body are treated with collagen, which is a contaminant during water-soluble elastin purification, by carrying out a treatment with an emphasis on removing collagen contained in the animal tissue. It can be high purity insoluble elastin.
  • the insoluble elastin is fragmented to form a water-soluble elastin, which is liberated and dissolved in the soluble gelatin solution while collagen Since it does not elute, it is possible to produce water-soluble elastin with less impurities and high purity.
  • the alkaline extraction step and the alkaline dissolution step of immersing the animal biological tissue in an alkaline solution include collagen removal treatment and collagen treatment.
  • the removal process of unnecessary proteins other than the above, fragmentation of insoluble elastin, and soluble / soluble treatment are collectively performed, and water-soluble elastin with high purity can be used to purify insoluble elastin in animal tissues. Processing time can be shortened by collecting
  • FIG. 1 is a flow diagram showing a method of producing water-soluble elastin (the invention of claim 3).
  • FIG. 2 A flow diagram showing a method of producing water-soluble elastin (the invention of claim 8).
  • FIG. 3 A diagram showing changes in total cholesterol in serum.
  • FIG. 4 shows changes in LDL-cholesterol.
  • FIG. 5 is a diagram showing changes in HDL-cholesterol.
  • FIG. 6 shows changes in triglycerides.
  • FIG. 7 shows changes in peracid lipid.
  • FIG. 8 is a diagram showing changes in the elastic modulus of blood vessels.
  • FIG. 9 is a view showing the state of the intimal surface on the blood flow side of a blood vessel.
  • FIG. 10 is a view showing the platelet aggregation inhibitory action.
  • FIG. 11 is a diagram showing viscosity in blood.
  • water-soluble elastin of the present invention 79 to 84% of the amino acids constituting elastin are composed of proline, glycine, analanin and norrin, and 2 to 3% of aspartic acid and glutamate have an activity of 0.7.
  • Low molecular weight water-soluble elastin with a molecular weight of about 1 to 30,000, with ⁇ 1.3% consisting of lysine, histidine, arginine, and 0.2 to 0.4% desmosine and isodesmosinka, and molecular weight There are about 30,000,000 high molecular weight water soluble elastin.
  • the amino acid composition of the purified insoluble elastin is 80 to 83% strength S proline, glycine, aranin, parin, 2 to 3% is asparaginic acid and glutamic acid, 0.7 to 1.0% is lysine, histidine, Arginine, 0.3 to 0.4% is said to be desmosine and isodesmosine, and the amino acid composition of the water-soluble elastin of the present invention is almost similar to this, so that it is of high purity. I can say that.
  • elastin amino acid analysis usually Carohydrolysis with 6N hydrochloric acid for 48 hours or more, so Asn is converted to Asp and Gin is converted to Glu, the value of Asp is the sum of Asp + Asn.
  • the value of Glu is expressed as the sum of Glu + Gin.
  • the content of asparaginic acid includes the original asparagine, and the content of daltamic acid is defined as including the original glutamine.
  • the high purity water-soluble elastin of the present invention can be produced by the following two methods.
  • the first method is the method described in claim 3. That is, in the method of producing water-soluble elastin from animal body tissue, (1) a step of obtaining insoluble elastin by subjecting animal body tissue to a collagen removal treatment, (2) dissolving the insoluble elastin into a soluble collagen solution. (3) the elastin solution is separated into two layers by a phase separation operation, and a low molecular weight water-soluble elastin is recovered from the upper layer, and a high molecular weight water soluble elastin is collected from the lower layer. It is a process that recovers
  • animal body tissue There is no particular limitation on the animal body tissue, but the content of elastin is high, in terms of pig, It is preferable to use a ligament or aortic vessel obtained from mammals such as horses, cattle and sheep.
  • the animal tissue may first be homogenized using a homogenizer. Homogenization is good if it can shred animal tissue such as mixer and meat chopper
  • an apparatus that can be shredded into preferably 3 mm square or less, more preferably in the form of a paste.
  • the smaller particles of shredded animal biological tissue are preferred because they can increase the removal efficiency of collagen and other unnecessary proteins.
  • the homogenized animal tissue may be subjected to a degreasing treatment, for example, by boiling with hot water or a hot dilute aqueous alkali solution, or by treatment with an organic solvent.
  • step (1) of the first method it is preferable to remove collagen with an alkaline solution.
  • one or more alkali compounds selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide and hydroxyl hydroxide are also preferably used in an amount of 0.5 to 0.5 mol per liter of solution, preferably Is preferably 90 to 105 ° C., preferably 95 to 100 ° C., for 10 to 20 minutes, in an alkaline solution containing 0.5 to 0.5 mol, more preferably 0.5 to 0.5 mol.
  • a treatment method in which immersion is performed is preferred (Claim 4).
  • the insoluble elastin is fragmented and released by the alkaline solution as well as the acidic solution, and the force to become the soluble aqueous elastin that can be dissolved is the concentration of the alkaline solution, the temperature, and the treatment time in the above collagen removal treatment operation.
  • the conditions are conditions in which collagen elutes earlier than insoluble elastin fragments into water soluble elastin and releases and dissolves. Therefore, by the treatment under the above conditions, collagen in animal tissues can be efficiently eluted and removed in an alkaline solution, and as a result, highly pure insoluble elastin can be obtained.
  • the alkaline solution in the collagen removal treatment has an effect of removing unnecessary proteins other than collagen as well as extracting and removing collagen.
  • the collagen removal treatment may be repeated several times until the concentration of the protein eluted in the filtrate obtained by filtering out the alkaline solution and insoluble elastin becomes equal to or less than a predetermined value. If the treatment is under the above conditions, the collagen removal treatment is repeated until the concentration of eluted protein (ie the concentration of eluted collagen etc.) reaches a predetermined concentration. Also, fragmentation against insoluble elastin is less likely to occur. Therefore, by repeatedly removing collagen, it is possible to produce water-soluble elastin having a higher degree of purification than when collagen removal is performed only once.
  • one or more salts selected from sodium chloride, potassium chloride, calcium chloride and barium chloride are selected before the collagen removal treatment. Dip the animal tissue at 2 to 10 ° C. for 12 to 48 hours, preferably 20 to 30 hours, in a salt solution containing 0.1 to 2 mol, preferably 0.8 to 1.2 mol, per liter of solution Immersion treatment may be performed (claim 5). Unwanted proteins other than collagen can be removed in advance by this treatment, which may be carried out several times by treatment with a strong salt solution.
  • an alkaline solution may be used.
  • the acidic solution include oxalic acid, formic acid, acetic acid, succinic acid, malic acid, tartaric acid, tartaric acid, benzoic acid, betaine, difluoroacetic acid, trifluoroacetic acid, phosphoric acid, sulfamic acid and perchloric acid. And 0.1 to 0.5 mol, preferably 0.2 to 0.3 mol, per liter of the solution, and the liquid temperature is 90 to 105, and the acid compound is selected from the group consisting of It is an acidic solution at a temperature of 95 ° C to 100 ° C (Claim 6).
  • Such conditions are suitable conditions for producing insoluble elastin and water soluble elastin, but are also suitable conditions that do not shred the water soluble elastin molecule that has been free dissolved in the solubilization solution.
  • Water soluble elastin with sufficient molecular weight can be produced.
  • the treatment time for the solubilization is 20 to 120 minutes, preferably 40 to 80 minutes. If insoluble elastin remains, re-immerse the insoluble elastin in the acid solution and repeat the treatment with the acid solution until the insoluble elastin is completely dissolved.
  • the alkaline solution include sodium hydroxide, potassium hydroxide, calcium hydroxide, and one or more alkali compounds selected from the group consisting of barium hydroxide, per 1 L of solution. It is an alkaline solution containing 0.5 to 0.5 mol, preferably 0.5 to 0. 3 mol, and having a liquid temperature of 90 to 105 ° C, preferably 95 to 100 ° C (claim 7). Such conditions are suitable for producing insoluble elastin, water soluble elastin, while soluble. It is also an appropriate condition that the water soluble elastin molecule dissolved free 'dissolved in the formulation solution is not shredded, so that water soluble elastin having sufficient molecular weight can be produced.
  • the treatment time for the solubilization is 20 to 120 minutes, preferably 40 to 80 minutes. If insoluble elastin remains, re-immerse the insoluble elastin in the alkaline solution and repeat the treatment with the alkaline solution until the insoluble elastin is completely dissolved.
  • the alkaline solution used in the collagen removal treatment can be used subsequently as the soluble solution, and in this case, the manufacturing cost can be reduced.
  • the separated upper layer The low molecular weight water-soluble elastin is recovered from the water, and the high molecular weight water-soluble elastin is recovered from the separated lower layer.
  • the properties of the obtained water-soluble elastin will be described in detail later.
  • FIG. 1 A flow diagram for producing water-soluble elastin by the first method is shown in FIG.
  • FIG. 1 The processing conditions and the like in FIG. 1 are an example of the present invention.
  • Step S1 Using the ligamentum flavum of the animal as the animal body tissue, attach the attached / excluded fat, muscle and other parts with low elastin content with a knife etc (Step S1), remove the animal body tissue. Homogenize using a homogenizer (step S2). For homogenization, it is preferable to use an apparatus such as a mixer or mit chopper that can shred animal tissue preferably 3 mm square or less, more preferably paste. The smaller particles of shredded animal tissue can increase the removal efficiency of unnecessary proteins.
  • Homogenized animal biological tissue is used in boiling water (90 ° C-105 ° C, preferably 2 volumes or more, preferably 2-20 volumes of animal tissue weight or more, preferably 2-20 volumes).
  • the term “water drainage” as used herein is meant to cut off the liquid attached to animal tissues which is not intended specifically for water. If the degreasing time is less than 30 minutes, the degreasing can not be performed sufficiently. Degreasing effect can not be expected.
  • a degreasing operation may also be performed using an organic solvent generally used for lipid extraction such as acetone, ethers, hexane, butanol, chloroform, methanol, etc. or a mixture thereof. good.
  • drainage may be performed with a fine mesh of eyes, or may be provided with a mesh, or drainage may be performed by centrifugal force. Further, the dehydrated animal tissue is immersed in acetone, ethanol or the like and recovered, and the acetone or ethanol which has permeated the animal tissue is evaporated, whereby the water content of the animal tissue can be dehydrated. Further degreasing can also be performed.
  • the drained animal biological tissue is put in a container, and the volume of the saline solution (0.1 to 2 M, preferably D.
  • Immersion treatment is carried out by stirring 8 to 1.2 M aqueous sodium chloride solution and stirring at 2 to 10 ° C. for 12 to 48 hours, preferably 20 to 30 hours (step S5).
  • unnecessary proteins other than collagen can be removed in advance.
  • the immersion treatment may freeze below 2 ° C, and when it exceeds 10 ° C, microbial growth can be observed. In one immersion treatment time, extraction of unnecessary proteins is insufficient in 12 hours or less, and it is unnecessary to exceed 48 hours.
  • a sodium chloride aqueous solution is used as the salt solution used in the immersion treatment in FIG. 1, at least one of sodium chloride, potassium chloride, calcium chloride and barium chloride is used.
  • the total amount of sodium chloride, potassium chloride, calcium chloride and barium chloride added to the salt solution is 0.1 to 2 mol per liter, preferably 0.8 to 1. It is desirable to use a salt solution at 2-10 ° C at 2mo 1! /. For example, after immersion treatment of 10 volumes of 1 M aqueous sodium chloride solution at 4 ° C. for 24 hours with respect to animal tissue weight, animal tissue and salt solution are separated, For the separated salt solution, the total protein is quantified, for example, by the burette method (step S6).
  • the immersion treatment is performed again, in the salt solution. If the total protein weight contained in is 0. Img / mL or less, it is judged that unnecessary proteins have been removed and the operation is transferred to the next step S7.
  • the intensive immersion treatment may or may not be performed, but may be performed multiple times, but generally, as the number of times is increased, unnecessary proteins can be removed, and the insoluble elastin content is high. And animal-derived living tissue can be obtained.
  • an alkaline solution (0.5 to 0.5 M, preferably 0.2 parts by volume or more, preferably 2 to 20 times the volume of the weight of the animal body tissue subjected to the immersion treatment relative to the weight of the tissue) is used.
  • 05-0. 3M in a further preferred 0.
  • 05-0. 15M Mizusani ⁇ Na Bok helium aqueous solution to a human being, 90 to 105 o C, preferably rather 10-20 minutes at 95 to 100 ° C Stir and perform collagen removal treatment (step S7).
  • the amount of the alkaline solution is less than twice the volume of the weight of the living animal tissue, the extraction efficiency of collagen becomes worse, and if it is more than 20 volumes, it is difficult to handle, so 2 to 20 times the weight of the living animal tissue. It is desirable to perform collagen removal treatment by volume.
  • the collagen removal treatment time is less than 10 minutes, the removal efficiency of collagen is poor, and when it is more than 20 minutes, elastin is degraded.
  • the alkaline solution in FIG. 1, at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide, which uses a sodium hydroxide aqueous solution, is used.
  • the total amount of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide added to the alkaline solution is 0.05 to 0.5 mol per liter, preferably 0. It is also possible to use an anololytic solution of 0.5 to 0.3 mol, more preferably 0.5 to 0.5 mol.
  • step S8 After removing collagen by 10 volumes of 0.1 M aqueous solution of sodium hydroxide at 100 ° C. for 15 minutes with respect to the weight of animal tissue, the animal tissue and alkali The alkaline solution separated from the alkaline solution is separated, for example, by the burette method. The determination of the particulate matter is performed (step S8).
  • the total amount of protein contained in the alkaline solution exceeds, for example, 0.1 mg / mL, collagen removal treatment is performed again, judging that collagen capable of further removal exists in the animal body tissue, If the total amount of protein contained in the alkaline solution is 0.1 mg / mL or less, it is judged that the collagen has been removed and the collagen removal treatment is terminated to obtain insoluble elastin of high purity.
  • the insoluble elastin is covered with a two-fold volume, preferably a two- to twenty-fold volume, of the solubilization solution by weight, preferably 90 to 105 ° C., preferably 95 to 100 ° C.
  • the insoluble elastin is fragmented by stirring for ⁇ 120 minutes, preferably for 40-80 minutes, and it is dissolved in a soluble emulsion as a water-soluble elastin (step S9).
  • the soluble concentrate used here may be any other acidic solution which uses oxalic acid in FIG. 1 or it may be an alkaline solution.
  • the acidic solution examples include, for example, oxalic acid, formic acid, acetic acid, succinic acid, malic acid, tartaric acid, tartaric acid, benzoic acid, betaine, difluoroacetic acid, trifluoroacetic acid, phosphoric acid, sulfamic acid and perchloric acid. And an acid solution containing at least one of acetic acid having a total amount of these acids of 0.1 to 0.5 mol, preferably 0.2 to 0.3 mol, per liter. Saru.
  • the alkaline solution is, for example, an alkaline solution containing at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide, which may be contained in the alkaline solution.
  • the total amount of sodium hydroxide added, potassium hydroxide, calcium hydroxide and hydroxylated hydroxide was adjusted to 0.5 to 0.5 mol, preferably 0.5 to 0.5 mol, per liter.
  • An alkaline solution can be used.
  • Step S10 After immersing in a soluble solution containing 10 volumes of a 0.25 M aqueous oxalic acid solution at 100 ° C. for 60 minutes relative to the weight of animal tissue, for example, insoluble elastin and soluble aqueous solution can be used.
  • the filtrate is separated (Step S10), and the separated soluble liquid is allowed to stand at 25 ° C. or less by cooling or water cooling or the like, preferably at 10 ° C. or less by ice cooling or the like (Step Sl 1). That is, by setting the separated solubilization solution at 25 ° C. or less, preferably at 10 ° C.
  • Step S 13 the pH of the solubilized solution in which the water-soluble elastin is dissolved is adjusted to 5 to 7, preferably 6 to 7, and the solubilized solution is dialyzed.
  • a soluble solution freed and dissolved in water-soluble elastin is placed in a bag formed of a semipermeable membrane and sealed, and then dialyzed against water at 4 to 10 ° C. While elastin is retained in the bag, the components contained in the soluble solution are eluted outside the semipermeable membrane to purify water-soluble elastin.
  • a method in performing dialysis is not limited to the method using a semipermeable membrane, with water-soluble elastin molecules recoverable state, capable of removing salt form raw upon the other ingredients and P H adjustment during lysates If it is, what kind of method may be used. After 24 hours, it is preferable to discard the water used for dialysis, dialyze again with fresh water at 4 to 10 ° C. for 24 hours, and repeat this four times or more.
  • the dialyzed water-soluble elastin undergoes phase separation by setting the temperature of the aqueous solution to 30 to 50 ° C. (step S 14), and the upper layer (equilibrium liquid phase) containing low molecular weight aqueous solution elastin and high water content are obtained. It separates into the lower layer (coacervate phase) containing molecular weight water-soluble elastin (step S15).
  • the tissue culture is often performed at about 37 ° C. Therefore, coacervation occurs at 37 ° C. or lower. It is desirable to efficiently recover high molecular weight water soluble elastin.
  • phase separation can be performed if elastin is in a water-soluble state, but preferably after adjusting the pH after dialysis to pH 3 to pH 7, more preferably, the pH is near the isoelectric point of water-soluble elastin After adjustment to pH 4 to pH 6, high molecular weight water soluble elastomer can be efficiently obtained.
  • the high molecular weight water-soluble elastin of the present invention is recovered from the above-described coreserate phase, and the low molecular weight water-soluble elastin of the present invention is circulated from the upper layer (equilibrated liquid phase) separated therefrom. Be collected.
  • a second method for producing the high purity water-soluble elastin of the present invention is the method described in claim 8. That is, in the method for producing water-soluble elastin of animal tissue, (1) pretreating the animal tissue, (2) immersing the pretreated animal tissue in an alkaline solution. And an alkaline extraction step of removing a solution containing collagen and other unwanted proteins extracted by the animal body tissue, and (3) animal body tissue residue after repeating the operation of (2).
  • the solution containing the water-soluble elastin separated in the alkaline dissolution step of recovering the solution containing the released water-soluble elastin is dissolved into two layers by the phase separation operation.
  • the method is a process for producing water-soluble elastin, comprising the step of recovering low molecular weight water-soluble elastin from the upper layer and recovering high molecular weight water-soluble elastin from the lower layer.
  • Step 2 of the Second Method (2) In the alkaline extraction step, the pretreated animal tissue is divided into sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide.
  • Anololytic activity containing 0.5 to 0.5 mol, preferably 0.5 to 0.5 mol, more preferably 0.5 to 0.15 mol per 1 L of solution. It is preferred to immerse in the solution at 90 to 105 ° C., preferably 95 to 100 ° C., for 10 to 20 minutes (claim 9). Then, the solution extracted by the animal tissue is removed. Such treatment removes collagen and other unwanted proteins.
  • the residual animal tissue residue is dissolved, and the solution is recovered.
  • the remaining animal biological tissue residue is treated with one or more than one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide.
  • Elution of collagen and other unwanted proteins with alkaline solution under the above conditions is carried out prior to fragmentation of insoluble elastin. Therefore, in the alkaline extraction step of (2) of the second method, The amount of elution of unnecessary proteins including collagen decreases each time the extraction of sexual tissue strength is repeated, and the concentration of proteins such as collagen becomes an exponentially gradually diluted solution. Next, in the alkaline dissolution step (3), the remaining animal tissue residue is dissolved, whereby the water-soluble elastin is liberated and dissolved in the alkaline solution. In the methods (2) and (3), by changing the concentration of the alkaline solution and the treatment time, the ability to remove unnecessary proteins including collagen is also interrupted intermittently until recovery of the water-soluble elastin. Since it can be a series of operations, water-soluble elastin can be produced in a short time.
  • step (4) of the second method the solution containing elastin recovered in the alkali dissolution step (3) is phase-separated, and from the separated upper layer, low molecular weight water-soluble elastin Is recovered. Also, high molecular weight water-soluble elastin is recovered from the separated lower layer.
  • Such recovery step can be performed in the same manner as in the first method.
  • FIG. 1 A flow diagram for producing water-soluble elastin by the second method is shown in FIG.
  • water-soluble elastin can be produced in a short time from animal tissue.
  • the processing conditions and the like in FIG. 2 are an example of the present invention.
  • the animal tissue is attached to the calf's ligament and attached! / A portion with low elastin content such as fat and muscle meat scraped off with a knife etc. Removal treatment (step T1), and shredding treatment is carried out by homogenizing the animal body tissue using a homogenizer as in the first method (step T2). Such pretreatment step can be carried out in the same manner as in the first method.
  • the animal body tissue is contained in a volume 2 times or more, preferably 2 to 20 times, the volume of the tissue, preferably 2 to 20 volumes of an alcoholic acid solution (0.50 to 0.5M, preferably 0. 05 0.30, more preferably 0. 05 to 0.
  • step T3 15 M aqueous solution of sodium hydroxide), 90 to 105 ° C., preferably 95 to: LO: 10 to 20 minutes of stirring at 0 ° C. and alkali Perform the extraction process (step T3). Thereafter, the animal tissue residue and the alkaline solution are separated, and the separated alkaline solution is subjected to quantification of total protein, for example, by the billet method (step 4). If the total amount of protein contained in the alkaline solution is, for example, more than 0. I mg / mL, it is judged that collagen and other unwanted proteins can be further removed from the animal body tissue, so that collagen etc. is removed The treatment is repeated, and if the total amount of protein contained in the alkaline solution is 0.1 mg / mL or less, it is judged that collagen and other unnecessary proteins have been removed, and the removal process of collagen etc. is finished.
  • the amount of the alkaline solution is less than twice the volume of the weight of the living animal tissue, the extraction efficiency of collagen and unnecessary proteins is deteriorated, and when it exceeds 20 times the volume, it is difficult to handle.
  • a volume of 2 to 20 times the tissue weight is desirable.
  • the immersion time is less than 10 minutes, the removal efficiency of collagen and other unwanted proteins is poor, and when it exceeds 20 minutes, elastin is degraded and extracted, so it is desirable to perform for 10 to 20 minutes.
  • alkaline solution another alkaline solution having a sodium hydroxide aqueous solution may be used as shown in FIG.
  • one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide in a total amount of 0.05 to 0.5 mol, preferably 0.5 to 0.5 mol, per liter It is desirable to use an alkaline solution which is preferably adjusted to 0.05 to 0.15 mol.
  • the alkali extraction step also has the effect of degreasing animal tissue. Therefore, although the degreasing treatment in the pretreatment step is omitted in FIG. 2, unnecessary lipids may be further removed by performing the degreasing operation as shown in FIG.
  • an animal biological tissue residue subjected to the alkali extraction step is at least 2 volumes, preferably 2 to 20 volumes of an alkaline solution (0.05 to 0.5 M, preferably D. 0.50 to 0.3 D soak in 3 M aqueous solution of sodium hydroxide), 90 to 105 ° C., preferably 95 to: LOO.
  • Water-soluble elastin is released by dissolving animal tissue residue by stirring at C for 20 to 240 minutes, preferably 40 to 120 minutes (step T5).
  • Alkaline solution In FIG. 2, other alkaline solutions may be used, in which the aqueous solution of sodium hydroxide is used.
  • one or more of sodium hydroxide, potassium hydroxide, calcium hydroxide and barium hydroxide the total amount of which is 0.05 mol per liter of solution, preferably 0.0 mol. It is desirable to use an alkaline solution U ,. If residual animal tissue remains, separate the remaining aqueous alkaline tissue solution from the alkaline solution containing the water-soluble elastin and the remaining undifferentiated animal tissue residue (step T6). Re-apply to the dissolution process (Step T7)
  • the temperature is allowed to stand by cooling, cooling to 25 ° C. or less, preferably 10 ° by ice cooling, etc. Lower it to C or lower (step T8), adjust to a pH near neutrality (step T9), and perform crystallization (step T10).
  • Means of dialysis ⁇ The method can be performed in the same manner as the first method.
  • the dialyzed adjusting solution performs phase separation by setting the temperature of the aqueous solution to 30.degree. C. (step T11), and the low molecular weight aqueous solution elastin is used. It is separated into the upper layer (equilibrated liquid phase) containing and the lower layer (coacerv phase) containing high molecular weight water-soluble elastin (step T12).
  • the step of recovering the low molecular weight aqueous solution elastin and the high molecular weight water soluble elastin can be carried out in the same manner as in the first method.
  • the protein content in the alkaline solution after collagen removal treatment is measured for each collagen removal treatment using a protein quantification method such as the burette method, the end point of the procedure. Can be determined.
  • a protein quantification method such as the burette method
  • a spectrophotometer for example, at a wavelength around 540 It may be taken as an end point when the concentration becomes lower than a predetermined value.
  • the treatment is performed to such an extent that the reddish purple can not be confirmed with the naked eye, it may be used as the end point of the immersion treatment.
  • the predetermined value can be determined by the desired purity of the water-soluble elastin. For example, when a 10-fold volume of an alkaline solution is added to the weight of a living animal tissue, a predetermined value in the case of obtaining water-soluble elastin of relatively high purity is, for example, 0
  • the predetermined value in the case of obtaining water soluble elastin of higher purity with lmg / mL can be, for example, 0.1 lmg / mL or less.
  • the term “end when the value is less than or equal to the predetermined value” includes the force at the time when the value is less than or equal to the predetermined value and the process is repeated to end the process.
  • the solubilization of insoluble elastin is repeated intermittently until insoluble elastin dissolves and disappears, so that the soluble gelatinous solution can be dissolved. It is possible to prevent shreds of water-soluble elastin dissolved in it. That is, after 20 to 120 minutes, preferably 40 to 80 minutes of immersion in the solubilizing solution, the soluble syrup is discontinued and the soluble syrup obtained by separating it from the insoluble elastin is continuously treated.
  • the water-soluble elastin dissolved in the solubilizing solution is separated into two layers by performing a phase separation operation, whereby the low molecular weight water-soluble elastin fraction of the upper layer (equilibrated liquid phase) and the lower layer Phase can be fractionated into high molecular weight water soluble elastin fractions. Since only a high molecular weight water-soluble elastin forms a coacervate phase by hydrophobic association between molecules and forms a coacervate phase, a high molecular weight water-soluble elastin can be efficiently obtained by obtaining a coacervate phase. It can be recovered.
  • the pH of the water-soluble elastin to 3 to 7, preferably pH 4 to 6, at the time of phase separation, it becomes near the isoelectric point of elastin, so that it becomes easier to form a core cell bed phase, Recovery of high molecular weight water soluble elastin can be increased.
  • insoluble elastin since insoluble elastin is actually removed from the reaction system, it is advantageous to be able to analyze the amino acid composition and the like of the removed insoluble elastin and to verify its purity.
  • insoluble elastin is stable and can be stored for a long time, and there is an advantage that the solubilization method can be selected by either acid treatment or alkali treatment.
  • the second method since insoluble elastin is not removed, the process is simple, and only by adjusting the concentration of the alkaline solution and the reaction time, highly pure water-soluble elastin can be obtained. Therefore, the latter is characterized in that water-soluble elastin can be obtained with a high yield.
  • the water-soluble elastin obtained by the first or second method has a low molecular weight (about 13 to about 10,000 molecular weight) water-soluble elastin and a high molecular weight (about a molecular weight of about 30 to 30,000) by phase separation. 3 to 300,000) Perform an operation to fractionate into water-soluble elastin. That is, when water-soluble elastin is heated to 30 ° C. to 50 ° C., it phase separates and becomes cloudy, and when left as it is, it separates into two layers.
  • the coacervation characteristics of low molecular weight water-soluble elastin and high molecular weight water-soluble elastin that is, the increase in turbidity with increasing temperature and the reversible property of returning turbidity with decreasing temperature
  • high molecular weight water-soluble elastin becomes cloudy when heated, and since the turbidity curve is reversible, it is expected that high molecular weight water-soluble elastin can be applied to cosmetics and medical materials.
  • low molecular weight water-soluble elastin is difficult to use in cosmetics and medical materials because it does not become cloudy upon heating. While low molecular weight water-soluble elastin is small in molecular weight size, it is considered to be suitable for food materials and medicines because it is advantageous in terms of digestion and absorption.
  • the collagen solution becomes cloudy when heated. It remains cloudy even if the temperature is lowered, and it does not return to its original clear state (irreversible).
  • the solution of water-soluble elastin becomes cloudy when heated and returns to the original transparent state (reversibility) when the temperature is lowered.
  • collagen is denatured when the heating temperature is extremely raised and it changes to gelatin which is different in nature from collagen, but there is also a difference that elastin remains elastin even if the heating temperature is extremely raised.
  • collagen and elastin can be applied to appropriate medical materials. It can also be used to verify the presence or absence of collagen contamination depending on whether the turbidity curve of the produced water-soluble elastin is reversible.
  • water-soluble elastin of the present invention 79 to 84% of the amino acids constituting elastin consist of proline, glycine, alanine and norrin, and 2 to 3% consist of aspartic acid and glutamic acid, 0.7.
  • To 1.3% consists of lysine, histidine, arginine, 0.2 to 0.4%
  • a low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000, which is also a smosin and isodesmosinka, can be used as a functional food because it is excellent in digestion and absorption.
  • Elastin about 30%
  • collagen about 18%) are the main components that make up blood vessels, although collagen has been widely used as a food material with a skin-refining effect, however, arteriosclerosis using elastin as a material Preventive 'Retardant functional food is still being developed.
  • the water-soluble elastin used in this report only differs in amino acid composition from the water-soluble elastin which has been evaluated to be highly pure so far (only 68% of proline, glycine, analanin and norin) Since desmosine and isodesmosine, which are amino acids unique to elastin, are not detected either, it is presumed that they are extremely low in purity or different from elastin! /.
  • the low molecular weight water-soluble elastin of the present invention suppresses the elevation of cholesterol, which is described later, the elevation of neutral fat, the elevation of LDL-cholesterol (bad cholesterol), and the decline of HDL-cholesterol (good cholesterol)
  • it has an action to improve blood lipid metabolism disorders such as suppression of rise in lipid peroxide, and hardening lesions on the surface of the lumen of blood vessels, and depression of vascular elastic function. It can be expected to be developed as an all-round functional food.
  • the low molecular weight water-soluble elastin of the present invention suppresses the increase of cholesterol, suppresses the increase of neutral fat, suppresses the increase of LDL-cholesterol (bad cholesterol), HDL-cholesterol (good cholesterol), which will be described later.
  • blood lipid metabolism such as suppression of blood loss reduction, rise of lipid peroxide, suppression of rise of oxidized LDL, action of suppressing thrombus formation, and action of suppressing hardening lesion (hardened plaque) on the lumen surface Of elastic function It has a physiological action such as a drop suppressing action.
  • the low molecular weight water-soluble elastin of the present invention is also developed as various therapeutic or preventive medicines containing it as an active ingredient, for example, medicines such as arteriosclerosis inhibitor, lipid metabolism disorder improving agent, thrombus formation inhibitor and the like. Can be expected.
  • the low molecular weight water-soluble elastin of the present invention is used as a food or medicament
  • metals useful for living bodies that contain it as an active ingredient such as magnesium, calcium, chromium, manganese, iron Alkali earth metals and transition metals such as conort, nickel, copper, aluminum and zinc may be used in combination. Depending on the metal used, a synergistic effect can be obtained.
  • the functional food is not particularly limited in its form, but low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000 as it is prepared as a food and drink as it is, various proteins, saccharides, fats
  • the composition may further contain a trace element, vitamins, etc., may be in the form of liquid, semi-liquid or solid, or may be added to general food and drink.
  • food is used in a sense that it widely includes health food, health supplements, food for specified health use, etc.
  • the functional food of the present invention can be expected to improve blood lipid metabolism abnormality, to suppress the hardening of the surface of the lumen of the blood vessel, and to suppress the reduction of the blood vessel elastic function, It can be provided as a food.
  • the medicament can be produced by mixing a low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000, which is an active ingredient, with a pharmaceutically acceptable additive.
  • the medicine of the present invention can be administered orally or parenterally.
  • Oral agents include granules, powders, tablets, pills, capsules, syrups, emulsions, suspensions.
  • Parenterals include injections and drops. These preparations can be formulated with a pharmaceutically acceptable carrier by means commonly used in the pharmaceutical field.
  • the intake of the functional food of the present invention is suitably 30 to 6, OOOmg, preferably 60 to 3, OOOmg in terms of elastin per adult per day.
  • OOOmg OOOmg in terms of elastin per adult per day.
  • the active ingredient of the present invention is orally administered as a medicine.
  • 0.5 to 100 mg / kg body weight preferably 1 to 50 mg / kg body weight, per adult.
  • the degreasing step may be performed a plurality of times, and a dilute alkaline solution treatment or an organic solvent treatment may be performed.
  • the soaking animal tissue was placed in a 10-fold volume of a 0.1 M aqueous solution of sodium hydroxide and stirred at 100 ° C. for 15 minutes to carry out a collagen removal treatment. Then, the animal tissue and the alkaline solution were separated to obtain pure insoluble elastin. For example, the total protein is quantified by the biuret method, and if the total amount of proteins contained in the alkaline solution is 0.1 mg / mL or less, collagen is removed. I judged. If collagen has not been removed, this operation may be performed several times.
  • the recovery rate of low molecular weight water-soluble elastin can be increased by setting the temperature of the aqueous solution to 30 to 40 ° C. When the temperature of the aqueous solution is set to 40 to 50 ° C., the recovery rate of high molecular weight water-soluble elastin Can improve
  • the recovery rate of high molecular weight water-soluble elastin can be increased by adjusting pH to pH 7 to pH 7, preferably pH 4 to pH 6, which is near the isoelectric point of water-soluble elastin.
  • the yield of low molecular weight water-soluble elastin is 2 to 4%, and the yield of high molecular weight water-soluble elastin is 1 to 2%, based on the calf ligament.
  • the upper layer fraction and the lower layer fraction after phase separation are subjected to SDS (sodium dodecyl sulfate) -PAGE (polyacrylamide gel electrophoresis) under non-reducing conditions, and the gel after electrophoresis is stained to obtain the stained band From the above, it was confirmed that the upper layer fraction is a low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000, and the lower layer fraction is a high molecular weight water-soluble elastin having a molecular weight of about 3 to 300,000.
  • SDS sodium dodecyl sulfate
  • PAGE polyacrylamide gel electrophoresis
  • the amino acid compositions of the low molecular weight water-soluble elastin and the high molecular weight water-soluble elastin were as shown in Table 1.
  • the amino acid composition in Table 1 shows the amino acid composition when the total number of amino acids is 1,000.
  • Low molecular weight indicates low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000
  • high molecular weight indicates high molecular weight water-soluble elastin having a molecular weight of about 3 to 300,000.
  • the content of histidine is about 0.5 to 0.5 per 1,000 amino acid residues. In Table 1, it is 0 by rounding off.
  • the animal body tissue uses the calf's ligamentum navy, and scraped off parts with low elastin content, such as attached fat and muscle meat, using a knife etc. to remove unnecessary parts, Then, the animal body tissue was shredded by homogenization using a homogenizer. Homogenized animal tissues were boiled for 1 hour in boiling water for defatting and then drained. If the degreasing is insufficient, the degreasing step may be carried out a plurality of times, or a dilute alkaline solution treatment or an organic solvent treatment may be carried out to improve the degreasing efficiency. If fat is also removed along with the removal of collagen and unwanted proteins in the next alkaline extraction step, the degreasing treatment here is omitted.
  • a volume of 10 times the weight (weight lg) of the weight of the homogenized and defatted animal tissue A 0.1M aqueous solution of sodium hydroxide (0.1 mL) was added to the solution and stirred at 100 ° C. for 15 minutes to extract and remove collagen and unwanted proteins other than elastin (alkali extraction step). . Then, the animal tissue residue and the alkaline solution were separated. The separated alkaline solution is used to quantify the total protein by, for example, the biuret method, and if the total amount of protein contained in the alkaline solution is 0.1 mg / mL or less, collagen and unwanted protein are eliminated. I judged that it was removed. Collagen and unwanted proteins are removed! / If this is the case, do this multiple times.
  • a 1 M aqueous solution of sodium hydroxide (solubilizing solution) was added, and an alkali dissolution step was performed at 100 ° C. for 60 minutes. Thereafter, the separation operation between the animal tissue residue and the alkaline solution was performed, and the alkaline solution containing the separated water-soluble elastin was cooled to 25 ° C. or less. At this time, in the case where the dynamic biological tissue remains, this alkali dissolution step may be performed multiple times.
  • the recovery rate of the low molecular weight water-soluble elastin can be increased, and if the temperature of the aqueous solution is set to 40 to 50 ° C., the high molecular weight water-soluble elastin is recovered. Rates can be increased.
  • the recovery rate of high molecular weight water-soluble elastin can be increased by adjusting to pH 3 to pH 7, preferably pH 4 to pH 6, which is near the isoelectric point of water-soluble elastin. By the operation of intensive phase separation, 50 to 70% of the low molecular weight fraction and 20 to 30% of the high molecular weight fraction can be recovered based on the water-soluble elastin.
  • the yield of low molecular weight water-soluble elastin is 4 to 12%, and the yield of high molecular weight water-soluble elastin is 2 to 5%, based on the calf ligament.
  • the obtained water-soluble elastin is used as a tissue culture substrate for regenerative medicine When used as a tissue culture, since tissue culture is often performed at about 37 ° C., it is desirable to efficiently recover high molecular weight water-soluble elastin that causes coacervation at 37 ° C. or less.
  • the upper layer fraction and the lower layer fraction after phase separation are subjected to SDS (sodium dodecyl sulfate) -PAGE (polyacrylamide gel electrophoresis) under non-reducing conditions, and the gel after electrophoresis is stained to obtain the stained band From the above, it was confirmed that the upper layer fraction is a low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000, and the lower layer fraction is a high molecular weight water-soluble elastin having a molecular weight of about 3 to 300,000.
  • SDS sodium dodecyl sulfate
  • PAGE polyacrylamide gel electrophoresis
  • the amino acid compositions of the low molecular weight water-soluble elastin and the high molecular weight water-soluble elastin were as shown in Table 2.
  • the amino acid composition in Table 2 shows the amino acid composition when the total number of amino acids is 1,000.
  • Low molecular weight indicates low molecular weight water-soluble elastin having a molecular weight of about 1 to 30,000
  • high molecular weight indicates high molecular weight water-soluble elastin having a molecular weight of about 3 to 300,000.
  • the content of histidine is about 0.5 to 0.5 per 1,000 amino acid residues.
  • rounding off is 0 in Table 2.
  • a water-soluble elastin was produced according to the method described in the preparation example of JP-A-60-258107. That is, the calf ligament was treated with sodium chloride, treated with tricloric acid, and then treated with hot water at 120 ° C. to obtain purified elastin. A lactic acid solution was added thereto, the solution was autoclaved, cooled, and then decomposed with the protein degrading enzyme pepsin to produce a water-soluble elastin having an average molecular weight of about 50,000.
  • the amino acid composition of the obtained water-soluble elastin was 77% in total of proline, glycine, analanin, and parin, 3.4% in total of aspartic acid and glutamic acid, and a total of 1. It was 5%, and both were different from the composition of the water-soluble elastin of the present invention.
  • the water-soluble elastin of the comparative example is presumed to be contaminated with collagen, in contrast to the fact that hydroxyproline was 15% and 7% of the example 1 or 2 of the present invention was 7%.
  • the turbidity start temperature was about 10 ° C. higher than that of Example 1 or 2. It was This seems to indicate that the comparative example is low in molecular weight and low in purity and purity. In addition, the yield as water-soluble elastin of Example 2 was 11% based on the defatted tissue, while that of the comparative example was only 3%.
  • the low molecular weight water-soluble elastin of the present invention has an effect of improving blood lipid metabolism disorders.
  • it is understood that it has potential as a functional food material having an arteriosclerosis inhibitory action, and as a medicine having an improvement in blood lipid metabolism abnormality and, in turn, an arteriosclerosis inhibiting action.
  • the average modulus of elasticity in the range was determined and used as Elastic Modulus in the control group receiving a normal diet, cholesterol group receiving a cholesterol diet, and cholesterol plus elastin combination group receiving a water-soluble elastin simultaneously with a cholesterol diet. It compared and examined. The results are as shown in FIG. 8. It can be seen that the administration of water-soluble elastin restored the decrease in the elastic function of the blood vessel.
  • FIG. 9 shows a photograph of the intimal surface on the blood flow side of the blood vessel.
  • atheromatous plaques thickening of the intima of the endothelium and deposition of lipids (cholesterol and the like) produce a scaly substance, and a raised state in which the intimal surface is covered with a fibrous coating.
  • the blood flow is impeded by increasing the size of the large protuberance, and in very thin blood vessels such as coronary arteries, occlusion of the blood vessels is observed, causing myocardial infarction). Appear white).
  • the concentration of lipids such as cholesterol in the blood increases, or platelets Then, the viscosity of the blood (blood viscosity) was measured because the blood viscosity was increased and dripping was observed. The results are shown in FIG. It can be seen that the blood viscosity rising with the administration of cholesterol is improved by the administration of water-soluble elastin.
  • a low molecular weight and high purity water soluble elastin and a high molecular weight and high purity water soluble elastin can be obtained.
  • the low molecular weight water-soluble elastin of the present invention is highly digestible and absorbable, it can be used as functional food and various medicines.
  • high molecular weight elastin is applied to scaffolds for tissue engineering for regenerative medicine, and since high molecular weight water-soluble elastin coacervate contains 60 to 70% water, it is suitable for moisturizing properties.
  • Application to a cosmetic base is conceivable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Obesity (AREA)
  • Peptides Or Proteins (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 高純度の水溶性エラスチンであって、それを構成するアミノ酸の79~84%がプロリン、グリシン、アラニン、バリンからなり、2~3%がアスパラギン酸とグルタミン酸からなり、0.7~1.3%がリジン、ヒスチジン、アルギニンからなり、0.2~0.4%がデスモシンとイソデスモシンからなる、分子量が約1~3万の低分子量水溶性エラスチンと、分子量が約3~30万の高分子量水溶性エラスチンが提供される。得られた低分子量水溶性エラスチンは、機能性食品あるいは医薬用途に利用できる。かかる高純度の水溶性エラスチンは、動物性生体組織にコラーゲン除去処理を行って純粋な不溶性エラスチンを得て、次いで、不溶性エラスチンを可溶化液によって断片化することで製造することができる。また、動物性生体組織から不溶性エラスチンを取り出すことなく、アルカリ液の濃度と反応時間を調節するだけで、簡便に製造することができる。

Description

水溶性エラスチンとその製造方法及びそれを含む食品と医薬 技術分野
[0001] 本発明は、水溶性エラスチン力 得られる高純度の低分子量水溶性エラスチンと高 分子量水溶性エラスチン、及びそれらの製造方法、並びに低分子量水溶性エラスチ ンの食品と医薬用途に関するものである。
背景技術
[0002] エラスチンは、動物、特に哺乳動物の皮膚の真皮、靭帯、腱、血管壁等の結合組 織の中に、コラーゲンと共に存在するタンパク質である。エラスチンは、通常、生体内 においては、 3次元の網目構造の不溶性のタンパク質として存在している。かかるェ ラスチンを、酸又はアルカリで加水分解したり、酵素で処理することによって、水溶性 エラスチンが得られることは広く知られている。そして、水溶性エラスチンは、水分を 豊富に保持する能力を有することから、化粧品、特に保湿剤として利用されている他 (例えば、特許文献 1〜3)、皮膚に弾力を与える等の美容効果があるとして、コラー ゲン等と共に健康食品としても利用されている(例えば、特許文献 4〜6)。更に、水 溶性エラスチンは、人工血管等の再生医療分野にお!ヽてもその利用が期待されて ヽ る(例えば、特許文献 7〜10)。
[0003] 特許文献 1:特開昭 60— 258107号公報
特許文献 2:特開昭 60 - 181005号公報
特許文献 3:特開 2002— 205913号公報
特許文献 4:特開平 6— 7092号公報
特許文献 5:特開 2005— 13123号公報
特許文献 6:特開 2005— 13124号公報
特許文献 7:特公平 6 - 30616号公報
特許文献 8:特開平 8— 33661号公報
特許文献 9:特開平 9 - 173361号公報
特許文献 10:国際公開第 2002Z96978号パンフレット [0004] 水溶性エラスチンを得る方法'手段は色々と提案されているが、適度の分子量を有 する高純度の水溶性エラスチンを得る方法は未だ十分なものではな 、。エラスチン は動物の生体組織から抽出されるが、この場合、通常、不要部分の除去や脱脂操作 等の前処理を施した動物性生体組織が用いられる。そして、前処理された組織を、 蟻酸ゃシユウ酸を含む所定温度の酸性液に溶解したり、或いは、酵素で処理するこ とによって、動物性生体組織に含まれている不溶性エラスチンを断片化し、水溶性ェ ラスチンを溶解した可溶化液が得られる。しカゝしながら、かかる方法では、水溶性エラ スチンが溶解した可溶ィ匕液中に、動物性生体組織に含まれるエラスチン以外のコラ 一ゲンやその他のタンパク質も溶解し、最終的に得られる水溶性エラスチンの純度が 低下するという問題があった。し力も、可溶ィ匕液に溶解した水溶性エラスチンは、可 溶化液の濃度が高かったり、また可溶ィ匕液に長時間溶解していることによって、水溶 性エラスチン分子が更に低分子量のポリペプチドへと細断化されてしまい、低温度帯
(例えば 35〜40°C)でのコアセルべーシヨン能を失ってしまう。そして、コアセルべ一 シヨン能を失ったエラスチンは、医用材料分野等の用途には適さなくなるという問題も めつに。
[0005] 精製した不溶性エラスチンを、熱シユウ酸を用いて抽出処理することによって、水溶 性の a エラスチンと β エラスチンが得られることが報告されている(非特許文献 1
) οしかし、非特許文献 1で報告されている α エラスチンの分子量は 70, 000で、 /3 エラスチンの分子量は 10, 000以下であり、以下に述べる本発明の高純度の水溶 性エラスチンとは異なっている。前記特許文献 1には、不溶性エラスチンをタンパク分 解酵素によって分解し、分子量 15, 000-300, 000の可溶性エラスチンを得たこと が開示されている。しかし、このエラスチンは、分子量の範囲が非常にブロードで、酵 素分解の断片等を含み純度の高いものとは考えられない。前記特許文献 7にも、不 溶性エラスチンをペプシン分解し、分子量が 8, 300〜640, 000の水溶性エラスチ ンを得たことが報告されている力 このもののアミノ酸組成 (特にプロリン、グリシン、ァ ラニン、パリン)から判断する限り、純度の高いものとは考えられない。また、前記特許 文献 10にも、不溶性エラスチンを熱シユウ酸で処理し、水溶性エラスチンを得たこと が報告されており、アミノ酸組成力 判断すると高純度のものであることが推定される 力 この文献では、生体適合性機能性材料を得るために、得られた水溶性エラスチ ンを架橋させている。なお、精製した不溶性エラスチンのアミノ酸組成は、本発明の 高純度の水溶性エラスチンのそれと一部重複しており、 80〜83%がプロリン、グリシ ン、ァラニン、パリンであり、 2〜3%がァスパラギン酸とグルタミン酸であり、 0. 7〜1.
0%がリジン、ヒスチジン、アルギニンであり、 0. 3〜0. 4%がデスモシンとイソデスモ シン力 なると報告されている(例えば、非特許文献 2)。
非特許文献 l : Biochimica et Biophysica Acta, 310 (1973) 481-486
非特許文献 2 nalytical Biochemistry, 64 (1975) 255-259
発明の開示
発明が解決しょうとする課題
[0006] 本発明の課題は、機能性食品や医薬品として利用できる低分子量で純度の高い 水溶性エラスチン、及びィ匕粧品や医療材料として利用できる高分子量で純度の高 、 水溶性エラスチンを提供することにある。また、本発明のもう一つの課題は、純度の 高い水溶性エラスチンを工業的に製造する方法を提供することにある。
課題を解決するための手段
[0007] 本発明のうち請求項 1記載の発明は、エラスチンを構成するアミノ酸の 79〜84%が プロリン、グリシン、ァラニン、ノ リンからなり、 2〜3%がァスパラギン酸とグルタミン酸 からなり、 0. 7〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデ スモシンとイソデスモシンカもなる、分子量が約 1〜3万の低分子量水溶性エラスチン である。なお、本発明においてァスパラギン酸の含量にはァスパラギンも含み、ダル タミン酸の含量にはグルタミンも含むものである。
[0008] 請求項 2記載の発明は、エラスチンを構成するアミノ酸の 79〜84%がプロリン、ダリ シン、ァラニン、ノ リンからなり、 2〜3%がァスパラギン酸とグルタミン酸力 なり、 0. 7 〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデスモシンとイソ デスモシンカもなる、分子量が約 3〜30万の高分子量水溶性エラスチンである。
[0009] 請求項 3記載の発明は、請求項 1と 2に記載の水溶性エラスチンの製造方法に係る ものである。即ち、動物性生体組織力も水溶性エラスチンを製造する方法において、 (1)動物性生体組織をコラーゲン除去処理することによって不溶性エラスチンを得る 工程、 (2)該不溶性エラスチンを可溶化液に溶解しエラスチン溶解可溶化液を得る 工程、(3)該エラスチン溶解可溶ィ匕液を相分離操作によって 2層に分離し、上層から 低分子量水溶性エラスチンを回収し、下層から高分子量水溶性エラスチンを回収す る工程力もなる水溶性エラスチンの製造方法である。
[0010] そして、請求項 8記載の発明は、請求項 1と 2に記載の水溶性エラスチンを製造す るための別な方法に関するものである。即ち、動物性生体組織から水溶性エラスチン を製造する方法において、(1)動物性生体組織を前処理する工程、(2)前処理され た動物性生体組織を、アルカリ性溶液中に浸漬し、動物性生体組織から抽出される コラーゲンやその他の不要タンパク質を含む溶液を除去するアルカリ抽出工程、 (3) 前記(2)の操作を繰り返した後に、動物性生体組織残渣を溶解することにより、遊離 した水溶性エラスチンを含む溶液を回収するアルカリ溶解工程、(4)該アルカリ溶解 工程で回収された水溶性エラスチンを含有する溶液を相分離操作によって 2層に分 離し、上層から低分子量水溶性エラスチンを回収し、下層から高分子量水溶性エラ スチンを回収する工程力もなる水溶性エラスチンの製造方法である。
[0011] 更に、請求項 12記載の発明は、エラスチンを構成するアミノ酸の 79〜84%がプロ リン、グリシン、ァラニン、ノ リンカもなり、 2〜3%がァスパラギン酸とグルタミン酸から なり、 0. 7〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデスモ シンとイソデスモシンカもなる、分子量が約 1〜3万の低分子量水溶性エラスチンを含 む機能性食品である。
[0012] そして、請求項 14記載の発明は、エラスチンを構成するアミノ酸の 79〜84%がプ 口リン、グリシン、ァラニン、ノ リンからなり、 2〜3%がァスパラギン酸とグルタミン酸か らなり、 0. 7〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデス モシンとイソデスモシンカもなる、分子量が約 1〜3万の低分子量水溶性エラスチンを 有効成分とする医薬である。
[0013] 請求項 14の医薬の特定の用途に関する発明として、請求項 16記載の発明は動脈 硬化抑制剤、請求項 17記載の発明は脂質代謝異常改善剤、請求項 18記載の発明 は血栓形成抑制剤である。
発明の効果 [0014] 本発明によると、分子量が約 1〜3万の低分子量で純度の高い水溶性エラスチンと 、分子量が約 3〜30万の高分子量で純度の高い水溶性エラスチンが提供される。そ して、本発明の低分子量の水溶性エラスチンは、消化吸収性が高いので、機能性食 品や医薬品として利用できる。また、高分子量の水溶性エラスチンは、化粧品や医療 材料として利用できる。
[0015] また、本発明によると、上記水溶性エラスチンの工業的に有利な製造方法が提供さ れる。請求項 3に記載された方法では、先ず、不溶性エラスチンを、動物性生体組織 力 コラーゲンを除去するコラーゲン除去処理を行って高純度の状態で生成させる。 即ち、先ず、動物性生体組織中に含まれるコラーゲンの除去に重点を置いた処理を 行うことによって、残りの動物性生体組織の成分の大部分を、水溶性エラスチン精製 時に夾雑物となるコラーゲンを含まな 、、高純度不溶性エラスチンとすることができる 。従って、その後の工程で、残りの動物性生体組織を可溶ィ匕液に浸漬しても、不溶 性エラスチンが断片化して水溶性エラスチンとなり可溶ィ匕液に遊離し溶解する一方 で、コラーゲンが溶出することは無いので、夾雑物が少なく純度の高い水溶性エラス チンを製造することができる。
[0016] また、もう一つの製造方法である請求項 8に記載された方法では、動物性生体組織 をアルカリ性溶液中に浸漬処理するアルカリ抽出工程とアルカリ溶解工程は、コラー ゲン除去処理と、コラーゲン以外の不要タンパク質の除去処理と、不溶性エラスチン の断片化 ·可溶ィ匕処理とを一括して行うものであり、動物性生体組織中の不溶性エラ スチンを精製することなぐ純度の高い水溶性エラスチンを回収することで、処理時間 の短縮を図ることができる。
図面の簡単な説明
[0017] [図 1]水溶性エラスチンの製造方法 (請求項 3の発明)を示したフロー図である。
[図 2]水溶性エラスチンの製造方法 (請求項 8の発明)を示したフロー図である。
[図 3]血清中の総コレステロールの変化を示す図である。
[図 4]LDL—コレステロールの変化を示す図である。
[図 5]HDL—コレステロールの変化を示す図である。
[図 6]トリグリセリドの変化を示す図である。 [図 7]過酸ィ匕脂質の変化を示す図である。
[図 8]血管の弾性係数の変化を示す図である。
[図 9]血管の血流側の内膜表面の状態を示す図である。
[図 10]血小板凝集抑制作用を示す図である。
[図 11]血液中の粘性を示す図である。
発明を実施するための最良の形態
[0018] 本発明の水溶性エラスチンは、エラスチンを構成するアミノ酸の 79〜84%がプロリ ン、グリシン、ァラニン、ノ リンからなり、 2〜3%がァスパラギン酸とグルタミン酸力 な り、 0. 7〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデスモシ ンとイソデスモシンカもなる、分子量が約 1〜3万の低分子量水溶性エラスチンと、分 子量が約 3〜30万の高分子量水溶性エラスチンである。精製した不溶性エラスチン のアミノ酸組成は、 80〜83%力 Sプロリン、グリシン、ァラニン、パリンであり、 2〜3%が ァスパラギン酸とグルタミン酸であり、 0. 7〜1. 0%がリジン、ヒスチジン、アルギニン であり、 0. 3〜0. 4%がデスモシンとイソデスモシンであるとされており、本発明の水 溶性エラスチンのアミノ酸組成も殆どこれに近 、ものであるから、高純度のものである と言える。但し、エラスチンのアミノ酸分析を行うとき、通常、 6N塩酸で 48時間以上カロ 水分解するが、そのため Asnは Aspに変換し、 Ginは Gluに変換するので、 Aspの値は Asp+Asnの合計として、また、 Gluの値は Glu + Ginの合計として表される。本発明の アミノ酸組成においても、ァスパラギン酸の含量には元々のァスパラギンも含み、ダル タミン酸の含量には元々のグルタミンも含むものとして定義されて ヽる。
[0019] 本発明の高純度の水溶性エラスチンは、以下の二つの方法で製造することができ る。第 1の方法は、請求項 3に記載された方法である。即ち、動物性生体組織から水 溶性エラスチンを製造する方法において、(1)動物性生体組織をコラーゲン除去処 理することによって不溶性エラスチンを得る工程、 (2)該不溶性エラスチンを可溶ィ匕 液に溶解しエラスチン溶解可溶化液を得る工程、 (3)該エラスチン溶解可溶化液を 相分離操作によって 2層に分離し、上層から低分子量水溶性エラスチンを回収し、下 層から高分子量水溶性エラスチンを回収する工程力 なる方法である。
[0020] 動物性生体組織としては、特に制限はな 、が、エラスチンの含量が多 、点で、豚、 馬、牛、羊などの哺乳動物力 得られた項靱帯や大動脈血管を使用することが好ま しい。動物性生体組織は、先ず、ホモジナイザーを用いてホモジナイズするのが良い 。ホモジナイズはミキサー、ミートチョッパーなど動物性生体組織を細断できれば良く
、好ましくは 3ミリメートル角以下、さらに好ましくはペースト状に細断できる器具を用 いると良い。細断した動物性生体組織の粒が小さいほど、コラーゲンやその他の不 要なタンパク質の除去効率を上げることができるので好まし 、。ホモジナイズした動物 性生体組織は、例えば、熱水又は熱希薄アルカリ水溶液で煮沸するか、もしくは有 機溶媒で処理することによって脱脂処理を行っても良い。
[0021] 前記第 1の方法の工程(1)に係る、動物性生体組織力 コラーゲンを除去処理し不 溶性エラスチンを得る方法としては、アルカリ性溶液でコラーゲンを除去処理するの が好ましい。特に、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム及び水酸ィ匕 ノ リウムカもなる群力も選ばれた 1又は 2以上のアルカリィ匕合物を、溶液 1L当たり 0. 05〜0. 5mol、好ましくは 0. 05〜0. 3mol、更に好ましくは 0. 05〜0. 15mol含有す るアルカリ性溶液中に、動物性生体組織を 90〜105°C、好ましくは 95〜100°Cで 10 〜20分間浸漬して行う処理方法が好ま ヽ (請求項 4)。
[0022] 不溶性エラスチンは酸性溶液の他にアルカリ性溶液によっても断片化され、遊離し 、溶解可能な水溶性エラスチンとなる力 上記コラーゲン除去処理操作でのアルカリ 性溶液の濃度、温度、処理時間の各条件は、不溶性エラスチンが断片化して水溶性 エラスチンとなり遊離して溶解するよりも、コラーゲンが先行して溶出する条件である 。従って、前記条件下での処理によって、動物性生体組織中のコラーゲンをアルカリ 性溶液中に効率よく溶出し除去することができ、その結果として、純度の高い不溶性 エラスチンを得ることができる。なお、コラーゲン除去処理における本アルカリ性溶液 は、コラーゲンの抽出除去と共に、コラーゲン以外の不要なタンパク質を除去する効 果もある。
[0023] かかるコラーゲン除去処理は、前記アルカリ性溶液カゝら不溶性エラスチンを濾別し た濾液中に溶出したタンパク質濃度が、所定の値以下となるまで、複数回繰り返し行 つても良い。前記条件下の処理であれば、溶出するタンパク質濃度 (すなわち溶出し たコラーゲン等の濃度)が所定濃度になるまでコラーゲン除去処理を繰り返し行って も、不溶性エラスチンに対する断片化は生じにくい。従って、繰り返しコラーゲンの除 去処理を行うことで、コラーゲン除去処理を 1回だけ行った場合よりも更に精製度の 高 、水溶性エラスチンを製造することができる。
[0024] また、第 1の方法においては、前記コラーゲン除去処理前に、塩ィ匕ナトリウム、塩ィ匕 カリウム、塩ィ匕カルシウム及び塩化バリウム力 なる群力 選ばれた 1又は 2以上の塩 を、溶液 1L当たり 0. l〜2mol、好ましくは 0. 8〜1. 2mol含有する塩溶液中に、動物 性生体組織を 2〜 10°Cで 12〜48時間、好ましくは 20〜30時間浸漬する浸漬処理 を行っても良い(請求項 5)。力かる塩溶液の処理は複数回行っても良ぐこの処理に よって、コラーゲン以外の不要なタンパク質を予め除去することができる。
[0025] 第 1の方法の工程 (2)に係る、前記工程(1)で得られた不溶性エラスチンを可溶ィ匕 液に溶解しエラスチン溶解可溶ィ匕液を得る方法に関しては、可溶液として、酸性溶 液を用いる場合とアルカリ性溶液を用いる場合がある。
[0026] 酸性溶液として好ま ヽのは、シユウ酸、蟻酸、酢酸、コハク酸、リンゴ酸、酒石酸、 クェン酸、安息香酸、ベタイン、ジフルォロ酢酸、トリフルォロ酢酸、リン酸、スルフアミ ン酸、過塩素酸及びトリクロ口酢酸からなる群から選ばれた 1又は 2以上の酸化合物 を、溶液 1L当たり 0. 1〜0. 5mol、好ましくは 0. 2〜0. 3mol含み、且つ、液温が 90 〜105°C、好ましくは 95〜100°Cでの酸性溶液である(請求項 6)。かかる条件は、不 溶性エラスチン力 水溶性エラスチンを製造するのに適当な条件である一方、可溶 化液に遊離'溶解した水溶性エラスチン分子を細断ィ匕しない適切な条件でもあるの で、十分な分子量を持った水溶性エラスチンを製造することができる。可溶ィ匕のため の処理時間は 20〜 120分間、好ましくは 40〜80分間である。不溶性エラスチンが 残存していれば、新たに酸性溶液に不溶性エラスチンを再度浸漬させて、不溶性ェ ラスチンが完全に溶解するまでこの酸性溶液による処理を繰り返す。
[0027] アルカリ性溶液として好ましいのは、水酸化ナトリウム、水酸ィ匕カリウム、水酸化カル シゥム、水酸化バリウム力もなる群力も選ばれた 1又は 2以上のアルカリィ匕合物を、溶 液 1L当たり 0. 05〜0. 5mol、好ましくは 0. 05〜0. 3mol含み、且つ、液温力 90〜1 05°C、好ましくは 95〜100°Cのアルカリ性溶液である(請求項 7)。かかる条件は、不 溶性エラスチン力 水溶性エラスチンを製造するのに適当な条件である一方、可溶 化液に遊離'溶解した水溶性エラスチン分子を細断ィ匕しない適切な条件でもあるの で、十分な分子量を持った水溶性エラスチンを製造することができる。可溶ィ匕のため の処理時間は 20〜 120分間、好ましくは 40〜80分間である。不溶性エラスチンが 残存していれば、新たにアルカリ性溶液に不溶性エラスチンを再度浸漬させて、不 溶性エラスチンが完全に溶解するまでこのアルカリ性溶液による処理を繰り返す。ァ ルカリ性溶液を可溶化液とする場合は、コラーゲン除去処理で用いたアルカリ性溶液 を引き続いて可溶ィ匕液として用いることもでき、その場合には製造コストの低減を図る ことができる。
[0028] 第 1の方法の工程 (3)に係る、前記工程 (2)で得られたエラスチン溶解可溶ィ匕液を 相分離し、分離した 2層をそれぞれ回収する方法において、分離した上層からは低 分子量の水溶性エラスチンが回収され、分離した下層からは高分子量の水溶性エラ スチンが回収される。得られる水溶性エラスチンの性状については、後で詳しく説明 する。
[0029] 第 1の方法によって水溶性エラスチンを製造する場合のフロー図を、図 1に示した。
以下図 1に従って、説明する。なお、図 1における処理条件等は、本発明の一例であ る。
[0030] 動物性生体組織として牛の項靱帯を用い、付着して!/ヽる脂肪や筋肉などエラスチ ン含量の低い部分を刃物などを用いて削ぎ落とし (ステップ S1)、動物性生体組織を ホモジナイザーを用いてホモジナイズする(ステップ S2)。ホモジナイズはミキサー、ミ ートチョッパーなど動物性生体組織を細断できれば良ぐ好ましくは 3ミリメートル角以 下、更に好ましくはペースト状に細断できる器具を用いると良い。細断した動物性生 体組織の粒が小さいほど、不要なタンパク質の除去効率を上げることができる。
[0031] ホモジナイズした動物性生体組織を、動物性生体組織重量の 2倍容量 (重量 lg当 たり 2mL)以上、好ましくは 2〜20倍容量の沸騰水中(90°C〜105°C、好ましくは 95 〜100°C)に入れて 30〜120分間、好ましくは 60〜120分間脱脂のための煮沸を行 い (ステップ S3)、水切りを行う(ステップ S4)。なお、ここで言う水切りは、具体的に水 のみを意図したものではなぐ動物性生体組織に付着した液体を切る意味である。本 脱脂時間は、 30分未満であれば十分に脱脂できず、 120分以上脱脂を行っても更 なる脱脂効果を期待することができない。また、脱脂は沸騰水 1Lに対しての総量力 SO . 01mol〜0. lmolとなるように、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム 、水酸化バリウムの少なくともいずれか 1つを添加することで、さらに脱脂効率を高め ることができ、脱脂時間も 10〜60分間に短縮することができる。また、沸騰水による 方法に限らず、アセトン、エーテル類、へキサン、ブタノール、クロ口ホルム、メタノー ルなど一般に脂質抽出を目的として使用される有機溶媒やこれらの混合液を用いて 脱脂操作としても良い。
[0032] また、水切りは動物性生体組織が流失しなければ、 目の細か!/、網目を備えたざる のようなもので水切りを行っても良ぐ遠心力による水切りを行っても良い。さらに、水 切りした動物性生体組織をアセトンやエタノールなどに浸漬して回収し、動物性生体 組織に浸透したアセトンやエタノールなどを蒸発させることで、動物性生体組織の水 分を脱水できると共に、更なる脱脂を行うこともできる。
[0033] 次に、容器に水切りした動物性生体組織を入れ、動物性生体組織重量に対して 2 倍容量以上、好ましくは 2〜20倍容量の塩溶液(0. 1〜2M、好ましくは 0. 8〜1. 2 M塩ィ匕ナトリウム水溶液)をカ卩えて 2〜10°C条件下で 12〜48時間、好ましくは 20〜 30時間攪拌することで浸漬処理を行う(ステップ S5)。力かる浸漬処理によって、コラ 一ゲン以外の不要なタンパク質が予め除去できる。
[0034] ここで、塩溶液の量は動物性生体組織重量の 2倍容量を下回ると、不要タンパク質 の抽出効率が悪ぐ 20倍容量を超えると取り扱いにくいので、動物性生体組織重量 の 2〜20倍容量で浸漬処理を行うことが望ましい。また、浸漬処理温度は、 2°Cを下 回ると氷結する恐れがあり、 10°Cを超えると微生物の繁殖が見られる。 1回の浸漬処 理時間は、 12時間以下では不要タンパク質の抽出が不十分で、 48時間を越えること は不必要である。
[0035] また、浸漬処理に用いる塩溶液は、図 1では塩ィ匕ナトリウム水溶液を用いているが、 塩ィ匕ナトリウム、塩ィ匕カリウム、塩ィ匕カルシウム、塩化バリウムの少なくともいずれか一 つを含む塩溶液であって、この塩溶液中に添加した塩ィ匕ナトリウム、塩ィ匕カリウム、塩 化カルシウム、塩化バリウムの総量を 1L当たり 0. l〜2mol、好ましくは 0. 8〜1. 2mo 1で 2〜10°Cとした塩溶液を用いることが望まし!/、。 [0036] 動物性生体組織重量に対して、例えば、 10倍容量の 1M塩ィ匕ナトリウム水溶液を 4 °Cで浸漬処理を 24時間行った後に、動物性生体組織と塩溶液とを分離し、分離した 塩溶液を例えばビューレット法にて総タンパク質の定量を行う (ステップ S6)。塩溶液 中に含まれる総タンパク重量が 0. Img/mLを超えていれば、動物性生体組織中には 更に除去可能な不要タンパク質が存在すると判断して浸漬処理を再度行 、、塩溶液 中に含まれる総タンパク重量が 0. Img/mL以下であれば、不要タンパク質は除かれ たと判断して次のステップ S7に操作を移す。なお、力かる浸漬処理は、行っても行わ なくても良ぐあるいは複数回行ってもよいが、一般的に、回数多いほど不要なタンパ ク質を除去することができ、不溶性エラスチン含量の高 、動物性生体組織を得ること ができる。
[0037] 次に、浸漬処理を経た動物性生体組織を組織重量に対して 2倍容量以上、好まし くは 2〜20倍容量のアルカリ性溶液(0. 05〜0. 5M、好ましくは 0. 05〜0. 3M、更 に好ましくは 0. 05〜0. 15M水酸ィ匕ナ卜リウム水溶液)に人れ、 90〜105oC、好まし くは 95〜100°Cで 10〜20分間攪拌しコラーゲン除去処理を行う(ステップ S7)。ここ で、アルカリ性溶液の量は動物性生体組織重量の 2倍容量を下回ると、コラーゲンの 抽出効率が悪くなり、 20倍容量を超えると取り扱いにくいので、動物性生体組織重 量の 2〜20倍容量でコラーゲン除去処理を行うことが望ましい。コラーゲン除去処理 の時間は、 10分未満ではコラーゲンの除去効率が悪ぐまた 20分を超えるとエラス チンが分解を受けるので 10〜20分間で行うことが望ましい。
[0038] アルカリ性溶液としては、図 1では水酸ィ匕ナトリウム水溶液を用いている力 水酸ィ匕 ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウム、水酸化バリウムの少なくともいずれか 一つを含むアルカリ性溶液であって、このアルカリ性溶液中に添加した水酸ィ匕ナトリ ゥム、水酸化カリウム、水酸化カルシウム、水酸化バリウムの総量を 1L当たり 0. 05〜 0. 5mol、好ましくは 0. 05〜0. 3mol、更に好ましくは 0. 05〜0. 15molとしたァノレ力 リ性溶液を用いても良い。
[0039] 動物性生体組織重量に対して、例えば、 10倍容量の 0. 1M水酸ィ匕ナトリウム水溶 液を 100°Cとしてコラーゲン除去処理を 15分間行った後に、動物性生体組織とアル カリ性溶液とを分離し、分離したアルカリ性溶液を、例えば、ビューレット法にて総タン パク質の定量を行う(ステップ S8)。アルカリ性溶液中に含まれる総タンパク質量が、 例えば 0. lmg/mLを超えていれば、動物性生体組織中には更に除去可能なコラー ゲンが存在すると判断してコラーゲン除去処理を再度行 、、アルカリ性溶液中に含ま れる総タンパク質量が 0. lmg/mL以下であれば、コラーゲンは除かれたと判断してコ ラーゲン除去処理を終了し、高純度の不溶性エラスチンを得る。
[0040] 次に、不溶性エラスチンに、重量に対して 2倍容量以上、好ましくは 2〜20倍容量 の可溶化液をカ卩えて、 90〜105°C、好ましくは 95〜100°Cで 20〜120分間、望まし くは 40〜80分間攪拌することで不溶性エラスチンを断片化し、可溶ィ匕液に水溶性ェ ラスチンとして遊離させて溶解する (ステップ S9)。ここで用いる可溶ィ匕液は、図 1で はシユウ酸を用いている力 他の酸性溶液であっても良ぐまた、アルカリ性溶液であ つても良い。
[0041] 酸性溶液としては、例えば、シユウ酸、蟻酸、酢酸、コハク酸、リンゴ酸、酒石酸、ク ェン酸、安息香酸、ベタイン、ジフルォロ酢酸、トリフルォロ酢酸、リン酸、スルファミン 酸、過塩素酸、トリクロ口酢酸の少なくともいずれか一つを含み、かつ、これらの酸の 総量を 1L当たり 0. 1〜0. 5mol、好ましくは 0. 2〜0. 3molとした酸性溶液を用いるこ とがでさる。
[0042] また、アルカリ性溶液としては、例えば、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕 カルシウム、水酸化バリウムの少なくともいずれか一つを含むアルカリ性溶液であつ て、このアルカリ性溶液中に添加した水酸ィ匕ナトリウム、水酸ィ匕カリウム、水酸化カル シゥム、水酸ィ匕ノ リウムの総量を 1L当たり 0. 05〜0. 5mol、好ましくは 0. 05〜0. 3 molとしたアルカリ性溶液を用いることができる。
[0043] 動物性生体組織重量に対して、例えば、 10倍容量の 0. 25Mシユウ酸水溶液を 10 0°Cとした可溶ィ匕液に 60分間浸漬させた後に、不溶性エラスチンと可溶ィ匕液とを分 離し (ステップ S 10)、分離した可溶ィ匕液を放置冷却や水冷却等によって 25°C以下、 好ましくは氷冷等によって 10°C以下とする (ステップ Sl l)。即ち、分離した可溶化液 を 25°C以下、好ましくは氷冷等によって 10°C以下とすることで、可溶化液の反応性 を低下させ、可溶ィ匕液中に遊離して溶解した水溶性エラスチンの細断ィ匕を防ぐことが できる。また、前記分離の際に不溶性エラスチンが残存していれば、新たな可溶化液 に不溶性エラスチンを再度浸漬させて、不溶性エラスチンの可溶ィ匕を行う(ステップ S 12)。この可溶ィ匕液による処理の繰返しは、不溶性エラスチンがほぼ完全に溶解する まで行う。
[0044] 次に、水溶性エラスチンが溶解している可溶化液の pHを 5〜7、好ましくは pH6〜 7に調整して可溶化液の透析を行う(ステップ S 13)。水溶性エラスチンが遊離して溶 解した可溶化液を、半透膜で形成した袋体に入れて密封した後に、 4〜10°Cの条件 下で水に対して透析を行うことによって、水溶性エラスチンは袋体内に留めておきな がら、可溶ィ匕液に含まれている成分を半透膜外部に溶出させて、水溶性エラスチン の精製を行う。なお、透析を行うにあたっては、半透膜を用いる方法に限らず、水溶 性エラスチン分子が回収可能な状態で、可溶化液中の他の成分や PH調整時に生 成した塩を除去できる方法であれば、どの様な方法であっても良い。 24時間経過後 、透析に用いた水を捨て、新たな水に対して 4〜10°Cで再度 24時間透析を行い、こ れを 4回以上繰り返すのが好ましい。
[0045] 透析した水溶性エラスチンは、水溶液の温度を 30〜50°Cとすることによって、相分 離を行 、 (ステップ S14)、低分子量水溶液エラスチンを含有する上層(平衡液相)と 高分子量水溶性エラスチンを含有する下層(コアセルべート相)に分離する (ステップ S15)。特に、得られた水溶性エラスチンを再生医療用の組織培養基材として利用す る場合は、前記組織培養は約 37°Cで行うことが多いため、 37°C以下でコアセルべ一 シヨンを起こす高分子量水溶性エラスチンを効率よく回収することが望ましい。なお、 コアセルペート相は、エラスチン分子同士が分子間で疎水的に会合して分子集合す ることによって生じるものであることから高分子ほどコアセルべート相に凝集される。そ のため高分子量水溶性エラスチンが効率よくコアセルべート相から回収できる。また 、相分離は、エラスチンが水溶性の状態であれば行うことができるが、望ましくは前記 透析後の pHを pH3〜pH7に調整後、さらに望ましくは、 pHを水溶性エラスチンの等 電点付近の pH4〜pH6に調整後に行うことで、効率よく高分子量の水溶性エラスチ ンを得ることができる。
[0046] 上記コアセルべート相からは、本発明の高分子量の水溶性エラスチンが回収され、 それと分離した上層(平衡液相)からは、本発明の低分子量の水溶性エラスチンが回 収される。
[0047] 本発明の高純度の水溶性エラスチンを製造するための第 2の方法は、請求項 8に 記載された方法である。即ち、動物性生体組織力ゝら水溶性エラスチンを製造する方 法において、(1)動物性生体組織を前処理する工程、(2)前処理された動物性生体 組織を、アルカリ性溶液中に浸漬し、動物性生体組織力ゝら抽出されるコラーゲンやそ の他の不要タンパク質を含む溶液を除去するアルカリ抽出工程、 (3)前記(2)の操 作を繰り返した後に、動物性生体組織残渣を溶解することにより、遊離した水溶性ェ ラスチンを含む溶液を回収するアルカリ溶解工程、(4)該アルカリ溶解工程で回収さ れた水溶性エラスチンを含有する溶液を相分離操作によって 2層に分離し、上層から 低分子量水溶性エラスチンを回収し、下層から高分子量水溶性エラスチンを回収す る工程力もなる水溶性エラスチンの製造方法である。
[0048] 前記第 2の方法の工程(1)に係る、動物性生体組織を前処理する方法としては、動 物性生体組織の不要部分の除去処理、動物性生体組織の細断処理、動物性生体 組織の脱脂処理があり、これらの処理のうち少なくとも一つを行う必要がある(請求項 11)。
[0049] 前記第 2の方法の工程 (2)〖こ係るアルカリ抽出工程では、前処理された動物性生 体組織を、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム及び水酸化バリウム 力もなる群力も選ばれた 1又は 2以上のアルカリ化合物を、溶液 1L当たり 0. 05〜0. 5mol、好ましくは 0. 05〜0. 3mol、更に好ましくは 0. 05〜0. 15mol含有するァノレ力 リ性溶液中に、 90〜105°C、好ましくは 95〜100°Cで 10〜20分間浸漬するのが好 ましい (請求項 9)。そして、動物性生体組織力ゝら抽出される溶液は除去する。かかる 処理によって、コラーゲンやその他の不要タンパク質が除去される。
[0050] 次いで、前記第 2の方法の工程(3)に係るアルカリ溶解工程では、前記工程(2)の 操作を繰り返した後に、残存する動物性生体組織残渣を溶解し、その溶解液を回収 する。この工程(3)では、残存する動物性生体組織残渣を、水酸化ナトリウム、水酸 化カリウム、水酸化カルシウム及び水酸化バリウムからなる群から選ばれた 1又は 2以 上のァノレ力リイ匕合物を、溶液 1L当たり 0. 05〜0. 5mol、好ましくは 0. 05〜0. 3mol 含有するアルカリ性溶液 (前記工程 (2)で用いる濃度より高濃度のアルカリ性溶液) 中に、 90〜105。C、好ましくは 95〜100。Cで 20〜240分間、好ましくは 40〜120分 間 (前記工程 (2)で処理する時間よりも長!、処理時間)浸潰させて溶解する (請求項 10)。動物性生体組織残渣が残存していれば、新たにアルカリ性溶液に動物性生体 組織残渣を再度浸漬させて、動物性生体組織残渣が完全に溶解するまでこのアル カリ性溶液による処理を繰り返す。
[0051] 前記条件下でのアルカリ性溶液によるコラーゲンやその他の不要タンパク質の溶出 は、不溶性エラスチンの断片化に先んじて行われることから、前記第 2の方法の(2) のアルカリ抽出工程では、動物性生体組織力 の抽出を繰り返す毎にコラーゲンを 含む不要なタンパク質の溶出量が減り、コラーゲン等のタンパク質濃度が指数関数 的に漸次希薄な溶液となる。次いで、(3)のアルカリ溶解工程では、残存する動物性 生体組織残渣を溶解することにより、水溶性エラスチンがアルカリ性溶液中に遊離し て溶解してくる。この工程(2)及び(3)の方法では、アルカリ性溶液の濃度と処理時 間を変えることにより、コラーゲンを含む不要なタンパク質の除去力も水溶性エラスチ ンを回収するまでの間を、断続的かつ一連の作業とすることができるので、短時間で 水溶性エラスチンを製造することができる。
[0052] 次いで、前記第 2の方法の工程 (4)においては、前記アルカリ溶解工程(3)で回収 されたエラスチンを含有する溶液を相分離し、分離した上層からは低分子量の水溶 性エラスチンが回収される。また、分離した下層からは高分子量の水溶性エラスチン が回収される。かかる回収工程は、前記第 1の方法の場合と同様に行うことができる。
[0053] 第 2の方法によって水溶性エラスチンを製造する場合のフロー図を、図 2に示した。
以下図 2に従って、説明する。この方法に従うと、動物性生体組織から水溶性エラス チンを短時間で製造することができる。なお、図 2における処理条件等は、本発明の 一例である。
[0054] 前処理工程として、動物性生体組織は牛の項靱帯を用い、付着して!/ヽる脂肪や筋 肉などエラスチン含量の低い部分を、刃物などを用いて削ぎ落とすことで不要部分の 除去処理を行い (ステップ T1)、第 1の方法の場合と同様に、動物性生体組織をホモ ジナイザーを用いてホモジナイズすることで細断処理を行う(ステップ T2)。かかる前 処理工程は前記第 1の方法の場合と同様に行うことができる。 [0055] 次に、動物性生体組織を、組織重量に対して 2倍容量以上、好ましくは 2〜20倍容 量のァノレカリ'性溶液(0. 05〜0. 5M、好ましく ίま 0. 05〜0. 3Μ、更に好ましく ίま 0. 05〜0. 15M水酸化ナトリウム水溶液)に浸漬して、 90〜105°C、好ましくは 95〜: LO 0°Cで 10〜20分間攪拌してアルカリ抽出工程を行う (ステップ T3)。その後、動物性 生体組織残渣とアルカリ性溶液とを分離し、分離したアルカリ性溶液を、例えばビュ 一レット法にて総タンパク質の定量を行う (ステップ Τ4)。アルカリ性溶液中に含まれ る総タンパク質量力 例えば 0. Img/mLを超えていれば、動物性生体組織中には更 に除去可能なコラーゲンやその他の不要タンパク質が存在すると判断してコラーゲン などの除去処理を再度行い、アルカリ性溶液中に含まれる総タンパク質量が 0. lmg /mL以下であれば、コラーゲンやその他の不要タンパク質は除かれたと判断してコラ 一ゲンなどの除去処理を終了する。
[0056] ここで、アルカリ性溶液の量は動物性生体組織重量の 2倍容量を下回ると、コラー ゲンや不要なタンパク質の抽出効率が悪くなり、 20倍容量を超えると取り扱いにくい ので、動物性生体組織重量の 2〜20倍容量が望ましい。浸漬時間は、 10分未満で はコラーゲンやその他の不要タンパク質の除去効率が悪ぐまた 20分を超えるとエラ スチンまで分解を受けて抽出されてしまうので 10〜20分間で行うことが望ましい。
[0057] アルカリ性溶液としては、図 2では水酸ィ匕ナトリウム水溶液を用いている力 他のァ ルカリ性溶液を用いても良い。特に、水酸化ナトリウム、水酸ィ匕カリウム、水酸化カル シゥム、水酸化バリウムの 1又は 2以上を、総量を 1L当たり 0. 05-0. 5mol、好ましく は 0. 05〜0. 3mol、更に好ましくは 0. 05〜0. 15molとしたアルカリ性溶液を用いる ことが望ましい。アルカリ抽出工程は、動物性生体組織から脱脂する効果も有する。 従って、図 2では、前処理工程での脱脂処理を省略しているが、図 1のごとく脱脂操 作を行うことによって、更に不要な脂質を除去しても良い。
[0058] 次に、アルカリ抽出工程を経た動物性生体組織残渣を組織重量に対して、 2倍容 量以上、好ましくは 2〜20倍容量のアルカリ性溶液(0. 05-0. 5M、好ましくは 0. 0 5〜0. 3M水酸ィ匕ナ卜リウム水溶液)に浸清し、 90〜105oC、好ましくは 95〜: LOO。C で 20〜240分間、好ましくは 40〜 120分間撹拌することで動物性生体組織残渣を 溶解することにより水溶性エラスチンを遊離させる (ステップ T5)。アルカリ性溶液とし ては、図 2では水酸ィ匕ナトリウム水溶液を用いている力 他のアルカリ性溶液を用い ても良い。特に、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕カルシウム、水酸化バリウ ムの 1又は 2以上を、総量を溶液 1L当たり 0. 05 0. 5mol、好ましくは 0. 05 0. 3 molとしたアルカリ性溶液を用いることが望ま U、。動物性生体組織残渣が残存する 場合、水溶性エラスチンを含むアルカリ性溶液と溶解しなカゝつた動物性生体組織残 渣との分離操作を行い (ステップ T6)、残存の動物性生体組織残渣をアルカリ溶解 工程に再度供する (ステップ T7)
[0059] 次に、分離されたアルカリ性溶液中に含まれるタンパク質の多くは水溶性エラスチ ンであるため、温度を放置冷却や水冷却等によって 25°C以下、好ましくは氷冷等に よって 10°C以下に下げて (ステップ T8)、中性付近の pHに調整 (ステップ T9)して透 析 (ステップ T10)する。透析の手段 ·方法は第 1の方法の場合と同様に行うことがで きる。
[0060] その後も、第 1の方法の場合と同様に、透析した調整液は、水溶液の温度を 30 5 0°Cとすることによって、相分離を行い (ステップ T11)、低分子量水溶液エラスチンを 含有する上層(平衡液相)と高分子量水溶性エラスチンを含有する下層(コアセルべ ート相)に分離する (ステップ T12)。かかる低分子量水溶液エラスチン及び高分子量 水溶性エラスチンの回収工程は前記第 1の方法の場合と同様に行うことができる。
[0061] 本発明においては、例えば、コラーゲン除去処理後のアルカリ性溶液中のタンパク 質含量は、ビューレット法などのタンパク質定量法を用いて、コラーゲン除去処理毎 に測定することで、操作の終了点を決定することができる。ビューレット法では、アル カリ溶液中に溶出した不要なタンパク質やコラーゲン等によって赤紫色を呈するため 、望ましくは分光光度計にて、例えば、 540 付近の波長で測定して定量し、溶液 中のタンパク質濃度が所定値以下となったところで終了点とすれば良い。あるいは、 簡易的には、肉眼で赤紫色を確認できない程度に処理が行われていれば、浸漬処 理の終了点としても良い。
[0062] なお、ここで所定値は、所望する水溶性エラスチンの純度によって決めることができ る。動物性生体組織重量に対して、例えば、 10倍容量のアルカリ性溶液を添加した 場合において、比較的高純度の水溶性エラスチンを得る場合の所定値は、例えば 0 . lmg/mLとし、もっと高純度の水溶性エラスチンを得る場合の所定値は、例えば、 0 . lmg/mL以下とすることができる。また、本発明でいう「所定値以下となったところで 終了」とは、所定値以下となった時点力 更に処理を繰り返して処理を終了する場合 も含むものである。
[0063] また、可溶ィ匕液が酸性またはアルカリ性のどちらであっても、不溶性エラスチンの可 溶化を、不溶性エラスチンが溶解して無くなるまで断続的に繰り返して行うことで、可 溶ィ匕液中に溶解した水溶性エラスチンの細断ィ匕を防ぐことができる。即ち、可溶化液 に浸漬して 20〜 120分間、好ましくは 40〜80分間経過した後にー且可溶ィ匕を中断 し、不溶性エラスチンと分離して得た可溶ィ匕液は、連続して 90〜105°C、好ましくは 95〜: LOO°Cの高温条件下に曝さずに、放置冷却または水冷却等により温度を 25°C 以下、好ましくは氷冷等により 10°C以下に温度を下げることで、可溶化液の反応性を 弱めることができ、水溶性エラスチンの細断ィ匕を防止することができる。
[0064] また、可溶化液に溶解した水溶性エラスチンは、相分離操作を行って 2層に分離す ることにより、上層(平衡液相)の低分子量水溶性エラスチン画分及び下層(コアセル ペート相)の高分子量水溶性エラスチン画分に分画することができる。高分子量の水 溶性エラスチンのみが分子間で疎水的に会合して分子集合することによりコアセル ベート相を形成するので、コアセルべ一ト相を得ることにより、高分子量の水溶性エラ スチンを効率よく回収することができる。更に相分離に際して、水溶性エラスチンの p Hを 3〜7、好ましくは pH4〜6に調整することで、エラスチンの等電点付近となること から、よりコアセルべ一ト相を形成しやすくなり、高分子量水溶性エラスチンの回収量 を増やすことができる。
[0065] 前記第 1の方法では、不溶性エラスチンを反応系から実際に取出すので、取出した 不溶性エラスチンのアミノ酸組成等を解析し、その純度を検証できると ヽぅメリットがあ る。また、不溶性エラスチンは安定であり長期間の保存が可能であるし、可溶化方法 は酸処理でもアルカリ処理でも選択できるという利点がある。一方、第 2の方法は、不 溶性エラスチンを取出すことがないので、工程が簡便で、アルカリ性溶液の濃度と反 応時間を調節するだけで、高純度の水溶性エラスチンを得ることができる。そのため 、後者の方が高収率で水溶性エラスチンが得られるという特徴がある。 [0066] 前記のごとく第 1又は第 2の方法で得られた水溶性エラスチンは、次 、で、それを相 分離によって低分子量 (分子量約 1〜3万)水溶性エラスチンと高分子量 (分子量約 3 〜30万)水溶性エラスチンに分画する操作を行なう。即ち、水溶性エラスチンを 30〜 50°Cに加熱すると相分離して白濁し、そのまま放置すると 2層に分離する。この上層 画分の平衡液相力 低分子量水溶性エラスチンを回収し、下層画分のコアセルべ一 ト相力 高分子量水溶性エラスチンを回収する。それらの分子量測定の結果と、アミ ノ酸組成の測定結果から、本発明の低分子量水溶性エラスチンと高分子量水溶性 エラスチンは 、ずれも高純度であることが評価できる。
[0067] また、低分子量水溶性エラスチンと高分子量水溶性エラスチンのコアセルべーショ ン特性即ち、温度上昇で濁度が上昇し、温度降下で濁度がもとに戻る可逆的な性質 の検討の結果、高分子量水溶性エラスチンは加熱すると白濁することが確認でき、そ の濁度曲線が可逆的であるので、高分子量水溶性エラスチンは、化粧品や医用材 料に応用できることが期待される。一方、低分子量水溶性エラスチンは、加熱しても 白濁しないのでィ匕粧品や医用材料に用いるのは困難である。し力しながら、低分子 量水溶性エラスチンは、分子量サイズが小さ!、ので消化吸収の面で利点になるので 、食品素材や医薬品に適していると考えられる。
[0068] コラーゲンの溶液は加熱すると白濁する力 温度を下げても白濁したままで、元の 透明な状態には戻らない (非可逆性)。しかし、水溶性エラスチンの溶液は、加熱す ると白濁し、温度を下げると元の透明な状態に戻る(可逆性)という違いがある。またコ ラーゲンは加熱温度を極度に上げると変性してコラーゲンとは性質の異なるゼラチン に変化するが、エラスチンは加熱温度を極度に上げても、エラスチンのままであると いう違いもある。力かる特性を利用して、コラーゲンとエラスチンをそれぞれ適当な医 用材料に応用することができる。また、製造された水溶性エラスチンの濁度曲線が、 可逆的であるかどうかによって、コラーゲンの混入の有無を検証するのにも利用でき る。
[0069] 本発明の、水溶性エラスチンのうち、エラスチンを構成するアミノ酸の 79〜84%が プロリン、グリシン、ァラニン、ノ リンからなり、 2〜3%がァスパラギン酸とグルタミン酸 からなり、 0. 7〜1. 3%がリジン、ヒスチジン、アルギニンからなり、 0. 2〜0. 4%がデ スモシンとイソデスモシンカもなる、分子量が約 1〜3万の低分子量水溶性エラスチン は、消化吸収性に優れているので、機能性食品として利用できる。現在、健康食品 巿場が急拡大している力 高コレステロール、高中性脂肪あるいは高血圧などの症 状に個別的に対応する機能性食品はあっても、動脈硬化を総合的に予防し、抑制 する万能対応型機能性食品はこれまで皆無である。血管を構成する主成分はエラス チン (約 30%)で、次いでコラーゲン (約 18%)であるが、コラーゲンは美肌効果を有 する食品素材として広く普及してきたものの、エラスチンを素材とした動脈硬化予防' 抑制対応型機能性食品は未だ開発されて ヽな ヽ。
[0070] なお、食品産業センター技術研究報告書 No.27, 2001, 21-26頁には、エラスターゼ 活性を持つ酵素処理によって製造した水溶性エラスチン (分子量は不明)を、高脂肪 食負荷ラット及び健常者に投与したところ、血中の総コレステロール、中性脂肪等が 低下し、血中脂質代謝異常が改善されたことが報告されている。しかし、この報告で 用いた水溶性エラスチンは、これまで高純度と評価されて ヽる水溶性エラスチンとは アミノ酸組成がかなり異なっている(プロリン、グリシン、ァラニン、ノリンが 68%に過ぎ ない)ばかりでなぐエラスチンに特有のアミノ酸であるデスモシン及びイソデスモシン も検出されていないことから、極度に低純度のもの、あるいはエラスチンとは異なるも のではな!/、かと推定される。
[0071] 本発明の低分子量水溶性エラスチンは、後述のごとぐコレステロールの上昇抑制 、中性脂肪の上昇抑制、 LDL—コレステロール (悪玉コレステロール)の上昇抑制、 HDL—コレステロール (善玉コレステロール)の低下抑制、過酸化脂質の上昇抑制 などの血中脂質代謝異常の改善作用、及び血管内腔表面の硬化病変抑制作用や、 血管弾性機能の低下抑制作用を持つことが証明できたので、動脈硬化予防'抑制万 能対応型機能性食品として開発されることが期待できる。
[0072] また、本発明の低分子量水溶性エラスチンは、後述のごとぐコレステロールの上昇 抑制、中性脂肪の上昇抑制、 LDL—コレステロール (悪玉コレステロール)の上昇抑 制、 HDL—コレステロール (善玉コレステロール)の低下抑制、過酸化脂質の上昇抑 制、酸化 LDLの上昇抑制などの血中脂質代謝異常の改善作用、血栓形成の抑制 作用、及び血管内腔表面の硬化病変 (硬化プラーク)抑制作用や血管弾性機能の 低下抑制作用等の生理作用を有する。従って、本発明の低分子量水溶性エラスチ ンは、それを有効成分とする色々な治療又は予防用医薬、例えば、動脈硬化抑制剤 、脂質代謝異常改善剤、血栓形成抑制剤等の医薬としても開発が期待できる。
[0073] 本発明の低分子量水溶性エラスチンを食品又は医薬として用いる場合には、それ を有効成分として含むものであれば良ぐ生体に有用な金属、例えば、マグネシウム 、カルシウム、クロム、マンガン、鉄、コノルト、ニッケル、銅、アルミニウム、亜鉛など のアルカリ土類金属や遷移金属を併用しても良い。用いる金属によっては、相乗的 に効果が得られる。
[0074] 本発明において機能性食品は、その形態は特に限定されるものではなぐ分子量 が約 1〜3万の低分子量水溶性エラスチンをそのまま飲食品として調製したもの、各 種タンパク質、糖類、脂肪、微量元素、ビタミン類等を更に配合したもの、液状、半液 体状若しくは固体状にしたもの、一般の飲食品へ添カ卩したものであってもよい。また、 食品とは、健康食品、健康補助食品、特定保健用食品等を広く含む意味で用いられ る。そして、本発明の機能性食品は、血中脂質代謝異常の改善や血管内腔表面の 硬化抑制効果、血管弾性機能の低下抑制効果が期待できるので、動脈硬化予防- 抑制万能対応型の機能性食品として提供することができる。
[0075] 本発明において医薬は、有効成分である分子量が約 1〜3万の低分子量水溶性ェ ラスチンと、薬学上許容される添加物とを混合することにより製造できる。本発明の医 薬は、経口投与または非経口投与することができる。経口剤としては、顆粒剤、散剤 、錠剤、丸剤、カプセル剤、シロップ剤、乳剤、懸濁剤が挙げられる。非経口剤として は、注射剤や点滴剤が挙げられる。これらの製剤は、製剤分野で通常行われている 手段 '方法により、薬学上許容される担体を用いて製剤化することができる。
[0076] 本発明の機能性食品の摂取量は、成人 1人 1日当たり、エラスチン換算で 30〜6, OOOmg、好ましくは 60〜3, OOOmgが適当である。また、医薬として投与する場合は、 被投与者の年齢、体重、症状、投与時間、剤形、投与方法、薬剤の組み合わせ等に 依存するが、例えば、本発明の有効成分を医薬として経口投与する場合は、成人 1 人当たり 0. 5〜100mg/kg体重、好ましくは l〜50mg/kg体重である。
実施例 1 [0077] [水溶性エラスチンの製造]
動物性生体組織として牛の項靱帯を用い、付着して!/ヽる脂肪や筋肉などエラスチ ン含量の低 、部分を刃物などを用いて削ぎ落とし、動物性生体組織をホモジナイザ 一を用いてホモジナイズした。ホモジナイズした動物性生体組織を、沸騰水中で 1時 間、脱脂のための煮沸を行い、その後水切りした。なお、この脱脂工程は複数回行つ ても良ぐまた脱脂効率を良くするためには、希薄アルカリ溶液処理あるいは有機溶 媒処理を行っても良い。
[0078] 容器にホモジナイズして脱脂した動物性生体組織を入れ、その動物性生体組織の 重量に対して 10倍容量 (重量 lg当たり 10mL)の 1M塩ィ匕ナトリウム水溶液をカ卩えて 浸漬し、 4°Cで 24時間攪拌した。そして、動物性生体組織と塩溶液とを分離し、分離 した塩溶液を、ビューレット法にて総タンパク質の定量を行い、塩溶液中に含まれる 総タンパク質量が 0. lmg/mL以下であれば、不要タンパク質は除かれたと判断した。 不要タンパク質が除かれていない場合はこの操作を複数回行えば良い。なお、この 不要なタンパク質を除去するための浸漬処理は、必ずしも必要ではなぐまた、必要 によっては複数回行っても良い。
[0079] 浸漬処理を経た動物性生体組織を 10倍容量の 0. 1Mの水酸ィ匕ナトリウム水溶液 に入れ、 100°Cで 15分間攪拌し、コラーゲン除去処理を行った。次いで、動物性生 体組織とアルカリ性溶液とを分離し、純粋な不溶性エラスチンを得た。なお、分離し たアルカリ性溶液を、例えば、ビューレット法にて総タンパク質の定量を行い、アル力 リ性溶液中に含まれる総タンパク質量が 0. lmg/mL以下であれば、コラーゲンは除 かれたと判断した。コラーゲンが除かれていない場合は、この操作を複数回行なえば 良い。
[0080] 次に、不溶性エラスチンの重量に対して 10倍容量の 0. 25Mのシユウ酸(可溶ィ匕液 )を加え、 100°Cで 60分間攪拌することで不溶性エラスチンを断片化し、可溶化液に 水溶性エラスチンを遊離'溶解させた。その後、不溶性エラスチンと可溶ィ匕液とを分 離し、分離した可溶ィ匕液を 25°C以下に冷却した。力かる操作によって、可溶化液の 反応性を低下させ、可溶ィ匕液中に遊離して溶解した水溶性エラスチンの細断ィ匕を防 ぐことができる。不溶性エラスチンが残存している場合には、この操作を繰り返すこと によって、不溶性エラスチンの可溶ィ匕を行うことができる。
[0081] [高分子量エラスチンと低分子量エラスチンの製造]
次に、水溶性エラスチンが溶解している可溶ィ匕液の pHを 6〜7に調整して、 4〜10 °Cで 96時間(24時間ごとに透析膜外の水を入れ替えて)以上水に対して透析を行 い、水溶性エラスチンの精製を行った。その後、透析した水溶性エラスチンは、水溶 液の温度を 30〜50°Cとすることによって、相分離を行い、 2層に分離した。上層画分 からは低分子量 (分子量約 1〜3万)水溶性エラスチンを回収し、下層画分からは高 分子量 (分子量約 3〜30万)水溶性エラスチンを回収した。水溶液の温度を 30〜40 °Cに設定すれば、低分子量水溶性エラスチンの回収率を高めることができ、水溶液 の温度を 40〜50°Cに設定すれば、高分子量水溶性エラスチンの回収率を高めるこ とができる。また、水溶性エラスチンの等電点付近の pHである pH3〜pH7、望ましく は、 pH4〜pH6に調整して行えば、高分子量の水溶性エラスチンの回収率を高める ことができる。力かる相分離の操作で、水溶性エラスチンを基準として、低分子量画 分が 20〜50%、高分子量画分が 10〜30%回収できる。そして、牛の項靱帯を基準 にすると、低分子量水溶性エラスチンの収率は 2〜4%で、高分子量水溶性エラスチ ンの収率は 1〜2%である。
[0082] 相分離後の上層画分と下層画分は非還元条件下で SDS (ドデシル硫酸ナトリウム)- PAGE (ポリアクリルアミドゲル電気泳動)を行い、泳動後のゲルを染色して、その染色 バンドから、上層画分は分子量約 1〜3万の低分子量水溶性エラスチンであることが 確認され、下層画分は分子量約 3〜30万の高分子量水溶性エラスチンであることが 確認された。
[0083] 低分子量水溶性エラスチンと高分子量水溶性エラスチンのアミノ酸組成は、表 1に 示した通りであった。表 1のアミノ酸組成は、総アミノ酸数を 1, 000としたときのアミノ 酸組成を示す。また、低分子量とは、分子量約 1〜3万の低分子量水溶性エラスチン を、高分子量とは、分子量約 3〜30万の高分子量水溶性エラスチンを示す。なお、ヒ スチジンの含量は、本発明では、アミノ酸 1, 000残基当たり 0. 4〜0. 5程度である 力 表 1では四捨五入により 0とされている。
[0084] [表 1] アミノ酸 低分子量
Asp十 Asn 7 7
Thr 9 10
Ser 11 9
Glu+Gln 17 16
Pro 116、 119
Gly 321 323
Ala 230 812 235 814
Val 145 137
Hyl 0 0
lie 24 27
Leu 58 56
9
Des+Ide 3 3
Phe 31 33
Lys 5
ins 0 0
Arg 7 6
Hyp 7 5
実施例 2
[0085] [水溶性エラスチンの製造]
前処理工程として、動物性生体組織は牛の項靱帯を用い、付着している脂肪や筋 肉などエラスチン含量の低い部分を、刃物などを用いて削ぎ落とすことで不要部分の 除去処理を行い、次いで、動物性生体組織をホモジナイザーを用いてホモジナイズ することで細断処理を行った。ホモジナイズした動物性生体組織を、沸騰水中で 1時 間、脱脂のための煮沸を行い、その後水切りした。なお脱脂が不十分である場合は、 この脱脂工程は複数回行ってもよぐまた脱脂効率を良くするために希薄アルカリ溶 液処理あるいは有機溶媒処理を行ってもよい。次のアルカリ抽出工程でコラーゲン や不要タンパク質の除去と共に脂肪も除去されるなら、ここでの脱脂処理は省略して ちょい。
[0086] ホモジナイズして脱脂した動物性生体組織の重量に対して 10倍容量 (重量 lg当た り lOmL)の 0. 1M水酸ィ匕ナトリウム水溶液をカ卩え、 100°Cで 15分間攪拌し、エラスチ ン以外のコラーゲンや不要タンパク質を抽出し、除去する工程 (アルカリ抽出工程)を 行った。そして、動物性生体組織残渣とアルカリ性溶液とを分離した。分離したアル カリ性溶液を、例えば、ビューレット法にて総タンパク質の定量を行い、アルカリ性溶 液中に含まれる総タンパク質量が 0. lmg/mL以下であれば、コラーゲン及び不要タ ンパク質は除かれたと判断した。コラーゲン及び不要タンパク質が除かれて 、な!/ヽ場 合はこの操作を複数回行えば良 、。
[0087] 次いで、上記で得られた動物性生体組織残渣を組織重量に対して 10倍容量の 0.
1M水酸化ナトリウム水溶液 (可溶化液)を加え、 100°Cで 60分間アルカリ溶解工程 を行った。その後、動物性生体組織残渣とアルカリ性溶液との分離操作を行い、分 離した水溶性エラスチンを含むアルカリ性溶液を 25°C以下に冷却した。この際、動 物性生体組織が残存している場合には、このアルカリ溶解工程は複数回行っても良 い。
[0088] [高分子量エラスチンと低分子量エラスチンの製造]
次に、水溶性エラスチンを含むアルカリ性溶液を、中性付近の pH6〜7に調整し、 4〜10°Cの温度で 96時間(24時間ごとに透析膜外の水を入れ替えて)以上水に対 して透析した。その後、透析して得られた液は、水溶液の温度を 30〜50°Cとすること によって、相分離を行い、 2層に分離した。上層画分からは低分子量 (分子量 1〜3 万)水溶性エラスチンを回収し、下層画分からは高分子量 (分子量 3〜30万)水溶性 エラスチンを回収した (水溶性エラスチン回収工程)。水溶液の温度を 30〜40°Cに 設定すれば、低分子量水溶性エラスチンの回収率を高めることができ、水溶液の温 度を 40〜50°Cに設定すれば、高分子量水溶性エラスチンの回収率を高めることが できる。また、水溶性エラスチンの等電点付近の pHである pH3〜pH7、望ましくは、 pH4〜pH6に調整して行えば、高分子量の水溶性エラスチンの回収率を高めること ができる。力かる相分離の操作で、水溶性エラスチンを基準にして、低分子量画分が 50〜70%、高分子量画分が 20〜30%回収できる。これは、牛の項靱帯を基準にす ると、低分子量水溶性エラスチンの収率は 4〜 12%で、高分子量水溶性エラスチン の収率は 2〜5%である。得られた水溶性エラスチンを、再生医療用の組織培養基材 として利用する場合は、組織培養は約 37°Cで行うことが多いため、 37°C以下でコア セルべーシヨンを起こす高分子量水溶性エラスチンを効率良く回収することが望まし い。
[0089] 相分離後の上層画分と下層画分は非還元条件下で SDS (ドデシル硫酸ナトリウム)- PAGE (ポリアクリルアミドゲル電気泳動)を行い、泳動後のゲルを染色して、その染色 バンドから、上層画分は分子量約 1〜3万の低分子量水溶性エラスチンであることが 確認され、下層画分は分子量約 3〜30万の高分子量水溶性エラスチンであることが 確認された。
[0090] 低分子量水溶性エラスチンと高分子量水溶性エラスチンのアミノ酸組成は、表 2に 示した通りであった。表 2のアミノ酸組成は、総アミノ酸数を 1, 000としたときのアミノ 酸組成を示す。また、低分子量とは、分子量約 1〜3万の低分子量水溶性エラスチン を、高分子量とは、分子量約 3〜30万の高分子量水溶性エラスチンを示す。なお、ヒ スチジンの含量は、本発明では、アミノ酸 1, 000残基当たり 0. 4〜0. 5程度である 力 表 2では四捨五入により 0とされている。
[0091] [表 2]
Figure imgf000029_0001
[0092] [比較例]
特開昭 60— 258107の製造例に記載された方法に従って水溶性エラスチンを製 造した。即ち、牛項靭帯を塩化ナトリウム処理、トリクロ口酢酸処理、次いで 120°Cの 熱水処理し精製エラスチンを得た。これに乳酸溶液を加え加圧滅菌し、冷却後、蛋 白分解酵素のペプシンで分解して、平均分子量が約 50, 000の水溶性エラスチンを 製造した。
[0093] 得られた水溶性エラスチンのアミノ酸組成は、プロリン、グリシン、ァラニン、パリンの 合計が 77%、ァスパラギン酸とグルタミン酸の合計が 3. 4%、リジン、ヒスチジン、ァ ルギニンの合計が 1. 5%であり、いずれも本発明の水溶性エラスチンの組成とは異 なっていた。特に、ヒドロキシプロリンが 15%と、本発明の実施例 1又は 2のものが 7% だったのに対し非常に多いことは、比較例の水溶性エラスチンは、コラーゲンが混入 していることを推定させる。 [0094] また、比較例で得られた水溶性エラスチンの濁度測定 (コアセルべーシヨン)を行つ たところ、濁度開始温度が、実施例 1又は 2のものよりも約 10°C高力つた。このことは、 比較例のものは、分子量が低 、こと及び純度が低 、ことを示唆して 、るもと思われる 。また、水溶性エラスチンとしての収率も、実施例 2のものが、脱脂組織を基準として 1 1 %であったのに対し、比較例のものは 3%に過ぎなかった。
実施例 3
[0095] 本実施例では、実施例 1及び 2で得られた低分子量水溶性エラスチンの生理作用 について説明する。
[血中脂質代謝異常の改善作用]
0. 5%コレステロールを負荷して実験的に動脈硬化モデル家兎を作成し、これに 低分子量水溶性エラスチンを経口投与して、動脈硬化抑制効果と血中脂質代謝異 常の改善効果を検証した。ニュージーランドホワイト雄性家兎 (体重約 2kg) 12羽を、 4羽ずつコントロール群、コレステロール群、コレステロール群 +エラスチン併用群の 3 群に分け、コントロール群には普通食(ORC4:オリエンタル酵母社製)を 90gZ日与 え、コレステロール群にはコレステロール食(ORC4+0. 5%コレステロール)を 90gZ 日与え、コレステロール群 +エラスチン併用群にはコレステロール +エラスチン併用食( ORC4+0. 5%コレステロール +0. 1〜0. 5%エラスチン)を 90gZ日与えた。所定 期間後に採血し各種の検査を行った。エラスチンは本発明の低分子量水溶性エラス チンを用いた。
[0096] 血清中の総コレステロールの変化を図 3に、 LDL—コレステロールの変化を図 4に 、 HDL—コレステロールの変化を図 5に、トリグリセレドの変化を図 6に、過酸化脂質 の変化を図 7に示した。これらの結果から、コレステロール群で認められる血中脂質 代謝異常は、コレステロール群 +エラスチン併用群では改善されていることが分かる。 即ち、本発明の低分子量水溶性エラスチンは、血中の総コレステロールを減少させる 効果があるが、その内容をみると、いわゆる悪玉の LDL—コレステロールは減少させ る一方、いわゆる善玉の HDL—コレステロールは増加させていることが分かる。また 、トリグリセリドゃ過酸ィ匕脂質も減少させる効果があることが分かる。
[0097] この結果、本発明の低分子量水溶性エラスチンは、血中脂質代謝異常の改善作用 、ひいては、動脈硬化抑制作用のある機能性食品素材として、また血中脂質代謝異 常の改善、ひいては、動脈硬化抑制作用のある医薬としての可能性があることが分 かる。
[0098] [動脈硬化ある!/、は血管弾性機能低下の改善]
実験に用いた家兎の大動脈の近位部(心臓側)を 5mmの幅で切断し、その試験片 の両端を挟んで一定速度 V=0. OlmmZsで伸展させ、ひずみ 0から 0. 1の範囲で の平均の縦弾性係数を求め、それを Elastic Modulusとして、普通食を投与したコント ロール群、コレステロール食を投与したコレステロール群、コレステロール食と同時に 水溶性エラスチンを投与したコレステロール +エラスチン併用群で比較検討した。そ の結果は図 8に示した通りであり、水溶性エラスチンの投与により血管の弾性機能の 低下が回復していることが分かる。
[0099] [ァテローム性プラークの血管病変の抑制作用 ]
図 9には、血管の血流側の内膜表面の写真を示した。コレステロール食を投与した コレステロール群ではァテローム性プラーク(血管内膜が肥厚し脂質 (コレステロール など)が沈着して粥状物を生じ、線維性の被膜で内膜表面が覆われた隆起状態。こ の状態が進行すると増々大きな隆起状態になって血液の流れが妨げられるようにな り、冠動脈などの非常に細い血管では血管の閉塞がみられ、心筋梗塞を発症する) が内膜表面全体(隆起して白くみえる)に認められる。コレステロール食と同時に水溶 性エラスチンを投与したコレステロール +エラスチン併用群ではァテローム性プラーク が内膜表面にまばらにわずかに認められる。即ち、水溶性エラスチンを投与するとァ テローム性プラーク等の血管病変が抑制されることがこの 3枚の写真力も分かる。
[0100] [血栓形成抑制作用]
血中では血小板が凝集すると血栓が形成される。そこで試験管内で、水溶性エラス チンによる血小板凝集阻害実験を行った。低分子量水溶性エラスチンは ADP (アデノ シン- 5'--リン酸)、トロンビン、コラーゲンによる血小板凝集を阻害したが、なかでも コラーゲンによる血小板凝集を最も強く阻害した。結果は図 10に示した。
[0101] [血液の粘性]
血液中でコレステロール等の脂質濃度が高くなつたり、血小板が粘着'凝集したり すると、血液粘性が増し、ドロドロ〖こなるので、血液中の粘性 (Viscosity)を測定した。 結果は図 11に示した。コレステロールの投与で上昇する血液粘性が水溶性エラスチ ン投与により改善して 、ることが分かる。
産業上の利用可能性
本発明によると、低分子量で純度の高い水溶性エラスチンと、高分子量で純度の 高い水溶性エラスチンが得られる。そして、本発明の低分子量の水溶性エラスチンは 、消化吸収性が高いので、機能性食品や各種医薬品として利用できる。また、高分 子量のエラスチンは、再生医療のための組織工学用足場への応用や、高分子量水 溶性エラスチンのコアセルべートは 60〜70%の水分を含むので、保湿性のための 化粧品基材への応用が考えられる。

Claims

請求の範囲
[1] エラスチンを構成するアミノ酸の 79〜84%がプロリン、グリシン、ァラニン、パリンか らなり、 2〜3%がァスパラギン酸とグルタミン酸力 なり、 0. 7〜1. 3%がリジン、ヒス チジン、アルギニンからなり、 0. 2〜0. 4%がデスモシンとイソデスモシンからなる、 分子量が約 1〜3万の低分子量水溶性エラスチン。
[2] エラスチンを構成するアミノ酸の 79〜84%がプロリン、グリシン、ァラニン、パリンか らなり、 2〜3%がァスパラギン酸とグルタミン酸力 なり、 0. 7〜1. 3%がリジン、ヒス チジン、アルギニンからなり、 0. 2〜0. 4%がデスモシンとイソデスモシンからなる、 分子量が約 3〜30万の高分子量水溶性エラスチン。
[3] 動物性生体組織力 水溶性エラスチンを製造する方法において、(1)動物性生体 組織をコラーゲン除去処理することによって不溶性エラスチンを得る工程、(2)該不 溶性エラスチンを可溶化液に溶解しエラスチン溶解可溶化液を得る工程、 (3)該エラ スチン溶解可溶ィ匕液を相分離操作によって 2層に分離し、上層から低分子量水溶性 エラスチンを回収し、下層から高分子量水溶性エラスチンを回収する工程力 なる水 溶性エラスチンの製造方法。
[4] コラーゲン除去処理力 水酸化ナトリウム、水酸ィ匕カリウム、水酸化カルシウム及び 水酸化バリウム力もなる群力 選ばれた 1又は 2以上のアルカリィ匕合物を、溶液 1L当 たり 0. 05-0. 5mol含有するアルカリ性溶液中に、動物性生体組織を 90〜105°C で 10〜20分間浸漬して行う処理である請求項 3記載の水溶性エラスチンの製造方 法。
[5] コラーゲン除去処理前に、塩ィ匕ナトリウム、塩化カリウム、塩ィ匕カルシウム及び塩ィ匕 ノ リウムカもなる群力も選ばれた 1又は 2以上の塩を、溶液 1L当たり 0. l〜2mol含有 する塩溶液中に、動物性生体組織を 2〜10°Cで 12〜48時間浸漬する浸漬処理を 行うことからなる請求項 3又は 4記載の水溶性エラスチンの製造方法。
[6] 可溶化液が、シユウ酸、蟻酸、酢酸、コハク酸、リンゴ酸、酒石酸、クェン酸、安息香 酸、ベタイン、ジフルォロ酢酸、トリフルォロ酢酸、リン酸、スルファミン酸、過塩素酸及 びトリクロ口酢酸力もなる群力も選ばれた 1又は 2以上の酸ィ匕合物を、溶液 1L当たり 0 . 1〜0. 5mol含み、且つ、液温が 90〜105°Cの酸性溶液である請求項 3〜5のいず れカ 1項記載の水溶性エラスチンの製造方法。
[7] 可溶化液が、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム 力もなる群力も選ばれた 1又は 2以上のアルカリ化合物を、溶液 1L当たり 0. 05〜0. 5mol含み、且つ、液温が 90〜105°Cのアルカリ性溶液である請求項 3〜5のいずれ 力 1項記載の水溶性エラスチンの製造方法。
[8] 動物性生体組織力 水溶性エラスチンを製造する方法において、(1)動物性生体 組織を前処理する工程、(2)前処理された動物性生体組織を、アルカリ性溶液中に 浸漬し、動物性生体組織力も抽出されるコラーゲンやその他の不要タンパク質を含 む溶液を除去するアルカリ抽出工程、(3)前記(2)の操作を繰り返した後に、動物性 生体組織残渣を溶解することにより、遊離した水溶性エラスチンを含む溶液を回収す るアルカリ溶解工程、(4)該アルカリ溶解工程で回収された水溶性エラスチンを含有 する溶液を相分離操作によって 2層に分離し、上層から低分子量水溶性エラスチン を回収し、下層から高分子量水溶性エラスチンを回収する工程力 なる水溶性エラス チンの製造方法。
[9] アルカリ抽出工程が、前処理された動物性生体組織を、水酸化ナトリウム、水酸ィ匕 カリウム、水酸ィ匕カルシウム及び水酸化バリウム力もなる群力 選ばれた 1又は 2以上 のアルカリ化合物を、溶液 1L当たり 0. 05〜0. 5mol含有するアルカリ性溶液中に、 9 0〜105°Cで 10〜20分間浸漬すること力もなる請求項 8記載の水溶性エラスチンの 製造方法。
[10] アルカリ溶解工程が、アルカリ抽出工程処理された動物性生体組織残渣を、水酸 化ナトリウム、水酸化カリウム、水酸化カルシウム及び水酸化バリウムからなる群から 選ばれた 1又は 2以上のアルカリ化合物を、溶液 1L当たり 0. 05-0. 5mol含有する アルカリ性溶液中に、 90〜105°Cで 20〜240分間浸漬すること力もなる請求項 8又 は 9記載の水溶性エラスチンの製造方法。
[11] 前処理工程が、動物性生体組織の不要部分の除去処理、動物性生体組織の細断 処理、動物性生体組織の脱脂処理の少なくとも!/、ずれか一つを含むものである請求 項 8〜10のいずれか 1項記載の水溶性エラスチンの製造方法。
[12] エラスチンを構成するアミノ酸の 79〜84%がプロリン、グリシン、ァラニン、ノ リンか らなり、 2〜3%がァスパラギン酸とグルタミン酸力 なり、 0. 7〜1. 3%がリジン、ヒス チジン、アルギニンからなり、 0. 2〜0. 4%がデスモシンとイソデスモシンからなる、 分子量が約 1〜3万の低分子量水溶性エラスチンを含む機能性食品。
[13] 低分子量水溶性エラスチンの他に、生体に有用な金属を含む請求項 12記載の機 能性食品。
[14] エラスチンを構成するアミノ酸の 79〜84%がプロリン、グリシン、ァラニン、パリンか らなり、 2〜3%がァスパラギン酸とグルタミン酸力 なり、 0. 7〜1. 3%がリジン、ヒス チジン、アルギニンからなり、 0. 2〜0. 4%がデスモシンとイソデスモシンからなる、 分子量が約 1〜3万の低分子量水溶性エラスチンを有効成分とする医薬。
[15] 低分子量水溶性エラスチンの他に、生体に有用な金属を含む請求項 14記載の医 薬。
[16] 動脈硬化抑制剤である請求項 14又は 15記載の医薬。
[17] 脂質代謝異常改善剤である請求項 14又は 15記載の医薬。
[18] 血栓形成抑制剤である請求項 14又は 15記載の医薬。
PCT/JP2005/019751 2004-10-29 2005-10-27 水溶性エラスチンとその製造方法及びそれを含む食品と医薬 WO2006046626A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006543232A JP4078431B2 (ja) 2004-10-29 2005-10-27 水溶性エラスチンとその製造方法及びそれを含む食品と医薬
US11/666,443 US7851441B2 (en) 2004-10-29 2005-10-27 Water-soluble elastin, process for producing same, and food and medicine containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004316584 2004-10-29
JP2004-316584 2004-10-29

Publications (1)

Publication Number Publication Date
WO2006046626A1 true WO2006046626A1 (ja) 2006-05-04

Family

ID=36227868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019751 WO2006046626A1 (ja) 2004-10-29 2005-10-27 水溶性エラスチンとその製造方法及びそれを含む食品と医薬

Country Status (3)

Country Link
US (1) US7851441B2 (ja)
JP (1) JP4078431B2 (ja)
WO (1) WO2006046626A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155565A1 (ja) * 2010-06-10 2011-12-15 国立大学法人九州工業大学 可逆的な性質を示す温度応答性シートとそれを用いた細胞シートの製造方法
JP2012056879A (ja) * 2010-09-08 2012-03-22 Kyushu Institute Of Technology アンジオテンシン変換酵素阻害剤およびその用途
JP5060653B2 (ja) * 2009-03-27 2012-10-31 株式会社マルハニチロ食品 エラスチン及びコラーゲンを用いた架橋物及びその用途
JP2014091694A (ja) * 2012-11-02 2014-05-19 Mie Univ 水溶性フィブリリン組成物による弾性線維増強法
CN104981456A (zh) * 2013-02-01 2015-10-14 学校法人上智学院 锁链素、异锁链素以及它们的衍生物的制造方法
WO2016098816A1 (ja) * 2014-12-17 2016-06-23 国立大学法人 九州工業大学 生体成分含有溶液の製造方法及び生体成分含有物
JP2019112357A (ja) * 2017-12-25 2019-07-11 国立大学法人九州工業大学 水溶性エラスチン及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906109B (zh) * 2010-02-19 2014-09-24 国立大学法人九州工业大学 化学修饰水溶性弹性蛋白、化学修饰水溶性弹性蛋白与胶原的混合凝胶以及它们的制造方法
US11478504B2 (en) 2013-07-08 2022-10-25 International Dehydrated Foods, Inc. Compositions and methods for preventing/treating metabolic syndrome
GB201711360D0 (en) 2017-07-14 2017-08-30 Raft Entpr Ltd Tissue scaffold
CA3073750A1 (en) * 2017-09-28 2019-04-04 International Dehydrated Foods, Inc. Compositions and methods for preventing/treating metabolic syndrome

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498452A2 (fr) * 1981-01-28 1982-07-30 Invap Etablissement Compositions pharmaceutiques a base d'elastine soluble utilisables par voie interne
WO2002096978A1 (fr) * 2001-05-30 2002-12-05 Keiichi Miyamoto Elastine reticulee et son procede de production
JP2004229611A (ja) * 2003-01-31 2004-08-19 J-Oil Mills Inc 抗紫外線食品組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392674A1 (fr) 1977-06-01 1978-12-29 Invap Etablissement Compositions pharmaceutiques a base d'elastine
US4419288A (en) * 1981-08-27 1983-12-06 Seton Company Elastin hydrolyzate
JPS60181005A (ja) 1984-02-28 1985-09-14 Koken:Kk 化粧用エラスチン
JPS60258107A (ja) 1984-06-01 1985-12-20 Sansho Seiyaku Kk 皮膚及び頭髪化粧料
JPH0630616B2 (ja) 1988-08-24 1994-04-27 株式会社ニッピ 水溶性エラスチンの製法及びコラーゲンとエラスチンを含む成型用組成物
JP2927076B2 (ja) 1991-06-20 1999-07-28 味の素株式会社 新規タンパク食品素材
JP3687995B2 (ja) 1994-07-22 2005-08-24 住友ベークライト株式会社 人工血管及びその製造方法
JP3573554B2 (ja) 1995-12-27 2004-10-06 住友ベークライト株式会社 人工血管及びその製造方法
JP2002205913A (ja) 2001-01-10 2002-07-23 Ichimaru Pharcos Co Ltd 化粧料組成物
JP2005013124A (ja) 2003-06-27 2005-01-20 Toyo Shinyaku:Kk 美容効果を有する食品組成物
JP2005013123A (ja) 2003-06-27 2005-01-20 Toyo Shinyaku:Kk 食品組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2498452A2 (fr) * 1981-01-28 1982-07-30 Invap Etablissement Compositions pharmaceutiques a base d'elastine soluble utilisables par voie interne
WO2002096978A1 (fr) * 2001-05-30 2002-12-05 Keiichi Miyamoto Elastine reticulee et son procede de production
JP2004229611A (ja) * 2003-01-31 2004-08-19 J-Oil Mills Inc 抗紫外線食品組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"'Shin Seikagaku Jikken Koza 1 Tanpakushits u I-Bunri Seisei Seishitsu-'", KABUSHIKI KAISHA TOKYO KAGAKU DOJIN, XX, XX, 1 January 1990 (1990-01-01), XX, pages 143 - 152, XP002999840 *
KIMURA YOSHIYUKI AND OKUDA HIROMICHI.: "Inhibitory effects of soluble elastin on intraplatelet free calcium concentration.", THROMBOSIS RES., vol. 52, no. 1, 1988, pages 61 - 64, XP002999839 *
SEKIYA KEIZO AND OKUDA HIROCHIMI.: "Inhibitory action of soluble elastin on thromboxane B2 formation in blood platelets.", BIOCHIMICA ET BIOPHYSICA ACTA., vol. 797, no. 3, 1984, pages 348 - 353, XP002999838 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060653B2 (ja) * 2009-03-27 2012-10-31 株式会社マルハニチロ食品 エラスチン及びコラーゲンを用いた架橋物及びその用途
JP5870408B2 (ja) * 2010-06-10 2016-03-01 国立大学法人九州工業大学 可逆的な性質を示す温度応答性シートとそれを用いた細胞シートの製造方法
WO2011155565A1 (ja) * 2010-06-10 2011-12-15 国立大学法人九州工業大学 可逆的な性質を示す温度応答性シートとそれを用いた細胞シートの製造方法
US9090869B2 (en) 2010-06-10 2015-07-28 Kyushu Institute Of Technology Temperature responsive sheet that displays reversible properties and cell sheet production method using same
JP2012056879A (ja) * 2010-09-08 2012-03-22 Kyushu Institute Of Technology アンジオテンシン変換酵素阻害剤およびその用途
JP2014091694A (ja) * 2012-11-02 2014-05-19 Mie Univ 水溶性フィブリリン組成物による弾性線維増強法
CN104981456A (zh) * 2013-02-01 2015-10-14 学校法人上智学院 锁链素、异锁链素以及它们的衍生物的制造方法
JPWO2014119479A1 (ja) * 2013-02-01 2017-01-26 学校法人上智学院 デスモシン、イソデスモシン、およびその誘導体の製造方法
US9556119B2 (en) 2013-02-01 2017-01-31 Sophia School Corporation Process for preparing desmosine, isodesmosine, and derivatives thereof
WO2016098816A1 (ja) * 2014-12-17 2016-06-23 国立大学法人 九州工業大学 生体成分含有溶液の製造方法及び生体成分含有物
JPWO2016098816A1 (ja) * 2014-12-17 2017-09-28 国立大学法人九州工業大学 生体成分含有溶液の製造方法及び生体成分含有物
JP7051065B2 (ja) 2014-12-17 2022-04-11 国立大学法人九州工業大学 生体成分含有溶液の製造方法及び生体成分含有溶液
JP2019112357A (ja) * 2017-12-25 2019-07-11 国立大学法人九州工業大学 水溶性エラスチン及びその製造方法

Also Published As

Publication number Publication date
US7851441B2 (en) 2010-12-14
JPWO2006046626A1 (ja) 2008-08-07
JP4078431B2 (ja) 2008-04-23
US20080096812A1 (en) 2008-04-24

Similar Documents

Publication Publication Date Title
WO2006046626A1 (ja) 水溶性エラスチンとその製造方法及びそれを含む食品と医薬
JP4236850B2 (ja) 魚類由来のコラーゲンペプチドの製造方法並びに該製造方法により得られた魚類由来のコラーゲンペプチドを含有する飲食品及び化粧品
FR2715405A1 (fr) Procédé pour l'élimination des prions dans des collagènes et collagènes ainsi obtenus.
EP2666779A1 (en) Method for mass preparation of proteoglycan
JP2017114868A (ja) 胎盤由来成分を含有するシワ改善用組成物
JP2015042688A (ja) 血管改善剤
JP2007045722A (ja) 水溶性エラスチンとそれを含む食品及び医薬
JP5590704B2 (ja) 魚類由来の水溶性エラスチンを有効成分とする血小板凝集阻害剤
JP2003299497A (ja) ムコ多糖類及びその製造方法
JPS62502833A (ja) ヒアルロン酸の製法
JPH08143442A (ja) 皮膚外用剤及びその製造法
JP2011225495A (ja) 血管内皮細胞保護剤ならびにこれを含む医薬組成物、食品および飼料
US5897881A (en) Hard tissue intactly dissolved materials and method for producing the same
JP6324733B2 (ja) コラーゲンの三重螺旋構造安定化剤
JP3521238B2 (ja) 水酸化比の高いi型コラーゲン
JP2004049124A (ja) 大豆7sたん白含有タブレット
DE60209793T2 (de) Modifierte methioninereiche nahrungsmittel und verfahren zu deren herstellung
CN113603768B (zh) 一种鱼源胶原蛋白的制备方法
JP4334189B2 (ja) Age生成阻害剤
JP3518778B2 (ja) ポリアミンの調製方法
JP2009219422A (ja) 水溶性エラスチン混合物とその製造方法並びにそれを含む機能性食品
JP6712014B2 (ja) 水溶性エラスチン
JP2001112419A (ja) Ii型コラーゲンの製造方法
JP7051065B2 (ja) 生体成分含有溶液の製造方法及び生体成分含有溶液
JPH067188A (ja) ペプチド含有食品製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543232

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11666443

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05799353

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11666443

Country of ref document: US