WO2006043433A1 - プラズマcvd装置 - Google Patents

プラズマcvd装置 Download PDF

Info

Publication number
WO2006043433A1
WO2006043433A1 PCT/JP2005/018615 JP2005018615W WO2006043433A1 WO 2006043433 A1 WO2006043433 A1 WO 2006043433A1 JP 2005018615 W JP2005018615 W JP 2005018615W WO 2006043433 A1 WO2006043433 A1 WO 2006043433A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
plasma
reaction vessel
compound
Prior art date
Application number
PCT/JP2005/018615
Other languages
English (en)
French (fr)
Inventor
Teruhiko Kumada
Naoki Yasuda
Hideharu Nobutoki
Norihisa Matsumoto
Shigeru Matsuno
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/577,008 priority Critical patent/US20080029027A1/en
Priority to JP2006542326A priority patent/JPWO2006043433A1/ja
Publication of WO2006043433A1 publication Critical patent/WO2006043433A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/38Borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Definitions

  • the present invention relates to a plasma CVD (Chemical Vapor Deposition) apparatus.
  • the signal delay is expressed as the product of the wiring resistance and the capacitance between the wirings and between the layers.
  • the dielectric resistance of the interlayer insulating film is reduced along with lowering the wiring resistance. Lowering the rate is an effective means.
  • an interlayer insulating layer containing BCN bonds is formed on the surface of the object by plasma CVD in an atmosphere containing a hydride carbon-based gas, borazine and a plasma-based gas.
  • a method of forming a film is disclosed. Further, it is also disclosed that the interlayer insulating film has a low dielectric constant (see, for example, Japanese Patent Laid-Open No. 2000-058538 (Patent Document 1)).
  • Patent Document 1 JP 2000-058538 A
  • the present invention has been made to solve the above-mentioned problems of the prior art, and the object thereof is to stably obtain a low dielectric constant and high mechanical strength over a long period of time and to heat a film.
  • the object is to provide a plasma CVD apparatus capable of producing a film that reduces the amount of gas components (outgas) released to the substrate and does not cause problems in the device production process.
  • the plasma CVD apparatus of the present invention comprises means for supplying a compound having a borazine skeleton, a plasma generator for generating plasma, and means for applying a negative charge to an electrode on which a substrate is placed. It is characterized by.
  • the compound having a borazine skeleton is represented by the following chemical formula (1).
  • R to R may be the same or different from each other, a hydrogen atom and a carbon number of 1
  • alkyl groups, alkenyl groups or alkyl groups are each independently selected, and at least one of R to R is not a hydrogen atom
  • the plasma CVD apparatus of the present invention includes a reaction vessel for forming a film on a substrate by plasma chemical vapor deposition and a plasma generator provided outside the reaction vessel, or a plasma chemistry on the substrate. It is preferable to provide a reaction vessel for forming a film by chemical vapor deposition and a plasma generator provided in the reaction vessel.
  • the plasma generator is provided in a reaction vessel, it is preferable that the plasma generator is provided on an electrode on which a substrate is provided.
  • a low dielectric constant film and high mechanical strength can be stably provided over a long period of time, and the amount of outgas generated during device production of the obtained film can be reduced. Can do.
  • FIG. 1 is a diagram schematically showing a preferred example of a PCVD apparatus of the present invention.
  • FIG. 2 is a graph showing TDS data of the film formed in Example 1.
  • FIG. 3 is a graph showing TDS data of the film formed in Comparative Example 1.
  • FIG. 4 is a graph showing an example of the FT-IR vector shape of the film formed on the feeding electrode side (solid line) and the counter electrode side (dotted line), respectively.
  • reaction vessel 1 reaction vessel, 2 high frequency power supply, 3 matching unit, 4 vacuum pump, 5 gas inlet, 6 caro heat Z cooling device, 7 feeding electrode, 8 substrate, 9 counter electrode.
  • the plasma CVD apparatus (PCVD apparatus) of the present invention is a means for supplying a compound having a borazine skeleton, a plasma generator for generating plasma, and a means for applying a negative charge to an electrode on which a substrate is placed. It is characterized by providing. According to the plasma CVD apparatus of the present invention, by applying a negative charge to the portion of the substrate during the CVD, the outgas released when the film manufactured by the method is heated is reduced. There is no problem when manufacturing the used device.
  • the PCVD apparatus of the present invention is a method of introducing and vaporizing into a device having a vaporization mechanism for heating a borazine compound at room temperature, or heating the container itself storing the borazine compound. After the borazine compound is vaporized, the vaporized borazine compound is introduced into the apparatus using the pressure increased by the vaporization of the borazine compound, or Ar, He, nitrogen and other gases. It is realized to supply a compound having a borazine skeleton, for example, by mixing it with a vaporized borazine compound and introducing it into the apparatus.
  • an appropriate plasma generator such as a capacitive coupling method (parallel plate type) or an inductive coupling method (coil method) can be used. Practical film deposition rate (lOnmZ min to 5000nmZ min) is easily obtained From the viewpoint of V, a capacitively coupled (parallel plate) plasma generator is preferred.
  • the PCVD apparatus of the present invention for example, in the case of generating a plasma between electrodes using a capacitively coupled plasma generator, a method of applying a high frequency to an electrode on which a substrate is installed, or a plasma generation Therefore, a negative charge is applied to the electrode on which the substrate is installed by applying a direct current other than the high frequency, or a high frequency or alternating current to the electrode on which the substrate is installed.
  • a direct current other than the high frequency, or a high frequency or alternating current to the electrode on which the substrate is installed.
  • any conventionally known appropriate compound can be used as long as it has a borazine skeleton.
  • a film having improved dielectric constant, thermal expansion coefficient, heat resistance, thermal conductivity, mechanical strength, etc. it is preferable to use a compound represented by the following chemical formula (1) as a raw material. ,.
  • alkenyl groups or alkyl groups can be used independently.
  • the carbon number is 1 or 2.
  • CVD method a chemical vapor deposition method used for film formation on a substrate using the PCVD apparatus of the present invention.
  • the CVD method since the film is formed while the above-mentioned raw material gases are sequentially crosslinked, the crosslink density can be increased, so that the mechanical strength of the film is expected to increase.
  • the source gas of the compound (1) having a borazine skeleton represented by the chemical formula (1) is moved to the vicinity of the substrate on which the film is formed. .
  • the characteristics of a film formed by mixing the carrier gas with a compound of methane, ethane, ethylene, acetylene, ammonia or an alkylamine can be controlled to a desired value.
  • the flow rate of the carrier gas is 100 to 1000 sccm
  • the flow rate of the compound gas having a borazine skeleton is 1 to 300 sccm
  • the flow rate of methane, ethane, ethylene, acetylene, ammonia or alkylamines is 0 to: LOOsccm It can be set arbitrarily.
  • the flow rate of the carrier gas is less than lOOsccm, the time for obtaining a desired film thickness becomes extremely slow, and the film formation may not proceed.
  • lOOOsccm the film thickness uniformity in the substrate surface tends to be poor. More preferably, it is 20 sccm or more and 800 sccm or less.
  • the gas flow rate of the compound having a borazine skeleton is less than lsccm, the time for obtaining a desired film thickness becomes extremely slow, and the film formation may not proceed. Also, if it exceeds 300 SC cm, the film has a low crosslink density, so the mechanical strength decreases. More preferably, it is 5 SC cm or more and 200 sccm or less.
  • the dielectric constant of the obtained film increases. More preferably, it is 5 sccm or more and 100 sccm or less.
  • the source gas carried in the vicinity of the substrate as described above is deposited on the substrate with a chemical reaction to form a film.
  • the chemical reaction is efficiently caused.
  • plasma is used.
  • the gas and substrate temperatures are controlled between room temperature and 450 ° C.
  • the time for obtaining a desired film thickness becomes extremely slow, and the film formation may not proceed. More preferably, it is 50 ° C or higher and 400 ° C or lower.
  • the substrate When plasma is used to heat the substrate, for example, the substrate is placed in a parallel plate type plasma generator, and the source gas is introduced into the substrate.
  • the RF frequency used at this time is 13.56MHz or 400kHz, and the power can be set arbitrarily within the range of 5 to: LOOOW. It is also possible to use a mixture of these different frequencies.
  • the RF power used for plasma CVD exceeds 1000 W, the frequency of decomposition of the compound having a borazine skeleton represented by the chemical formula (1) by plasma increases, and the desired borazine structure is obtained. It becomes difficult to obtain a film. More preferably, it is 10W or more and 800W or less.
  • the pressure in the reaction vessel is preferably 0. OlPa or more and lOPa or less. If it is less than OlPa, the frequency of decomposition of the compound having a borazine skeleton by plasma increases, and it is difficult to obtain a film having a desired borazine structure. On the other hand, if it exceeds lOPa, the film has a low crosslinking density, so that the mechanical strength decreases. More preferably, it is 5 Pa or more and 6.7 Pa or less.
  • the pressure can be adjusted by a pressure regulator such as a vacuum pump or a gas flow rate.
  • the PCVD apparatus of the present invention preferably further includes a reaction vessel for forming a film on the substrate by PCVD.
  • the plasma generator may take a configuration provided either inside or outside the reaction vessel.
  • a plasma generator is provided outside the reaction vessel, plasma does not act directly on the substrate, so the film formed on the substrate is excessively applied to electrons, ions, radicals, etc. in the plasma.
  • a practical film formation rate (lOnmZ min. 5000nmZ) is easy to obtain.
  • FIG. 1 is a diagram schematically showing a preferred example of the PCVD apparatus of the present invention.
  • a PCVD apparatus according to the present invention has a configuration in which a plasma generator is provided in the reaction vessel, and a plasma generator is provided on an electrode on which a substrate is installed using a capacitive coupling method. It is particularly preferable that this is realized with the PCVD apparatus.
  • a film is formed on the applied electrode side (negative bias), so that borazine molecules or carriers generated in the plasma are compared with borazine molecules deposited on the substrate. It is considered that a new active site is generated by collision of He, Ar, etc. used as gas, and the crosslinking reaction can be further advanced.
  • a reaction vessel 1 is provided with a power supply electrode 7 via a heating Z cooling device 6, and a substrate 8 to be deposited is placed on the power supply electrode 7. To do.
  • the heating Z cooling device 6 can heat or cool the substrate 8 to a predetermined process temperature.
  • the feeding electrode 7 is connected to the high frequency power source 2 via the matching unit 3, and can be adjusted to a predetermined potential.
  • a counter electrode 9 is provided on the side facing the substrate 8, and a gas introduction port 5 and a vacuum pump 4 for discharging the gas in the reaction vessel 1 are provided. It is installed.
  • the substrate 8 to be grown in the reaction vessel 1 for generating plasma is formed by placing the substrate 8 on the feeding electrode 7 for inducing plasma and performing film formation. A film can be formed.
  • the potential on the substrate 8 to be deposited can be arbitrarily adjusted by applying a potential from another high frequency power source to the counter electrode 9 facing the power supply electrode 7.
  • the present invention is characterized in that the power supply electrode 7 on the substrate 8 side has a negative potential.
  • a desired film may be formed by applying a negative charge to the substrate using a power source independent of the RF source 2 of the plasma source.
  • the counter electrode 9 is disposed on the upper side of the apparatus, and the force configured to dispose the feeding electrode 7 on the lower side of the apparatus.
  • the board 8 can be supported by board fixing parts such as plate panels, screws, pins, etc.
  • the susceptor substrate can be directly installed on the electrode power supply 7, but the substrate 8 is fixed to the power supply electrode 7 through a jig for transporting the substrate. It is also possible.
  • the substrate 8 is placed on the power supply electrode 7 and the reaction vessel 1 is evacuated.
  • the raw material gas, the carrier gas, and other gases as described above are supplied into the reaction vessel 1 from the gas inlet 5 if necessary.
  • the flow rate at the time of supply is as described above.
  • the pressure in the reaction vessel 1 is evacuated by the vacuum pump 4 to maintain a predetermined process pressure.
  • the substrate 8 is set to a predetermined process temperature by the heating Z cooling device 6.
  • a negative charge is applied to the power supply 7 from the high frequency power source 2 to generate plasma in the gas in the reaction vessel 1.
  • the raw material and carrier gas force S ions, Z or radicals are formed and are deposited on the substrate 8 one after another to form a film.
  • ions are attracted to electrodes having a potential opposite to that of their own charges, and react by repeatedly causing collisions on the substrate.
  • the positive ions are attracted to the feeding electrode 7 side and the negative ions are attracted to the counter electrode 9 side due to the electric charge.
  • radicals are uniformly distributed in the plasma field. For this reason, when film formation is performed on the feeding electrode 7 side, many reactions mainly involving cations occur, and the contribution of radical species to film formation decreases.
  • the amount of radicals remaining in the formed film can be reduced by adjusting the potential of the electrode as described above, and therefore, after being taken out from the PCVD apparatus. Substances that are active against radicals such as oxygen and water in the air and remain in the film The reaction between the radicals is suppressed.
  • the power frequency to be applied may be, for example, a force HF (several tens to several hundreds kHZ) or microwave (2.45 GHz). ) 30MHz to 300MHz ultra high frequency may be used.
  • a force HF severe tens to several hundreds kHZ
  • microwave 2.45 GHz
  • 30MHz to 300MHz ultra high frequency may be used.
  • a microwave a method of exciting a reaction gas and forming a film in an afterglow, or an ECR plasma CVD in which a microwave is introduced into a magnetic field that satisfies the ECR condition can be used.
  • a film having a lower dielectric constant can be realized as compared with a film using a conventional compound having a borazine skeleton as a raw material.
  • “low dielectric constant” means that a constant dielectric constant can be stably maintained over a long period of time. Specifically, it is about 3.0 to 1.8 for a film produced by a conventional manufacturing method.
  • the present invention can maintain the dielectric constant for at least several years. This low dielectric constant can be confirmed, for example, by measuring the dielectric constant by the same method as that immediately after forming a film stored for a certain period.
  • the film formed using the PCVD apparatus of the present invention can achieve a higher cross-linking density than the film obtained by the conventional PCVD apparatus, is denser, and has higher mechanical strength. It is a film with improved (modulus, strength, etc.).
  • This improvement in crosslink density can be confirmed, for example, from the spectrum shape of FT-IR because the peak near 1400 cm 1 is shifted to the low wavenumber side.
  • Figure 4 shows an example of this FT-IR spectrum.
  • the FT-IR spectral shape of the membrane on the counter electrode side shown by the dotted line in the figure
  • the FT- of the membrane on the feed electrode side In the IR spectral shape (shown by the solid line in the figure), it can be seen that the peak is shifted to the lower wavenumber side.
  • the following film formation was performed using the parallel plate type plasma CVD apparatus of the example shown in FIG.
  • Helium was used as a carrier gas, and the flow rate was set to 200 sccm, and the reaction vessel was charged.
  • B, B, B, N, N, N-hexamethylborazine gas as a source gas is introduced into a reaction vessel in which a substrate is placed through a heated gas inlet with a flow rate set to 10 sccm. did.
  • the vapor temperature of B, B, B, N, N, N-hexamethylborazine gas was 150 ° C.
  • the substrate temperature was heated to 100 ° C, and a high frequency current of 13.56 MHz was applied to 150 W from the feeding electrode side where this substrate was installed.
  • the pressure inside the reaction vessel was maintained at 2 Pa. Thereby, a film was formed on the substrate.
  • the amount of outgas was measured while raising the temperature of the film on the obtained substrate at a rate of 60 ° CZ using a temperature programmed desorption gas analyzer (TDS).
  • TDS temperature programmed desorption gas analyzer
  • FIG. 2 shows the degree of vacuum when the film formed on the supply electrode side is heated using the method of the present invention.
  • the vertical axis indicates the degree of vacuum (Pa)
  • the horizontal axis indicates the temperature (° C).
  • FIG. 2 shows that the outgas from the film is released as the degree of vacuum increases. Until 400 ° C, there is no clear change in vacuum, indicating that no outgassing occurs due to heating.
  • FIG. 3 shows TDS data of a film formed on the counter electrode side for comparison.
  • the vertical axis represents the degree of vacuum (Pa) and the horizontal axis represents the temperature (° C).
  • Pa degree of vacuum
  • ° C temperature
  • outgassing occurs when the film is formed on the counter electrode side because the degree of vacuum increases when the temperature exceeds 100 ° C. From these facts, it was found that a film with less outgas could be formed by placing the substrate to be deposited on the feeding electrode and making it negative potential.
  • TDS measurement is performed on a film prepared by changing the type of source gas in the same way as in Example 1. It was.
  • Table 1 shows the results for Examples 2 to 9 (when the film is formed on the feeding electrode side), and Table 2 shows the results for Comparative Examples 2 to 9 (when the film is formed on the counter electrode side).
  • Table 3 shows the results for Examples 10 to 13 (when the film is formed on the feeding electrode side), and Table 10 shows the results for Comparative Examples 10 to 13 (when the film is formed on the counter electrode side). Shown in 4.
  • Example 9 Example 9
  • Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 ⁇ , ⁇ . ⁇ —Trimet ⁇ , ⁇ , ⁇ -Tolechi ⁇ , ⁇ , ⁇ - ⁇ 1 JI ⁇ , ⁇ , ⁇ -Trivi ⁇ , ⁇ , ⁇ -Tori I ⁇ , ⁇ , ⁇ , ⁇ - ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ -Holashin Raw material gas Ruphorasin Luholachin Luo ⁇ , ⁇ , ⁇ Trinyl- ⁇ ⁇ -Toil- ⁇ , ⁇ . ⁇ -Tramethylho 'Lashi' Ngenta Methylho

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 本発明は、ボラジン骨格を有する化合物を供給する手段(5)と、プラズマを発生させるためのプラズマ発生器と、基板(8)を設置する電極(7)に負電荷を印加する手段(2)とを備える、プラズマCVD装置を提供する。このような本発明により、低誘電率と高機械強度を長期にわたり安定して得られるとともに、膜を加熱した際に放出される気体成分(アウトガス)量を低減し、デバイス製造プロセス上の不具合を起こさないプラズマCVD装置を提供できる。

Description

明 細 書
プラズマ CVD装置
技術分野
[0001] 本発明は、プラズマ CVD (Chemical Vapor Deposition:化学的気相成長)装置に 関する。
背景技術
[0002] 半導体素子の高速化、高集積ィ匕につれて、信号遅延の問題が深刻になりつつある 。信号遅延は配線の抵抗と、配線間および層間の容量との積で表されるものであり、 信号遅延を最小に抑えるためには、配線抵抗を低下させることと並んで、層間絶縁 膜の誘電率を下げることが有効な手段である。
[0003] 最近では、層間絶縁膜の誘電率を下げるものとして、被処理体の表面に、ハイド口 カーボン系ガスとボラジンとプラズマ系ガスとを含む雰囲気でプラズマ CVDにより、 B C N結合を含む層間絶縁膜を形成する方法が開示されている。さらに、当該層 間絶縁膜は誘電率が低いことも開示されている(例えば、特開 2000— 058538号公 報 (特許文献 1)参照)。
[0004] し力しながら、上記従来の方法では、ボラジンを CVD原料として用いるため、低誘 電率で高機械強度の膜を成膜できるものの、耐水性に乏しいために、これらの特性 が持続しな ヽと ヽぅ問題があった。さらに成膜した基板を用いてデバイスを製造する 際にともなう加熱処理において、膜から気体成分が発生し、デバイスの製造プロセス に悪影響を及ぼす問題があった。
特許文献 1 :特開 2000— 058538号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、上記従来の技術の問題を解決するためになされたものであり、その目的 は、低誘電率と高機械強度を長期にわたり安定して得られるとともに、膜を加熱した 際に放出される気体成分 (アウトガス)量を低減し、デバイス製造プロセス上の不具合 を起こさない膜を製造することができるプラズマ CVD装置を提供することである。 課題を解決するための手段
[0006] 本発明のプラズマ CVD装置は、ボラジン骨格を有する化合物を供給する手段と、 プラズマを発生させるためのプラズマ発生器と、基板を設置する電極に負電荷を印 加する手段とを備えることを特徴とする。
[0007] ここにおいて、前記ボラジン骨格を有する化合物は、下記化学式(1)で示されるも のであること力 好ましい。
[0008] [化 1]
Figure imgf000004_0001
[0009] (式中、 R〜Rは、それぞれ同一であっても異なっていてもよぐ水素原子、炭素数 1
1 6
〜4のアルキル基、アルケニル基またはアルキ-ル基カゝらそれぞれ独立して選択され 、かつ R〜Rの少なくとも 1つは水素原子でない)
1 6
本発明のプラズマ CVD装置は、基板上にプラズマ化学的気相成長により膜を形成 するための反応容器と、反応容器外に設けられたプラズマ発生器を備えるカゝ、または 、基板上にプラズマ化学的気相成長により膜を形成するための反応容器と、反応容 器内に設けられたプラズマ発生器を備えることが、好ましい。
[0010] 前記プラズマ発生器が反応容器内に設けられる場合、プラズマ発生器が基板を設 置する電極に設けられてなることが、好ましい。
発明の効果
[0011] 本発明のプラズマ CVD装置によれば、低誘電率膜および高!ヽ機械的強度を長期 にわたり安定して提供でき、得られた膜のデバイス製造時におけるアウトガスの発生 量も低減することができる。また本発明のプラズマ CVD装置によれば、従来と比較し て誘電率が低ぐまた架橋密度が向上され機械的強度が向上された膜を製造するこ とがでさる。 図面の簡単な説明
[0012] [図 1]本発明の PCVD装置の好ましい一例を模式的に示す図である。
[図 2]実施例 1で形成された膜の TDSデータを示すグラフである。
[図 3]比較例 1で形成された膜の TDSデータを示すグラフである。
[図 4]給電電極側(実線)、対向電極側(点線)でそれぞれ形成された膜の FT— IRス ベクトル形状の一例を示すグラフである。
符号の説明
[0013] 1 反応容器、 2 高周波電源、 3 整合器、 4 真空ポンプ、 5 ガス導入口、 6 カロ 熱 Z冷却装置、 7 給電電極、 8 基板、 9 対向電極。
発明を実施するための最良の形態
[0014] 本発明のプラズマ CVD装置 (PCVD装置)は、ボラジン骨格を有する化合物を供 給する手段と、プラズマを発生させるためのプラズマ発生器と、基板を設置する電極 に負電荷を印加する手段とを備えることを特徴とする。本発明のプラズマ CVD装置 によれば、 CVDの際に上記基板の部位に負電荷を印加することにより、当該方法に よって製造された膜を加熱した際に放出されるアウトガスが低減され、これを用いた デバイス製造の際に不具合が生じな 、。
[0015] 本発明の PCVD装置は、たとえば室温のボラジンィ匕合物を加熱するための気化機 構を有する装置内に導入して気化させる方法、あるいはボラジンィ匕合物を貯蔵した 容器自体を加熱してボラジンィ匕合物を気化させた後、このときボラジンィ匕合物が気化 することにより上昇した圧力を利用して、気化したボラジン化合物を装置に導入する 方法、あるいは Ar、 He、窒素その他のガスを気化したボラジンィ匕合物と混合して装 置に導入する方法などにより、ボラジン骨格を有する化合物を供給するように実現さ れる。中でも、原料の熱による変性が起こりにくいという観点から、室温のボラジン化 合物を加熱する気化機構を装置内に導入して気化させる方法により、ボラジン骨格 を有する化合物を供給するように実現されるのが好ましい。
[0016] また、本発明の PCVD装置におけるプラズマ発生器としては、たとえば容量結合方 式 (平行平板型)や誘導結合方式 (コイル方式)などの適宜のプラズマ発生器を用い ることができ、中でも実用的な成膜速度(lOnmZ分〜 5000nmZ分)が得られやす V、と 、う観点から、容量結合方式 (平行平板型)のプラズマ発生器が好ま 、。
[0017] さらに、本発明の PCVD装置は、たとえば、容量結合型のプラズマ発生器を用いて 電極間にプラズマを生成させる場合では基板を設置する電極に高周波を印加する 方法や、プラズマを発生させるための高周波以外の直流電流、あるいは高周波、交 流電流を、基板を設置する電極に印加する方法によって、基板を設置する電極に負 電荷を印加するように実現される。中でも、生成させるプラズマにより生じる電位と独 立した負電荷を基板上に印加できるという観点から、直流電流により基板を設置する 電極に負電荷を印加するように実現されることが好ま 、。
[0018] 上記 PCVD装置にぉ 、て供給される上記ボラジン骨格を有する化合物としては、 ボラジン骨格を有するものであれば、従来公知の適宜の化合物を特に制限なく用い ることができるが、特に、誘電率、熱膨張係数、耐熱性、熱伝導性、機械的強度等が 向上された膜を製造することができる点から、下記化学式(1)で示される化合物を原 料として用いることが好まし 、。
[0019] [化 2]
Figure imgf000006_0001
[0020] 上記化学式(1)で示される化合物において、 R〜Rで示される置換基としては、そ
1 6
れぞれ同一であっても異なってもよぐ水素原子あるいは炭素数 1〜4のアルキル基、 ァルケ-ル基またはアルキ-ル基の 、ずれかをそれぞれ独立して用いることができる
。ただし、 R〜R
1 6のすべてが水素原子である場合はない。すべて水素の場合は膜中 にホウ素一水素結合または窒素一水素結合が残存しやすくなる。これらの結合は親 水性が高いため、膜の吸湿性が増加してしまうという不具合を生じ、所望とする膜が 得られないおそれがある。また、上記化合物(1)の R〜R
1 6において、炭素数が 4より 大きくなると成膜された膜中の炭素原子含有量が多くなり、膜の耐熱性、機械強度が 劣化するおそれがある。より好ましくは、炭素数は 1または 2である。
[0021] ここで、本発明の PCVD装置を用いた基板上の成膜に利用される CVD法 (ィ匕学的 気相成長法)について説明する。膜形成に CVD法を用いると、上記原料のガスが順 次架橋しながら膜を形成するため架橋密度を高くすることができるので膜の機械強度 が増すことが期待できる。
[0022] CVD法において、キャリアガスとしてヘリウム、アルゴンまたは窒素等を用いて、上 記化学式(1)で示されるボラジン骨格を有する化合物(1)の原料ガスを成膜させる基 板近傍へ移動させる。
[0023] この時、上記キャリアガスにメタン、ェタン、エチレン、アセチレン、アンモニアまたは アルキルアミン類の化合物を混合して成膜される膜の特性を所望のものにコントロー ノレすることちでさる。
[0024] 上記キャリアガスの流量は 100〜1000sccm、ボラジン骨格を有する化合物のガス の流量は l〜300sccm、メタン、ェタン、エチレン、アセチレン、アンモニアまたはァ ルキルアミン類の流量は 0〜: LOOsccmの範囲で任意に設定することができる。
[0025] ここで、上記キャリアガスの流量が lOOsccm未満では所望の膜厚を得るための時 間が極端に遅くなり、膜の形成が進まない場合もある。また、 lOOOsccmを越えると基 板面内の膜厚均一性が悪ィ匕する傾向がある。より好ましくは、 20sccm以上 800scc m以下である。
[0026] ボラジン骨格を有する化合物のガスの流量が lsccm未満では、所望の膜厚を得る ための時間が極端に遅くなり、膜の形成が進まない場合もある。また、 300SCcmを越 えると架橋密度の低い膜となるため、機械強度が低下する。より好ましくは、 5SCcm以 上 200sccm以下である。
[0027] メタン、ェタン、エチレン、アセチレン、アンモニアまたはァノレキノレアミン類ガスが 10 Osccmを越えると得られた膜の誘電率が大きくなる。より好ましくは、 5sccm以上 100 sccm 下(¾>る。
[0028] 上記のようにして基板近傍に運ばれた上記原料ガスが、化学反応を伴って基板上 に堆積することにより膜が形成されるが、本発明では、化学反応を効率よく起こすた め、 CVDの際にプラズマを組み合わせて用いている。さらに、紫外線や電子線等を 組み合わせて用いてもよ!、。
[0029] CVDの際に、膜を形成しょうとする基板を加熱すると、アウトガスの低減がより容易 になるため、好ましい。基板を加熱するために熱を用いる場合は、ガス温度および基 板温度を室温力も 450°Cまでの間でコントロールする。ここで、原料ガスおよび基板 温度が 450°Cを越えると所望の膜厚を得るための時間が極端に遅くなり、膜の形成 が進まない場合もある。より好ましくは、 50°C以上 400°C以下である。
[0030] また、基板を加熱するためにプラズマを用いる場合は、たとえば平行平板型のブラ ズマ発生器内に基板を設置してその中へ上記原料ガスを導入する。このとき用いる R Fの周波数は 13. 56MHzまたは 400kHzで、パワーは 5〜: LOOOWの範囲で任意に 設定することができる。また、これら異なる周波数の RFを混合して用いることもできる
[0031] ここで、プラズマ CVDを行うために用いる RFのパワーが 1000Wを越えると、上記 化学式(1)で示されるボラジン骨格を有する化合物のプラズマによる分解の頻度が 増し、所望のボラジン構造を有する膜を得ることができ難くなる。より好ましくは、 10W 以上 800W以下である。
[0032] また、本発明において、反応容器内の圧力は、 0. OlPa以上 lOPa以下にすること が好ましい。 0. OlPa未満であるとボラジン骨格を有する化合物のプラズマによる分 解の頻度が増加し、所望のボラジン構造を有する膜を得ることが難しい。また、 lOPa を超えると架橋密度の低い膜となるため、機械強度が低下する。より好ましくは、 5Pa 以上 6. 7Pa以下である。なお、当該圧力は、真空ポンプ等の圧力調整器やガス流 量により調整することができる。
[0033] 本発明の PCVD装置は、好ましくは、基板上に PCVDにより膜を形成するための反 応容器をさらに備える。このように反応容器をさらに備える構成において、プラズマ発 生器は、反応容器の外、内のいずれに設けられた構成を採ってもよい。たとえば反応 容器の外にプラズマ発生器を設けた構成では、基板に対して直接プラズマが作用す ることがないため、基板上に生成した膜が過剰にプラズマ中の電子、イオン、ラジカ ルなどに曝されて意図しない反応が進むことを防止できるという利点がある。また、反 応容器の内にプラズマ発生器を設けた構成では、実用的な成膜速度( lOnmZ分〜 5000nmZ分)が得られやす 、と ヽぅ利点がある。
[0034] 図 1は、本発明の PCVD装置の好ましい一例を模式的に示す図である。本発明の PCVD装置は、上記反応容器内にプラズマ発生器を設けた構成であり、さらにブラ ズマ発生器が、容量結合方式を利用して基板を設置する電極に設けられた、平行平 板型の PCVD装置で実現されるのが、特に好ましい。このような PCVD装置を用いる こと〖こよって、印加電極側 (負バイアス)で成膜を行なうため、基板上に堆積したボラ ジン分子に対し、プラズマ中で発生した正イオンィ匕したボラジン分子またはキャリアガ スとして使用している He、 Arなどが衝突することで新たな活性点を生じ、架橋反応を より進行させることができると考えられる。これに対し、対向電極側(正ノ ィァス)で成 膜を行なうと、印加電極側で成膜した場合と比較して、プラズマ中で生じた電子がより 多く飛散し、これが基板上に堆積したボラジン分子に衝突することで、ラジカルが多く 発生してしまう。この発生したラジカルは、イオンの衝突により生じたものと比較して活 性が小さいため、十分な架橋密度が得られにくくなつてしまうものと考えられる。
[0035] 図 1に示す PCVD装置において、反応容器 1には、加熱 Z冷却装置 6を介して給 電電極 7が設けられ、当該給電電極 7上に成膜の対象とする基板 8を載置する。加熱 Z冷却装置 6は基板 8を所定のプロセス温度に加熱または冷却することができる。ま た、給電電極 7は整合器 3を介して高周波電源 2と接続され、所定の電位に調整する ことができるようになって!/、る。
[0036] また、図 1中の反応容器 1において、基板 8と対向する側に対向電極 9が設けられ、 さらに、ガス導入口 5および反応容器 1内のガスを排出するための真空ポンプ 4が設 けられている。
[0037] プラズマを発生するための反応容器 1内において膜を成長させようとする基板 8は、 プラズマを誘起させるための給電電極 7に基板 8を設置して成膜を行なうことにより所 望の膜を形成することができる。この時、給電電極 7に対向する対向電極 9上に別の 高周波電源から電位を付与して、成膜しょうとする基板 8上の電位を任意に調整する こともできる。この場合において、本発明では、基板 8側の給電電極 7が、負電位にな るようにすることに特徴を有する。
[0038] また、高密度プラズマ源を用いた成膜装置内で膜を成長させようとする場合は、プ ラズマ源の高周波電源 2とは独立した電源を用いて基板に負電荷を印加することに より所望の膜を形成してもよい。
[0039] なお、図 1に示した PCVD装置において、装置の上側に対向電極 9を配置するとと もに、装置の下側に給電電極 7を配置するように構成されている力 これらは互いに 対向するように配置されて ヽればよぐたとえば上下逆の構成であっても勿論よ ヽ(こ の場合、基板 8は、板パネ、ネジ、ピンなどの基板固定部品に支えられるようにできる 構造とすることで給電電極 7に固定される。ここで、サセプタ基板を電極給電 7に直接 設置することも可能であるが、基板搬送用の冶具などを介して基板 8を給電電極 7に 固定することも可能である。)。
[0040] 次に図 1に示した例の本発明の PCVD装置を用いた成膜について説明する。まず 、図 1において、基板 8を給電電極 7上に載置し、反応容器 1内を真空引きする。次い で、原料ガス、キャリアガスおよび必要に応じて上述したその他のガスをガス導入口 5 から反応容器 1内に供給する。供給の際の流量については上述したとおりである。こ れとともに、反応容器 1内の圧力を真空ポンプ 4で真空引きして所定のプロセス圧力 に維持する。また、加熱 Z冷却装置 6により基板 8を所定のプロセス温度に設定する
[0041] また、高周波電源 2により給電電源 7に負電荷を印加して、反応容器 1内のガスに プラズマを発生させる。プラズマ中では原料およびキャリアガス力 Sイオンおよび Zまた はラジカルとなり、これが次々と基板 8に堆積することで膜が形成される。
[0042] このうちイオンは自身の持つ電荷と逆の電位の電極に引き付けられ基板上へ衝突 を繰り返し起こして反応する。つまり電荷の関係から、陽イオンは給電電極 7側に、逆 に陰イオンは対向電極 9側にひきつけられる。
[0043] 一方、ラジカルはプラズマ場中に一様に分布して 、る。このことから給電電極 7側で 成膜を行なった場合には陽イオンを主とする反応が多く起こっており、ラジカル種の 成膜への寄与は少なくなる。
[0044] したがって、本発明では、上述のように電極の電位を調整することにより、成膜され た膜中には残存するラジカル量が少なくすることができるため、 PCVD装置から取り 出された後に空気中の酸素や水等のラジカルに対して活性な物質と膜中に残存す るラジカルとの間の反応が抑制されることになる。
[0045] 膜中にラジカルが残存して 、た場合、膜を加熱した際に、ボラジンラジカルと酸素 や水との反応による B—ヒドロキシボラジンが生成し、また、空気中の水とのさらなる反 応をしてボロキシンとアンモニアが生成し、膜中のラジカルが膜の一部を壊しやすく する。これによつて、アウトガスが生じやすくなつている。しかし、本発明の PCVD装置 を用いた成膜では、膜中のラジカル種が低減されているので、本発明の方法で形成 された膜は残存ラジカル量が少な 、ためにアウトガス量を少なくすることができる。
[0046] なお、図 1に示した平行平板型の PCVD装置において、印加する電力の周波数に はたとえば 13. 56MHzを例示できる力 HF (数十〜数百 kHZ)やマイクロ波(2. 45 GHz) , 30MHz〜300MHzの超短波を用いてもよい。マイクロ波を用いる場合には 、反応ガスを励起し、アフターグロ一中で成膜する方法や、 ECR条件を満たす磁場 中にマイクロ波導入する ECRプラズマ CVDを用いることができる。
[0047] 本発明の PCVD装置を用いて成膜することにより、従来のボラジン骨格を有するィ匕 合物を原料として用いた膜と比較して、より低誘電率な膜を実現することができる。こ こで、「低誘電率」とは、一定の誘電率を長時間にわたり安定して維持できるという意 味であり、具体的には、従来の製法による膜では 3. 0〜1. 8程度の誘電率を数日間 維持していたのに対し、本発明では前記誘電率を少なくとも数年間維持することがで きる。なお、この低誘電率は、たとえば、一定期間、保存した膜を成膜直後と同様の 方法で誘電率を測定することで確認することができる。
[0048] また本発明の PCVD装置を用いて成膜された膜は、従来の PCVD装置で得られた 膜と比較して、より高い架橋密度を実現することができ、より緻密で、機械強度 (弾性 率、強度など)が向上された膜である。この架橋密度の向上は、たとえば、 FT— IRの スペクトル形状から、 1400cm 1付近のピークが低波数側にシフトしていることから確 認することができる。図 4には、この FT— IRのスペクトルの一例を示している力 対向 電極側の膜の FT— IRのスペクトル形状(図中、点線で示す)に対して、給電電極側 の膜の FT— IRのスペクトル形状(図中、実線で示す)は、上記ピークが低波数側に シフトしているのが分かる。
[0049] 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれに限定されること を意図しない。
[0050] (実施例 比較例 1)
図 1に示した例の平行平板型のプラズマ CVD装置を用いて以下の成膜を行った。 キャリアガスとしてヘリウムを用い、流量を 200sccmに設定して反応容器へ投入した 。また、原料ガスとして B, B, B, N, N, N—へキサメチルボラジンガスを、流量を 10s ccmに設定して、加熱されたガス導入口を通じて基板が置かれた反応容器中に導入 した。 B, B, B, N, N, N—へキサメチルボラジンガスの蒸気温度は 150°Cとした。ま た、基板温度を 100°Cに加熱しこの基板を設置している給電電極側から 13. 56MH zの高周波電流を 150Wになるように印加した。なお、反応容器内の圧力を 2Paに維 持した。これにより、基板上に成膜を行った。
[0051] 得られた基板上の膜を昇温脱離ガス分析装置 (TDS)により、 60°CZ分の割合で 昇温しながら、アウトガス量の測定を行った。また、比較のために、対向電極側に基 板を設置した場合 (比較例 1)についても、上記と同時に得られた膜を TDSによりァゥ トガス量の測定を行った。
[0052] 測定の条件としては、基板を lcm角にしてそれぞれの膜から放出されるアウトガス を比較した。図 2に本発明の方法を用いて供給電極側で成膜した膜の昇温時の真空 度を示した。図 2において縦軸は真空度 (Pa)を示し、横軸は温度 (°C)を示す。
[0053] 図 2において、真空度が上昇するほど膜からのアウトガスが放出されることを示して いる。 400°C付近までは真空度に明瞭な変化が見られず、加熱によるアウトガスが発 生していないことがわかる。
[0054] 図 3には比較のために対向電極側で成膜した膜の TDSデータを示した。図 3にお いて、縦軸は真空度 (Pa)を示し、横軸は温度 (°C)を示す。図 3において、 100°C以 上の温度になると真空度が上昇することから対向電極側で成膜を行なうとアウトガス が発生していることがわかる。これらのことから成膜しょうとする基板を給電電極上に 設置して、負電位にすることにより、アウトガスの少ない膜が形成できることが分かつ た。
[0055] (実施例 2〜13、比較例 2〜13)
実施例 1と同様な方法で原料ガスの種類を替えて作成した膜の TDS測定を行なつ た。実施例 2〜9 (給電電極側で成膜を行なった場合)についての結果を表 1、比較 例 2〜9 (対向電極側で成膜を行なった場合)についての結果を表 2に示す。また、実 施例 10〜 13 (給電電極側で成膜を行なった場合)についての結果を表 3、比較例 1 0〜13 (対向電極側で成膜を行なった場合)についての結果を表 4に示す。
[表 1]
§s
, 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 実施例 8 実施例 9
Ν,Ν,ΝΗ·リメチ Β,Β.Β-トリェチ Β,Β,Β-トリェチ B.B,8-トリビ B,8,B -トリェチ Β,Ν,Ν,Ν-テト Β,Β,Β,Ν,Ν,Ν- ホラシ"ン 原料ガス ルホラシ'ン ルホラシ'ン ル— Ν,Ν,Ν—トリ 二ル_ -ト 二ル- Ν,Ν,Ν -卜 ラメチル; Γラシ"ン ンタメチルホ 'ラ
メチルホ 'ラシ'ン リメチルホ 'ラシ'ン リメチルホ 'ラシ'ン シン
キャリアガス He He He Ar Ar He He He
RFパワー(W) 500 400 150 300 100 500 400 150
TDSの 400°Cに
1 .61 X 10 7 1 .41 X 10"7 2.00 x 10— 7 1 ,92 X 10— 7 1 .36 10 7 1 .99 X 10 7 2.36 X 10—7 3.07 10"6 おける真空度 (Pa)
比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 比較例 7 比較例 8 比較例 9
Figure imgf000015_0001
Ν,Ν.Ν—トリメチ Β,Β,Β -トリェチ Β,Β,Β -卜1 JIチ Β,Β,Β-トリビ Β,Β,Β -トリ Iチ Β,Ν,Ν,Ν-亍ト Β,Β,Β,Ν,Ν,Ν- ホ'ラシ'ン 原料ガス ルホラシン ルホラシ'ン ルー Ν,Ν,Ν トリ ニル-鼠 Ν-ト 二ル- Ν,Ν.Ν -ト ラメチルホ 'ラシ'ンヘンタメチルホ 'ラ
メチルホ 'ラシ'ン リメチルホ 'ラシ'ン リメチルホ 'ラシ'ン シン
キャリアガス He He He Ar Ar He He He
RFパワー(W) 500 400 150 300 100 500 400 150
TDSの 400°Cに
2.64 X 10一5 2.07 X 10 2.17 X 10"5 2.1 7 X ί θ— 5
おける真空度 (Pa) 1.32 X 10— 5 2.51 X 10一5 2.68 X 10 5 -
Figure imgf000016_0001
塑〕0059
ο
較較較例較例例比例比比比 11101312 X
プブトトリトリイトリリり ΒΒァ ΒΒΒ ΒΒΒ ΒΒΒチΒロソ ---- ,,,,,,,,
ビ料ガ''''原ブ ''ホ''ホホホシシシルラシスルラルラチルランンンン
ガキリアスャ
0>パ()ワ ο RFWー
°にの TDS 400C
5555一" 2110 3010 31510 2561075 X X....
おる真空度け ()Pa ο
ェ ο
ο
ェ ο
[0060] 表 1〜表 4より、 V、ずれの場合でも給電側電極で作成された膜のアウトガスが、対向 電極側で成膜されたものよりも少なくすることができることがわ力つた。なお、ボラジン (化学式(1)中 R R
1から 6すべてが水素)を原料として用いて対向電極側で成膜を行 なった比較例 9では、成膜装置から取り出し直後から膜が白濁し始めたため、 TDS 測定をするに至らな力つた。これは膜の吸湿性が非常に高いためであると思われる。
[0061] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求 の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が 含まれることが意図される。

Claims

請求の範囲
[1] ボラジン骨格を有する化合物を供給する手段 (5)と、
プラズマを発生させるためのプラズマ発生器と、
基板 (8)を設置する電極 (7)に負電荷を印加する手段(2)とを備える、プラズマ CV
[2] 前記ボラジン骨格を有する化合物が、下記化学式(1)で示されるものである、
の範囲第 1項に記載の装置。
[化 1]
Figure imgf000018_0001
(式中、 R〜Rは、それぞれ同一であっても異なっていてもよぐ水素原子、炭素数 1
1 6
〜4のアルキル基、アルケニル基またはアルキ-ル基カゝらそれぞれ独立して選択され 、かつ R〜Rの少なくとも 1つは水素原子でない)
1 6
[3] 基板上にプラズマ化学的気相成長により膜を形成するための反応容器と、反応容 器外に設けられたプラズマ発生器を備えた、請求の範囲第 1項に記載の装置。
[4] 基板 (8)上にプラズマ化学的気相成長により膜を形成するための反応容器(1)と、 反応容器(1)内に設けられたプラズマ発生器を備えた、請求の範囲第 1項に記載の
[5] プラズマ発生器が基板 (8)を設置する電極 (7)に設けられたものである、請求の範 囲第 4項に記載の装置。
PCT/JP2005/018615 2004-10-19 2005-10-07 プラズマcvd装置 WO2006043433A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/577,008 US20080029027A1 (en) 2004-10-19 2005-10-07 Plasma Cvd Device
JP2006542326A JPWO2006043433A1 (ja) 2004-10-19 2005-10-07 プラズマcvd装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004304015 2004-10-19
JP2004-304015 2004-10-19

Publications (1)

Publication Number Publication Date
WO2006043433A1 true WO2006043433A1 (ja) 2006-04-27

Family

ID=36202850

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/018614 WO2006043432A1 (ja) 2004-10-19 2005-10-07 膜の製造方法および当該方法で製造された膜を用いた半導体装置
PCT/JP2005/018615 WO2006043433A1 (ja) 2004-10-19 2005-10-07 プラズマcvd装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018614 WO2006043432A1 (ja) 2004-10-19 2005-10-07 膜の製造方法および当該方法で製造された膜を用いた半導体装置

Country Status (6)

Country Link
US (2) US20080029027A1 (ja)
JP (2) JPWO2006043433A1 (ja)
KR (2) KR20070057284A (ja)
CN (2) CN100464395C (ja)
TW (2) TWI295072B (ja)
WO (2) WO2006043432A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923221A1 (fr) * 2007-11-07 2009-05-08 Air Liquide Procede de depot par cvd ou pvd de composes de bore
US20100181654A1 (en) * 2007-06-18 2010-07-22 Mitsubishi Heavy Industries, Ltd. Manufacturing method of semiconductor device, insulating film for semiconductor device, and manufacturing apparatus of the same
US8404314B2 (en) 2006-03-29 2013-03-26 Mitsubishi Electric Corporation Plasma CVD apparatus, method for forming thin film and semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080029027A1 (en) * 2004-10-19 2008-02-07 Mitsubishi Electric Corporation Plasma Cvd Device
JP2009102234A (ja) * 2007-10-20 2009-05-14 Nippon Shokubai Co Ltd 放熱材料形成用化合物
WO2011127258A1 (en) 2010-04-07 2011-10-13 Massachusetts Institute Of Technology Fabrication of large-area hexagonal boron nitride thin films
RU2482121C1 (ru) * 2012-03-23 2013-05-20 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ИНСТИТУТ ОРГАНИЧЕСКОЙ ХИМИИ им. Н.Д. ЗЕЛИНСКОГО РОССИЙСКОЙ АКАДЕМИИ НАУК (ИОХ РАН) Способ получения в-триаллилборазола (варианты)
CN106211763B (zh) * 2014-03-25 2019-08-27 住友金属矿山株式会社 包覆焊料材料及其制造方法
JP6347705B2 (ja) * 2014-09-17 2018-06-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
CN108220922B (zh) * 2016-12-15 2020-12-29 东京毅力科创株式会社 成膜方法、硼膜以及成膜装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841633A (ja) * 1994-06-16 1996-02-13 Ford Motor Co 透明な非晶性の水素添加された硬質チッ化ホウ素膜及びその製造方法
JP2001302218A (ja) * 1999-12-27 2001-10-31 National Institute For Materials Science 立方晶窒化ホウ素及びその気相合成法
JP2004186649A (ja) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp 低誘電率膜の形成方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221778A (ja) * 1985-07-17 1987-01-30 東芝タンガロイ株式会社 立方晶窒化ホウ素被覆体及びその製造方法
EP0450125B1 (de) * 1990-04-06 1994-10-26 Siemens Aktiengesellschaft Verfahren zur Herstellung von mikrokristallin kubischen Bornitridschichten
DE4113791A1 (de) * 1991-04-26 1992-10-29 Solvay Deutschland Verfahren zur abscheidung einer bor und stickstoff enthaltenden schicht
JPH0590253A (ja) * 1991-09-25 1993-04-09 Kobe Steel Ltd 絶縁性被膜の形成方法および形成装置
KR100290748B1 (ko) * 1993-01-29 2001-06-01 히가시 데쓰로 플라즈마 처리장치
JPH07201818A (ja) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd ドライエッチング装置
JP3119172B2 (ja) * 1995-09-13 2000-12-18 日新電機株式会社 プラズマcvd法及び装置
US6177023B1 (en) * 1997-07-11 2001-01-23 Applied Komatsu Technology, Inc. Method and apparatus for electrostatically maintaining substrate flatness
US6042700A (en) * 1997-09-15 2000-03-28 Applied Materials, Inc. Adjustment of deposition uniformity in an inductively coupled plasma source
US6136165A (en) * 1997-11-26 2000-10-24 Cvc Products, Inc. Apparatus for inductively-coupled-plasma-enhanced ionized physical-vapor deposition
US6139679A (en) * 1998-10-15 2000-10-31 Applied Materials, Inc. Coil and coil feedthrough
JP3767248B2 (ja) * 1999-06-01 2006-04-19 三菱電機株式会社 半導体装置
US6431112B1 (en) * 1999-06-15 2002-08-13 Tokyo Electron Limited Apparatus and method for plasma processing of a substrate utilizing an electrostatic chuck
JP3508629B2 (ja) * 1999-06-28 2004-03-22 三菱電機株式会社 耐熱低誘電率薄膜の形成方法、その耐熱低誘電率薄膜からなる半導体層間絶縁膜及びこの半導体層間絶縁膜を用いた半導体装置
US6383465B1 (en) * 1999-12-27 2002-05-07 National Institute For Research In Inorganic Materials Cubic boron nitride and its gas phase synthesis method
US6261408B1 (en) * 2000-02-16 2001-07-17 Applied Materials, Inc. Method and apparatus for semiconductor processing chamber pressure control
TW521386B (en) * 2000-06-28 2003-02-21 Mitsubishi Heavy Ind Ltd Hexagonal boron nitride film with low dielectric constant, layer dielectric film and method of production thereof, and plasma CVD apparatus
JP2002016064A (ja) * 2000-06-28 2002-01-18 Mitsubishi Heavy Ind Ltd 低誘電率六方晶窒化ホウ素膜、層間絶縁膜及びその製造方法
JP2002246381A (ja) * 2001-02-15 2002-08-30 Anelva Corp Cvd方法
US7192540B2 (en) * 2001-08-31 2007-03-20 Mitsubishi Denki Kabushiki Kaisha Low dielectric constant material having thermal resistance, insulation film between semiconductor layers using the same, and semiconductor device
JP3778045B2 (ja) * 2001-10-09 2006-05-24 三菱電機株式会社 低誘電率材料の製造方法および低誘電率材料、並びにこの低誘電率材料を用いた絶縁膜および半導体装置
JP4461215B2 (ja) * 2003-09-08 2010-05-12 独立行政法人産業技術総合研究所 低誘電率絶縁材料とそれを用いた半導体装置
US20080029027A1 (en) * 2004-10-19 2008-02-07 Mitsubishi Electric Corporation Plasma Cvd Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841633A (ja) * 1994-06-16 1996-02-13 Ford Motor Co 透明な非晶性の水素添加された硬質チッ化ホウ素膜及びその製造方法
JP2001302218A (ja) * 1999-12-27 2001-10-31 National Institute For Materials Science 立方晶窒化ホウ素及びその気相合成法
JP2004186649A (ja) * 2002-12-06 2004-07-02 Mitsubishi Electric Corp 低誘電率膜の形成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404314B2 (en) 2006-03-29 2013-03-26 Mitsubishi Electric Corporation Plasma CVD apparatus, method for forming thin film and semiconductor device
US20130160711A1 (en) * 2006-03-29 2013-06-27 Teruhiko Kumada Plasma cvd apparatus, method for forming thin film and semiconductor device
US20100181654A1 (en) * 2007-06-18 2010-07-22 Mitsubishi Heavy Industries, Ltd. Manufacturing method of semiconductor device, insulating film for semiconductor device, and manufacturing apparatus of the same
FR2923221A1 (fr) * 2007-11-07 2009-05-08 Air Liquide Procede de depot par cvd ou pvd de composes de bore
WO2009068769A1 (fr) * 2007-11-07 2009-06-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de depot par cvd ou pvd de composes de bore

Also Published As

Publication number Publication date
US20080029027A1 (en) 2008-02-07
WO2006043432A1 (ja) 2006-04-27
US20080038585A1 (en) 2008-02-14
TWI295072B (en) 2008-03-21
CN101023516A (zh) 2007-08-22
TW200633063A (en) 2006-09-16
CN101044603A (zh) 2007-09-26
TW200620426A (en) 2006-06-16
KR20070057284A (ko) 2007-06-04
JPWO2006043432A1 (ja) 2008-05-22
JP4986625B2 (ja) 2012-07-25
KR20070065443A (ko) 2007-06-22
JPWO2006043433A1 (ja) 2008-05-22
CN100464395C (zh) 2009-02-25
TWI280622B (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2006043433A1 (ja) プラズマcvd装置
KR101057252B1 (ko) 플라즈마 cvd 장치, 박막형성 방법 및 반도체 장치
US7211525B1 (en) Hydrogen treatment enhanced gap fill
US20040083973A1 (en) Film forming method and film forming device
US20100099271A1 (en) Method for improving process control and film conformality of pecvd film
CN101107383A (zh) 改善低k叠层之间粘附性的界面工程
JPH06168937A (ja) シリコン酸化膜の製造方法
JP2011089186A (ja) 炭窒化ケイ素含有膜、その製法、及びその用途
CN106555175A (zh) 一种高密度等离子体增强化学气相沉积设备
JPS6054995A (ja) ダイヤモンドの合成法
US20040115349A1 (en) Film forming method and film forming device
JP3781730B2 (ja) 低誘電率及び高機械的強度を有するシリコン系絶縁膜の形成方法
JP3197008B2 (ja) 半導体基板上のシリコン重合体絶縁膜及びその膜を形成する方法
JP2009235510A (ja) 窒化珪素膜の成膜方法、ガスバリアフィルムの製造方法、および、ガスバリアフィルム
US20040092086A1 (en) Film forming method and film forming device
WO2011105163A1 (ja) プラズマ成膜装置及び方法
JP4600427B2 (ja) 薄膜形成方法および半導体装置
JP2000349083A (ja) 半導体基板上のシリコン重合体絶縁膜及びその膜を形成する方法
JP2951564B2 (ja) 薄膜形成方法
CN105453222A (zh) 薄膜制造方法
KR20130141064A (ko) 박막 제조 방법
KR20210004025A (ko) 산화그래핀 적층장치 및 이를 이용한 적층방법
WO2014204027A1 (ko) 박막 제조 방법
JPH01100093A (ja) ダイヤモンド薄膜の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006542326

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11577008

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580035904.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077011260

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 05790629

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11577008

Country of ref document: US