WO2005119377A1 - アナログ電子時計及びモータ制御回路 - Google Patents

アナログ電子時計及びモータ制御回路 Download PDF

Info

Publication number
WO2005119377A1
WO2005119377A1 PCT/JP2005/010016 JP2005010016W WO2005119377A1 WO 2005119377 A1 WO2005119377 A1 WO 2005119377A1 JP 2005010016 W JP2005010016 W JP 2005010016W WO 2005119377 A1 WO2005119377 A1 WO 2005119377A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
rotation detection
drive pulse
main drive
detection signal
Prior art date
Application number
PCT/JP2005/010016
Other languages
English (en)
French (fr)
Inventor
Saburo Manaka
Kenji Ogasawara
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Priority to JP2006514106A priority Critical patent/JP4863871B2/ja
Priority to US11/628,047 priority patent/US7606116B2/en
Publication of WO2005119377A1 publication Critical patent/WO2005119377A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors rotating step by step
    • H02P8/02Arrangements for controlling dynamo-electric motors rotating step by step specially adapted for single-phase or bi-pole stepper motors, e.g. watch-motors, clock-motors
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/14Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
    • G04C3/143Means to reduce power consumption by reducing pulse width or amplitude and related problems, e.g. detection of unwanted or missing step

Definitions

  • the present invention relates to an analog electronic timepiece and a motor control circuit suitable for an analog electronic timepiece and the like.
  • an analog electronic timepiece in which a time hand for displaying time, such as an hour hand and a minute hand, is rotationally driven by a motor has been used.
  • the analog electronic timepiece has a motor for rotating a time hand and a motor control circuit for controlling the rotation of the motor.
  • the motor control circuit rotates the motor based on a time signal serving as a time reference. The time is displayed by the time hand by moving.
  • the motor in order to rotationally drive a motor for rotating a time hand, the motor is rotationally driven by selectively using a plurality of main drive pulses, and When the rotation detection circuit detects that the motor cannot rotate, the motor is rotated by using the corrected drive norse longer than the main drive norses, and the motor is rotated. It is configured to be able to rotate and drive with the minimum energy according to the load.
  • a load such as a calendar for an electronic watch cannot be driven by a main driving pulse having a minimum pulse width (minimum energy). Change the pulse width (pulse width) to the main drive pulse (pulse up) and rotate the drive! /
  • the main drive pulse at that time is When the motor is driven stably a predetermined number of times, the pulse is reduced.
  • the counter circuit counts that the normal rotation drive operation by the main drive pulse at that time has been performed continuously for a predetermined number of times, and when the counter circuit counts the predetermined number of times, the noise reduction is performed.
  • the motor is driven a predetermined number of times by a main drive pulse having a pulse width larger than necessary, and thus there is a problem that power consumption is increased. For this reason, in an electronic timepiece or the like using a battery as a power source, there is a problem that the battery life is shortened, the number of times of battery replacement increases, and the battery replacement operation becomes complicated.
  • Patent Document 1 Japanese Patent Publication No. 61-15385 (page 4, right column, line 5 to page 5, right column, line 27, FIGS. 11 to 22)
  • rotation detection means for detecting a rotation detection signal corresponding to the rotation of the motor, and detecting whether or not the motor has rotated based on the rotation detection signal;
  • Medium force of a plurality of different main drive pulses The main drive pulse corresponding to the magnitude of the load of the motor is selected to drive the motor to rotate, and the rotation detecting means operates the main drive pulse based on the rotation detection signal.
  • control means for forcibly driving the motor with a correction driving pulse when the energy is greater than each of the main driving pulses when it is detected that the motor does not rotate.
  • control means may determine whether the time until the rotation detection signal indicating that the motor has rotated is detected by the rotation detection means and a predetermined reference time are larger or smaller.
  • the control means is configured to determine, based on a magnitude relationship between a time until a rotation detection signal indicating that the motor has been rotated is detected by the rotation detection means and a predetermined reference time, a ⁇ of a plurality of main drive pulses. Then, the motor is rotationally driven by the selected main drive pulse.
  • the control means detects a rotation detection signal indicating that the motor has rotated after the elapse of the reference time by the rotation detection means.
  • the motor may be driven to rotate without changing the main drive pulse.
  • control means may be arranged such that, when the motor is rotationally driven by the main drive pulse, a rotation detection signal indicating that the motor has been rotated is detected by the rotation detection means before the reference time has elapsed.
  • the motor may be configured to select a main drive pulse and rotate the motor by selecting a main drive pulse whose energy is smaller than that of the rotationally driven main drive pulse.
  • the rotation detecting means for detecting a rotation detection signal corresponding to the rotation of the motor, and detecting whether or not the motor has rotated based on the rotation detection signal, Medium force of a plurality of different main drive pulses
  • the main drive pulse is selected according to the magnitude of the load of the motor to drive the motor to rotate, and the rotation detecting means is configured to rotate the motor based on the rotation detection signal.
  • the motor A motor driving circuit comprising: control means for forcibly driving the motor to rotate with a correction driving pulse when the rotation is detected as having a greater energy than each of the main driving pulses.
  • the control means detects the first rotation when the rotation detection means detects a rotation detection signal indicating that the motor has rotated.
  • the rotation detection unit detects a rotation detection signal indicating that the motor has been rotated by the rotation detection means, the motor is rotated by the correction drive pulse.
  • a rotation detection signal indicating that the motor has rotated is detected, and a rotation detection signal indicating that the motor has rotated is detected by the rotation detecting means after a predetermined reference time has elapsed.
  • the rotation detection means indicates that the motor has been rotated. If a rotation detection signal is detected and a rotation detection signal indicating that the motor has been rotated is detected by the rotation detection means before a predetermined reference time has elapsed, the previous
  • the motor When the motor is driven by the second main drive pulse, if the rotation detection means detects a rotation detection signal indicating that the motor has rotated, the motor is driven by the correction drive pulse.
  • a motor control circuit is provided, wherein the motor is rotationally driven by the first main drive pulse after the rotational drive.
  • the control means detects the first signal when the rotation detection means detects a rotation detection signal indicating that the motor has rotated.
  • the rotation detection means detects a rotation detection signal indicating that the motor has rotated.
  • the rotation of the motor by the second main drive pulse is controlled.
  • a rotation detection signal indicating that the motor has rotated is detected by the rotation detection unit, and a rotation detection signal indicating that the motor has rotated is output. If the rotation is detected by the rotation detection means before a predetermined reference time has elapsed,
  • the motor When the motor is driven by the second main drive pulse, if the rotation detection means detects a rotation detection signal indicating that the motor has rotated, the motor is driven by the correction drive pulse. After the rotational drive, the motor is rotationally driven by the first main drive pulse.
  • the control means when the motor is rotationally driven by the main drive pulse with a small energy, the control means outputs a rotation detection signal indicating that the motor has rotated before the first reference time elapses. If detected, the motor may be driven to rotate without changing the main drive pulse.
  • a rotation detection signal indicating that the motor has rotated is output by the rotation detection unit after a first reference time has elapsed. If detected, the driving pulse may be changed so that the motor has a larger energy than the main driving pulse and the main driving pulse rotates the motor.
  • the control means when the motor is rotated by a main drive pulse having a large energy, the control means outputs a rotation detection signal indicating that the motor has rotated before the second reference time elapses. If detected, the driving pulse may be changed so that the energy is smaller than the main driving pulse and the motor is rotationally driven by the main driving pulse.
  • the rotation detecting signal indicating that the motor has rotated is transmitted after the second reference time has elapsed, and the rotation detecting means is configured to control the rotation detecting means. If detected, the motor may be driven to rotate without changing the main drive pulse.
  • control means drives the motor by the main drive pulse
  • the rotation detection means cannot detect a rotation detection signal indicating that the motor has rotated
  • the control means performs the correction drive.
  • the motor may be configured to be rotationally driven by a pulse.
  • rotation detection means for detecting a rotation detection signal according to the rotation of the motor, and detecting whether or not the motor has rotated based on the rotation detection signal, Medium force of a plurality of different main drive pulses
  • the main drive pulse is selected according to the magnitude of the load of the motor to drive the motor to rotate, and the rotation detecting means is configured to rotate the motor based on the rotation detection signal.
  • the rotational drive by the drive pulse when it is detected that the motor does not rotate, the energy is greater than each of the main drive pulses.
  • the control means for forcibly rotating the motor with the correction drive pulse is provided. In the motor drive circuit,
  • a rotation detection signal indicating that the motor has rotated is detected by the rotation detection means before a first reference time has elapsed. If it is, the motor is rotationally driven without changing the main drive pulse,
  • the control means When the motor is rotationally driven by a first main drive pulse having a first pulse width, the control means outputs the rotation detection signal indicating that the motor has rotated before the first reference time elapses. If it is detected by the above, the motor is rotationally driven without changing the main drive pulse,
  • the first and second reference times may be configured to be the same time.
  • a motor for rotationally driving the time hand and a motor control circuit for performing a time counting operation based on a time signal serving as a time reference and controlling the rotation of the motor An analog electronic timepiece having a road and displaying the time with the time hand by rotating the motor by the motor control circuit.
  • An analog electronic timepiece provided by using the motor control circuit described in (1).
  • the motor can be rotationally driven with a main drive pulse of energy corresponding to the load with a simple configuration without using a counter circuit.
  • the motor can be rotationally driven with a main drive pulse of energy corresponding to the load with a simple configuration without using a counter circuit. Further, low power consumption can be achieved.
  • FIG. 1 is a block diagram of an analog electronic timepiece according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a step motor used for the analog electronic timepiece according to the embodiment of the present invention.
  • FIG. 3 is a timing chart showing an operation of the analog electronic timepiece according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing an operation of the analog electronic timepiece according to the embodiment of the present invention.
  • FIG. 5 is a timing chart showing an operation of the analog electronic timepiece according to the embodiment of the present invention.
  • FIG. 6 is a timing chart showing an operation of an analog electronic timepiece according to another embodiment of the present invention.
  • FIG. 7 is a flowchart showing the operation of an analog electronic timepiece according to another embodiment of the present invention.
  • FIG. 8 is a timing chart showing an operation of the analog electronic timepiece according to another embodiment of the present invention.
  • Rotation detection circuit constituting rotation detection means and control means
  • FIG. 1 is a block diagram of an analog electronic timepiece according to an embodiment of the present invention, showing an example of an analog electronic timepiece.
  • the electronic timepiece includes an oscillating circuit 101 that generates a signal of a predetermined frequency, a frequency dividing circuit 102 that divides a signal generated by the oscillating circuit 101 to generate a clock signal that is used as a reference for timekeeping, Control circuit 103 that controls each electronic circuit element that constitutes the motor and controls the change of the drive pulse, etc .; a drive pulse selection circuit that selects and outputs a drive pulse for motor rotation drive based on a control signal from the control circuit 103 104, drive pulse selection circuit 104 motor 105, which is rotationally driven by a driving pulse of force 104, and a time hand, which is rotationally driven by motor 105 and displays time (in the example of FIG.
  • a rotation detection circuit 110 for detecting a rotation detection signal indicating a rotation state from the motor 105, a predetermined time (for example, when a drive pulse supply to the motor 105 is started, or when a drive
  • a detection time discrimination circuit 111 for discriminating a magnitude relationship between a time from when the rotation of the motor 105 is detected until the rotation detection circuit 110 detects the rotation of the motor 105 to a predetermined reference time. ing.
  • the rotation detection circuit 110 has the same configuration as the rotation detection circuit described in Patent Document 1, and exceeds a predetermined reference signal voltage Vcomp when the motor 105 rotates. A rotation detection signal of a level is detected, and when the motor 105 does not rotate, a rotation detection signal of a level exceeding the reference signal voltage Vcomp cannot be detected.
  • the control circuit 103, the drive pulse selection circuit 104, the rotation detection circuit 110, and the detection time discrimination circuit 111 constitute a motor control circuit. Further, the control circuit 103, the rotation detection circuit 110 and the detection time determination circuit 111 constitute a rotation detection means, and the control circuit 103, the drive pulse selection circuit 104, the rotation detection circuit 110 and the detection time determination circuit 111 serve as the control means. It is composed.
  • FIG. 2 is a configuration diagram of a motor 105 used in the embodiment of the present invention, and shows an example of a clock step motor generally used in an analog electronic clock.
  • a motor 105 includes a stator 201 having a rotor housing through hole 203, a rotor 202 rotatably disposed in the rotor housing through hole 203, and a magnetic core integrally formed with the stator 201. 208 and a coil 209 wound around a magnetic core 208.
  • the stator 201 and the magnetic core 208 are fixed to a ground plate (not shown) by screws (not shown).
  • the rotor 202 is magnetized into two poles (S pole and N pole).
  • a plurality of (two in this embodiment) cutouts (outer notches) 206, 207 are provided at positions opposing each other with the through hole 203 for accommodating the rotor therebetween. Is provided.
  • Saturable portions 210 and 211 are provided between the outer notches 206 and 207 and the through holes 203 for accommodating the rotor.
  • the saturable portions 210 and 211 are not magnetically saturated by the magnetic flux of the rotor 202,
  • the rotor housing through-hole 203 is a circular hole in which a plurality of (two in the present embodiment) semi-lunar cutouts (inner notches) 204 and 205 are integrally formed in a portion facing the through-hole having a circular contour. It is configured in a shape.
  • the notches 204 and 205 constitute a positioning part for determining the stop position of the rotor 202.
  • the rotor 202 In a state where the coil 209 is not excited, the rotor 202 is positioned at the position corresponding to the positioning portion, in other words, the magnetic pole axis A force of the rotor 202 as shown in FIG. It stops stably at a position orthogonal to the line connecting the parts 204 and 205.
  • a drive pulse of a rectangular wave of the opposite polarity is supplied from the drive pulse selection circuit 104 to the coil 209 and a current is caused to flow in the direction opposite to the arrow in FIG. Magnetic flux is generated.
  • the saturable portions 210 and 211 are first saturated, and thereafter, the interaction between the magnetic poles generated in the stator 201 and the magnetic poles of the rotor 202 causes the rotor 202 to rotate 180 degrees in the same direction as described above, and stably. Stop.
  • a plurality of main drive pulses Pll, PI2 and a correction drive pulse P2 are used as drive pulses, as described later.
  • FIG. 3 shows a plurality of (two types in the present embodiment) main drive pulses (first main drive pulse P 11 having a first pulse width and a second pulse width) used in the present embodiment.
  • FIG. 6 is a timing chart showing a second main drive pulse P1 2) and a rotation detection signal indicating whether or not the motor 105 has rotated.
  • main driving pulses P11 and P12 are rectangular wave pulse signals having different driving energies (pulse widths in the present embodiment), and main driving pulse P11 is a main driving pulse.
  • the energy is smaller than that of Luth 12! /, In other words, the pulse width is short!
  • the correction drive pulse P2 having the third pulse width has a larger energy (longer pulse width) than the main drive pulses P11 and P12. That is, each drive pulse Pl l, P
  • P2 is configured such that each pulse width becomes P1 K P12 and P2.
  • a rotation detection signal Sl at a level exceeding a predetermined reference signal voltage Vcomp a S2 force is a rotation detection signal indicating that the motor 105 has rotated.
  • the rotation detection signal equal to or lower than the reference signal voltage Vcomp is a rotation detection signal detected when the motor 105 is not rotating.
  • the main drive pulses Pll and P12 are drive pulses for continuously rotating the motor 105.
  • the correction drive pulse P2 is a main drive pulse when the load of the motor 105 is increased.
  • the dynamic pulses Pll and P12 are drive pulses used temporarily to forcibly drive the motor 105 when the motor 105 cannot be rotationally driven.
  • motor 105 rotates faster. If a rotation detection signal indicating that the motor 105 has rotated is generated early and the pulse width of the main drive pulse is smaller than the magnitude of the load of the motor 105, the motor 105 rotates slowly. When the rotation detection signal indicating that the motor 105 has rotated is generated at a later time and the pulse width of the main drive pulse is too small compared to the load of the motor 105, the motor 105 does not rotate. This is based on the fact that a rotation detection signal indicating that the motor 105 has rotated is not generated.
  • any one of the plurality of main drive pulses Pl l and P12 is selected, and the motor 105 is rotated by the selected main drive pulse. It is configured.
  • one of the plurality of main drive pulses P11 and P12 is selected in accordance with the magnitude of the load, and the motor 105 is driven by the selected main drive pulse. If the load is small! /, The motor is driven to rotate by the main drive pulse P11, and if the load is too large to rotate by the main drive pulse P11, the motor is driven to rotate by the main drive pulse P12. I have.
  • the detection time discrimination is made that the rotation detection signal S1 indicating that the motor 105 has rotated has been generated within a predetermined reference time (time T1).
  • the circuit 111 determines, that is, the rotation detection signal S1 indicating that the motor 105 has rotated is detected by the rotation detection circuit 110 before the predetermined reference time t has elapsed.
  • the control circuit 103 determines that the motor 105 is being rotationally driven with an appropriate energy for the load of the motor 105, and continues the rotational driving of the motor 105 with the main drive pulse P11.
  • the rotation detection signal S2 indicating that the motor 105 has rotated is generated for a predetermined reference time or longer (within the time T2), and the detection time is determined.
  • the control circuit 103 determines, that is, when the rotation detection signal S2 indicating that the motor 105 has rotated is detected by the rotation detection circuit 110 after a predetermined reference time t has elapsed, the control circuit 103 It is determined that the motor 105 is driven by the main drive pulse P12 suitable for the load, and the motor 105 is continuously driven to rotate by the main drive pulse P12.
  • the rotation detection signal S1 indicating that the motor 105 has been rotated is generated within a predetermined reference time (time T1).
  • the detection time determination circuit 111 determines that the rotation of the motor 105 has been started, that is, when the rotation detection circuit 110 detects the rotation detection signal before the predetermined reference time t has elapsed
  • the control circuit 103 The motor 105 is driven by the main drive pulse P12 having a larger energy than the load of the motor 105, that is, it is determined that energy is wasted, and the motor 105 is rotated by the main drive pulse PI1.
  • the main drive pulse is selectively switched (pulse down), and the motor 105 is controlled to be rotationally driven by the newly selected main drive pulse PI1.
  • FIG. 4 is a flowchart showing an operation of the analog electronic timepiece according to the embodiment of the present invention, and is a flowchart mainly showing a process of control circuit 103.
  • FIG. 5 is a timing chart showing an operation of the analog electronic timepiece according to the embodiment of the present invention.
  • an oscillation circuit 101 generates a reference clock signal of a predetermined frequency
  • a frequency divider 102 divides the frequency of the signal generated by the oscillation circuit 101 to generate a clock signal as a reference for timekeeping, and outputs the clock signal to the control circuit 103.
  • the control circuit 103 counts the time signal and performs a time counting operation. At a predetermined timing, the control circuit 103 rotates the motor 105 with a short pulse width and the first main drive pulse P11. The control signal is output (step S401 in FIG. 4).
  • the drive pulse selection circuit 104 drives and rotates the motor 105 with the main drive pulse P11 in response to a control signal from the control circuit 103.
  • the motor 105 is driven to rotate by the main drive pulse P11, and drives the time hands 107 to 109 to rotate.
  • the current time is displayed on the display unit 106 by the time hands 107 to 109 at any time.
  • the rotation detection circuit 110 detects a rotation detection signal indicating a rotation state from the motor 105 and outputs the rotation detection signal to the detection time determination circuit 111.
  • the detection time determination circuit 111 compares the rotation detection signal from the rotation detection circuit 110 with a predetermined reference signal voltage Vcomp, and determines whether or not the rotation detection signal voltage exceeds the reference signal voltage Vcomp. Determines whether or not the motor has rotated, notifies the control circuit 103 of the force or non-rotational force, and when a rotation detection signal exceeding the reference signal voltage Vcomp is detected, the main drive pulse P11 is output to the motor 10 5.
  • the control circuit 103 compares the time from when the rotation is completed to the time when the rotation detection signal is generated to a predetermined reference time t, and notifies the control circuit 103 whether or not the time until the generation is longer than the reference time.
  • the control circuit 103 determines whether or not the voltage of the rotation detection signal has exceeded the reference signal voltage Vcopmp, that is, whether or not the motor 105 has rotated, based on the information from the detection time determination circuit 111 ( Step S402).
  • step S402 determines in step S402 that the rotation detection signal voltage has exceeded the reference signal voltage Vcomp, that is, determines that the motor 105 has rotated
  • the load on the motor 105 is reduced.
  • step S401 a control signal for continuously driving the motor 105 to rotate by the main drive pulse PI1 is output to the drive pulse selection circuit 104, because the size can be driven by the main drive pulse P11. I do.
  • the drive pulse selection circuit 104 continuously drives and rotates the motor 105 by the main drive pulse PI1 in response to the control signal from the control circuit 103. By repeating the above, the normal driving operation is performed.
  • step S402 when it is determined that the rotation detection signal voltage has exceeded the reference voltage Vcomp, and immediately when the motor 105 is determined not to rotate, the load of the motor 105 is changed to the main drive pulse PI. Since the size cannot be driven by 1, the control signal for temporarily driving the motor 105 to rotate by the correction drive pulse P2 is temporarily output to the drive pulse selection circuit 104 (step S403).
  • the drive pulse selection circuit 104 drives the motor 105 with the corrected drive pulse P2 in response to the control signal from the control circuit 103. As a result, the motor 105 is rotated by the correction driving pulse P2 immediately after the force that does not rotate when the main driving pulse PI1 is driven.
  • the control circuit 103 controls the motor 105 to be rotationally driven by the main drive pulse P12 (Step S404).
  • the drive pulse selection circuit 104 rotates the motor 105 by the main drive pulse P12 under the control of the control circuit 103.
  • step S404 the control circuit 103 drives the motor 105 to rotate by the main drive pulse P12, and then, based on the information from the detection time determination circuit 111, sets the rotation detection signal voltage to the reference voltage Vcomp. It is determined whether or not the force has exceeded, that is, whether or not the motor 105 has rotated (step S405).
  • step S405 determines that the rotation detection signal voltage has exceeded the reference voltage Vcomp, that is, determines that the motor 105 has not rotated
  • the control circuit 103 Since the load cannot be driven by the main drive pulse P12, a control signal for rotating the motor 105 by the correction drive pulse P2 is temporarily output to the drive pulse selection circuit 104 (step S406).
  • the drive pulse selection circuit 104 drives the motor 105 by the correction drive pulse P2 in response to the control signal from the control circuit 103.
  • the motor 105 does not rotate when driven by the main drive pulse P12, but rotates when driven by the correction drive pulse P2 immediately thereafter. Since the load on the motor 105 temporarily increases, and when the motor rotates, the load may decrease.
  • the control circuit 103 returns to step S401 and controls the rotation of the motor 105 by the main drive pulse P11.
  • step S405 When the control circuit 103 determines in step S405 that the rotation detection signal voltage has exceeded the reference voltage Vcomp, ie, determines that the motor 105 has rotated, it supplies the main drive pulse P12 to the motor 105. Completion and comparison of the time until the rotation detection signal is generated with a predetermined reference time t determine whether the time until the rotation detection signal is generated is longer than the reference time (i.e., The force until the detection signal is generated and the force entering the time T1 side before the reference time t or the force entering the time T2 side) are determined (step S407).
  • step S407 If the control circuit 103 determines in step S407 that the time from when the main drive pulse P12 has been completely supplied to the motor 105 to when the rotation detection signal is generated is longer than the reference time, the motor 105 It is determined that the load is suitable for driving by the main drive pulse P12, and the process returns to step S404 to continue the rotational drive of the motor 105 by the main drive pulse P12.
  • step S407 determines in step S407 that the time from completion of supply of the main drive pulse P12 to the motor 105 to generation of the power rotation detection signal is shorter than the reference time, the motor It is determined that the load of 105 is too small to be driven by the main drive pulse P12 (power loss is large when driven by the main drive pulse P12), and the process returns to step S401 to rotate the motor 105 by the main drive pulse P11. Drive. As described above, the pulse down operation is performed.
  • the motor control circuit is based on the magnitude relationship between the time until the rotation detection signal indicating that the motor has rotated and the predetermined reference value time.
  • the configuration is simple without using a counter circuit.
  • the motor can be driven to rotate by the main drive pulse of energy corresponding to the motor load, and the power consumption can be reduced. Also, when the motor control circuit is integrated, the size can be reduced.
  • the load It is possible to rotate the motor with the main drive pulse of energy according to the energy, thereby reducing power consumption and miniaturization.
  • FIGS. 1 to 5 The block diagram and the configuration of the step motor used in the analog electronic timepiece according to the other embodiment are the same as those shown in FIGS. Further, in the following description according to the other embodiment, the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals.
  • FIG. 6 shows a plurality of (two types in the other embodiment) main drive pulses (first main drive pulse P11 having a first pulse width) used in the other embodiment and the first main drive pulse.
  • FIG. 14 is a timing chart showing a second main drive pulse P12) having a second pulse width having energy larger than that of the pulse and a rotation detection signal indicating a force / non-force of rotating the motor 105.
  • the main drive pulses P11 and P12 and the correction drive pulse P2 described later are configured such that the pulse widths are PI1, P12, and P2 as in FIG. RU
  • a rotation detection signal Sl at a level exceeding a predetermined reference signal voltage Vcomp a rotation detection signal indicating that the S2 force motor 105 has rotated.
  • the rotation detection signal equal to or lower than the voltage Vcomp is a rotation detection signal detected when the motor 105 is not rotating.
  • a reference time (pulse) serving as a criterion for switching between the main drive pulses Pl l and P12 in response to each of the main drive pulses Pl l and P12 is described.
  • switching judgment time tl and t2 are provided.
  • a rotation detection signal indicating that the motor 105 has rotated is detected by the rotation detection circuit 110 from a predetermined reference time (in FIG. 6, at the end of the supply of the main drive pulses P11 and P12 to the motor 105).
  • One of the plurality of main drive pulses Pll and P12 based on the magnitude relationship between the time until and the predetermined reference times tl and t2, and rotationally drives the motor 105 with the selected main drive pulse. It is configured as follows. That is, similarly to the above embodiment, since the rotation speed of the motor 105 changes according to the energy of the drive pulse, the time until the rotation detection signal is detected is compared with a predetermined reference time.
  • the rotation detection signal S2 indicating that the motor 105 has rotated is generated in a time shorter than the first reference time tl (within the time T11).
  • the control circuit determines that the motor 105 is rotationally driven with an appropriate energy with respect to the load of the motor 105, and continues the rotational driving of the motor 105 with the main drive pulse PI1.
  • a rotation detection signal S2 indicating that the motor 105 has been rotated is generated at a time (within the time T21) after the first reference time tl. If the detection time determination circuit 111 determines that the rotation has occurred, that is, if the rotation detection signal S2 indicating that the motor 105 has rotated is detected by the rotation detection circuit 110 after a predetermined reference time tl has elapsed, the control circuit 103 Then, it is determined that the driving energy of the motor 105 is small, the main driving pulse P12 is switched to a main driving pulse P12 having a larger energy than the main driving pulse P11, and the rotation driving of the motor 105 is continued.
  • the rotation detection signal S1 indicating that the motor 105 has rotated is shorter than the predetermined second reference time t2 (within the time T12).
  • the detection time determination circuit 111 determines that the occurrence has occurred, that is, when the rotation detection circuit 110 detects the rotation detection signal S1 indicating that the motor 105 has rotated before the predetermined second reference time t2 has elapsed,
  • the control circuit 103 determines that the motor 105 is rotationally driven with excessive energy with respect to the load of the motor 105, and the energy is smaller than the main drive pulse P12! Switch to.
  • the rotation detection signal S1 indicating that the motor 105 has rotated becomes longer than a predetermined second reference time t2 (within time T22).
  • the detection time determination circuit 111 determines that the occurrence has occurred, that is, when the rotation detection signal S2 indicating that the motor 105 has rotated is detected by the rotation detection circuit 110 after a predetermined second reference time t2 has elapsed.
  • the control circuit 103 determines that the driving energy of the motor 105 is appropriate, and continues the rotational driving of the motor 105 by the main driving pulse P12.
  • any one of the plurality of main driving pulses Pll and P12 is used. And the motor 105 is driven by the selected main drive pulse.
  • the motor 105 is driven to rotate by the main drive pulse P11 and cannot be driven to rotate by the main drive pulse P11.
  • the configuration is such that the main drive pulse P12 is used to rotate the drive, thereby minimizing the drive by the correction drive pulse P2 and realizing energy saving.
  • FIG. 7 is a flowchart showing the operation of the analog electronic timepiece according to the other embodiment, and is a flowchart mainly showing the processing of control circuit 103.
  • FIG. 8 is a timing chart showing an operation of the analog electronic timepiece according to the other embodiment.
  • the control circuit 103 counts the time signal from the frequency dividing circuit 102 to perform a time counting operation, and at a predetermined timing, rotates the motor 105 with the first main driving pulse P11 having a short pulse width. Output a control signal to perform the operation (step S701 in FIG. 7).
  • the drive pulse selection circuit 104 drives and rotates the motor 105 with the main drive pulse P11 in response to a control signal from the control circuit 103.
  • the motor 105 is driven to rotate by the main drive pulse P11, and drives the time hands 107 to 109 to rotate.
  • the current time is displayed on the display unit 106 by the time hands 107 to 109 at any time.
  • the rotation detection circuit 110 detects a rotation detection signal indicating the rotation state from the motor 105 and outputs the rotation detection signal to the detection time determination circuit 111.
  • the detection time determination circuit 111 compares the rotation detection signal from the rotation detection circuit 110 with a predetermined reference signal voltage Vcomp, and determines whether or not the rotation detection signal voltage exceeds the reference signal voltage Vcomp. Determines whether or not the motor has rotated, notifies the control circuit 103 of the force or non-rotational force, and when a rotation detection signal exceeding the reference signal voltage Vcomp is detected, the main drive pulse P11 is output to the motor 10 5.
  • the time from the completion of supply to the power to the generation of the rotation detection signal and a predetermined reference time (Switching decision time) The time until the occurrence is greater than the reference time tl
  • the control circuit 103 determines whether or not the voltage of the rotation detection signal has exceeded the reference signal voltage Vcopmp, that is, whether or not the motor 105 has rotated, based on the information from the detection time determination circuit 111 ( Step S702).
  • step S702 determines in step S702 that the rotation detection signal voltage has exceeded the reference signal voltage Vcomp, ie, determines that the motor 105 has rotated
  • the main drive pulse P 11 Is supplied to the motor 105 to determine whether or not the time until the rotation detection signal is generated is longer than the pulse switching determination time tl which is the first reference time.
  • step S703 If the control circuit 103 determines in step S703 that the time until the rotation detection signal is generated is longer than the pulse switching determination time tl, the drive energy is somewhat increased in the main drive pulse P11. It is determined that there is a shortage, and the control is switched to the main drive pulse P12 having a larger energy than the main drive pulse P11 to control the motor 5 to rotate (step S705).
  • step S702 If the control circuit 103 determines in step S702 that the rotation detection signal voltage does not exceed the reference signal voltage Vcomp, that is, determines that the motor 105 has not been rotated, the correction drive is performed. After rotationally driving the motor 105 by the pulse P2, the control is switched to the main drive pulse P12 to control the rotational driving of the motor 105 (step S704).
  • step S703 If the control circuit 103 determines in step S703 that the time until the rotation detection signal is generated is not longer than the pulse switching determination time tl, the rotation driving by the main drive pulse P11 is performed. Is determined to be appropriate, and the process returns to step S701.
  • control circuit 103 After driving the main drive pulse P12 in step S705, the control circuit 103 determines whether the voltage of the rotation detection signal exceeds the reference signal voltage Vcopmp based on the information from the detection time determination circuit 111. It is determined whether there is no force, that is, whether or not the motor 105 has rotated (step S706).
  • step S706 determines that the rotation detection signal voltage has exceeded the reference signal voltage Vcomp, ie, determines that the motor 105 has rotated.
  • the time from when the drive pulse P12 is supplied to the motor 105 until the rotation detection signal is generated is shorter than the pulse switching determination time tl and longer than the pulse switching determination time t2 which is the second reference time. It is determined whether or not (step S707).
  • step S707 If the control circuit 103 determines in step S707 that the time until the rotation detection signal is generated is larger than the pulse switching determination time t2 and is (long), the main drive pulse P11 It is determined that the drive energy is somewhat insufficient and the drive by the main drive pulse P12 is appropriate, and the process returns to step S705 to control to continue the rotation drive by the main drive pulse P12.
  • step S706 If the control circuit 103 determines in step S706 that the rotation detection signal voltage does not exceed the reference signal voltage Vcomp, that is, determines that the motor 105 does not rotate, the correction driving is performed. After the rotation of the motor 105 by the pulse P2, the process returns to step S701, and the control is switched to the main drive pulse P11 to control the rotation of the motor 105 (step S708).
  • step S707 When the control circuit 103 determines in step S707 that the time until the rotation detection signal is generated is longer than the pulse switching determination time t2, the control circuit 103 determines whether the main drive pulse P12 In the driving, the energy is excessive, and it is determined that the rotational driving by the main driving pulse PI1 is appropriate, and the process returns to step S701, and the motor 105 is rotationally driven by switching to the main driving pulse P11.
  • the plurality of pulse switching determination times tl and t2 are set to different times, but may be the same.
  • the voltage levels of force driving pulses using main driving pulses having mutually different pulse widths are mutually different. Differently, some may be configured such that both the pulse width and the voltage level are different from each other.
  • the analog electronic timepiece of the present invention is applicable to various analog electronic watches such as an analog electronic watch, an analog electronic clock, and an analog electronic timepiece with a calendar function.
  • the motor control circuit according to the present invention is applicable to motor control circuits for various motors, such as a motor control circuit for a time hand or a stepper motor for driving a calendar in the analog electronic timepiece.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromechanical Clocks (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

 カウンタ回路を使用せずに簡単な構成で、負荷に応じた主駆動パルスでモータを回転駆動できるようにする。  制御回路103は、第2主駆動パルスでモータ105を駆動した際、回転検出回路110によってモータ105が回転したことを示す回転検出信号が所定の基準時間経過後に検出された場合には第2主駆動パルスによるモータ105の回転駆動を継続し、前記基準時間経過前に検出された場合には第2主駆動パルスよりもパルス幅の短い第1主駆動パルスによるモータ105の回転駆動に変更し、前記回転検出信号が検出されなかった場合にはパルス幅が最大の補正駆動パルスでモータ105を強制的に回転駆動した後に、第1主駆動パルスでモータを回転駆動する。                                                                                 

Description

明 細 書
アナログ電子時計及びモータ制御回路
技術分野
[0001] 本発明は、アナログ電子時計及びアナログ電子時計等に好適なモータ制御回路に 関する。
背景技術
[0002] 従来から、時針や分針等の時刻を表示するための時刻針をモータで回転駆動する ようにしたアナログ電子時計が利用されている。前記アナログ電子時計は、時刻針を 回転駆動するモータと、前記モータの回転を制御するモータ制御回路とを有し、時間 の基準となる時間信号に基づいて前記モータ制御回路によって前記モータを回転駆 動することにより、前記時刻針で時刻表示を行うように構成されて 、る。
[0003] 特許文献 1に記載された電子時計においては、時刻針を回転させるためのモータ を回転駆動するために、複数の主駆動パルスを選択的に使用して前記モータを回転 駆動すると共に、モータを回転させることができな力 たことを回転検出回路が検出 した場合には前記各主駆動ノルスよりもノルス幅の長 、補正駆動ノルスを用いて前 記モータを回転駆動することにより、モータ負荷に応じた最小エネルギで回転駆動で きるように構成されている。
[0004] 例えば、電子時計用カレンダ等の負荷では、最小パルス幅 (最小エネルギ)の主駆 動パルスでは駆動できないため、ー且補正駆動パルスで回転駆動した後、最小エネ ルギ駆動パルスよりもエネルギの大き 、(パルス幅の大き 、)主駆動パルスに変更(パ ルスアップ)して回転駆動するようにして!/、る。
[0005] 大きな負荷が継続して 、る場合には、負荷に比例したパルス幅の大き 、主駆動パ ルスによる回転駆動を継続する。大きな負荷が無くなって負荷力 、さくなると、その駆 動パルスで一定期間安定に駆動して ヽることを検出した場合、エネルギの小さ ヽ (パ ルス幅の小さ 、)主駆動パルスに変更(パルスダウン)して前記モータを回転駆動す ることにより、低消費電力化を実現している。
[0006] し力しながら、負荷が小さくなつてパルスダウンする際、その時点での主駆動パルス で所定回数だけ安定に駆動されている場合に、パルスダウンするように構成している 。そのために、その時点での主駆動パルスによる正常な回転駆動動作が所定回数連 続して行われたことを、カウンタ回路によって計数し、前記カウンタ回路が前記所定 回数計数した場合に、ノ レスダウンを行い、負荷の大きさに応じたパルス幅の主駆 動パルスに変更するようにして 、る。
[0007] したがって、カウンタ回路が必要となり、モータ制御回路を構成する電子回路のみ を、あるいは、モータ制御回路を含めた電子時計を構成する電子回路を集積回路 (I C)化した場合、 ICチップサイズを小さくできな 、と 、う問題がある。
[0008] また、パルスダウンする際に変更するパルス幅や変更するタイミング等は各製品毎 に異なるため、各製品毎に対応できるようにするためには回路構成が煩雑になる等 の問題がある。
[0009] また、パルスダウンを行う場合には、必要以上のパルス幅の主駆動パルスで所定回 数回転駆動することになるため、電力浪費が大きくなるという問題がある。このため、 電池を電源とする電子時計等においては、電池寿命が短くなり、電池交換の回数が 増えて電池交換作業が煩雑になるという問題がある。
特許文献 1:特公昭 61— 15385号公報 (第 4頁右欄第 5行目〜第 5頁右欄第 27行目 、第 11図〜第 22図)
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、カウンタ回路を使用せずに簡単な構成で、モータ負荷に応じたパルス 幅の主駆動パルスでモータを回転駆動可能なモータ制御回路を提供することを課題 としている。また、本発明は、低消費電力化が可能なモータ制御回路を提供すること を課題としている。
[0011] また、本発明は、カウンタ回路を使用せずに簡単な構成で、モータ負荷に応じたパ ルス幅の主駆動パルスでモータを回転駆動可能なアナログ電子時計を提供すること を課題としている。また、本発明は、低消費電力化が可能なアナログ電子時計を提供 することを課題としている。
課題を解決するための手段 [0012] 本発明によれば、モータの回転に応じた回転検出信号を検出し、前記回転検出信 号に基づいて前記モータが回転した力否かを検出する回転検出手段と、エネルギが 相互に異なる複数の主駆動パルスの中力 前記モータの負荷の大きさに応じた主駆 動パルスを選択して前記モータを回転駆動すると共に、前記回転検出信号に基づい て前記回転検出手段が前記主駆動パルスによる回転駆動では前記モータが回転し な力つたことを検出した場合に、前記各主駆動パルスよりもエネルギが大き!/、補正駆 動パルスで前記モータを強制的に回転駆動する制御手段とを有するモータ駆動回 路において、前記制御手段は、前記モータが回転したことを示す回転検出信号が前 記回転検出手段によって検出されるまでの時間と所定の基準時間との大小関係に 基づ!/、て前記複数の主駆動パルスのうちの!/、ずれかを選択し、該選択した主駆動パ ルスで前記モータを回転駆動することを特徴とするモータ制御回路が提供される。
[0013] 制御手段は、モータが回転したことを示す回転検出信号が回転検出手段によって 検出されるまでの時間と所定の基準時間との大小関係に基づいて複数の主駆動パ ルスのうちの ヽずれかを選択し、該選択した主駆動パルスで前記モータを回転駆動 する。
[0014] ここで、前記制御手段は、主駆動パルスによって前記モータを回転駆動した際、前 記モータが回転したことを示す回転検出信号が前記基準時間経過後に前記回転検 出手段によって検出された場合には、前記主駆動パルスを変更せずに前記モータを 回転駆動するように構成してもよ ヽ。
[0015] また、前記制御手段は、主駆動パルスによって前記モータを回転駆動した際、前記 モータが回転したことを示す回転検出信号が前記基準時間経過前に前記回転検出 手段によって検出された場合には、前記回転駆動した主駆動ノ ルスよりもエネルギ の小さ 、主駆動パルスを選択して前記モータを回転駆動するように構成してもよ 、。
[0016] また、本発明によれば、モータの回転に応じた回転検出信号を検出し、前記回転 検出信号に基づいて前記モータが回転した力否かを検出する回転検出手段と、エネ ルギが相互に異なる複数の主駆動パルスの中力 前記モータの負荷の大きさに応じ た主駆動パルスを選択して前記モータを回転駆動すると共に、前記回転検出信号に 基づいて前記回転検出手段が前記主駆動パルスによる回転駆動では前記モータが 回転しな力つたことを検出した場合に、前記各主駆動パルスよりもエネルギが大き ヽ 補正駆動パルスで前記モータを強制的に回転駆動する制御手段とを有するモータ 駆動回路において、
前記制御手段は、第 1パルス幅の第 1主駆動パルスで前記モータを駆動した際、前 記回転検出手段によって前記モータが回転したことを示す回転検出信号が検出され た場合には前記第 1主駆動パルスによる前記モータの回転駆動を継続すると共に、 前記回転検出手段によって前記モータが回転したことを示す回転検出信号が検出さ れな力つた場合には前記補正駆動パルスで前記モータを回転駆動した後に、前記 第 1主駆動パルスよりもパルス幅の長い第 2主駆動パルスで前記モータを回転駆動し 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過後に前記回転検出手段によって検 出された場合には、前記第 2主駆動パルスによる前記モータの回転駆動を継続し、 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過前に前記回転検出手段によって検 出された場合には、前
記第 1主駆動パルスによる前記モータの回転駆動に変更し、
前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出されな力つた場合には、前記補 正駆動パルスで前記モータを回転駆動した後に、前記第 1主駆動パルスでモータを 回転駆動することを特徴とするモータ制御回路が提供される。
制御手段は、第 1パルス幅の第 1主駆動パルスで前記モータを駆動した際、前記回 転検出手段によって前記モータが回転したことを示す回転検出信号が検出された場 合には前記第 1主駆動パルスによる前記モータの回転駆動を継続すると共に、前記 回転検出手段によって前記モータが回転したことを示す回転検出信号が検出されな 力つた場合には前記補正駆動パルスで前記モータを回転駆動した後に、前記第 1主 駆動パルスよりもパルス幅の長い第 2主駆動パルスで前記モータを回転駆動し、 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過後に前記回転検出手段によって検 出された場合には、前記第 2主駆動パルスによる前記モータの回転駆動を継続し、 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過前に前記回転検出手段によって検 出された場合には、前
記第 1主駆動パルスによる前記モータの回転駆動に変更し、
前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出されな力つた場合には、前記補 正駆動パルスで前記モータを回転駆動した後に、前記第 1主駆動パルスでモータを 回転駆動する。
[0018] また、前記制御手段は、エネルギの小さ 、主駆動パルスによって前記モータを回転 駆動した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過前 に前記回転検出手段によって検出された場合には、前記主駆動パルスを変更せず に前記モータを回転駆動するように構成してもよ 、。
[0019] また、前記制御手段は、エネルギの小さ 、主駆動パルスによって前記モータを回転 駆動した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過後 に前記回転検出手段によって検出された場合には、前記主駆動パルスよりもェネル ギの大き 、主駆動パルスによって前記モータを回転駆動するように駆動パルスを変 更するように構成してちょい。
[0020] また、前記制御手段は、エネルギの大きい主駆動パルスによって前記モータを回 転駆動した際、前記モータが回転したことを示す回転検出信号が第 2基準時間経過 前に前記回転検出手段によって検出された場合には、前記主駆動パルスよりもエネ ルギの小さ 、主駆動パルスによって前記モータを回転駆動するように駆動パルスを 変更するように構成してもよ ヽ。 [0021] また、前記制御手段は、エネルギの大き 、主駆動パルスによって前記モータを回 転駆動した際、前記モータが回転したことを示す回転検出信号が前記第 2基準時間 経過後に前記回転検出手段によって検出された場合には、前記主駆動パルスを変 更せずに前記モータを回転駆動するように構成してもよ 、。
[0022] また、前記制御手段は、前記主駆動パルスによって前記モータを回転駆動した際、 前記モータが回転したことを示す回転検出信号を前記回転検出手段が検出できな 力つた場合、前記補正駆動パルスで前記モータを回転駆動するように構成してもよ い。
[0023] また、本発明によれば、モータの回転に応じた回転検出信号を検出し、前記回転 検出信号に基づいて前記モータが回転した力否かを検出する回転検出手段と、エネ ルギが相互に異なる複数の主駆動パルスの中力 前記モータの負荷の大きさに応じ た主駆動パルスを選択して前記モータを回転駆動すると共に、前記回転検出信号に 基づいて前記回転検出手段が前記主駆動パルスによる回転駆動では前記モータが 回転しな力つたことを検出した場合に、前記各主駆動パルスよりもエネルギが大き ヽ 補正駆動パルスで前記モータを強制的に回転駆動する制御手段とを有するモータ 駆動回路において、
前記制御手段は、第 1パルス幅の第 1主駆動パルスによって前記モータを回転駆 動した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過前に 前記回転検出手段によって検出された場合には、前記主駆動パルスを変更せずに 前記モータを回転駆動し、
前記第 1主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 1基準時間経過後に前記回転検出手段によつ て検出された場合には、前記第 1主駆動パルスよりもエネルギの大きい第 2主駆動パ ルスによって前記モータを回転駆動するように駆動パルスを変更し、
前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が第 2基準時間経過前に前記回転検出手段によって検 出された場合には、前記第 1主駆動パルスによって前記モータを回転駆動するように 駆動パルスを変更し、 前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 2基準時間経過後に前記回転検出手段によつ て検出された場合には、前記主駆動パルスを変更せずに前記モータを回転駆動し、 前記第 1又は第 2主駆動パルスによって前記モータを回転駆動した際、前記モータ が回転したことを示す回転検出信号を前記回転検出手段が検出できな力つた場合、 前記補正駆動パルスによって前記モータを回転駆動することを特徴とするモータ制 御回路が提供される。
[0024] 制御手段は、第 1パルス幅の第 1主駆動パルスによって前記モータを回転駆動した 際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過前に前記回 転検出手段によって検出された場合には、前記主駆動パルスを変更せずに前記モ ータを回転駆動し、
前記第 1主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 1基準時間経過後に前記回転検出手段によつ て検出された場合には、前記第 1主駆動パルスよりもエネルギの大きい第 2主駆動パ ルスによって前記モータを回転駆動するように駆動パルスを変更し、
前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が第 2基準時間経過前に前記回転検出手段によって検 出された場合には、前記第 1主駆動パルスによって前記モータを回転駆動するように 駆動パルスを変更し、
前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 2基準時間経過後に前記回転検出手段によつ て検出された場合には、前記主駆動パルスを変更せずに前記モータを回転駆動し、 前記第 1又は第 2主駆動パルスによって前記モータを回転駆動した際、前記モータ が回転したことを示す回転検出信号を前記回転検出手段が検出できな力つた場合、 前記補正駆動パルスによって前記モータを回転駆動する。
[0025] 前記第 1、第 2基準時間は同一の時間であるように構成してもよい。
[0026] また、本発明によれば、時刻針を回転駆動するためのモータと、時間の基準となる 時間信号に基づ 、て計時動作を行 、、前記モータの回転を制御するモータ制御回 路とを有し、前記モータ制御回路によって前記モータを回転駆動することにより、前 記時刻針で時刻表示を行うようにしたアナログ電子時計にぉ 、て、前記モータ制御 回路として、前記いずれか一に記載のモータ制御回路を用いて成ることを特徴とする アナログ電子時計が提供される。
発明の効果
[0027] 本発明のモータ制御回路によれば、カウンタ回路を使用せずに簡単な構成で、負 荷に応じたエネルギの主駆動パルスでモータを回転駆動することが可能になる。また
、低消費電力化が可能になる。
[0028] また、主駆動パルス間の切換時に補正駆動パルスでの駆動を行わな 、ようにするこ とにより、更に低消費電力化が可能になる。
[0029] また、本発明のアナログ電子時計によれば、カウンタ回路を使用せずに簡単な構成 で、負荷に応じたエネルギの主駆動パルスでモータを回転駆動することが可能にな る。また、低消費電力化が可能になる。
図面の簡単な説明
[0030] [図 1]本発明の実施の形態に係るアナログ電子時計のブロック図である。
[図 2]本発明の実施の形態に係るアナログ電子時計に使用するステップモータの構 成図である。
[図 3]本発明の実施の形態に係るアナログ電子時計の動作示すタイミング図である。
[図 4]本発明の実施の形態に係るアナログ電子時計の動作を示すフローチャートであ る。
[図 5]本発明の実施の形態に係るアナログ電子時計の動作示すタイミング図である。
[図 6]本発明の他の実施の形態に係るアナログ電子時計の動作示すタイミング図で ある。
[図 7]本発明の他の実施の形態に係るアナログ電子時計の動作を示すフローチヤ一 トである。
[図 8]本発明の他の実施の形態に係るアナログ電子時計の動作示すタイミング図で ある。
符号の説明 [0031] 101 · · ·信号発生手段を構成する発振回路
102 · · '信号発生手段を構成する分周回路
103 · · ·回転検出手段及び制御手段を構成する制御回路
104 · · ·制御手段を構成する駆動パルス選択回路
105 · "モータ
106 · · ·時刻表示手段を構成するアナログ表示部
107…時針
108…分針
109…秒針
110 · · ·回転検出手段及び制御手段を構成する回転検出回路
111…回転検出手及び制御手段を構成する検出時間判別回路
発明を実施するための最良の形態
[0032] 図 1は、本発明の実施の形態に係るアナログ電子時計のブロック図で、アナログ電 子腕時計の例を示して 、る。
[0033] 図 1において、電子時計は、所定周波数の信号発生する発振回路 101、発振回路 101で発生した信号を分周して計時の基準となる時計信号を発生する分周回路 102 、電子時計を構成する各電子回路要素の制御や駆動パルスの変更制御等の制御を 行う制御回路 103、制御回路 103からの制御信号に基づいてモータ回転駆動用の 駆動パルスを選択し出力する駆動パルス選択回路 104、駆動パルス選択回路 104 力 の駆動パルスによって回転駆動されるモータ 105、モータ 105によって回転駆動 され時刻を表示するための時刻針(図 1の例では時針 107、分針 108、秒針 109の 3 種類)を有するアナログ表示部 106、モータ 105から回転状況を表す回転検出信号 を検出する回転検出回路 110、所定時刻(例えばモータ 105に対する駆動パルス供 給開始時、あるいは駆動ノ ルス供給終了時)からモータ 105が回転したことを示す回 転検出信号を回転検出回路 110が検出するまでの時間と所定の基準時間との大小 関係を判別する検出時間判別回路 111を有している。
[0034] 回転検出回路 110は、前記特許文献 1に記載された回転検出回路と同様の構成 のものであり、モータ 105が回転した場合には所定の基準信号電圧 Vcompを越える レベルの回転検出信号を検出し、モータ 105が回転しな力つた場合には前記基準信 号電圧 Vcompを越えるレベルの回転検出信号は検出できな 、ように構成されて!、る
[0035] 尚、制御回路 103、駆動パルス選択回路 104、回転検出回路 110、検出時間判別 回路 111はモータ制御回路を構成している。また、制御回路 103、回転検出回路 11 0及び検出時間判別回路 111は回転検出手段を構成し、制御回路 103、駆動パル ス選択回路 104、回転検出回路 110及び検出時間判別回路 111は制御手段を構成 している。
[0036] 図 2は、本発明の実施の形態に使用するモータ 105の構成図で、アナログ電子時 計で一般に用いられて 、る時計用ステップモータの例を示して 、る。
[0037] 図 2において、モータ 105は、ロータ収容用貫通孔 203を有するステータ 201、ロー タ収容用貫通孔 203に回転可能に配設されたロータ 202、ステータ 201と一体ィ匕さ れた磁心 208、磁心 208に卷回されたコイル 209を備えている。モータ 105を電子時 計に用いる場合には、ステータ 201及び磁心 208はネジ(図示せず)によって地板( 図示せず)に固着される。
[0038] ロータ 202は、 2極(S極及び N極)に着磁されて ヽる。磁性材料によって形成され たステータ 201の外端部には、ロータ収容用貫通孔 203を挟んで対向する位置に複 数 (本実施の形態では 2個)の切り欠き部(外ノッチ) 206、 207が設けられている。各 外ノッチ 206、 207とロータ収容用貫通孔 203間には可飽和部 210、 211が設けられ ている。
[0039] 可飽和部 210、 211は、ロータ 202の磁束によっては磁気飽和せず、コイル 20
9が励磁されたときに磁気飽和して磁気抵抗が大きくなるように構成されている。ロー タ収容用貫通孔 203は、輪郭が円形の貫通孔の対向部分に複数 (本実施の形態で は 2つ)の半月状の切り欠き部(内ノッチ) 204、 205を一体形成した円孔形状に構成 されている。
[0040] 切り欠き部 204、 205は、ロータ 202の停止位置を決めるための位置決め部を構成 している。コイル 209が励磁されていない状態では、ロータ 202は、図 2に示すように 前記位置決め部に対応する位置、換言すれば、ロータ 202の磁極軸 A力 切り欠き 部 204、 205を結ぶ線分と直交するような位置に安定して停止して 、る。
[0041] いま、駆動パルス選択回路 104から矩形波の駆動パルスをコイル 209に供給して、 図 2の矢印方向に電流 iを流すと、ステータ 201には破線矢印方向に磁束が発生す る。これにより、可飽和部 210、 211が飽和して磁気抵抗が大きくなり、その後、ステ ータ 201に生じた磁極とロータ 202の磁極との相互作用によって、ロータ 202は図 2 の矢印方向に 180度回転し、安定的に停止する。
[0042] 次に、駆動パルス選択回路 104から、逆極性の矩形波の駆動パルスをコイル 209 に供給して、図 2の反矢印方向に電流を流すと、ステータ 201には反破線矢印方向 に磁束が発生する。これにより、可飽和部 210、 211が先ず飽和し、その後、ステータ 201に生じた磁極とロータ 202の磁極との相互作用によって、ロータ 202は前記と同 一方向に 180度回転し、安定的に停止する。
[0043] 以後、このように、コイル 209に対して極性の異なる信号 (交番信号)を供給すること によって、前記動作が繰り返し行われて、ロータ 202を 180度ずつ矢印方向に連続 的に回転させることができるように構成されている。尚、本実施の形態では、駆動パ ルスとして、後述するように、複数の主駆動パルス Pl l、 PI 2及び補正駆動パルス P2 を用いている。
[0044] 図 3は、本実施の形態にお!、て使用する複数 (本実施の形態では 2種類)の主駆動 パルス(第 1パルス幅の第 1主駆動パルス P 11、第 2パルス幅の第 2主駆動パルス P 1 2)及びモータ 105が回転した力否かを表す回転検出信号を示すタイミング図である
[0045] 図 3において、主駆動パルス Pl l、 P12は、相互に駆動エネルギ(本実施の形態で はパルス幅)が相違する矩形波のパルス信号であり、主駆動パルス P 11は主駆動パ ルス 12よりもエネルギが小さ!/、、換言すればパルス幅が短!、パルス信号となって 、る 。後述するように、第 3パルス幅の補正駆動パルス P2は、主駆動パルス Pl l、 P12よ りもエネルギが大きく(パルス幅が長く)構成されている。即ち、各駆動パルス Pl l、 P
12、 P2は、各パルス幅が P1 K P12く P2となるように構成されている。
[0046] 図 3に示すような回転検出信号のうち、所定の基準信号電圧 Vcompを越えるレべ ルの回転検出信号 Sl、 S2力 モータ 105が回転したことを示す回転検出信号であり 、基準信号電圧 Vcomp以下の回転検出信号は、モータ 105が回転していない場合 に検出される回転検出信号である。
[0047] 尚、主駆動パルス Pl l、 P12とは、モータ 105を継続的に回転駆動するための駆動 パルスであり、一方、補正駆動パルス P2とは、モータ 105の負荷が大きくなつて主駆 動パルス Pl l、 P12ではモータ 105を回転駆動できない場合に、強制的にモータ 10 5を回転駆動させるために、臨時に使用される駆動パルスである。
[0048] 詳細は後述する力 本実施の形態では、モータ 105の負荷の大きさに比べて主駆 動パルスのパルス幅が適正な場合や大きい場合には、モータ 105が速く回転するた め、モータ 105が回転したことを表す回転検出信号が早い時間で発生し、モータ 10 5の負荷の大きさに比べて主駆動パルスのパルス幅が小さい場合には、モータ 105 が緩やかに回転するため、モータ 105が回転したことを表す回転検出信号が遅い時 間で発生し、モータ 105の負荷の大きさに比べて主駆動パルスのパルス幅が小さす ぎる場合には、モータ 105が回転しないため、モータ 105が回転したことを表す回転 検出信号が発生しないことに着目して成されたものである。モータ 105が回転したこ とを示す回転検出信号が、所定の基準時(図 3では、モータ 105に対する主駆動パ ルス P11、P12の供給終了時)から回転検出回路 110によって検出されるまでの時 間と所定の基準時間 tとの大小関係に基づいて、複数の主駆動ノ ルス Pl l、 P12の うちの 、ずれかを選択し、該選択した主駆動パルスでモータ 105を回転駆動するよう に構成されている。
[0049] 即ち、負荷の大きさに応じて、複数の主駆動パルス Pl l、 P12のうちのいずれかを 選択し、該選択した主駆動パルスでモータ 105を駆動するように構成されており、負 荷が小さ!/、場合には主駆動パルス P11で回転駆動し、主駆動パルス P11では回転 駆動できないような大きさの負荷の場合には主駆動パルス P12で回転駆動するよう に構成されている。
[0050] 主駆動パルスで P11でモータ 105を回転駆動したとき、モータ 105が回転したこと を表す回転検出信号 S1が所定の基準時間はりも短い時間(時間 T1内)で発生した と検出時間判別回路 111が判断した場合、即ち、モータ 105が回転したことを示す回 転検出信号 S 1が所定の基準時間 t経過前に回転検出回路 110によって検出された 場合には、制御回路 103は、モータ 105の負荷に対して適切なエネルギで回転駆動 していると判定し、主駆動パルス P11でのモータ 105の回転駆動を継続する。
[0051] 主駆動パルスで P12でモータ 105を回転駆動したとき、モータ 105が回転したこと を表す回転検出信号 S2が所定の基準時間はりも長い時間(時間 T2内)で発生した と検出時間判別回路 111が判断した場合、即ち、モータ 105が回転したことを示す回 転検出信号 S2が所定の基準時間 t経過後に回転検出回路 110によって検出された 場合には、制御回路 103は、モータ 105の負荷に適した主駆動パルス P12で駆動し ていると判定し、主駆動パルス P12によって継続してモータ 105を回転駆動する。
[0052] 一方、主駆動パルスで P12でモータ 105を回転駆動したとき、モータ 105が回転し たことを表す回転検出信号 S1が所定の基準時間はりも短い時間(時間 T1内)で発 生したと検出時間判別回路 111が判断した場合、即ち、モータ 105が回転したことを 示す回転検出信号が所定の基準時間 t経過前に回転検出回路 110によって検出さ れた場合には、制御回路 103は、モータ 105の負荷に比べてエネルギの大きい主駆 動パルス P 12で駆動している、即ち、エネルギの浪費が生じていると判定し、主駆動 パルス PI 1でモータ 105を回転駆動するように主駆動パルスの選択切換 (パルスダウ ン)を行 、、新たに選択した主駆動パルス PI 1によってモータ 105を回転駆動するよ うに制御する。
[0053] 図 4は、本発明の実施の形態に係るアナログ電子時計の動作を示すフローチャート であり、主として制御回路 103の処理を示すフローチャートである。
[0054] 図 5は、本発明の実施の形態に係るアナログ電子時計の動作を示すタイミング図で ある。
[0055] 以下、図 1〜図 5を参照して、本発明の実施の形態に係るアナログ電子時計及び前 記アナログ電子時計に好適なモータ制御回路の動作を詳細に説明する。
[0056] 図 1において、発振回路 101は所定周波数の基準クロック信号を発生し、分周回路
102は発振回路 101で発生した前記信号を分周して計時の基準となる時計信号を 発生し、制御回路 103に出力する。
[0057] 先ず、モータ負荷が小さぐ主駆動パルス P11によって回転駆動する場合の通常 駆動 動作 (図 5 (a)参照)につ 、て説明する。
[0058] この場合、先ず制御回路 103は、前記時間信号を計数して計時動作を行い、所定 タイミングで、パルス幅の短 、第 1の主駆動パルス P 11でモータ 105を回転駆動する ように制御信号を出力する(図 4のステップ S401)。
[0059] 駆動パルス選択回路 104は、制御回路 103からの制御信号に応答して、主駆動パ ルス P11でモータ 105を回転駆動する。モータ 105は主駆動パルス P11によって回 転駆動されて、時刻針 107〜109を回転駆動する。これにより、表示部 106には、時 刻針 107〜109によって現在時刻が随時表示される。
[0060] 回転検出回路 110は、モータ 105から回転状況を表す回転検出信号を検出して検 出時間判別回路 111に出力する。検出時間判別回路 111は、回転検出回路 110か らの回転検出信号と所定の基準信号電圧 Vcompとを比較して、回転検出信号電圧 が前記基準信号電圧 Vcompを越えた力否力 即ち、モータ 105が回転したか否か を判別して、回転した力否力を制御回路 103に通知すると共に、前記基準信号電圧 Vcompを越える回転検出信号を検出した場合には、主駆動パルス P11をモータ 10 5に供給完了して力 該回転検出信号が発生するまでの時間と所定の基準時間 tと を比較して、前記発生するまでの時間が基準時間はり大きいか否かを制御回路 103 に通知する。
[0061] 制御回路 103は、検出時間判定回路 111からの情報に基づいて、回転検出信号 の電圧が基準信号電圧 Vcopmpを越えたか否力、即ち、モータ 105が回転したか否 かを判別する (ステップ S402)。
[0062] 制御回路 103は、ステップ S402において、回転検出信号電圧が基準信号電圧 Vc ompを越えたと判断した場合、即ち、モータ 105が回転したと判断した場合には、モ ータ 105の負荷が主駆動パルス P11で駆動可能な大きさということであるため、ステツ プ S401に戻って、主駆動パルス PI 1によって継続してモータ 105を回転駆動させる ための制御信号を駆動パルス選択回路 104に出力する。駆動パルス選択回路 104 は制御回路 103からの制御信号に応答して主駆動パルス PI 1により継続してモータ 105を回転駆動する。以上を繰り返すことにより、通常駆動動作が行われる。
[0063] 次に、パルスアップ動作を説明する(図 5 (b) )。制御回路 103は、ステップ S402に おいて、回転検出信号電圧が基準電圧 Vcompを越えなカゝつたと判断した場合、即 ち、モータ 105が回転しな力つたと判断した場合には、モータ 105の負荷が主駆動パ ルス PI 1で駆動できな 、大きさと 、うことであるため、臨時的に補正駆動パルス P2に よってモータ 105を回転駆動させるための制御信号を駆動パルス選択回路 104に出 力する(ステップ S403)。
[0064] 駆動パルス選択回路 104は制御回路 103からの前記制御信号に応答して、補正 駆動パルス P2によりモータ 105を回転駆動する。これにより、モータ 105は主駆動パ ルス PI 1の駆動では回転しな力つた力 その直後の補正駆動ノ ルス P2の駆動によ つて回転することになる。
[0065] モータ 105の負荷が極一時的に増加していた場合には次のステップで主駆動パル ス P11による駆動を行えばモータ 105が回転する可能性は大きいが、一般には回転 する可能性が低いため又、より確実に回転させることができるように、次のステップで は、制御回路 103は主駆動パルス P12によってモータ 105を回転駆動するように制 御する(ステップ S404)。駆動パルス選択回路 104は、制御回路 103の制御の下、 主駆動パルス P12によってモータ 105を回転駆動する。
[0066] 次に、パルスダウン動作について説明する(図 5 (c)参照)。制御回路 103は、ステ ップ S404にお!/、て主駆動パルス P 12によってモータ 105を回転駆動した後、検出 時間判定回路 111からの情報に基づいて、回転検出信号電圧が基準電圧 Vcomp を越えたか否力、即ち、モータ 105が回転した力否かを判別する(ステップ S405)。
[0067] 制御回路 103は、ステップ S405において、回転検出信号電圧が基準電圧 Vcomp を越えな力つたと判断した場合、即ち、モータ 105が回転しな力つたと判断した場合 には、モータ 105の負荷が主駆動パルス P12で駆動できない大きさということである ため、臨時的に補正駆動パルス P2によってモータ 105を回転駆動させるための制御 信号を駆動パルス選択回路 104に出力する (ステップ S406)。駆動パルス選択回路 104は制御回路 103からの制御信号に応答して補正駆動ノ ルス P2によりモータ 10 5を回転駆動する。これにより、モータ 105は主駆動パルス P12の駆動では回転しな かったが、その直後の補正駆動パルス P2の駆動によって回転することになる。モータ 105の負荷は一時的に増加し、ー且回転すると負荷が減少する可能性があるため、 制御回路 103は、ステップ S406の後に、ステップ S401に戻って、主駆動パルス P1 1によってモータ 105の回転駆動制御を行う。
[0068] 制御回路 103は、ステップ S405において、回転検出信号電圧が基準電圧 Vcomp を越えたと判断した場合、即ち、モータ 105が回転したと判断した場合には、主駆動 パルス P12をモータ 105に供給完了してカも該回転検出信号が発生するまでの時間 と所定の基準時間 tとを比較して、前記回転検出信号が発生するまでの時間が基準 時間はり長いか否か (即ち、前記回転検出信号が発生するまでの時間が基準時間 t より以前の時間 T1側に入る力 あるいは、時間 T2側に入る力 )を判断する (ステップ S407)。
[0069] 制御回路 103は、ステップ S407において、主駆動パルス P12をモータ 105に供給 完了して力 該回転検出信号が発生するまでの時間が基準時間はり長いと判断し た場合には、モータ 105の負荷が主駆動パルス P12によって駆動するのに適した大 きさであると判断して、ステップ S404に戻って、主駆動パルス P12によるモータ 105 の回転駆動を継続する。
[0070] 一方、制御回路 103は、ステップ S407において、主駆動パルス P12をモータ 105 に供給完了して力 該回転検出信号が発生するまでの時間が基準時間はり短いと 判断した場合には、モータ 105の負荷が主駆動パルス P12によって駆動するには小 さすぎる(主駆動ノ ルス P12による駆動では電力喪失が大きい)と判断して、ステップ S401に戻って、主駆動パルス P11によるモータ 105の回転駆動を行う。以上のよう にして、パルスダウン動作が行われたことになる。
[0071] 以上述べたように、本実施の形態に係るモータ制御回路は、モータが回転したこと を示す回転検出信号が検出されるまでの時間と所定の基準値時間との大小関係に 基づ 、て複数の主駆動パルスのうちの 、ずれかを選択し、該選択した主駆動パルス で前記モータを回転駆動するように構成しているため、カウンタ回路を使用することな く簡単な構成で、モータ負荷に応じたエネルギの主駆動パルスでモータを回転駆動 することが可能になり、低消費電力化が可能になる。また、モータ制御回路を集積回 路化した場合に、小型化可能になる。
[0072] また、前記各実施の形態に係るアナログ電子時計によれば、簡単な構成で、負荷 に応じたエネルギの主駆動パルスでモータを回転駆動することが可能になり、低消 費電力化、小型化が可能になる。
[0073] 次に、本発明の他の実施の形態に係るアナログ電子時計について説明する。尚、 本他の実施の形態におけるブロック図及びアナログ電子時計に使用するステップモ ータの構成図は図 1、図 2と同一である。また、本他の実施の形態に係る以下の説明 において、図 1〜図 5と同一部分には同一符号を付して説明する。
[0074] 図 6は、本他の実施の形態において使用する複数 (本他の実施の形態では 2種類) の主駆動パルス (第 1パルス幅の第 1主駆動パルス P11、前記第 1主駆動パルスより もエネルギの大きい第 2パルス幅の第 2主駆動パルス P12)及びモータ 105が回転し た力否力を表す回転検出信号を示すタイミング図である。
[0075] 図 6において、主駆動パルス Pl l、 P12及び後述する補正駆動パルス P2は、図 3と 同様に、各パルス幅が PI 1く P12く P2となるように構成されて!、る。
[0076] 図 6に示すような回転検出信号のうち、所定の基準信号電圧 Vcompを越えるレべ ルの回転検出信号 Sl、 S2力 モータ 105が回転したことを示す回転検出信号であり 、基準信号電圧 Vcomp以下の回転検出信号は、モータ 105が回転していない場合 に検出される回転検出信号である。
[0077] 詳細は後述する力 本他の実施の形態では、主駆動パルス Pl l、 P12の各々に対 応して、主駆動パルス Pl l、 P12間の切換えの判定基準となる基準時間(パルス切 換判断時間) tl、 t2を設けている。
[0078] モータ 105が回転したことを示す回転検出信号力 所定の基準時(図 6では、モー タ 105に対する主駆動パルス P11、P12の供給終了時)から回転検出回路 110によ つて検出されるまでの時間と所定の基準時間 tl、 t2との大小関係に基づいて、複数 の主駆動パルス Pl l、 P12のうちのいずれかを選択し、該選択した主駆動パルスで モータ 105を回転駆動するように構成されている。即ち、前記実施の形態と同様に、 モータ 105の回転速度が駆動パルスのエネルギに応じて変化するため、回転検出信 号が検出されるまでの時間と所定の基準時間とを比較することによって、適切なエネ ルギの駆動パルスカゝ否かを判断し、その判断結果に応じて適切な駆動パルスを選択 するように構成している。 [0079] 例えば、主駆動パルス PI 1によってモータ 105を回転駆動したとき、モータ 105が 回転したことを表す回転検出信号 S2が第 1基準時間 tlよりも短い時間(時間 T11内 )で発生したと検出時間判別回路 111が判断した場合、即ち、モータ 105が回転した ことを示す回転検出信号 S2が所定の基準時間 tl経過前に回転検出回路 110によつ て検出された場合には、制御回路 103は、モータ 105の負荷に対して適切なェネル ギで回転駆動して 、ると判定し、主駆動パルス PI 1でのモータ 105の回転駆動を継 続する。
[0080] また、主駆動パルス P11でモータ 105を回転駆動したとき、モータ 105が回転したこ とを表す回転検出信号 S2が第 1基準時間 tlよりも後の時間(時間 T21内)で発生し たと検出時間判別回路 111が判断した場合、即ち、モータ 105が回転したことを示す 回転検出信号 S2が所定の基準時間 tl経過後に回転検出回路 110によって検出さ れた場合には、制御回路 103は、モータ 105の駆動エネルギが小さいと判定し、主 駆動パルス P11よりもエネルギの大きい主駆動パルス P12に切り換えて、モータ 105 の回転駆動を継続する。
[0081] 一方、主駆動パルス P12によってモータ 105を回転駆動したとき、モータ 105が回 転したことを表す回転検出信号 S1が所定の第 2基準時間 t2よりも短い時間(時間 T1 2内)で発生したと検出時間判別回路 111が判断した場合、即ち、モータ 105が回転 したことを示す回転検出信号 S1が所定の第 2基準時間 t2経過前に回転検出回路 1 10によって検出された場合には、制御回路 103は、モータ 105の負荷に対して過大 なエネルギで回転駆動して 、ると判定し、主駆動パルス P 12よりもエネルギの小さ!/ヽ 主駆動パルス P11によるモータ 105の回転駆動に切り換える。
[0082] また、主駆動パルス P12でモータ 105を回転駆動したとき、モータ 105が回転したこ とを表す回転検出信号 S1が所定の第 2基準時間 t2よりも後の時間(時間 T22内)で 発生したと検出時間判別回路 111が判断した場合、即ち、モータ 105が回転したこと を示す回転検出信号 S2が所定の第 2基準時間 t2経過後に回転検出回路 110によ つて検出された場合には、制御回路 103は、モータ 105の駆動エネルギが適正と判 定し、主駆動ノ ルス P12によるモータ 105の回転駆動を継続する。
[0083] このように、負荷の大きさに応じて、複数の主駆動パルス Pl l、 P12のうちのいずれ かを選択し、該選択した主駆動パルスでモータ 105を駆動するように構成されており 、負荷が小さい場合には主駆動パルス P11で回転駆動し、主駆動パルス P11では回 転駆動できないような大きさの負荷の場合には主駆動パルス P12で回転駆動するよ うに構成することにより、補正駆動パルス P2による駆動を極力行わないようにして、省 エネルギ化を実現して ヽる。
[0084] 図 7は、本他の実施の形態に係るアナログ電子時計の動作を示すフローチャートで あり、主として制御回路 103の処理を示すフローチャートである。
[0085] 図 8は、本他の実施の形態に係るアナログ電子時計の動作を示すタイミング図であ る。
[0086] 以下、図 1、図 2、図 6〜図 8を参照して、本他の実施の形態に係るアナログ電子時 計及び前記アナログ電子時計に好適なモータ制御回路の動作を、主として前記実施 の形態と相違する部分について説明する。
[0087] 先ず、モータ負荷が小さぐ主駆動パルス P11によって回転駆動する場合の通常 駆動動作 (図 8 (a)参照)につ 、て説明する。
[0088] この場合、先ず制御回路 103は、分周回路 102からの時間信号を計数して計時動 作を行い、所定タイミングで、パルス幅の短い第 1主駆動パルス P11でモータ 105を 回転駆動するように制御信号を出力する(図 7のステップ S701)。
[0089] 駆動パルス選択回路 104は、制御回路 103からの制御信号に応答して、主駆動パ ルス P11でモータ 105を回転駆動する。モータ 105は主駆動パルス P11によって回 転駆動されて、時刻針 107〜109を回転駆動する。これにより、表示部 106には、時 刻針 107〜109によって現在時刻が随時表示される。
[0090] 回転検出回路 110は、モータ 105から回転状況を表す回転検出信号を検出して検 出時間判別回路 111に出力する。検出時間判別回路 111は、回転検出回路 110か らの回転検出信号と所定の基準信号電圧 Vcompとを比較して、回転検出信号電圧 が前記基準信号電圧 Vcompを越えた力否力 即ち、モータ 105が回転したか否か を判別して、回転した力否力を制御回路 103に通知すると共に、前記基準信号電圧 Vcompを越える回転検出信号を検出した場合には、主駆動パルス P11をモータ 10 5に供給完了して力 該回転検出信号が発生するまでの時間と所定の基準時間 (パ ルス切換判断時間) tlとを比較して、前記発生するまでの時間が基準時間 tlより大き
V、 (長 、)力否かを制御回路 103に通知する。
[0091] 制御回路 103は、検出時間判定回路 111からの情報に基づいて、回転検出信号 の電圧が基準信号電圧 Vcopmpを越えたか否力、即ち、モータ 105が回転したか否 かを判別する (ステップ S 702)。
[0092] また、制御回路 103は、ステップ S702において、回転検出信号電圧が基準信号電 圧 Vcompを越えたと判断した場合、即ち、モータ 105が回転したと判断した場合に は、主駆動パルス P 11をモータ 105に供給して力も前記回転検出信号が発生するま での時間が第 1基準時間であるパルス切換判断時間 tlよりも長いか否かを判断する
(ステップ S703)。
[0093] 制御回路 103は、ステップ S703において、前記回転検出信号が発生するまでの 時間がパルス切換判断時間 tlよりも長 、と判断した場合には、主駆動パルス P11で は駆動エネルギが幾分不足して 、ると判断して、主駆動パルス P11よりもエネルギの 大きい主駆動パルス P12に切り換えてモータ 5を回転駆動するように制御する (ステツ プ S705)。
[0094] 制御回路 103は、ステップ S702において、回転検出信号電圧が基準信号電圧 Vc ompを越えていないと判断した場合、即ち、モータ 105が回転しな力つたと判断した 場合には、補正駆動ノ ルス P2によってモータ 105を回転駆動した後、主駆動パルス P12に切り換えてモータ 105を回転駆動するように制御する (ステップ S704)。
[0095] また、制御回路 103は、ステップ S703において、前記回転検出信号が発生するま での時間がパルス切換判断時間 tlよりも長くないと判断した場合には、主駆動パル ス P11による回転駆動が適切であると判断して、ステップ S701に戻る。
[0096] 制御回路 103は、ステップ S705において、主駆動パルス P 12による駆動を行った 後、検出時間判定回路 111からの情報に基づいて、回転検出信号の電圧が基準信 号電圧 Vcopmpを越えたか否力、即ち、モータ 105が回転した力否かを判別する(ス テツプ S 706)。
[0097] 制御回路 103は、ステップ S706において、回転検出信号電圧が基準信号電圧 Vc ompを越えたと判断した場合、即ち、モータ 105が回転したと判断した場合には、主 駆動パルス P12をモータ 105に供給して力も前記回転検出信号が発生するまでの時 間が、前記パルス切換判断時間 tlよりも短 、第 2基準時間であるパルス切換判断時 間 t2よりも長 、か否かを判断する (ステップ S 707)。
[0098] 制御回路 103は、ステップ S707において、前記回転検出信号が発生するまでの 時間がパルス切換判断時間 t2よりも大き 、 (長 、)と判断した場合には、主駆動パル ス P 11では駆動エネルギが幾分不足しており主駆動パルス P 12による駆動が適切で あると判断して、ステップ S705に戻って、主駆動パルス P 12による回転駆動を «続 するように制御する。
[0099] 制御回路 103は、ステップ S706において、回転検出信号電圧が基準信号電圧 Vc ompを越えていないと判断した場合、即ち、モータ 105が回転しな力つたと判断した 場合には、補正駆動ノ ルス P2によってモータ 105を回転駆動した後、ステップ S701 に戻り、主駆動パルス P11に切換えてモータ 105を回転駆動するように制御する (ス テツプ S 708)。
[0100] また、制御回路 103は、ステップ S707において、前記回転検出信号が発生するま での時間がパルス切換判断時間 t2よりも長くな 、と判断した場合には、主駆動パル ス P 12による駆動ではエネルギが過大であり、主駆動ノ ルス PI 1による回転駆動が 適切であると判断して、ステップ S701に戻り、主駆動パルス P 11に切換えてモータ 1 05を回転駆動する。
[0101] 以上述べたように、本他の実施の形態においては、前記実施の形態と同様の効果 を奏するば力りでなぐ主駆動パルス Pl l、 P12間の切換えの際に、補正駆動パルス P2による駆動を経由することなく切換えているため、更に省エネルギ化が可能になる という効果を奏する。また、ロータ、ステータ等の部品事態のバラツキや組み立てバラ ツキにより生じる検出時間のバラツキによって、主駆動ノ ルス P 12から主駆動パルス P11にパルスダウンしない事態の発生を抑制することが可能になる。
[0102] 尚、前記他の実施の形態では、複数のパルス切換判断時間 tl、 t2は異なる時間に 設定したが、同一であっても良い。
[0103] また、前記実施の形態では、駆動エネルギが異なる複数の主駆動ノ ルスとして、相 互にパルス幅の異なる主駆動パルスを用いた力 駆動パルスの電圧レベルが相互に 異なるように、ある 、はパルス幅及び電圧レベルの双方が相互に異なるように構成し てもよい。
産業上の利用可能性
[0104] 本発明のアナログ電子時計は、アナログ電子腕時計やアナログ電子置時計、カレ ンダ機能付きアナログ電子時計等の各種アナログ電子時計に適用可能であり、特に
、電池を電源とずるアナログ電子時計に好適である。
[0105] また、本発明のモータ制御回路は、前記アナログ電子時計における時刻針やカレ ンダ駆動用ステップモータのモータ制御回路をはじめとして、各種モータのモータ制 御回路に適用可能である。

Claims

請求の範囲
[1] モータの回転に応じた回転検出信号を検出し、前記回転検出信号に基づいて前 記モータが回転したか否かを検出する回転検出手段と、エネルギが相互に異なる複 数の主駆動パルスの中力 前記モータの負荷の大きさに応じた主駆動パルスを選択 して前記モータを回転駆動すると共に、前記回転検出信号に基づいて前記回転検 出手段が前記主駆動パルスによる回転駆動では前記モータが回転しな力つたことを 検出した場合に、前記各主駆動パルスよりもエネルギが大き!/、補正駆動パルスで前 記モータを強制的に回転駆動する制御手段とを有するモータ駆動回路において、 前記制御手段は、前記モータが回転したことを示す回転検出信号が前記回転検出 手段によって検出されるまでの時間と所定の基準時間との大小関係に基づいて前記 複数の主駆動パルスのうちの 、ずれかを選択し、該選択した主駆動パルスで前記モ ータを回転駆動することを特徴とするモータ制御回路。
[2] 前記制御手段は、主駆動パルスによって前記モータを回転駆動した際、前記モー タが回転したことを示す回転検出信号が前記基準時間経過後に前記回転検出手段 によって検出された場合には、前記主駆動パルスを変更せずに前記モータを回転駆 動することを特徴とする請求項 1記載のモータ制御回路。
[3] 前記制御手段は、主駆動パルスによって前記モータを回転駆動した際、前記モー タが回転したことを示す回転検出信号が前記基準時間経過前に前記回転検出手段 によって検出された場合には、前記回転駆動した主駆動ノ ルスよりもエネルギの小さ い主駆動パルスを選択して前記モータを回転駆動することを特徴とする請求項 1又 は 2記載のモータ制御回路。
[4] モータの回転に応じた回転検出信号を検出し、前記回転検出信号に基づいて前 記モータが回転したか否かを検出する回転検出手段と、エネルギが相互に異なる複 数の主駆動パルスの中力 前記モータの負荷の大きさに応じた主駆動パルスを選択 して前記モータを回転駆動すると共に、前記回転検出信号に基づいて前記回転検 出手段が前記主駆動パルスによる回転駆動では前記モータが回転しな力つたことを 検出した場合に、前記各主駆動パルスよりもエネルギが大き!/、補正駆動パルスで前 記モータを強制的に回転駆動する制御手段とを有するモータ駆動回路において、 前記制御手段は、第 1パルス幅の第 1主駆動パルスで前記モータを駆動した際、前 記回転検出手段によって前記モータが回転したことを示す回転検出信号が検出され た場合には前記第 1主駆動パルスによる前記モータの回転駆動を継続すると共に、 前記回転検出手段によって前記モータが回転したことを示す回転検出信号が検出さ れな力つた場合には前記補正駆動パルスで前記モータを回転駆動した後に、前記 第 1主駆動パルスよりもパルス幅の長い第 2主駆動パルスで前記モータを回転駆動し 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過後に前記回転検出手段によって検 出された場合には、前記第 2主駆動パルスによる前記モータの回転駆動を継続し、 前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出され且つ前記モータが回転した ことを示す回転検出信号が所定の基準時間経過前に前記回転検出手段によって検 出された場合には、前
記第 1主駆動パルスによる前記モータの回転駆動に変更し、
前記第 2主駆動パルスで前記モータを駆動した際、前記回転検出手段によって前 記モータが回転したことを示す回転検出信号が検出されな力つた場合には、前記補 正駆動パルスで前記モータを回転駆動した後に、前記第 1主駆動パルスでモータを 回転駆動することを特徴とするモータ制御回路。
[5] 前記制御手段は、エネルギの小さい主駆動パルスによって前記モータを回転駆動 した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過前に前 記回転検出手段によって検出された場合には、前記主駆動パルスを変更せずに前 記モータを回転駆動することを特徴とする請求項 1記載のモータ制御回路。
[6] 前記制御手段は、エネルギの小さい主駆動パルスによって前記モータを回転駆動 した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過後に前 記回転検出手段によって検出された場合には、前記主駆動パルスよりもエネルギの 大き 、主駆動パルスによって前記モータを回転駆動するように駆動パルスを変更す ることを特徴とする請求項 1又は 5記載のモータ制御回路。
[7] 前記制御手段は、エネルギの大きい主駆動パルスによって前記モータを回転駆動 した際、前記モータが回転したことを示す回転検出信号が第 2基準時間経過前に前 記回転検出手段によって検出された場合には、前記主駆動パルスよりもエネルギの 小さ 、主駆動パルスによって前記モータを回転駆動するように駆動パルスを変更す ることを特徴とする請求項 1、 5又は 6記載のモータ制御回路。
[8] 前記制御手段は、エネルギの大きい主駆動パルスによって前記モータを回転駆動 した際、前記モータが回転したことを示す回転検出信号が前記第 2基準時間経過後 に前記回転検出手段によって検出された場合には、前記主駆動パルスを変更せず に前記モータを回転駆動することを特徴とする請求項 1、 5乃至 7のいずれか一に記 載のモータ制御回路。
[9] 前記制御手段は、前記主駆動パルスによって前記モータを回転駆動した際、前記 モータが回転したことを示す回転検出信号を前記回転検出手段が検出できな力つた 場合、前記補正駆動パルスで前記モータを回転駆動することを特徴とする請求項 2、 3、 5乃至 8のいずれか一に記載のモータ制御回路。
[10] モータの回転に応じた回転検出信号を検出し、前記回転検出信号に基づいて前 記モータが回転したか否かを検出する回転検出手段と、エネルギが相互に異なる複 数の主駆動パルスの中力 前記モータの負荷の大きさに応じた主駆動パルスを選択 して前記モータを回転駆動すると共に、前記回転検出信号に基づいて前記回転検 出手段が前記主駆動パルスによる回転駆動では前記モータが回転しな力つたことを 検出した場合に、前記各主駆動パルスよりもエネルギが大き!/、補正駆動パルスで前 記モータを強制的に回転駆動する制御手段とを有するモータ駆動回路において、 前記制御手段は、第 1パルス幅の第 1主駆動パルスによって前記モータを回転駆 動した際、前記モータが回転したことを示す回転検出信号が第 1基準時間経過前に 前記回転検出手段によって検出された場合には、前記主駆動パルスを変更せずに 前記モータを回転駆動し、
前記第 1主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 1基準時間経過後に前記回転検出手段によつ て検出された場合には、前記第 1主駆動パルスよりもエネルギの大きい第 2主駆動パ ルスによって前記モータを回転駆動するように駆動パルスを変更し、
前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が第 2基準時間経過前に前記回転検出手段によって検 出された場合には、前記第 1主駆動パルスによって前記モータを回転駆動するように 駆動パルスを変更し、
前記第 2主駆動パルスによって前記モータを回転駆動した際、前記モータが回転し たことを示す回転検出信号が前記第 2基準時間経過後に前記回転検出手段によつ て検出された場合には、前記主駆動パルスを変更せずに前記モータを回転駆動し、 前記第 1又は第 2主駆動パルスによって前記モータを回転駆動した際、前記モータ が回転したことを示す回転検出信号を前記回転検出手段が検出できな力つた場合、 前記補正駆動パルスによって前記モータを回転駆動することを特徴とするモータ制 御回路。
[11] 前記第 1、第 2基準時間は同一の時間であることを特徴とする請求項 7乃至 10のい ずれか一に記載のモータ制御回路。
[12] 時刻針を回転駆動するためのモータと、時間の基準となる時間信号に基づいて計 時動作を行い、前記モータの回転を制御するモータ制御回路とを有し、前記モータ 制御回路によって前記モータを回転駆動することにより、前記時刻針で時刻表示を 行うようにしたアナログ電子時計において、
前記モータ制御回路として、請求項 1乃至 11のいずれか一に記載のモータ制御回 路を用いて成ることを特徴とするアナログ電子時計。
PCT/JP2005/010016 2004-06-04 2005-06-01 アナログ電子時計及びモータ制御回路 WO2005119377A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006514106A JP4863871B2 (ja) 2004-06-04 2005-06-01 アナログ電子時計及びモータ制御回路
US11/628,047 US7606116B2 (en) 2004-06-04 2005-06-01 Analogue electronic clock and motor control circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004167363 2004-06-04
JP2004-167363 2004-06-04

Publications (1)

Publication Number Publication Date
WO2005119377A1 true WO2005119377A1 (ja) 2005-12-15

Family

ID=35463044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010016 WO2005119377A1 (ja) 2004-06-04 2005-06-01 アナログ電子時計及びモータ制御回路

Country Status (4)

Country Link
US (2) US7606116B2 (ja)
JP (1) JP4863871B2 (ja)
CN (1) CN100538559C (ja)
WO (1) WO2005119377A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191045A (ja) * 2007-02-06 2008-08-21 Seiko Instruments Inc ステッピングモータ制御回路及び電子時計
JP2008202998A (ja) * 2007-02-17 2008-09-04 Seiko Instruments Inc ステッピングモータ駆動回路及びアナログ電子時計
JP2008228559A (ja) * 2007-02-15 2008-09-25 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2009148143A (ja) * 2007-12-18 2009-07-02 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2009288133A (ja) * 2008-05-30 2009-12-10 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010029057A (ja) * 2008-06-17 2010-02-04 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010166798A (ja) * 2008-05-29 2010-07-29 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010169656A (ja) * 2008-12-25 2010-08-05 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011155828A (ja) * 2009-12-28 2011-08-11 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JPWO2016052577A1 (ja) * 2014-09-30 2017-07-27 シチズン時計株式会社 電子時計

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009265060A (ja) * 2008-04-30 2009-11-12 Seiko Clock Inc 時計
US8111033B2 (en) * 2008-06-17 2012-02-07 Seiko Instruments Inc. Stepping motor control circuit and analog electronic timepiece
JP2010145106A (ja) * 2008-12-16 2010-07-01 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010151641A (ja) * 2008-12-25 2010-07-08 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010154673A (ja) * 2008-12-25 2010-07-08 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010220461A (ja) * 2009-02-20 2010-09-30 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010220408A (ja) * 2009-03-17 2010-09-30 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010243473A (ja) * 2009-03-18 2010-10-28 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010256137A (ja) * 2009-04-23 2010-11-11 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011002443A (ja) * 2009-05-21 2011-01-06 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011075463A (ja) * 2009-09-30 2011-04-14 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011101576A (ja) * 2009-10-06 2011-05-19 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011147330A (ja) * 2009-12-16 2011-07-28 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011158434A (ja) * 2010-02-03 2011-08-18 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011169650A (ja) * 2010-02-16 2011-09-01 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011203136A (ja) * 2010-03-25 2011-10-13 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
GB2482568B (en) * 2010-11-08 2012-06-06 Richard George Hoptroff Device for driving unidirectional motors in bursts for enhanced data display
JP5777924B2 (ja) * 2011-04-05 2015-09-09 株式会社マキタ 単相直巻整流子電動機の駆動装置
JP2013148571A (ja) 2011-12-19 2013-08-01 Seiko Instruments Inc ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP6084008B2 (ja) 2012-01-11 2017-02-22 セイコーインスツル株式会社 ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP5939852B2 (ja) * 2012-03-22 2016-06-22 エスアイアイ・セミコンダクタ株式会社 アナログ電子時計
JP6162513B2 (ja) 2012-09-07 2017-07-12 セイコーインスツル株式会社 ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP6180830B2 (ja) 2012-09-07 2017-08-16 セイコーインスツル株式会社 ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP6379181B2 (ja) * 2014-03-17 2018-08-22 シチズン時計株式会社 電子時計
JP6287997B2 (ja) * 2015-08-06 2018-03-07 カシオ計算機株式会社 モータ駆動装置および電子時計
JP7242306B2 (ja) * 2019-01-11 2023-03-20 セイコーインスツル株式会社 時計及び時計用モータ制御方法
US11334030B2 (en) * 2019-01-11 2022-05-17 Seiko Instruments Inc. Timepiece and timepiece control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375976A (en) * 1976-12-15 1978-07-05 Seiko Epson Corp Step motor for electronic wrist watch
JPS5385467A (en) * 1976-12-30 1978-07-27 Seiko Epson Corp Electronic wristwatch
US4272837A (en) * 1977-04-23 1981-06-09 Kabushiki Kaisha Daini Seikosha Electronic timepiece with rotation detector
JPS5866089A (ja) * 1981-10-15 1983-04-20 Seikosha Co Ltd 電子時計
JPS58213279A (ja) * 1982-06-04 1983-12-12 Seiko Epson Corp アナログ電子時計
JPS5912380A (ja) * 1982-07-13 1984-01-23 Seiko Instr & Electronics Ltd 電子時計
JPS5940186A (ja) * 1982-08-30 1984-03-05 Seiko Epson Corp 電子時計
JPS61274290A (ja) * 1985-12-27 1986-12-04 Seiko Epson Corp 電子時計

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69413668T2 (de) * 1993-01-18 1999-04-15 Seiko Instruments Inc., Tokio/Tokyo Zeitgeber
WO1995027926A1 (fr) * 1994-04-06 1995-10-19 Citizen Watch Co., Ltd. Rythmeur electronique
JP2003004872A (ja) * 2001-06-20 2003-01-08 Seiko Instruments Inc アナログ電子時計
JP2002365379A (ja) * 2001-06-11 2002-12-18 Seiko Instruments Inc アナログ電子時計
JP3395786B1 (ja) * 2002-02-26 2003-04-14 セイコーエプソン株式会社 電子機器、電子機器の受信制御方法および電子機器の受信制御プログラム
JP2006226927A (ja) * 2005-02-21 2006-08-31 Seiko Instruments Inc ステップモータ駆動装置及びアナログ電子時計

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5375976A (en) * 1976-12-15 1978-07-05 Seiko Epson Corp Step motor for electronic wrist watch
JPS5385467A (en) * 1976-12-30 1978-07-27 Seiko Epson Corp Electronic wristwatch
US4272837A (en) * 1977-04-23 1981-06-09 Kabushiki Kaisha Daini Seikosha Electronic timepiece with rotation detector
JPS5866089A (ja) * 1981-10-15 1983-04-20 Seikosha Co Ltd 電子時計
JPS58213279A (ja) * 1982-06-04 1983-12-12 Seiko Epson Corp アナログ電子時計
JPS5912380A (ja) * 1982-07-13 1984-01-23 Seiko Instr & Electronics Ltd 電子時計
JPS5940186A (ja) * 1982-08-30 1984-03-05 Seiko Epson Corp 電子時計
JPS61274290A (ja) * 1985-12-27 1986-12-04 Seiko Epson Corp 電子時計

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191045A (ja) * 2007-02-06 2008-08-21 Seiko Instruments Inc ステッピングモータ制御回路及び電子時計
JP2008228559A (ja) * 2007-02-15 2008-09-25 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2008202998A (ja) * 2007-02-17 2008-09-04 Seiko Instruments Inc ステッピングモータ駆動回路及びアナログ電子時計
JP2009148143A (ja) * 2007-12-18 2009-07-02 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010166798A (ja) * 2008-05-29 2010-07-29 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2009288133A (ja) * 2008-05-30 2009-12-10 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010029057A (ja) * 2008-06-17 2010-02-04 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2010169656A (ja) * 2008-12-25 2010-08-05 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JP2011155828A (ja) * 2009-12-28 2011-08-11 Seiko Instruments Inc ステッピングモータ制御回路及びアナログ電子時計
JPWO2016052577A1 (ja) * 2014-09-30 2017-07-27 シチズン時計株式会社 電子時計
US10331084B2 (en) 2014-09-30 2019-06-25 Citizen Watch Co., Ltd. Electronic watch

Also Published As

Publication number Publication date
US20100014389A1 (en) 2010-01-21
US8064294B2 (en) 2011-11-22
US7606116B2 (en) 2009-10-20
CN101019079A (zh) 2007-08-15
JPWO2005119377A1 (ja) 2008-04-03
CN100538559C (zh) 2009-09-09
US20080089183A1 (en) 2008-04-17
JP4863871B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
WO2005119377A1 (ja) アナログ電子時計及びモータ制御回路
JP2011203136A (ja) ステッピングモータ制御回路及びアナログ電子時計
US8351303B2 (en) Stepping motor controller and analog electronic timepiece
US20120044787A1 (en) Stepping motor control circuit and analogue electronic watch
JP6084008B2 (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
US8721170B2 (en) Stepping motor control circuit, movement, and analogue electronic timepiece
US20150160619A1 (en) Electronic clock
US8139445B2 (en) Stepping motor control circuit and analog electronic watch
US20110188352A1 (en) Stepping motor control circuit and analogue electronic watch
JP2008228559A (ja) ステッピングモータ制御回路及びアナログ電子時計
JP2010256137A (ja) ステッピングモータ制御回路及びアナログ電子時計
JP2011147330A (ja) ステッピングモータ制御回路及びアナログ電子時計
JP2011075463A (ja) ステッピングモータ制御回路及びアナログ電子時計
JP5394658B2 (ja) ステッピングモータ制御回路及びアナログ電子時計
JP6134487B2 (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP5523667B2 (ja) ステッピングモータ制御回路及びアナログ電子時計
JP4922008B2 (ja) ステッピングモータ駆動回路及びアナログ電子時計
JP2008170424A (ja) ステッピングモータ制御回路及び電子時計
JP6257709B2 (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP4995591B2 (ja) ステッピングモータ駆動回路及びアナログ電子時計
JP2015023644A (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP2014166072A (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP2014096900A (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計
JP4885754B2 (ja) ステッピングモータ制御回路及び電子時計
JP6395469B2 (ja) ステッピングモータ制御回路、ムーブメント及びアナログ電子時計

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514106

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11628047

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580026433.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11628047

Country of ref document: US