WO2005096333A1 - メソポア炭素材を負極に用いた有機電解質キャパシタ - Google Patents

メソポア炭素材を負極に用いた有機電解質キャパシタ Download PDF

Info

Publication number
WO2005096333A1
WO2005096333A1 PCT/JP2005/006822 JP2005006822W WO2005096333A1 WO 2005096333 A1 WO2005096333 A1 WO 2005096333A1 JP 2005006822 W JP2005006822 W JP 2005006822W WO 2005096333 A1 WO2005096333 A1 WO 2005096333A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrode
lithium
organic electrolyte
Prior art date
Application number
PCT/JP2005/006822
Other languages
English (en)
French (fr)
Inventor
Kenji Kojima
Satoshi Nakura
Nobuo Ando
Yukinori Hato
Chisato Marumo
Original Assignee
Fuji Jukogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo Kabushiki Kaisha filed Critical Fuji Jukogyo Kabushiki Kaisha
Priority to EP05728914A priority Critical patent/EP1734547B1/en
Priority to CN2005800108636A priority patent/CN1938802B/zh
Priority to JP2006511889A priority patent/JP4705566B2/ja
Priority to US10/599,383 priority patent/US7548409B2/en
Publication of WO2005096333A1 publication Critical patent/WO2005096333A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an organic electrolyte capacitor having excellent low-temperature characteristics and high energy density and power density.
  • the deterioration of the negative electrode is accompanied by the formation of needle-like lithium crystals called dentrite, and the repetition of charging and discharging eventually causes the dentite to penetrate through the separator, causing a short inside the battery, and in some cases, In some cases, there were problems with safety, such as the battery exploding.
  • a battery using the L i C O_ ⁇ lithium-containing metal oxides such as 2 it has been proposed in the positive electrode.
  • This battery is a so-called rocking chair battery in which lithium is supplied from the lithium-containing metal oxide of the positive electrode to the negative electrode by charging after the battery is assembled, and then the lithium is returned to the positive electrode during discharging. Since only lithium ion is involved in charge / discharge without using lithium, it is called a lithium ion secondary battery and is distinguished from a lithium battery using metallic lithium.
  • This battery is characterized by having a high voltage and a high capacity.
  • lithium-ion secondary battery and electric double-layer capacity have attracted attention.
  • lithium-ion batteries have high energy density, they still have problems with output characteristics, safety and cycle life.
  • the capacity is reduced to less than half, and lithium metal is deposited during charging, causing cell degradation, and other major issues.
  • Electric double-layer capacitors are electronic components that are widely used as power sources for memory backup of ICs and LSIs. Although they have a smaller discharge capacity per charge than batteries, they have excellent instantaneous charge / discharge characteristics. It has high output characteristics and maintenance-free properties that lithium-ion batteries and nickel-metal hydride batteries can withstand even tens of thousands of charge / discharge cycles. Furthermore, even at a low temperature of 120, the internal resistance does not increase much, and the capacity retention rate is as high as 80% or more, so that it can be used in a wide temperature range (for example, see Non-Patent Document 1). .
  • the carbon is not specifically limited in its production method or starting material, but is disclosed in the respective official documents (for example, see Patent Documents 1 and 2).
  • the energy density of a general electric double layer capacity is about 3 to 4 Wh Z1, which is about two orders of magnitude lower than that of a lithium ion battery. Therefore, as a drive power source that requires a high energy density, such as for electric vehicles, it has not yet reached the level of practical use. Considering the use of electric vehicles, it is said that an energy density of 6-1 O WhZ 1 is required for practical use, and an energy density of 2 O WhZl is required for widespread use.
  • Electrodes include a non-polarizable electrode with charge transfer at the electrode-electrolyte interface (Faraday reaction) and a polarizable electrode without charge transfer (non-Faraday reaction).
  • batteries have a configuration using non-polarizable electrodes for both poles, and electric double-layer capacity has a configuration using polarized electrodes for both poles.
  • electric double-layer capacity has a configuration using polarized electrodes for both poles.
  • hybrid capacity has a polarized electrode for one pole.
  • a configuration using a non-polarizable electrode for the other pole is adopted.
  • a carbon material that can occlude and desorb lithium ions (hereinafter abbreviated as L i + ) and a carbon material that has been preliminarily occluded with lithium ions by a chemical or electrochemical method are used for the negative electrode.
  • An organic electrolyte capacitor to be used has been proposed (for example, see Patent Document 3).
  • a carbon material capable of absorbing and desorbing lithium ions is supported on a porous current collector that does not form an alloy with lithium metal (hereinafter abbreviated as Li), and an organic electrolyte capacitor having a negative electrode and an upper limit voltage of 4 V is provided. (See, for example, Patent Documents.) .
  • a polarizable electrode material containing activated carbon powder combined with a stainless steel fiber current collector in a mixed state is used as a positive electrode, and a carbon material capable of occluding and desorbing lithium ions is prepared in advance by a chemical method or an electrochemical method.
  • an organic electrolyte capacitor in which a negative electrode is obtained by combining a porous metal or a fibrous metal current collector with a carbon material in which lithium ions are occluded by a method (for example, see Patent Document 5).
  • the polarizable electrode is made of a carbonaceous material having a positive electrode having a natural potential of Li ZL i + of 0.5 V or more and 2.6 V or less, and the negative electrode contains metallic lithium and lithium.
  • an organic electrolyte capacitor composed of at least one or more substances selected from substances in which lithium ions are previously stored in a substance capable of reversibly storing and releasing alloys and lithium ions (for example, see Patent Document 6). ).
  • the negative electrode potential is lowered and the withstand voltage of the cell is increased by preliminarily supporting lithium ions on the negative electrode.
  • a cell configuration in which a pair of positive and negative electrodes face each other like a coin battery It is not like a cylindrical battery in which electrodes are wound or a rectangular battery in which a plurality of electrodes are stacked.
  • lithium ions can move between the front and back surfaces of the electrode without being interrupted by the electrode current collector. Also in the power storage device, the lithium ion can be electrochemically supported not only on the negative electrode arranged near the lithium metal but also on the negative electrode arranged away from the lithium metal through the through hole.
  • the negative electrode active material various materials are used as long as they can reversibly support lithium ions.
  • examples include graphite such as natural graphite and artificial graphite, coke, pitch, thermosetting resin, and the like. It is known to use various carbon materials, carbon fibers, polyacene-based substances, tin oxides, silicon oxides and the like starting from coconut shells and trees.
  • an insoluble infusible substrate having a polyacene skeleton structure which is a heat-treated aromatic condensation polymer and has an atomic ratio of hydrogen atoms to carbon atoms of 0.5 to 0.05, is used. ing.
  • the insoluble infusible substrate is obtained by heat-treating the aromatic polymer.
  • an insoluble infusible substrate having a polyacene skeleton structure can be suitably used (for example, see Patent Literatures 12 and 13).
  • a hybrid capacitor uses an electrolyte with an electrolyte capable of transporting lithium ions, and as with a lithium-ion secondary battery, has a major problem in that it has high resistance at low temperatures and cannot obtain capacity at low temperatures.
  • Improvements in low-temperature properties include surface treatment such as increasing the polarity of the surface by treating the negative electrode carbon material at a high temperature and improving compatibility with the electrolyte, improvement by forming a surface film with additives to the electrolyte, and the like. Methods such as controlling the solvation of lithium ions have been reported, but have not reached practical use.
  • Non-Patent Document 1 Nichicon Co., Ltd., Catalog, 'Japan, published in October 2003 Patent Document 1: PCT / JP99 / 044541 (Claims, Claims 1 to Claims) 1 2
  • Patent Document 2 PCT / JP 0 0/0 8 7 7 5 (Claims, Claims 1 to 4)
  • Patent Document 3 Japanese Patent Application Laid-Open No. H08-0.10748 (Patent No. 2 2 ⁇ 3 8 lines-page 2 column 2 4 lines 7)
  • Patent Document 4 Japanese Unexamined Patent Publication No. 9-535542 (Page 7, column 11, line 24 to page 7, line 11 128)
  • Patent Document 5 Japanese Patent Application Laid-Open No. 9-123210 (page 4, column 6, line 1 to page 4, column 6, line 10)
  • Patent Document 6 Japanese Patent Application Laid-Open No. 11-11 / 977578 (page 3, column 4, line 8 to page 3, column 4, line 16)
  • Patent Document 7 Japanese Patent Application Laid-Open No. 8-166159 (page 4, column 6, line 10 to page 4, column 6, line 5)
  • Patent Document 8 Japanese Patent Application Laid-Open No. 8-2555563 (Page 4, Column 5, Column 3, line 3 to Page 5, Column 7
  • Patent Document 9 Japanese Patent Application Laid-Open No. H10-14442495 (page 2, column 2, line 4 to page 2, page 2)
  • Patent Document 10 Japanese Patent Application Laid-Open No. 8102333 (Page 3, line 3 to page 3, column 3, line 37)
  • Patent Document 1 International Publication No.WO 9 8 0 3 3 2 27 Publication (Page 11, Line 4 to Page 12, Line 27)
  • Patent Document 1 2 Japanese Patent Publication No. 1-4442 12 (Claims, Claims i to Claim 2 2)
  • Patent Document 13 Japanese Patent Publication No. 3-240204 (Claims, Claims 1 to 8) Disclosure of the Invention
  • lithium ions are preliminarily stored in a carbon material that can occlude and desorb lithium ions. Since the negative electrode that has been occluded has a lower potential than activated carbon used for electric double layer capacity, it is combined with positive electrode activated carbon. The cell withstand voltage improves, and the capacity of the negative electrode is much larger than that of activated carbon, resulting in a higher energy density.
  • an object of the present invention is to provide an organic electrolyte capacitor having a high capacity, a high energy density, and a high output even at ⁇ 20.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, used a mesopore carbon material having a pore volume of 3 nm or more and a pore volume of 0.10 ml or more as a negative electrode active material of an organic electrolyte capacitor. As a result, they have found that low resistance and high capacity can be obtained even at low temperatures, and have completed the present invention.
  • the present invention is as follows.
  • An organic electrolyte capacitor comprising a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions, wherein the negative electrode active material has a pore volume of 3 nm or more and a pore volume of 0.1 L O ml Z g or more.
  • Lithium ions are pre-loaded on the negative electrode and Z or the positive electrode such that the positive electrode potential is 2.0 V (L i / L i +) or less when the positive electrode and the negative electrode are short-circuited.
  • the organic electrolyte capacitor according to any one of [4].
  • the organic electrolyte capacity includes a positive electrode current collector and a negative electrode current collector, each current collector has a hole penetrating on the front and back surfaces, and is disposed to face the negative electrode and / or the positive electrode.
  • the mesopore carbon material in which the negative electrode active material has a pore volume of 3 nm or more and a pore volume of 0.10 m1 g or more is defined as a material for sufficiently increasing the mobility of solvated lithium ions. This is because a pore volume of 3 nm or more in diameter is required to be 0.10 ml / g or more.
  • the upper limit of the pore volume of pores with a pore diameter of 3 nm or more is not particularly limited, but is considered to have the maximum number of mesopores among the activated carbon produced by the usual production method. In the case of 2 Z g of alkali activated carbon, the pore volume is about 0.54 ml.
  • the organic electrolyte capacitor of the present invention is an organic electrolyte capacitor including a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions, wherein the positive electrode can reversibly support lithium ions and anions.
  • the use of a mesoporous carbon material with a negative electrode capable of reversibly supporting lithium ions and a pore volume of at least 0.1 nm and a pore volume of at least 3 nm as a negative electrode active material provides high voltage and high voltage.
  • An organic electrolyte capacitor having a high discharge capacity even at a low temperature of as low as 20 while having an energy density has been realized. ⁇
  • the organic electrolyte capacity of the present invention having such features is extremely effective as a driving storage power supply or an auxiliary storage power supply for electric vehicles, hybrid electric vehicles, fuel cell vehicles, and the like. Further, it is suitably used as a driving storage power source or an auxiliary storage power source for an electric bicycle, an electric bicycle, an electric wheelchair, and the like. Furthermore, these capacitors can be used as storage devices for various types of energy, such as solar energy storage devices, wind power storage devices, or uninterruptible power supply devices.
  • Fig. 1 is a perspective view showing the internal structure of an organic electrolyte capacitor when a laminate film is used as an outer container.
  • the internal structure of the organic electrolyte capacitor is indicated by a solid line, and the outer container of the organic electrolyte capacitor is indicated by a broken line.
  • FIG. 2 is a plan view of FIG.
  • FIG. 3 is a cross-sectional view taken along the line I_I ′ of FIG.
  • FIG. 5 An enlarged plan view of the electrode current collector (positive electrode current collector la, negative electrode current collector 2a) on which electrodes are formed.
  • Fig. 5 shows an example in which expanded metal is used as the electrode current collector, and the portion surrounded by the dotted line is a through hole.
  • Fig. 6 Cross-sectional view taken along the line I-I 'in Fig. 5. As shown in Fig. 6, the through-holes of the expanded metal (positive electrode current collector la, negative electrode current collector 2a) are closed by conductive materials lb, 2b. It is formed on the conductive layer on the expanded metal in which the through hole is closed.
  • Figure 7 An example of a dragon pole current collector is shown.
  • Figure 7 (a) shows an example of an extended metal with a porosity of 3 S%
  • Figure 7 (b) shows an example of a metal mesh with a porosity of 37%
  • Figure 7 (c) shows an example of a punching metal with a porosity of 34%.
  • the through-hole of the electrode current collector is round, but the shape of the through-hole is not limited to this.
  • FIG. 8 is a cross-sectional view showing a first example of a layer configuration of a three-electrode laminated unit.
  • FIG. 9 is a cross-sectional view showing a second example of the layer configuration of the three-electrode laminated unit.
  • FIG. 10 'A sectional view showing a third example of the layer configuration of the three-electrode laminated unit.
  • FIG. 11 is a developed perspective view showing an example of the electrode stacking unit.
  • FIG. 12 is a developed perspective view showing an example of the electrode stack unit. Explanation of symbols
  • A, B, C heat fusion parts
  • the organic electrolyte capacity of the present invention is an organic electrolyte capacity including a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions, wherein the positive electrode can reversibly carry lithium ions and anions, and Are capable of carrying lithium ions reversibly, and the negative electrode active material is a mesopore carbon material having a pore volume of 3 nm or more and a pore volume of 0.10 m1 Zg or more.
  • Organic electrolyte capacitor is an organic electrolyte capacity including a positive electrode, a negative electrode, and an electrolyte capable of transporting lithium ions, wherein the positive electrode can reversibly carry lithium ions and anions, and Are capable of carrying lithium ions reversibly, and the negative electrode active material is a mesopore carbon material having a pore volume of 3 nm or more and a pore volume of 0.10 m1 Zg or more.
  • lithium ion is previously supported on the negative electrode and / or the positive electrode so that the positive electrode potential becomes 2.0 V (L i / L i + ) or less when the positive electrode and the negative electrode are short-circuited.
  • a positive electrode current collector and a negative electrode current collector having holes penetrating on the front and back surfaces are used, so that the negative electrode and / or lithium disposed opposite to the positive electrode can be supported. It can be supplied electrochemically to the negative electrode and Z or positive electrode, which is industrially optimal.
  • FIG. 1 shows an example in which a laminating film is used as an outer container, and a perspective view shows an example of the internal structure of the organic electrolyte capacitor of the present invention.
  • the internal structure of the organic electrolyte capacity is indicated by a solid line
  • the outer container of the organic electrolyte capacity is indicated by a broken line.
  • 2 is a plan view of FIG. 1
  • FIG. 3 is a cross-sectional view taken along the line II ′ of FIG. 2
  • FIG. 4 is a cross-sectional view taken along the line II-II ′ of FIG.
  • a three-electrode laminated unit in which a positive electrode 1, a negative electrode 2, a lithium electrode 7, and a separator 3 are laminated is installed inside a cell, and an electrolyte capable of transporting lithium ions is injected. After the liquid is applied, the two laminated films 4 and 5 are sealed by heat fusion or the like.
  • the “positive electrode” refers to a side on which current flows out during discharge, the side on which current flows during charging, and the “negative electrode” receives a current during discharge and a current during charging. It means the pole on the outflow side.
  • the positive electrode 1 formed on the positive electrode current collector 1a and the negative electrode 2 formed on the negative electrode current collector 2a are stacked via a separator 3 so as not to directly contact each other.
  • the electrode stack unit 6 is formed.
  • a lithium electrode 7, which is formed by pressing and bonding lithium metal on one side of a lithium electrode current collector 7a, is installed via a separator 3, forming a three-electrode laminated unit.
  • an electrode current collector (a positive electrode current collector 1a, a negative electrode current collector 2a) and a lithium electrode current collector 7a each have a hole penetrating the front and back surfaces (shown in FIG. 1). Even if the through-hole is closed by a conductive material, lithium ions can freely move between the electrodes through the through-hole closed by the conductive material.
  • FIG. 5 is an enlarged plan view of the electrode current collector (positive electrode current collector 1a, negative electrode current collector 2a) on which electrodes are formed.
  • Fig. 5 shows an example in which expanded metal is used as the electrode current collector, and the portion surrounded by the dotted line is a through hole.
  • FIG. 6 is a cross-sectional view taken along the line I-I 'of FIG. As shown in FIG. 6, the through holes of the expanded metal (the positive electrode current collector 1a and the negative electrode current collector 2a) are closed by the conductive materials 1b and 2b, and the positive electrode 1 and the negative electrode 2 is formed on the conductive layer on the expanded metal in which the through hole is closed.
  • the electrode stacking unit 6 is not particularly limited in the structure of the power electrode stacking unit having four layers of the positive electrode 1 and the negative electrode 2, as long as it has at least one layer of the positive electrode and the negative electrode.
  • the number of layers is not particularly limited.
  • the lithium electrode 7 is disposed above the electrode stack ⁇ L knit 6 to form a three-electrode stack unit 8, but the position, the number of layers, and the shape of the lithium electrode 7 are not limited thereto. However, in order to support smooth lithium, it is preferable to arrange the lithium electrode 7 so as to face the negative electrode or the positive electrode. For example, the lithium electrode 7 may be directly attached on the negative electrode 2. When the lithium electrode 7 is directly attached on the negative electrode 2, lithium is directly carried on the adjacent negative electrode, but lithium is passed through at least one electrode or more on the other non-adjacent negative electrodes. It will be carried. .
  • the lithium electrode 7 is provided for supplying lithium ions to the negative electrode 2. Therefore, it is sufficient that the amount is sufficient to obtain the desired capacitance of the negative electrode.
  • the effect can be obtained by supplying lithium ions not only to the negative electrode but also to the positive electrode, or to both the positive electrode and the negative electrode.However, the amount of lithium ions should be appropriately determined in consideration of the lithium storage capacity and stability of the positive electrode and the negative electrode. It is preferable to adjust
  • the lithium electrode 7 emits lithium ions and gradually decreases. For this reason, it is preferable to use a conductive porous body such as a stainless steel mesh as the lithium electrode current collector 7a, and to arrange at least a part of the lithium electrode 7 by filling the pores of the lithium electrode current collector. . As a result, even if lithium is carried from the lithium electrode 7 to the electrode, the gap generated between the electrodes due to the disappearance of lithium is reduced, and lithium is smoothly carried on the electrode active material.
  • a separator 3 is provided between each of the positive electrode 1, the negative electrode 2, and the lithium electrode 7 so as not to make direct contact with each other.
  • each positive electrode current collector 1a has a lead portion serving as a terminal connection portion A, and a terminal welding portion A '(two pieces) of each positive electrode current collector 1a and a positive electrode terminal 1c is welded.
  • Each of the negative electrode current collectors 2a and the lithium current collector 7a has a lead portion serving as a terminal connection portion B ', and a terminal welded portion B' (three pieces) of each of the negative electrode current collectors 2a
  • the terminal welding 'part B' (1 piece) of the lithium electrode current collector 7a and the lithium electrode current collector 7b are bundled and dedicated to the negative electrode terminal 2c.
  • the sealing of the laminated films 4 and 5 is performed with the positive electrode terminal 1c and the negative electrode terminal 2c sandwiched.
  • the positive electrode terminal 1c and the negative electrode terminal 2c are heat-sealed on the laminated films 4 and 5, respectively, as shown in Fig. 2. Heat-sealed at joints A and B. That is, in the example of FIG. 2, the organic electrolyte capacitor is sealed at the heat-sealed portions A and B between the laminated films 4 and 5 and each terminal, and at the heat-sealed portion C between the laminated films 4 and 5.
  • the positive electrode terminal 1c and the negative electrode terminal 2c are protruded from between the laminated films 4 and 5 to the outside of the battery.
  • the positive electrode 1 passes through the positive electrode terminal 1c, and the negative electrode 2 and the lithium electrode 7 pass through the negative electrode terminal 2c. It can be connected to an external circuit.
  • the shape and size of the positive electrode terminal 1c and the negative electrode terminal 2c are not particularly limited. However, as long as the airtightness can be obtained within the limited cell volume, the terminal is preferably as thick and wide as possible because the terminal resistance is reduced. It is preferable that the shape and size of each terminal be appropriately selected according to the characteristics of the target cell.
  • the positive electrode current collector and the negative electrode current collector various materials generally proposed for applications such as organic electrolyte batteries can be used.
  • the positive electrode current collector aluminum, stainless steel, etc.
  • Stainless steel, copper, nickel and the like can be suitably used, and foils, nets and various shapes can be used.
  • a hole penetrating the front and back surfaces In order to preliminarily support lithium on the negative electrode and / or the positive electrode, it is preferable to provide a hole penetrating the front and back surfaces.For example, a through hole is provided by an expanded metal, a punching metal, a metal net, a foam, or etching. Porous foil and the like. It is preferable to form a conductive layer on the current collector because internal resistance can be reduced.
  • At least a part of the through-hole of the electrode current collector is closed with a conductive material that is difficult to fall off, thereby improving the productivity of the electrode, and It solves the problem of reduced reliability of the capacity due to the falling off of electrodes, and achieves high energy density and high power density by reducing the thickness of the electrodes including the current collector.
  • the shape and number of through-holes in the electrode current collector are adjusted so that lithium ions in the electrolyte solution described later can move between the front and back of the electrode without being blocked by the electrode current collector, and are closed by a conductive material. It can be set as appropriate to make it easier.
  • the porosity of the electrode current collector is defined as a value obtained by converting the ratio of ⁇ 1-(current collector weight Z true collector specific gravity) Z (current collector apparent volume) ⁇ into a percentage.
  • the porosity of the electrode current collector used in the present invention is usually 10 to 79%, preferably 20 to 60%.
  • the porosity of the electrode current collector is high, the time required for lithium to be supported on the negative electrode is short, and unevenness of lithium is unlikely to occur, but the strength of the current collector is reduced, and wrinkles and cuts are generated. It's easy to do. In addition, it becomes difficult to hold a conductive material or an active material in the through-hole, and problems such as a drop in electrode production yield due to dropping or cutting off of the electrode occur.
  • the porosity / pore diameter of the electrode current collector is desirably appropriately selected in the above range in consideration of the battery structure (laminated type, wound type, etc.) and productivity.
  • FIG. 7 shows an example of the electrode current collector.
  • Fig. 7 (a) is an example of an expanded metal with a porosity of 38%
  • Fig. 7 (b) is an example of a metal mesh with a porosity of 37%
  • Fig. 7 (c) is an example of a punched metal with a porosity of 34%.
  • the through-hole of the electrode current collector is round, but the shape of the through-hole is not limited to this.
  • pores with a pore diameter of less than 0.8 nm are sub-micropores
  • pores with a pore diameter of 0.8 to 2 nm are micropores
  • pores with a pore diameter of 2 to 50 nm The pores in the range are called mesopores, and the pores with a diameter of 50 nm or more are called macropores.
  • sub-micropores having pore diameters of less than 0.8 nm and pore diameters of 0.8 to 2 nm are mainly produced.
  • the formation of mesopores with a pore diameter of -2 to 50 nm is small, and the pore volume ratio of the mesopores is less than 10% of the body.
  • Such ordinary activated carbon has an excellent ability to adsorb molecules having a small molecular size, but the inorganic and organic compounds used as electrolytes and electrolytes in organic electrolyte capacities and solvates of these compounds. It is often difficult to increase the moving speed of an aggregate whose size has increased.
  • activated carbon with a large specific surface area and a large pore volume in the micropore to mesopore region with a pore diameter of 50 nm or less manufactured by using the chemical activation method or special raw materials and techniques It is preferably used as an active material for organic electrolyte capacities.
  • the carbon material used for the negative electrode needs to have a pore volume of 3 nm or more, particularly 0.1 ml OmlZg or more.
  • a carbon material having a large number of mesopores is called a mesopore carbon material regardless of the specific surface area, that is, the number of micropores.
  • the negative electrode active material according to the present invention defines that the pore volume has a pore volume of 3 nm or more and 0.1 l OmlZg or more, and the upper limit of the pore diameter is not particularly limited. It is in the range of 50 nm, and the range of the pore volume is not particularly limited. To about 0.5 mlZg, preferably about 0.15 to 0.5 mlZg.
  • mesopore carbon materials As a method for manufacturing mesopore carbon materials, there is a method in which Ni or Ni compound is added to carbon materials or carbon material precursors and heat treatment is performed at high temperatures. The method involves relatively easy formation of mesopores even for materials that are difficult to activate. Is an excellent manufacturing method.
  • the Ni compound used here is not particularly limited, but nickel chloride, nickel nitrate, nickel nickel sulfate, and hydrates thereof are preferably used.
  • the type of carbon material is not particularly limited as long as it can reversibly support lithium ions. Examples thereof include graphite such as natural graphite and artificial graphite, coke, pitch, thermosetting resin, and coconut.
  • Various carbon materials, carbon fibers, polyacene-based substances, tin oxides, silicon oxides, etc., starting from shells or trees can be used.
  • activated carbon, coconut shell charcoal, coke, charcoal, bamboo charcoal, resin carbide, and a mixture thereof are preferable because they can relatively easily give mesopores.
  • the resin carbide is a phenolic resin carbide, it is more preferable because the amount of impurities is small and the stability of performance is high.
  • carbon material precursors examples include coke, pitch, phenol, and melamine.
  • Plant raw materials such as oak husks and sawdust can be used.
  • the heat treatment method for making the mesopore carbon material although not particularly limited, 'for example, non-oxidizing atmosphere under a nitrogen gas stream, or water vapor, C 0 2 8 0 0 together with oxidizing gas such as ⁇ It is preferable to perform heat treatment and activation at about I 00 ⁇ .
  • the heating rate and the holding time at the maximum temperature are not particularly limited as long as the conditions are adjusted so as to obtain a predetermined pore volume, but usually the temperature is raised to the maximum temperature at 50 to 100 / hour. It is preferable to perform heat treatment or activation for about 10 hours.
  • a stationary electric furnace As a device for performing heat treatment or activation, a stationary electric furnace, a cylindrical furnace, a batch type or a continuous type tally kiln, and the like are used.
  • the negative electrode active material the above-mentioned mesopore carbon material is used, lithium ions can be reversibly supported, and a mesopore having a pore diameter of 3 nm or more has a pore volume of 0.10 m. It has at least 1 Z g. Further, a carbon-based material such as acetylene black, Ketjen black, graphite, or the like, or a conductive material such as metal powder may be appropriately added to the negative electrode active material as needed.
  • the negative electrode active material layer in the present invention contains the above-mentioned carbon material and the negative electrode active material of PAS ⁇ , and is formed of a powdery, granular, short fiber, etc. negative electrode active material with Pinda resin. It is preferable that it is done.
  • the binder resin for example, any one may be used as long as it is insoluble in an organic electrolyte solution described later.
  • An aqueous resin using water as a dispersion medium or a solvent, or an organic solvent such as alcohol or N-methylpyrrolidone is used as a dispersion medium or a solvent.
  • the non-aqueous resin used as the resin can be used.
  • SBR resin and carboxymethylcellulose resin are water-based resins, and phenol resin and melamine resin can be used both as water-based resin and non-aqueous resin depending on the composition.
  • Acrylic resin, polyamide resin, polyethylene resin and the like can be used as an aqueous resin by emulsifying the resin.
  • fluorinated resins such as polytetrafluoroethylene and polyvinylidene fluoride, polyimide resins, and polyamide-imide copolymer resins are typical examples of non-aqueous resins.
  • fluorine-based and water-based SBR resins are preferred.
  • the thickness of the negative electrode active material layer is designed to balance the thickness with the positive electrode active material layer so as to secure the energy density of the cell. However, as the negative electrode active material layer becomes thinner, the active material becomes thinner. Can be used effectively, and the output density can be improved. On the other hand, if the active material layer is too thin, the energy density of the cell decreases, which is not preferable.
  • the thickness of the negative electrode active material layer on one side is usually It is 15 to 100 zm, preferably 20 to 80.
  • the mixing ratio of the binder resin is 1 to 20%, preferably 2 to 10%, particularly preferably 2 to 5% by weight based on the active material.
  • the positive electrode contains a positive electrode active material capable of reversibly supporting lithium ions and / or an anion such as, for example, tetrafluoroborate.
  • a positive electrode active material capable of reversibly supporting lithium ions and / or an anion such as, for example, tetrafluoroborate.
  • an anion such as, for example, tetrafluoroborate.
  • it can reversibly support lithium ion and Z or anion.
  • Various activated carbons, conductive polymers, polyacene-based materials, and mesopore carbon materials having a mesopore with a pore diameter of 20 to 50 OA can be used.
  • a solution containing a condensate of an aromatic condensation polymer and an inorganic salt such as zinc chloride is prepared, and the solution is heated and cured in a mold. ), And gradually heated to a temperature of 350 to 800 ° C., preferably to a suitable temperature of 400 to 75 ° C., and then heat-treated.
  • a polyacene-based material (PAS) having an atomic ratio of hydrogen to carbon, that is, HZC of 0.05 to 0.5, and a specific surface area of 600 m2Zg or more by the BET method, which is obtained by ) Can be suitably used.
  • the positive electrode active material layer according to the present invention is formed by adding a conductive material, a binder resin, and the like to the positive electrode active material as necessary, and the type and composition of the conductive material and the binder resin are suitable. Can be set appropriately.
  • the conductive material for example, active pump racks such as activated carbon, acetylene black, and Ketjen black, and carbon-based substances such as graphite can be suitably used.
  • the mixing ratio of the conductive material varies depending on the electric conductivity of the active material, the electrode shape, and the like, but is preferably added at a ratio of 2 to 40% with respect to the active material. .
  • the binder resin may be, for example, one that is insoluble in an organic electrolyte solution described below, and may be an aqueous resin using water as a dispersion medium or a solvent, or an organic solvent such as alcohol or N-methylpyrrolidone as a dispersion medium.
  • a non-aqueous resin used as a solvent can be used.
  • a rubber-based binder resin such as SBR and a carboxymethylcellulose-based resin are aqueous resins, and a phenol resin / melamine resin can be used as an aqueous resin or a non-aqueous resin depending on the composition.
  • an acrylic resin, a polyamide resin, a polyethylene resin, or the like can be used as a water-based resin by emulsifying the resin.
  • fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride, polyimide resins, and polyamide-imide copolymer resins are typical examples of non-aqueous resins.
  • fluorine-based and water-based SBR resins are preferred.
  • the mixing ratio of the binder resin is from 1 to 20%, preferably from 2 to 10%, particularly preferably from 2 to 5%, based on the weight of the active material.
  • the thickness of the positive electrode layer on one side is usually 30 to 150 wm, preferably 60 to 100 wm.
  • the thickness of the positive electrode S material layer is designed to balance the thickness of the negative electrode active material with the thickness of the praising layer so as to secure the energy density of the cell.
  • the material can be used effectively and the power density can be improved, if the active material layer is too thin, the energy density of the cell decreases, which is not preferable.
  • the thickness of the positive electrode active material layer can be suitably used.
  • a lithium electrode 7 is previously disposed inside the organic electrolyte capacity as a lithium ion supply source for previously supporting lithium ions on the negative electrode and Z or the positive electrode.
  • a lithium ion supply source a substance containing at least a lithium element and capable of supplying lithium ions, such as lithium metal or lithium aluminum alloy, is used.
  • the amount of the lithium ion supply source (the weight of a substance capable of supplying lithium ions, such as lithium metal) to be placed inside the organic electrolyte capacity is sufficient as long as the predetermined negative electrode capacity is obtained.
  • the lithium ion supply source the weight of a substance capable of supplying lithium ions, such as lithium metal
  • the amount of the lithium ion supply source is sufficient as long as the predetermined negative electrode capacity is obtained.
  • only a predetermined amount may be supported from the lithium electrode 7 and then the lithium electrode 7 may be left inside the organic electrolyte capacitor.
  • it is preferable that only the necessary amount is arranged and the entire amount is carried on the negative electrode and Z or the positive electrode.
  • the lithium ion supply source is preferably formed on a lithium electrode current collector made of a conductive porous material, but the lithium electrode current collector may not be used.
  • a metal porous body that does not react with a lithium ion supply source such as a stainless steel mesh, as the conductive porous body serving as a lithium electrode current collector.
  • lithium metal when lithium metal is used as a lithium ion supply source and a conductive porous body such as stainless steel mesh is used as a lithium electrode current collector, at least a portion of the lithium metal is embedded in pores of the lithium electrode current collector. Is preferred. Preferably, 80% or more of lithium metal is filled and arranged in the pores of the conductive porous body. As a result, even after the lithium metal is carried on the negative electrode, the gap generated between the electrodes due to the disappearance of the lithium metal is reduced, and the reliability of the organic electrolyte capacitor can be more reliably maintained.
  • the lithium electrode current collector forming the lithium ion supply source is disposed so as to face the negative electrode or the positive electrode.
  • a lithium electrode 7 in which lithium metal is pressure-bonded to a lithium electrode current collector 7a is disposed below an electrode stacking unit 6 in which a positive electrode 1, a separator 3 and a negative electrode 2 are sequentially stacked, and a three-electrode is provided.
  • a laminated unit 8 is formed.
  • FIG. 9 shows another layer configuration of the three-electrode laminated unit 8.
  • a lithium electrode 7 in which lithium metal is pressure-bonded to a lithium electrode current collector 7 a is arranged above and below the electrode stack unit 6, respectively, to form a three-electrode stack unit 8.
  • a lithium electrode 7 is arranged in the middle of two electrode stack units 6 to form a three-electrode stack unit 8. With this arrangement, lithium ions can be smoothly carried on the negative electrode.
  • a lithium electrode 7 pressed with lithium metal is placed in the cross-sectional direction of the electrode stacking unit, and the negative electrode terminal and the Z statement short-circuit the positive electrode terminal and the lithium electrode terminal to deposit lithium ions on the negative electrode active material and the anode or positive electrode active material.
  • the width of the negative electrode and / or the positive electrode is long, the unevenness of the support in the electrode may increase, so the lithium electrode placed in consideration of the cell configuration, electrode size, etc. The position must be chosen accordingly.
  • the lithium electrode to be carried on the negative electrode and the Z or the positive electrode is locally arranged at a specific position, thereby improving the degree of freedom in cell design and improving mass productivity. Excellent charge / discharge characteristics can be provided.
  • an electrolyte capable of transporting lithium ions is used.
  • Such electrolytes are usually liquid and are impregnated in the separator.
  • an electrode with continuous ventilation holes that is durable against electrolyte or electrode active material, etc. For example, a porous material having no electron conductivity can be used.
  • a gel or solid electrolyte can also be used, but in this case, separation may not be used in some cases, which is also effective in preventing liquid leakage.
  • the electrolyte can be transferred lithium ions, without causing electrolysis even at a high voltage, lithium ion from the viewpoint of can exist stably.
  • L i C 1 04, L i A s F 6, L i BF 4, Lithium salts such as L i PF 6 and L i (C 2 F 5 SO 2) 2 N can be suitably used. It is preferable to use an aprotic organic solvent as a solvent for dissolving the lithium salt. .
  • aprotic organic solvent examples include ethylene carbonate, propylene carbonate, dimethyl carbonate, dimethyl carbonate, carboxylactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolan, methylene chloride, and sulfolane.
  • a mixed solution obtained by mixing two or more of these aprotic organic solvents can also be used. .
  • the above-mentioned electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte.
  • concentration of the electrolyte in the electrolyte is at least 0.1 molno 1 or more in order to reduce the internal resistance due to the electrolyte. And more preferably in the range of 0.5 to 1.5 mol / 1.
  • the material of the outer container of the organic electrolyte capacity of the present invention is not particularly limited, and various materials generally used for batteries or capacities can be used, and metal materials such as iron and aluminum, and plastic materials Alternatively, a composite material obtained by laminating them can be used.
  • the shape of the outer container is not particularly limited, and can be appropriately selected depending on the intended use, such as a cylindrical shape or a square shape. From the viewpoint of reducing the size and weight of the organic electrolyte capacity, it is preferable to use a film-type outer container using a laminated film of aluminum and a polymer material such as nylon or polypropylene.
  • a three-layer laminate film in which a layer of a modified nylon or the like is adhered to the outside of an aluminum foil and a layer of modified polypropylene is used to the inside is used as an exterior material.
  • the laminated film is usually deep-drawn to a predetermined size, and a positive electrode, a negative electrode and a separator with a laminated or wound unit are placed inside, a liquid electrolyte is injected, and a laminating film is heat-sealed. To form a power storage device.
  • a positive electrode terminal for example, an aluminum foil with a thickness of about 100 / m
  • a negative electrode terminal for example, a nickel foil with a thickness of 100 im
  • the sealing of the laminate film is performed by a simple method of fusing while sandwiching the positive electrode terminal and the negative electrode terminal.
  • laminated films 4 and 5 are used as the outer container, and deep drawing is performed on laminated film 5 by the thickness of the three-electrode laminated unit, but either laminated film 4 or 5 or both are deep drawn. You can give it.
  • Figure In this example two sets of laminating films are used, they are stacked so as to cover the contents, and the stacked outer parts are heat-sealed to seal the contents. are doing.
  • the present invention is not limited to the sheet-like film used in FIG. When using a cylindrical molded film member, the contents are sealed by heat-sealing the two opposing sides, and when using a bag-shaped film member, one side of the mouth is closed. By sealing, the contents are sealed.
  • the same active material (mainly activated carbon) is usually used for the positive and negative electrodes in approximately the same amount.
  • the active material used for the positive electrode and negative electrode has a potential of about 3 V based on the Li / Li + potential when the cell is assembled.By charging, an anion forms an electric double layer on the positive electrode surface. As a result, the potential of the positive electrode rises, while a force layer forms an electric double layer on the surface of the negative electrode and the potential drops.
  • an active material capable of reversibly supporting lithium ions and / or anions for the positive electrode is preferable to use.
  • the negative electrode is made of a mesoporous carbon material that can reversibly support lithium ion and has a negative electrode active material having a pore volume of 3 nm or more and a pore volume of 0 to 10 m 1 / g or more. This is different from carbon materials such as graphite that are generally used for lithium ion secondary batteries. Carbon materials such as graphite used in lithium-ion secondary batteries generally have almost no pore volume in the range of 0.8.111111 to 5111111 (micropore to mesopore). It is a target.
  • the mesopore carbon material of the present invention is preferably activated carbon, coconut shell charcoal, coke, charcoal, bamboo charcoal, resin carbonized or a mixture thereof, and particularly, phenolic resinized carbonized or phenolic resin. It is more preferable to use a resin carbide that is
  • mesopore carbon material after impregnating the N i compound such as N i N 0 3 to phenolic resin carbides it may be conveniently prepared by heat treatment at a degree 9 0 0 under ⁇ gas atmosphere.
  • lithium ions are pre-loaded on the negative electrode and / or the positive electrode so that the positive electrode potential becomes 2.0 V (Li / L i +) or less when the positive electrode and the negative electrode are short-circuited. Is preferred.
  • a carbon material has a potential of about 3.0 V (L i L i +).
  • the positive electrode potential is short-circuited when the positive electrode and the negative electrode are short-circuited. Is about 3.0 V (L i / L i +).
  • the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited to be 2 V or less is determined by either of the following two methods (A) and (B). Is the case where the potential is 2 V or less. That is,
  • the positive electrode potential after short-circuiting the positive electrode and the negative electrode is 2.0 V or less, It is not limited to immediately after doping with the lithium ion, but the positive electrode potential after short-circuiting is 2.0 V or less in either state, such as a charged state, a discharged state, or a short circuit after repeated charging and discharging. It is to become.
  • activated carbon and carbon materials usually have a potential of around 3 V (L i / L i + ) .
  • the potential of each is about 3 Therefore, even if a short circuit occurs, the positive electrode potential does not change and is about 3 V.
  • the potential of the positive electrode does not change even if a short circuit occurs, and is about 3 V.
  • the potential of the negative electrode changes to around 0 V, so that the charging voltage can be increased, resulting in a high voltage and high energy density capacity.
  • the upper limit of the charging voltage is determined to be a voltage at which the decomposition of the electrolyte does not occur due to the increase in the positive electrode potential.Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased as much as the negative electrode potential decreases It becomes.
  • the positive electrode potential is about 3 V during a short circuit
  • the upper limit potential of the positive electrode is, for example, 4.0 V
  • the positive electrode potential at the time of discharging is up to 3.0 V
  • the potential change was about 1.0 V, and the capacity of the positive electrode was not fully utilized.
  • the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. . This is described as the case where the electrolyte is consumed on the negative electrode surface for decomposition of the electrolyte or trapped in a structural defect of the carbon material.
  • the charging and discharging efficiency of the negative electrode is compared with the charging and discharging efficiency of the positive electrode. If the discharge efficiency is reduced and the cell is short-circuited after repeated charge and discharge, the positive electrode potential will be higher than 3 V, and the available capacity will be further reduced. In other words, the positive electrode can discharge from 4.0 V to 2.0 V, but if it can only be used from 4.0 V to 3.0 V, only half of the available capacity is used. But the capacity is not high.
  • the positive electrode potential after the short circuit drops below 3.0 V, the available capacity increases and the capacity increases.
  • the lithium ion source such as lithium metal
  • the amount of lithium ions carried on the anode should be adjusted in consideration of the characteristics of the anode material and cathode material so that the potential of the cathode after short-circuiting becomes 2.0 V or less. is necessary.
  • the fact that the positive electrode potential becomes 2.0 V (L i / L i +) or less when the positive electrode and the negative electrode are short-circuited means that the lithium ion is applied to the positive electrode and Z or the negative electrode from other than the positive electrode and the negative electrode of the organic electrolyte capacitor. Is supplied. If the positive electrode potential is higher than 2.0 V (L i / L 1 +) when the positive electrode and the negative electrode are short-circuited, the amount of lithium ion supplied to the positive electrode and / or the negative electrode is small, and the energy density of the cell is low. Is small. As the supply amount of lithium ion increases, the positive electrode potential when the positive electrode and the negative electrode are short-circuited decreases, and the energy density increases.
  • the value is preferably 2.0.times. (L i / L i +) or less, more preferably 1.0 V (L i / L i +) or less.
  • Another effect is that it is possible to increase the charging voltage when the amount of lithium ions supplied to the negative electrode increases.
  • the extent to which the capacity charging voltage can be increased is largely determined by the positive electrode potential. In other words, if the positive electrode potential is increased, the oxidative decomposition of the electrolytic solution occurs.
  • the organic electrolyte capacitor of the present invention having a structure in which lithium ions are preliminarily supported has a lower negative electrode potential and thus has a higher positive electrode potential.
  • the potential of the negative electrode can be made large, and the withstand voltage of the conventional electric double layer capacity is about 2.3 to 2.7 V, while the structure of the present invention is about 3.6 to 4.4 IV. It can be set as high as 3 V or more, and the energy density can be improved.
  • the through-hole of the electrode current collector in the organic electrolyte capacity may or may not be closed by a conductive material.
  • the method for closing the through-hole of the electrode current collector with a conductive material is not particularly limited, and a known method such as a coating method such as a die method, a dive method, or a spray method, or a printing method such as gravure, screen, or transfer is used. be able to.
  • the conductive material is not particularly limited.
  • various carbon materials such as graphite, such as natural graphite or artificial graphite, coex, pitch, resin, and plant, and acetylene black can be used.
  • black oxides such as Ketjen black, polyacene-based substances, tin oxide, silicon oxide and the like.
  • a metal powder such as metallic nickel may be used.
  • particularly preferred conductive materials include graphite, acetylene black, and ketjen black.
  • a positive electrode and a negative electrode are formed on the electrode current collector in which the through holes are closed with a conductive material.
  • the positive electrode is formed by mixing a positive electrode active material with a binder resin to form a slurry, coating the slurry on a positive electrode current collector, and drying. 'As you can see, the negative electrode is formed by mixing the negative electrode active material with a binder resin to form a slurry, coating it on a negative current collector and drying it.
  • the lithium electrode is formed by pressing lithium metal on a lithium electrode current collector made of a conductive porous material.
  • the thickness of the lithium current collector is about 10 to 200 / zm, and the thickness of lithium metal depends on the amount of the negative electrode active material used, but is generally about 50 to 303 / ⁇ . is there.
  • the electrodes After drying the electrodes, cut them to the width appropriate for the size of the outer container of the organic electrolyte capacity. In the case of forming a roll-up type electrode laminated unit ', it is cut into a ripon shape. At this time, it may be cut into a shape having a lead portion as a terminal welding portion.
  • FIGs 11 and 12 are exploded views of the electrode stacking unit, showing the shape of the terminal weld and the stacking direction.
  • Fig. 11 shows an example where the positive terminal weld and the negative terminal weld come out of opposite sides, respectively.
  • Fig. 12 shows the positive electrode weld and the negative terminal weld come out of the same side. It is an example. However, the directions of the positive and negative terminals are not limited to these two types.
  • the terminal weld of the positive electrode current collector and the positive electrode terminal of the assembled three-electrode stacked unit, and the terminal weld of the negative electrode current collector and the lithium electrode current collector and the negative electrode terminal are each welded by ultrasonic welding or the like.
  • the three-electrode laminated unit, which is in direct contact with the outer end, is placed inside the outer container, and the outer container is closed by heat welding, etc., leaving the electrolyte inlet. At this time, at least a part of the external terminal is exposed to the outside of the outer container so that it can be connected to an external circuit.
  • the electrolyte injection port is closed by heat fusion or the like, and the outer container is completely sealed, whereby the organic electrolyte of the present invention is obtained.
  • a capacitor is obtained.
  • the contact pressure from the outer container is weaker than that of a battery using a metal case such as a cylindrical or square type battery, so that external pressure is applied to make the positive and negative electrodes flat.
  • a metal case such as a cylindrical or square type battery
  • the lithium electrode current collector is welded to an external terminal different from the negative electrode terminal, and the lithium electrode terminal is provided outside, so that the negative electrode terminal and the lithium electrode terminal are sealed by a method such as external short circuit after sealing the cell. It becomes possible to supply lithium ions.
  • the measurement of the pore volume and the specific surface area of the present invention was performed by a nitrogen adsorption method at a liquid nitrogen temperature using a fully automatic gas adsorption measurement apparatus BEL SORP 28 (manufactured by Nippon Bell Co., Ltd.).
  • the pore volume with a pore diameter of 3 nm or more was determined by the method of Do 11 imore—He a 1 (hereinafter abbreviated as DH method).
  • the specific surface area was determined by the BET multipoint method.
  • the cylindrical pore radius is expressed by equation (1).
  • r k Core radius of the meniscus part.
  • the thickness of the adsorption layer can be obtained from the t-plot of the standard sample, and the core radius can be obtained from Ke1Vin equation (2).
  • the monolayer adsorption amount vm was obtained, and the nitrogen occupation area (0.162 nm 2 ) was substituted to obtain the specific surface area S.
  • the relative pressure (p / p 0) was in the range of about 0.05 to 0.10.
  • p / v (p 0 -p) (l / vmC) + ⁇ (C-1) / vmC ⁇ (p / p 0)-(4)
  • Samples 6 to 9 having pore volumes and specific surface areas other than samples 1 to 5 were prepared.
  • Sample 8 is a commercially available shell activated carbon.
  • Samples 6, 7, and 9 were prepared by the following method.
  • sample 5 At the time of preparation of sample 5, after heat treatment at 1000 for 10 hours, and further activation for 5 hours with a mixed gas of nitrogen and steam 1: 1 at 1000, a specific surface area of 134 OmZZg and a pore volume of 3 nm or more 0.304 m 1 g Sample 6 was prepared.
  • sample 7 At the time of preparation of sample 1, after heat treatment at 1000 for 10 hours, and further activated for 6 hours with a mixed gas of nitrogen steam and 1: 1 at 100 o :, a specific surface area of 2040 m 2 Zg and a pore volume of 3 nm or more 0.092 m 1 g of Sample 7 was prepared.
  • Table 2 shows a list of pore volumes and specific surface areas.
  • Negative electrode slurries 1 to 9 were prepared by mixing and mixing each of Samples 1 to 9 with a composition of 92 parts by weight, 6 parts by weight of acetylene black powder, 5 parts by weight of SBR, 3 parts by weight of carboxymethyl cellulose, and 110 parts by weight of ion-exchanged water. I got 9. The slurry was applied to one surface of a copper foil having a thickness of 18 so as to have a solid content of about 7 mg cm 2 , and dried and pressed to obtain negative electrodes 1 to 9 for evaluation. (Preparation of positive electrode 1)
  • a slurry was obtained by thoroughly mixing the above activated carbon powder in a composition of 92 parts by weight, acetylene black powder 6 parts by weight, SBR 7 parts by weight, carboxymethyl cellulose 4 parts by weight, and ion exchange water 18 parts by weight.
  • the slurry was applied to one surface of a 20-m-thick aluminum foil coated with a carbon-based conductive paint so as to have a surface shape of about 14 mg / cm 2 , dried and pressed to obtain a positive electrode 1.
  • the above negative electrodes 1 to 9 were cut out to a size of 1.5 ⁇ 2.0 cm 2 to obtain negative electrodes 1 to 9 for evaluation.
  • a negative electrode and a counter electrode two simulated cells were assembled, each having 1.5 ⁇ 2.0 cm 2 size, 250 m thick metallic lithium and a 50 Hm thick polyethylene nonwoven fabric as a separator.
  • Metallic lithium was used as a reference electrode.
  • samples 3 to 6 which are mesoporous carbon materials having a pore volume of 0.1 l OmlZg or more in the present invention having a pore diameter of 3 nm or more, have a discharge capacity at -20 and a room temperature. It had a large capacity where the ratio of the discharge capacity could exceed 20%.
  • the positive electrode 1 was cut out into nine pieces of 1.5 ⁇ 2.0 cm 2 size to obtain a positive electrode 1 for evaluation. Charge each remaining cell for negative electrode evaluation at a charging current of 2.5 mA.Charge at a constant current up to 025 V, then discharge at a constant current up to 0.2 V at a discharging current of 2.5111. After that, the cell was disassembled, the rim of the counter electrode was replaced with the positive electrode for evaluation, and an organic electrolyte capacitor was assembled. 2.
  • the cell was charged at a constant current of 5 mA until the cell voltage reached 3.6 V, and then discharged at a constant current of 2.5 mA until the cell voltage reached 1.6 V.
  • Table 4 shows the results of measuring the discharge capacity at the fifth time by repeating this 3.6 V-1.6 V cycle. Furthermore, after leaving in a thermostat at _20 for 6 hours, charging and discharging current was set to 1.0 mA, and the same charge / discharge cycle was repeated. Table 4 shows the ratio of the discharge capacity to the discharge capacity at room temperature. Table 4
  • samples 3 to 6 of the present invention which are mesopore carbon materials having a pore volume of 3 nm or more and a pore volume of 0.1 Om 1 or more, were obtained.
  • the organic electrolyte capacitor using as the negative electrode had a large capacity even at —2O :, and the ratio of the discharge capacity at 120 to the discharge capacity at room temperature exceeded 20%. (Example 9)
  • the positive electrode 1 was cut out into five pieces of 1.5 ⁇ 2.0 cm 2 to obtain a positive electrode 1 for evaluation. Also, five negative electrodes for evaluation 4 were cut out and assembled in the same cell as in the evaluation of the charge / discharge characteristics of the single electrode of the negative electrode in Example 1. Supported. Next, the cell was disassembled, lithium of the counter electrode was replaced with the evaluation positive electrode 1, and five cells of the organic electrolyte capacity were assembled. Each cell was charged at a constant current of 2.5 mA until the cell voltage reached 3.6 V, and then discharged at a constant current of 2.5 mA until the cell voltage reached 1.6 V. Table 5 shows the results of measuring the discharge capacity for the fifth time by repeating this 3.6 V-1.6 V cycle. In addition, Table 5 also shows the results of measuring the potential of the positive electrode using the reference electrode after short-circuiting the positive electrode and the negative electrode after the measurement was completed and leaving it for 12 hours.
  • the discharge capacity of the cell was large when the positive electrode potential was 2 V or less, and further increased when the positive electrode potential was IV or less. In other words, it is preferable that lithium ions are previously supported on the negative electrode in order to obtain a high discharge capacity.
  • Non-aqueous carbon conductive paint (Nippon Acheson Co., Ltd .: EB-815) is sprayed on both sides. Then, a negative electrode current collector having a conductive layer formed thereon was obtained by drying and drying. The total thickness (total of the thickness of the current collector and the thickness of the conductive layer) was 49 m, and the through holes were almost completely closed by the conductive paint.
  • the slurry of the negative electrode 5 is formed on both sides of the negative electrode current collector by a roll coater, and after pressing, the entire thickness of the negative electrode (the thickness of the negative electrode layer on both sides, the thickness of the conductive layer on both sides, and the The negative electrode 10 having a total body thickness of 153 m was obtained. (Production method of positive electrode 2 using current collector with front and back through holes)
  • Aluminum expanded metal with a thickness of 35 wm (porosity: 50%) (manufactured by Nippon Metal Industry Co., Ltd.) Both sides are coated with non-aqueous carbon-based conductive paint (manufactured by Nippon Acheson Co., Ltd .: EB-815) by spray method Then, by drying, a positive electrode current collector having a conductive layer formed thereon was obtained.
  • the total thickness (the total of the thickness of the current collector and the thickness of the conductive layer) was 52 m, and the through-hole was almost closed by the conductive paint.
  • the slurry of the positive electrode 1 is formed on both surfaces of the positive electrode current collector with a roll roller, and the thickness of the entire positive electrode after pressing (the thickness of the positive electrode layer on both surfaces, the thickness of the conductive layer on both surfaces, and the thickness of the positive electrode current collector) Of the positive electrode 2 having a total of 218 zm.
  • Negative electrode 10 having a thickness of 153 zm, electrode area of the positive electrode 2 in shape as shown in FIG. 11 having a thickness of 218 m, respectively, 5. 0x8. 0 cm was cut at 2, a thickness of 3 0 as evening separator
  • connection terminal welds the welded portions of the positive electrode current collector and the negative electrode current collector with the connection terminals (hereinafter referred to as “connection terminal welds”) are made of a pair of skins using cellulose / rayon mixed nonwoven fabric of The cells were stacked so that the cell thickness was about 4 mm, and the number of positive and negative electrodes was eight each. Separate layers were placed at the top and bottom, and four sides were taped to obtain an electrode laminated unit.
  • the lithium metal equivalent to 50 OmAhZg with respect to the weight of the negative electrode active material a 110 m thick lithium metal foil crimped on a stainless steel net of 80 Aim thickness was used. One was placed at the outermost. The negative electrode (eight sheets) and the stainless steel mesh to which lithium was pressed were welded and brought into contact with each other to obtain an electrode laminated unit.
  • the terminals were overlapped and ultrasonically welded.
  • the remaining two cells were charged with a constant current of 10 Q OmA until the cell voltage reached 3.6 V, and then a constant current constant voltage charge of applying a constant voltage of 3.6 V was performed for 1 hour. Then, discharging was performed at a constant current of 100 mA until the cell voltage reached 1.6 V. This cycle of 3.6 V-1.6 V was repeated, and the third discharge capacity was 118 mAh on average for two cells.
  • the energy density was 15 WhZl when the vertical length of the cell was 10.0 mm and the horizontal length was 50 mm.
  • the positive electrode 2 of Example 10 was used for the positive electrode and the negative electrode, and the electrodes were cut in the shape shown in FIG. 11 so that the electrode area was 5.0 ⁇ 8.0 cm 2, and the cell having a thickness of 30 ⁇ m was used as a separator. Mouth-As shown in Fig. 11, the welded portions of the positive electrode current collector and the negative electrode current collector with the connection terminals (hereinafter referred to as “connection terminal welds”) are made on the opposite sides using a non-woven fabric mixed with snow. When the cells were stacked so that the thickness of the cell was about 4 mm, the number of the positive electrode and the negative electrode was eight each. The uppermost and lowermost parts were arranged with separate separators and taped on four sides to obtain an electrode laminated unit.
  • a 10mm-wide, 30mm-long, 0.2mm-thick aluminum negative electrode terminal with a sealant film previously heat-sealed to the terminal welded portion (eight pieces) of the negative electrode current collector in a sealed area Were superposed and ultrasonically welded, and placed inside two exterior films (total 4 mm space) deep drawn to 102 mm in length, 52 mm in width, and 2 mm in depth.
  • TEABF4 tetraethylammonium tetrafluoroborate
  • the assembled two cells were charged with a constant current of 1000 mA until the cell voltage reached 2.5 V, and then a constant current constant voltage charge of applying a constant voltage of 2.5 V was performed for 1 hour. Next, discharging was performed at a constant current of 100 mA until the cell voltage became 0 V. This cycle of 2.5 V-0 V was repeated, and the third discharge capacity was 81 mAh on average for two cells.
  • the energy density was 4.7 WhZl when the vertical length of the cell was 100 mm and the horizontal length was 50 mm. Even when an electric double layer capacitor was configured using the positive electrode 2 having a high energy density in Example 10 for the positive electrode and the negative electrode, a high energy density as in Example 10 was not obtained. That is, a high energy density as in Example 10 cannot be obtained unless a mesopore carbon material having a pore volume of 0.1 nm OmlZg or more is used as the negative electrode active material.

Abstract

−20℃においても高容量を有する、高エネルギー密度、高出力を有した有機電解質キャパシタを提供する。 本発明の有機電解質キャパシタにより、正極、負極、並びに、リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、正極がリチウムイオンおよびアニオンを可逆的に担持可能であるとともに、負極がリチウムイオンを可逆的に担持可能であり、かつ負極活物質に細孔直径3nm以上の細孔容積を0.10ml/g以上有するメソポア炭素材を用いることにより、高電圧、高エネルギー密度を有しながら、−20℃という低温状態でも高い放電容量を有した有機電解質キャパシタを実現しうる。

Description

明 細 書 メソポア炭素材を負極に用いた有機電解質キャパシタ 技術分野
本発明は、 低温特性に優れ、 かつエネルギー密度、 パワー密度も高い有機電解質キャパ シタに関する。 背景技術
近年、 導電性高分子、 遷移金属酸化物等を正極とし、 負極にリチウム金属あるいはリチ ゥム合金を用いた二次電池が、 そのエネルギー密度が高いことから、 ニッケル (以下、 N iと省略する) と力ドニゥム (以下、 C dと省略する) からなる N i— C d電池、 鉛電池 に代わる電池として提案されている。 しかしながら、 これらの二次電池は、 繰り返し充放 電を行うと、 正極あるいは負極の劣化による容量低下が大きく、 実用には問題が残されて いる。 特に、 負極の劣化は、 デントライトと呼ばれる針状のリチウム結晶の生成を伴い、 充放電の繰り返しにより終局的にはデントライトがセパレー夕を貫通し、 電池内部でショ —トを引き起こし、 場合によっては電池が破裂する等、 安全面においても問題が生じるこ とがあった。
そこで、 上記の問題点を解決すべく、 グラフアイト等の炭素材料を負極に用い、 正極に L i C o〇2等のリチウム含有金属酸化物を用いた電池が提案されている。 この電池は、 電池組立後、 充電することにより正極のリチウム含有金属酸化物から負極にリチウムを供 給し、 更に放電では負極リチウムを正極に戻すという、 いわゆるロッキングチェア型電池 であり、 負極に金属リチウムを使用せずリチウムィオンのみが充放電に関与することから 、 リチウムイオン二次電池と呼ばれ、 金属リチウムを用いるリチウム電池とは区別されて いる。 この電池は、 高電圧及び高容量を有することを特長としている。
また、 環境問題がクローズアップされる中、 太陽光発電や風力発電によるクリーンエネ ルギ '一の貯蔵システムや、 電力の負荷平準化を目的とした分散型電源、 あるいはガソリン 車にかわる電気自動車用あるいはハイブリヅド電気自動車用の電源 (メイン電源と補助電 源) の開発が盛んに行われている。 また、 自動車の電装設備の電源としては、 これまで鉛 電池が用いられていたが、 最近ではパワーウインドーや I T関連機器の搭載などが充実し てきたこともあり、 これらの用途においてもエネルギー密度、 出力密度の高い新しい電源 が求められるようになってきている。
こうした蓄電装置あるいは駆動電源としては、 上述のリチウムイオン二次電池や電気二 重層キャパシ夕が注目されている。 しかしながら、 リチウムイオン電池はエネルギー密度 は高いものの出力特性、 安全性やサイクル寿命には問題を残している。 特に— 2 もの 低温における充放電では、 容量が半分以下になったり、 充電時にリチウム金属が電析しセ ルの劣化を引き起こす等大きな課題となっている。
一方、 電気二重層キヤパシタは、 I Cや L S Iのメモリーバックアツプ用電源として広 く利用されている電子部品であり、 一充電当たりの放電容量は電池に比べて小さいものの 、 瞬時の充放電特性に優れ、 数万サイクル以上の充放電にも耐えるという、 リチウムィォ ン電池やニッケル水素電池にはない高い出力特性とメンテナンスフリー性を備えている。 更に、 一 2 0での低温においても内部抵抗の上昇はあまり見られず、 容量保持率も 8 0 % 以上と高く、 幅広い温度範囲での使用が可能である (例えば、 非特許文献 1参照) 。 最近では、 正極および負極の活性炭としてメソポアカーボンを用いた研究が活発化して おり、 高容量、 高出力が得られることで注目されている。 また、 そのカーボンは、 その製 法や出発原料を特に限定するものではないが、 夫々の公文に開示されている (例えば、 特 許文献 1 , 2参照) 。
しかしながら、 電気二重層キャパシ夕はこうした利点を有してはいるが、 一般的な電気 二重層キャパシ夕のエネルギー密度は 3〜4 Wh Z 1程度であり、 リチウムイオン電池に 比べて二桁程度小さいため、 電気自動車用途などの高エネルギー密度が要求される駆動電 源としては、 未だ実用化レベルに到達していないのが現状である。 電気自動車用途を考え た場合、 実用化には 6〜1 O Wh Z 1、 普及させるには 2 O WhZ lのエネルギー密度が 必要であるといわれている。
こうした高エネルギー密度、 高出力特性を要する用途に対応する蓄電装置としては、 近 年、 ハイブリットキャパシタと呼ばれる蓄電装置が注目されている。 尚、 本出願において は、 電気二重層キャパシタ、 ハイブリットキャパシ夕を含む全キャパシ夕の中において電 解液として有機溶媒溶液を用いたキヤパシ夕を総称して有機電解質キヤパシタと呼ぶ。 電 極には、 電極一電解液界面において電荷の移動を伴う (ファラデー反応) 非分極性電極と 、 電荷の移動を伴わない (非ファラデー反応) 分極性電極がある。
一般に電池は両極に非分極性電極を用いた構成であり、 電気二重層キャパシ夕は両極に 分極性電極を用いた構成であるが、 ハイブリットキャパシ夕と呼ばれるものは、 片極に分 極性電極を、 もう片極に非分極性電極を用いた構成を取る。 これらは、 電池の高いエネル ギー密度と電気二重層キャパシ夕の高い出力特性を兼ね備えた蓄電装置として開発が活発 化している。
ハイブリットキャパシタ関連としては、 リチウムイオン (以下、 L i +と省略) を吸蔵 、 脱離しうる炭素材料に、 予め^学的方法又は電気化学的方法でリチウムイオンを吸蔵さ せた炭素材料を負極に用いる有機電解質キャパシタが提案されている (例えば、 特許文献 3参照。 ) 。 また、 リチウムイオンを吸蔵、 脱離しうる炭素材料をリチウム金属 (以下、 L iと省略) と合金を形成しない多孔質集電体に担持させ、 その負極を有する上限電圧が 4 Vの有機電解質キャパシタが提案されている. (例えば、 特許文献 参照。 )。.
さらには、 活性炭粉末を含む分極性電極材料にステンレス鋼繊維の集電体が混在状態で 組み合わしたものを正極に、 リチウムイオンを吸蔵、 脱離しうる炭素材料に、 予め化学的 方法又は電気化学的方法でリチウムイオンを吸蔵させた炭素材料に多孔質金属又は繊維状 金属の集電体を組み合わしたものを負極とした有機電解質キャパシタが提案されている ( 例えば、 特許文献 5参照。 ) 。
さらに、 正極の自然電位が L i ZL i +を対極として、 0. 5 V以上 2 . 6 V以下であ る炭素質物質からなる分極性電極であり、 負極が、 金属リチウム、 リチウムを含有する合 金及びリチウムイオンが可逆的に吸蔵、 脱離しうる物質に予めリチウムイオンを吸蔵させ た物質から選ばれる少なくとも一ゥ以上の物質からなる有機電解質キャパシタが提案され ている (例えば、 特許文献 6参照。 ) 。
これらの提案はいずれも負極にリチウムイオンを予め担持させることにより、 負極電位 を下げてセルの耐電圧を上げたものであるが、 コイン電池のように一対の正極、 負極が対 向したセル構成のものであり、 電極を捲回した円筒型電池や、 複数枚の電極を積層した角 型電池のようなものではない。
また、 大型セルにおいて予めリチウムイオンを負極に担持させる方法も開示されている が、 いずれも担持させるのに時間を要することや均一性に^があること等、 工業化に課 題を残している (例えば、 特許文献 7— 1 0参照。 ) 。 一方、 正極集電体および負極集電体が'それぞれ表裏に貫通する孔を備え、 負極活物質が リチウムイオンを可逆的に担持可能であり、 負極由来のリチウムが負極あるいは正極と対 向して配置されたリチウム金属と電気化学的接触により担持される有機電解質電池が提案 されている (例えば、 特許文献 1 1参照。 ) 。 .
該文献においては、 電極集電体に表裏面を貫通する孔を設けることにより、 リチウムィ オンが電極集電体に遮断されることなく電極の表裏間を移動できるため、 積層枚数の多い セル構成の蓄電装置においても、 当該貫通孔を通じて、 リチウム金属近傍に配置された負 極だけでなくリチウム金属から離れて配置された負極にもリチウムィォンを電気化学的に 担持させることが可能となる。
負極活物質は、 リチウムイオンを可逆的に担持できるものであればいろいろな物質が用 いられており、 例えば天然黒鉛、 人造黒鉛などのグラフアイト、 コ一クス、 ピッチ、 熱硬 化性樹脂、 ヤシ殻や樹木などを出発原料とする種々の炭素材料、 炭素繊維、 ポリアセン系 物質、 錫酸化物、 珪素酸化物等を用いることが知られている。
負極活物質として、 芳香族系縮合ポリマーの熱処理物であって、 水素原子 炭素原子の 原子比が 0 . 5 0〜0 . 0 5であるポリアセン系骨格構造を有する不溶不融性基体が用い られている。 上記不溶不融性基体は、 上記芳香族系ポリマ一を熱処理することにより得ら れるものであり、 例えばポリアセン系骨格構造を有する不溶不融性基体を、 好適に用いる ことができる (例えば、 特許文献 1 2 , 1 3参照) 。
しかしながら、 ハイブリツドキャパシタはリチウムイオンを移送可能な電解質を備えた 電解液を用いており、 リチウムイオン二次電池と同様に低温では抵抗が高く、 また容量が 得られないことが大きな課題となっている。 低温特性の改善としては、 負極炭素材料を高 温処理することにより表面の極性を高め、 電解液とのなじみを改善させる等の表面処理や 、 電解液への添加剤による表面皮膜形成による改善、 リチウムイオンへの溶媒和の制御等 'の方法が報告されているが、 実用化レベルには至っていない。
非特許文献 1 : 二チコン株式会社、 カタログ、'日本、 2 0 0 3年 1 0月発行 特許文献 1: P C T/ J P 9 9 / 0 4 5 4 1 (請求の範囲、 請求項 1〜請求項 1 2
)
特許文献 2: P C T/ J P 0 0 / 0 8 5 7 5 (請求の範囲、 請求項 1〜請求項 4 ) 特許文献 3: 特開平 8—.1 0 7 0 4 8号公報 (第 2頁第 2榈 3 8行〜第 2頁第 2欄 4 7行)
特許文献 4: 特開平 9— 5 5 3 4 2号公報 (第 7頁第 1 1欄 2 4行〜第 7頁第 1 1 檷 2 8行)
特許文献 5: 特開平 9一 2 3 2 1 9 0号公報 (第 4頁第 6欄 1行〜第 4頁第 6欄 1 0行)
特許文献 6: 特開平 1 1一 2. 9 7 5 7 8号公報 (第 3頁第 4欄 8行〜第 3頁第 4欄 1 6行)
特許文献 7: 特開平 8— 1 6 2 1 5 9号公報 (第 4頁第 6欄 1 0行〜第 4頁第 6欄 4 5行)
特許文献 8: 特開平 8— 2 5 5 6 3 3号公報 (第 4頁第 5欄 3 3行〜第 5頁第 7欄
2 9行)
特許文献 9: 特開平 1 0— 1 4 4 2 9 5号公報 (第 2頁第 2欄 4行〜第 2頁第 2攔
3 4行)
特許文献 1 0: 特開平 8 1 0 2 3 3 3号公報 (第 3頁第 3櫚 2行〜第 3頁第 3欄 3 7行)
特許文献 1 1: 国際公開番号 WO 9 8ノ 0 3 3 2 2 7号公報 (第 1 1頁 4行〜第 1 2頁 2 7行) 特許文献 1 2 : 特公平 1— 4 4 2 1 2号公報 (特許請求の範囲、 請求項 i〜請求項 2 2 )
特許文献 1 3: 特公平 3— 2 4 0 2 4号公報 (特許請求の範囲、 請求項 1〜請求項 8 ) 発明の開示
上述のように、 リチウムイオンを吸蔵、 脱離しうる炭素材料等に予めリチウムイオンを. 吸蔵させた負極は、 電気二重層キャパシ夕に用いられる活性炭よりも電位が卑になるので 、 正極活性炭と組み合わせたセルの耐電圧は向上し、 また負極の容量は活性炭に比較し非 常に大きいためエネルギー密度が高くなる。
しかしながら、 リチウムイオンを含む電解液は電導度が低いことや、 負極においてリチ ゥムイオンの吸蔵 ·脱離反応が遅い等の問題により高い電流密度での放電は困難となって いた。 特に一 2 0でという低温においては、 リチウムイオンを含む電解液を用いた有機電 解質キヤパシ_夕では大きな容量は得られていなかった。
したがって、 本発明の目的は、 — 2 0でにおいても高容量を有する、 高エネルギー密度 、 高出力を有した有機電解質キャパシタを提供することにある。
本発明者等は前記課題を解決すベく鋭意検討した結果、 有機電解質キャパシタの負極活 物質.として細孔直径 3 nm以上の細孔容積が 0 . 1 0 m l 以上を有するメソポア炭素 材を用いることにより、 低温でも抵抗が低く、 高容量が得られることを見出し、 本発明を 完成させたものである。
すなわち、 本発明は以下の通りである。
〔1〕 正極、 負極、 並びに、 リチウムイオンを移送可能な電解質を備えた有機電解質 キャパシタであって、 負極活物質が細孔直径 3 n m以上の細孔容積が 0 . l O m l Z g以 上を有するメソポア炭素材であることを特徴とする有機電解質キャパシタである。
〔2〕 メソポア炭素材が、 活性炭、 ヤシ殻炭、 コ一ウス、 木炭、.竹炭、 樹脂炭化物か ら選ばれた 1つ又は複数の混合物である、 〔1〕 に記載の有機電解質キャパシタである。
〔3〕 樹脂炭化物がフエノール樹脂炭化物、 又は樹脂がフエノール榭脂である、 〔2 〕 記載の有璣電解質キャパシタである。
〔4〕 メソポア炭素材が N iまたは N i化合物を用いて製造されることを特徴とする 、 〔1〕 〜 〔3〕 の何れか記載の有機電解質キャパシ夕である。
〔5〕 正極と負極を短絡させた時に正極電位が 2. 0 V (L i /L i +) 以下になる ように負極および Z又は正極に予めリチウムイオンを担持させることを特徴とする、 〔1 〕 ~ 〔4〕 の何れか記載の有機電解質キャパシタである。
〔6〕 前記有機電解質キャパシ夕が正極集電体および負極集電体を備え、 各集電体は 表裏面に貫通する孔を有しており、 負極および/又は正極に対向して配置されたリチウム から電気化学的に負極および/又は正極に供給されることによりリチウムィオンが担持さ れる、 〔5〕 に記載の有機 ¾解質キャパシタである。
ここで、 負極活物質が細孔直径 3 n m以上の細孔容積が 0. 1 0 m 1 g以上を有する メソポア炭素材とは、 溶媒和したリチウムイオンの易動度を十分に上げるためには、 細孔 直径 3 nm以上の細孔容積が 0 . 1 0 m l / g以上必要となるためである。 細孔直径 3 n m以上の細孔容積の上限については特に限定するものでは無いが、 通常の製法で作られる 活性炭の中で、 メソポアを最大限に有していると考えられる 3 1 0 0 m2Z gのアルカリ 賦活活性炭の場合で該細孔容積は 0. 5 4 m l 程度である。 以上説明したように、 本発明の有機電解質キャパシタは、 正極、 負極、 並びに、 リチウ ムイオンを移送可能な電解質を備えた有機電解質キャパシタであって、 正極がリチウムィ オンおよびァニオンを可逆的に担持可能であるとともに、 負極がリチウムイオンを可逆的 に担持可能であり、 かつ負極活物質に細孔直径 3 nm以上の細孔容積を 0. l OmlZg 以上有するメソポア炭素材を用いることにより、 高電圧、 高エネルギー密度を有しながら 、 一 20 という低温状態でも高い放電容量を有した有機電解質キャパシタを実現したも のである。 ·
かかる特徴を有する本発明の有機電解質キャパシ夕は、 電気自動車、 ハイブリッド電気 自動車、 燃料電池車などの駆動用蓄電源または補助用蓄電源として極めて有効である。 ま た、 電動自転車、 電動スク一夕、 電動車椅子などの駆動用蓄電源や補助用蓄電源などとし ても好適に用いられる。 更に、 これらのキャパシタは、 ソーラーエネルギーの蓄電装置、 風力発電の蓄電装置などの各種エネルギーの貯蔵装置として、 あるいは、 無停電電源装置
、 家庭用電気器具の蓄電源などとしても、 好適に用いることができる。 図面の簡単な説明
図 1: 外装容器としてラミネートフイルムを用いた場合の有機電解質キャパシ夕の 内部構造を示す斜視図である。 有機電解質キャパシタの内部構造は実線で、 有機電解 質キャパシ夕の外装容器は破線で記載してある。
図 2: 図 1の平面図である。
図 3: 図 2の I _ I '断面図である。
図 4: 図 2の II— II '断面図である。
図 5: 電極が形成された電極集電体 (正極集電体 l a、 負極集電体 2 a) の拡大平 面図を示す。 図 5は、 電極集電体としてエキスパンドメタルを用いた例であり、 点線 で囲まれた部分が貫通孔である。
図 6: 図 5の I— I '断面図を示す。 図 6に示すように、 エキスパンドメタル (正 極集電体 l a、 負極集電体 2 a) の貫通孔は、 導電性材料 l b、 2 bによって閉塞さ れており、 正極 1および食極 2は、 この貫通孔を塞がれたエキスパンドメタル上の導 電層の上に形成される。
図 7: 竜極集電体の 例を示す。 図 7 (a) ほ、 気孔率 3 S%のエキス ンドメタ ル、 図 7 (b) は気孔率 37%の金属網、 図 7 (c).は気孔率 34%パンチングメタ ルの例である。 図 7 (c) の例では、 電極集電体の貫通孔は丸状であるが、 貫通孔の 形状はこれに限定されるものではなく、 例えば、 図 7 (d) に示す四角状 (気孔率 4 5%) 、 図 7 (e) に示す十文字状 (気孔率 35%) 等、 適宜設定できる。
図 8: 三極積層ュニットの層構成の第 1の例を示す断面図である。
図 9: 三極積層ュニットの層構成の第2の例を示す断面図でぁる。
図 10:' 三極積層ュニットの層構成の第 3の例を示す断面図である。
図 11: 電極積層ユニットの一例を示す展開斜視図である。
図 12: 電極積層ュニッ卜の一例を示す展開斜視図である。 符号の説明
1 正極
1 a正極集電体
1 c 正極端子 2 負極
2 a負極集電体
2 c負極端子
3 セパレ一夕
4、 5 ラミネートフィルム
6 電極積層ュニット
7 リチウム
7 aリチウム極集電体
8 三極積層ュニット
A、 B、 C熱融着部
A ' 端子接続部
B ' 端子溶接部 発明を実施するための最良の形態
本発明の有機電解質キャパシ夕は、 正極、 負極、 並びに、 リチウムイオンを移送可能な 電解質を備えた有機電解質キャパシ夕であって、 正極がリチウムイオンおよびァニオンを 可逆的に担持可能であるとともに、 負極がリチウムイオンを可逆的に担持可能であり、 か . つ負極活物質が細孔直径 3 n m以上の細孔容積が 0 . 1 0 m 1 Z g以上を有するメソポア 炭素材であることを特徴とする有機電解質キャパシタである。
本発明においては、 正極と負極を短絡させた時に正極電位が 2. 0 V (L i /L i +) 以下になるように負極および 又は正極に予めリチウムィオンを担持させることが好まし い。 また、 リチウムを担持させるためには、 正極集電体および負極集電体には表裏面に貫 通する孔を有したものを用いることにより、 負極および 又は正極に対向して配置された リチウムから電気化学的に負極および Z又は正極に供給することが可能となり工業的に最 適である。
まず、 本発明の有機電解質キャパシ夕の内部構造から説明する。 外装容器としてラミネ 一トフイルムを用いた場合の一例として図 1を挙げ、 本発明の有機電解質キャパシタの内 部構造の例を斜視図で示す。 図 1においては、 有機電解質キャパシ夕の内部構造は実線で 、 有機電解質キャパシ夕の外装容器は破線で記載してある。 図 2は図 1の平面図であり、 図 3は図 2の I一 I '断面図であり、 図 4は図 2の II一 II '断面図である。
図 1に示す本発明の有機電解質キャパシタは、 セルの内部に正極 1、 負極 2、 リチウム 極 7及びセパレー夕 3を積層した三極積層ュニットを設置し、 リチウムイオンを移送可能 な電解液を注液した後に 2枚のラミネートフィルム 4、 5を熱融着等により封止した構成 となっている。 本発明において、 「正極」 とは放電の際に電流が流出し、 充電の際に電流 が流入する側の極、 「負極」 とは放電の際に電流が流入し、 充電の際に電流が流出する側 の極を意味する。
図 1に示すように、 正極集電体 1 a上に成形された正極 1と負極集電体 2 a上に成形さ れた負極 2とは、 互いに直接接しないようセパレータ 3を介し積層され、 電極積層ュニッ ト 6を形成している。 電極積層ユニット 6の上部には、 リチウム極集電体 7 aの片面にリ チウム金属を圧着して貼り付けたリチウム極 7がセパレー夕 3を介して設置され、 三極積 層ュニットを形成している。 本発明の一例としては、 電極集電体 (正極集電体 1 a、 負極集電体 2 a ) 及びリチウム 極集電体 7 aは、 それぞれが表裏面を貫通する孔 (図 1では図示せず) を備えており、 当 該貫通孔は導電性材料により閉塞されても、 その導電性材料により閉塞された状態の貫通 孔部を通してリチウムイオンは自由に各極間を移動できる。
図 5に、 電極が形成された電極集電体 (正極集電体 1 a、 負極集電体 2 a ) の拡大平面 図を示す。 図 5は、 電極集電体としてエキスパンドメタルを用いた例であり、 点線で囲ま れた部分が貫通孔である。 図 6に図 5の I一 I '断面図を示す。 図 6に示すように、 ェキ スパンドメタル (正極集電体 1 a、 負極集電体 2 a ) の貫通孔は、 導電性材料 1 b、 2 b によって閉塞されており、 正極 1および負極 2は、 この貫通孔を塞がれたエキスパンドメ タル上の導電層の上に形成される。
電池組立て時、 電解液を注入すると、 すべての負極 2とリチウム極 7が電気化学的に接 触し、 リチウム極 7から電解液中に溶出したリチウムイオンは、 リチウム極集電体 7 a、 正極集電体 1 a、 負極集電体 2 aの貫通孔を通じてスムーズにすべての負極 2に担持され る。
図 3において、 電極積層ユニット 6は、 各 4層の正極 1および負極 2を有する力 電極 積層ュニットの構造は特に限定されず、 少なくとも 1層の正極及び負極を備えていれば、 正極、 負極の層数に特に限定はない。
リチウム極 7は、.電極積層^ Lニット 6の上部に配置され三極積層ュニット 8を形成して いるが、 リチウム極 7の位置、 層数、 形状はこれに限定されない。 ただし、 スムーズ リ チウムを担持するためには、 リチウム極 7を負極あるいは正極に対向させて配置すること が好ましい。 例えば、 負極 2上に直接リチウム極 7を貼り付けてもよい。 リチウム極 7を 直接負極 2上に貼り付けた場合、 隣接する負極には直接リチウムが担持されるが、 それ以 外の隣接していない負極には少なくとも 1層以上の電極を貫通してリチウムが担持される ことになる。 .
リチウム極 7は、 負極 2にリチウムイオンを供給するために設けられている。 したがつ て、 目的とする負極の静電容量が得られるだけの量があればよい。 また、 リチウムイオン の供給は、 負極だけでなく正極に供給、 あるいは正極と負極の両極に供給しても効果は得 られるが、 正極、 負極のリチウム吸蔵能力、 安定性等を勘案して適宜量を調整するのが好 適である。
リチウム極 7はリチウムイオンを放出して、 序々に減少していく。 このため、 リチウム 極集電体 7 aとして、 ステンレスメッシュ等の導電性多孔体を用い、 リチウム極 7の少な くとも一部をリチウム極集電体の気孔部に充填して配置することが好ましい。 これにより 、 リチウム極 7から電極へとリチウムが担持されても、 リチウムの消失による電極間に生 じる隙間が少なくなり、 リチウムが電極活物質にスムーズに担持されることとなる。 図 1に示す本発明の有機電解質ギヤパシ夕では、 正極 1、 負極 2、 リチウム極 7がそれ ぞれ直接接触しないよう、 各極の間にはセパレー夕 3が設けられている。 セル内部にはリ チウムィオンを移送可能な電解質が充填されており、 各極.を隔てるセパレーダ 3—にも電解 が含浸されている。 電解質は、 通常溶媒に溶かして液状で用いられ、 セパレー夕.3にも 含浸されるが、 セパレータ 3を用いない場合等では、 正極 1、 負極 2をそれぞれ直接接触 させないため、 また、 電解質の漏液を防止するため、 電解質をゲル状または固体状にして 用いることもできる。 図 2に示すように、 各正極集電体 1 aは端子接続部 A, となる引き出し部を有しており 、 各正極集電体 1 aの端子溶接部 A ' ( 2枚) と正極端子 1 cとは溶接されている。 また 、 各負極集電体 2 a及びリチウム集電体 7 aは、 端子接続部 B ' となる引き出し部を有し ており、 各負極集電体 2 aの端子溶接部 B ' ( 3枚) とリチウム極集電体 7 aの端子溶接 '部 B ' ( 1枚) を束ねて、 負極端子 2 cに溶捧されている。
ラミネートフィルム 4および 5の封止は正極端子 1 c、 負極端子 2 cを挟み込んだ状態 で行われ、 正極端子 1 cおよび負極端子 2 cは、 ラミネートフィルム 4、 5にそれぞれ図 2に示す熱融着部 A、 Bにて熱融着されている。 すなわち、 図 2の例では、 有機電解質キ ャパシタは、 ラミネートフィルム 4、 5と各端子との熱融着部 A、 B、 および、 ラミネー トフイルム 4と 5との熱融着部 Cにて封止されている。 従って、 ラミネートフィルム 4と 5の間から電池の外部へ正極端子 1 c、 負極端子 2 cが出ており、 正極 1は正極端子 1 c を通じて、 負極 2およびリチウム極 7は負極端子 2 cを通じてそれぞれ外部回路と接続可 能な状態とな ている。
正極端子 1 cおよび負極端子 2 cの形状、 サイズは特に限定されないが、 限られたセル 容積内において充分気密性がとれる範囲で、 できるだけ厚く、 巾が広い方が端子の抵抗が 小さくなり好ましい。 各端子の形状、 サイズは目的とするセルの特性に応 て適宜選定す ることが好適 _である。
以下、 本発明の有機電解質キャパシタについて、
〔A〕 正極集電体及び負極集電体、 〔B〕 メソポア炭素材、 〔C〕 負極、 〔D〕 正極、 〔 E〕.リチウム、 〔F〕 電解質、 〔G.〕 外装容器、 〔H〕 有機電解質キャパシタの原理、 (: I〕 有機電解質キャパシ夕の製造方法、 〔J〕 細孔直径 3 nm以上の細孔容積およ 比表 面積の測定方法、 の順に詳細に説明する。
〔A〕 正極集電体及び負極集電体
正極集電体および負極集電体としては、 一般に有機電解質電池などの用途で提案されてい る種々の材質を用いることができ、 正極集電体にはアルミニウム、 ステンレス等、 負極集 電体にはステンレス、 銅、 ニッケル等をそれぞれ好適に用いることができ、 箔状、 ネット 状等各種形状のものを用いることができる。 特に負極および/又は正極に予めリチウムを 担持させるためには、 表裏面を貫通する孔を備えだものが好ましく、 例えばエキスパンド メタル、 パンチングメタル、 金属網、 発泡体、 あるいはエッチングにより貫通孔を付与し た多孔質箔等を挙げることができる。 また、 集電体上には導電層を形成させることが内部 抵钪を低減させることができ好適である。
更に好ましくは、 電極を形成する前に、 当該電極集電体の貫通孔を、 脱落しにくい導電 性材料を用いて少なくとも一部を閉塞することにより、 電極の生産性を向上させるととも に、 電極の脱落によるキャパシ夕の信頼性低下の問題を解決し、 更には、 集電体を含む電 極の厚さを薄くして、 高エネルギー密度、 高出力密度を実現するものである。
電極集電体の貫通孔の形態、 数等は、 後述する電解液中のリチウムイオンが電極集電体 に遮断されることなく電極の表裏間を移動できるように、 また、 導電性材料によって閉塞 し易いように、 適宜設定することができる。
この電極集電体の気孔率は、 { 1 - (集電体重量 Z集電体真比重) Z (集電体見かけ体 積) } の比を百分率に換算して得られるものと定義する。 本発明用いる電極集電体の気孔 率は、 通常、 1 0 ~ 7 9 %、 好ましくは 2 0〜6 0 %である。 電極集電体の気孔率が高い場合には、 負極にリチウムを担持させるのに要する時間が短 く、 リチウムの担持むらも生じにくいが、 集電体の強度は低下し、 皺や切れが発生しやす い。 また、 貫通孔に導電性材料あるいは活物質を保持させることが困難となり、 電極の脱 落、 切れ等により、 電極製造歩留まりが低下する等の問題が生じる。
一方、 気孔率が低い場合には、 負極にリチウムを担持させるのに要する時間が長くなり 生産効率の低下およびセル特性のパラツキ増大などの問題が発生するが、 集電体の強度は 高くなり、 活物質の脱落も起こりにくいため電極歩留まりは高くなる。 電極集電体の気孔 率ゃ孔径は、 電池の構造 (積層タイプや捲回タイプなど) や生産性を考慮し、 上述の範囲 で適宜選定す.ることが望ましい。
図 7に、 電極集電体の一例を示す。 図 7 (a) は、 気孔率 38%のエキスパンドメタル 、 図 7 (b) は気孔率 37%の金属網、 図 7 (c) は気孔率 34%パンチングメタルの例 である。 図 7 (c) の例では、 電極集電体の貫通孔は丸状であるが、 貫通孔の形状はこれ に限定されるものではなく、 例えば、 図 7 (d) に示す四角状 (気孔率 45%) 、 図 7 ( e) に示す十文字状 (気孔率 35%) 等、 適宜設定できる。
〔B〕 メソポア炭素材
一般に、 多孔体の微細孔については、 細孔直径 0. 8 nm未満の細孔をサブミクロポア 、 細孔直径 0. 8〜2 nmの範囲の細孔をミクロポア、 細孔直径 2 ~ 50 nmの範囲の細 孔をメソポア、 細孔直径 50 nm以上の細孔をマクロポアと称する。
従来の活性炭の製造方法によれば、 主に細孔直径が 0. 8 nm未満であるサブミクロポ ァ及び細孔直径が.0. 8〜 2 nmである.ミク口ポアの発達した活性炭が製造されるが、 細 孔直径- 2 - 50 nmであるメソポアの形成が少なく、 -メ^ポアの細孔容積め比率は^:体の 10%に満たない。 そのような通常の活性炭は、 分子サイズが小さい分子の吸着能力には 優れているが、 有機電解質キャパシ夕の電解質や電解液として用いられる無機化合物や有 機化合物、 及びこれらが溶媒和してよりサイズの大きくなづた集合体の移動速度を大きく するのは困難な場合が多い。
これに対して、 薬品賦活法や特殊な原料、 手法を用いて製造される細孔直径が 50 nm以 下のミクロポア〜メソポア領域の細孔容積がと.もに大きく、 比表面積の大きな活性炭が、 有機電解質キャパシ夕の活物質として好ましく用いられている。
一方、 本発明では、 溶媒和したリチウムイオンの易動度を十分に上げるためには、 負極 に用いる炭素材において、 特に細孔直径 3 nm以上の細孔容積が 0. l OmlZg以上必 要であることを見出したものであり、 比表面積の大きさ、 即ちミクロポアの多少に係らず 、 メソポアの多い炭素材をメソポア炭素材と呼ぶものである。
本発明における負極活物質は、 細孔直径 3 nm以上の細孔容積を 0. l OmlZg以上 有すると規定しており、 その細孔直径の上限は特に限定するものでは無いが、 通常は 3〜 50nmの範囲であり、 その細孔容積の範囲についても特に限定するものでは無いが、 通 常 0. :!〜 0. SmlZg、 好ましくは 0. 15~0. 5mlZg程度である。
メソポア炭素材の製造方法としては、 炭素材や炭素材前駆物質に N iまたは N i化合物 を加えて高温で熱処理する方法があり、 賦活が困難な材料でも比較的容易にメソポアを形 成することが可能であり、 優れた製造方法である。
ここで用いられる N i化合物としては特に限定するものでは無いが、 塩化ニッケル、 硝酸 二ッゲル、 硫酸二ッケルおよびそれらの水和物などが好ましく用いられる。 炭素材の種類としては、 リチウムイオンを可逆的に担持できるものであれば特に限定する もので-はなく、 例えば天然黒鉛、 人造黒鉛などのグラフアイト、 コークス、 ピッチ、 熱硬 化性樹脂、 ヤシ殻や樹木などを出発原料とする種々の炭素材料、 炭素繊維、 ポリアセン系 物質、 錫酸化物、 珪素酸化物等を用いることができる。 中でも、 活性炭、 ヤシ殻炭、 コー クス、 木炭、 竹炭、 樹脂炭化物およびそれらの混合物はメソポアを付与することが比較的 容易であり好ましい。 更に、 樹脂炭化物がフエノール樹脂炭化物の場合、 不純物も少なく 性能の安定性が高く更に好ましい。
炭素材前駆物質としては、 例えば、 コ一クス、 ピッチ、 フエノール、 メラミンなどの樹 B旨
、 ャシ殻やおがくずなどの植物原料などを用いることが出来る。
メソポア炭素材を作る際の熱処理方法としては、 特に限定するものでは無いが、 '例えば窒 素気流下の非酸化性雰囲気、 もしくは水蒸気、 C 02などの酸化性ガスと合わせて 8 0 0 〜; I 0 0 ο τ程度で熱処理および賦活を行うのが好ましい。
昇温速度や最高温度での保持時間は、 所定の細孔容積になるように条件を合わせれば特に 限定するものでは無いが、 通常 5 0〜 1 0 0で/時間で最高温度まで上げ、 1〜 1 0時間 程度熱処理、 もしくは賦活を行うのが好ましい。
熱処理や賦活を行う装置としては、 静置式電気炉、 円筒炉、 バッチ式もしくは連続式の口 一タリーキルンなどが用いられる。
〔C〕 負極
本発明の有機電解質キャパシタにおいて、 負極活物質は、 前述のメソポア炭素材が用い られ、 リチウムイオンを可逆的に担持可能であり、 細孔直径 3 nm以上のメソポアを細孔 容積 0 . 1 0 m 1 Z g以上有するものである。 ' また、 上記負極活物質には、 必要に応じてアセチレンブラック、 ケッチェンブラック、 黒鉛等の炭素系物質や金属粉末等の導電材を適宜加えてもよい。
本発明における負極活物質層は、 上記の炭素材料や P A S^の負極活物質を含有し、 粉 末状、 粒状、 短繊維状等の成形しやすい形状にある負極活物質をパインダ一樹脂で成形し たものであることが好ましい。 このバインダー樹脂としては、 例えば、 後述の有機系電解 液に不溶のものであればよく、 水を分散媒もしくは溶剤として用いる水系樹脂あるいは、 アルコールや N—メチルピロリドン等の有機溶剤を分散媒もしくは溶剤として用いる非水 系樹脂を用いることができる。 例えばスチレンブタジエンゴムパインダ一 (以下、 S B R と省略) 系樹脂、 カルボキシメテルセルロース系樹脂は水系樹脂であり、 フエノール樹脂 やメラミン樹脂は組成により水系樹脂としても非水系樹脂としても用いることができる。 また、 アクリル樹脂、 ポリアミド樹脂、 ポリエチレン樹脂などは、 ェマルジヨン化するこ とにより、 水系樹脂として用いることができる。 一方、 ポリ四フッ化工チレン、 ポリフッ 化ビニリデン等の含フッ素系樹脂、 ポリイミド樹脂、 ポリアミド -イミド共重合樹脂は非 水系樹脂の代表的な例である。
これらの中でもフッ素系、 水系の S B R系樹脂、 アクリル系樹脂、 非水系のフッ素系樹 ϋ旨 が好ましい。
負極活物質—層の厚さは、 セルのエネルギー密度を確保できるように正極活物質層との厚 さのバランスで設計されるが'、 負極活物質層の厚さを薄く出来る程、 活物質の有効活用が 可能になり、 出力密度を向上させることができる。 一方、 活物質層が薄くなり過ぎると、 セルのエネルギー密度が低下してしまうため好ましくなく、 工業的生産性も考慮すると、 本発明では、 上記負極活物質層の厚さは片面で、 通常、 1 5 ~ 1 0 0 zm、 好ましくは 2 0〜8 0 である。
バインダー樹脂の混合比は、 上記活物質に対して重量基準で 1〜2 0 %、 好ましくは 2 ~ 1 0 %、 特に好ましくは 2〜5 %である。 CD] 正極
本発明の有機電解質キャパシ夕において、 正極は、 リチウムイオンおよび/又は、 例え ばテトラフルォロボレ一トのようなァニオンを可逆的に担持できる正極活物質を含有する 上記正極活物質としては、 リチウムイオンおよび Z又はァニオンを可逆的に担持できる ものであれば特には限定されず、 例えばコークス、 ピッチ、 樹脂やヤシ殻、 おがくずなど の植物などを出発原料とし、 水蒸気、 二酸化炭素や水酸化カリウムなどを用いて賦活した 各種活性炭や導電性高分子、 ポリアセン系物質、 細孔直径 2 0〜5 0 O Aのメソポアが顕 著に発達したメソポア炭素材等を用いることができる。
例えば、 芳香族系縮合ポリマーの縮合物と無機塩、 例えば塩化亜鉛を含む溶液を調製し、 該溶液を加熱して型内で硬化して得られた硬化体を、 非酸化性雰囲気下 (真空も含む) 中 で、 3 5 0 ~ 8 0 0 ° Cの温度まで、 好ましくは 4 0 0〜 7 5 0での適当な温度まで徐々 に加熱し熱処理した後、 水あるいは希塩酸等によつて充分に洗浄することにより得られる 、 水素と炭素の原子数比すなわち HZCが 0 . 0 5〜0 . 5を有し、 かつ 6 0 0 m2Z g 以上の B E T法による比表面積を有するポリアセン系材料 (P A S ) を好適に用いること ができる。
3 nm本発明における正極活物質層は、 上記正極活物質に、 必要に応じて導電材、 バイン ダー樹脂等を加えて成形したものであり、 導電材、 バインダー樹脂の種類、 組成等は、 適 宜設定することができる。
上記導電材としては、 例えば活性炭、 アセチレンブラック、 ケッチェンブラック等の力 一ポンプラック類、 黒鉛等の炭素系物質を好適に用いることができる。 この導電材の混合 比は、 上記活物質の電気伝導度、 電極形状等により異なるが、 活物質に対して 2〜4 0 % の割合で加えることが好ましい。.
このバインダ一樹脂としては、 例えば、 後述の有機系電解液に不溶のものであればよく 、 水を分散媒もしくは溶剤として用いる水系樹脂あるいは、 アルコールや N—メチルピロ リドン等の有機溶剤を分散媒もしくは溶剤として用いる非水系樹脂を用いることができる 。 例えば S B R等のゴム系バインダー樹脂、 カルポキシメチルセルロース系樹脂は水系樹 脂であり、 フエノール樹脂ゃメラミン樹脂は組成により水系樹脂としても非水系樹脂とし ても用いることができる。
また、 アクリル樹脂、 ポリアミド樹脂、 ポリエチレン樹脂などは、 ェマルジヨン化するこ とにより、 水系樹 jB旨として用いることができる。 一方、 ポリ四フッ化工チレン、 ポリフッ 化ビニリデン等の含フッ素系樹脂、 ポリイミド樹脂、 ポリアミド ·イミド共重合樹脂は非 水系樹脂の代表的な例である。
これらの中でもフッ素系、 水系の S B R系樹脂、 アクリル系樹脂、 非水系のフッ素系樹 脂が好ましい。
バインダー樹脂の混合比は、 上記活物質に対して重量基準で 1〜2 0 %、 好ましくは 2 ~ 1 0 %、 特に好ましくは 2 ~ 5 %である。
本発明において、 正極電極層の厚さは、 片面で、 通常、 3 0〜1 5 0 w m、 好ましくは 6 0 ~ 1 0 0 である。
正極 S物質層の摩さは、 セルのエネルギー密度を確保 きる—ように負極活物—贊層との厚 さのバランスで設計されるが、 正極活物質層の厚さを薄く出来る程、 活物質の有効活用が 可能になり、 出力密度を向上させることができるが、 活物質層が薄くなり過ぎると、 セル のエネルギー密度が低下してしまうため好ましくなく、 工業的生産性も考慮すると、 本発 明では、 上記正極活物質層の厚さを好適に用いることができる。 〔E〕 リチウムイオン供給源
本発明の有機電解質キャパシ夕の一例としては、 負極および Z又は正極に予めリチウム イオンを担持させるためのリチウムイオン供給源として、 有機電解質キャパシ夕内部に予 めリチウム極 7を配置する。 リチウムイオン供給源としては、 リチウム金属あるいはリチ ゥムーアルミニウム合金のように、 少なくともリチウム元素を含有し、 リチウムイオンを 供給することのできる物質を用いる。
有機電解質キャパシ夕内部に配置させるリチウムイオン供給源の量 (リチウム金属等の リチウムイオンを供給することのできる物質の重量) は所定の負極の容量が得られるだけ の量があれば充分であるが、 それ以上の量を配置させた場合はリチウム極 7から所定量だ け担持させた後、 リチウム極 7を有機電解質キャパシタ内部に残しておいても良い。 ただ し、 安全性を考慮すれば必要量のみ配置し、 全量を負極および Z又は正極に担持させた方 が好適である。
本発明においては、 リチウムイオン供給源を、 導電性多孔体からなるリチウム極集電体 上に形成することが好ましいが、 リチウム極集電体は用いなくてもよい。 ここで、 リチウ ム極集電体となる導電性多孔体としては、 、 ステンレスメッシュ等のリチウムイオン供給 源と反応しない金属多孔体を用いることが好ましい。
例えばリチウムイオン供給源としてリチウム金属を用い、 リチウム極集電体としてステ ンレスメッシュ等の導電性多孔体を用いる場合、 リチウム金属の少なくとも一部がリチウ ム極集電体の気孔部に埋め込まれていることが好ましい。 好ましくは、 導電性多孔体の気 孔部に 'リチウム金属の 8 0 %以上を充填して配置する。 これにより、 リチウム金属が負極 【こ担持された後も、 リチウム金属の消失によって電極間に生じる隙間が少な'くなり、 有機 電解質キャパシタの信頼性をより確実に保持することができる。
リチウムイオン供給源を形成したリチウム極集電体は、 負極又は正極に対向するように 配置することが好ましい。 例えば図 8においては、 リチウム極集電体 7 aにリチウム金属 を圧着したリチウム極 7は、 正極 1、 セパレ一夕 3及び負極 2を順次積層した電極積層ュ ニット 6の下部に配置され三極積層ユニット 8が形成されている。 図 9は、 三極積層ュニ ット 8の他の層構成を示している。 また、 図 9においては、 リチウム極集電体 7 aにリチ ゥム金属を圧着したリチウム極 7を、 電極積層ュニット 6の上部及び下部にそれぞれ配置 し三極積層ユニット 8を形成している。 更に図 1 0に示す他の例では、 リチウム極 7を 2 つの電極積層ュニット 6の真中に配置し三極積層ユニット 8.を形成している。 このように 配置することで、 リチウムイオンを負極にスムーズに担持させることができる。 リチウム 金属を圧 *したリチウム極 7を、 電極積層ユニットの断面方向に配置し、 負極端子および Z文は正極端子とリチウム極端子を短絡させて負極活物質およびノ又は正極活物質にリチ ゥムイオンを担持させることも可能であるが、 この場合負極および/又は正極の幅が長い と電極内での担持むらが大きくなる可能性があるので、 セル構成、 電極サイズ等を考慮し 配置するリチウム極の位置を適宜選択しなければならない。
本発明の有機電解質キャパシ夕においては、 負極および Z又は正極に担持させるリチウ ム極を特定位置に局所的に配置することにより、 セル設計上の自由度及び量産性の向上を 可能とするとともに、 優れた充放電特性を付与できる。
〔F 電解質
本発明の有機電解質キャパシ夕に用いる電解質としては、 リチウムイオンを移送可能な 電解質を用いる。 このような電解質は、 通常液状であってセパレー夕に含浸される。 セパ レ タとしては、 電解液あるいは電極活物質等に対して耐久性のある連通気孔を有する電 子伝導性のない多孔体等を用いることができる。 また、 ゲル状または固体状の電解質を用 いることもできるが、 この場合はセパレ一夕を用いない場合もあり、 漏液防止としても効 果がある。
リチウムイオンを移送可能な電解質としては、 高電圧でも電気分解を起こさず、 リチウ ムイオンが安定に存在できるという観点から.、 例えば L i C 1 04、 L i A s F6、 L i B F4、 L i P F 6、 L i ( C 2 F 5 S O 2) 2N等のリチウム塩を好適に用いることができる。 また、 リチウム塩を溶解させる溶媒としては非プロトン性有機溶媒を用いることが好まし い。.
この非プロトン性有機溶媒としては、 例えばエチレンカーボネート、 プロピレン力一ポ ネート、 ジメチルカーポネート、 ジェチルカ一ポネート、 ァ—プチロラクトン、 ァセトニ トリル、 ジメトキシェタン、 テトラヒドロフラン、 ジォキソラン、 塩化メチレン、 スルホ ラン等が挙げられる。 更に、 これら非プロトン性有機溶媒の二種以上を混合した混合液を 用いることもできる。.
上記の電解質及ぴ溶媒は、 充分に脱水された状態で混合され、 電解質とするのであるが 、 電解液中の電解質の濃度は、 電解液による内部抵抗を小さくするため少なくとも 0 . 1 モルノ 1以上とすることが好ましく、 0 . 5 ~ 1 . 5モル / 1の範囲内とすることが特に 更に好ましい。
〔G〕 外装容器
本発明の有機電解質キャパシ夕の外装容器の材質は特に限定されず、 一般に電池またはキ ャパシ夕に用いられている種々.の材質を用いることができ、 鉄、 アルミニウム等の金属材 料、 プラスチック材料、 あるいはそれらを積層した複合.材料等を使用できる。 また、 外装 容器の形状も特に限定されず、 円筒型や角型など、 用途に応じて適宜選択することができ る。 有機電解質キャパシ夕の小型化、 軽量化の観点からは、 アルミニウムとナイロン、 ポ リプロビレンなどの高分子材料とのラミネートフィルムを用いたフィルム型の外装容器を 用いることが好ましい。
上述のようにフィルム電池では、 外装材として例えば、 アルミニウム箔の外側にナイ口 ンフィルム、 内側に変性ポリプロピレン等の層を接着した 3層ラミネートフィルムを用い ている。 ラミネートフィルムは、 通常、 所定のサイズに深絞りされており、 内部に正極、 負極及ぴセパレー夕を積層または捲回したュニットを入れて電解液を注液した後、 ラミネ 一トフイルムを熱融着等により封止して、 蓄電装置とする。
その際、 ラミネートフィルムの間からセルの外部へ正極端子 (例えば厚さ 1 0 0 / m程 度のアルミニウム箔) および負極端子 (例えば厚さ 1 0 0 ii mのニッケル箔) をそれぞれ 出すことが可能である。 つまり、 ラミネートフィルムの封止は正極端子、 負極端子を挟み 込んだ状態で融着させるという簡便な方法でなされるのである。 ただし、 封止を充分な状 態とするため、 端子には上述のような薄い金属箔を用いたり、 端子表面に予めシーラント フィルムを貼る等の工夫をすることが好ましい。
図 1では、 外装容器としてラミネートフィルム 4、 5を用い、 ラミネートフィルム 5に 三極積層ユニットの厚み分の深絞りを施しているが、 ラミネートフィルム 4、 5のいずれ が、 または両方に深絞りを施して構わない。—図 Πこおいては、 ラミネ トフ ルムとして 2枚一組のものを用い、 それらを内容物を覆うようにして重ね、 重ねた外周部をヒ一トシ ールすることにより、 内容物を密封している。 本発明では、 図 1で用いたようなシート状フィルムに限定されず、 筒状や袋状に予め成 型済みのフィルム部材を用いても良い。 筒状成型フィルム部材を用いる場合は、 相対向す る 2辺をヒートシールすることによって内容物が密封されるし、 袋状のフィルム部材を用 いる場合には 口している一辺をヒ一卜シールすることによって、 内容物が密封される。
〔H〕 本発明の有機電解質キャパシ夕の原理
従来の電気二重層キャパシ夕では、 通常、 正極、 負極に同じ活物質 (主に活性炭) をほ ぼ同量用いている。 正極、 負極に用いている活物質はセル組立時には L i /L i +電位基 準で約 3 Vの電位を有しており、 充電することにより正極表面にはァニオンが電気二重層 を形成して正極電位は上昇し、 一方負極表面には力チォンが電気二重層を形成して電位が 下降することになる。
逆に放電時には正極からァニオンが、 負極からはカチオンがそれぞれ電解液中に放出さ れ電位はそれぞれ下降、 上昇し、 3 V近傍に戻ってくる。 つまり、 正極、 負極の充放電力 —ブの形は 3 Vを境にほぼ線対称になっており、 正極の電位変化量と負極の電位変化量は ほぼ同じである。 また、 正極はほぽァニオンのみ、 負極はほぼカチオンのみ 出入りとな つている。
一方、 本発明の有機電解質キャパシタでは、 正極にはリチウムイオンおよび/又はァニ オンを可逆的に担持可能な活物質を用いることが好ましい。 これには従来の電気二重層キ ャパシ夕の正極、 負極に用いられている活性炭も含まれる。 また、 負極にはリチウムィォ ンを可逆的に担持可能であり、 かつ負極活物質が細孔直径 3 n m以上の細孔容積が 0 - 1 0 m 1 /g以上を有するメソポア炭素材を用いており、 これはリチウムイオン二次電池に 一般的に用いられている黒鉛等の炭素材料とは異なる。 リチウムイオン二次電池に用いら れている黒鉛等の炭素材料は、 細孔直径が 0 .. 8 11111〜5 0 11111の範囲 (ミクロポア〜メ ソポア) における細孔容積を殆ど有しないのが一般的である。
また、 本発明のメソポア炭素材は、 活性炭、 ヤシ殻炭、 コ一クス、 木炭、 竹炭、.樹脂炭 化物およびそれらの混合物であることが好ましく、 中でもフエノール樹脂炭化物、 あるい は樹脂がフエノール樹脂である樹脂炭化物を用いるのが更に好ましい。
また、 メソポア炭素材はフエノール樹脂炭化物等に N i N 03等の N i化合物を含浸さ せた後、 孳素ガス雰囲気下にて 9 0 0で程度で熱処理することにより簡便に製造できる。 本発明の有機電解質キャパシ夕は、 正極と負極を短絡させた時に正極電位が 2 . 0 V ( L iノ L i +) 以下になるように負極および 又は正極に予めリチウムイオンを担持させ ることことが好ましい。 通常炭素材料は約 3 . 0 Vの電位 (L i L i +) を有している ため、 正極、 負極ともに炭素材料を用いた有機電解質キャパシ夕においては、 正極と負極 を短絡させ 時に正極電位は約 3 . 0 V (L i /L i +) となる。
なお、 本発明で、 正極と負極を短絡さ甘た後の正極の電:位が 2 V以下とは、 以下の (A) 又 は (B) の 2つのいずれかの方法で求められる芷極の電位が 2 V以下の場合をいう。 即ち、
(A) リチウムイオンによるドーピングの後、 キャパシ夕セルの正極端子と負極端子を導線で 直接結合させた状態で 1 2時間以上放置した後に短絡を解除し、 0 . 5 ~ 1 . 5時間内に測定 した正極電位、 (B) 充放電試験機にて 1 2時間以上かけて 0 Vまで定電流放電させた後に正 極端子と負極端子を導線で結合させた状態で 1 2時間以上放置した後に短絡を解除し、 0 . 5 〜 1 . 5時間内に測定した正極電位。
また、 本発明において、 正極と負極とを短絡させた後の正極電位が 2 . 0 V以下というのは、 チウムイオンがドーピングされたすぐ後だけに限られるものではなく、 充電状態、 放電状態あ るいは充放電を繰り返した後に短絡した場合など、 いずれかの状態で短絡後の正極電位が 2 . 0 V以下となることである。
本発明において、 正極と負極とを短絡させた後の正極電位が 2 . 0 V以下になるということ に関し、 以下に詳細に説明する。 上述のように活性炭や炭素材は通常 3 V (L i /L i +) 前 後の電位を有しており、 正極、 負極ともに活性炭を用いてセルを組んだ場合、 いずれの電位も 約 3 Vとなるため、 短絡しても正極電位はかわらず約 3 Vである。 また、 正極に活性炭、 負極 にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化炭素のような炭素材を用いた、 いわゆるハイブリットキャパシ夕の場合も同様であり、 いずれの電位も約 3 Vとなるため、 短 絡しても正極電位はかわらず約 3 Vである。 正極と負極の重量バランスにもよるが充電すると 負極電位が 0 V近傍まで推移するので、 充電電圧を高くすることが可能となるため高電圧、 高 エネルギー密度を有したキャパシ夕となる。 一般的に充電電圧の上限は正極電位の上昇による 電解液の分解が起こらない電圧に決められるので、 正極電位を上限にした場合、 負極電位が低 下する分、 充電電圧を高めることが可能となるのである。 しかしながら、 短絡時に正極電位が 約 3 Vとなる上述のハイブリットキャパシ夕では、 正極の上限電位が例えば 4. 0 Vとした場 合、 放電時の正極電位は 3 . 0 Vまでであり、 正極の電位変化は 1 . 0 V程度と正極の容量を 充分利用できていない。 更に、 負極にリチウムイオンを挿入 (充電) 、 脱離 (放電) した場合、 初期の充放電効率が低い場合が多く、 放電時に脱離できないリチウムイオンが存在しているこ とが知られている。 これは、 負極表面にて電解液の分解に消費される場合や、 炭素材の構造欠 陥部にトラップされる等の説明がなされているが、 この場合正極の充放電効率に比べ負極の充 放電効率が低くなり、 充放電を繰り返した後にセルを短絡させると正極電位は 3 Vよりも高く なり、 さらに利用容量は低下する。 すなわち、 正極は 4. 0 Vから 2 . 0 Vまで放電可能であ るところ、 4. 0 Vから 3 . 0 Vまでしか使えない場合、 利用容量として半分しか使っていな いこととなり、 高電圧にはなるが高容量にはならないのである。
ハイブリットキャパシタを高電圧、 高エネルギー密度だけでなく、 高容量そして更にエネル ギー密度を高めるためには、 正極の利用容量を向上させることが必要である。
短絡後の正極電位が 3 . 0 Vよりも低下すればそれだけ利用容量が増え、 高容量になるとい うことである。 2 . 0 V以下になるためには、 セルの充放電により充電される量だけでなく、 別途リチウム金属などのリチウムイオン源から負極にリチウムイオンを充電することが好まし い。 正極と負極以外からリチウムイオンが供給されるので、 短絡させた時には、 正極、 負極、 リチウム金属の平衡電位になるため、 正極電位、 負極電位ともに 3 . 0 V以下になる。 リチウ ム金属の量が多くなる程に平衡電位は低くなる。 負極材、 正極材が変われば平衡電位も変わる ので、 短絡後の正極電位が 2 . 0 V以下になるように、 負極材、 正極材の特性を鑑みて負極に 担持させるリチウムイオン量の調整が必要である。
また、 正極と負極を短絡させた時に正極電位が 2 . 0 V (L i /L i +) 以下になると いうことは、 該有機電解質キャパシタの正極および負極以外から正極および Z又は負極に リチウムイオンが供給されているということである。 正極と負極を短絡させた時に正極電 位が 2 . 0 V ( L i /L 1 +) よりも高い場合は、 正極および/又は負極に供給されたリ チウムィオンの量が少ないためセルのエネルギー密度は小さい。 リチウムィオンの供給量 が多くなるほどに正極と負極を短絡させた時の正極電位は低くなりエネルギー密度は向上 する。 高いエネルギー密度を得る上では 2 .. 0 Ύ (L i /L i +) 以下が好まじく 1 . 0 V ( L i /L i +) 以下が更に好ましい。 また、 もう一つの効果としては、 負極に供給されるリチウムイオンが多くなると充電電 圧を高めることが可能となることが挙げられる。 キャパシ夕の充電電圧をどこまで高めら れるかは、 正極電位によりほぼ決定される。 すなわち、 正極電位が高くなれば電解液の酸 化分解が起こるため.、 そこが限界電位となる。 通常の正極および負極に同じ活性炭電極を 用いたセル構成を有する電気二重層キャパシタに比較して、 リチウムイオンを予め担持さ せた構成の本発明の有機電解質キャパシタでは、 負極電位が低いため正極電位と負極電位 の差を大きくとることができ、 従来の電気二重層キャパシ夕の耐電圧が 2 . 3〜2 . 7 V 程度であるのに対し本発明の構成では 3 . 6〜4 . I V程度と 3 V以上に高く設定でき、 エネルギー密度を向上させることができるのである。
〔I〕 有機電解質キャパシ夕の製造方法
以下、 本発明の有機電解質キャパシ夕の製造方法の一例を示す。 有機電解質キャパシ夕 の電極集電体の貫通孔は、 導電性材料で塞がれても塞がれなくても良いが、 本例では塞ぐ 場合について説明する。 電極集電体の貫通孔を導電性材料で塞ぐ手法は特に限定されず、 ダイ方式、 デイツビング方式、 スプレー方式などの塗工法や、 グラビア、 スクリーン、 転 写などの印刷法など公知の手法を用いることができる。
また、 導電性材料としては特に限定するものでは無いが、 例えば天然黒鉛または人造黒 鉛などのグラフアイト、 コ一クス系、 ピッチ系、 榭脂系、 植物系などの種々の炭素材料、 アセチレンブラック、 ケッチェンブラック等の力一ボンブラック類、 ポリアセン系物質、 錫酸化物、 珪素酸化物等を例示できる。 また、 金属ニッケル等の金属粉末を用いてもよい 。 このうち、 特に好ましい導電材としては、 グラフアイトやアセチレンブラック、 ケツチ ェンブラック等を挙げることができる。
次に、 貫通孔を導電性材料で塞がれた電極集電体上に、 正極、 負極を形成する。 正極は 、 正極活物質をバインダー樹脂と混合してスラリーとし、 正極集電体上にコーティングし て乾燥させることにより形成する。'負極も伺様に、 負極活物質をバインダ一樹脂と混合し てスラリーとし、 負集電体上にコーティングして乾燥させることにより形成する。
リチウム極は、 リチウム金属を導電性多孔体からなるリチウム極集電体上に圧着するこ とにより形成する。 リチウム極集電体の厚さは 1 0〜2 0 0 /z m程度、 リチウム金属の厚 さは使用する負極活物質量にもよるが、 一般的には 5 0〜3 0 Ο / ΠΙ程度である。
電極は乾燥させた後、 有機電解質キャパシ夕の外装容器のサイズにあわせた幅にカツト する。 巻き込み型構造の電極積層ユニット'を作成する場合は、 リポン状にカットする。 こ の際、 端子溶接部として引き出し部を有する形状にカットしてもよい。
ついで、 電極を形成した電極集電体を、 正極と負極とが互いに直接接触しないようにセ パレー夕を挟み込みながら、 三極積層ユニットを組み立てる。 図 1 1、 1 2は電極積層ュ ニットの展開図であり、 端子溶接部の形状と積層方向を示す。 図 1 1は、正極の端子溶接 部と負極の端子溶接部がそれぞれ逆の一辺から出ている例、 図 1 2は、 正極の ナ溶接部 と負極の端子溶接部が同一辺から出ている例である。 ただし、 正極と負極の端子の方向は この 2種類に限定されるものではない。
組み立てた三極積層ュニットの正極集電体の端子溶接部と正極端子、 負極集電体および リチウム極集電体の端子溶接部と負極端子とをそれぞれ超音波溶接等により溶接する。 外部端乎と^接しだ三極積層ュニットを外装容器の内部へ設置し、 電解質注入口を残し て熱融着等により外装容器を閉じる。 この際、 外部端子は、 外部回路と接続できるよう、 少なくとも一部を外装容器の外部に露出させた状態とする'。 外装容器の電解質注入口から 電解質を注入し、 外装容器内部に電解質で充填した後、 電解質注入口を熱融着等により閉 じ、 外装容器を完全に封止することにより、 本発明の有機電解質キャパシタが得られる。 電解液を注入すると、 すべての負極とリチウム極が電気化学的に接触し、 リチウム極か ら電解液中に溶出したリチウムイオンは時間の経過とともに、 次第に負極に移動し、 負極 に担持される。 負極へのリチウムイオンの担持に当たっては、 負極へのリチウムイオンの 浸入により生じるひずみで負極の変形が発生し、 負極の平坦性が損なわれないように、 外 部から力を加えて拘束しておくような工夫をすることが好ましい。
特に、 フィルム型電池では、 外装容器からの接圧が円筒型や角型電池のような金属ケース を用いた電池より弱いので、 外部からの圧力を加えて正極、 負極の平坦性をとることによ りセル自身の歪みもなくなり、 セル性能が向上し、 好ましい。
また、 リチウム極集電体は負極端子とは別の外部端子に溶接し、 リチウム極端子を外部に 備えることにより、 セルを封止した後に負極端子とリチウム極端子を外部短絡等の方法に より、 リチウムイオンを供給することが可能となる。
〔 J〕 細孔直径 3 n m以上の細孔容積および比表面積の測定方法
本発明の細孔容積、 比表面積の測定は、 全自動ガス吸着測定装置 BEL SORP 28 (日 本ベル株式会社製) を用いて液体窒素温度における窒素吸着法により行った。 細孔直径 3 nm以上の細孔容積は Do 1 1 i mo r e— He a 1の方法 (以下、 DH法と省略) によ り、. また比表面積は BET多点法により求めた。
以下、.測定法の概略を説明する。
1) 直径 3 nm以上の細孔容積測定法 (DH法)
シリンダー状の細孔半径は、 (1) 式で表される。
r P= t + r k … (1)
ここで、
r P :細孔半径
r k :メニスカス部分のコア半径.
t :圧力 pにおける吸着層の厚み
である。
吸着層の厚みは標準試料の t一プロットより、 コア半径は Ke 1 V i n式 (2) より求め られる。
1 n (p/p 0) =— (2 ν m) c o s 6 … (2)
.で、
P 平衡圧
P 0 飽 in蒸気圧
V 液体の表面張力
VL 液体のモル体積
r m メニスカス半径
R 気体定数
T 絶対温度
θ 液体と細孔との接触角
脱着時のメニスカス半径はコア半径に等しいと仮定し、 液体窒素温度 (77K) における 窒素のリ、 VLの値を式 (2) に代入すると、
r k (nm) =0. 4078/ 1 o g (p 0/p) … (3)
となる。
細?し直痉 3 nm以上の細孔容積は、 吸着等温線を測定し.. そ 脱着サイドから王記— r F 細孔体積の変化率から求めた。 また、 実際には r Pは整数にならないことから、 r Pが 3 0以上となる範囲内で最大の累積細孔容積を細孔直径が 3 n m以上の細孔容積とした。 2) 比表面積の測定法
液体窒素温度 (77K) における窒素吸着等温線の測定結果を BET式 (4) に当てはめ ることにより、 単分子層吸着量 vmを求め、 式 (5) で窒素の分子占有面積 (0. 162 nm2) を代入することにより比表面積 Sを求めた。 また、 相対圧 (p/p 0) は約 0. 05〜0. 10の範囲を採用した。 p/v (p 0 -p) = (l/vm · C) + { (C一 1) /vm · C} (p/p 0) - ( 4)
S = vm · σΝ ― (5)
ここで、
P :平衡圧
P o :飽和蒸気圧
V :平衡圧 ρにおける吸着量
vm :単分子層吸着量
C :定数
S :比表面積
σΝ :窒素単分子占有面積
である。
以下具体的な実施例により詳細を説 する。 . . .
実施例
(実施例 1〜 8、 比較例 1 ~ 10 )
(負極用メソポア炭素材の作製)
樹脂原料として、 粒状フエノール樹脂ベルパール R 700 (カネボウ株式会社製) 5 '0 g を、.予め樹脂に対して所定の N i含有率になるように調整した硝酸 N i水溶液に均一に分 散させた-。 このスラリーを 100. で 20時間乾燥し、 水分を取り:睹いた後、 内容積 8 L の静置式電気炉に入れて、 窒素を 0. SLZmi n流しながら昇温速度 10 Ot: 時間で 表 1に示す所定の温度 (熱処理温度) まで昇温した。 その後、 熱処理温度での保持時間は 10時間とした。 これらの N i処理炭素材は、 含有している N iを含んでいるために、 8 O , 2N— HC 1で 3時間酸洗浄を 2回繰り返し、 N iを取り除いた。 このようにして 得られたメソポア炭素材である試料 1〜 5の物性を表 1に示す。 表 1
No. 熱処理温度 N i添加量 3 nm以上の細孔容積 比表面積
0C) (%) C c/g) (mVg) 試料 1 1000 0 0. 045 1080 試料 2 700 5 0. 039 590 as料 3 800 5 0. 109 570 試料 4 900 5 0. 122 240 giC料 5 1000 5 0. 153 220 (細孔容積と比表面積の調整品作製)
試料 1〜 5以外の細孔容積と比表面積を有する試料 6〜 9を作製した。 試料 8は市販のャ シ殻活性炭であり、 ·試料 6, 7, 9は以下の方法で作製した。
(試料 6の作製)
試料 5作製時に、 1000で 10時間の熱処理後、 更に 1000 で窒素 水蒸気 1 : 1 の混合ガスにより 5時間賦活することにより、 比表面積 134 OmZZgで、 3 nm以上 の細孔容積 0. 304m 1 gの試料 6を作製した。
(試料 7の作製)
試料 1作製時に、 1000で 10時間の熱処理後、 更に 100 o :で窒素 水蒸気 1 : 1 の混合ガスにより 6時間賦活することにより、 比表面積 2040m2Zgで、 3nm以上 の細孔容積 0. 092m 1 gの試料 7を作製した。
(試料 9の作製)
試料 1作製時の 1000で熱処理を行う際に、 窒素を 2時間流して、 電気炉内をパージし た後窒素を止めて、 電気炉の排気口に逆止弁を取り付け、 熱処理中に発生する有機ガス成 分を添着させ比表面積 8 m2Zgで、 3 nm以上の細孔容積 0. 003mlZgの試料 9 を作製した。
細孔容積と比表面積の一覧を表 2に示す。
表 2
Figure imgf000021_0001
(負極 1〜 9の作製)
上記試料 1〜9をそれぞれ 92重量部、 アセチレンブラック粉体 6重量部、 SBR5重量 部、 カルボキシメチルセルロース 3重量部、 イオン交換水 110重量部となる組成にて充 分混合することにより負極スラリー 1〜9を得た。 該スラリーを厚さ 18 の銅箔片面 に固形分にして約 7 m g cm2程度になるよう塗工し、 乾燥、 プレス後評価用負極 1〜 9を得た。 (正極 1の作製)
おがくず 100 gを原料とし、 前述の電気炉を用い、 窒素を 0. 5LZmi n流しながら 昇温速度 50で Z時間で 950でまで昇温した後、 窒素ノ水蒸気 1 : 1の混合ガスにより 6時間賦活することにより、 比表面積 1860m2Zgの活性炭を製造した。 該活性炭を ポールミル粉碎機で粉碎して平均粒子径が 5 mの活性炭粉末を得た。
上記活性炭粉末 92'重量部、 アセチレンブラック粉体 6重量部、 SBR 7重量部、カル ポキシメチルセルロース 4重量部、 イオン交換水 18ひ重量部となる組成にて充分混合す ることによりスラリ一を得た。 該スラリ一をカーボン系導電塗料をコ一ティングした厚さ 20 mのアルミニウム箔片面に面形分にして約 14mg/cm2程度になるよう塗工し 、 乾燥、 プレス後正極 1を得た。
(負極単極の充放電特性評価)
上記負極 1〜9を 1. 5 X 2. 0 cm2サイズに切り出し、 評価用負極 1〜 9とした。 負 極と対極として 1. 5X2. 0 cm2サイズ、 厚み 250 mの金属リチウムを厚さ 50 H mのポリェチレン製不織布をセパレーターとして介し模擬セルをそれぞれ 2セルずつ組 立てた。 参照極として金属リチウムを用いた。 電解液としては、 エチレンカーボネート、 ジェチルカ一ポネートおよびプロピレンカーボネートを重量比で 3 : 4 : 1とした混合溶 媒に、 1モルノ 1の濃度に L i P F6を溶解した溶液を用いた。
1セルを充電電流 2. 5mAにて 0. 025 Vまで定電流にて充電し、 その後放電電流 2 . 5mAtT0. 5 Vまで定電流にて放電を行った。 この充放電サイクルを繰り返し、 5 回目の放電容量を測定した結果を表 3に示す。 更に、 一 20での恒温槽に 6時間放置した 後、 充電電流おょぴ放電電流を 1. 0mAにして同様の充放電サイクルを繰り返し、 5回 目の放電容量を測定した結果および— 20ででの放電容量と室温での放電容量の比率を表 3に示す。
表 3
放電容量/室温 放電容量ノー 2 CC 比率
(mAh) (mAh) (%) 比較例 1 試料 1 2. 12 0. 06 3 比較例 2 料 2 2. 44 0. 07 3
ni 試料 3 2. 38 0. 56 24 実施例 2 試料 4 2. 42 0. 84 35 実施例 3 試料 5 2. 50 1. 01 40 実施例 4 試料 6 2. 21 1. 43 65 比較例 3 試料 7 1. 68 0. 21 13 比較例 4 試料 8 2. 59 0. 11 4 比較例 5 試料 9 3. 44 0. 02 0. 6 表 3に示されている通り、 本願発明の細孔直径 3 nm以上の細孔容積を 0. l OmlZ g以上有するメソポア炭素材である試料 3〜 6は、 一 20ででの放電容量と室温での放電 容量の比率が 20%を越えうる大容量を有した。
(有機電解質キャパシ夕の充放電特性評価)
上記正極 1を 1. 5X2. 0 cm2サイズに 9枚切り出し、 評価用正極 1とした。 上記負 極評価用の残り各 1セルに対し、 充電電流 2. 5mAにてひ. 025Vまで定電流にて充 電した後、 放電電流 2. 5111 にて0. 2 Vまで定電流にて放電を行った後、 セルを分解 して、 対極のリヂゥムを該評価用正極に組替え、.有機電解質キ¥パジダを組立てだ。 2.
5 m Aの定電流でセル電圧が 3. 6 Vになるまで充電し、 次いで、 2. 5mAの定電流で セル電圧が 1. 6 Vになるまで放電した。
この 3. 6 V- 1. 6 Vのサイクルを繰り返し、 5回目の放電容量を測定した結果を表 4 に示す。 更に、 _ 20での恒温槽に 6時間放置した後、 充電電流および放電電流を 1. 0 mAにして同様の充放電サイクルを繰り返し、 5回目の放電容量を測定した結果および一 20ででの放電容量と室温での放電容量の比率を表 4に示す。 表 4
Figure imgf000023_0001
表 4に示されている通り、 負極単極特性の結果と同様に、 本願発明の細孔直径 3 nm以 上の細孔容積を 0. 1 Om 1 以上有するメソポア炭素材である試料 3〜 6を負極に用 いた有機電解質キャパシタは、 — 2 O :でも大きな容量を有しており、 一 20ででの放電 容量と室温での放電容量の比率が 20%を越えていた。 (実施例 9 )
(有機電解質キャパシタの充放電特性評価 2 )
上記正極 1を 1. 5 X 2. 0 cm2サイズに 5枚切り出し、 評価用正極 1とした。 また、 評価用負極 4も 5枚切出し、 実施例 1の負極単極の充放電特性評価と同様のセルを組み、 それぞれ負極活物質重量当たり 0、 100、 200、 300、 400mAhZgのリチウ ムを予め担持させた。 次にセルを分解して、 対極のリチウムを該評価用正極 1に組替え、 有機電解質キャパシ夕を 5セル組立てた。 各々 2. 5m Aの定電流でセル電圧が 3.. 6 V になるまで充電し、 次いで、 2. 5 mAの定電流でセル電圧が 1. 6 Vになるまで放電し た。 この 3. 6 V- 1. 6 Vのサイクルを繰り返し、 5回目の放電容量を測定した結果を 表 5に示す。 また、 測定終了後に正極と負極を短絡させ、 12時間放置した後、 参照極を 用いて正極の電位を測定した結果もあわせて表 5に示す。
表 5
Figure imgf000024_0001
表 5に示されたように、 正極電位が 2 V以下になるとセルの放電容量は大きく、 IV以 下になると更に大きくなつた。 つまり、 負極には予めリチウムイオンを担持させることが 高い放電容量を得る上で好ましい。
(実施例 10 )
(有機電解質キャパシ夕の充放電特性評価 3 )
(表裏貫通孔を有する集電体を用いた負極 10の製造法)
厚さ 32 m (気孔率 50%) の銅製エキスパンドメタル (日本金属工業株式会社製) 両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製: EB-815) をスプレ —方式にてコ一ティングし、 乾燥することにより導電層が形成された負極用集電体を得た 。 全体の厚み (集電体厚みと導電層厚みの合計) は 49 mであり貫通孔はほぼ導電塗料 により閉塞された。 上記負極 5のスラリ一をロールコータ一にて該負極集電体の両面に成 形し、 プレス後負極全体の厚さ (両面の負極電極層厚さと両面の導電層厚きと貪極集電体 厚さの合計). が 153 mの負極 10を得た。 (表裏貫通孔を有する集電体を用いた正極 2の製造法)
厚さ 35 wm (気孔率 50%) のアルミニウム製エキスパンドメタル (日本金属工業株 式会社製) 両面に非水系のカーボン系導電塗料 (日本アチソン株式会社製: EB— 815 ) をスプレー方式にてコーティングし、 乾燥することにより導電層が形成された正極用集 電体を得た。 全体の厚み (集電体厚みと導電層厚みの合計) は 52 mであり貫通孔はほ ぼ導電塗料により閉塞された。 上記正極 1のスラリーをロールコ一夕一にて該正極集電体 の両面に成形し、 プレス後正極全体の厚さ (両面の正極電極層厚さと両面の導電層厚さと 正極集電体厚さの合計) が 218 zmの正極 2を得た。
(セルの作成)
厚さ 153 zmの負極 10、 厚さ 218 mの正極 2を図 11に示すような形状で電極 面積がそれぞれ、 5. 0X8. 0 cm2になるようにカットし、 セパレー夕として厚さ 3 0 mのセルロース/レ一ヨン混合不織布を用いて、 図 11に示したように正極集電体、 負極集電体の接続端子との溶接部 (以下 「接続端子溶接部」 という) がそれぞれ皮対側に なるよう配置し、 セルの厚みが約 4 mmになるよう積層したところ、 正極、 負極の枚数は いずれも各 8枚となった。 最上部と最下部はセパレー夕を配置させて 4辺をテープ止めし て電極積層ュニットを得た。 負極活物質重量に対して 50 OmAhZg分のリチウム金属 としては、 厚さ 110 mのリチウム金属箔を厚さ 80 Aimのステンレス網に圧着したも のを用い、 負極と対向するように電極積層ユニットの最外部に 1枚配置した。 負極 (8枚 ) とリチウムを圧着したステンレス網はそれぞれ溶接し、 接触させ電極積層ユニットを得 た。
上記電極積層ユニットの正極集電体の端子溶接部 (8枚) に、 予めシール部分にシ一ラ ントフィルムを熱融着した巾 1 Omm、 長さ 30mm、 厚さ 0. 2mmのアルミニウム製 正極端子を重ねて超音波溶接した。 同様に負極集電体の端子溶接部 (8枚) に、 予めシー ル部分にシ一ラントフィルムを熱融着した巾 1 Omm、 長さ 30mm、 厚さ 0. 2 mmの ニッケル製負極端子を重ねて超音波溶接し、 縦 102mm、 横 52mm、 深さ 2mmに深 絞りした外装フィルム 2枚 (トータル 4mmのスペース) の内部へ設置した。 外装ラミネ —トフイルムの端子部 2辺と他の 1辺を熱融着した後、 電解液としてエチレン力一ポネ一 ト、 ジェチルカーボネートおよびプロピレンカーボネートを重量比で 3 : 4 : 1とした混 合溶媒に、 1モル Z 1の濃度に L i P F6を溶解した溶液を真空含浸させた後、 残り 1辺 を減圧下にて熱融着し、 真空封止を行うことによりフィルム型有機電解質キャパシ夕を 3 セル組立てた (セル厚みは 4. Omm) 。
(セルの特性評価)
14日間室温にて放置後、 1セル分解したところ、 リチウム金属は完全に無くなつてい たことから、 負極活物質の単位重量当たりに 50 OmAhZgのリチウムイオンが予備充 電されたと判断した。
また、 残った 2セルを 10 Q OmAの定電流でセル電圧が 3. 6 Vになるまで充電し、 その後 3. 6 Vの定電圧を印加する定電流一定電圧充電を 1時間行った。 次いで、 100 mAの定電流でセル電圧が 1. 6 Vになるまで放電した。 この 3. 6 V- 1. 6Vのサイ クルを繰り返し、 3回目の放電容量は 2セルの平均で 118mAhであった。 また、 セル の縦長さを 10.0mm、 横長さを 50 mmとした時のエネルギー密度は 15WhZlであ つた。 表裏面〖こ貫通する孔を有した正極集電体および負極集電体を用いた電極を積層して有機電 解-質キャパシ夕を構成した場合、 本実施例においては 8枚の負極に対し、 1枚のリチウム 金属を対向させて短絡させることにより、 セルを組替えることなく簡便にリチウムイオン を供給でき、 工業的にも有効であることが確認できた。 .
(比較例' 11 ) 実施例 10の正極 2を正負両極に用いた比較例
(有機電解質キャパシタの充放電特性評価 4 )
(セルの作成)
実施例 10の正極 2を正極と負極に用い、 図 11に示すような形状で電極面積がそれぞれ 、 5. 0X8. 0 cm2になるようにカットし、 セパレ一タとして厚さ 30 xmのセル口 —スノレ一ヨン混合不織布を用いて、 図 1 1に示したように正極集電体、 負極集電体の接 続端子との溶接部 (以下 「接続端子溶接部」 という) がそれぞれ反対側になる'よう配置し 、 セルの厚みが約 4 mmになるよう積層したところ、 正極、 負極の枚数はいずれも各 8枚 となった。 最上部と最下部はセパレ一夕を配置させて 4辺をテープ止めして電極積層ュニ ットを得た。
上記電極積層ユニットの正極集電体の端子溶接部 (8枚) に、 予めシール部分にシーラン トフイルムを熱融着した巾 10mm、 長さ 30mm、 厚さ 0. 2 mmのアルミニウム製正 極端子を重ねて超音波溶接した。 同様に負極集電体の端子溶接部 (8枚) に、 予めシール 部分にシ一ラントフィルムを熱融着した巾 10mm、 長さ 30mm、 厚さ 0. 2mmのァ ルミ二ゥム製負極端子を重ねて超音波溶接し、 縦 102mm、 横 52mm、 深さ 2mmに 深絞りした外装フィルム 2枚 (トータル 4mmのスペース) の内部へ設置した。 外装ラミ ネートフィルムの端子部 2辺と他の 1辺を熱融着した後、 電解液としてプロピレンカーボ ネートに、 1モル 1の濃度に TEABF4 (テトラェチルアンモニゥムーテトラフルォ ロボレート) を溶解した溶液を真空含浸させた後、 残り 1辺を減圧下にて熱融着し、 真空 封止を行.うことによりフィルム型有機電解質キャパシ夕を 2セル組立てた (セル厚みは . 3 mm; 。
(セルの特性評価)
組立てた 2セルを 1000mAの定電流でセル電圧が 2. 5 Vになるまで充電し、 その後 2. 5 Vの定電圧を印加する定電流一定電圧充電を 1時間行った。 次いで、 100mAの 定電流でセル電圧が 0Vになるまで放電した。 この 2. 5 V— 0Vのサイクルを繰り返し 、 3回目の放電容量は 2セルの平均で 81mA hであった。
また、 セルの縦長さを 100mm、 横長さを 50mmとした時のエネルギー密度は 4, 7 WhZlであった。 実施例 10で高いエネルギー密度を示した正極 2を正極および負極に 用いて電気二重層キャパシタを構成しても、 実施例 10ほどの高いエネルギー密度は得ら れなかった。 即ち、 負極活物質に、 細孔直径 3 nm以上の細孔容積を 0. l OmlZg以 上有するメソポア炭素材を用いないことには、 実施例 10のような高いエネルギー密度は 得られない。

Claims

請 求 の 範 囲
正極、 負極、 並びに、 リチウムイオンを移送可能な電解質を備えた有機電解質キャパシタ であって、 負極活物質が細孔直径 3 n m以上の細孔容積を 0 . 1 0 m l g以上有するメ ソポア炭素材であることを特徴とする有機電解質キャパシタ。 メソポア炭素材が、 活性炭、 ヤシ殻炭、 コ一クス、 木炭、 竹炭、 樹脂炭化物から選ばれた 1つ又は複数の混合物である請求項 1に記載の有機電解質キャパシタ。 樹脂炭化物がフエノール樹脂炭化物、 又は樹脂がフエノ一ル樹脂である請求項 2に記載の 有機電解質キャパシタ。 メソポア炭素材が N .iまたは N i化合物を用いて製造されることを特徴とする請求項 1〜 3の何れか記載の有機電解質キャパシタ。 正極と負極を短絡させた時に正極電位が 2 . 0 V (L i /L 1 +) 以下になるように負極 および Z又は正極に予めリチウムイオンを担持させることを特徴とす ¾請求項 1〜 4め何 れか記載の有機電解質キャパシタ。 前記有機電解質キャパシタが正極集電体および負極集電体を備え、 各集電体は表裏面に貫 通する孔を有しており、 負極おょぴ Z又は正極に対向して配置されたリチウムから電気化 学的に負極および Z又は正極に供給されることにより fリチウムイオンが担持される、 請求 項 5に記載の有機電解質キャパシタ。
PCT/JP2005/006822 2004-03-31 2005-03-31 メソポア炭素材を負極に用いた有機電解質キャパシタ WO2005096333A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05728914A EP1734547B1 (en) 2004-03-31 2005-03-31 Organic electrolyte capacitor using mesoporous carbon material as negative electrode
CN2005800108636A CN1938802B (zh) 2004-03-31 2005-03-31 使用中孔炭材料作为负极的有机电解质电容器
JP2006511889A JP4705566B2 (ja) 2004-03-31 2005-03-31 電極材及びその製造方法
US10/599,383 US7548409B2 (en) 2004-03-31 2005-03-31 Organic electrolyte capacitor using a mesopore carbon material as a negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004108252 2004-03-31
JP2004-108252 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005096333A1 true WO2005096333A1 (ja) 2005-10-13

Family

ID=35064054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006822 WO2005096333A1 (ja) 2004-03-31 2005-03-31 メソポア炭素材を負極に用いた有機電解質キャパシタ

Country Status (6)

Country Link
US (1) US7548409B2 (ja)
EP (1) EP1734547B1 (ja)
JP (1) JP4705566B2 (ja)
KR (1) KR20070012385A (ja)
CN (1) CN1938802B (ja)
WO (1) WO2005096333A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141897A (ja) * 2005-11-14 2007-06-07 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007158273A (ja) * 2005-12-08 2007-06-21 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007180437A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007180434A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007180429A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2008047458A (ja) * 2006-08-18 2008-02-28 Kri Inc 蓄電デバイス用電極及びそれを用いた蓄電デバイス
EP1895553A1 (en) * 2006-09-04 2008-03-05 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor
JP2008060479A (ja) * 2006-09-01 2008-03-13 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
EP1903628A2 (en) 2006-09-06 2008-03-26 Fuji Jukogyo Kabushiki Kaisha A Negative Electrode Active Material for an Electricity Storage Device and Method for Manufacturing the Same
JP2008311363A (ja) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc リチウムイオンのプレドープ方法およびリチウムイオン・キャパシタ蓄電素子の製造方法
WO2010116872A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
JP2011003795A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Corp 電極集電体及びその製造方法、電極並びに蓄電素子
US8273475B2 (en) 2008-09-23 2012-09-25 Industrial Technology Research Institute Energy storage devices
JP2013080780A (ja) * 2011-10-03 2013-05-02 Asahi Kasei Corp 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP2013527628A (ja) * 2010-06-02 2013-06-27 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド 高エネルギー密度電気化学キャパシタ
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
JP2018018821A (ja) * 2016-07-25 2018-02-01 エルジー・ケム・リミテッド メッシュ形態の集電体を含む負極、これを含むリチウム二次電池及びこの製造方法
JP2018056439A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787967B2 (ja) * 2005-06-09 2011-10-05 国立大学法人東京農工大学 電解コンデンサ素子及びその製造方法
US8313723B2 (en) 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US20070178310A1 (en) 2006-01-31 2007-08-02 Rudyard Istvan Non-woven fibrous materials and electrodes therefrom
KR20080112234A (ko) * 2006-02-15 2008-12-24 루디야드 라일 이스트반 중간다공성 활성 탄소
WO2008035638A1 (en) * 2006-09-19 2008-03-27 Daihatsu Motor Co., Ltd. Electrochemical capacitor
RU2472702C2 (ru) 2007-02-14 2013-01-20 Университи оф Кентукки Ресеарч Фоундатион Инк. Способы формирования активированного углерода
JP5171113B2 (ja) * 2007-05-30 2013-03-27 富士重工業株式会社 蓄電デバイスの製造方法
JP5214199B2 (ja) * 2007-09-18 2013-06-19 富士重工業株式会社 蓄電デバイス
KR101473319B1 (ko) 2007-10-16 2014-12-16 삼성에스디아이 주식회사 복합 중형 다공성 탄소, 그 제조방법 및 이를 이용한연료전지
EP2221841A4 (en) * 2007-11-16 2018-03-28 Osaka Gas Company Limited Positive electrode material for nonaqueous lithium-type storage element
JP2009231234A (ja) * 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd 負極用炭素材料、蓄電デバイス、及び蓄電デバイス搭載品
KR101141352B1 (ko) * 2010-01-12 2012-05-03 삼성전기주식회사 전기 이중층 커패시터 및 그 제조방법
JP5474622B2 (ja) * 2010-03-24 2014-04-16 富士重工業株式会社 蓄電デバイス
US8593787B2 (en) 2010-04-21 2013-11-26 Corning Incorporated Electrochemical capacitor having lithium containing electrolyte
KR101120053B1 (ko) * 2010-06-04 2012-03-22 삼화콘덴서공업주식회사 복합전극을 이용한 하이브리드 슈퍼 커패시터
CN101901694A (zh) * 2010-06-23 2010-12-01 万星光电子(东莞)有限公司 超级电容器电极片
KR101138570B1 (ko) * 2010-08-27 2012-05-10 삼성전기주식회사 전기 화학 커패시터
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system
CN102544432A (zh) * 2010-12-13 2012-07-04 依诺特生物能量控股公司 一种正电极以及具有该正电极的电池
FR2970594B1 (fr) * 2011-01-13 2013-01-18 Batscap Sa Ensemble de stockage d'energie electrique a element empile en accordeon
US20120212879A1 (en) * 2011-02-23 2012-08-23 Linghong Li High energy hybrid supercapacitors using lithium metal powders
CN102938324A (zh) * 2011-08-15 2013-02-20 海洋王照明科技股份有限公司 超级混合电容器及其制备方法
US9779885B2 (en) 2012-11-09 2017-10-03 Corning Incorporated Method of pre-doping a lithium ion capacitor
US8920925B2 (en) 2012-11-09 2014-12-30 Corning Incorporated Stabilized lithium composite particles
US9552930B2 (en) 2015-01-30 2017-01-24 Corning Incorporated Anode for lithium ion capacitor
US9183994B2 (en) 2012-11-28 2015-11-10 Corning Incorporated Lithium ion capacitors and methods of production
KR101464524B1 (ko) * 2014-03-03 2014-11-25 주식회사 비츠로셀 내전압 특성이 우수한 전기이중층 커패시터
WO2016006237A1 (ja) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 キャパシタ
US10014704B2 (en) * 2015-01-30 2018-07-03 Corning Incorporated Integrated energy and power device
US9911545B2 (en) 2015-01-30 2018-03-06 Corning Incorporated Phenolic resin sourced carbon anode in a lithium ion capacitor
US9672992B2 (en) 2015-01-30 2017-06-06 Corning Incorporated Coke sourced anode for lithium ion capacitor
US9607778B2 (en) 2015-01-30 2017-03-28 Corning Incorporated Poly-vinylidene difluoride anode binder in a lithium ion capacitor
US9679704B2 (en) 2015-01-30 2017-06-13 Corning Incorporated Cathode for a lithium ion capacitor
CN108140497B (zh) * 2015-08-25 2020-08-07 亚利桑那州立大学董事会 可食用超级电容器
KR20190069892A (ko) * 2017-12-12 2019-06-20 한국제이씨씨(주) 전기 이중층 커패시터
CN111601518B (zh) 2018-02-20 2022-05-24 梅奥医学教育研究基金会 一种基于可食用可消化材料制备的胃部pH无线检测系统
JP2020058236A (ja) * 2018-10-04 2020-04-16 日本たばこ産業株式会社 吸引成分生成装置、制御回路、吸引成分生成装置の制御方法および制御プログラム
US11069488B2 (en) 2018-10-19 2021-07-20 Systematic Power Solutions, LLC Hybrid energy storage device
US11165266B2 (en) 2018-10-19 2021-11-02 Systematic Power Solutions, LLC Method of providing charge for a mechanical object
US11479080B2 (en) 2018-10-19 2022-10-25 Systematic Power Manufacturing, Llc Hybrid energy power module for mobile electrical devices
CA3085190A1 (en) * 2020-06-30 2021-12-30 Atlas Power Generation Inc. Activated carbon pore size distribution and applications thereof
US11833987B2 (en) 2021-06-11 2023-12-05 Systematic Power Manufacturing, Llc Super capacitor based power module for lift gate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033227A1 (fr) * 1997-01-27 1998-07-30 Kanebo Limited Batterie electrolytique organique
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
JPH1187191A (ja) * 1997-07-09 1999-03-30 Mitsubishi Chem Corp 電気二重層キャパシター
JP2001316103A (ja) * 2000-05-08 2001-11-13 Kawasaki Steel Corp 多孔質炭素材料、その製造方法および電気二重層キャパシタ
JP2003346801A (ja) * 2002-05-27 2003-12-05 Asahi Kasei Corp 負極材料、その製造方法及び蓄電素子

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593806A (ja) 1982-06-30 1984-01-10 カネボウ株式会社 電気伝導性有機高分子系材料およびその製造方法
JP3024024B2 (ja) 1992-06-26 2000-03-21 シーケーディ株式会社 冷凍式ドライア
JPH08107048A (ja) 1994-08-12 1996-04-23 Asahi Glass Co Ltd 電気二重層キャパシタ
JPH08102333A (ja) 1994-09-30 1996-04-16 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JPH08162159A (ja) 1994-12-06 1996-06-21 Kanebo Ltd 有機電解質電池
JP3689948B2 (ja) 1994-12-27 2005-08-31 旭硝子株式会社 電気二重層キャパシタ
JP3403856B2 (ja) 1995-03-17 2003-05-06 カネボウ株式会社 有機電解質電池
US6043183A (en) * 1995-09-28 2000-03-28 Westvaco Corporation High power density carbons for use in double layer energy storage devices
JPH09232190A (ja) 1996-02-21 1997-09-05 Asahi Glass Co Ltd 電気二重層キャパシタ
JP3565994B2 (ja) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
JPH10144295A (ja) 1996-11-11 1998-05-29 Fuji Elelctrochem Co Ltd リチウムイオン二次電池
EP0890963A3 (en) * 1997-07-09 1999-11-17 Mitsubishi Chemical Corporation Electric double-layer capacitor
JP3800799B2 (ja) 1998-04-10 2006-07-26 三菱化学株式会社 電気二重層キャパシター
WO2000011688A1 (en) 1998-08-25 2000-03-02 Kanebo, Limited Electrode material and method for producing the same
JP2001274044A (ja) * 2000-03-23 2001-10-05 Osaka Gas Co Ltd 非水系電解液を用いたキャパシタ
US7625839B2 (en) * 2000-05-09 2009-12-01 Mitsubishi Chemical Corporation Activated carbon for use in electric double layer capacitors
DE20023195U1 (de) 2000-05-31 2003-05-28 Kanebo Ltd Tokio Tokyo Elektrodenmaterial und Kondensator
FR2817387B1 (fr) * 2000-11-27 2003-03-21 Ceca Sa Cellules de stockage d'energie a double couche electrochimique a haute densite d'energie et forte densite de puissance
WO2003003395A1 (fr) * 2001-06-29 2003-01-09 Kanebo, Limited Condensateur a electrolyte organique
JP2004095201A (ja) * 2002-08-29 2004-03-25 Electric Power Dev Co Ltd 負極材料、その製造方法、及びそれを用いた非水系2次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033227A1 (fr) * 1997-01-27 1998-07-30 Kanebo Limited Batterie electrolytique organique
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
JPH1187191A (ja) * 1997-07-09 1999-03-30 Mitsubishi Chem Corp 電気二重層キャパシター
JP2001316103A (ja) * 2000-05-08 2001-11-13 Kawasaki Steel Corp 多孔質炭素材料、その製造方法および電気二重層キャパシタ
JP2003346801A (ja) * 2002-05-27 2003-12-05 Asahi Kasei Corp 負極材料、その製造方法及び蓄電素子

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141897A (ja) * 2005-11-14 2007-06-07 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
EP1959464A1 (en) * 2005-12-08 2008-08-20 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JP2007158273A (ja) * 2005-12-08 2007-06-21 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
EP1959464A4 (en) * 2005-12-08 2013-06-26 Fuji Heavy Ind Ltd LITHIUM ION CAPACITOR
JP2007180437A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007180434A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2007180429A (ja) * 2005-12-28 2007-07-12 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2008047458A (ja) * 2006-08-18 2008-02-28 Kri Inc 蓄電デバイス用電極及びそれを用いた蓄電デバイス
JP2008060479A (ja) * 2006-09-01 2008-03-13 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
JP2008066342A (ja) * 2006-09-04 2008-03-21 Fuji Heavy Ind Ltd リチウムイオンキャパシタ
EP1895553A1 (en) * 2006-09-04 2008-03-05 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor
US8724292B2 (en) * 2006-09-04 2014-05-13 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor
KR101372212B1 (ko) * 2006-09-04 2014-03-07 후지 쥬코교 가부시키가이샤 리튬 이온 커패시터
EP1903628A3 (en) * 2006-09-06 2008-04-30 Fuji Jukogyo Kabushiki Kaisha A Negative Electrode Active Material for an Electricity Storage Device and Method for Manufacturing the Same
EP1903628A2 (en) 2006-09-06 2008-03-26 Fuji Jukogyo Kabushiki Kaisha A Negative Electrode Active Material for an Electricity Storage Device and Method for Manufacturing the Same
JP2008311363A (ja) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc リチウムイオンのプレドープ方法およびリチウムイオン・キャパシタ蓄電素子の製造方法
US8273475B2 (en) 2008-09-23 2012-09-25 Industrial Technology Research Institute Energy storage devices
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery
WO2010116872A1 (ja) * 2009-04-10 2010-10-14 三菱電機株式会社 蓄電デバイス用電極およびその製造方法
US9153837B2 (en) 2009-04-10 2015-10-06 Mitsubishi Electric Corporation Electric storage device electrode and method for manufacturing same
JP2011003795A (ja) * 2009-06-19 2011-01-06 Asahi Kasei Corp 電極集電体及びその製造方法、電極並びに蓄電素子
JP2013527628A (ja) * 2010-06-02 2013-06-27 フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド 高エネルギー密度電気化学キャパシタ
US9076591B2 (en) 2010-06-02 2015-07-07 Florida State University Research Foundation, Inc. High energy density electrochemical capacitors
US9245691B1 (en) 2010-06-02 2016-01-26 Florida State University Research Foundation, Inc. High energy density electrochemical capacitors
JP2013080780A (ja) * 2011-10-03 2013-05-02 Asahi Kasei Corp 非水系リチウム型蓄電素子用負極材料、及びそれを用いた非水系リチウム型蓄電素子
JP2018018821A (ja) * 2016-07-25 2018-02-01 エルジー・ケム・リミテッド メッシュ形態の集電体を含む負極、これを含むリチウム二次電池及びこの製造方法
US10686193B2 (en) 2016-07-25 2020-06-16 Lg Chem, Ltd. Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
JP2018056439A (ja) * 2016-09-30 2018-04-05 旭化成株式会社 非水系リチウム型蓄電素子

Also Published As

Publication number Publication date
CN1938802A (zh) 2007-03-28
JP4705566B2 (ja) 2011-06-22
EP1734547A1 (en) 2006-12-20
US20080165471A1 (en) 2008-07-10
CN1938802B (zh) 2011-09-28
EP1734547A4 (en) 2010-07-21
US7548409B2 (en) 2009-06-16
JPWO2005096333A1 (ja) 2008-02-21
EP1734547B1 (en) 2012-09-26
KR20070012385A (ko) 2007-01-25

Similar Documents

Publication Publication Date Title
WO2005096333A1 (ja) メソポア炭素材を負極に用いた有機電解質キャパシタ
JP5236765B2 (ja) 有機電解質キャパシタ
JP4732072B2 (ja) 捲回型リチウムイオンキャパシタ
JP5081214B2 (ja) 有機電解質キャパシタ
JP4833064B2 (ja) リチウムイオンキャパシタ
JP4833065B2 (ja) リチウムイオンキャパシタ
JP4731967B2 (ja) リチウムイオンキャパシタ
JP4813168B2 (ja) リチウムイオンキャパシタ
WO2004059672A1 (ja) 蓄電装置および蓄電装置の製造方法
JP2006286919A (ja) リチウムイオンキャパシタ
JP5308646B2 (ja) リチウムイオンキャパシタ
JP2010157541A (ja) 捲回型蓄電源
JP2006338963A (ja) リチウムイオンキャパシタ
JP2013140960A (ja) 電気化学キャパシタ
JP4731974B2 (ja) リチウムイオンキャパシタ
JP2013143422A (ja) リチウムイオンキャパシタ
JP4732074B2 (ja) リチウムイオンキャパシタ
JP2005109199A (ja) フィルム型蓄電装置
JP2007180434A (ja) リチウムイオンキャパシタ
JP2008071975A (ja) リチウムイオンキャパシタ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067019963

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005728914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580010863.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005728914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599383

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067019963

Country of ref document: KR