WO2005090997A1 - 溶液を攪拌する方法 - Google Patents

溶液を攪拌する方法 Download PDF

Info

Publication number
WO2005090997A1
WO2005090997A1 PCT/JP2005/004746 JP2005004746W WO2005090997A1 WO 2005090997 A1 WO2005090997 A1 WO 2005090997A1 JP 2005004746 W JP2005004746 W JP 2005004746W WO 2005090997 A1 WO2005090997 A1 WO 2005090997A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
carrier
selective binding
binding substance
fine particles
Prior art date
Application number
PCT/JP2005/004746
Other languages
English (en)
French (fr)
Inventor
Yuki Takii
Kunihisa Nagino
Fumio Nakamura
Hitoshi Nobumasa
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DK05720981.9T priority Critical patent/DK1729136T3/da
Priority to EP05720981A priority patent/EP1729136B1/en
Priority to KR1020067016688A priority patent/KR101148860B1/ko
Priority to US10/593,680 priority patent/US8298832B2/en
Priority to AT05720981T priority patent/ATE546738T1/de
Priority to CN200580009083XA priority patent/CN1934451B/zh
Priority to ES05720981T priority patent/ES2382475T3/es
Priority to JP2006511211A priority patent/JP4420020B2/ja
Priority to CA2559768A priority patent/CA2559768C/en
Publication of WO2005090997A1 publication Critical patent/WO2005090997A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/25Mixers with loose mixing elements, e.g. loose balls in a receptacle
    • B01F33/251Mixers with loose mixing elements, e.g. loose balls in a receptacle using balls as loose mixing element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/25Mixers with loose mixing elements, e.g. loose balls in a receptacle
    • B01F33/252Mixers with loose mixing elements, e.g. loose balls in a receptacle using bubbles as loose mixing element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation

Definitions

  • the present invention relates to a method in which a carrier containing a substance that selectively binds to a test substance (hereinafter referred to as "selective binding substance”) is contacted with a solution containing the test substance. And a method for stirring a solution containing the test substance when reacting the test substance with the selective binding substance immobilized on the carrier. More specifically, the present invention relates to a method of stirring a solution containing a test substance in order to promote a reaction between a selective binding substance immobilized on a carrier and the test substance.
  • nucleic acids can be used to examine the relationship between various genes and their biological functions by utilizing the complementarity between various nucleic acids and Z nucleic acids, such as Northern blotting or Southern blotting. Proteins can be determined based on the function and expression of proteins by utilizing the reaction between protein Z proteins typified by Western blotting.
  • DNA microarray method DNA chip method
  • DNA chip method a new analysis method based on the hybridization reaction between nucleic acid and Z nucleic acid.
  • These methods can be applied to the detection and quantification of proteins and sugar chains based on specific reactions between protein Z proteins, sugar chains Z sugar chains, and sugar chain Z proteins.
  • a major feature of these technologies is that a large number of DNA fragments, proteins, and sugar chains are arranged and fixed at high density on a glass planar substrate piece called a microarray or DNA chip. .
  • DNA chip method As a specific method of use, for example, a sample in which the expressed gene or the like of the research target cell is labeled with a fluorescent dye or the like is hybridized on a piece of a flat substrate to bind nucleic acids (DNA or RNA) complementary to each other. Then, a high-resolution detection device (scanner) can be used to read the location at high speed, or a method of detecting a response such as a current value based on an electrochemical reaction can be cited. In this way, the amount of each gene in a sample can be quickly estimated. In addition, the application field of DNA chips is greatly expected not only for gene expression analysis for estimating the amount of expressed genes, but also as a means for detecting single nucleotide substitution (SNP) of genes.
  • SNP single nucleotide substitution
  • a polymer is placed on a flat substrate such as a slide glass.
  • nucleic acid probes nucleotides immobilized on a substrate
  • conventional cDNAs having a length of several hundred thousand to several thousand bases and fragments thereof.
  • oligo DNA oligo DNA with a base number of 10-100 bases
  • the oligo DNA and the glass substrate are bonded by a covalent bond (JP-A-2001-108683).
  • DNA chips are often used for research in which a large number of genes of tens of thousands to thousands are mounted on a chip and the expression of a large amount of genes is examined at one time. It is expected that DNA chips will be used for diagnostic purposes in the future. When a DNA chip is used for diagnosis, it is generally expected that the amount of sample that can be collected is very small. Since the current DNA chip has insufficient sensitivity, it is expected that such samples cannot be measured. Furthermore, the current DNA chip has a problem that the fluorescence intensity of a gene having a low expression level after hybridization is very weak, and such a gene cannot be practically prayed.
  • the amount of the sample is small, the amount of expression is small, and the intensity of the fluorescence after hybridization in the case of the gene is significantly increased. It is an issue.
  • it is important to react the sample DNA and the probe DNA efficiently. Efficient specimen As a method for reacting DNA with a probe, spontaneous diffusion of the sample is not sufficient. Therefore, it is considered that the solution is stirred to efficiently promote the reaction between the probe and the sample.
  • JP-A-2003-248008 and JP-A-2003-339375 disclose stirring the sample solution by moving magnetic beads in the sample solution by magnetic force.
  • a method for increasing the reaction efficiency with a sample is disclosed.
  • Japanese Patent Application Laid-Open No. 2003-339375 discloses that a bead-mixed sample solution is brought into contact with a DNA chip, the solution is sealed with a cover glass or the like, and the chip is rotated to drop the beads in the direction of gravity.
  • a method is disclosed in which the sample solution is agitated to increase the signal after the hybridization.
  • JP-A-2003-248008 and JP-A-2003-339375 has the following problems.
  • the present invention relates to a method for bringing a solution containing a test substance which reacts with the selective binding substance into contact with the selective binding substance immobilized on the surface of the carrier, and stirring the solution.
  • fine particles or air bubbles are mixed with a solution containing a substance, and the fine particles or air bubbles are moved without contacting the immobilizing surface of the selective binding substance to stir the solution.
  • FIG. 1 is a schematic sectional view of an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of an embodiment of the present invention.
  • FIG. 3 is a schematic view of a carrier.
  • FIG. 4 is a schematic cross-sectional view of a carrier.
  • FIG. 5 is an example of a jig for abutting a DNA chip.
  • FIG. 6 is a conceptual diagram when a carrier is a support layer Z-selective binding substance-fixed layer.
  • FIG. 7 is a reaction scheme for immobilizing a selective binding substance on a PMMA surface.
  • FIG. 8 is a conceptual diagram of a jig used in Example 9.
  • FIG. 9 shows the fluorescence intensity when the target concentration was changed.
  • a solution containing a test substance that reacts with the selective binding substance is brought into contact with the selective binding substance immobilized on the carrier surface, Is a method of mixing fine particles or air bubbles with a solution containing a test substance, and moving the fine particles or air bubbles without contacting the immobilizing surface of the selective binding substance to stir the solution.
  • the solution is stirred by moving fine particles or bubbles without contacting the immobilizing surface of the selective binding substance.
  • the movement area of the fine particles or bubbles it is possible to prevent the fine particles from hitting the probe fixing surface and damaging this surface with the fine particles or bubbles.
  • a carrier having a structure in which fine particles or bubbles do not contact the immobilizing surface of the selective binding substance It is preferable that the carrier is provided with an uneven portion, and the selective binding substance is fixed on the upper surface of the convex portion.
  • a solution containing a test substance that reacts with the selective binding substance is brought into contact with the selective binding substance immobilized on the upper surface of the convex portion of the carrier. And stirring the solution by mixing fine particles or air bubbles with the solution containing the test substance, and moving the fine particles or air bubbles to stir the solution.
  • the size of the fine particles (the maximum diameter of the fine particles) is preferably 10 ⁇ m or more. If the size force of the fine particles is smaller than 10 / zm, the effect of stirring by the fine particles may hardly be obtained. The reason for this is that if the size force of the particles is less than 10 / z m, the particles may hardly move even when an external field (magnetic field, gravity or vibration) is applied due to the resistance of the solution.
  • the size of the fine particles is particularly preferably 20 ⁇ m or more.
  • the shape of the fine particles is spherical, that is, beads. It is preferable that the microparticles are beads, because the microparticles themselves can be smoothly rolled without rolling in the reaction solution by rolling, and as a result, the sample solution can be stirred well.
  • spherical fine particles (beads) having a diameter of 20 ⁇ m to 300 ⁇ m can be used. If the diameter of the bead is within this range, the beads can easily move in the liquid due to gravity, acceleration, and the like even if the reaction liquid has resistance due to the weight of the bead itself, and the liquid can be sufficiently stirred. Results can be obtained.
  • the material of the fine particles is not particularly limited.
  • metals, glass, ceramics, and polymers polystyrene, polypropylene, nylon, etc.
  • beads made of a material (glass, quartz, zirconia ceramic) having a specific gravity larger than that of water are preferable because they can easily move in the liquid due to acceleration due to gravity or vibration.
  • magnetic beads it is also possible to use magnetic beads.
  • beads having a zircon-a-ceramic force can be most preferably used because the beads have a large specific gravity and can be easily moved by acceleration due to gravity or vibration.
  • Glass, quartz, and zircon-a ceramic are preferred because the elution of bead components into the sample solution is small! / ⁇ .
  • zirconate - A ceramic (yttria stabilized Jirukoyua) force becomes beads, the density is larger than that, such as 2. 2gZcm 3 of 6gZc m 3 and the quartz glass, can exhibit more agitation effect, The beads are less likely to soar and move with respect to the movement of the solution at the time of sealing in the container, so that the setting can be performed more easily, which is particularly preferable.
  • the fine particles are moved and the solution is stirred.
  • the fine particles are moved by any of gravity, magnetic force, vibration of a carrier, or a combination thereof.
  • the rotation speed at this time is preferably 0.1 rpm to 30 rpm. If the rotation speed exceeds 30 rpm, the particles may not be able to move in one direction, and the gravity on the opposite side may be applied to the particles.
  • the rotation speed is lower than 0.1 rpm, the total time during which the fine particles in the liquid are moving becomes short, and as a result, the time during which the sample solution is stirred becomes short, so that a sufficient effect cannot be obtained.
  • a preferable range of the rotation speed is 0.5 rpm to 15 rpm. It is also a preferable method to move the fine particles in the solution by vibrating the carrier right and left and applying acceleration.
  • a container for holding the solution is preferably used. Furthermore, in the method of stirring the solution of the present invention, more preferably, the solution is stirred by moving the fine particles, and the minimum width of the fine particles is set between the immobilizing surface of the selective binding substance and the solution. It is larger than the shortest distance to the container to be kept.
  • the maximum width of the fine particles is preferably 10 ⁇ m or more, and the difference between the height of the upper surface of the convex portion and the height of the concave portion or less.
  • the solution is stirred by moving fine particles, and the carrier is provided with an uneven portion, and the selective binding substance is fixed on the upper surface of the projecting portion. And the fine particles move in the concave portions.
  • the carrier is provided with a flat portion and an uneven portion, and the selective binding substance is immobilized on the upper surfaces of the plurality of convex portions.
  • the height of the upper surface is almost the same, and the difference between the height of the flat portion and the upper surface of the convex portion is 50 m or less.
  • the carrier on which the selective binding substance is immobilized has an uneven portion, and the selectivity compatible substance is immobilized on the upper surface of the convex portion.
  • the carrier having the selective binding substance fixed on the upper surface of the convex portion is scanned using a device called a scanner, the laser light is focused on the upper surface of the convex portion of the concave and convex portion. This is because there is an effect that it is difficult to detect undesired fluorescence (noise) of the sample which is blurred and non-specifically adsorbed to the concave portion.
  • the heights of the projections of the uneven portions it is preferable that the heights of the upper surfaces of the respective projections are substantially the same.
  • the selective binding substance is immobilized on the surfaces of the projections having slightly different heights, and this is allowed to react with the fluorescently labeled analyte, and then scanned with a scanner.
  • it means a height at which the difference in signal level intensity does not matter.
  • the heights are substantially the same when the height difference is less than 50 / zm.
  • the difference in height is preferably 30 / zm or less, and more preferably the same height.
  • the same height in the present application includes an error due to a variation that occurs in production or the like. If the difference between the height of the top of the highest projection and the height of the top of the lowest projection is greater than 50 m, the laser light on the top of the projection whose height has shifted will be blurred, and the top surface of the projection will be fixed. In some cases, the signal intensity of the analyte force that has reacted with the selected binding substance that has been eluted is weakened.
  • the upper surface of the convex portion is preferably substantially flat.
  • that the upper surface of the projection is practically flat means that there is no unevenness of 20 m or more.
  • the carrier used in the stirring method of the present invention is preferably provided with a flat portion. It is preferable that the height of the upper surface of the convex portion of the uneven portion and the height of the flat portion are substantially the same. That is, the difference between the height of the flat portion and the height of the upper surface of the convex portion is preferably 50 m or less. If the difference between the height of the convex top surface and the height of the flat portion is 50 m or more, the detectable fluorescence intensity may be weak. More preferably, it is 30 / zm or less, and most preferably, the height of the flat portion and the height of the convex portion are the same.
  • FIGS. 3 and 4 show specific examples of the carrier used in the stirring method of the present invention.
  • a selective binding substance for example, nucleic acid
  • the carrier strikes the jig, and the laser beam focuses on the height of the abutment surface of the jig. It is often adjusted in advance.
  • selection of a carrier to which a selective binding substance is immobilized is referred to as a plurality of projections on which the binding substance is immobilized.
  • Nucleic acid and excludes the part where the dummy selective binding substance is simply immobilized.
  • the carrier on which the selective binding substance is immobilized preferably has substantially the same area on the upper surface of the projection. Since the area of the upper surface of the convex portion is substantially the same, the area of the portion where various kinds of selective binding substances are immobilized can be made the same, which is advantageous for later analysis.
  • that the area of the upper portion of the convex portion is substantially the same means that the value obtained by dividing the largest upper surface area of the convex portion by the smallest upper surface area is 1.2 or less.
  • the carrier to which the selective binding substance is immobilized is not particularly limited in the area of the upper surface of the projection, but the amount of the selective binding substance is reduced. for ease of possible points and handling be, 1 mm 2 or less, preferably 10 m 2 or more
  • the height of the projections in the projections and depressions of the preferably used carrier is preferably 10 m or more and 500 m or less.
  • the length is 50 m or more and 300 m or less. If the height of the projections is lower than this, nonspecifically adsorbed sample samples other than spots may be detected, and as a result, SZN may deteriorate. If the height of the projection is 500 m or more, the projection may be broken and easily damaged.
  • 1 indicates a probe DNA (selective binding substance).
  • Reference numeral 2 denotes fine particles (beads in this case), and reference numeral 3 denotes a carrier on which the probe DNA is immobilized. These 1, 2 and 3 will come into contact with the solution containing the target DNA (test substance).
  • Reference numeral 4 denotes a container for holding a liquid made of a material such as slide glass, cover glass, metal, or plastic, and the solution containing the target DNA is held between the container and the carrier. Become. In the example of FIG. 1, the probe DNA is immobilized on the convex portion of the carrier.
  • the shortest distance force between the upper surface of the convex part of the carrier (the surface on which the selective binding substance is immobilized) and the container holding the solution is smaller than the diameter of the fine particles, and the fine particles immobilize the probe DNA.
  • the surface is not touched, preventing particulates from damaging this surface.
  • the fine particles have an elliptical shape, if the shortest distance between the upper surface of the convex portion and the container is smaller than the minimum width of the fine particles, the contact between the fine particles and the probe fixing surface can be prevented.
  • sample solution a solution containing a sample DNA (sample solution) is dropped on a carrier having an uneven shape, and fine particles are placed on the upper surface of the convex portion in the solution. Put the fine particles into the container so that it does not spread, then cover the container with a cover glass, etc., and seal it around with adhesive tape or adhesive to prevent the sample solution from spilling or evaporating. . Then, a space between the surface of the cover glass and the upper surface of the convex portion is filled with a sample solution of about several meters to several tens / zm.
  • the fine particles do not damage the upper surface of the convex portion.
  • the carrier By rotating the carrier in a vertical plane using such a carrier, the fine particles move only in the concave portions of the uneven portions, and the sample solution is stirred without the fine particles touching the upper surface of the convex portions. Can be.
  • a plate whose corner is 5 m to 100 m higher than the other surface, or a plate whose center is 5 to 100 m Prepare a plate with a depth of 100 m, and match the center of the plate with the uneven portion of the carrier on which the selective binding substance is immobilized.
  • An example of this plate is shown in 4 of Fig. 1.
  • glass is treated with acid, glass or adhesive tape is applied to two to four sides of a flat plate, or a plate with the shape of 4 in Fig. 1 is formed by injection molding.
  • a container for holding a solution having a structure in which fine particles or bubbles do not contact the immobilizing surface of the selective binding substance is used.
  • the carrier had an uneven shape.
  • the same effect can be obtained by providing the container holding the solution with an uneven shape.
  • Fig. 2 shows a specific example.
  • the probe DNA is placed below the convex portion of the container.
  • the distance between the surface on which the probe DNA is immobilized and the convex portion of the container should be smaller than the minimum width of the fine particles.
  • Another specific example is a case where both the carrier and the container have an uneven structure.
  • the gap between the cover glass and the DNA chip is at most about 10 ⁇ m. Even if fine particles larger than this are mixed, the fine particles are trapped between the DNA chip and the cover glass, the fine particles cannot move, and the effect of mixing the fine particles has no effect. On the other hand, in order to avoid this, particles with a diameter of about a few zms that are not sandwiched between the cover glass and the DNA chip are mixed, and even if the particles are moved by gravity or vibration acceleration, the particles are small. Therefore, the resistance of the solution is greatly affected, and the fine particles cannot move sufficiently in the sample solution.
  • the concave portion and the convex portion of the uneven portion are used as shown in Figs. 1 and 2.
  • the sample solution containing the target DNA is agitated by the fine particles using a carrier having the uneven portions or a container having the uneven portions, the sample solution can be sufficiently agitated by the large fine particles, and the sample solution can be sufficiently stirred. If the DNA immobilization surface is not damaged, the effect can be obtained.
  • the material of the container preferably used is not particularly limited.
  • examples of the material of the container preferably used include glass and plastic.
  • a glass plate such as a cover glass or a slide glass can be preferably used.
  • a material such as polymethyl methacrylate or polycarbonate can be used.
  • Plastic material strength It is possible to perform injection molding, and productivity is favorable.
  • the material of the carrier used in the present invention is not particularly limited.
  • the material of the carrier preferably used in the present invention is glass or various polymers (polystyrene, polymethyl methacrylate, polycarbonate).
  • a functional group can be formed on the surface by performing silane coupling treatment, and this can be used as a foothold to selectively bind the DNA or the like. It is possible to immobilize the substance on a carrier.
  • amino groups can be generated on the glass surface using aminoalkylsilane, etc., and in the case of DNA, the positive charge of the amino group and the negative charge of the DNA can cause immobilization by electrostatic force. It will be possible.
  • the surface of the carrier for immobilizing the selective binding substance is a solid having a polymer containing a structural unit represented by the following general formula (1)
  • the signal after hybridization is preferably used. Is more preferred.
  • the polymer containing the structural unit represented by the general formula (1) may be a homopolymer or a copolymer.
  • a polymer is used.
  • the polymer uses at least one type of monomer as a raw material, the monomer comprising a double bond capable of participating in polymerization and a functional group capable of participating in polycondensation, and a ketone or carboxylic acid or a derivative thereof. Exists in form. More preferably, the polymer has a structure represented by the general formula (1).
  • the polymer containing the structural unit represented by the general formula (1) is a copolymer
  • the polymer contains the structural unit represented by the general formula (1) in an amount of 10% or more of all monomer units.
  • the content of the structural unit represented by the general formula (1) is 10% or more, a large number of carboxyl groups can be generated on the surface and a large amount of the probe nucleic acid can be immobilized by the steps described later. As a result, the SZN ratio is further improved.
  • a polymer refers to a polymer having a number average degree of polymerization of 50 or more.
  • the preferred range of the number average degree of polymerization of this polymer is from 100 to 10,000. Particularly preferably, it is 200 or more and 5000 or less.
  • the number average degree of polymerization can be easily measured by measuring the molecular weight of the polymer by a standard method using GPC (gel permeation chromatography).
  • R 1 and R 2 represent an alkyl group, an aryl group or a hydrogen atom, and may be the same or different.
  • the alkyl group may be linear or branched and preferably has 1 to 20 carbon atoms.
  • the aryl group preferably has 6 to 18 and more preferably 6 to 12 carbon atoms.
  • Functional group X can be 0, NR 3 , or CH
  • R 3 is a functional group defined similarly to R 1 and R 2 described above.
  • the polymer on the carrier surface for immobilizing the selective binding substance is preferably a polymer containing a functional group.
  • Preferred examples of the polymer containing a functional group include polymethyl methacrylate (PMMA), polyethylene methacrylate (PEMA), and polyalkyl methacrylate (PAMA) of polypropyl methacrylate. is there. Among these, particularly preferred is polymethyl methacrylate. Further, poly (vinyl acetate), poly (cyclohexyl methacrylate), poly (methyl methacrylate) and the like can also be used.
  • a copolymer having a structure in which the constituents of the polymer are combined or a structure in which one or more kinds of the constituents of the polymer are added to the constituent of the polymer can also be used.
  • the other polymer includes polystyrene.
  • the ratio of each component is preferably in the range of a monomer containing a carboxy group, for example, alkyl methacrylate of 10 mol% or more. By doing so, many carboxyl groups can be generated on the surface and many probe nucleic acids can be immobilized, and as a result, the SZN ratio is further improved. More preferably, the proportion of the monomer among the structural units of the polymer is 50 mol% or more.
  • a carrier having a polymer having at least one structural unit represented by the general formula (1) this is subjected to a pretreatment, and the surface of the carrier is exposed to carboxy.
  • a sil group is formed.
  • Means for generating a carboxyl group on the surface of the carrier include treatment with an alkali or acid, ultrasonic treatment in warm water, oxygen plasma, argon plasma, and a method of exposing the carrier to radiation. It is preferable that the carrier is immersed in an alkali or an acid to generate carboxyl groups on the surface, because the damage is small and the point that it can be easily carried out is preferred.
  • the carrier is immersed in an aqueous solution of sodium hydroxide / sulfuric acid (preferably at a concentration of 1N to 20N), preferably at a temperature of 30 ° C to 80 ° C, for 1 hour to 100 hours. Just keep it.
  • thermoplastic copolymer having an acid anhydride unit can also be used.
  • This thermoplastic copolymer preferably has (i) an acid anhydride unit.
  • the (i) acid anhydride unit is a unit present in (A) the backbone or the side chain of the main chain or side chain of the thermoplastic copolymer.
  • (I) There are no particular restrictions on the structure of the acid anhydride unit.
  • Maleic anhydride unit and dartaric anhydride unit are preferred, but the following general formula (2)
  • R 4 and R 5 represent the same or different hydrogen atoms or alkyl groups having 15 carbon atoms.
  • thermoplastic copolymer is not particularly limited as long as it contains (i) an acid anhydride unit.
  • R ° represents hydrogen or an alkyl group having 115 carbon atoms
  • the unsaturated carboxylic acid unit is a unit obtained by copolymerizing an unsaturated carboxylic acid monomer, and as the unsaturated carboxylic acid monomer used in this case, There is no particular limitation, and the unsaturated unsaturated carboxylic acid monomer capable of being copolymerized with another vinyl compound. Can also be used.
  • unsaturated carboxylic acid monomer the following general formula (4)
  • R 6 represents hydrogen or an alkyl group having 15 carbon atoms
  • thermoplastic copolymer is not particularly limited as long as it contains (i) an acid anhydride unit, but is represented by the following general formula (5)
  • R ′ represents hydrogen or an alkyl group having 15 to 15 carbon atoms
  • R 8 represents an aliphatic or alicyclic hydrocarbon group having 16 to 16 carbon atoms or a number of 1 to 6 carbon atoms.
  • an aliphatic or alicyclic hydrocarbon group having a carbon number of 16 substituted with a hydroxyl group or a halogen and
  • the unsaturated carboxylic acid alkyl ester unit is a unit obtained by copolymerizing an unsaturated carboxylic acid alkyl ester monomer.
  • the carboxylic acid alkyl ester monomer is not particularly limited, but is preferably a monomer represented by the following general formula (6).
  • condensing agents such as EDC may be used by mixing with a solution of a selective binding substance, or a carrier having a carboxyl group formed on the surface may be immersed in an EDC solution in advance to remove the carboxyl group on the surface. You may be active.
  • the use of the condensing agent mixed with a solution of the selective binding substance improves the reaction yield and can fix many selective binding substances to the carrier, and is preferably used.
  • the temperature at which the sample containing the selective binding substance is allowed to act on the carrier is preferably 0 ° C to 95 ° C, more preferably 15 ° C to 65 ° C. Processing time is usually 5 minutes to 24 hours, more than 1 hour Is preferred.
  • the above-mentioned condensing agent may be heated, or the covalent bond with the amino group of the selective binding substance may be formed without adding the condensing agent. It is possible to do.
  • a carrier is made of a polymer containing the structural unit represented by the general formula (1) or (2)
  • an injection molding method, a hot embossing method, or the like is used in comparison with glass, ceramic, metal, and the like. This makes it possible to mass-produce a carrier having fine irregularities more easily.
  • the injection molding method can be preferably used because mass production is easy.
  • the carrier preferably used is a method in which a selective binding substance is immobilized on the polymer surface by the above-described method, whereby nonspecific analyte adsorption is suppressed, and covalent bonds are used to make the carrier more robust.
  • the selective binding substance can be fixed at a high density.
  • a carrier can be obtained with a high efficiency of hybridization with a specimen because of the presumed reason that the immobilized selective binding substance has a higher degree of spatial freedom than glass.
  • the carrier for immobilizing a selective binding substance obtained by the above method can be subjected to an appropriate treatment after immobilizing the selective binding substance.
  • an appropriate treatment for example, by performing a heat treatment, an alkali treatment, a surfactant treatment, or the like, the fixed selective binding substance can be modified.
  • the selective binding substance-immobilized carrier is obtained by performing a hybridization reaction between a fluorescently labeled sample and a selective binding substance immobilized on the carrier, and reading the fluorescence with a device called a scanner.
  • the scanner narrows down the laser light, which is the excitation light, with an objective lens, and focuses the laser light.
  • the light emission becomes noise, which may lead to a decrease in detection accuracy.
  • it has a structural unit of the general formula (1) or (2).
  • the surface of the polymer is blackened by adding a substance that exhibits black color and does not emit light by laser irradiation.
  • a black carrier By using such a black carrier, auto-fluorescence from the carrier can be reduced during detection.
  • the black carrier is a carrier on which the selective binding substance having a good SZN ratio is immobilized as a result of low noise.
  • black carrier means that the spectral reflectance of the black portion of the carrier does not have a specific spectral pattern (such as a specific peak) in the visible light range (wavelength power: OOnm power, 800nm).
  • the spectral transmittance of the black portion of the carrier also has a specific low value without a specific spectral pattern.
  • the carrier has a spectral reflectance of 7% or less in the range of visible light (wavelength power OO nm to 800 nm) and a spectral transmittance of 2% or less in the same wavelength range. It is preferable that The spectral reflectance referred to here is the spectral reflectance when specularly reflected light from a carrier is captured by an illumination / light receiving optical system conforming to JIS Z 8722 condition C.
  • the means for making the carrier black can be achieved by adding a black substance to the carrier.
  • the black substance include a carbon black and a graph.
  • Black materials such as oxides of Ait, Titanium Black, Arin Black, Ru, Mn, Ni, Cr, Fe, Co and Cu, and carbides of Si, Ti, Ta, Zr and Cr can be used.
  • carbon black, graphite, and titanium black can be preferably contained, and carbon black can be particularly preferably used.
  • These black substances may be contained alone or in combination of two or more.
  • a structural unit represented by the general formula (1) is provided on a support layer made of a material. It is preferable to provide a layer for immobilizing a selective binding substance made of a single polymer, since the shape of the carrier can be prevented from being changed by heat or external force.
  • Fig. 6 shows an example of this concept.
  • the support layer is preferably made of polypropylene, glass, or a metal such as iron, chromium, nickel, titanium, and stainless steel.
  • the surface of the support layer is treated by plasma treatment with argon, oxygen, or nitrogen gas and treatment with a silane coupling agent. It is preferable to apply as such a silane coupling agent, 3-aminopropyltri Ethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylethoxymethylsilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2-aminoethylaminopropyl) dimethoxymethylsilane , 3-mercaptopropyltrimethoxysilane, dimethoxy-3-mercaptopropylmethylsilane and the like.
  • silane coupling agent 3-aminopropyltri Ethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylethoxymethylsilane, 3- (2-aminoethylaminopropyl) trimethoxysilane, 3- (2
  • a known means for providing the selective binding substance immobilizing layer on the support layer a known means such as dissolving a polymer in an organic solvent and spin coating and diving can be used. More simply, it can be attached to the support layer with an adhesive.
  • the "selective binding substance” refers to a substance that can selectively or directly bind to a test substance, and typical examples thereof include nucleic acids, proteins, saccharides, and the like. Other antigenic conjugates can be mentioned.
  • nucleic acid As the "selective binding substance", a nucleic acid is particularly preferred.
  • the nucleic acid may be DNA, RNA or PNA.
  • a single-stranded nucleic acid having a specific base sequence selectively hybridizes and binds to a single-stranded nucleic acid having a base sequence complementary to the base sequence or a part thereof. Substance ".
  • proteins include antibodies, antigen-binding fragments of antibodies such as Fab fragments and F (ab ') 2 fragments, and various antigens.
  • Antibodies and their antigen-binding fragments selectively bind to the corresponding antigen, and the antigen selectively binds to the corresponding antibody, and thus fall under the category of “selective binding substance”.
  • Examples of the saccharide include various antigens that are preferred by the polysaccharide.
  • substances having antigenicity other than proteins and saccharides can be immobilized.
  • the selective binding substance used in the present invention may be a commercially available substance, or may be a substance obtained from living cells or the like.
  • the selective binding substance used in the present invention is a nucleic acid, called an oligonucleic acid, having a length of 10 to 100 bases, which is easily and artificially synthesized by a synthesizer.
  • the number of bases is less than 20 bases, the stability of the hybridization is low, and from the viewpoint of 20 to 100 bases is more preferable. In order to maintain the stability of the hybridization, it is particularly preferably in the range of 40 to 100 bases.
  • a nucleic acid to be measured for example, a gene of pathogenic bacteria ⁇ virus or the like, a causative gene of a genetic disease, a part thereof, and various antigen- Examples include, but are not limited to, biological components, antibodies against pathogenic bacteria, viruses, and the like.
  • the solution containing these test substances includes body fluids such as blood, serum, plasma, urine, stool, cerebrospinal fluid, saliva, various tissue fluids, and various foods and drinks. These dilutions can be mentioned, but not limited thereto.
  • the nucleic acid to be a test substance may be a nucleic acid extracted from blood or cells by a conventional method, or may be a nucleic acid amplified by a nucleic acid amplification method such as PCR using the nucleic acid as a type III. Good.
  • a nucleic acid amplification method such as PCR
  • the measurement sensitivity can be greatly improved.
  • the amplified nucleic acid can be labeled by performing amplification in the presence of a nucleotide triphosphate labeled with a fluorescent substance or the like.
  • test substance antigen or antibody When the test substance is an antigen or an antibody, the test substance antigen or antibody may be directly labeled by an ordinary method. After binding the test substance antigen or antibody to the selective binding substance, the carrier is washed, and the antigen or antibody is reacted with an antigen-antibody labeled antibody or antigen, and the label bound to the carrier is measured. This is a monkey.
  • the selective binding substance and the test substance are preferably reacted.
  • the step of allowing the immobilized substance to interact with the test substance can be performed in exactly the same manner as in the related art.
  • the reaction temperature and time are appropriately selected depending on the chain length of the nucleic acid to be hybridized, the type of the antigen and Z or antibody involved in the immune reaction, etc., but in the case of nucleic acid hybridization, usually 35 ° C-About 70 ° C for about 1 minute to about 10 hours. In the case of an immune reaction, it is usually about 1 hour to about 1 hour at room temperature and about 40 ° C.
  • the method of stirring the solution of the present invention has the following advantage that the signal after hybridization is not merely improved but also has the following advantage.
  • the fluorescence intensity after hybridization is weak.
  • the distribution of the fluorescence intensity in the spot where the probe DNA was immobilized became donut-shaped, which hindered the subsequent data analysis.
  • the method of stirring the solution according to the present invention has the advantage that the fluorescence intensity is greatly improved and the donut-shaped fluorescence intensity distribution in the spot as described above is reduced.
  • a mold for injection molding was prepared by using a known method, LIGA (Lithographie Galvanoformung Abformung) process, and a PMMA carrier having a shape as described later was obtained by the injection molding method.
  • the average molecular weight of PMMA used in this example was 50,000, and PMMA contained 1% by weight of carbon black (manufactured by Mitsubishi-Danigaku # 3050B), and the carrier was black. It is.
  • the spectral reflectance and spectral transmittance of this black carrier were measured, the spectral reflectance was 5% or less at any wavelength in the visible light region (wavelength 400 nm, power 800 nm), and within the same range of wavelengths. And the transmittance was 0.5% or less.
  • the spectral reflectance was measured using a device equipped with a light-receiving optical system (Minolta Camera, CM-2002) that conforms to Condition C of JIS Z 8722, when the specular reflection light of the carrier force was captured. The reflectance was measured.
  • the shape of the carrier was 76 mm in length, 26 mm in width, and lmm in thickness, and the surface was flat except for the center of the carrier.
  • At the center of the carrier there is a recessed part with a diameter of 10 mm and a depth of 0.2 mm.
  • 64 (8 X 8) convex parts with a diameter of 0.2 mm and a height of 0.2 mm.
  • the PMMA carrier was immersed in an ION aqueous sodium hydroxide solution at 65 ° C for 12 hours.
  • DNA of SEQ ID NO: 1 (60 bases, 5 ′ terminal amination) was synthesized.
  • the DNA of SEQ ID NO: 1 is aminated at the 5 'end! /
  • This DNA was dissolved in pure water at a concentration of 0.3 nmol / ⁇ l to prepare a stock solution.
  • KH PO was dissolved in 0.2 g pure water, and the solution was adjusted to 11 with hydrochloric acid for pH adjustment.
  • the final concentration of the probe DNA is 0.03 nmolZ1 at pH 5.5) and 1-ethyl-3- (3-dimethylamino) is used to condense the carboxylic acid on the surface of the carrier with the terminal amino group of the probe DNA.
  • (Propyl) carbodiimide (EDC) was added to a final concentration of 50 mgZml. Then, these mixed solutions were spotted on the upper surface of the convex portion of the carrier with a glass cavern. Next, the carrier was placed in a sealed plastic container, incubated at 37 ° C and 100% humidity for about 20 hours, and washed with pure water. This reaction scheme is shown in FIG.
  • the DNA (968 bases) of SEQ ID NO: 4 having a base sequence capable of hybridizing with the probe DNA immobilized on the DNA-immobilized carrier was used.
  • the adjustment method is shown below.
  • the PCR conditions are as follows. ExTaq 21 1, 10X ExBuffer 40 ⁇ 1, dNTP Mix 32 ⁇ 1 (These are attached to product number RR001A manufactured by TAKARA BIO INC.) 2 ⁇ 1 and template (SEQ ID NO: 5) to 0.2 1 , And the total volume was increased to 400 1 with pure water. These mixed solutions were divided into four microphone opening tubes, and PCR was performed using a thermal cycler. This was purified by ethanol precipitation and dissolved in 401 pure water. When a part of the solution after the PCR reaction was taken and confirmed by electrophoresis, it was confirmed that the base length of the amplified DNA was about 960 bases, and that SEQ ID NO: 4 (968 bases) was amplified.
  • a 9-base random primer (manufactured by Takara Bio Inc .; product number 3802) was dissolved at a concentration of 6 mg Zml, and the purified DNA solution after the PCR reaction was added to the purified solution. The solution was heated to 100 ° C and then quenched on ice. Add 5 ⁇ l of the buffer attached to Klenow Fragment (manufactured by Takara Bayo Co., Ltd .; product number 2140AK) and a dNTP mixture (dATP, dTTP, and dGTP concentrations are 2.5 mM each, and dCTP concentration is 400 ⁇ ). 2. 5 ⁇ 1 calories.
  • Cy3-dCTP (manufactured by Amersham Pharmacia Biotech; product number PA53021) was added in 21 parts. 10 U of Klenow Fragment was added to this solution and incubated at 37 ° C for 20 hours to obtain Cy3-labeled sample DNA.
  • the length of the sample DNA varies because a random primer is used for labeling.
  • the longest sample DNA is SEQ ID NO: 4 (968 bases).
  • the labeled sample DNA was combined with 1% by weight of BSA (pseudo serum albumin), 5 X SSC (5
  • X SSC is 20 X SSC (manufactured by Sigma) diluted 4 times with pure water.
  • a solution obtained by diluting 20 ⁇ SSC twice with pure water is referred to as 10 ⁇ SSC, a 2 ⁇ dilution of 20 ⁇ SSC is referred to as 10 ⁇ SSC, and a 100 ⁇ dilution is referred to as 0.2 ⁇ SSC.
  • SDS sodium dodecyl sulfate
  • 0.01% by weight salmon sperm DNA solution each concentration is the final concentration
  • dissolved in 4001 and used for Stock solution.
  • the sample solution used in the hybridization was the stock solution prepared as described above, 1% by weight BSA, 5X SSC , 0.01% by weight of salmon sperm DNA and 0.1% by weight of SDS (each concentration was a final concentration) were diluted 200 times. When the concentration of the sample DNA in this solution was measured, 1.5 ng /
  • succinic anhydride was dissolved in 335 ml of 1-methyl-2-pyrrolidone.
  • 50 ml of 1M sodium borate (3.09 g of boric acid and sodium hydroxide for pH adjustment were adjusted to 50 ml with pure water; pH 8.0) was added to the succinic acid solution.
  • the above glass beads were immersed in the mixed solution for 20 minutes. After immersion, it was washed and dried with pure water. In this way, a carboxyl group was introduced into the glass bead surface by reacting the amino group on the surface of the glass bead with succinic anhydride.
  • the sample DNA was hybridized to the carrier on which the probe DNA obtained above was immobilized. Specifically, 50 1 of a solution for hybridization was dropped on a carrier on which the probe nucleic acid prepared above was fixed on the convex portion, and 2 mg of glass beads modified above in the concave portion of the carrier. Mix and cover glass over it. In addition, the area around the cover glass was sealed with a paper bond to prevent the hybridization solution from drying out.
  • the cover glass surface was formed by forming a photoresist having a thickness of 8 m and a width of lmm by photolithography on two sides of the four sides that match the direction of force.
  • the distance (gap) between the convex part of the carrier and the cover glass can be set to 8 ⁇ m during the hybridization.
  • This was fixed in a plastic container provided on the rotating surface of a microtube rotor (manufactured by Az One, product number: 14096-01), and incubated at 65 ° C and 100% humidity for 10 hours.
  • the rotation speed of the rotor was 3 rpm, and the rotation surface of the rotor was perpendicular to the horizontal plane.
  • the probe DNA immobilization surface of the carrier was perpendicular to the rotation surface of the rotator.
  • the cover glass was peeled off from the carrier, and the carrier was washed and dried. [0111] (Measurement)
  • the carrier after the above treatment was set in a DNA chip scanner (Axon Instruments GenePix 4000B), and measurement was performed with the laser output set to 33% and the photomultiplier voltage set to 500.
  • the results are shown in Table 1.
  • the fluorescence intensity is an average value of the fluorescence intensity in the spot.
  • Example 1 An experiment was performed for a PMMA carrier with unevenness! The experimental procedure consisted of (1) using a flat carrier, (2) spotting the probe DNA using a special machine (Nippon Laser Electronics Co., Ltd., Genestamp II), (3) using the cover A 200 / ⁇ ⁇ , lmm wide polyester film is attached to the four sides of the glass surface, and a gap is provided between the carrier and the cover glass so that the beads can be agitated. The beads and the sample solution are mixed in this gap. Example 1 was repeated except that the hybridization was performed. The results are shown in Table 1. It can be seen that the fluorescence intensity is lower than that of Example 1. In addition, in Example 1, no spot damage was observed. This was presumed to be due to the beads damaging the probe fixing surface during hybridization.
  • Example 2 An experiment of the stirring effect using bubbles was performed.
  • the experimental procedure was the same as that of Example 1 except that 0.9 L of air bubbles were introduced with a microsyringe and glass beads were not used when covering a cover glass of the same size as the hybridization.
  • the carrier is fixed and rotated so that the rotating surface of the rotor inclined in the vertical direction and the probe fixing surface of the carrier are parallel to each other so that the air bubble moves only around the sample solution in which the bubbles are sealed. I made it. In this way, bubbles were prevented from contacting the probe fixing surface. Table 1 shows the results. The same effect as in the example was confirmed.
  • Example 1 Example 2
  • Example 3 Comparative example 1 Comparative example 2 Comparative example 3
  • Target concentration ng / ju L
  • Substrate shape Roughness
  • Roughness Flatness Roughness Flatness Flat plate Gap (/ m) 8 8 8 200
  • Stirring method Beads Bubbles Beads No Beads No Rotation Yes Yes Yes Yes Yes Yes Yes No Fluorescence intensity 12000 8800 1 1800 2900 3900 700 Noise 45 50 300 50 300 300
  • Example 1 Five types of glass beads were selected for the experiment.
  • the experimental procedure was the same as in the first run, column 1, with glass beads of 10, 20, 50, 100, and 200 m in diameter.
  • Table 2 shows the results.
  • Example 2 The same experiment as in Example 1 was performed except that the diameters of the glass beads were set to 300 ⁇ m and 400 ⁇ m. The results are shown in Table 2.
  • Example 2 The same experiment as in Example 1 was performed using a carrier having the following characteristics. At the center of the carrier, there is a recess with a diameter of 10 mm and a depth of 0.3 mm. There are 64 (8 ⁇ 8) convex portions having a height of 0.3 mm and a height of 0.3 mm. Other characteristics of the carrier and the procedure of the experiment are the same as in Example 1. Further, the diameter size of the glass beads was set to 10, 20, 50, 100, 200, 300 / zm. Table 3 shows the results.
  • Example 5 The same experiment as in Example 5 was performed except that the diameter of the glass beads was changed to 400 ⁇ m. The results are shown in Table 3.
  • Probe DNA to be spotted was prepared in the same manner as in Example 1. Next, the probe DNA solution was spotted at four locations on the upper surface of the reference convex portion and at four locations on the upper surface of the lower convex portion in the same manner as in Example 1, and further, the sample DNA for hybridization was adjusted as in Example 1. Performed similarly. Hybridization and measurement were performed in the same manner as in Example 1. The average value and height of the fluorescent intensity on the Table 4 shows the average value of the fluorescence intensity on the upper surface of the low convex portion.
  • the hybridization was performed by using a cover glass to which a silicon sheet (thickness: 60 m) was attached instead of forming a polymer on the cover glass in Example 1.
  • the projections on which the DNA solution was spotted on the upper surface had four points for each carrier. Then, the average value of the fluorescence intensities of spots (4 spots) on which DNA was spotted was determined. Table 5 shows the results.
  • Example 1 An experiment was performed in which the cover glass and the substrate sealed with a paper bond in Example 1 were vortexed (manufactured by Scientific Industries, Inc.), and the glass beads were moved by vibration and agitated for hybridization.
  • the experimental procedure was performed in the same manner as in Example 1 except that the rotator was set on a volttus. Table 6 shows the results. It showed strong fluorescence intensity.
  • Example 9 An experiment similar to that of Example 9 was performed using a flat PMMA carrier provided with an uneven portion.
  • the experimental procedure was (1) using a flat carrier, (2) spotting the probe DNA using a special machine (Nippon Laser Electronics Co., Ltd., Genestamp II), (3) A 200 m thick, lmm wide polyester film is attached to the four sides of the cover glass surface, and a gap is provided between the carrier and the cover glass so that stirring can be performed with the magnetic beads.
  • Example 9 With the cover glass surface down, the magnetic beads are attracted to the cover glass surface, and the solution can be expected to be stirred without contacting the probe fixing surface on the opposite surface.
  • Table 6 shows the results. The fluorescence intensity was lower than that of Example 9, and the obtained power was lower. Further, in Example 9, damage to the brute force spot was observed.
  • Comparative Example 6 the magnet attracted The magnetic beads thus aggregated and aggregated to a full width of 200 ⁇ m provided by the polyester film, and were moved as a lump, so that the lump came into contact with the probe fixing surface.
  • Example 2 The same experiment as in Example 1 was performed except that the beads were made of yttria-stabilized zirconia (a mixture of zirconia and yttria at a ratio of 2.5 mol%) and had a diameter of 125 / zm. As a result, the fluorescence intensity after hybridization was almost the same. However, the beads were difficult to move even when 2 mg of beads were mixed and the solution was moved when a cover glass was placed on the beads. This is because the specific gravity of zirco-aviz is 6.05 gZcm 3 , which is almost three times that of glass.
  • T sequence of 10 bases from the 5 'side of both probes is not complementary to the sample DNA, and the other part (20 bases) of SEQ ID NO: 6 is completely complementary to the sample DNA.
  • SEQ ID NO: 6 was completely complementary to the sample DNA.
  • the present invention it is possible to provide a stirring method that promotes the reaction between a selective binding substance immobilized on a carrier and a test substance, and has a good signal intensity and an SZN ratio even for a small amount of a sample. That is, by using the stirring method of the present invention, the signal intensity and SZN ratio of the selective binding immobilization carrier represented by the DNA chip can be improved (that is, the sensitivity can be improved), and even a small amount of clinical sample can be measured. It becomes. ADVANTAGE OF THE INVENTION According to the present invention, diagnosis at a clinical site using a selective binding substance-immobilized carrier represented by a DNA chip becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明の溶液を攪拌する方法は、担体表面に固定化された選択結合性物質に、その選択結合性物質と反応する被検物質を含む溶液を接触させ、溶液を攪拌する方法であって、被検物質を含む溶液に微粒子または気泡を混合し、微粒子または気泡を選択結合性物質の固定化面に接触することなく移動させる。  本発明の溶液を攪拌する方法により、担体に固定化された選択結合性物質と被検物質との反応を促進し、微量の検体でもシグナル強度やS/N比が良好な攪拌方法を提供することができる。  本発明により、DNAチップなどの選択結合性物質固定化担体を用いた臨床現場での診断・診察が可能となる。

Description

明 細 書
溶液を攪拌する方法
技術分野
[0001] 本発明は、被検物質と選択的に結合する物質 (本明細書にお!、て「選択結合性物 質」)を固定化した担体と被検物質が含まれる溶液を接触させて、担体に固定化され た選択結合性物質と被検物質とを反応させる際に、被検物質が含まれる溶液を攪拌 する方法に関する。より具体的には、担体に固定化された選択結合性物質と被検物 質との反応を促進するために、被検物質が含まれる溶液を攪拌する方法に関する。 背景技術
[0002]
各種生物の遺伝情報解析の研究が始められている。ヒト遺伝子をはじめとして、多 数の遺伝子とその塩基配列、また遺伝子配列にコードされる蛋白質およびこれら蛋 白質力 二次的に作られる糖鎖に関する情報が急速に明らかにされつつある。配列 の明らかにされた遺伝子、蛋白質、糖鎖などの高分子体の機能は、各種の方法で調 ベることができる。主なものとして、核酸は、ノーザンブロッテイング、あるいはサザンブ ロッテイングのような、各種の核酸 Z核酸間の相補性を利用して、各種遺伝子とその 生体機能発現との関係を調べることができる。蛋白質は、ウェスタンブロッテイングに 代表される蛋白質 Z蛋白質間の反応を利用し蛋白質の機能および発現にっ 、て調 ベることができる。
[0003] 近年、多数の遺伝子発現を一度に解析する手法として、 DNAマイクロアレイ法 (D NAチップ法)と呼ばれる新しい分析法が開発され、注目を集めている。これらの方法 は、いずれも、核酸 Z核酸間ハイブリダィゼーシヨン反応に基づく核酸検出 ·定量法 である点で原理的には従来の方法と同じである。これらの方法は、蛋白質 Z蛋白質 間あるいは糖鎖 Z糖鎖間や糖鎖 Z蛋白質間の特異的な反応に基づく蛋白質や糖 鎖検出 '定量に応用が可能ではある。これらの技術は、マイクロアレイ又は DNAチッ プと呼ばれるガラスの平面基板片上に、多数の DNA断片や蛋白質、糖鎖が高密度 に整列固定ィ匕されたものが用いられている点に大きな特徴がある。 DNAチップ法の 具体的使用法としては、例えば、研究対象細胞の発現遺伝子等を蛍光色素等で標 識したサンプルを平面基板片上でハイブリダィゼーシヨンさせ、互いに相補的な核酸 (DNAあるいは RNA)同士を結合させ、その箇所を高解像度検出装置 (スキャナー) で高速に読みとる方法や、電気化学反応にもとづく電流値等の応答を検出する方法 が挙げられる。このようして、サンプル中のそれぞれの遺伝子量を迅速に推定できる 。また、 DNAチップの応用分野は、発現遺伝子の量を推定する遺伝子発現解析の みならず、遺伝子の一塩基置換 (SNP)を検出する手段としても大きく期待されてい る。
[0004] 核酸を基板上に固定ィ匕する技術として、スライドガラス等の平坦な基板の上に、ポリ
L リシン、アミノシラン等をコーティングして、スポッターと呼ばれる点着装置を用い 、各核酸を固定ィ匕する方法などが開発されている (特表平 10-503841号公報)。
[0005] また、最近は、 DNAチップに用いられる核酸プローブ (基板上に固定ィ匕された核 酸)は、従来の数百一数千塩基の長さの cDNAおよびその断片に変わり、検体との ノ、イブリダィゼーシヨン時のエラーを下げることと、合成機で容易に合成できるので、 オリゴ DNA (オリゴ DNAとは塩基数が 10— 100塩基までのものを!、う)を用いて!/、る 。この際、オリゴ DNAとガラス基板は共有結合にて結合する(特開 2001— 108683 号公報)。
[0006] 現在、 DNAチップは、チップ上に数万カゝら数千種類の多数の遺伝子を載せ、一度 に大量の遺伝子の発現を調べる研究用として用いられていることが多い。今後、診断 用途で、 DNAチップが使用されることが期待されている。 DNAチップを診断で使用 する場合、一般的に採取できる検体の量が非常に少ないものと予想される。現行の DNAチップは感度が十分ではな 、ため、このような検体の測定が不可能であること が予想される。さらに現状の DNAチップでは、発現量の低い遺伝子についてはハイ ブリダィゼーシヨン後の蛍光強度が非常に微弱であり、このような遺伝子は実質上解 祈できないという問題点を有している。従って、現行の DNAチップでは、検体の量が 少な 、場合や発現量の少な!、遺伝子の場合のハイブリダィゼーシヨン後の蛍光の強 度を 、かに大きくするかと!/、うことが課題である。この課題を解決するためには検体 D NAとプローブ DNAとを 、かに効率よく反応させるかがポイントとなる。効率よく検体 DNAとプローブを反応させる方法としては、検体の自然拡散では不十分であるので 、溶液を攪拌し、効率よくプローブと検体との反応を促進することが考えられている。
[0007] 検体溶液を攪拌する例としては、特開 2003— 248008号公報、特開 2003— 3393 75号公報には、磁気ビーズを磁力により検体溶液中で動かすことで、検体溶液を攪 拌し、検体との反応効率を上げる方法が開示してある。また、特開 2003— 339375号 公報には、ビーズを混合した検体溶液を DNAチップに接触させ、溶液をカバーガラ スなどを用いてシーリングし、チップを回転させることにより、ビーズを重力方向に落 下させることで検体溶液を攪拌して、ノヽイブリダィゼーシヨン後のシグナルを大きくす る方法が開示してある。
[0008] し力し、特開 2003— 248008号公報ゃ特開 2003— 339375号公報に示した方法 では、以下の問題点があった。
[0009] すなわち、一般に平板状の DNAチップを用いて、通常のカバーガラスで検体溶液 をシーリングした場合は、カバーガラスと DNAチップとの隙間は、高々 10 m程度で ある。従って、これより大きい微粒子を混合しても、微粒子が DNAチップとカバーの 間に挟まり、微粒子が動くことができず、効果がないという問題点があった。さらに、大 きさ数/ z m程度の微粒子では、重力などで微粒子を移動させようとしても、溶液の抵 杭のため検体溶液中を微粒子が十分に移動できず、攪拌の効果を十分に発揮でき ないという問題点があった。また、重力で微粒子を移動させようとしても、微粒子が D NAプローブを固定ィ匕した担体の面と接触することも十分な特性が得られない原因で あると推定される。また、 O—リングなどで、カバーガラスと DNAチップとのクリアランス を大きくして、攪拌するための微粒子を大きくし、重力や磁力により反応液中の微粒 子を動力して溶液を攪拌するという手段がある。しかし、シーリングのためのカバーガ ラスと DNAチップの両方ともが平坦な形状をして!/、るため、微粒子が DNAプローブ が固定ィ匕されている部分をも動く。このため、微粒子がプローブ DNAを固定ィ匕して いる部分を傷つけてしまい、その傷によりデータ解析に支障を来したり、微粒子がプ ローブ固定面にぶつ力ることでプローブが剥がれ落ちたりするため、シグナル強度が 、かえって弱くなるといった問題点があった。
発明の開示 [0010] 本発明は、担体表面に固定化された選択結合性物質に、その選択結合性物質と 反応する被検物質を含む溶液を接触させ、該溶液を攪拌する方法であって、被検物 質を含む溶液に微粒子または気泡を混合し、微粒子または気泡を選択結合性物質 の固定ィ匕面に接触することなく移動させて溶液を攪拌する方法である。
図面の簡単な説明
[0011] [図 1]本発明の実施形態の断面模式図である。
[図 2]本発明の実施形態の断面模式図である。
[図 3]担体の模式図である。
[図 4]担体の断面模式図である。
[図 5]DNAチップ突き当て治具の例である。
[図 6]担体を支持体層 Z選択結合性物質固定ィ匕層とした場合の概念図である。
[図 7]PMMA表面に選択結合性物質を固定ィ匕する際の反応スキームである。
[図 8]実施例 9で用いた治具の概念図である。
[図 9]ターゲット濃度を変化させた場合の蛍光強度である。
符号の説明
[0012]
1 担体に固定化された選択結合性物質 (DNA)
2 微粒子 (ビーズ)
3 担体
4 反応溶液を保持する容器
11 平坦部
12 凹凸部
13 DNAチップ
14 対物レンズ
15 レーザー励起光
16 マイクロアレイを治具に突き当てるためのパネ
31 選択結合性物質固定化層
32 支持体層 41 PMMA
42 DNA
51 磁石
52 磁石の往復運動の方向
53 基板
発明の実施するための最良の形態
[0013] 以下、本発明の攪拌方法について説明する。
[0014] 本発明の第 1の溶液を攪拌する方法は、担体表面に固定化された選択結合性物 質に、その選択結合性物質と反応する被検物質を含む溶液を接触させ、該溶液を攪 拌する方法であって、被検物質を含む溶液に微粒子または気泡を混合し、微粒子ま たは気泡を選択結合性物質の固定ィ匕面に接触することなく移動させて溶液を攪拌す る。
[0015] 本発明の第 1の溶液を攪拌する方法では、被検物質を含む溶液に微粒子または気 泡を混合、微粒子または気泡を移動することにより、溶液を攪拌する必要がある。
[0016] さらに本発明の第 1の溶液を攪拌する方法では、微粒子または気泡を選択結合性 物質の固定ィ匕面に接触することなく移動させて溶液を攪拌する。微粒子または気泡 の移動領域を制限することにより、プローブ固定面に微粒子が当たって、この面を微 粒子または気泡によって傷つけてしまうということを防ぐことが可能となる。
[0017] 微粒子または気泡が選択結合性物質の固定ィ匕面に接触しな 、構造の担体を用い ることが好ましい。担体に凹凸部が設けられており、かつ、凸部上面に選択結合性物 質が固定ィ匕されて 、ることが好まし 、。
[0018] また、微粒子または気泡が選択結合性物質の固定ィ匕面に接触しない構造の溶液 を保持する容器を用いることも好まし 、。
[0019] さらに本発明の第 2の溶液を攪拌する方法では、担体の凸部上面に固定化された 選択結合性物質に、その選択結合性物質と反応する被検物質を含む溶液を接触さ せ、該溶液を攪拌する方法であって、被検物質を含む溶液に微粒子または気泡を混 合し、微粒子または気泡を移動させて溶液を攪拌する。
[0020] 本発明の第 1の溶液を攪拌する方法、および、第 2の溶液を攪拌する方法では、気 泡または微粒子を用いる。気泡と微粒子を比較すると、大きさや、材料を選択するこ とによって比重のコントロールが容易なことから、本発明の第 1の溶液を攪拌する方 法、および、第 2の溶液を攪拌する方法とも、微粒子を好ましく用いることができる。
[0021] 本発明の溶液を攪拌する方法では、微粒子の大きさ (微粒子の最大径)は、 10 μ m以上のものが好ましい。微粒子の大きさ力 10 /z mより小さいと、微粒子による攪拌 の効果がほとんど得られない場合がある。この理由は、微粒子の大きさ力 10 /z mよ り小さいと、溶液の抵抗により外場 (磁場や重力や振動)を加えても微粒子がほとんど 動かないことが起こる場合があるからである。微粒子の大きさは 20 μ m以上が特に好 ましい。
[0022] 本発明の溶液を攪拌する方法では、どのような形の微粒子も用いることができる。
特に好ましくは、微粒子の形状は、球状、すなわちビーズである。微粒子がビーズで あると、これ自体が転がることにより反応液中で滞ることなくスムーズに移動でき、結 果的に検体溶液の攪拌が良好に行えるので好ま Uヽ。微粒子の形態として最も好ま しくは、直径が 20 μ m— 300 μ mの球状微粒子(ビーズ)を用いることができる。ビー ズの直径力この範囲であると、ビーズ自体の重みで反応液の抵抗があっても、容易 に重力や加速度などにより液中をビーズが移動でき、液の攪拌が十分に行えるため 、良好な結果を得ることができる。
[0023] 本発明の溶液を攪拌する方法では、微粒子の材質としては特に限定されな 、。微 粒子の材質は、金属、ガラス、セラミック、ポリマー(ポリスチレン、ポリプロピレン、ナイ ロンなど)を用いることができる。この中でも、比重が水よりも大きい材質 (ガラス、石英 、ジルコ-アセラミック)のビーズであると重力や振動による加速度などにより容易に 液中を移動が可能となるので好ましい。また、磁気ビーズを使用することも可能である 。特に、ジルコ-アセラミック力もなるビーズは、比重が大きいことから、重力や振動に よる加速度により、ビーズの移動が容易に行えることから最も好ましく用いることができ る。また、ガラス、石英、ジルコ-アセラミックが検体溶液中にビーズ成分が溶出する ことが少な!/ヽので好まし!/、。
[0024] ジルコ-アセラミック(イットリア安定化ジルコユア)力もなるビーズは、密度が 6gZc m3と石英ガラスの 2. 2gZcm3などに比べて大きいので、攪拌効果がより発揮でき、 容器でシーリングする際の溶液の動きに対してもビーズが舞い上がって動いてしまう ことが少なくいので、セッティングがより容易に行え、特に好ましい。
[0025] 本発明の溶液を攪拌する方法では、好ましくは、微粒子を移動させ、溶液を攪拌す る。本発明の溶液を攪拌する方法では、より好ましくは、重力、磁力、担体の振動の いずれか、もしくはこれらの組合せにより、微粒子を移動させる。この中でも、担体を 垂直な面に沿って回転させ、重力によりビーズを移動する方法は、簡便に実施でき、 十分な効果が得られることから好ましい。この時の回転速度としては、 0. lrpm— 30r pmが好ましい。回転速度が 30rpmを越えると、微粒子が一方向に移動しきれないう ちに、微粒子に反対側の重力がカゝかる場合がある。すなわち、微粒子が検体液中で 往復運動する距離が小さくなつてしま ヽ、攪拌の効果が十分に発揮できな ヽ場合が ある。また、 0. lrpmより回転速度が遅いと、液中の微粒子が移動しているトータルの 時間が短くなり、結果的に検体溶液を攪拌している時間が短くなるので十分な効果 が得られないことがある。以上の点を鑑みると回転速度の好ましい範囲は、 0. 5rpm 一 5rpmである。担体を左右に振動して、加速度を加えることにより、溶液中の微粒子 を動かすことも好ましく用いることのできる方法である。
[0026] 本発明の溶液を攪拌する方法では、好ましくは、溶液を保持する容器を用いる。さ らに、本発明の溶液を攪拌する方法では、より好ましくは、微粒子を移動させること〖こ より溶液を攪拌し、かつ、微粒子の最小幅が選択結合性物質の固定ィ匕面と溶液を保 持する容器との最短距離より大きい。
[0027] 本発明の溶液を攪拌する方法では、好ましくは、微粒子の最大幅が 10 μ m以上、 凸部上面と凹部の高さの差以下である。
[0028] 本発明の溶液を攪拌する方法では、好ましくは、微粒子を移動させることにより溶液 を攪拌し、かつ、担体に凹凸部が設けられており、選択結合性物質が凸部上面に固 定化され、微粒子が凹部を移動する。
[0029] 本発明の溶液を攪拌する方法では、好ましくは、担体には平坦部と凹凸部が設けら れており、複数の凸部上面に選択結合性物質が固定化されており、該凸部上面の高 さが略同一であり、かつ、平坦部分と凸部上面の高さの差が 50 m以下である。
[0030] 選択結合性物質が固定ィ匕される担体の好ましい形状について述べる。 [0031] 本発明の攪拌方法に用いる選択結合性物質が固定化された担体には凹凸部があ り、凸部上面に選択性適合物質が固定化されていることが好ましい。このような構造 を取ることにより、検出の際、非特異的に吸着した検体を検出することがないので、ノ ィズが小さぐ結果的により SZNが良好な結果を得ることができる。ノイズが小さくな る具体的な理由は、以下の通りである。すなわち、凸部上面に選択結合性物質を固 定ィ匕した担体をスキャナーと呼ばれる装置を用いてスキャンすると、凹凸部の凸部上 面にレーザー光の焦点が合っているため、凹部では、レーザー光がぼやけ、凹部に 非特異的に吸着した検体の望まざる蛍光 (ノイズ)を検出しがたいという効果があるた めである。
[0032] 凹凸部の凸部の高さに関しては、それぞれの凸部の上面の高さが略同一であるで あることが好ましい。ここで、高さが略同一とは、多少高さの違う凸部の表面に選択結 合性物質を固定ィ匕し、これと蛍光標識した被検体とを反応させ、そして、スキャナー でスキャンした際、その信号レベルの強度差が問題とならない高さをいう。具体的に 高さが略同一とは、高さの差が 50 /z mより小さいことをいう。高さの差は 30 /z m以下 であることがより好ましぐ高さが同一であればなお好ましい。なお、本願でいう同一 の高さとは、生産等で発生するばらつきによる誤差も含むものとする。最も高い凸部 上面の高さと、最も低い凸部上面の高さの差が 50 mより大きいと、高さのずれた凸 部上面でのレーザー光がぼやけてしまい、この凸部上面に固定ィヒされた選択結合性 物質と反応した検体力 のシグナル強度が弱くなる場合がある。
[0033] また、凸部分の上面は、実質的に平坦であることが好ましい。ここで凸部上面が実 質的に平坦とは、 20 m以上の凹凸がないことを意味する。
[0034] さらに本発明の攪拌方法に用いる担体には、平坦部が設けられていることが好まし い。凹凸部の凸部の上面の高さと平坦部分の高さが略同一であることが好ましい。す なわち、平坦部の高さと凸部上面の高さの差は、 50 m以下であることが好ましい。 凸部上面の高さと平坦部の高さの差が 50 m以上であると、検出できる蛍光強度が 弱くなる場合がある。より好ましくは、 30 /z m以下であり、最も好ましくは、平坦部の高 さと凸部の高さは同一である。
[0035] 本発明の攪拌方法に用いる担体の具体例を図 3、図 4に例示する。凹凸部の周りに 11で示される平坦部があり、かつ、 12で示される凹凸部の凸部上面に選択結合性 物質 (例えば核酸)が固定ィ匕されている。この平坦部を使って、容易にスキャナーの 励起光の焦点を凸部の上面に合わせることが可能となる。すなわち、スキャナーが担 体の表面に励起光の焦点を合わせる際には、図 5に示すように、治具に担体を突き 当て、この治具の突き当て面の高さにレーザー光の焦点を予め調整しておくことが多 い。本発明の攪拌方法に用いる担体の平坦部を治具の面に突き当てることにより、容 易に担体の凸部上面にスキャナーのレーザー光の焦点を合わせることが可能となる
[0036] 本発明の溶液を攪拌する方法では、選択結合性物質が固定化される担体の選択 結合性物質が固定化された複数の凸部とは、データとして必要な選択結合性物質( 例えば核酸)が固定化された部分をいい、ただ単にダミーの選択結合性物質を固定 化した部分は除く。
[0037] 本発明の溶液を攪拌する方法では、選択結合性物質が固定化される担体は、凸部 の上面の面積は略同一であることが好まし 、。凸部の上面の面積は略同一であるこ とにより、多種の選択結合性物質が固定化される部分の面積を同一にできるので、 後の解析に有利である。ここで、凸部の上部の面積が略同一とは、凸部の中で最も 大きい上面面積を、最も小さい上面面積で割った値が 1. 2以下であることを言う。
[0038] 本発明の溶液を攪拌する方法では、選択結合性物質が固定化される担体は、凸部 の上面の面積は、特に限定される物ではないが、選択結合性物質の量を少なくする ことができる点とハンドリングの容易さの点から、 1mm2以下、 10 m2以上が好ましい
[0039] 本発明の溶液を攪拌する方法では、好ましく用いられる担体の凹凸部における凸 部の高さは、 10 m以上、 500 m以下が好ましい。後述する理由から 50 m以上 、 300 m以下が特に好ましい。凸部の高さがこれより低いと、スポット以外の部分の 非特異的に吸着した検体試料を検出してしまうことがあり、結果的に SZNが悪くなる ことがある。また、凸部の高さが 500 m以上であると、凸部が折れて破損しやすい などの問題が生じる場合がある。
[0040] 本発明の第 1の溶液を攪拌する方法では、微粒子または気泡の移動領域を制限し て ヽる。これを確実に実現するための具体的な担体および溶液を保持する容器の形 状について、図 1を例示して説明する。
[0041] 図 1では、 1がプローブ DNA (選択結合性物質)を示す。また、 2が微粒子 (この場 合はビーズ)であり、 3がプローブ DNAを固定化した担体を示す。これら 1、 2、 3はタ 一ゲット DNA (被検物質)が含まれる溶液に触れることになる。そして、 4が、例えばス ライドガラス、カバーガラスや金属、プラスチックなどの材質カゝらなる液体を保持する 容器であり、ターゲット DNAが含まれる溶液はこの容器と担体の間で保持されること になる。図 1の例では、プローブ DNAは担体の凸部に固定化されている。担体の凸 部上面 (選択結合性物質が固定化された面)と溶液を保持している容器との最短距 離力 微粒子の直径未満となっており、微粒子がプローブ DNAを固定ィ匕している面 に触れないようになっており、微粒子がこの面を傷つけることを防いでいる。微粒子が 、例えば、楕円形の場合だと、凸部上面と容器との最短距離が微粒子の最小幅未満 であると、プローブ固定ィ匕面と微粒子の接触を防ぐことができる。
[0042] 図 1の状況を具体的に実現する方法としては、凹凸形状を呈する担体の上に、検 体 DNAを含む溶液 (検体溶液)を滴下して、その液中に凸部上面に微粒子がのらな いように微粒子を入れ、それから容器に相当するカバーガラスなどを被せ、その回り を検体溶液がこぼれたり、蒸発してしまわないように粘着テープや、接着剤などでシ 一リングする。そうすると、カバーガラスの面と凸部上面との間は数 m—数十/ z m程 度の検体溶液が充填されたスペースができる。微粒子の大きさがカバーガラスの面と 凸部上面との間より大きいと、微粒子が凸部上面を傷つけることがない。このような形 状の担体を用いて担体を垂直な面内で回転させるなどすることにより、微粒子が凹凸 部の凹部のみを移動し、微粒子が凸部上面に触れることなく検体溶液を攪拌するこ とができる。凸部上面と容器の間の検体溶液が満たされた空間が確実にできるように 、好ましくは、例えば板面の隅をその他の面より 5 m— 100 m高くした板や、中央 部を 5— 100 m堀込んだ板を用意し、この板の中央部と、選択結合性物質が固定 化された担体の凹凸部とを対抗するように合わせる。この板の例を図 1の 4に示す。こ のような容器を作製するには、例えば、ガラスをふつ酸処理する、平らな板の 2— 4辺 にフィルムや粘着テープを貼る、または、射出成形などで図 1の 4の形状の板を作製 する、もしくは、スクリーン印刷で板の隅にギャップ状の盛り上がりを印刷することなど で可能である。
[0043] 本発明の溶液を攪拌する方法では、好ましくは、微粒子または気泡が選択結合性 物質の固定ィ匕面に接触しな 、構造の溶液を保持する容器を用いる。
[0044] 図 1では担体が凹凸形状を有していた。溶液を保持する容器に凹凸形状を設ける ことによって、同様の効果を得ることも可能である。その具体例を図 2に示す。この場 合、容器の凸部の下にプローブ DNAが配置される。この場合も、プローブ DNAが 固定化された面と容器凸部との距離が微粒子の最小幅未満とすれば良 、。これ以外 の具体的な例としては、担体と容器の両方の構造が凹凸構造になっている場合が挙 げられる。
[0045] 上記のような凹凸部が設けられた担体や凹凸部を設けた容器を用いて、微粒子に よりターゲット DNAが含まれる検体溶液を攪拌すると、以下のような効果も発揮でき、 結果的に、従来技術よりもハイブリダィゼーシヨン後の蛍光強度が強くなる。
[0046] すなわち、一般的な平板状の DNAチップでカバーガラスをかぶせてハイブリダィ ゼーシヨンを行った場合は、カバーガラスと DNAチップとの隙間は、高々 10 μ m程 度である。これより大きい微粒子を混合しても、 DNAチップとカバーガラスの間に微 粒子が挟まってしま 、、微粒子が動くことができず微粒子を混合した効果がな 、と 、 つた問題点がある。一方、これを避けるために、カバーガラスと DNAチップの間に挟 まらない直径数/ z m程度の微粒子を混合して、重力や振動の加速度で微粒子を移 動させようとしても、微粒子が小さいので、溶液の抵抗を大きく受けてしまい検体溶液 中を微粒子が十分に移動できない。従って、微粒子での攪拌の効果を十分に発揮 できない問題点がある。また、 O—リングなどでカバーガラスと、担体との間の距離を 大きくし、さらに攪拌するための微粒子を大きくして、十分に攪拌を行おうとすると、微 粒子によりチップ表面が傷ついたり、微粒子がプローブ固定面に衝突することで、プ ローブが脱落してしまうという推定理由のため、ハイブリダィゼーシヨン後の蛍光強度 が十分に強くならな 、と 、つた問題点がある。
[0047] 本発明の好ましい実施形態のように、凹凸部を設けた担体や、凹凸部を設けた容 器を用いると、図 1や図 2に示すように、少なくとも凹凸部の凹部と凸部の高さまでは 微粒子の大きさを大きくすることが可能である。従って、凹凸部が設けられた担体や 凹凸部を設けた容器を用いて、微粒子によりターゲット DNAが含まれる検体溶液を 攪拌すると、大きい微粒子によって検体溶液の十分な攪拌が可能となる上に、プロ一 ブ DNAの固定ィ匕面を傷つけることがな ヽと 、つた好まし 、効果を得ることができる。
[0048] 本発明の溶液を攪拌する方法では、好ましく用いられる容器の材質は、特に限定 はされない。本発明で、好ましく用いられる容器の材質として、ガラスやプラスチックな どを挙げることができる。容器の形状が平板の場合だと、カバーガラスやスライドガラ スなどのガラス製の板を好ましく用いることができ、一方、容器の形状が凹凸形状で ある場合は、ポリメチルメタタリレートやポリカーボネートなどのプラスチック材料力 射 出成形が可能であり生産性の面力 好ましい。
[0049] 本発明で用いられる担体の材質は、特に限定されない。本発明で、好ましく用いら れる担体の材質は、ガラスもしくは各種のポリマー(ポリスチレン、ポリメチルメタクリレ ート、ポリカーボネート)である。
[0050] 選択結合性物質を固定ィ匕するため、担体の材質がガラスの場合、シランカップリン グ処理を行うことで官能基を表面に生成でき、これを足がかりに DNAなどの選択結 合性物質を担体に固定ィ匕することが可能である。例えば、アミノアルキルシランなどを 用いて、ガラスの表面にアミノ基を生成でき、 DNAの場合だと、このアミノ基のプラス チャージと DNAのマイナスチャージにより静電的な力により固定ィ匕することが可能と なる。
[0051] 本発明において、とくに選択結合性物質を固定ィ匕するための担体表面が、下記一 般式(1)で表す構造単位を含有するポリマーを有する固体であると、ハイブリダィゼ ーシヨン後のシグナルがより大きくなることから好ましい。 [0052] [化 1]
CK CCX RRIIII
Figure imgf000015_0001
[0053] (一般式(1)の R R2、 R3は、アルキル基、ァリール基もしくは水素原子を表す。 ) 一般式(1)で表す構造単位を含有するポリマーとしては、単独重合体あるいは共重 合体が用いられる。前記ポリマーは、少なくとも一つのタイプのモノマーを原料に用い ており、そのモノマーは、重合に関与し得る二重結合および重縮合に関与し得る官 能基ならびに、ケトンもしくはカルボン酸またはそれらの誘導体の形態で存在する。ま た前記ポリマーは、一般式(1)の構造を有することがより好ましい。
[0054] 一般式 (1)で表す構造単位を含有するポリマーが共重合体の場合、一般式 (1)で 表される構造単位を全モノマー単位の 10%以上含有して 、ることが好まし 、。一般 式(1)で表される構造単位の含有量が 10%以上であると、後に説明するようなステツ プにて、表面に多くのカルボキシル基を生成でき、プローブ核酸を多く固定化できる ので、結果的に SZN比がより向上する。
[0055] 本発明にお 、て、ポリマーとは、数平均重合度が 50以上のものを言う。このポリマ 一の数平均重合度の好ましい範囲は、 100から 1万である。特に好ましくは、 200以 上、 5000以下である。なお、数平均重合度は GPC (ゲルパーメイシヨンクロマトグラフ )を用い定法にてポリマーの分子量を測定することにより、容易に測定できる。
[0056] 一般式(1)において、 R1および R2はアルキル基、ァリール基または水素原子を表し 、それぞれ同一でも異なっても良い。前記アルキル基は直鎖状でも枝別れしても良く 、好ましくは 1から 20の炭素数を有する。前記ァリール基は、好ましくは 6から 18、さら に好ましくは 6から 12の炭素数を有する。官能基 Xは 0、 NR3、または CHの中から
2 任意に選ばれる。 R3は前記 R1および R2と同様に定義される官能基である。 [0057] 本発明において、選択結合性物質を固定ィ匕するための担体表面のポリマーは、官 能基を含むポリマーが好ましい。官能基を含むポリマーで、好ましいものとしては、例 えば、ポリメチノレメタタリレート(PMMA)、ポリェチノレメタタリレート(PEMA)またはポ リプロピルメタタリレートのポリメタクリル酸アルキル(PAMA)等がある。これらの中で 特に好ましいものは、ポリメチルメタタリレートである。さらに、ポリ酢酸ビュル、ポリメタ クリル酸シクロへキシルまたはポリメタクリル酸フエ-ル等も用いることができる。また、 前記ポリマーの構成要素を組み合わせた、または前記ポリマーの構成要素に他の一 種または複数種のポリマーの構成要素をカ卩えた構造の、共重合体も用いることがで きる。前記他のポリマーとしては、ポリスチレンがある。
[0058] ポリマーが共重合体の場合、各構成要素の比の範囲は、カルボ-ル基を含むモノ マー、例えばメタクリル酸アルキルの割合は、 10モル%以上が好ましい。こうすること により、表面に多くのカルボキシル基を生成できプローブ核酸を多く固定ィ匕できるの で、結果的に SZN比がより向上するからである。ポリマーの構造単位のうち、より好 ましい該モノマーの割合は 50モル%以上である。
[0059] 一般式(1)で表される構造単位を少なくとも 1つ有するポリマーを有する担体に選 択結合性物質を固定ィ匕するためには、これに前処理を施して、担体表面にカルボキ シル基を形成させることが好まし 、。担体表面にカルボキシル基を生成する手段とし ては、アルカリ、酸などで処理するほか、温水中での超音波処理、酸素プラズマ、ァ ルゴンプラズマ、放射線に担体を晒す方法などが挙げられる力 担体の損傷が少な ぐまた、容易に実施できるという点力もアルカリ、もしくは酸に担体を漬け込んで表面 にカルボキシル基を生成させることが好ましい。具体的な例としては、水酸化ナトリウ ムゃ硫酸の水溶液 (好ましい濃度は、 1N— 20N)に担体を漬け込み、好ましくは 30 °Cから 80°Cの温度にして、 1時間から 100時間の間保持すればよい。
[0060] ポリマーとしては、酸無水物単位を有する熱可塑性共重合体を用いることもできる。
この熱可塑性共重合体は、(i)酸無水物単位を有することが好ましい。ここでいう(i) 酸無水物単位は、 (A)熱可塑性共重合体の主鎖や側鎖の骨格中や末端に存在す る単位である。(i)酸無水物単位の構造としては、特に制限はなぐ(メタ)アクリル酸 無水物単位、グルタル酸無水物単位、マレイン酸無水物単位、ィタコン酸無水物単 位、シトラコン酸無水物単位、アコニット酸無水物単位等が挙げられる力 マレイン酸 無水物単位、ダルタル酸無水物単位が好ましぐなかでも、下記一般式(2)
[0061] [化 2]
Figure imgf000017_0001
[0062] (上記式中、 R4、 R5は、同一または相異なる水素原子または炭素数 1一 5のアルキル 基を表す)
で表されるダルタル酸無水物単位が好まし 、。
[0063] 熱可塑性共重合体の構造は、 (i)酸無水物単位を含有して ヽれば特に制限はな 、 力 下記一般式 (3)
[0064] [化 3]
Figure imgf000017_0002
(ただし、 R°は水素又は炭素数 1一 5のアルキル基を表す)
で表される (ii)不飽和カルボン酸単位を有して 、ることが好まし 、。ここで 、う (ii)不 飽和カルボン酸単位とは、不飽和カルボン酸単量体を、共重合することにより得られ る単位であり、この際に用いられる不飽和カルボン酸単量体としては特に制限はなく 、他のビニル化合物と共重合させることが可能な 、ずれの不飽和カルボン酸単量体 も使用可能である。好ましい不飽和カルボン酸単量体として、下記一般式 (4)
[0066] [化 4]
Figure imgf000018_0001
o
o
[0067] (ただし、 R6は水素又は炭素数 1一 5のアルキル基を表す)
で表される化合物、マレイン酸、及びさらには無水マレイン酸の加水分解物などが挙 げられる力 特に熱安定性が優れる点でアクリル酸、メタクリル酸が好ましぐより好ま しくはメタクリル酸である。これらはその 1種または 2種以上用いることができる。
[0068] (A)熱可塑性共重合体は、 (i)酸無水物単位を含有して 、れば特に制限はな 、が 、下記一般式 (5)
[0069] [化 5]
Figure imgf000018_0002
[0070] (ただし、 R'は水素又は炭素数 1一 5のアルキル基を表し、 R8は炭素数 1一 6の脂肪 族若しくは脂環式炭化水素基又は 1個以上炭素数以下の数の水酸基若しくはハロゲ ンで置換された炭素数 1一 6の脂肪族若しくは脂環式炭化水素基を示す) で表される (iii)不飽和カルボン酸アルキルエステル単位を有して 、ることが好まし!/ヽ 。ここでいう(iii)不飽和カルボン酸アルキルエステル単位とは、不飽和カルボン酸ァ ルキルエステル単量体を、共重合することにより得られる単位であり、ここで、不飽和 カルボン酸アルキルエステル単量体としては特に制限はな 、が、好まし 、例として、 下記一般式 (6)で表されるものを挙げることができる。
[0071] [化 6]
R
CH2=C (6)
COO 8
[0072] 担体の表面に、カルボキシル基や酸無水物があれば、アミノ基ゃ水酸基を有する 選択結合性物質を担体表面に共有結合で固定ィ匕することが可能となる。担体表面に カルボキシル基がある場合には、これらの結合の反応を助長するため、ジシクロへキ シルカルボジイミド、 N—ェチルー 5—フエ-ルイソォキサゾリゥムー3 スルホナートな どの様々な縮合剤が用いられている。これらの中でも、 1—ェチルー 3— (3—ジメチルァ ミノプロピル)カルポジイミド (EDC)は、毒性が少ないことや、反応系からの除去が比 較的容易なことから、選択結合性物質と担体表面のカルボキシル基との縮合反応に はもつとも有効な縮合剤の 1つである。これら EDCなどの縮合剤は、選択結合性物質 の溶液と混ぜて使用しても良 、し、カルボキシル基が表面に生成された担体を予め EDCの溶液に浸漬しておき、表面のカルボキシル基を活性ィ匕しておいても良い。縮 合剤は、選択結合性物質の溶液と混ぜて使用する方が、反応収率が向上し、担体に 多くの選択結合性物質を固定ィ匕でき、好ましく用いることができる。
[0073] このような縮合剤を用い、担体表面のカルボキシル基と選択結合性物質のアミノ基 とを反応させた場合は、アミド結合により担体表面と選択結合性物質が固定化される ことになり、担体表面のカルボキシル基と選択結合性物質の水酸基とを反応させた 場合は、エステル結合により担体表面と選択結合性物質とが固定ィ匕されることになる
。選択結合性物質を含む試料を担体に作用させる際の温度は、 0°C— 95°Cが好まし く、 15°C— 65°Cが更に好ましい。処理時間は通常 5分一 24時間であり、 1時間以上 が好ましい。
[0074] 一方、酸無水物が表面に存在するポリマーの場合では、上記のような縮合剤をカロ えても良いし、加えなくとも、例えば選択結合性物質のァミノ基との間で共有結合を 行うことが可能である。
[0075] このように、好ましくは、ポリマー表面に選択結合性物質を固定ィ匕することにより、非 特異的な検体の吸着を抑え、さらに、共有結合で強固に、かつ、高密度に選択結合 性物質を固定ィ匕でき、さらに、ガラスに比べ、固定化された選択結合性物質の空間 的な自由度が高いという推定理由のために、検体とのハイブリダィゼーシヨン効率が 高 、担体を得ることができる。
[0076] 一般式(1)や一般式 (2)で示される構造単位を含むポリマーで担体を作製する場 合、ガラス、セラミック、金属などと比較し、射出成形方法やホットエンボス法などを用 いることにより、微細な凹凸形状を設けた担体をより簡単に大量生産することが可能 である。特に射出成型法は大量生産が容易であることから好ましく用いることができる
[0077] 本発明において、好ましく使用する担体は、前述した方法により、ポリマー表面に選 択結合性物質を固定化することにより、非特異的な検体の吸着を抑え、さらに、共有 結合で強固に、かつ、高密度に選択結合性物質を固定ィ匕できる。さらに、ガラスに比 ベ、固定化された選択結合性物質の空間的な自由度が高いという推定理由のため に、検体とのハイブリダィゼーシヨン効率が高 、担体を得ることができる。
[0078] 上述の方法により得られた選択結合性物質固定化担体は、選択結合性物質を固 定した後、適当な処理をすることができる。例えば、熱処理、アルカリ処理、界面活性 剤処理などを行うことにより、固定された選択結合性物質を変性させることもできる。
[0079] 選択結合性物質固定化担体は、蛍光標識化された検体と担体に固定化された選 択結合性物質とをハイブリダィゼーシヨン反応させ、スキャナーと呼ばれる装置で蛍 光を読みとることが一般的である。スキャナ一は励起光であるレーザー光を対物レン ズで絞り込み、レーザー光を集光する。しかし、担体表面から自家蛍光が生じる場合 、その発光がノイズとなり検出精度の低下に繋がることがある。これを防ぎ、担体自身 力もの自家蛍光を低減させるために、一般式( 1)もしくは一般式 (2)の構造単位を有 するポリマーに黒色を呈し、またレーザー照射により発光を生じない物質を含有させ て表面を黒色にすることが好ましい。このような黒色の担体を用いることにより、検出 の際、担体からの自家蛍光を低減できる。黒色の担体は、ノイズが小さぐ結果的に S ZN比が良好な選択結合性物質が固定化された担体となる。
[0080] ここで、担体が黒色とは、可視光(波長力 OOnm力ら 800nm)範囲〖こおいて、担体 の黒色部分の分光反射率が特定のスペクトルパターン (特定のピークなど)を持たず 、一様に低い値であり、かつ、担体の黒色部分の分光透過率も、特定のスペクトルパ ターンを持たず、一様に低い値であることをいう。
[0081] 本発明にお!/、て、担体は、可視光(波長力 OOnmから 800nm)の範囲の分光反 射率が 7%以下であり、同波長範囲での分光透過率が 2%以下であることが好ましい 。ここでいう分光反射率は、 JIS Z 8722 条件 Cに適合した、照明'受光光学系で 、担体からの正反射光を取り込んだ場合の分光反射率を!、う。
[0082] 本発明にお 、て、担体を黒色にする手段としては、担体に黒色物質を含有させるこ とにより達成することが可能であり、黒色物質の好ましいものを挙げると、カーボンブ ラック、グラフアイト、チタンブラック、ァ-リンブラック、 Ru、 Mn、 Ni、 Cr、 Fe、 Coおよ び Cuの酸化物、 Si、 Ti、 Ta、 Zrおよび Crの炭化物などの黒色物質が使用できる。こ の中の黒色物質の中でも、カーボンブラック、グラフアイト、チタンブラックを好ましく含 有させることができ、特にカーボンブラックを好ましく用いることができる。
[0083] これらの黒色物質は単独で含有させる他、 2種類以上を混合して含有させることも できる。
[0084] 本発明にお ヽて、担体の形状として、ガラス、金属などの熱変形をし難!ヽ材料から なる支持体層の上に、一般式(1)で表される構造単位を少なくとも 1つ有するポリマ 一からなる選択結合性物質固定化層を設けると、熱や外力による担体の形状変化を 防げることから好ましい。この概念の一例を図 6に示す。支持体層としては、ポリプロ ピレンやガラスや、鉄、クロム、ニッケル、チタン、ステンレスなどの金属が好ましい。ま た、この支持体層と選択結合性物質固定ィ匕層との密着性を良くするため、支持体層 の表面を、アルゴン、酸素、窒素ガスでのプラズマ処理ゃシランカップリング剤での処 理を施すことが好まし 、。このようなシランカップリング剤としては 3—ァミノプロピルトリ エトキシシラン、 3—ァミノプロピルトリメトキシシラン、 3—ァミノプロピルジェトキシメチル シラン、 3— (2—アミノエチルァミノプロピル)トリメトキシシラン、 3— (2—アミノエチルアミ ノプロピル)ジメトキシメチルシラン、 3—メルカプトプロピルトリメトキシシラン、ジメトキシ 3—メルカプトプロピルメチルシランなどが挙げられる。
[0085] 支持体層の上に選択結合性物質固定ィ匕層を設ける手段としては、ポリマーを有機 溶媒に溶解し、スピンコートゃデイツビングなどの公知の手段を用いることができる。よ り簡単には、支持体層に接着剤で貼り付けることもできる。
[0086] 本発明において、「選択結合性物質」とは、被検物質と直接的又は間接的に、選択 的に結合し得る物質を意味し、代表的な例として、核酸、タンパク質、糖類及び他の 抗原性ィ匕合物を挙げることができる。
[0087] 「選択結合性物質」として、特に好まし 、ものは、核酸である。核酸は、 DNAや RN Aでも PNAでもよい。特定の塩基配列を有する一本鎖核酸は、該塩基配列又はそ の一部と相補的な塩基配列を有する一本鎖核酸と選択的にハイブリダィズして結合 するので、本発明でいう「選択結合性物質」に該当する。
[0088] また、タンパク質としては、抗体及び Fabフラグメントや F(ab')2フラグメントのような、 抗体の抗原結合性断片、並びに種々の抗原を挙げることができる。抗体やその抗原 結合性断片は、対応する抗原と選択的に結合し、抗原は対応する抗体と選択的に結 合するので、「選択結合性物質」に該当する。糖類としては、多糖類が好ましぐ種々 の抗原を挙げることができる。
また、タンパク質や糖類以外の抗原性を有する物質を固定化することもできる。
[0089] 本発明に用いる選択結合性物質は、市販のものでもよぐまた、生細胞などから得 られたものでもよい。
[0090] 本発明に用いる選択結合性物質は、核酸が好ましぐ核酸の中でも、オリゴ核酸と 呼ばれる、長さが 10塩基から 100塩基までの核酸は、合成機で容易に人工的に合 成が可能であり、また、核酸末端のアミノ基修飾が容易であるため、担体表面への固 定ィ匕が容易となることから好ましい。さらに、 20塩基未満ではハイブリダィゼーシヨン の安定性が低 ヽと 、う観点から 20— 100塩基がより好まし 、。ハイブリダィゼーシヨン の安定性を保持するため、特に好ましくは 40— 100塩基の範囲である。 [0091] 本発明の溶液を攪拌する方法では、被検物質として、測定すべき核酸、例えば、病 原菌ゃウィルス等の遺伝子や、遺伝病の原因遺伝子等並びにその一部分、抗原性 を有する各種生体成分、病原菌やウィルス等に対する抗体等を挙げることができるが 、これらに限定されるものではない。
[0092] 本発明の溶液を攪拌する方法では、これらの被検物質を含む溶液としては、血液、 血清、血漿、尿、便、髄液、唾液、各種組織液等の体液や、各種飲食物並びにそれ らの希釈物等を挙げることができるがこれらに限定されるものではない。
[0093] 被検物質となる核酸は、血液や細胞から常法により抽出した核酸を標識してもよい し、該核酸を铸型として、 PCR等の核酸増幅法によって増幅したものであってもよい 。核酸を铸型として、 PCR等の核酸増幅法によって増幅したものの場合には、測定 感度を大幅に向上させることが可能である。核酸増幅産物を被検物質とする場合に は、蛍光物質等で標識したヌクレオチド三リン酸の存在下で増幅を行うことにより、増 幅核酸を標識することが可能である。また、被検物質が抗原又は抗体の場合には、 被検物質である抗原や抗体を常法により直接標識してもよヽ。被検物質である抗原 又は抗体を選択結合性物質と結合させた後、担体を洗浄し、該抗原又は抗体と抗原 抗体反応する標識した抗体又は抗原を反応させ、担体に結合した標識を測定するこ とちでさる。
[0094] 本発明の溶液を攪拌する方法では、好ましくは、選択結合性物質と被検物質を反 応させる。
[0095] 本発明の溶液を攪拌する方法では、固定ィ匕物質と被検物質を相互作用させる工程 は、従来と全く同様に行うことができる。反応温度及び時間は、ハイブリダィズさせる 核酸の鎖長や、免疫反応に関与する抗原及び Z又は抗体の種類等に応じて適宜選 択されるが、核酸のハイブリダィゼーシヨンの場合、通常、 35°C— 70°C程度で 1分間 一十数時間、免疫反応の場合には、通常、室温一 40°C程度で 1分間一数時間程度 である。
[0096] 本発明の溶液を攪拌する方法では、単にハイブリダィゼーシヨン後のシグナルが向 上するのみでなぐ次のような利点もあることが分力つた。すなわち、従来の DNAチッ プのハイブリダィゼーシヨン方法では、ハイブリダィゼーシヨン後の蛍光強度が弱ぐ プローブ DNAが固定ィ匕されたスポット内の蛍光強度の分布がドーナツ状になり、後 のデータ解析に支障をきたすという問題点があった。ところが、本発明の溶液を攪拌 する方法では、蛍光強度も大きく向上する上に、上記のようなスポット内のドーナツ状 の蛍光強度分布が低減される利点もあることが分力つた。
[0097] 実施例
本発明を以下の実施例によって更に詳細に説明する。本発明は下記実施例に限 定されない。
[0098] 実施例 1
(DNA固定ィ匕担体の作製)
公知の方法である LIGA(Lithographie Galvanoformung Abformung)プロセスを用い て、射出成形用の型を作製し、射出成型法により後述するような形状を有する PMM A製の担体を得た。なお、この実施例で用いた PMMAの平均分子量は 5万であり、 PMMA中には 1重量%の割合で、カーボンブラック(三菱ィ匕学製 # 3050B)を含 有させており、担体は黒色である。この黒色担体の分光反射率と分光透過率を測定 したところ、分光反射率は、可視光領域 (波長が 400nm力 800nm)のいずれの波 長でも 5%以下であり、また、同範囲の波長で、透過率は 0. 5%以下であった。分光 反射率、分光透過率とも、可視光領域において特定のスペクトルパターン (ピークな ど)はなぐスペクトルは一様にフラットであった。なお、分光反射率は、 JIS Z 8722 の条件 Cに適合した照明 '受光光学系を搭載した装置 (ミノルタカメラ製、 CM— 2002 )を用いて、担体力もの正反射光を取り込んだ場合の分光反射率を測定した。
[0099] 担体の形状は、大きさが縦 76mm、横 26mm、厚み lmmであり、担体の中央部分 を除き表面は平坦であった。担体の中央には、直径 10mm、深さ 0. 2mmの凹んだ 部分が設けてあり、この凹みの中に、直径 0. 2mm,高さ 0. 2mmの凸部を 64 (8 X 8 )箇所設けた。凹凸部分の凸部上面の高さ (64箇所の凸部の高さの平均値)と平坦 部分との高さの差を測定したところ、 3 m以下であった。また、 64個の凸部上面の 高さのばらつき(最も高い凸部上面の高さと最も低い凸部上面との高さの差)、さらに は、凸部上面の高さの平均値と平坦部上面の高さの差を測定したところそれぞれ 3 m以下であった。さらに、凹凸部凸部のピッチ(凸部中央部力 隣接した凸部中央 部までの距離)は 0. 6mmであった。
[0100] 上記の PMMA担体を IONの水酸化ナトリウム水溶液に 65°Cで 12時間浸漬した。
これを、純水、 0. 1Nの HC1水溶液、純水の順で洗浄し、担体表面にカルボキシル 基を生成した。
[0101] (プローブ DNAの固定化)
配列番号 1 (60塩基、 5'末端アミノ化)の DNAを合成した。この配列番号 1の DNA は 5 '末端がァミノ化されて!/、る。
[0102] この DNAを、純水に 0. 3nmol/ μ 1の濃度で溶かして、ストックソリューションとした
。担体に点着する際は、 PBS(NaClを 8g、 Na HPO · 12Η Οを 2. 9g、 KClを 0. 2g
2 4 2
、 KH POを 0. 2g純水に溶かし 11にメスアップしたものに pH調整用の塩酸をカ卩えた
2 4
もの、 pH5. 5)でプローブ DNAの終濃度を 0. 03nmolZ 1とし、かつ、担体表面の カルボン酸とプローブ DNAの末端のァミノ基とを縮合させるため、 1ーェチルー 3—(3 —ジメチルァミノプロピル)カルボジイミド (EDC)を加え、この終濃度を 50mgZmlとし た。そして、これらの混合溶液をガラスキヤビラリ一で担体凸部上面に点着した。次い で、担体を密閉したプラスチック容器入れて、 37°C、湿度 100%の条件で 20時間程 度インキュベートして、純水で洗浄した。この反応スキームを図 7に示す。
[0103] (検体 DN Aの調整)
検体 DNAとして、上記 DNA固定化担体に固定化されたプローブ DNAとハイブリ ダイズ可能な塩基配列を持つ配列番号 4の DNA(968塩基)を用いた。調整方法を 以下に示す。
[0104] 配列番号 2と配列番号 3の DNAを合成した。これを純水にとかして濃度を 100 μ Μ とした。次いで、 pKF3 プラスミド DNA (タカラバイオ (株)製品番号; 3100) (配列番 号 5 : 2264塩基)を用意して、これをテンプレートとし、配列番号 2および配列番号 3 の DNAをプライマーとして、 PCR反応(Polymerase Chain Reaction)により増幅を行 つた o
[0105] PCRの条件は以下の通りである。すなわち、 ExTaq 2 1、 10 X ExBuffer 40 μ 1、 dNTP Mix 32 μ 1 (以上はタカラバイオ (株)製 製品番号 RR001Aに付属)、 配列番 号 2の溶液を 2 μ 1、配列番号 3の溶液を 2 μ 1、 テンプレート(配列番号 5)を 0. 2 1 を加え、純水によりトータル 400 1にメスアップした。これらの混合液を、 4つのマイク 口チューブに分け、サーマルサイクラ一を用いて PCR反応を行った。これを、エタノー ル沈殿により精製し、 40 1の純水に溶解した。 PCR反応後の溶液の一部をとり電気 泳動で確認したところ、増幅した DNAの塩基長は、およそ 960塩基であり配列番号 4 (968塩基)が増幅されて 、ることを確認した。
[0106] 次いで、 9塩基のランダムプライマー(タカラバイオ (株)製;製品番号 3802)を 6mg Zmlの濃度に溶かし、上記の PCR反応後精製した DNA溶液に 2 1カ卩えた。この溶 液を 100°Cに加熱した後、氷上で急冷した。これらに Klenow Fragment (タカラバ ィォ (株)製;製品番号 2140AK)付属のバッファーを 5 μ 1、 dNTP混合物(dATP、 dTTP、 dGTPの濃度はそれぞれ 2. 5mM、 dCTPの濃度は 400 μ Μ)を 2. 5 μ 1カロえ た。さらに、 Cy3— dCTP (アマシャムフアルマシアバイオテク製;製品番号 PA53021 )を 2 1加えた。この溶液に 10Uの Klenow Fragmentをカ卩え、 37°Cで 20時間イン キュペートし、 Cy3で標識された検体 DNAを得た。なお、標識の際ランダムプライマ 一を用いたので検体 DNAの長さには、ばらつきがある。最も長い検体 DNAは配列 番号 4 (968塩基)となる。なお、検体 DNAの溶液を取り出して、電気泳動で確認し たところ、 960塩基に相当する付近にもっとも強いバンドが現れ、それより短い塩基長 に対応する領域に薄くスメァが力かった状態であった。そして、これをエタノール沈殿 により精製し、乾燥した。
[0107] この標識化された検体 DNAを、 1重量%BSA (ゥシ血清アルブミン)、 5 X SSC (5
X SSCとは、 20 X SSC (シグマ製)を純水にて 4倍に希釈したもの。また、 20 X SSC を純水で 2倍に希釈したものを 10 X SSCと表記し、 20 X SSCの 2倍希釈液を 10 X S SC、 100倍希釈液を 0. 2 X SSCと表記する。)、 0. 1重量%SDS (ドデシル硫酸ナト リウム)、 0. 01重量%サケ精子 DNAの溶液 (各濃度はいずれも終濃度)、 400 1に 溶解し、ノ、イブリダィゼーシヨン用のストック溶液とした。
[0108] 以下の実施例、比較例にお!、て、ハイブリダィゼーシヨンの際の検体溶液は、特に 断りのない限り、上記で調整したストック溶液を、 1重量%BSA、 5 X SSC, 0. 01重 量%サケ精子 DNA、 0. 1重量%SDSの溶液 (各濃度はいずれも終濃度)で 200倍 に希釈したものを用いた。なお、この溶液の検体 DNAの濃度を測定したところ、 1. 5 ng/ であった
(ガラスビーズの修飾)
直径が 150 /z mのガラスビーズ 10gを ION NaOH溶液に浸漬した後、純水で洗 浄した。ついで、 APS (3—ァミノプロピルトリエトキシシラン;信越ィ匕学工業 (株)製)を 2重量%の割合で純水に溶解した後、上記のガラスビーズを 1時間浸漬し、この溶液 力も取り出した後に 110°Cで 10分間乾燥した。このようにして、ガラスビーズの表面に アミノ基を導入した。
[0109] ついで、 5. 5gの無水コハク酸を 1ーメチルー 2 ピロリドン 335mlに溶解させた。 1M の 50mlのホウ酸ナトリウム(ホウ酸 3. 09gと pH調整用の水酸化ナトリウムをカ卩えて、 純水で 50mlにメスアップしたもの。 pH8. 0)に上記コハク酸溶液に加えた。この混合 液に上記のガラスビーズを 20分間浸漬した。浸漬後、純水で洗浄および乾燥した。 このようにして、ガラスビーズの表面のァミノ基と無水コハク酸を反応させて、ガラスビ ーズ表面にカルボキシル基を導入した。
[0110] (ハイブリダィゼーシヨン)
上記で得られたプローブ DN Aを固定ィ匕した担体に上記検体 DN Aをハイブリダィ ゼーシヨンさせた。具体的には、先に用意したプローブ核酸が凸部に固定ィ匕されて いる担体にハイブリダィゼーシヨン用の溶液を 50 1滴下し、担体凹部に上記の修飾 を施したガラスビーズ 2mgを混合し、その上にカバーガラスをかぶせた。また、カバー ガラスの周りをペーパーボンドでシールし、ハイブリダィゼーシヨンの溶液が乾燥しな いようにした。このカバーガラス面には、その 4辺のうち、向力 、合う 2辺に厚さ 8 m、 幅 lmmのフォトレジストをフォトリソグラフィ一により形成した物を用いた。こうすること でノ、イブリダィゼーシヨン時、担体凸部とカバーガラスの距離 (ギャップ)を 8 μ mとで きる。これをマイクロチューブローテ一ター(ァズワン製、商品番号: 1 4096— 01)の 回転面に設けたプラスチック容器内に固定し、 65°C、湿度 100%の条件で 10時間ィ ンキュペートした。その際、ローテ一ターの回転数は 3rpmとし、ローテ一ターの回転 面は、水平面と直角となるようにした。さらに担体のプローブ DNA固定ィ匕面は、ロー テーターの回転面に対し直角となるようにした。インキュベート後、担体からカバーガ ラスを剥離後に担体を洗浄、乾燥した。 [0111] (測定)
DNAチップ用のスキャナー(Axon Instruments社の GenePix 4000B)に上記処理後 の担体をセットし、レーザー出力 33%、フォトマルチプライヤーの電圧設定を 500に した状態で測定を行った。その結果を表 1に示す。ここで、蛍光強度とはスポット内の 蛍光強度の平均値である。
[0112] なお、本実施例では、ガラスビーズを用いた力 セラミックビーズ、テフロン (登録商 標)ビーズを用いても表 1とほぼ同様の結果が得られた。
[0113] 比較例 1
ガラスビーズを入れな 、場合の実験を行った。実験手順はノ、イブリダィゼーシヨン の際にガラスビーズを混合しな 、こと以外は実施例 1と同様に行つた。結果を表 1に 示す。
[0114] 実施例 1と比べて蛍光強度が低いことが確認できた。さらに、比較例 1は、担体凸部 の蛍光強度分布が不均一(ドーナツ状分布)であるのに対し、実施例 1の結果は、担 体凸部の蛍光強度分布がほぼ均一であった。
[0115] 比較例 2
凹凸部が設けられて!/ヽな!ヽ平坦な PMMA担体の場合の実験を行った。実験手順 は、(1)平坦な担体を用いたこと、(2)プローブ DNAの点着を専用機(日本レーザー 電子 (株)製、ジーンスタンプ II)で行ったこと、(3)さらに、カバーガラス面の 4辺に厚 み 200 /ζ πι、幅 lmmのポリエステルフィルムを貼り付け、ビーズ攪拌が行えるように 担体とカバーガラスの間に隙間を設けて、この隙間にビーズと検体溶液を混合してハ イブリダィゼーシヨンを行った以外は、実施例 1と同様に行った。結果を表 1に示す。 実施例 1と比較すると蛍光強度が低いことが分かる。さらに、実施例 1では見られなか つたスポットの傷つきが確認された。これは、ハイブリダィゼーシヨン時にビーズがプロ ーブ固定ィ匕面を傷つけたことが原因であるものと推定された。
[0116] また、ビーズの直径を 1 μ mとして、本比較例と実験を行ったところ、蛍光強度は 15 00程度とさらに低力つた。これは、ハイブリダィゼーシヨン溶液の抵抗により、ビーズ が移動しにくい現象が認められたこととに原因があるものと推定された。
[0117] 実施例 2 気泡を利用した攪拌効果の実験を行った。実験手順は、ハイブリダィゼーシヨンェ 程のカバーガラスを被せる際にマイクロシリンジで気泡を 0. 9 L入れたこととガラス ビーズをいれないこと以外は実施例 1と同様である。また、鉛直方向に傾けたローテ 一ターの回転面と担体のプローブ固定ィ匕面とが平行になるように担体を固定して回 転させ、気泡がシーリングした検体溶液の周囲のみを移動するようにした。こうして、 気泡がプローブ固定ィ匕面に接触しないようにした。結果を表 1に示す。実施例と同等 の効果が確認できた。
[0118] 実施例 3
カバーガラスの代わりに図 2に示す断面構造の溶液を保持する容器 4を用いて比 較例 2と同様の実験を行った。すなわち、凹凸を担体ではなくカバーに設けた。この 容器と平坦な PMMA担体の位置関係を図 2のように注意深く配置した。そして、ビー ズを移動させながらハイブリダィゼーシヨンを行うと、プローブ DNAの固定ィ匕面と溶液 を保持する容器 4との距離がガラスビーズ 2の直径より小さいためガラスビーズがプロ ーブ DNA固定ィ匕面 1に接触することなくガラスビーズを移動させることができた。結果 を表 1に示す。蛍光強度に関しては実施例 1と同等の結果が得られた。比較例 2の結 果と併せて考慮すると、プローブ固定ィ匕面にビーズが触れないことが重要であると考 えられる。本実施例の方法では、カバーの凸部とプローブを固定ィ匕した部分との位 置あわせを正確に行うこと力 重要である。
[0119] 比較例 3
凹凸部が設けられていない平坦な PMMA担体であり、かつ、ビーズで攪拌を行わ ない場合の実験を行った。ノヽイブリダィゼーシヨン溶液にビーズを混合せず、回転を 行わなかった以外は、比較例 2と同様な操作 ·測定を行った。結果を表 1に示す。
[0120] [表 1] 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3 ターゲット濃度 (ng/ ju L) 1.5 1.5 1.5 1.5 1.5 1.5 基板形状 凹凸 凹凸 平板 凹凸 平板 平板 ギャップ(/ m) 8 8 8 8 200 8 攪拌方法 ビーズ 気泡 ビーズ なし ビーズ なし 回転 有 有 有 有 有 なし 蛍光強度 12000 8800 1 1800 2900 3900 700 ノイズ 45 50 300 50 300 300
[0121] 実施例 4
実施例 1にお ヽてガラスビーズのサイズを 5種類選択して実験した。実験手順は、 実施 f列 1と同様で、ガラスビーズの直径サイズを 10、 20、 50、 100、 200 mで行つ た。結果を表 2に示す。
[0122] 比較例 4
ガラスビーズの直径サイズを 300 μ m、 400 μ mとした以外は実施例 1と同様な実 験を行った。その結果を表 2に示す。
[0123] [表 2]
Figure imgf000030_0001
[0124] 以上より、 10— 200 mのビーズを用いると攪拌効果が明らかに見られたが、比較 例 4の 300、 400 mのビーズでは顕著な効果は得られなかった。これは、担体凹部 とカバーグラスの距離が 208 μ mであり、 300、 400 μ mのビーズを半ば強引にセット したため、カバーガラスと担体に挟まってしまい、移動できなかったからである。実施 例'比較例より、ビーズが移動できない場合は、蛍光強度が弱いことがわかる。また、 実施例 4から、ビーズの大きさの好ましい大きさは 10 /z m以上であり、より好ましくは 2 0 μ m以上であることが分かる。
[0125] 実施例 5
次の特徴を持つ形状の担体で実施例 1と同様の実験を行った。担体の中央には、 直径 10mm、深さ 0. 3mmの凹んだ部分が設けてあり、この凹みの中に、直径 0. 2m m、高さ 0. 3mmの凸部を 64 (8 X 8)箇所設けた。その他の担体の特徴や実験の手 順は、実施例 1と同様である。また、ガラスビーズの直径サイズを 10、 20、 50、 100、 200、 300 /z mとした。結果を表 3に示す。
[0126] 比較例 5
ガラスビーズの直径サイズを 400 μ mとした以外は実施例 5と同様な実験を行った 。その結果を表 3に示す。
[0127] [表 3]
Figure imgf000031_0001
[0128] 10— 300 μ mのビーズを用いると攪拌効果が明らかに見られた力 400 μ mのビ ーズでは顕著な効果は得られな力つた。これは、担体凹部とカバーグラスの距離が 3 08 μ mであり 400 μ mのビーズを半ば強引にセットしたため、カバーガラスと担体に 挟まってしまいビーズが移動できな力つた力もである。実施例'比較例より、ビーズが 移動できない場合は、蛍光強度が弱いことがわかる。また、実施例 5から、ビーズの 大きさの好ましい大きさは、 10 /z m以上であり、より好ましくは、 以上であること が分かる。
[0129] 実施例 6
凸部の高さがばらつ 、た場合にっ 、て実験を行った。実施例 1で用いた PMMAの 射出成形品の凸部をラッピングペーパーで削り、凸部上面の高さに差を設けた。す なわち、他の凸部上面 (基準となる凸部)よりも、 30 m低い凸部 (4箇所)がある担体 (担体ァ)、他の凸部上面よりも、 50 m低い凸部 (4箇所)がある担体 (担体ィ)をそ れぞれ作製した。なお、これら担体の低い部分以外の凸部 (基準となる凸部)上面の 高さと、平坦部分の高さの差は 3 m以下であった。実施例 1と同様に、点着するプロ ーブ DNAの調整を行った。ついで、基準となる凸部上面に 4箇所、低い凸部上面に 4箇所にプローブ DNA溶液の点着を実施例 1と同様に行い、さらに、ハイブリダィゼ ーシヨン用の検体 DNAの調整を実施例 1と同様に行った。ハイブリダィゼーシヨンと 測定も実施例 1と同様に行った。基準となる凸部上面の蛍光強度の平均値、高さが 低い凸部上面の蛍光強度の平均値を表 4に示す。
[0130] [表 4]
Figure imgf000032_0001
[0131] このように、凸部の高さにばらつき(50 m以下)があっても、実施例 1、 2と同等の 蛍光強度がえられて ヽることが分かる。
[0132] 実施例 7
凸部上面と平坦部の差がある場合について検討した。実施例 1で用いた PMMAの 射出成形品の平坦部をラッピングペーパーで削り、平坦部上面と凸部上面の高さの 差が 30 μ m (担体ゥ)、 50 m (担体ェ)の 2種類の担体を作製した。すなわち、担体 ゥは凸部の高さが平坦部の高さより 30 m高いことになる。実験手順は、実施例 1と 同様に、点着するプローブ DNAの調整、凸部上面へのプローブ DNA溶液の点着、 検体 DNAの調整、ガラスビーズの修飾を行った。ノヽイブリダィゼーシヨンは、実施例 1でカバーガラスにポリマーを形成する変わりにシリコンシート (厚さ、 60 m)を貼り 付けたものを用いて行った。なお、上面に DNA溶液をスポットした凸部はそれぞれ の担体について 4力所である。そして、 DNAを点着したスポット (4力所)の蛍光強度 の平均値を求めた。その結果を表 5に示す。
[0133] [表 5]
Figure imgf000032_0002
[0134] このように、平坦部上面と凸部上面との高さに差(50 m以下)があっても、 実施例 1と同等の蛍光強度がえられることが分力る。
[0135] 実施例 8
実施例 1でカバーガラスとペーパーボンドでシールした基板をボルテックス ( Scientific Industries,Inc.製)〖こセットし、振動でガラスビーズを移動させハイブリダィゼ ーシヨン攪拌した場合の実験を行った。実験手順は、ローテ一ターの代わりにボルテ ッタスにセットすること以外、実施例 1と同様に行った。結果を表 6に示す。強い蛍光 強度を示した。
[0136] 実施例 9
ノ、イブリダィゼーシヨン時に磁性ビーズを混合し、周りの磁場を変化させることで磁 性ビーズを移動させハイブリダィゼーシヨン溶液を攪拌する実験を行った。まず、図 8 のような磁石が往復運動する機器を自作した。実験手順は、(DNA固定ィ匕担体の作 製)(プローブ DNAの固定化)(検体 DNAの調整)(測定)は、実施例 1と同様に行つ た。ハイブリダィゼージョンは、ガラスビーズの代わりに直径 50 μ mの磁性ビーズ(トラ ィアル株式会社製)、 lmgを担体凹部に混合したことと、ローテ一ターの代わりに前 述の自作機にセットしたこと以外、実施例 1と同様に行った。結果を表 6に示す。強い 蛍光強度を示した。
[0137] 比較例 6
凹凸部が設けられて 、な 、平坦な PMMA担体を用いて実施例 9と同様の実験を 行った。実験手順は、(1)平坦な担体を用いたこと、(2)プローブ DNAの点着を専 用機(日本レーザー電子 (株)製、ジーンスタンプ II)で行ったこと、(3)さらに、カバー ガラス面の 4辺に厚み 200 m、幅 lmmのポリエステルフィルムを貼り付け、磁性ビ ーズで攪拌が行えるように担体とカバーガラスの間に隙間を設けて、この隙間に磁性 ビーズと検体溶液を混合してハイブリダィゼーシヨンを行ったこと、(4)図 8に示す自 作機へのセットは、カバーガラス面を下にしたこと以外は、実施例 1と同様に行った。 カバーガラス面を下にすることによって磁性ビーズはカバーガラス面上に引き付けら れ、対面にあるプローブ固定ィ匕面に接触することなく溶液を攪拌することが期待でき る。結果を表 6に示す。実施例 9より劣る蛍光強度し力、得られな力つた。さらに、実施 例 9では見られな力つたスポットの傷つきが確認された。比較例 6では、磁石に引き寄 せられた磁性ビーズがポリエステルフィルムで設けた 200 μ mの幅一杯に凝集してか たまり、それを塊のまま移動させたのでプローブ固定ィ匕面にこの塊が接触した。
[表 6]
Figure imgf000034_0001
[0139] 実施例 10
ビーズをイットリア安定化ジルコユア(ジルコユアにイットリアを 2. 5mol%の割合で 混合したもの)製で、直径が 125 /z mのものを用いた以外は、実施例 1と同様の実験 を行った。その結果、ハイブリダィゼーシヨン後の蛍光強度についてはほぼ同じであ つた。しかし、ビーズ 2mgを混合し、その上にカバーガラスを被せる際の溶液の動き に対してもビーズが移動し難ぐセッティングが容易であった。これは、ジルコ-アビ ーズの比重が 6. 05gZcm3とガラスに対して 3倍近くの比重があるためである。
[0140] 実施例 11
検体 DNAの濃度を 0. 73、 0. 29、 0. 15η8/ /ζ Lに調製したものを用いて実施例 1 同様の実験を行った。結果を図 9に示す。図 9には実施例 1と比較例 1の結果も併せ て記載してある。
[0141] 比較例 7
検体 DNAの濃度を 0. 73、 0. 29、 0. 15η8/ /ζ Lに調製したものを用いて比較例 1 同様の実験を行った。結果を図 9に示す。図 9には実施例 1と比較例 1の結果も併せ て記載してある。
[0142] このように 4条件の検体濃度にぉ 、てもビーズを用いた攪拌の効果が確認できた。
[0143] 実施例 12
DN Αチップによる SNP (single nucleotide polymorphism)の検出実験を行った。実 験手順は、(DNA固定ィ匕担体の作製)(検体 DNAの調製)(ガラスビーズの修飾) ( ハイブリダィゼーシヨン)(測定)は実施例 1と同様に行った。検体 DNAの濃度は、 1. 5ng/ μ Lである。ただし、ハイブリダィゼーシヨンは 42°Cで行った。プローブ DNAは 、 5 '末端がァミノ化された配列番号 6、配列番号 7の DNAを合成し用いた。配列番号 6と 7は一つの塩基だけが異なる。両プローブの 5 '側から 10塩基の Tの配列は、検 体 DNAとの相補性はなぐ配列番号 6のこれを除いた部分(20塩基)は検体 DNAと 完全に相補的である。この 2種類の DNAを実施例 1と同様の手順で担体凸部に固 定した。結果を表 7に示す。本発明の方法によりこの 2種類のプローブ DNAの 1塩基 の違いを検出することが可能である。
[0144] [表 7]
Figure imgf000035_0001
産業上の利用可能性
[0145] 本発明により、担体に固定化された選択結合性物質と被検物質との反応を促進し、 微量の検体でもシグナル強度や SZN比が良好な攪拌方法を提供することができる 。すなわち、本発明の攪拌方法を用いることで、 DNAチップに代表される選択結合 性固定ィ匕担体のシグナル強度、 SZN比を向上でき (すなわち、感度を向上でき)、 微量な臨床検体でも測定可能となる。本発明により、 DNAチップに代表される選択 結合性物質固定ィ匕担体を用いた、臨床現場での診断'診察が可能となる。

Claims

請求の範囲
[1] 担体表面に固定化された選択結合性物質に、その選択結合性物質と反応する被検 物質を含む溶液を接触させ、該溶液を攪拌する方法であって、被検物質を含む溶液 に微粒子または気泡を混合し、微粒子または気泡を選択結合性物質の固定ィ匕面に 接触することなく移動させて溶液を攪拌する方法。
[2] 微粒子または気泡が選択結合性物質の固定ィ匕面に接触しない構造の担体を用いる 請求項 1に記載の溶液を攪拌する方法。
[3] 微粒子または気泡が選択結合性物質の固定ィ匕面に接触しない構造の溶液を保持 する容器を用いる請求項 1に記載の溶液を攪拌する方法。
[4] 担体に凹凸部が設けられており、かつ、凸部上面に選択結合性物質が固定化されて
V、る請求項 1に記載の溶液を攪拌する方法。
[5] 担体の凸部上面に固定化された選択結合性物質に、その選択結合性物質と反応す る被検物質を含む溶液を接触させ、該溶液を攪拌する方法であって、被検物質を含 む溶液に微粒子または気泡を混合し、微粒子または気泡を移動させて溶液を攪拌 する方法。
[6] 微粒子を移動させることにより溶液を攪拌する請求項 1または請求項 5に記載の溶液 を攪拌する方法。
[7] 溶液を保持する容器を用いる請求項 1または請求項 5に記載の溶液を攪拌する方法
[8] 微粒子を移動させることにより溶液を攪拌し、かつ、微粒子の最小幅が選択結合性 物質の固定化面と溶液を保持する容器との最短距離より大きい請求項 7に記載の溶 液を攪拌する方法。
[9] 微粒子を移動させることにより溶液を攪拌し、かつ、担体に凹凸部が設けられており、 選択結合性物質が凸部上面に固定化され、微粒子が凹部を移動する請求項 1また は請求項 5に記載の溶液を攪拌する方法
[10] 担体には平坦部と凹凸部が設けられており、複数の凸部上面に選択結合性物質が 固定化されており、該凸部上面の高さが略同一であり、かつ、平坦部分と凸部上面 の高さの差が 50 μ m以下である請求項 1または請求項 5に記載の溶液を攪拌する方 法。
[11] 重力、磁力、担体の振動のいずれか、もしくはこれらの組合せにより、微粒子を移動 させる請求項 6に記載の溶液の攪拌方法。
[12] 微粒子の最大幅が 10 m以上、凸部上面と凹部の高さの差以下である請求項 9に 記載の溶液の攪拌方法。
[13] 選択結合性物質が核酸である請求項 1または請求項 5に記載の溶液の攪拌方法。
[14] 選択結合性物質と被検物質を反応させる請求項 1または請求項 5に記載の溶液の攪 拌方法。
PCT/JP2005/004746 2004-03-23 2005-03-17 溶液を攪拌する方法 WO2005090997A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DK05720981.9T DK1729136T3 (da) 2004-03-23 2005-03-17 Fremgangsmåde til rystning af en opløsning
EP05720981A EP1729136B1 (en) 2004-03-23 2005-03-17 Method of agitating solution
KR1020067016688A KR101148860B1 (ko) 2004-03-23 2005-03-17 용액을 교반하는 방법
US10/593,680 US8298832B2 (en) 2004-03-23 2005-03-17 Method of agitating solution
AT05720981T ATE546738T1 (de) 2004-03-23 2005-03-17 Verfahren zum schütteln einer lösung
CN200580009083XA CN1934451B (zh) 2004-03-23 2005-03-17 搅拌溶液的方法
ES05720981T ES2382475T3 (es) 2004-03-23 2005-03-17 Procedimiento de agitación de una solución
JP2006511211A JP4420020B2 (ja) 2004-03-23 2005-03-17 溶液を攪拌する方法
CA2559768A CA2559768C (en) 2004-03-23 2005-03-17 Method of stirring solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004084318 2004-03-23
JP2004-084318 2004-03-23

Publications (1)

Publication Number Publication Date
WO2005090997A1 true WO2005090997A1 (ja) 2005-09-29

Family

ID=34993837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004746 WO2005090997A1 (ja) 2004-03-23 2005-03-17 溶液を攪拌する方法

Country Status (11)

Country Link
US (1) US8298832B2 (ja)
EP (1) EP1729136B1 (ja)
JP (1) JP4420020B2 (ja)
KR (1) KR101148860B1 (ja)
CN (1) CN1934451B (ja)
AT (1) ATE546738T1 (ja)
CA (1) CA2559768C (ja)
DK (1) DK1729136T3 (ja)
ES (1) ES2382475T3 (ja)
TW (1) TWI354792B (ja)
WO (1) WO2005090997A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171030A (ja) * 2005-12-22 2007-07-05 Toray Ind Inc 選択的結合性物質固定化基材
JP2007178185A (ja) * 2005-12-27 2007-07-12 Toray Ind Inc マイクロロッドを用いた分析用担体、及び該分析用担体を利用した分析方法
JP2007212446A (ja) * 2006-01-12 2007-08-23 Toray Ind Inc 選択結合性物質固定化担体
JP2007285828A (ja) * 2006-04-14 2007-11-01 Toray Ind Inc 検体溶液の撹拌方法
JP2007304093A (ja) * 2006-04-14 2007-11-22 Toray Ind Inc 分析チップ
JP2008039584A (ja) * 2006-08-07 2008-02-21 Toray Ind Inc 帯電防止性カバーを有するマイクロアレイ
JP2008089414A (ja) * 2006-10-02 2008-04-17 Toray Ind Inc 分析チップ
WO2008090922A1 (ja) 2007-01-24 2008-07-31 Toray Industries, Inc. 分析用チップ及び分析方法
JP2009109213A (ja) * 2007-10-26 2009-05-21 Hitachi Maxell Ltd 機能性粒子を利用したマイクロデバイスおよびそれを用いた処理方法
JP2009148735A (ja) * 2007-12-21 2009-07-09 Sharp Corp マイクロビーズを利用したマイクロ反応路チップ及び化学反応装置
JP2010008391A (ja) * 2008-05-27 2010-01-14 Toray Ind Inc 分析用チップ
JP2010112839A (ja) * 2008-11-06 2010-05-20 Hitachi Maxell Ltd プレート状容器、その成形に用いる鋳型およびそれを用いた処理法
WO2010106989A1 (ja) 2009-03-16 2010-09-23 東レ株式会社 分析チップ、分析方法及び溶液の攪拌方法
US20100317014A1 (en) * 2009-06-15 2010-12-16 Ibis Biosciences, Inc. Compositions and methods for the isolation of nucleic acid
JP2011510269A (ja) * 2008-01-14 2011-03-31 バイオキット,エス.アー. 流体中に粒子を分散させる装置およびその方法
JP2011164112A (ja) * 2011-03-30 2011-08-25 Toray Ind Inc 分析チップ用セラミックス微粒子
WO2013129469A1 (ja) 2012-02-29 2013-09-06 東レ株式会社 溶液の攪拌方法
JP2019101021A (ja) * 2017-11-28 2019-06-24 東ソー株式会社 生体物質保持装置、および生体物質の検出方法
WO2022163124A1 (ja) * 2021-01-29 2022-08-04 東洋濾紙株式会社 イムノクロマトアッセイ用メンブレン、イムノクロマトアッセイ用テストストリップ、および検査方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US8883490B2 (en) 2006-03-24 2014-11-11 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
DK3088083T3 (en) 2006-03-24 2018-11-26 Handylab Inc Method of carrying out PCR down a multi-track cartridge
US7998708B2 (en) * 2006-03-24 2011-08-16 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US11806718B2 (en) 2006-03-24 2023-11-07 Handylab, Inc. Fluorescence detector for microfluidic diagnostic system
US10900066B2 (en) 2006-03-24 2021-01-26 Handylab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US8809068B2 (en) * 2006-04-18 2014-08-19 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US8637324B2 (en) 2006-04-18 2014-01-28 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US7439014B2 (en) 2006-04-18 2008-10-21 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US8470606B2 (en) * 2006-04-18 2013-06-25 Duke University Manipulation of beads in droplets and methods for splitting droplets
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
WO2008061165A2 (en) 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same
EP2125184B1 (en) * 2006-12-06 2012-04-11 Ashe Morris Limited Improved flow reactor
KR101503510B1 (ko) 2007-02-09 2015-03-18 어드밴스드 리퀴드 로직, 아이엔씨. 자성 비즈를 이용하는 액적 작동기 장치 및 방법
US8182763B2 (en) 2007-07-13 2012-05-22 Handylab, Inc. Rack for sample tubes and reagent holders
US9186677B2 (en) 2007-07-13 2015-11-17 Handylab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
US8105783B2 (en) 2007-07-13 2012-01-31 Handylab, Inc. Microfluidic cartridge
US8287820B2 (en) 2007-07-13 2012-10-16 Handylab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
GB201005742D0 (en) 2010-04-06 2010-05-19 Ashe Morris Ltd Improved tubular reactor
JP5516278B2 (ja) * 2010-09-24 2014-06-11 東洋製罐グループホールディングス株式会社 担体支持容器、及び担体支持容器の使用方法
RU2690374C2 (ru) 2011-04-15 2019-06-03 Бектон, Дикинсон Энд Компани Сканирующий в режиме реального времени микрожидкостный термоциклер и способы синхронизированных термоциклирования и сканирующего оптического обнаружения
CN104040238B (zh) 2011-11-04 2017-06-27 汉迪拉布公司 多核苷酸样品制备装置
US11786914B2 (en) * 2015-10-27 2023-10-17 The Trustees Of The University Of Pennsylvania Magnetic separation filters and microfluidic devices using magnetic separation filters
JP6798446B2 (ja) * 2017-08-03 2020-12-09 株式会社島津製作所 前処理装置及びその前処理装置を備えた分析システム
AU2018364741B2 (en) 2017-11-09 2021-03-25 Visby Medical, Inc. Portable molecular diagnostic device and methods for the detection of target viruses
CN111450907B (zh) * 2020-04-26 2022-06-24 京东方科技集团股份有限公司 一种微流控器件、样品混匀方法、微流控系统
CN113083107B (zh) * 2021-04-15 2022-09-23 东北电力大学 基于随机旋转颗粒的增强型无源微混合器及其制作方法
WO2023018896A1 (en) * 2021-08-13 2023-02-16 Visby Medical, Inc. Molecular diagnostic devices and methods for retaining and mixing reagents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248008A (ja) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res 反応液の攪拌方法
JP2003329679A (ja) * 2002-05-09 2003-11-19 Akita Prefecture Dnaチップ用基板、dnaチップ、及びそれらの製造方法、並びに解析システム
JP2003339375A (ja) * 2002-05-24 2003-12-02 Hitachi Ltd ハイブリダイゼーション方法および装置
JP2004020386A (ja) * 2002-06-17 2004-01-22 Toray Ind Inc 選択結合性物質のハイブリダイゼーション方法とハイブリダイゼーション装置および選択結合性物質固定用基材
JP2004144521A (ja) * 2002-10-22 2004-05-20 Hitachi Ltd 溶液攪拌装置、溶液攪拌方法
JP2004264289A (ja) * 2002-11-22 2004-09-24 Toray Ind Inc 選択結合性物質が固定化された基材
JP2004357698A (ja) * 2003-05-09 2004-12-24 Aloka Co Ltd 処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4815978A (en) * 1986-04-30 1989-03-28 Baxter Travenol Laboratories, Inc. Clinical analysis methods and systems
DE4331997A1 (de) * 1993-09-21 1995-03-23 Boehringer Mannheim Gmbh Verfahren und System zur Mischung von Flüssigkeiten
US5807522A (en) * 1994-06-17 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods for fabricating microarrays of biological samples
JP3607320B2 (ja) * 1994-09-02 2005-01-05 株式会社日立製作所 微粒子を用いた分析における固相の回収方法及び装置
US6884357B2 (en) * 1995-02-21 2005-04-26 Iqbal Waheed Siddiqi Apparatus and method for processing magnetic particles
EP0763739B1 (en) * 1995-03-20 2005-06-01 Precision System Science Co., Ltd. Method and apparatus for liquid treatment utilizing dispenser
JP2001108683A (ja) 1999-10-14 2001-04-20 Fuji Photo Film Co Ltd Dna断片固定固相担体、dna断片の固定方法および核酸断片の検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248008A (ja) * 2001-12-18 2003-09-05 Inst Of Physical & Chemical Res 反応液の攪拌方法
JP2003329679A (ja) * 2002-05-09 2003-11-19 Akita Prefecture Dnaチップ用基板、dnaチップ、及びそれらの製造方法、並びに解析システム
JP2003339375A (ja) * 2002-05-24 2003-12-02 Hitachi Ltd ハイブリダイゼーション方法および装置
JP2004020386A (ja) * 2002-06-17 2004-01-22 Toray Ind Inc 選択結合性物質のハイブリダイゼーション方法とハイブリダイゼーション装置および選択結合性物質固定用基材
JP2004144521A (ja) * 2002-10-22 2004-05-20 Hitachi Ltd 溶液攪拌装置、溶液攪拌方法
JP2004264289A (ja) * 2002-11-22 2004-09-24 Toray Ind Inc 選択結合性物質が固定化された基材
JP2004357698A (ja) * 2003-05-09 2004-12-24 Aloka Co Ltd 処理装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171030A (ja) * 2005-12-22 2007-07-05 Toray Ind Inc 選択的結合性物質固定化基材
JP2007178185A (ja) * 2005-12-27 2007-07-12 Toray Ind Inc マイクロロッドを用いた分析用担体、及び該分析用担体を利用した分析方法
JP2007212446A (ja) * 2006-01-12 2007-08-23 Toray Ind Inc 選択結合性物質固定化担体
JP2007285828A (ja) * 2006-04-14 2007-11-01 Toray Ind Inc 検体溶液の撹拌方法
JP2007304093A (ja) * 2006-04-14 2007-11-22 Toray Ind Inc 分析チップ
JP2008039584A (ja) * 2006-08-07 2008-02-21 Toray Ind Inc 帯電防止性カバーを有するマイクロアレイ
JP2008089414A (ja) * 2006-10-02 2008-04-17 Toray Ind Inc 分析チップ
WO2008090922A1 (ja) 2007-01-24 2008-07-31 Toray Industries, Inc. 分析用チップ及び分析方法
JP5396857B2 (ja) * 2007-01-24 2014-01-22 東レ株式会社 分析用チップ及び分析方法
JP2009109213A (ja) * 2007-10-26 2009-05-21 Hitachi Maxell Ltd 機能性粒子を利用したマイクロデバイスおよびそれを用いた処理方法
JP2009148735A (ja) * 2007-12-21 2009-07-09 Sharp Corp マイクロビーズを利用したマイクロ反応路チップ及び化学反応装置
JP2011510269A (ja) * 2008-01-14 2011-03-31 バイオキット,エス.アー. 流体中に粒子を分散させる装置およびその方法
JP2010008391A (ja) * 2008-05-27 2010-01-14 Toray Ind Inc 分析用チップ
JP2010112839A (ja) * 2008-11-06 2010-05-20 Hitachi Maxell Ltd プレート状容器、その成形に用いる鋳型およびそれを用いた処理法
WO2010106989A1 (ja) 2009-03-16 2010-09-23 東レ株式会社 分析チップ、分析方法及び溶液の攪拌方法
JP5696477B2 (ja) * 2009-03-16 2015-04-08 東レ株式会社 分析チップ、分析方法及び溶液の攪拌方法
US20100317014A1 (en) * 2009-06-15 2010-12-16 Ibis Biosciences, Inc. Compositions and methods for the isolation of nucleic acid
JP2011164112A (ja) * 2011-03-30 2011-08-25 Toray Ind Inc 分析チップ用セラミックス微粒子
WO2013129469A1 (ja) 2012-02-29 2013-09-06 東レ株式会社 溶液の攪拌方法
KR20140138112A (ko) 2012-02-29 2014-12-03 도레이 카부시키가이샤 용액의 교반 방법
US9944976B2 (en) 2012-02-29 2018-04-17 Toray Industries, Inc. Method for stirring solution
JP2019101021A (ja) * 2017-11-28 2019-06-24 東ソー株式会社 生体物質保持装置、および生体物質の検出方法
WO2022163124A1 (ja) * 2021-01-29 2022-08-04 東洋濾紙株式会社 イムノクロマトアッセイ用メンブレン、イムノクロマトアッセイ用テストストリップ、および検査方法

Also Published As

Publication number Publication date
TWI354792B (en) 2011-12-21
CA2559768A1 (en) 2005-09-29
JP4420020B2 (ja) 2010-02-24
ATE546738T1 (de) 2012-03-15
ES2382475T3 (es) 2012-06-08
KR20070006746A (ko) 2007-01-11
CN1934451A (zh) 2007-03-21
CN1934451B (zh) 2012-09-05
EP1729136B1 (en) 2012-02-22
EP1729136A4 (en) 2010-07-14
JPWO2005090997A1 (ja) 2008-02-07
DK1729136T3 (da) 2012-04-02
EP1729136A1 (en) 2006-12-06
US20070178603A1 (en) 2007-08-02
CA2559768C (en) 2014-01-07
TW200602639A (en) 2006-01-16
US8298832B2 (en) 2012-10-30
KR101148860B1 (ko) 2012-05-29

Similar Documents

Publication Publication Date Title
JP4420020B2 (ja) 溶液を攪拌する方法
JP5696477B2 (ja) 分析チップ、分析方法及び溶液の攪拌方法
JP4380631B2 (ja) 選択結合性物質固定化担体
JP4736439B2 (ja) 核酸固定化担体
JP4857882B2 (ja) 検体溶液の撹拌方法
JP4797619B2 (ja) 分析チップおよび被検物質の分析方法
JP5092405B2 (ja) 選択結合性物質固定化担体
JP2007304094A (ja) 分析チップ
JP2011106897A (ja) 分析チップおよび溶液の攪拌方法
JP2007114191A (ja) 分析チップ、分析方法及び分析キット
JP5145752B2 (ja) 分析チップ
JP4946044B2 (ja) マイクロロッドを用いた分析用担体、及び該分析用担体を利用した分析方法
JP2006201035A (ja) 選択結合性物質固定化担体の製造方法
JP4259343B2 (ja) 選択結合性物質の固定化方法
JP2008249677A (ja) 液体導入用デバイス、固定ホルダおよび分析キット
JP2006078197A (ja) 選択結合性物質固定化担体
JP2007285927A (ja) 選択結合性物質固定化基材
JP2011101623A (ja) マイクロアレイ
JP2007256098A (ja) 選択結合性物質固定化担体の製造方法
JP2006184056A (ja) 選択結合性物質固定化担体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067016688

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006511211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2559768

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005720981

Country of ref document: EP

Ref document number: 200580009083.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2007178603

Country of ref document: US

Ref document number: 10593680

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005720981

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016688

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10593680

Country of ref document: US