WO2005085349A1 - ポリエステル樹脂組成物 - Google Patents

ポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2005085349A1
WO2005085349A1 PCT/JP2005/004142 JP2005004142W WO2005085349A1 WO 2005085349 A1 WO2005085349 A1 WO 2005085349A1 JP 2005004142 W JP2005004142 W JP 2005004142W WO 2005085349 A1 WO2005085349 A1 WO 2005085349A1
Authority
WO
WIPO (PCT)
Prior art keywords
layered silicate
weight
resin composition
polyester resin
polyester
Prior art date
Application number
PCT/JP2005/004142
Other languages
English (en)
French (fr)
Inventor
Kazuteru Kohno
Nobuaki Kido
Rei Nishio
Shunichi Matsumura
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP05720413A priority Critical patent/EP1724307A4/en
Priority to JP2006510800A priority patent/JPWO2005085349A1/ja
Priority to US10/591,423 priority patent/US20070191525A1/en
Publication of WO2005085349A1 publication Critical patent/WO2005085349A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only

Definitions

  • the present invention relates to a polyester resin composition comprising a polyester and a layered silicate modified with a specific organic phosphonium ion, a method for producing the same, and a molded article comprising the same. More specifically, a polyester resin comprising a polyester and a layered silicate modified with an organic phosphonium ion, in which the OH end group content in the composition is in a specific range, and the layered silicate is suitably dispersed and has excellent heat resistance
  • the present invention relates to a composition, a polyester resin composition capable of providing a molded article having excellent surface smoothness, a method for producing the same, and a molded article comprising the same.
  • Polyester is used in various applications, taking advantage of its properties such as mechanical properties, green moldability, dimensional stability, weather resistance, light resistance, and chemical resistance.
  • properties such as mechanical properties, green moldability, dimensional stability, weather resistance, light resistance, and chemical resistance.
  • a composition in which a layered compound is dispersed on a nanoscale in a thermoplastic resin, a so-called nanocomposite has recently attracted attention.
  • nanocomposites various properties have been improved, such as high heat resistance, high elasticity, flame retardancy, and improved gas barrier performance. (Sumi Nakajo, “The World of Nanocomposites,” Industrial Survey Association, 2000).
  • Nanocomposite In order to form, it is necessary to disperse the layered compound on a nanoscale, and various methods have been tried. Unlike the widely known examples of polyamides, it is difficult to disperse them to the same extent as polyamides, especially in the case of nanocomposites using polyester, and various proposals have been made for the manifestation of effects in nanocomposites. For example, it is disclosed that an exchangeable cation such as an ammonium salt is used as an organically modified layered compound when producing a polyester composite material in which the layered compound is dispersed at a single layer level. (Japanese Patent Application Laid-Open No. 2000-0—5 3 8 4 7).
  • a layered silicate in which an organic modifying group for improving the compatibility with the resin to be mixed is devised. Open layered silicates between layers are commonly used.
  • An object of the present invention is a resin composition comprising a polyester and a layered silicate modified by 60 to 100% with a specific organic phosphonium ion, wherein the layered silicate is used as an inorganic ash in an amount of 0.00.
  • An object of the present invention is to provide a molded article such as a film or a fiber having excellent surface smoothness.
  • Another object of the present invention is to provide a method for producing the polyester resin composition, in which a polyester is polymerized in the presence of a layered silicate modified with 60 to 100% by an organic phosphonium ion and further melt-mixed. is there.
  • the layered silicate is well dispersed, thereby improving the physical properties such as heat resistance, high elastic modulus and gas barrier properties, and furthermore, film / fiber etc. having excellent surface smoothness. Can be obtained.
  • FIG. 1 is an electron micrograph of the polyester resin composition of Example 5.
  • FIG. 2 is an electron micrograph of the polyester resin composition of Example 6.
  • FIG. 3 is an electron micrograph of the polyester resin composition of Example 7.
  • FIG. 4 is an electron micrograph of the polyester film of Example 10. Preferred embodiments of the invention
  • Layered silicate for use in the present invention is A l, M g, 2 sheets of S i 0 4 tetrahedral sheet structure the shape of the layered silicate sandwiching the octahedral sheet structure containing L i, etc.
  • Examples include: savonite, hectorite, fluorine hectorite, montmorillonite, bidetite, smectite-based clay minerals such as stevensite, L-type fluorine teniolite, Na-type fluorine teniolite, Na-type tetrasilicon fluoromica, L i Type 4 silicon fluorine mica Swellable synthetic mica, vermiculite, fluorinated vermiculite, halothite, swellable My force and the like.
  • smectite clay minerals such as montmorillonite and hectorite
  • layered silicates such as Li-type teniolite and Na-type tetrasilicon fluorine mica are preferred.
  • the organic phosphonium ion is represented by the following formula (1).
  • R 2, R 3 ⁇ Pi 1 4 are each independently a hydrocarbon group comprising a hydrocarbon group or the terrorist atoms of 1 to 3 0 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include an alkyl group and an aromatic group.
  • As the alkyl group an alkyl group having 1 to 18 carbon atoms is preferable.
  • Methyl, ethyl, n-propyl, n_butyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-pentadecyl ⁇ ⁇ , ⁇ - Hexadecyl, ⁇ -heptadecyl, and ⁇ -octadecyl can be exemplified.
  • aromatic group examples include a phenyl group, a biphenyl group, a benzyl group and a tosyl group.
  • 1 ⁇ to 1 4 are methyl which does not adversely affect their heat stability, Echiru, fluorine, may have good UNA substituent such as chlorine.
  • organic phosphonium ion examples include tetraethylphosphonium, triethynolevendiphosphonium, tetraptinolephosphonium, and tetraota.
  • Tylphosphonium trimethyldecylphosphonium, trimethyldodecylphosphonium, trimethylhexadecylphosphonium, trimethyloctadecylphosphonium, tributylmethylphosphonium, triptyldodecylphosphonium, tributyloctane Decylphosphonium, Trioctylethylphosphonium, Tributylhexadecylphosphonium, Methyltriphenylphosphonium, Ethyl triphenylphosphonium, Diphenyl / Regiooctinolephosphonium, Triphenyltinoloctane Decylphosphonium, tetraphenylphosphonium, tript
  • hydrocarbon group containing a hetero atom examples include a hydroxy-substituted hydrocarbon group having 1 to 30 carbon atoms, an alkoxy-substituted hydrocarbon group, and a phenyloxy-substituted hydrocarbon group.
  • the following substituents and their isomers can be exemplified. (Where a and b are integers of 1 or more and 29 or less, and the number of carbon atoms in the substituent is 30 or less.) Hydroxy-substituted hydrocarbon group Anorecoxy-substituted hydrocarbon group ⁇ f ⁇ CH 2- ⁇ ⁇ O- (-CH 2 ") CH 3
  • organic phosphonium ions can be used alone or in combination. .
  • the layered silicate of the present invention is ion-exchanged by 60% to 100% with respect to the cation exchange capacity of the layered silicate by the organic phosphonium ion.
  • the cation exchange capacity of the layered silicate can be measured by a conventionally known method, and the ion exchange capacity of the layered silicate used in the present invention is 0.2 to 0.2 of the aforementioned layered silicates. Those having about 3 meq / g can be suitably used. A cation exchange capacity of 0.2 meq / g or more is advantageous in terms of dispersibility because the introduction rate of organic phospho-pium ions is increased. Conversely, those having 3 meq. Zg or less are preferred for producing the layered silicate of the present invention because the introduction of the organic phosphonidion is facilitated.
  • the cation exchange capacity is more preferably 0.8 to 1.5 meq Zg.
  • the cation exchange rate can be calculated by the following equation (2).
  • Cation exchange rate (%) ⁇ W f / (1 -W f ) ⁇ / (M. Rg / M s JX 100 (2)
  • W f is the weight loss rate of the layered silicate measured at 120 ° C. to 800 ° C. at a heating rate of 20 ° C./min by a differential thermal balance
  • M. rg is the molecular weight of the onium ion
  • M si Represents the molecular weight per charge in the cation portion of the layered silicate.
  • the molecular weight per charge in the cation portion of the layered silicate is a value calculated as the reciprocal of the cation exchange capacity (unit: eq / g) of the layered silicate. )
  • the organic phosphonium enters between the layers and the layers spread.
  • the average of this interlayer distance can be calculated from the peak position by X-ray diffraction.
  • the preferred average interlayer distance is at least 1.5 nm. If it is less than 1.5 nm, the subsequent dispersion in the polyester resin may be difficult.
  • a conventionally known method can be used as a method for exchanging the cation of the layered silicate with an organic phosphonium ion. Specifically, this is a method in which a layered silicate as a raw material is dispersed in a polar solvent such as water, ethanol, or methanol, and a solvent is added thereto, and an organic phosphonium ion is added thereto, or a solution containing an organic phosphonium is added. .
  • the concentration of the layered silicate is preferably in the range of 0.1 to 5% by weight, and the concentration of the layered silicate is preferably reacted with the dissolved organic phosphonium. 0.
  • the concentration of the lamellar salt is more preferably 0.5 to 4.5% by weight, and more preferably 1 to 4% by weight.
  • the temperature during the reaction may be such that the dispersion of the layered silicate has a viscosity low enough to stir.For example, in the case of water, the cation exchange is performed at about 20 to 100 ° C. It is preferable to carry out the reaction.
  • the unmodified organic phospho- ⁇ It is preferable to sufficiently wash to remove the mions.
  • the temperature rises to 250 ° C or higher, so if there are components that volatilize or evaporate at this temperature, the properties of the subsequent polyester resin composition will be adversely affected.
  • the washing method is not particularly limited, and examples thereof include washing an organic phosphonium such as an organic solvent with a good solvent.
  • the presence or absence of phosphonium ions that did not participate in cation exchange for the layered silicate of the present invention can be determined by a conventionally known method such as X-ray fluorescence or atomic absorption spectrometry, by using a counter ion of the organic phosphonium used as a raw material. It can be confirmed by measuring the presence of
  • a cation exchange rate of 60% or more is advantageous in terms of dispersibility since the introduction rate of organic phosphonium ions into the layered silicate is increased.
  • the cation exchange rate is 100% or less. This is advantageous in terms of thermal stability because there is no ion of the organic phosphonium ion mixture used as a raw material.
  • the cation exchange rate is more preferably from 65 to 99%, and even more preferably from 70 to 99%.
  • the layered silicate according to the present invention has a temperature of 5% by weight or less measured by a differential thermal balance at a heating rate of 20 ° C. Zmin in a nitrogen atmosphere, and the temperature is 310 ° C. or more. Is preferred! / ,. If the temperature at the time of 5% by weight weight loss is lower than 310 ° C, the resin will have properties such as re-agglomeration of layered silicate and decomposition gas generated due to a large angle of separation when melt-mixed with polyester. May be reduced. From such a point, the temperature at the time of 5% by weight weight reduction is preferably as high as possible, but in the layered silicate of the present invention, it is preferably at least 330 ° C.
  • the temperature is at least 40 ° C, more preferably at least 350 ° C.
  • the layered silicate used in the production of the resin composition of the present invention preferably has a specific surface area of 2.5 to 20 Om 2 / g.
  • the specific surface area can be determined by the BET method using nitrogen. By making the specific surface area 2.5 m 2 / g or more, the efficiency of dispersion when dispersing in the resin is improved, and a polyester resin composition of a layered silicate and a polyester resin which are uniformly dispersed well can be obtained. Can be.
  • the specific surface area more preferably from 3 to 10 Om 2 / g, more preferably 4 ⁇ 80m 2 / g, more preferably 5 to 50 m 2 / g.
  • the layered silicate having such a large specific surface area can be preferably produced by freeze-drying a layered silicate exchanged with an organic phosphonium from a medium having a melting point of -20 ° C or more and less than 100 ° C. it can.
  • the medium used for freeze-drying preferably has a melting point of not less than 20 ° C. If the melting point is lower than 120 ° C, the freezing temperature of the medium will be too low, so the freezing temperature will be low and the efficiency of removing the medium may be low.
  • Preferred media used for lyophilization include water, benzene, cyclohexane, cyclohexanone, benzyl alcohol, P-dioxane, cresol, P-xylene, acetic acid, and cyclohexanol. .
  • the dispersion liquid of the layered silicate used for freeze-drying may be the one used for the cation exchange reaction or the medium in which the layered silicate after the cation exchange reaction is well dispersed.
  • the state in which the silicate layer of the layered silicate is peeled off in the case of a medium in which the layered silicate is well dispersed, the state in which the silicate layer of the layered silicate is peeled off. Since the freeze-drying can be performed while maintaining the specific surface area, the specific surface area can be greatly increased. Freeze-drying can be performed by freezing the dispersion of layered silicate and then removing the medium under reduced pressure, but is usually performed at a layered silicate concentration of from! To 70% by weight. When the layered silicate concentration is lower than 1%, the dispersion state before drying is preferable, but handling after drying may be complicated or productivity may be reduced.
  • the layered silicate concentration before freeze-drying is preferably 5 to 60% by weight, more preferably 10 to 50% by weight, and still more preferably 12 to 40% by weight.
  • the polyester resin used in the present invention is a polycondensation of a dicarboxylic acid and / or a derivative thereof and a diol, or a hydroxycarboxylic acid, or a copolymer thereof.
  • the dicarboxylic acid components of polyester include terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid / levonic acid, 1,5-naphthalenedicarboxylic acid, and 4 4,4'-biphenyldicarboxylic acid, 2,2, -biphenyldicarboxylic acid, 4,4, diphenyletherdicarboxylic acid, 4,4, diphenylmethanedicarboxylic acid, 4,4, diphenylsulfonedicarboxylic acid Aromatic dicarboxylic acids such as 4,4,4-diphenylisopropylidenedicarboxylic acid, 5-nadiums
  • diol examples include ethylene glycol, 1,2-propylene glycol, 1: 3-propylene glycolone, 1,3-butanediol, 1,4-butanediol, and 2,2-dimethylpropanediol, neopentyl glycol, 5-pentadiol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2 — Aliphatic diols such as cyclohexane dimethanol, trimethylene glycol, tetramethylene glycol, pentamethylene glycol, otatamethylene glycol, diethylene daricol, dipropylene daricol, and hydroquinone, resono resinole, Bisphenol A and 2, 2-bis (2, Roxyethoxyphenyl) Diphenols such as propane.
  • hydroxycarboxylic acids examples include p-hydroxybenzoic acid, .p- (hydroxyethoxybenzoic acid, 6-hydroxy-12-naphthoic acid, 7-hydroxy-12-naphthoic acid, 4,1-hydroxy-1-biphenyl-14 —Aromatic hydroxycanolevonic acids such as carboxylic acids.
  • polyesters are aromatic polyesters. Specifically, polyethylene terephthalate (PET), polytrimethylene terephthalate, polybutylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene 1,2,6-naphthalate, polybutylene naphthalate, polyethylene isophthalate And terephthalate copolymer and p-hydroxybenzoic acid-16-hydroxy-12-naphthoic acid copolymer. Among them, polyester is polyethylene terephthalate, poly trimethylene terephthalate, polybutylene terephthalate And at least one selected from the group consisting of polyethylene and polyethylene 1,2,6-naphthalate.
  • PET polyethylene terephthalate
  • polytrimethylene terephthalate polybutylene terephthalate
  • polycyclohexylene dimethylene terephthalate polyethylene 1,2,6-naphthalate
  • polybutylene naphthalate polyethylene isophthalate And tere
  • a resin composition comprising a layered silicate modified with a polyester and an organic phosphonidion contains 0.01 to 20% by weight of the layered silicate as an inorganic ash.
  • Inorganic ash is a value calculated from the residue of burning up to 1000 ° C in air. It is preferable that the content as inorganic ash accounts for 0.01% by weight or more in order to exhibit the effect of adding the layered silicate. Further, it is preferable that the content is 20% by weight or less in performing melt molding of the obtained polyester resin composition.
  • the content as inorganic ash is more preferably from 0.1 to 12% by weight, and even more preferably from 0.4 to 8% by weight.
  • the polyester resin composition of the present invention has an OH terminal group content of 0.1 to 45 equivalents / ton in the composition.
  • the assignment of NMR can be confirmed by known literature.
  • This OH terminal group content is lower than the OH terminal group content of the polyester obtained by ordinary polymerization. Although the details are unknown, this indicates that some of the hydroxyl groups of the polyester have some interaction with the layered silicate, including the dispersibility and elastic modulus of the layered silicate. It is considered that this contributes to the improvement of the physical characteristics.
  • the terminal group concentration of the polyester should reflect the number average molecular weight of the polyester.
  • the total terminal group concentration in the case of polyester, (H end groups and CO OH end groups) are layered silicate-free poly Less than 90% of Esthenore. This is presumably because the interaction between a part of the OH groups and the layered silicate reduces the number of OH groups that should have been terminal. Therefore, the total terminal group concentration (OH terminal group and CO OH terminal group in the case of polyester) is more preferably 85% or less of polyester without layered silicate, and is preferably 80% or less. Is more preferable.
  • the amount of the OH terminal group is less than 0.1 equivalent Z ton, the interaction becomes too large and the melt viscosity becomes too large, or when the polyester itself has an excessive CO OH terminal group. Therefore, in the former case, the melt molding is difficult, or in the latter case, the chemical stability such as hydrolysis resistance of the polyester itself is impaired, which is not preferable. If it is more than 45 equivalents / ton, the interaction between the phyllosilicate and the OH terminal group decreases, and the effect of improving the physical properties such as the elastic modulus decreases, which is not preferable.
  • the OH terminal group amount is more preferably 1 to 40 equivalents / ton for the above-mentioned reason. ⁇ 35 equivalent Z ton force S is more preferable, and 1-30 equivalent Z ton is more preferable.
  • the method for producing the resin composition of the present invention includes: (A) a method in which dicarboxylic acid or an ester derivative thereof and aliphatic glycol Z or hydroxycarboxylic acid are ion-exchanged with an organic phosphonium ion at a ion exchange capacity of 60 to 100% By polymerizing in the presence of the exchanged layered silicate, a polyester resin composition having 0.01 to 30 parts by weight of the layered silicate with respect to 100 parts by weight of the polyester is obtained.
  • (B) It is preferable to carry out the production through a step of melt-kneading at a temperature equal to or higher than the melting point of the polyester at a shear rate of 250 / s or higher.
  • Polymerization of polyester is a dicarboxylic acid mainly composed of aromatic dicarboxylic acid, or The exposed ester conductor is reacted with the aliphatic glycol. Alternatively, hydroxycarboxylic acid is reacted.
  • dicarboxylic acid, aliphatic glycol and hydroxycarboxylic acid used include the compounds described above.
  • This is a reaction known to those skilled in the art, such as an esterification reaction in which a dicarboxylic acid and a glycol are heated under normal pressure or under pressure, or a dicarboxylic acid ester-forming derivative and a glycol are heated under normal pressure or under pressure.
  • the process consists of a transesterification reaction and a polycondensation reaction of the reaction product under reduced pressure while removing the glycol component.
  • the organically modified layered silicate can be added at any stage of the polyester polycondensation process. It is particularly preferable to add the compound at the start of the polycondensation reaction after the transesterification reaction.
  • the affinity between the layered silicate and the polyester is improved, and as a result, the layered silicate layer is expanded in the polyester, and the next step (B)
  • the particles can be more uniformly dispersed. Further, since the degree of polymerization can be sufficiently increased in the step (A), it is possible to alleviate the decrease in the molecular weight of the polyester resin obtained in the step (B).
  • the layered silicate modified with the organic phosphonium ion can be added in the form of a powdery slurry.
  • powder When powder is added, it is effective because the step of removing the solvent can be omitted, but it is effective, however, depending on the addition method, the organically modified layered silicate reaggregates and causes poor dispersibility. .
  • the addition in the form of a slurry is preferable because air contained in the powder can be removed in advance, and the mixture with the reactant after transesterification becomes easy.
  • a solvent when adding in slurry form It is particularly preferable to use a diol constituting the polyester to be produced. When other solvents are used, they may be separated from the glycol component or incorporated into a part of the polyester structure.
  • the method for producing the slurry is not particularly limited, but it is preferable to perform physical dispersion using, for example, a ball mill, a medium stirring type mill, a homogenizer and ultrasonic treatment.
  • the concentration of the layered silicate in the slurry is preferably 0.05 to 90% by weight. When the content is less than 0.05% by weight, the amount of glycol becomes too large, and the subsequent removal is complicated, which is not preferable. If the content is more than 90% by weight, it is difficult to prepare a slurry suitable for addition.
  • the concentration of the layered silicate in the slurry is more preferably from 0.1 to 70% by weight, and even more preferably from 1 to 50% by weight.
  • the layered silicate has a specific surface area sufficient for dispersion in the solvent.
  • the specific surface area when the three-point method is used using nitrogen gas is preferably at least lm 2 Zg, more preferably at least 2 m 2 / g.
  • the interlayer distance d A calculated from the diffraction peak of X-ray scattering 2. 0 nm or more layered silicate 50% From the power line scattering peak and its half width, the following Scherrer's equation (3)
  • the average number of layers N A of the layered silicate calculated by the following is 7 or less! /.
  • the interlayer distance of the layered silicate can be determined by X-ray scattering using the scattering angle of a scattering peak caused by scattering between the layers of the layered silicate. If the phyllosilicate is exfoliated to a single layer, no peak will be detected in X-ray scattering. In this case, the interlayer distance is infinite. The larger the interlayer distance, the more easily the layered silicate is likely to be peeled particularly in step B, which is preferable in terms of dispersion. It is more preferably at least 2.5 nm.
  • Ratio of layered silicate interlayer distance d A satisfy the above 2.
  • O nm can be calculated from the peak area ratio that put in X-ray diffraction. That is, when the ratio of the sum of the peak intensities of the peaks satisfying the interlayer distance d A of 2.0 nm or more to the total area of the peaks attributed to the diffraction between the layers of the layered silicate is 50% or more. Preferably, there is. If the content is 50% or less, the dispersibility of the layered silicate in the final composition is insufficient. For example, when formed into a molded product, the physical strength of the molded product is undesirably reduced. It is more preferably at least 55%, further preferably at least 60%.
  • the average number of layers can be calculated by measuring the diffraction peak using X-ray diffraction, calculating the size of the crystallite from the above formula of Sche err er, and dividing by the interlayer distance.
  • Layered silicates that have completely separated and become a single layer do not appear in X-ray diffraction.
  • the interlayer distance is infinite and the number of layers is one. If no peak due to diffraction between layers is observed within the range observed by X-ray diffraction, the This satisfies that the layered silicate with a distance d A of 2. O nm or more is 50% or more and the average number of layers N A is 7 or less.
  • (B) a step of melt-kneading the polyester resin composition at a temperature equal to or higher than the melting point of the polyester at a shear rate of 250 / s or more, further converts the resin obtained in the step A) to a shear rate of 25
  • the desired polyester resin composition can be preferably obtained by melt-kneading with OZs or more.
  • the shear rate is obtained by the following equation (4).
  • extruders such as a single-screw extruder and a twin-screw extruder can be used. If the shear rate at that time is 25 OZs or less, the kneading ability is insufficient and the dispersibility of the layered silicate in the intended polyester resin composition is insufficient, which is not preferable.
  • a more preferred shear rate is 28 O / s or more, and further preferably 300 / s or more.
  • the temperature at the time of melt-kneading is preferably at least the flow start temperature of the polyester (glass transition temperature for amorphous resin, melting point for crystalline resin) or more and 350 ° C or less, and (flow start temperature + 5) ° C or more. It is more preferably 30 or less, more preferably (flow starting temperature + 10) ° C or more and 320 ° C or less. If the temperature is lower than the flow start temperature, melt molding becomes difficult, which is not preferable. On the other hand, if ⁇ is higher than 350 ° C, the ion-exchanged layered silicate is greatly decomposed, which is not preferable.
  • the interlayer distance d B calculated from the diffraction peak of the X-ray scattering is 50% or more of the layered silicate having a value of not less than 2 ⁇ ⁇ , and the above-mentioned Scherrer it is preferable that the average number of layers N B of the layered silicate calculated by the equation is 5 or less.
  • the distance d B which is the interlayer distance of the layered silicate, can be determined by X-ray scattering using the diffraction angle of the scattering peak caused by the scattering between the layers of the layered silicate.
  • the interlayer distance is infinite.
  • a more preferable interlayer distance is 2.5 nm or more.
  • the ratio of the layered silicate satisfying the interlayer distance d B of 2. O nm or more can be calculated from the peak area ratio in X-ray diffraction. That is, the ratio of the total peak area of the peaks where the interlayer distance d B satisfies 2.0 O nm or more to the total peak area attributed to diffraction between the layers of the layered silicate is 50%. It is preferable that it is above. If it is 50% or less, it indicates that the layered silicate is not sufficiently modified by the organic phosphonium. In such a case, the desired gas barrier properties and physical properties cannot be sufficiently improved, which is not preferable. It is more preferably at least 80%, even more preferably at least 90%, further preferably at least 95%.
  • the average number of layers N B is preferably a This is 5 or less.
  • the layered silicate in the present invention is obtained by removing calcium element from the above-mentioned natural 1 / or synthetic layered silicate, and the calcium content measured by X-ray fluorescence measurement is 0.5 as element ratio. % Is preferable.
  • Montmorillonite which is naturally calculated, contains alkali metal such as sodium ion and potassium ion, as well as alkaline earth metal such as calcium ion and magnesium ion between layers. When used, it is preferable to carry out a step for removing calcium ions. If the calcium content of the layered silicate exceeds 0.5% as an elemental ratio, coarse aggregated foreign substances such as 50 or more layered silicates are likely to be produced as by-products, requiring surface smoothness. When obtaining a molded product, a problem may occur in use.
  • the calcium content is preferably as small as possible.
  • the calcium content is more preferably 0.3% or less as an element ratio, and more preferably 0.1% or less.
  • water-soluble ammonium is not particularly limited to this, Examples include ammonium, ammonium nitrate, ammonium acetate, ammonium chloride, and brominated ammonium. Ammonium acetate and ammonium chloride are preferred from the viewpoint of versatility. More preferred is ammonium acetate. These water-soluble ammoniums are preferably used singly, but may be used in combination.
  • a layered silicate as a starting material is dispersed in ion-exchanged water.
  • the phyllosilicate concentration is in the range of 0.1 to 10 wt%.
  • the phyllosilicate concentration is in the range of 1 wt% to 5 wt%, more preferably 1.5 wt% to 3 wt%.
  • a solution containing an aliphatic ammonium salt or an aliphatic ammonium salt is added to the layered silicate dispersion solution. Thereafter, treatment with an organic phosphonium ion may be performed, or an aliphatic ammonium ion between the layers may be replaced with an alkali metal ion such as sodium salt sodium salt, salt sodium salt, etc. The treatment may be carried out with an organic phosphonion.
  • a layered silicate having an aliphatic ammonium ion between the layers is dispersed and suspended in ion-exchanged water, and the amount of the layered silicate is 1.
  • the addition is performed in the range of 0 to 10 equivalents. It is preferably in the range of 1.0 to 5.0 times, more preferably 1.0 to 2.0 times.
  • filter and wash well with ion-exchanged water After addition, filter and wash well with ion-exchanged water. At this time, the particles are dispersed in the ion-exchanged water as the washing is performed.
  • the organic phosphonium ion is added to support the organic phosphonium ion between the layers of the layered silicate.
  • the organic phosphonium salt is added in the range of 1.0 to 10 times equivalent to the ion exchange capacity of the layered phosphate. It is preferably in the range of 1.0 to 5.0 times, more preferably 1.0 to 2.0 times.
  • the polyester of the present invention In the tellurium composition, the quartz content is preferably 0.009% by weight or less.
  • natural montmorillonite may contain a silicon oxide compound, ie, quartz. Quartz is not modified by the usual method of modifying phyllosilicates, such as ion exchange with organic ions, and as a result, it cannot be sufficiently dispersed in the matrix, resulting in poor moldability and surface properties and defects, resulting in mechanical problems. May cause deterioration of physical properties. It is desirable to remove quartz from the layered silicate as much as possible, but it is difficult to remove it because the density is close to that of the layered silicate, and it may be observed in the final product.
  • Quartz contained in the polyester resin composition can be quantified by comparing the diffraction peak intensity of X-ray scattering with the peak intensity of the layered silicate.
  • the intensity of the analysis peak is proportional to the quartz content.
  • the calibration peak used can be created, for example, from the quartz content peak of known content (3.35 A) and the analytical peak of a layered silicate of known content (eg 4.48 A in the case of montmorillonite). It is calculated from the content of the layered silicate in the polyester resin composition, the peak intensity of quartz in X-ray scattering, and the peak intensity of the layered silicate.
  • the quartz content is 0.009% by weight or more, the surface properties may be reduced or a defect may be caused when a molded body is obtained. More preferably, the content is 0.008% by weight or less.
  • the method of removing quartz can be achieved by dispersing layered silicate mixed with quartz in a solvent, sedimenting quartz with higher density, and collecting the supernatant. If necessary, the supernatant can be concentrated and dispersed again in water, and the above procedure can be repeated to lower the quartz content.
  • the solvent used at this time is not particularly limited, but can disperse the layered silicate well.
  • a solvent may be used, for example, methanol 'ethanol', ethylene glycol, N-methylpyrrolidone, formamide, N-methylformamide, N, N-dimethylformamide, and water.
  • the concentration of the layered silicate in the solvent may be any concentration that selectively precipitates only quartz without increasing the viscosity of the solution excessively.
  • the layered silicate can be favorably dispersed by heating or the like.
  • the sedimentation and separation of quartz can be performed by using an ordinary centrifugal separator ⁇ decanter.
  • the polyester resin composition of the present invention can be used for the production of a molded article by injection molding or the like according to a conventionally known method, preferably for the production of a film or sheet by a melt film or by a melt spinning. it can.
  • the melt molding temperature is preferably in the range of the polyester resin's flow start temperature (glass transition temperature for amorphous resin, crystal '["green resin's melting point)) to 350 ° C or lower, and (flow start temperature + 5) °. C to 330 ° C or more, more preferably (flow starting temperature + 10) ° C or more and 320 ° C or less If the temperature is lower than the flow starting temperature, melt molding becomes difficult.
  • the layered silicate of the present invention is characterized by having excellent heat resistance, but even if the melt molding temperature is higher than 350 ° C., the ion-exchanged layered silicate is strongly decomposed. May be.
  • the stretching method include a conventionally known method, for example, a method of sequentially or simultaneously stretching in a uniaxial or biaxial direction.
  • the stretching temperature is preferably equal to or higher than the glass transition point of the resin composition and equal to or lower than 90 ° C, more preferably equal to or higher than the glass transition point of the resin composition and equal to or lower than 70 ° C, and further preferably, equal to or lower than 70 ° C. More than points Transition point + 60 ° C or less. If the stretching temperature is too low or too high, it is difficult to produce a uniform film, which is not preferable.
  • the stretching ratio is preferably 2 times or more and 100 times or less, more preferably 4 times or more and 70 times or less, and still more preferably 6 times or more and 50 times or less.
  • the temperature of the heat treatment is preferably from the glass transition point to the melting point of the polyester. A more suitable temperature is determined in consideration of the crystallization temperature of the obtained film and the physical properties of the obtained film.
  • the diffraction peak intensity between the layers of the layered silicate in the X-ray diffraction from the cross-sectional direction of the polyester film is expressed by the following formula (5)
  • fc is the orientation coefficient of - derived in scattering in the direction perpendicular to the layers of these layered silicate, Ku CO 3 2 ⁇ >. Can be calculated. Furthermore, according to equation (5), in the X-ray diffraction when X-rays are irradiated from the direction perpendicular to the cross section of the film, the azimuth angle ⁇ with respect to the direction perpendicular to the film surface is determined. It can be calculated by measuring the scattering intensity I c ( ⁇ ).
  • orientation coefficient fc is less than 0.8, the orientation of the layered silicate in the film plane is not sufficient, which is not preferable for realizing a film having a high elastic modulus. Also, the orientation The upper limit of the coefficient fc is 1 from its definition. The orientation coefficient fc is more preferably 0.85 or more, still more preferably 0.88 or more, and even more preferably 0.9 or more.
  • the method for producing is preferably an ordinary method, but preferably includes a method in which the polymer is melted by the flow of the polymer, discharged from the spinneret, and taken out to obtain Hl having a single-fiber fineness of 3.3 to 33 dtex. .
  • the melt spinning is performed at a take-up speed (spinning speed) of 10 to 600 mZ.
  • the obtained filament is appropriately subjected to a stretching operation. It is preferable to perform a stretching operation when the take-up speed is low.
  • the elongation ratio is about 2 to 20 times, and is from the glass transition temperature of the polymer to the crystallization temperature of the polymer, preferably from the glass transition temperature + 10 ° C.
  • the polyester fiber thus obtained is strengthened by the oriented layered silicate, and can be made into a high elastic modulus and high strength polyester fiber.
  • the shape of the spinneret used at the time of spinning there is no particular limitation on the shape of the spinneret used at the time of spinning, and any of a circular shape, an irregular shape, a solid shape, a hollow shape and the like can be adopted.
  • the average number Nc of layered silicates calculated from the line scattering peak and its half-value width by the Scerrer formula is 5 or less.
  • the polyester resin composition of the present invention From the polyester resin composition of the present invention, it is possible to obtain a film 1 in which the layered silicate is well dispersed and the surface smoothness of which is further excellent.
  • the surface roughness can be as low as 30 nm or less in average line roughness Ra, and it can be used for various applications such as magnetic tape and packaging films.
  • Cation exchange rate The cation exchange rate was determined from the weight loss rate when heated to 800 ° C at 20 ° C / min in an air atmosphere using a differential thermal balance TG 8120 manufactured by Rigaku Corporation using the following formula. .
  • M. rg is the molecular weight of the Oniumuion
  • M si layered silicate Represents the molecular weight per charge in the cation portion of the salt The molecular weight per charge in the cation portion of the layered silicate is calculated as the reciprocal of the cation exchange capacity (unit: eq / g) of the layered silicate Value.
  • the specific surface area was measured using a three-point method using N 2 gas in a QUANTUM CHROME iNOVAl 200 and calculated by dividing by the weight of the sample.
  • a weight ratio of the polyester resin to the inorganic ash of the layered silicate in the resin composition 20 g or more was added, dried at 180 ° C. for 5 hours, and the weight after drying was measured. Thereafter, the temperature was raised to 350 ° C by 10 ° C / min, and then to 620 ° C by 0.1 ° CZmin. The temperature was further raised to 1 000 ° C at 5 ° C / min, and the temperature was maintained for 5 hours to burn organic components. The weight was calculated from the following equation using the weight of the remaining components. Inorganic ash weight. /. 1 00
  • Interlayer distance and average number of layers of the layered silicate Calculated from the diffraction peak position using a powder X-ray diffractometer RAD-B manufactured by Rigaku Corporation. The average number of layers was calculated by calculating the crystallite size from the following equation and dividing by the interlayer distance. In addition, the calculation was performed assuming that the value of S ch er r er was 0.9.
  • D crystallite size
  • e measured X-ray wavelength
  • half-width
  • K Schehrerre constant
  • Reduced viscosity is a solution of phenol Z tetrachloroethane (weight ratio 4: 6), concentration 1. S gZd L temperature 35. Measured at C.
  • Quartz content Using a powder X-ray diffractometer (RAD-B) manufactured by Rigaku Corporation, the layered silicate modified with organic phospho-pium ion was measured, and the peak of quartz and the layered silicate were measured. It was calculated from the peak intensity ratio of the salt.
  • RAD-B powder X-ray diffractometer
  • the obtained composition had a terminal OH concentration of 30 equivalents / ton, a COOH concentration of 62 equivalents / ton, and an inorganic ash content of 1 Owt%.
  • Interlayer distance as measured by X-ray scattering d A is 2. 7 nm, average number of layers N A is 6. was 3. In X-ray scattering, no peak of the layered silicate attributed to an interlayer distance of 2 nm or less was observed. No other peaks of layered silicate attributed to insufficient reaction were observed.
  • the terminal OH concentration of the obtained composition was 7.6 eq / ton. 00 ⁇ 1 concentration is 1 It was 1.2 equivalents / ton and the inorganic ash content was 10 wt%.
  • the average interlayer distance d A measured by X-ray scattering was 2.7 nm, and the average number of layers N A was 5.5.
  • the terminal OH concentration of the obtained composition was 3.9 equivalents / ton, the COOH concentration was 7.3 equivalents / ton, and the inorganic ash content was 2 wt%.
  • the average interlayer distance d A measured by X-ray scattering was 2.7 nm, and the average number of layers N A was 5.0.
  • the obtained composition had a terminal ⁇ H concentration of 17.7 equivalents / ton, a COOH concentration of 27.4 equivalents / ton, and an inorganic ash content of 2 wt%.
  • the average interlayer distance d A measured by X-ray scattering is 2. 7 nm s average number of layers N A was 5.0.
  • Example 1 600 parts by weight of a poly (ethylene-1,6-naphthalene dicarboxylate) pellet having a reduced viscosity of 0.78 (dL / g) and 150 parts by weight of the polyester resin composition obtained in Example 1 Reduced viscosity by kneading using a two-way twin screw extruder (ZSK25) at an extrusion temperature of 2'80 ° C, a screw rotation speed of 280 rpm, an extrusion speed of 10 kg, and a shearing speed of 1800 / sec. A polyester resin composition of 0.68 (dL / g) was obtained.
  • ZSK25 two-way twin screw extruder
  • the terminal OH content of the obtained composition was 15.3 equivalents / ton, the terminal COOH amount was 36.3 equivalents / ton, and the inorganic ash content was 2 wt%.
  • the polyester resin composition was observed with a transmission electron microscope (Fig. 1). As shown, layered silicates are very Example 6
  • Example 5 Using only the polyester resin composition obtained in Example 4, except that polyethylene naphthalate was not added, using the same direction twin screw extruder (ZSK25) as in Example 5. Thus, a polyester resin composition was obtained.
  • the terminal OH content of the obtained composition was 9.8 eq / ton, the COOH content was 34.5 eq / ton, the reduction viscosity was 0.71 ((11 ⁇ ), the inorganic ash content was 21 % Deatta.
  • mean interlayer distance measured boss was by X-ray diffraction d B is 2. 7 nm, average number of layers N B is 3. 5.
  • FOG. 2 transmission electron microscope
  • Example 4 300 parts by weight of a poly (ethylene-1,6-naphthalene dicarboxylate) pellet having a reduced viscosity of 0.78 (d L / g) and 100 parts by weight of the polyester resin composition obtained in Example 4
  • a polyester resin composition was obtained using the same direction twin screw extruder (ZSK25) in the same manner as in Example 5 except for using.
  • the terminal OH content of the obtained composition was 31.4 equivalents / ton
  • the COOH amount was 37.7 equivalents / ton
  • the reduced viscosity was 0.72 dLZg
  • the inorganic ash content was 0.5 wt%. there were.
  • the average interlayer distance d B measured by X-ray diffraction 2.
  • the polyester resin compositions obtained in Examples 5 to 7 were dried at 180 ° C for 5 hours, melted at 300 ° C, and passed through a 1.3 mm slit die on a rotating cooling drum having a surface temperature of 80 ° C. Extrusion gave an unstretched film.
  • the unstretched film thus obtained was stretched 4 times at 150 ° C. in the film forming direction and in the direction perpendicular to the film forming direction, to obtain a biaxially stretched film having a thickness of 15 ⁇ . Further, the obtained -axially stretched film was heat-set at 205 ° C for 1 minute at a constant length to obtain a polyethylene naphthalate / layered silicate composite film. Table 1 shows the physical properties of the obtained film.
  • FIG. 4 shows an electron micrograph of the film obtained in Example 10. Comparative Example 1
  • Polyethylene mono-, 6-dicarboxynaphthalate resin without layered silicate (Terminal OH content is 52.8 equivalents / ton, COOH amount is 28.8 equivalents / ton, reduction viscosity 0.80 dL / g ) was melted and discharged in the same manner as in Example 6.
  • the terminal OH amount of the obtained polyester was 53.9 equivalents / ton, the COOH amount was 35.2 equivalents / ton, and the reduced viscosity was 0.72 dLZg. Comparative Example 2
  • pellets of poly (ethylene-1,2,6-naphthalenedicarboxylate) (reduced viscosity 0.78 dL / g) and the layered silicate obtained in Reference Example 4 were coaxially extruded with a coaxial extruder (We
  • the polyester resin composition was obtained by kneading using an RSK Z SK-25) at an extrusion temperature of 280 ° C, a discharge rate of 10 kgZhr, and a screw rotation speed of 280 rpm.
  • the obtained composition had a terminal OH concentration of 30 equivalents / ton, a COOH concentration of 48 equivalents / ton, and an inorganic ash content of 2 wt%.
  • Table 2 shows the physical properties of the obtained polyester resin composition. Observation of the resin composition with a transmission electron microscope reveals that the layered silicate is well dispersed without coarse ⁇ ft. When TEMZEDS measurement was performed here, calcium was not measured.
  • An organic modified layered silicate was prepared in the same manner as in Example 11 except that the modifying agent for the layered silicate in Example 11 was changed to the phosphonium salt obtained in Reference Example 3, to thereby prepare a polyester resin composition.
  • Table 2 shows the physical properties of the obtained polyester resin composition.
  • a cation-exchanged layered silicate was obtained in the same manner as in Reference Example 4 except that the step of putting the filtrate in an aqueous sodium chloride solution and removing the supernatant liquid by stirring was not performed.
  • the ion exchange rate was 82%.
  • the specific surface area of the product thus obtained was 7.0 m 2 / g. Furthermore, as a result of measurement by X-ray fluorescence measurement, the ratio of the element of calcium was less than 0.1%.
  • the dispersion prepared using the same method as in Reference Example 6 was dispersed by a bead mill. After removing the precipitate by decantation, a 5 / m filter was applied to remove coarse particles to obtain an aqueous dispersion. The concentration was 3.2% by weight.
  • a cation-exchanged layered silicate was obtained in the same manner as in Reference Example 6. Table 4 shows the physical properties of the layered silicates modified with each organic phosphonion.
  • Reference example 6 0.10 91.3 2.3 4.7
  • Poly (ethylene-1,2,6-naphthalate) (reduced viscosity 0 ⁇ 78 g / dL) was dried at 180 ° C for 6 hours, fed to an extruder and melted at 280 ° C.
  • Each of the layered silicates modified with the organic phosphoniums obtained in Steps 9 to 9 was supplied from a feeder and melt-kneaded to obtain a polyester resin composition containing 2% by weight of inorganic ash.
  • Table 5 shows the physical properties of the poly.ester resin composition thus obtained.
  • the polyester resin composition obtained in Examples 15-17 was dried at 180 for 5 hours, melted at 300 ° C., and passed through a 1.3 mm slit die at a surface temperature of 80. It was extruded on a rotating cooling drum of c to obtain an unstretched film.
  • the unstretched film thus obtained was stretched 4 times in the film direction and in the direction perpendicular thereto at a temperature of 150 ° C., respectively, to obtain a biaxially stretched film having a thickness of 15 ⁇ . Further, the obtained biaxially stretched film was heat-set at a constant length of 205 ° C. for 1 minute to obtain a polyethylene naphthalate / layered silicate composite film.
  • the obtained film thing Table 6 shows the properties.
  • a flask is charged with 250 parts by weight of 2,6-bis (hydroxyethyl) naphthalenedicarboxylate, 21 parts by weight of the layered silicate obtained in Reference Example 3, and 0.04 parts by weight of antimony trioxide.
  • the temperature was raised from 230 ° C to 290 ° C over 2 hours. Furthermore, the pressure was reduced from atmospheric pressure to 66.66 Pa at 290 ° C for 1 hour, and the polymerization was carried out for 1 hour.
  • the composition of poly (ethylene 2,6-naphthalenedicarboxylate) and layered silicate (poly ( A weight ratio of ethylene 2,6-naphthalenedicarboxylate) to inorganic components of 100: 7) was obtained.
  • the melting point of this composition was 265 ° C, and the reduced viscosity was 0.54 dLZg.
  • the obtained composition had a terminal OH concentration of 22 equivalents / ton and a COOH concentration of 35 equivalents / ton.
  • the interlayer distance d A measured by X-ray scattering was 2.6 nm, and the average number of layers N A was 6.2. No peak of layered silicate attributed to an interlayer distance of 2 nm or less was observed in X-ray scattering. No other peaks of layered silicate attributed to insufficient reaction were observed.
  • Example 22 Using a spinning apparatus having a spinneret hole diameter of 0.3 mm at a melting temperature of 300 ° C, a raw yarn was sampled at a speed of 33 mZ, and the resulting composition was taken at 7.9 at 150 ° C. The extension was doubled. The fineness of the obtained fiber was 6, 6 dte X, the strength was 6.0 cN Zd tex, and the Young's modulus was 31 GPa. Interlayer distance d c measured by X-ray scattering 2. 7 nm, the average layer speed N c is 4. was 4. Table 7 shows the physical properties of the obtained fiber.
  • Example 22 Using a spinning apparatus having a spinneret hole diameter of 0.3 mm at a melting temperature of 300 ° C, a raw yarn was sampled at a speed of 33 mZ, and the resulting composition was taken at 7.9 at 150 ° C. The extension was doubled. The fineness of the obtained fiber was 6, 6 dte X, the strength was 6.0
  • Example 23 The same operation as in Example 21 was performed except that the drawing temperature of the fiber was 160 ° C, the fineness of the obtained fiber was 6.6 dte X, the fiber strength was 5.296 cN / dtex, Young's modulus was 29 GPa. Table 7 shows the physical properties of the obtained fiber.
  • Example 23 The same operation as in Example 21 was performed except that the drawing temperature of the fiber was 160 ° C, the fineness of the obtained fiber was 6.6 dte X, the fiber strength was 5.296 cN / dtex, Young's modulus was 29 GPa. Table 7 shows the physical properties of the obtained fiber.
  • Example 23 The same operation as in Example 21 was performed except that the drawing temperature of the fiber was 160 ° C, the fineness of the obtained fiber was 6.6 dte X, the fiber strength was 5.296 cN / dtex, Young's modulus was 29 GPa. Table 7 shows the physical properties of the obtained fiber.
  • Example 24 The same operation as in Example 21 was carried out except that the layered silicate obtained in Reference Example 4 was used instead of the layered silicate obtained in Reference Example 3, and the result was 6.4 dte X. Yes, fiber strength was 5.4 cN / dte X, Young's modulus was 31 GPa. Table 7 shows the physical properties of the obtained fiber.
  • Example 24 the layered silicate obtained in Reference Example 4 was used instead of the layered silicate obtained in Reference Example 3, and the result was 6.4 dte X. Yes, fiber strength was 5.4 cN / dte X, Young's modulus was 31 GPa. Table 7 shows the physical properties of the obtained fiber.
  • Example 24 The same operation as in Example 21 was carried out except that the layered silicate obtained in Reference Example 4 was used instead of the layered silicate obtained in Reference Example 3, and the result was 6.4 dte X. Yes, fiber strength was 5.4 cN / dte X, Young's modulus was 31
  • Poly (ethylene-1,2,6-naphthalate) without layered silicate (Terminal OH content is 52.8 equivalents / ton, ⁇ 0011 amount is 28.8 equivalents / ton, reduced viscosity 0.78 g / dL ) was used to obtain a poly (ethylene-1,6-naphthalate) fiber in the same manner as in Example 21 except that the draw ratio was changed to 8.8 times.
  • the fineness of the obtained fiber was 5.39 dteX, the strength was 5.825 cNZdte t, and the Young's modulus was 28 GPa. Table 7 shows the physical properties of the obtained fiber. Comparative Example 4
  • Poly (ethylene 1,2,6-naphthalate) (terminal OH amount is 52.8 equivalents / ton, COOH amount is 28.8 equivalents / ton, reduced viscosity 0.78 g / dL)
  • Poly (ethylene 1,2,61-naphthalate) fiber was obtained in the same manner as in Example 22 except that the ratio was changed to 8.8 times.
  • the fineness of the obtained fiber was 5.28 dtex, the HI strength was 5.913 c ⁇ / ⁇ te ⁇ , and the Young's modulus was 27 GPa.
  • Table 7 shows the physical properties of the obtained fiber. Table 7
  • Example 21 Example 22
  • Example 23 Example 24 Comparative Example 3 Comparative Example 4 Layered silicate Reference Example 3 Reference Example 3 Reference Example 4 Reference Example 6 None None Terminal OH concentration (equivalent /

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Artificial Filaments (AREA)

Abstract

ポリエステルと、有機ホスホニウムイオンにより60~100%修飾された層状珪酸塩とからなる樹脂組成物であって、該層状珪酸塩を無機灰分として0.01~20重量%含み、OH末端基量が0.1から45当量/トンであるポリエステル樹脂組成物、その製造方法、およびそれからなる成形体。

Description

明 細 書 ポリエステル樹脂組成物 技術分野
本発明は、 ポリエステルと特定の有機ホスホニゥムイオンにより修飾された層 状珪酸塩とからなるポリエステル樹脂組成物、 その製造方法、 およびそれからな る成形体に関する。 さらに詳しくは、 ポリエステルと有機ホスホニゥムイオンに より修飾された層状珪酸塩からなり、 組成物における OH末端基量が特定範囲で あって、 層状珪酸塩が好適に分散され耐熱性に優れたポリエステル樹脂組成物、 さらに表面平滑性に優れた成形体を提供できるポリエステル樹脂組成物、 その製 造方法、 およびそれからなる成形体に関する。 従来技術 '
ポリエステルは機械特性、 成形' I生、 寸法安定性、 耐侯性、 耐光性、 耐薬品性等 の特性を生かし、 様々な用途で使用されている。 しかしながら、 近年、 技術の進 展に伴い、 使用される用途に応じて樹脂に対してより高度な特性が要求されるよ うになつてきた。 このような要求特性を満たす技術の一つとして、 熱可塑性樹脂 に層状ィヒ合物をナノスケールで分散させた組成物、 所謂ナノコンポジットが最近 注目されている。 ナノコンポジットを形成することにより、 高耐熱化、 高弾性化、 難燃化、 ガスバリア性能の向上等、 様々な特性の向上が実現している (中条 澄 著 「ナノコンポジットの世界」、 工業調査会、 2 0 0 0年)。 ナノコンポジット を形成するためには、 層状化合物をナノスケールで分散させる必要があり、 様々 な方法が試みられている。 広く知られているポリアミドの例とはことなり、 特に ポリエステルを使用したナノコンポジットではポリアミドと同程度に分散させる ことが困難であり, ナノコンポジットでの効果発現のための各種提案がなされて いる。 例えば、 層状化合物が単層レベルで分散したポリエステルの複合材料を製 造する際に、 ァンモニゥム塩等の交換性陽イオンを層状化合物の有機変性体に使, 用することが開示されている (特開 2 0 0 0— 5 3 8 4 7号公報)。 このように ポリエステル系のように層状珪酸塩が分散しにくい系で良好な分散性を実現する ためには、 混合される樹脂への相溶性を向上させる有機修飾基が工夫された層状 珪酸塩や層間の開いた層状珪酸塩が一般に使用される。
また、 その混練方法の検討もなされている。 例ぇば層間距離が1 5〜3 5 で ある層状珪酸塩をポリエステル樹脂に溶融混合して 5〜 2 0層の層構造を保持し ながら均一に分散させたポリエステル樹脂組成物の記載がある (特開 2 0 0 1— 2 6 1 9 4 7号公報)。 これらの分散プロセスは高温、 高剪断等の条件下であり、 分散時劣化しないだけの耐性を持った層状珪酸塩を使用することが、 ポリエステ ル樹脂組成物の物性低下を抑制するためにも必要である。 発明の開示
本発明の目的はポリエステルと、 特定の有機ホスホニゥムイオンにより 6 0〜 1 0 0 %修飾された層状珪酸塩とからなる樹脂組成物であって、 該層状珪酸塩を 無機灰分として、 0 . 0 1〜2 0重量%含み、 OH末端基量が 0. 1から 4 5当 量/トンである耐熱性に優れたポリエステル樹脂組成物、 その製造方法、 および それからなる表面平滑性に優れたフィルムや繊維等の成形体を提供することにあ る。
本発明の他の目的は、 有機ホスホニゥムイオンにより 6 0〜: L 0 0 %修飾され た層状珪酸塩の存在下でポリエステルを重合し、 さらに溶融混合させる該ポリェ ステル樹脂組成物の製造方法にある。
本発明のポリエステル樹脂組成物は層状珪酸塩が良好に分散しており、 それよ り耐熱性、 高い弾性率、 ガスバリア性などの物性を向上させ、 さらには表面平滑 性に優れたフィルムゃ繊維等の成形品を得ることができる。
本発明のさらに他の目的および利点は、 以下の説明から明らかになろう。 図面の簡単な説明
図 1は実施例 5のポリエステル樹脂組成物の電子顕微鏡写真である。
図 2は実施例 6のポリエステル樹脂組成物の電子顕微鏡写真である。 ' 図 3は実施例 7のポリエステル樹脂組成物の電子顕微鏡写真である。
図 4は実施例 1 0のポリエステルフィルムの電子顕微鏡写真である。 発明の好ましい実施形態
本発明で使用する層状珪酸塩は、 A l , M g , L i等を含む八面体シート構造 を 2枚の S i 04四面体シート構造が挟んだ形の層状珪酸塩であり、 具体的には、 サボナイト, へクトライト、 フッ素へクトライト、 モンモリ口ナイト, バイデラ ィト、 スチブンサイト等のスメクタイト系粘土鉱物、 L i型フッ素テニォライト、 N a型フッ素テニオライト、 N a型四珪素フッ素雲母、 L i型四珪素フッ素雲母 等の膨潤性合成雲母、 バーミキユライト、 フッ素バーミキユラィト、 ハロサイト、 膨潤性マイ力等を挙げることができる。 またこれらは、 天然のものでも、 合成の ものでも構わない。 これらのうち、 陽イオン交換容量などの点から、 モンモリロ ナイト, へクトライト等のスメクタイト系粘土鉱物、 L i型フッ素テニォライト、 N a型四珪素フッ素雲母等の層状珪酸塩が好ましい。
有機ホスホニゥムイオンは、 下記式 ( 1 ) で示される。
Figure imgf000006_0001
( 1 )
(式中、 R 2、 R 3及ぴ1 4は、 それぞれ独立に、 炭素数 1 〜 3 0の炭化 水素基またはへテ口原子を含む炭化水素基である。)
炭素数 1 〜 3 0の炭化水素基としては、 アルキル基、 芳香族基を挙げることが できる。 アルキル基としては、 炭素数 1 〜 1 8のアルキル基が好ましく、 メチル、 ェチル、 n—プロピル、 n _プチル、 n—ドデシル、 n—トリデシル、 n—テト ラデシル、 n—ペンタデシ Λ^、 η—へキサデシル、 · η—ヘプタデシル、 および η ーォクタデシルを例示することができる。 また、 芳香族基としては、 フエニル基、 ビフエ-ル基、 ベンジル基、 トシル基などを例示することができる。 1^〜1 4 は、 それらの熱安定性に影響を及ぼさないメチル、 ェチル、 弗素、 塩素などのよ うな置換基を有してもよい。
このような有機ホスホニゥムイオンの具体例としてはテトラェチルホスホニゥ ム、 トリェチノレベンジ^ホスホニゥム、 テトラプチノレホスホニゥム、 テトラオタ チルホスホニゥム、 トリメチルデシルホスホニゥム、 トリメチルドデシルホスホ 二ゥム、 トリメチルへキサデシルホスホ-ゥム、 トリメチルォクタデシルホスホ 二ゥム、 トリブチルメチルホスホ-ゥム、 トリプチルドデシルホスホニゥム、 ト リブチルォクタデシルホスホニゥム、 トリオクチルェチルホスフォニゥム、 トリ ブチルへキサデシルホスフォニゥム、 メチルトリフエ-ルホスホ-ゥム、 ェチル トリフエ二ノレホスホニゥム、 ジフエェ /レジオクチノレホスホニゥム、 トリフエ二ノレ ォクタデシルホスホニゥム、 テトラフエ-ルホスホ-ゥム、 トリプチルァリルホ スフォユウムなどが挙げられる。
ヘテロ原子を含む炭化水素基の例としては、 炭素数 1〜 3 0のヒドロキシ置換 炭化水素基、 アルコキシ置換炭化水素基、 およぴフヱノキシ置換炭ィ匕水素基が拳 げられ、 好適には、 以下のような置換基おょぴその異性体を例示することができ る。 (ここで下記式中、 aおよび bは 1以上 2 9以下の整数であり、 置換基中で の炭素数が 3 0以下になる整数である。) ヒドロキシ置換炭化水素基
Figure imgf000007_0001
Figure imgf000007_0002
ァノレコキシ置換炭化水素基 ~ f~ CH2-^ ~ O- (- CH2") CH3
a b
• フエノキシ置換炭化水素基:
Figure imgf000008_0001
上述した有機ホスホ-ゥムイオンは、 単独でも組み合わせても用いることがで さる。.
本発明の層状珪酸塩は、 こうした有機ホスホ-ゥムイオンにより、 層状珪酸塩 の陽イオン交換能に対して 60〜: L 00%イオン交換されている。 層状珪酸塩の 陽イオン交換能は、 従来公知の方法で測定可能であるが、 本発明で使用される層 状珪酸塩のイオン交換能としては、 先述の層状珪酸塩の内、 0. 2〜3ミリ当量 /g程度のものが好適に使用可能である。 陽イオン交換能が、 0. 2ミリ当量/ g以上であるほうが、 有機ホスホ-ゥムイオンの導入率が高くなるために分散性 の点で有利である。 逆に 3ミリ当量 Zg以下のものの方が、 有機ホスホニゥムィ オンの導入が容易となるために本発明の層状珪酸塩を製造する上で好ましい。 陽 イオン交換能としては、 0. 8〜1. 5ミリ当量 Zgであることがさらに好まし い。
こうした陽イオンの交換率は、 下記式 (2) によって算出することができる。 陽イオン交換率 (%) = {Wf/ (1 -Wf)} / (M。r g/Ms J X 100 (2)
(Wfは 20°C/m i nの昇温速度で 120°Cから 800°Cまで測定した層状珪 酸塩の示差熱天秤による重量減少率、 M。rgは該ォニゥムイオンの分子量、 Ms i は層状珪酸塩の陽イオン部分における 1電荷あたりの分子量を表す。 層状珪酸塩 の陽ィオン部分における 1電荷あたりの分子量は、 層状珪酸塩の陽ィオン交換容 量 (単位: e q / g ) の逆数で算出される値である。)
有機ホスホニゥムイオンで層状珪酸塩の陽イオンを交換することにより、 層間 に有機ホスホニゥムが入り込み、 層間が広がる。 この層間距離は X線回折による ピーク位置からその平均の計算が可能である。 好ましい平均層間距離は 1 . 5 n m以上である。 1 . 5 n m以下であるとこの後のポリエステル樹脂中への分散が 困難となることがある。
' 有機ホスホニゥムイオンで層状珪酸塩の陽イオンを交換する方法としては、 従 来公知の方法が可能である。 具体的には水、 エタノール、 メタノールなどの極性 ,溶媒に原料となる層状珪酸塩分散させておき、 そこへ、 有機ホスホ-ゥムイオン を添加する、 あるいは、 有機ホスホニゥムを含む溶液を添加する方法である。 修 飾反応に好ましい濃度としては、 層状珪酸塩の濃度として、 0 . 1〜5重量%で、 溶解した有機ホスホニゥムと反応させることが好ましい。 0 . 1重量0 /0よりも濃 度が低い場合には、 溶液全体の量が多くなり過ぎ、 取り扱う上で好ましくない場 合がある。 5重量%を超える場合には、 層状珪酸塩の分散液の粘度が高くなりす ぎるため、 陽イオン交換率が低下することがある。 層状连酸塩の濃度としては、 0 . 5〜4 . 5重量%がさらに好ましく、 1〜 4重量%がより好ましい。 反応時 の温度としては、 層状珪酸塩の分散液が攪拌するのに充分低い粘度を有すればよ く、 例えば、 水の場合には、 概略 2 0〜1 0 0 °C程度で陽イオン交換反応を行う ことが好ましい。
こうして得られた修飾後の層状珪酸塩は反応終了後、 未反応の有機ホスホ-ゥ ムィオンを取り除くため十分に洗浄することが好ましい。 ポリエステル中に分散 させる際には 2 5 0 °C以上の高温となるため、 この温度で揮発もしくは^军する 成分があった場合、 その後のポリエステル樹脂組成物の物性に悪影響を及ぼすか らである。 洗浄方法としては特に限定するものではないが、 例えば有機溶媒等の 有機ホスホニゥムの良溶媒洗浄することが挙げられる。
さらに、 本発明の層状珪酸塩に対して陽イオン交換に関与しなかったホスホニ ゥムイオンの有無は、 蛍光 X線や、 原子吸光分析などの従来公知の方法で、 原料 に使用した有機ホスホニゥムの対イオンの有無を測定することなどから確認する ことが可能である。
陽イオン交換率が 6 0 %以上であること力 層状珪酸塩に対する有機ホスホニ ゥムイオンの導入率が高くなるために分散性の点で有利である。 陽イオン交換率 は 1 0 0 %以下であること力 原料に使用した有機ホスホニゥムイオンィヒ合物の 対ィオンが存在しなレ、ために熱安定性の点で有利である。 陽ィオン交換率として は、 6 5〜9 9 %であることがさらに好ましく、 7 0〜9 9 %であることがより 圩ましい。
本発明における層状珪酸塩は、 窒素雰囲気下、 2 0 °CZm i nの昇温速度で示 差熱天秤によつて測定した 5重量%重量減少時の温度が、 3 1 0 °C以上であるこ とが好まし!/、。 5重量%重量減少時の温度が 3 1 0 °Cより低いと、 ポリエステル と溶融混合する際の分角爭が大きく層状珪酸塩の再凝集が起ったり、 分解ガスが発 生するなど樹脂特性を低下させることがある。 こうした点から 5重量%重量減少 時の温度は、 高いほど好ましいが、 本発明の層状珪酸塩では、 良好な分散性を与 えるォニゥムの構造を勘案すると、 好ましくは 3 3 0 °C以上、 より好ましくは 3 40 °C以上、 さらに好ましくは 350 °C以上である。 本発明の樹脂組成物の製造 に使用する層状珪酸塩は、 比表面積が 2. 5〜20 Om2/gのものを使用する ことが好ましい。 比表面積は、 窒素を使用した BET法で求めることができる。 比表面積を 2. 5m2/g以上とすることにより、 樹脂中に分散する際の分散の 効率が向上し、 良好に均一分散した層状珪酸塩とポリエステル樹脂とのポリエス テル樹脂組成物を得ることができる。 逆に、 比表面積 200m2/gを超える場 合は、 余りにも比表面積が大きな微細な粒子となるために、 かさ密度が高くなり 粉体としての取扱いが困難となったり、 吸着した水分の除去が困難となることが ある。 比表面積としては、 3〜10 Om2/gがより好ましく、 4〜80m2/g がさらに好ましく、 5〜50m2/gがさらに好ましい。
このような大きな比表面積を有する層状珪酸塩は、 有機ホスホニゥムで交換し た層状珪酸塩を、 融点ー20°C以上 100°C未満の媒体中から凍結乾燥させるこ とにより、 好ましく製造することができる。
凍結乾燥に使用する媒体としては、 融点一 20°C以上の融点を有することが好 ましい。 融点が一 20°Cより低い場合には、 媒体の凍結温度が低くなりすぎるた めに、 凍結温度が低くなり、 媒体の除去効率が低くなることがある。 凍結乾燥に 使用する好ましい媒体としては、 水、 ベンゼン、 シクロへキサン、 シクロへキサ ノン、 ベンジルアルコール、 P-ジォキサン、 クレゾール、 P-キシレン、 酢酸、 シ ク口へキサノールなどを例示することができる。 凍結乾燥に使用する層状珪酸塩 の分散液は、 陽イオン交換反応に使用したものを使用してもいいし、 陽イオン交 換反応後の層状珪酸塩が良好に分散する媒体を使用しても構わない。 特に層状珪 酸塩が良好に分散する媒体の場合には、 層状珪酸塩のシリケ一ト層が剥離した状 を維持したまま凍結乾燥を行なうことができるので、 非常に比表面積を高める 事ができる。 凍結乾燥は、 層状珪酸塩の分散液を凍結させた後, 減圧下で媒体を 除去することによって実施できるが、 通常層状珪酸塩濃度は;!〜 7 0重量%で行 なわれる。 層状珪酸塩濃度が 1 %より低い場合には、 乾燥前の分散状態の点では 好ましいが、 乾燥後の取扱いが煩雑となったり、 生産性が低下することがある。 また、 層状珪酸塩濃度が 7 0重量%を超える場合には、 生成物の比表面積が小さ くなるために樹脂中への分散が困難となることがある。 そうした点から、 凍結乾 燥前の層状珪酸塩濃度としては、 5〜 6 0重量%が好ましく、 1 0〜 5 0重量% がより好ましく、 1 2〜4 0重量%がさらに好ましい。
本発明で使用するポリエステル樹脂は、 ジカルボン酸及ひンまたはその誘導体 とジオールを重縮合したもの、 あるいは、 ヒドロキシカルボン酸からなるもの、 あるいは、 さらにこれらの共重合体である。 ポリエステルを構成するジカルボン 酸成分としては、 テレフタル酸、 イソフタル酸、 オルトフタル酸、 2 , 6—ナフ タレンジ力ノレボン酸、 2, 7—ナフタレンジ力/レボン酸、 1, 5—ナフタレンジ カルボン酸、 4 , 4 ' ービフエニルジカルボン酸、 2, 2, ービフエニルジカル ボン酸、 4, 4, ージフエニルエーテルジカルボン酸、 4 , 4, ージフエニルメ タンジカルボン酸、 4, 4, ージフエ-ルスルフォンジカルボン酸、 4 , 4, 一 ジフエニルイソプロピリデンジカルボン酸、 5—ナトリゥムスルホイソフタル酸 等の芳香族ジカルボン酸、 シユウ酸、 コハク酸、 アジピン酸、 セバシン酸、 ドデ カンジカルボン酸、 ォクタデカンジカルボン酸、 マレイン酸及ぴフマル酸等の脂 肪族ジカルボン酸、 1, 4—シク口へキサンジカルボン酸などの環状脂肪族ジカ ルポン酸などが挙げられる。 ジオールとしては、 エチレングリコール、 1 , 2—プロピレングリコール、 1 : 3—プロピレングリコーノレ、 1 , 3ープタンジォ一ノレ、 1 , 4ープタンジォ一ノレ. 2, 2—ジメチルプロパンジオール、 ネオペンチルグリコール、 1 , 5—ペンタ ジオール、 1, 6—へキサンジオール、 1 , 8—オクタンジオール、 1 , 1 0— デカンジォーノレ、 1 , 4ーシクロへキサンジメタノーノレ、 1 , 3—シクロへキサ ンジメタノール、 1 , 2—シクロへキサンジメタノール、 トリメチレングリコー ノレ、 テトラメチレングリコーノレ、 ペンタメチレングリコーノレ、 オタタメチレング リコール、 ジエチレンダリコール、 ジプロピレンダリコールなどの脂肪族ジォー ノレや、 ヒ ドロキノン、 レゾノレシノーノレ、 ビスフエノーノレ A及ぴ 2, 2—ビス ( 2, ーヒドロキシエトキシフエニル) プロパン等のジフェノール類が挙げられ る。
ヒドロキシカルボン酸としては、 p—ヒドロキシ安息香酸、 .p— (ヒドロキシ エトキシ安息香酸、 6—ヒドロキシ一 2—ナフトェ酸、 7—ヒドロキシ一 2—ナ フトェ酸、 4, 一ヒドロキシ一ビフエ-ル一 4—カルボン酸等の芳香族ヒドロキ シカノレボン酸などが挙げられる。
好ましいポリエステルは芳香族ポリエステルであり、 具体的にはポリエチレン テレフタレート (P E T)、 ポリ トリメチレンテレフタレート、 ポリプチレンテ レフタレート、 ポリシクロへキシレンジメチレンテレフタレート、 ポリエチレン 一 2 , 6—ナフタレート、 ポリプチレンナフタレート、 ポリエチレンイソフタレ ート一テレフタレ一ト共重合体、 p—ヒドロキシ安息香酸一 6—ヒドロキシ一 2 —ナフトェ酸共重合体などが挙げられる。 なかでもポリエステルがポリエチレン テレフタレート、 ポリ トリメチレンテレフタレート、 ポリプチレンテレフタレー ト、 およびポリエチレン一 2 , 6—ナフタレートからなる群から選択される少な くとも 1種であることが好ましい。
本発明においては、 ポリエステルと有機ホスホニゥムィオンで修飾された層状 珪酸塩からなる樹脂組成物において、 該層状珪酸塩を無機灰分として 0 . 0 1〜 2 0重量%含有する。 無機灰分とは、 空気中で 1 0 0 0 °Cまでの燃焼した際の残 渣から算出される値である。 無機灰分としての含有量が 0. 0 1重量%以上を占 めることが層状珪酸塩の添加効果を発現する上で好ましい。 また、 2 0重量%以 下であることが、 得られたポリエステル樹脂組成物の溶融成形を行う上で好まし い。 無機灰分としての含有量は 0. 1〜1 2重量%であることがさらに好ましく、 0 . 4〜 8重量%であることがより好ましい。
本発明のポリエステル樹脂組成物は、 組成物における OH末端基量が 0 , 1〜 4 5当量/トンである。 OH末端基量はへキサフルォロイソプロパノール:重ク ロロホルム = 1 : 3にイソプロピルアミンを混合した溶液中 5 0 °C 6 0 0 MH z で測定した際の 1 H— NMRで測定されたものである。 NMRの帰属については 公知の文献等で確認することが可能である。 この OH末端基量は通常の重合で得 られるポリエステルの O H末端基量と比較して低い範囲となっている。 詳細は不 明であるが、 これは、 ポリエステルの水酸基の一部が、 層状珪酸塩と何らかの相 互作用を有して ヽることを示しており、 層状珪酸塩の分散性や弾性率を初めとす る物理的特性向上に寄与しているものと考えられる。 ポリエステルの末端基濃度 は、 ポリエステルの数平均分子量を反映するはずである力 本発明の樹脂組成物 では、 溶液粘度の等しいポリエステルと比較しても、 全体の末端基濃度 (ポリエ ステルの場合には〇H末端基と C O OH末端基) は、 層状珪酸塩を含まないポリ エステノレの 9 0 %以下となっている。 これは先述の OH基の一部と層状珪酸塩と の相互作用により、 末端であるはずの OH基が減少しているためと推定される。 従って、 全体の末端基濃度 (ポリエステルの場合には OH末端基と C O OH末端 基) は、 層状珪酸塩を含まないポリエステルの 8 5 %以下であることがより好ま しく、 8 0 %以下であることがさらに好ましい。
そのため、 OH末端基量が 0 . 1当量 Zトン未満である場合は、 相互作用が大 きくなりすぎて溶融粘度が大きくなりすぎる場合、 あるいは、 ポリエステル自体 が過剰の C O OH末端基を有する場合に該当するため、 前者の場合には、 溶融成 型が困難となる、 あるいは、 後者の場合には、 ポリエステル自体の耐加水分解性 といった化学的安定†生が損なわれて好ましくない。 また 4 5当量/トン以上であ る場合、 層状珪酸塩と OH末端基の相互作用が少なくなるために、 弾性率を初め とする物理的特性向上の効果が少なくなり好ましくない。 OH末端基量としては、 前述の理由により、 1〜4 0当量/トンがより好ましく、 :!〜 3 5当量 Zトン力 S より好ましく、 1〜3 0当量 Zトンがより好ましい。
本発明の樹脂組成物の製造法としては、 (A) ジカルボン酸またはそのエステ ル誘導体と脂肪族グリコール Zまたはヒドロキシカルボン酸を、 有機ホスホニゥ ムイオンでイオン交換能対比 6 0〜: 1 0 0 %イオン交換された層状珪酸塩の存在 下で重合することにより、 層状珪酸塩がポリエステル 1 0 0重量部に対し 0 . 0 1〜 3 0重量部であるポリエステル樹脂組成物を得て、 さらに
(B ) ポリエステルの融点以上の温度において、 せん断速度 2 5 0 / s以上で溶 融混練する工程を経て製造することが好ましく挙げられる。
ポリエステルの重合は芳香族ジカルボン酸を主とするジカルボン酸、 または そのエステル露導体と脂肪族グリコールを反応させる。 あるいはヒドロキシカ ルボン酸を反応させる。 用いるジカルボン酸、 脂肪族グリコール、 ヒドロキシ カルボン酸としては上記に述べた化合物を挙げることができる。 これは当業者 に公知の反応であり、 ジカルボン酸とグリコールとを常圧または加圧下で加熱 反応させるエステルイ匕反応、 あるいはジカルボン酸のエステル形成誘導体とグ リコ一ルを常圧または加圧下で加熱反応させてエステル交換反応を行う過程と、 反応生成物を減圧下でグリコール成分を除去しつつ重縮合反応を行う過程から なっている。
有機修飾された層状珪酸塩は、 こうしたポリエステル重縮合過程の任意の段 階で、 添加することが可能である。 特にエステル交換反応後の、 重縮合反応開 始時に添加することが好ましい。 このように重合の途中で有機修飾された層状 珪酸塩を添加することで、 層状珪酸塩とポリエステルの親和性が向上し、 結果 ポリエステル中で層状珪酸塩の層が広がり、 次の工程 (B) により均一に分散 させることが可能となる。 また工程 (A) で充分に重合度を上げることが可能 であることから、 工程 (B) により得られたポリエステル樹脂の分子量低下を 緩和することが可能となる。
有機ホスホニゥムイオンにより修飾した層状珪酸塩は、 粉体おょぴスラリー 状で添加することができる。 粉体で添加する場合、 溶媒を除去する工程を除く ことができるため有効であるが、 反面添加方法によっては有機修飾した層状珪 酸塩が再凝集し、 分散性が悪ィ匕する原因となる。 スラリー状で添加する場合、 粉体に含まれる空気をあらかじめ除くことが可能となり、 エステル交換後の反 応物との混合が容易になり、 好ましい。 スラリー状で添加する際の溶媒として は、 特に製造しようとするポリエステルを構成するジオールを用いることが好 ましい。 他の溶媒を使用する場合には、 グリコール成分との分離やポリエステ ルの構造の一部に取り込まれる恐れがある。 スラリーを製造する方法は特に限 定するものではないが、 例えばボールミル、 媒体攪拌型ミル、 ホモジナイザー 超音波処理、 などを利用した物理的分散を行うことが好ましい。 スラリー中の 層状珪酸塩の濃度としては、 0 . 0 5〜9 0重量%であることが好ましい。 0 0 5重量%以下の場合には、 グリコールの量が多くなりすぎ、 その後の除去が 煩雑であるため好ましくない。 9 0重量%以上の場合、 添加に適したスラリ一 を作成することが困難である。 スラリー中の層状珪酸塩の濃度は、 より好まし くは 0 . 1〜7 0重量%、 さらに好ましくは 1〜5 0重量%である。 均一なス ラリーを得るためには、 層状珪酸塩が溶媒に分散するのに +分な比表面積を持 つことが好ましい。 具体的には窒素ガスを用いて三点法を使用した場合の比表 面積が、 l m 2Z g以上であることが好ましく、 さらに好ましくは 2 m 2/ g以 上である。
以後の反応は通常のポリエステルの重合反応と同様に実施することが可能で ある。
こうして (A) の重合工程により得られた層状珪酸塩を含むポリエステル樹脂 組成物において、 X線散乱の回折ピークから算出される層間距離 dAが 2 . 0 n m 以上の層状珪酸塩が 5 0 %以上であり、 力つ線散乱ピーク及ぴその半値幅から下 記の S c h e r r e rの式 (3 )
D = K - λ / β c o s Θ ( 3 )
ここで D:結晶子の大きさ、 え :測定 X線波長、 β :半価幅、 Θ :回折線のプ ラッグ角、 K : S c h e r r e r定数
により算出される層状珪酸塩の平均層数 NAが 7以下であることが好まし!/、。
層状珪酸塩の層間距離は、 X線散乱により、 層状珪酸塩の層間の散乱に起因 する散乱ピークの散乱角を使用して求めることができる。 また層状珪酸塩が単 層にまで剥離している場合、 X線散乱においてはピークが検出されないことに なる。 この場合、 層間距離は無限大となっていることを示している。 層間距離 は広い方が特に工程 Bにおいて層状珪酸塩の剥離が起こりやすく、 分散の点で 好ましい。 より好ましくは 2 . 5 n m以上である。
層間距離 dAが 2 . O n m以上を満たす層状珪酸塩の割合は、 X線回折におけ るピーク面積比から算出されうる。 すなわち層間距離 dAが 2 . O n m以上を満 たすピークのピーク強度の合計と、 層状珪酸塩の層間の回折に帰属されるピー クの面積の合計との比が、 5 0 %以上であることが好ましい。 5 0 %以下であ る場合、 最終的な組成物中における層状珪酸塩の分散性が不十分であり、 例えば 成形体にした場合その物理強度の低下等が発生し好ましくない。 より好ましくは 5 5 %以上、 さらに好ましくは 6 0 %以上である。
平均層数は、 X線回折を用いて回折ピークを測定し、 上記の S c h e r r e r の式から結晶子の大きさを算出し、 層間距離で割ることにより算出できる。 平均 層数が少ないほど層状珪酸塩が分散しており、 得られた成形体の弾性率などの物 理特性を向上させる上で好ましい。
層が完全に剥離し単層になった層状珪酸塩は、 X線回折には現れてこない。 この場合、 層間距離は無限大となっており、 層数は 1である。 X線回折で観測 される範囲で、 層間の回折に起因するピークが全く観察されない場合は、 層間 . 距離 d Aが 2. O n m以上の層状珪酸塩が 50 %以上であり、 力つ平均層数 NAが 7以下であることを満たしていることとなる。
続いて (B) 該ポリエステル樹脂組成物をポリエステルの融点以上の温度にお いて、 せん断速度 2 50/s以上で溶融混練する工程により、 工程 A) で得られ た樹脂を、 さらにせん断速度 2 5 OZs以上で溶融混練することにより目的とす るポリエステル樹脂組成物を好ましく得ることができる。
剪断速度は下記式 (4) で求められる。
y = π X d X (N/60) Z C (4)
y :剪断速度 (/ s)、 d :スクリュー内径 (mm)、 N :スクリユー回転数 (r pm)、 C :スクリューとバレル間のクリアランス (mm)
こうした溶融混練は従来公知の方法が利用可能で、 例えば 1軸押し出し機、 2軸押し出し機等の押し出し機等を利用することができる。 その際の剪断速度 25 OZs以下の場合、 混練能力が不十分であり目的とするポリエステル樹脂組 成物中での層状珪酸塩の分散性が不十分となるため好ましくない。 より好ましい 剪断速度は 28 O/s以上、 さらに好ましくは 3 00/s以上である。
溶融混練時の温度は、 ポリエステルの流動開始温度 (非晶性樹脂ではガラス転 移温度、 結晶性樹脂では融点) 以上 3 5 0°C以下が好ましく、 (流動開始温度 + 5) °C以上 3 30 以下がより好ましく、 (流動開始温度 + 1 0) °C以上、 3 2 0°C以下がさらに好ましい。 温度が流動開始温度より低すぎると溶融成形が困難 になるため好ましくなく、 また、 ^^が 3 50°Cより高すぎるとイオン交換され た層状珪酸塩の分解が激しくなり好ましくなレ、。
こうして (B) の溶融混練工程により得られたポリエステル樹脂組成物におい て、 X線散乱の回折ピークから算出される層間距離 dBが 2 · Ο η πι以上の層状珪 酸塩が 5 0 %以上であり、 かつ線散乱ピーク及びその半値幅から上記の S c h e r r e rの式により算出される層状珪酸塩の平均層数 NBが 5以下であることが 好ましい。
層状珪酸塩の層間距離である dBは、 X線散乱により、 層状珪酸塩の層間の散 乱に起因する散乱ピークの回折角を使用して、 求めることができる。 層状珪酸 塩が単層にまで剥離している場合、 X線散乱においてはピークが検出されない ことになる。 この場合、 層間距離は無限大となっていることを示している。 層 間距離は広い方が層状珪酸塩の剥離が起こりやすく、 分散の点で好ましい。 よ り好ましい層間距離は 2 . 5 n m以上である。
層間距離 dBが 2 . O n m以上を満たす層状珪酸塩の割合は、 X線回折におけ るピーク面積比から算出されうる。 すなわち層間距離 dBが 2 . O n m以上を満 たすピークのピーク面積の合計と、 層状珪酸塩の層間の回折に帰属されるピー クの面積の合計との比であり、 これが 5 0 %以上であることが好ましい。 5 0 %以下であれば層状珪酸塩が有機ホスホ-ゥムにより充分に修飾されていな いことを示す。 こういった場合、 目的とするガスバリア性、 物理特性の充分な 向上が得られないために好ましくない。 より好ましくは 8 0 %以上、 さらに好 ましくは 9 0 %以上、 さらに好ましくは 9 5 %以上である。
平均層数が少ないほど層状珪酸塩が分散しており、 得られた成形体における弾 性率などの物理特性を向上させる上で好ましく、 平均層数 NBは 5以下であるこ とが好ましい。
以下本発明において、 さらに表面平滑性に優れる成形体が提供できるポリエ ステル樹脂組成物、 およびそれを構成する層状珪酸塩について述べる。
本発明における層状珪酸塩は、 上述の天然ある 1/、は合成の層状珪酸塩からカル シゥム元素が除去され、 蛍光 X線測定によつて測定されるカルシゥム含有率が元 素比率として 0. 5 %以下になっていることが好ましい。 天然に算出されるモン モリロナイトにはナトリウムイオン、 カリウムイオンなどのアルカリ金属の他に、 カルシウムイオン、 マグネシウムイオンなどのアル力リ土類金属を層間に有して いるため、 天然の層状珪酸塩を使用する場合には、 カルシウムイオンを除去する ための工程を実施することが好まし ヽ。 層状珪酸塩におけるカルシゥム含有率が 元素比率として 0 . 5 %を越える場合には層状珪酸塩が 5 0層以上積み重なった ような粗大な凝集異物が副生しやすくなり、 表面平滑性を必要とする成形体を得 る場合に用途においては問題が生じる場合がある。 カルシウム含有率は、 少ない ほど好ましく、 カルシウム含有率は元素比率として 0 . 3 %以下がさらに好まし く、 0 . 1 %以下がより好ましい。
カルシウムイオンを除去する方法としては、 1 ) 水溶性アンモニゥムで処理し、 完全に層間に含まれるイオン交換性陽イオンを交換し、 然る後に有機ホスホニゥ ムイオンで処理する事である。 もう一つは 2 ) 水溶性アンモニゥムで処理し、 完 全に層間に含まれるイオン交換性陽イオンを交換し、 次に塩化ナトリウム、 塩化 カリウムなどのアル力リ金属塩で処理し層間にアル力リ金属を担持させる。 その 然る後に有機ホスホニゥムイオンで処理する事である。 このようにして層状珪酸 塩の層間に存在するカルシウムを完全に除去する事ができる。 カルシウムイオン が完全に除去されているかは蛍光 X線分析によって確認する事ができる。
なお水溶性ァンモニゥムには特にこれに限定されるものではなレ、が、 硫酸ァン モニゥム、 硝酸アンモニゥム、 酢酸アンモニゥム、 塩化アンモ-ゥム、 臭素化ァ ンモ -ゥムなどを例示する事ができる。 好ましくは汎用性から酢酸アンモニゥム、 塩化アンモニゥムが好ましい。 より好ましくは酢酸アンモニゥムである。 これら の水溶性アンモニゥムは単一で用いる事が好ましいが、 組み合わせて使用しても よレヽ。 具体的には出発原料である層状珪酸塩をイオン交換水に分散させる。 この 場合層状珪酸塩の濃度は 0 · 1 w t %〜 10 w t %の範囲である。 好ましくは 1 wt%〜5wt%、 より好ましくは 1. 5wt%〜3wt%の範囲である。 その 層状珪酸塩分散溶液に脂肪族ァンモニゥム塩、 または脂肪族ァンモ-ゥム塩を含 んだ溶液を添加していく。 その後有機ホスホニゥムィオンで処理を行つてもよい し、 塩ィ匕ナトリウム、 塩ィ匕カリゥムなどのァノレ力リ金属塩でー且層間の脂肪族ァ ンモニゥムィオンをアル力リ金属ィオンで置換し、 有機ホスホニゥムィオンで処 理を行ってもよい。
アル力リ金属塩で処理する場合には、 層間に脂肪族アンモニゥムイオンを有し た層状珪酸塩をィオン交換水に分散 '懸濁し、 そこに層状珪酸塩のィオン交換容 量に対し 1. 0倍〜 10倍当量の範囲で添加して行う。 好ましくは 1. 0倍〜 5. 0倍、 より好ましくは 1. 0倍〜 2. 0倍の範囲である。 添加後ろ過してイオン 交換水でよく洗浄する。 この時、 洗浄が行われるに従ってイオン交換水中に分散 するようになる。 この状態で有機ホスホニゥムイオンを添加して層状珪酸塩の層 間に有機ホスホニゥムイオンを担持させる。 有機ホスホニゥム塩は層状连酸塩の イオン交換容量に対し 1. 0倍〜 10倍当量の範囲で添加して行う。 好ましくは 1. 0倍〜 5. 0倍、 より好ましくは 1. 0倍〜 2. 0倍の範囲である。
またさらに表面平滑性に優れる成形体を提供するために、 本発明のポリエス テル樹脂組成物において、 石英含有量が 0. 0 0 9重量%以下であることが好ま しい。 特に天然モンモリロナイトには酸化ケィ素化合物すなわち石英が含まれ ている場合がある。 石英は通常の層状珪酸塩の修飾方法である有機イオンによ るイオン交換といった方法では修飾されず、 結果充分にマトリックス中に分散 させることができず、 成形性 ·表面性の低下また欠陥となり機械物性の低下を 引き起こすことがある。 石英は層状珪酸塩から極力除くことが望ましいが、 石 英はその密度が層状珪酸塩に近いため、 その除去が困難であり最終的な製品に おいても観察される場合がある。
ポリエステル樹脂組成物中に含有される石英は X線散乱の回折ピーク強度を 層状珪酸塩のピーク強度と比較することにより定量化されうる。 解析ピークの強 度は石英分に対し比例関係を有する。 用いられる検量ピークは例えば含有量既知 の石英分のピーク (3 . 3 5 A) と含有量既知の層状珪酸塩の解析ピーク (例え ばモンモリロナイトの場合 4. 4 8 A) 力 ら作成されうる。 ポリエステル樹脂組 成物中の層状珪酸塩の含有量及び X線散乱における石英のピーク強度及ぴ層状珪 酸塩のピーク強度から算出される。 石英含有量が 0 . 0 0 9重量%以上であると、 成形体を得た際に表面性の低下や欠陥要因となることがある。 より好ましくは 0 . 0 0 8重量%以下である。
石英の除去方法としては石英混在層状珪酸塩を溶媒中に分散させ、 より密度 の高い石英を沈降させ、 その上澄みを回収することにより達成させられる。 必 要であれば上澄みを濃縮し再び水中に分散させ上記の手法をくりかえすことに より、 より低濃度の石英含有率とすることが可能である。 この際の溶媒として は、 特に限定するものではないが良好に層状珪酸塩を分散させることができる 溶媒でよければよく、 例えばメタノ一ル 'ェタノール ·エチレングリコール · N -メチルピロリ ドン ·ホルムァミ ド · N -メチルホルムァミ ド · N, N -ジメチルホ ルムアミド .水等が上げられる。 この際の溶媒中での層状珪酸塩の濃度として は溶液の粘度が上がりすぎず選択的に石英のみを沈降させる濃度であれば良い。 具体的には 1 0重量%以下、 より好ましくは 8重量%以下である。 また分散の 際には過熱等により、 層状珪酸塩を良好に分散させることができる。 石英の沈 降及び分離は通常の遠心分離装置ゃデカンターなどを用いることで可能である。 本発明のポリエステル樹脂組成物は、 従来公知の方法に従つて射出成形などに よる成形体の製造、 好ましくは溶«膜によるフィルムあるいはシート、 あるい は溶融紡糸による ¾ϋの製造に使用することができる。 溶融成形温度としては、 ポリエステル樹脂の流動開始温度 (非晶性榭脂ではガラス転移温度、 結晶 '["生樹脂 では融点) 以上 3 5 0 °C以下が好ましく、 (流動開始温度 + 5 ) °C以上 3 3 0 °C 以下がより好ましく、 (流動開始温度 + 1 0 ) °C以上 3 2 0 °C以下がさらに好ま しい。 温度が流動開始温度より低すぎると溶融成形が困難になることがある。 ま た本発明における層状珪酸塩は耐熱性に優れていることを特徴とするがそれでも 溶融成形温度が 3 5 0 °Cより高すぎるとイオン交換された層状珪酸塩の分解が激 しくなることがある。
高弾性のフィルムを製造する場合には、 さらに延伸を行うことが好ましい。 延 伸方法としては、 従来公知の方法、 例えば、 一軸または二軸方向に逐次または同 時に延伸する方法をあげることができる。 延伸温度は好ましくは樹脂組成物のガ ラス転移点以上ガラス転移点 + 9 0 °C以下、 より好ましくは樹脂組成物のガラス 転移点以上ガラス転移点 + 7 0 °C以下、 さらに好ましくはガラス転移点以上ガラ ス転移点 +60°C以下である。 延伸温度が低すぎても高すぎても均一なフィルム を製造することが困難であり好ましくない。 また、 延伸倍率は、 面倍率として、 好ましくは 2倍以上 100倍以下、 より好ましくは 4倍以上 70倍以下、 さらに 好ましくは 6倍以上 50倍以下である。
また、 ポリエステル樹脂が結晶性の場合にはフィルムの延伸配向後、 熱処理す ることが好ましレ、。 熱処理の温度としてはポリエステルのガラス転移点以上、 融 点以下が好ましい。 さらに好適な温度は得られたフィルムの結晶化温度と得られ たフィルムの物性などを勘案して決定される。
ここでポリエステルフィルムの断面方向からの X線回折における層状珪酸塩の 層間の回折ピーク強度について下記式 (5)
Figure imgf000025_0001
(f cは配向係数、 φはフィルムの面内方向に対する方位角であり、 I c (φ) は方位角 φにおける散乱強度)
における配向係数 f cが 0. 8以下であることが好まし)/、。
式 (5) 中において、 f cはこうした層状珪酸塩の層に垂直方向の散乱に由 来する配向係数であり、 く C O 3 2 φ〉。より算出することができる。 さらにこ れは式 (5) に従い、 フィルムの断面に垂直方向から X線を照射した際の X線回 折において、 フィルム面に垂直な方向に対する方位角 φに対して、 層状珪酸塩の 層間の散乱強度 I c (φ) を測定することにより、 算出することができる。
配向係数 f cが 0. 8に満たない場合には、 層状珪酸塩のフィルム面内の配 向が充分でなく、 高弾性率のフィルムを実現する上で好ましくない。 また、 配向 係数 f cの上限はその定義から 1である。 配向係数 f cとしては、 0 . 8 5以上 であることがさらに好ましく、 0 . 8 8以上であることがさらに好ましく、 0 . 9以上であることがより好ましい。
の製造法としては、 常法にしたがレヽポリマーの流動^ で溶融して紡糸口 金から吐出し、 引き取って単糸繊度が 3 . 3〜3 3 d t e xの H lとする方法が 好ましく挙げられる。 その際の引取速度 (紡糸速度) としては、 1 0〜6 0 0 0 mZ分の引取速度 (紡糸速度) で溶融紡糸する。 得ちれたフィラメントは、 適宜 延伸操作を行う。 引取速度が低い には、 延伸操作を行うことが好ましい。 延 伸倍率としては、 2〜 2 0倍程度であり、 ポリマーのガラス転移 〜ポリマー の結晶化温度、 好ましくはガラス転移温度 + 1 0 °C以上〜結晶化温度一 1 0 °c、 さらに好ましくはガラス転移温度 + 2 0 °C以上〜結晶化温度一 2 0 °C実施する。 このようにして得られたポリエステル繊維は、 配向した層状珪酸塩により捕強 され、 高弾性率、 高強度のポリエステル繊維とすることができる。
なお、 本発明の繊維を製造する際において、 紡糸時に使用する口金の形状につ いてとくに制限は無く、 円形、 異形、 中実、 中空等のいずれも採用することがで きる。
成形体内の層状珪酸塩の平均層数が少ないほど層状珪酸塩が良好に分散して おり、 得られた成形体の弾性率などの物理特性を向上させる上で好まし 、。 本発 明のポリエステル樹脂組成物からなる成形体において、 線散乱ピーク及ぴその半 値幅から S c e r r e rの式により算出される層状珪酸塩の平均層数 Ncが 5 以下であることが好ましい。
ポリエステル樹脂中での完全な層剥離は困難である。 実用的には 2さらには 3程度以上の平均層数で十分に弾性率などの物理特性の向上を実現することがで さる。
本発明のポリエステル樹脂組成物から、 層状珪酸塩が良好に分散しており、 さ らに表面の平滑性に優れたフィルムゃ »1を得ることが可能である。 フィルムの 場合表面粗さの範囲としては平均線粗さ R aが 30 nm以下のものを得ることが 可能であり, 磁気テープ、 包装用フィルムなど各種の用途へ使用可能である。 実施例 ,
以下に実施例により本発明を詳述する。 但し、本発明はこれら実施例に何ら制 限されるものではない。
(1) 層状珪酸塩:モンモリロナイト (クニミネ工業 (株) 製 クニピア (ナト リゥム交換容量 109ミリ当量 Z100 g) を使用した。
(2) 陽イオン交換率: (株) リガク製示差熱天秤 TG 8120を用いて空気雰 囲気下 20°C/m i nで 800°Cまで加熱した際の重量減少率から次式を用いて 求めた。
陽イオン交換率 (%) = { f / ( 1 -W f ) } / (M。rg/Msi) X I 00
(Wf は 20°C/m i nの昇温速度で 120°Cから 800°Cまで測定した層状珪 酸塩の示差熱天秤による重量減少率、 M。rgは該ォニゥムイオンの分子量、 Ms i は層状珪酸塩の陽ィオン部分における 1電荷あたりの分子量を表す。 層状珪酸塩 の陽イオン部分における 1電荷あたりの分子量は、 層状珪酸塩の陽イオン交換容 量 (単位: e q/g) の逆数で算出される値である。)
(3) 熱 ^ ^温度: (株) リガク製示差熱天秤 TG 8.120を用いて窒素中で 2 0°C/m i nで測定した際の 5重量%重量減少した温度を求めた。
(4) 比表面積:比表面積は、 QUANTUM CHROMEネ i NOVA l 2 00において N2ガスを用いて三点法を使用して測定し、 サンプルの重量で除し て求めた。
(5) 樹脂組成物中のポリエステル樹脂と層状珪酸塩の無機灰分との重量比: 20 g以上添加し 1 8 0°Cで 5時間乾燥した後、 乾燥後の重量を測定した。 その 後 3 5 0 °Cまで 1 0 °C/m i n昇温しその後 6 20 °Cまで 0. 1 °CZm i nで昇 温した。 さらに 1 000 °Cまで 5 °C/m i nで昇温した後 5時間保持し有機成分 を燃焼させた。 こうして残った成分の重量を用いて以下の式から算出した。 無機灰分重量。/。
Figure imgf000028_0001
1 00
ここで A:乾燥後のポリエステル樹脂組成物の重量 g、 B:燃焼後の重量 g、
(6) 層状珪酸塩の層間距離および平均層数: (株) リガク製粉末 X線回折装置 RAD— Bを用いて回折ピーク位置から算出した。 平均層数は下記式から結晶子 の大きさを算出し、 層間距離で割ることで算出した。 また、 S c h e r r e r定 数は、 0. 9として計算した。
D = K · λΖ β c o s O
ここで D:結晶子の大きさ、 え :測定 X線波長、 :半値幅、 Θ 回折線の ブラッグ角、 K : S c h e r r e r定数
(7) 還元粘度 ( 7 SP/C) :還元粘度はフエノール Zテトラクロロェタン (重量 比 4 : 6) の溶液を使用し、 濃度 1. S gZd L 温度 3 5。Cで測定した。
(8) 末端水酸基量:末端水酸基量は、 へキサフルォロイソプロパノール:重 クロ口ホルム = 1 : 3にイソプロピルアミンを混合した溶液中 5 0°C 6 0 0M Hzを測定し、 4. 53 p pmの OH末端の ]3位に存在するメチレンの 1 H— NMRの積分値から算出した。
(9) 末端 COOH基量:へキサフルォロ^ソプロパノール:重クロ口ホルム = 1 : 3にィソプロピルァミンを混合した溶液中 50°C 60 OMH zを測定し ポリマー末端ピークに起因する 1H—NMRの積分値から算出した。
(10) TEM/EDS測定: TEMは日本電子 (株) J EM— 2010 加速 電圧 200 kV、 EDSは TRACOR NORTHERN社 NORAN で P r o b e径 15 nmで EDS分析した。
(1 1) 石英の含有量: (株) リガク製粉末 X線回折装置 RAD— Bを用いて、 有機ホスホ-ゥムイオンで修飾された層状珪酸塩について測定をし、 石英のピー ク及ぴ層状珪酸塩のピーク強度比から算出した。
(12) 中心面平均粗さ Ra : Ve e c o社製非接触 3次元粗さ計 (NT— 2 000) を用いて測定倍率 25倍、 測定面積 188 πιΧ 247 mの条件に て測定を行った。 測定モードは PS Iモードを使用した。 それぞれ 2箇所測定 し、 平均して求めた。
(1 3) フィルムの弾性率測定:引っ張り試験を、 サンプノレを 5 mm X 50 m mに切り出し、 5讓 /minの延伸速度で、 株式会社エー ·アンド .ディ製 U C P 一 100の引っ張り試験機を用いて実施した。
(14) 繊維の繊維強度および弾性率: (株) オリエンテック製 UCT— 1 T を用い、 測定した。
[参考例 1] 陽イオン交換された層状珪酸塩の合成 クニピア F (層間距離 1. 26 nm) 1. 5 k gをイオン交換水中 40 L k 添加したのち、 ビーズミルで分散した。 こののち 5 のフィルターをかけるこ とにより粗大粒子を除くことで、 クニピア Fを 3 w t%含む水分散液を得た。 こ の分散液 38 k gを 80°Cで加熱攪拌しながら、 下記式の n- H e x a d e c y 1 t r i-n-b u t y 1 p h o s p h o n i. umb r omi d e
Figure imgf000030_0001
1 k gとィオン交換水 3 L力 らなる溶液を加え、 さらに 80でで 3時間攪拌し た。 混合物から固体を濾別し、 メタノーノレで 3回、 水で 3回洗浄したのち、 凍結 乾燥することにより陽イオン交換された層状珪酸塩を得た。 イオン交換率は 8 5 %であった。 このようにして得られた層状珪酸塩の比表面積は 5. 3 m2/gで あった。 また X線散乱による平均層間距離は 2. 2 nmであり平均層数は 5. 6 であった。 また 5%重量減少温度は 365°Cであった。 実施例 1
2, 6—ナフタレンジカルボン酸ジメチル 200重量部とエチレングリコール 1 20重量部とをエステル交換反応触媒として酢酸マンガン 0. 1 20重量部を 用い、 1 80°Cから 200°Cに徐々に昇温させながら反応させ、 その後酸化アン チモン 0. 1重量部を添加しさらに徐々に 240 °Cまで昇温し、 エステル交換反 応を行った。 240°C到達後トリメチルホスフェートを添口することで、 エステ ル交換反応触媒を失活させ、 ここに参考例 1で作成した有機修飾した層状珪酸塩 31. 3重量部を添加した。
その後 290°Cまで昇温し: LmmHg以下の高真空下にて重縮合反応を行って 還元粘度 0. 72 (dL/g) のポリエステル樹脂組成物を得た。
得られた組成物の末端 O H濃度は 30当量/トン、 COO H濃度は 62当量/ト ンであり、 無機灰分は 1 Owt%であった。 X線散乱により測定した層間距離 d Aは 2. 7nm、 平均層数 NAは 6. 3であった。 X線散乱において層間距離 2 n m以下に帰属される層状珪酸塩のピークは観察されなかつた。 またこれ以外の反 応不十分と帰属される層状珪酸塩のピークは観察されなかつた。 実施例 2
2, 6—ナフタレンジカルボン酸ジメチル 25重量部とエチレングリコール 1 5重量部とをエステル交換反応触媒として酢酸マンガン 0. 01重量部を用い、 180°Cから 200°Cに徐々に昇温させながら反応させ、 その後酸化アンチモン 0. 01重量部を添加しさらに徐々に 240 °Cまで昇温し、 エステル交換反応を 行つた。 240 °C到^!トリメチルホスフェートを添加することで、 エステル交 換反応触媒を失活させ、 さらに参考例 1で作成した有機修飾した層状珪酸塩 3. 8重量部とエチレングリコール (以下 EGと略することがある) 22. 4重量部 からなるスラリーを添加した。 その後 290°Cまで昇温し ImmHg以下の高真 空下にて重縮合反応を行って還元粘度 0. 91 (dLZg) のポリエステル樹脂 組成物を得た。
得られた組成物の末端 OH濃度は 7. 6当量/トンであり、 。00^1濃度は1 1. 2当量/トンであり、 無機灰分は 10 w t %であった。 X線散乱により測定 した平均層間距離 d Aは 2. 7nm, 平均層数 NAは 5. 5であった。 実施例 3
2, 6—ナフタレンジカルボン酸ジメチル 30重量部とエチレングリコール 1 8重量部とをエステル交換反応触媒として酢酸マンガン 0. 02重量部を用い、 180°Cから 200°Cに徐々に昇温させながら反応させ、 その後酸化アンチモン 0. 02重量部を添加しさらに徐々に 240 °Cまで昇温し、 エステル交換反応を 行つた。 240。(:到達後トリメチルホスフエートを添加することで、 エステル交 換反応触媒を失活させ、 参考例 1で作成した有機修飾した層状珪酸塩 0. 85重 量部とエチレングリコール 5.6重量部からなるスラリーを添加した。
その後 290°Cまで昇温し 1 mmH g以下の高真空下にて重縮合反応を行って 還元粘度 1. 24 (dL/g) のポリエステル樹脂組成物を得た。
得られた組成物の末端 OH濃度は 3. 9当量/トンであり、 COOH濃度は 7· 3当量/トンであり無機灰分は 2 wt%であった。 X線散乱により測定した平均 層間距離 dAは 2. 7nm、 平均層数 NAは 5. 0であった。 実施例 4
2, 6—ナフタレンジカルボン酸ジメチ^ / 30重量部とエチレングリコール 1 4. 5重量部とをエステル交換反応触媒として酢酸マンガン 0. 009重量部を 用い、 180°Cから 200°Cに徐々に昇温させながら反応させ、 その後酸化アン チモン 0. 0072重量部を添加しさらに徐々に 240°Cまで昇温し、 エステル 交換反応を行った。 240 °C到驗トリメチルホスフエ一ト 0 · 0277重量部 を添加することで、 エステル交換反応触媒を失活させ、 参考例 1で作成した有機 修飾した層状珪酸塩 0 · 850重量部とエチレングリコール 5. 6重量部からな るスラリーを添加した。
その後 290°Cまで昇温し 1 mmH g以下の高真空下にて重縮合反応を行って 還元粘度 0. 89 (dL/g) のポリエステル樹脂組成物を得た。
得られた組成物の末端〇H濃度は 17. 7当量/トンであり、 COOH濃度は 27. 4当量/トンであり、 無機灰分は 2 w t %であった。 X線散乱により測定 した平均層間距離 dAは 2. 7 nms 平均層数 NAは 5. 0であった。 実施例 5
還元粘度が 0. 78 (dL/g) であるポリ (エチレン一 2, 6—ナフタレ ンジカルボキシレート) のペレツト 600重量部、 および実施例 1で得られた ポリエステル樹脂組成物 150重量部を、 同方向二軸押し出し機 (ZSK2 5) を用いて押し出し温度 2'80°C、 スクリュー回転速度 280 r pm、 押出 し速度 10 k g 時、 剪断速度 1800/s e cの条件下で混練することで、 還元粘度 0. 68 (dL/g) のポリエステル樹脂組成物を得た。 得られた組 成物の末端 OH量は 15. 3当量/トンであり、 末端 COOH量は 36. 3·当量/ トンであり、 無機灰分は 2 wt%であった。 X線散乱により測定した層間距離 d Bは 2. 8nm、 平均層数 NBは 4. 4であった。 またこれ以外の反応不十分と帰 属される層状珪酸塩のピークは観察されなかった。 また透過型電子顕微鏡でポリ エステル樹脂組成物を観察した (図 1)。 これに示すとおり、 層状珪酸塩は非常 に分散している 実施例 6
実施例 4で得られたポリエステル樹脂組成物のみを用い、 ポリエチレンナフタ レートを添加しなレ、という点を除レ、ては実施例 5と同様に同方向二軸押し出し機 (Z SK25) を用いてポリエステル樹脂組成物を得た。 得られた組成物の末 端 OH量は 9. 8当量/トンであり、 COOH量は 34. 5当量/トンであり、 還 元粘度 0. 71 ((11^ ^)、 無機灰分は2 1%でぁった。 X線回折により測 定した平均層間距離 dBは 2. 7nm、 平均層数 NBは 3. 5であった。 また透過 型電子顕微鏡で樹脂組成物を観察した (図 2)。 これに示すとおり、 層状珪酸塩 の分散状況は非常に高かった。 また、 層状珪酸塩はさらに剥離している。 実施例 7
還元粘度が 0. 78 (d L/g) であるポリ (エチレン一 2, 6—ナフタレ ンジカルボキシレート) のペレツト 300重量部、 および実施例 4で得られた ポリエステル樹脂組成物 1 00重量部を用いた他は実施例 5と同様に同方向二 軸押し出し機 (Z SK2 5) を用いてポリエステル樹脂組成物 得た。 得られ た組成物の末端 OH量は 3 1. 4当量/トンであり、 C O OH量は 37. 7当量/ トンであり還元粘度 0. 72 d LZ g、 無機灰分は 0. 5 w t %であった。 X線 回折により測定した平均層間距離 dBは 2. 7 nm、 平均層数 NBは 3. 2であつ た。 また透過型電子顕微鏡で樹脂組成物を観察した (図 3)。 これに示すとおり、 層状珪酸塩の分散状況は非常に高かった。 また、 層状珪酸塩はさらに剥離してい る。 実施例 8〜: L 0
実施例 5〜 7で得られたポリエステル樹脂組成物を 180でで 5時間乾燥後、 300 °Cで溶融し、 1. 3 mmのスリット状ダイを通して表面温度 80 °Cの回 転冷却ドラム上に押出し、 未延伸フィルムを得た。 このようにして得られた未 延伸フィルムを温度 150°Cで製膜方向とこれに直交する方向それぞれに 4倍 に延伸し、 厚み 1 5 μπιの二軸延伸フィルムを得た。 さらに得られた-軸延伸 . フィルムを 205 °Cで 1分間定長で熱固定し、 ポリエチレンナフタレート/層 状珪酸塩コンポジットフィルムを得た。 得られたフィルムの物性を表 1に示す。 実施例 10により得られたフィルムの電子顕微鏡写真を図 4に示す。 比較例 1
層状珪酸塩を含まないポリエチレン一 2、 6—ジカルボキシナフタレート樹脂 (末端 OH量は 52. 8当量/トン、 COOH量は 28. 8当量/トンであり、 還 元粘度 0. 80 dL/g) を実施例 6の手法と同様の方法で溶融させ吐出させた。 得られたポリエステルの末端 OH量は 53. 9当量/トンであり COOH量は 3 5. 2当量/トンであり、 還元粘度 0. 72 d LZ gであった。 比較例 2
実施例 5で得られたポリエステル樹脂組成物の代わりに比較例 1のポリェチ レンナフタレート樹脂を用いる以外は実施例 8と同様の条件で延伸したフィル ムを得た。 結果を表 1に示す。 表 1
Figure imgf000036_0001
[参考例 2 ]
フラスコにフタルイミドカリウム 8 5重量部、 1 , 1 0—ジブロモデカン 1 0 0 8重量部、 ジメチルホルムアミド (十分脱水したもの) 4 3 0重量部を入れ、 攪拌し、 1 0 0 °Cで 2 0時間加熱した。 加熱後、 揮発性成分を全て除去し、 残渣 をキシレンで抽出した。. 抽出した溜夜から揮発性成分を留去し、 残渣を室温で放 置することでフタルイミドデカメチレンィミダゾリゥムプロミドの結晶を得た。
[参考例 3 ] - フラスコにトリオクチルホスフィン 2 0重量部、 参考例 2で得られたフタルイ ミドデカメチレンイミダゾリゥムプロミド 2 0重量部を入れ攪拌し、 約 1 0 0 °C で 8—1 O h携拌反応し、 下記の N—フタ/レイミドデカメチレン -トリオクチル ホスホニゥムブロミド
Figure imgf000037_0001
を得た。
フラスコにクニピア F 1 0 0重量部、 水 3 0 0 0重量部、 メタノール 5 0 0重 量部を入れ、 8 0 °Cでカロ熱攪拌した。 ここに N—フタルイミドデカメチレン -ト リオクチルホスホユウムブロミド 1 2 0重量部をメタノール 3 0 0重量部で溶解 させた溶液を加え、 さらに 8 0 °Cで 3時間攪拌した。 混合物から固体を濾別し、 メタノールで 3回、 水で 3回洗浄したのち、 陽イオン交換された層状珪酸塩を得 た。 陽イオン交換率は 6 5 %、 熱^ *温度は 3 7 4 °C, 層間距離は 2 4 7 n mで あった。 参考例 4
セパラブルフラスコにクニピア F 1 0 9重量部、 水 3 0 0 0重量部を入れ、 8 0 °Cで加熱攪拌した。 それとは別容器に酢酸アンモ-ゥム 1 4 1重量部をイオン 交換水 3 0 0重量部添加して溶解させた溶液を作製し、 層状珪酸塩分散液に加え た。 その後約 2 h攪拌し、 沈殿物をろ過した。
另 IJ容器に酢酸アンモニゥム 7 7重量部をイオン交換水 2 0 0 0重量部に溶角 さ せた溶液を作成する。 この溶液中に前記のろ過物を入れさらに約 1 h攪拌後ろ過 した。 以降この操作をもう一度行つた後ィオン交換水 1 5 0 0重量部で 3回洗浄 した。 さらに、 塩ィ匕ナトリウム 2 0 0重量部をイオン交換水 2 0 0 0重量部に溶 解させ (すなわち溶液濃度 1 . 7 M)、 この液にろ過物を入れて温度 8 0 °Cで約 l h攪拌した。 その後遠心分離機にかけ上澄み液を除去した。 この操作をさらに . 2回行った。 ここに 83重量部の n— He x a d e c y l t r i— n— b u t y 1 p h o s p h o n i umb r om i d eを水 300重量部で溶解させた溶液を加 え、 さらに 80°Cで 3時間攪拌した。 混合物から固体を濾別し、 メタノールで 3 回、 水で 3回洗浄したのち、 凍結乾燥することにより陽ィオン交換された層状珪 酸塩を得た。 イオン交換率は 84%であった。 このようにして得られたものを固 形分が 20重量%の水分散液から凍結乾燥することにより、 比表面積は 6. 5 m 2§のイオン交換された層状珪酸塩を得た。 さらに蛍光 X線測定によってカル シゥムが除去されているのを確認したところ、 カルシウムは元素比率として 1%未満であった。 実施例 1 1
次にポリ (エチレン一 2, 6—ナフタレンジカルボキシレート) (還元粘度が 0. 78 d L/g) のペレット、 参考例 4で得られた層状珪酸塩を同方向型- 軸押し出し機 (We r n e r社 Z SK— 2 5) を用いて押し出し温度 280 °C、 吐出量 1 0 k gZh r、 スクリユー回転速度 280 r pmの条件下で混練し、 ポリエステル樹脂組成物を得た。 得られた組成物の末端 OH濃度は 30当量/ト ン、 COOH濃度は 48当量/トンであり、 無機灰分は 2 wt%であった。 得ら れたポリエステル樹脂組成物の物性を下記の表 2に示す。 また透過型電子顕微 鏡で樹脂組成物を観察したところ、 層状珪酸塩は粗大な^ ftなく、 良好に分散し ていることが分かる。 ここで TEMZEDS測定を行った所、 カルシウムは測定 されなかった。 実施例 12
実施例 11における層状珪酸塩の修飾剤を、 参考例 3で得られたホスホニゥム 塩に変えて同様な操作で有機修飾層状珪酸塩を作成しポリエステル樹脂組成物を 作成した。 得られたポリエステル樹脂組成物の物性を表 2に示す。 参考例 5
塩化ナトリゥム水溶液にろ過物を入れて攪拌上澄み液を除去する工程を行わな かったこと以外は参考例 4と同様にして陽イオン交換された層状珪酸塩を得た。 イオン交換率は 82%であった。 このようにして得られたものの比表面積は 7. 0 m 2 / gであった。 さらに蛍光 X線測定によつて測定した結果、 力ルシゥム元 素比率は 0. 1 %未満であつた。 実施例 13
'ポリ (エチレン一 2, 6—ナフタレンジカルボキシレート) (還元粘度が 0. 78 dL/g) と共に、 参考例 5で得られた層状珪酸塩を同方向型二軸押し出 し機 (We r n e r社 Z SK— 25) を用いて押し出し温度 280 °C、 吐出量 10 k g/h r , スクリュー回転速度 280 r pmの条件下で混練し、 ポリエ ステル樹脂組成物を得た。 得られた組成物の末端 OH濃度は 28当量/トン、 C OO H濃度は 53当量/トンであり、 無機灰分は 2 w t %であつた。 得られたポ リエステル樹脂組成物の物性を下記の表 2に示す。 表 2
Figure imgf000040_0001
実施例 14
実施例 11で得られたストランド状チップを 170°Cで 5時間乾燥後、 押出 機ホッパーに供給し、 溶融温度 300^で溶融し、 1. 3mmのスリット状ダ ィを通して表面温度 80°Cの回転冷却ドラム上に押出し、 未延伸フィルムを得 た。 このようにして得られた未延伸フィルムを温度 150。Cで MD X T D = 4 0 X4. 0倍に同時 2軸延伸を行い、 厚み 15 μπιの二軸延伸フィルムを得た, さらに得られた二軸延伸フィルムを 205°Cで 1分熱固定し、 ポリ (エチレン 一 2, 6— '一ト) Z層状珪酸塩コンポジットフィル ムを得た。 得られたフィルムの物性を表 3に示す。 表 3
Figure imgf000041_0001
参考例 6
クニピア F (層間距離 1. 26nm、 H (QUARTZ) /H (CLAY) f=0. 081) 1. 5 k gをイオン交換水中 40Lに添加したのち 80°Cで 散 させることで分散液を得た。 これを遠心分離機により沈殿物を除去したのち上澄 みを回収した。 一部サンプリングし乾燥したところ、 分散液中の層状珪酸塩の濃 度は 2. 5重量%であった。
得られた分散液を 80°Cで加熱攪拌しながら、 分散液に含まれるイオン交換容 直の 1.5倍モル当直 n-H e x a d e c y l t r i - n - b u t y l ph o s p h o n i umb r om i d eと該有機ホスホニゥム塩の 3重量倍のイオン交換水 力 らなる溶液を加え、 さらに 80°Cで 3時間攪拌した。 混合物から固体を濾別し、 メタノールで 3回、 水で 3回洗浄したのち、 凍結乾燥することにより陽ィオン交 換された層状珪酸塩を得た。 各有機ホスホニゥムィオンで修飾された層状珪酸塩 の物性を表 4に示す。 好適に有機ホスホ-ゥムイオンが修飾され、 石英が除かれ た有機修飾層状珪酸塩が得られた。 参考例 7
参考例 6と同様の方法を用いて作成された分散液を 2 3 °Cで一週間静置したの ち上澄みを回収した。 一部サンプリングし乾燥したところ分散液中の層状珪酸塩 の濃度は 2 . 8重量%であった。 参考例 6と同様に陽ィオン交換された層状珪酸 塩を得た。 各有機ホスホニゥムイオンで修飾された層状珪酸塩の物性を表 4に示 す。 参考例 8
参考例 6と同様の方法を用いて作成された分散液をビーズミルで分散した。 デ カンテーションで沈殿物を除いた後 5 / mのフィルターをかけることにより粗大 粒子を除くことで、 水分散液を得た。 濃度は 3 . 2重量%であった。 参考例 6と 同様に陽ィオン交換された層状珪酸塩を得た。 各有機ホスホニゥムィオンで修飾 された層状珪酸塩の物性を表 4に示す。
表 4
層状珪酸塩中の石英含有量 層間距離
修飾率 (%) 層数
(重量%) nrn
参考例 6 0.10 91.3 2.3 4.7
参考例フ 0.12 76.4 2.2 6.6
参考例 8 0.41 83.8 2.4 4.0 実施例 15〜 17
ポリ (エチレン一 2, 6—ナフタレート) (還元粘度 0· 78 g/d L) を 1 80°Cで 6時間乾燥させた後これを押出機に供給し 280°Cで溶融し、 参考例 7 〜 9にて得られた有機ホスホニゥムにより修飾された層状珪酸塩をそれぞれフィ ーダ一から供給し溶融混練することで無機灰分として 2重量%含むポリエステル 樹脂組成物を得た。 こうして得られたポリ.エステル樹脂組成物の物性を表 5に示 す。
表 5
Figure imgf000043_0001
実施例 18〜20
実施例 15-17で得られたポリエステル樹脂組成物を 180 で 5時間乾 燥後、 300 °Cで溶融し、 1. 3 mmのスリット状ダイを通して表面温度 8 0。cの回転冷却ドラム上に押出し、 未延伸フィルムを得た。 このようにして得 られた未延伸フィルムを温度 150¾で 膜方向及びこれに直交する方向に対 しそれぞれ 4倍に延伸し、 厚み 15 μπιの二軸延伸フィルムを得た。 さらに得 られた二軸延伸フィルムを 205 °Cで 1分間定長で熱固定し、 ポリエチレンナ フタレート/層状珪酸塩コンポジットフィルムを得た。 得られたフィルムの物 性を表 6に示す。
表 6
Figure imgf000044_0001
実施例 21
フラスコに 2, 6—ビス (ヒドロキシェチル) ナフタレンジカルボキシレート 250重量部、 参考例 3で得た層状珪酸塩 21重量部、 三酸化アンチモン 0. 0 4重量部を入れ、 攪拌しながら常圧で 230°Cから 290°Cまで 2時間かけて昇 温した。 さらに 290°Cで 1時間かけて大気圧から 66. 66 P aまで減圧にし、 そのまま 1時間重合し、 ポリ (エチレン 2, 6—ナフタレンジカルボキシレー ト) と層状珪酸塩の組成物 (ポリ (エチレン 2, 6—ナフタレンジカルボキシレ ート) と無機成分の重量比 100 : 7) を得た。 この組成物の融点は 265°C、 還元粘度は 0. 54 d L Z gであった。 得られた組成物の末端 O H濃度は 22当 量/トン、 C O O H濃度は 35当量/トンであつた。 X線散乱により測定した層間 距離 d Aは 2. 6 nm、 平均層数 NAは 6. 2であった。 X線散乱において層間距 離 2 nm以下に帰属される層状珪酸塩のピークは観察されなかった。 またこれ以 外の反応不十分と帰属される層状珪酸塩のピークは観察されなかつた。
こうした操作により得られた組成物 860重量部とポリ (エチレン一 2, 6— ナフタレート) (還元粘度 0· 78 g/dL) 2240重量部を 2軸押し出し機 を使用して、 溶融温度 300°Cで溶融混練した。 X線散乱により測定した層間距 離 dBは 2. 6nm、 平均層数 NBは 5. 2であった。
得られた組成物を、 溶融温度 300 °Cで 0. 3 mmの紡糸口金孔径を有する紡 糸設備を使用して、 33 mZ分の速度で原糸を採取し、 150°Cで 7. 9倍に延 伸を行つた。 得られた繊維の繊度は 6 , 6 d t e Xであり、 ΙΙϋ強度 6. 0 cN Zd t e x、 ヤング率 31GP aであった。 X線散乱により測定した層間距離 d cは 2. 7nm、 平均層数 Ncは 4. 4であった。 得られた繊維の物性を表 7に示 す。 実施例 22
繊維の延伸温度を、 160°Cとした以外は実施例 21と同様の操作を行ったと ころ、 得られた繊維の繊度は 6. 6 d t e Xであり、 繊維強度 5. 296 c N/ d t e x、 ヤング率 29 GP aであった。 得られた繊維の物性を表 7に示す。 実施例 23
参考例 3で得た層状珪酸塩に変えて参考例 4で得た層状珪酸塩を用いた以外は実 施例 21と同様の操作を行つたところ、 得られた の は 6. 4 d t e Xで あり、 維強度 5. 4 cN/d t e X, ヤング率 31 G P aであった。 得られた 繊維の物性を表, 7に示す。 実施例 24
参考例 3で得た層状珪酸塩に変えて参考例 6で得た層状珪酸塩を用いた以外は実 施例 21と同様の操作を行ったところ、 得られた藤維の m¾は 6. 7 d t e Xで あり、 繊維強度 5. 3 cN/d t e xs ヤング率 28 GP aであった。 得られた 繊維の物性を表 7に示す。 比較例 3
層状珪酸塩を含まないポリ (エチレン一 2, 6—ナフタレート) (末端 OH量 は 52. 8当量/トン、 〇0011量は28. 8当量/トンであり、 還元粘度 0. 7 8 g/dL) を使用して、 延伸倍率を 8. 8倍とした以外は、 実施例 21と同様 にして、 ポリ (エチレン一 2, 6—ナフタレート) 繊維を得た。 得られた繊維の 繊度は 5. 39 d t e Xであり、 強度 5. 825 c NZ d t e χ、 ヤング率 28GP aであった。 得られた繊維の物性を表 7に示す。 比較例 4
ポリ (エチレン一 2, 6—ナフタレート) (末端 OH量は 52. 8当量/トン、 COOH量は 28. 8当量/トンであり、 還元粘度 0. 78 g/dL) を使用し て、 延伸倍率を 8. 8倍とした以外は、 実施例 22と同様にして、 ポリ (ェチレ ン一 2, 6一ナフタレート) 繊維を得た。 得られた繊維の繊度は 5. 28 d t e xであり、 HI強度 5. 913 c Ν/ά t e χ、 ヤング率 27GP aであった。 得られた繊維の物性を表 7に示す。 表 7
実施例 21 実施例 22 実施例 23 実施例 24 比較例 3 比較例 4 層状珪酸塩 参考例 3 参考例 3 参考例 4 参考例 6 なし なし 末端 OH濃度 (当量/卜
ン) 22 22 30 35 52.8 52.8 末端 COOH濃度(当
量/卜ン) 35 36 48 53 28.8 28.8 層間距離 dA 2.6 2.6 2.4 2.4 ― ― 平均層数 NA 6.2 6.1 6 4.8 一 ― 層間距離 dB 2.6 2.5 2.5 2.4 ― ― 平均層数 NB 5.2 5.3 5.6 4.2 一 一 層間距離 dG 2.1 2.7 2.4 2.5 一 ― 平均層数 Nc 4.4 4.5 4.1 3.8 ― ― 繊度 (dtex) 6.6 6.6 6.4 6J 5.39 5.28 繊維強度 (cNZdtex) 6 5.296 5.4 5.3 5.825 5.913 ヤング率 (GPa) 31 29 31 28 28 27

Claims

請 求 の 範 囲
1. ポリエステルと、 下記式 (1)
R4-「^
(1)
(式中、 Rい R2、 R3及ぴ1 4は、 それぞれ独立に、 炭素数 1〜30の炭化水 素基またはへテロ原子を含む炭化水素基、 また任意の R2、 R3及ぴ 4は 環を形成していても良い。)
で表される有機ホスホ-ゥムイオンにより 60〜100%修飾された層状珪酸塩 とからなる樹脂組成物であって、 該層状珪酸塩を無機灰分として 0. 01〜20 重量0 /0含み、 O H末端基量が 0. 1から 45当量/トンであるポリエステノレ樹脂 組成物。
2. ポリエステ^/がポリエチレンテレフタレート、 ポリ トリメチレンテレフタレ ート、 ポリブチレンテレフタレート、 およぴポリエチレン一 2, 6—ナフタレー トからなる群から選択される少なくとも 1種である請求項 1記載のポリエステル 樹脂組成物。
3. 有機ホスホニゥムイオンにより修飾された層状珪酸塩について、 窒素雰囲気 下、 20 °C/m i nの昇温速度で示差熱天秤によつて測定した 5重量0 /0重量減少 時の温度が、 310°C以上であることを特徴とする請求項 1記載のポリエステル 樹脂組成物。
4. X線散乱の回折ピークから算出される層間距離 dBが 2. Onm以上の層 状珪酸塩が 50 %以上であり、 力つ線散乱ピーク及ぴその半値幅から S c h e r r e rの式により算出される層状珪酸塩の平均層数 NBが 5以下である請求項 1 記載のポリエステル樹脂組成物。 5. 層状珪酸塩の蛍光 X線測定によって測定されるカルシウム含有率が元素比 率として 0.
5 %以下であることを特徴とする請求項 1記载のポリエステル樹脂 組成物。 '
6. 石英含有量が 0. 009重量%以下であることを特徴とする請求項 1記載 のポリエステル樹脂組成物。
7. 請求項 1記載のポリエステル樹脂組成物からなる成形体。 .
8. フィルムである請求項 7に記載の成形体。
9. フィルムの断面方向からの X線回折における層状珪酸塩の層間の回折ピー ク強度について下記式 (5) β = (5)
Figure imgf000050_0001
(式 (I ) 中で f cは配向係数、 φはフィルムの面内方向に対する方位角であり I c (φ) は方位角 φにおける散乱強度)
における配向係数 f cが 0. 8以下である請求項 8に記載の成形体。
0. 繊維である請求項 7に記載の成形体。
1 1. 線散乱ピーク及びその半値幅から S c h e r r e rの式により算出され る層状珪酸塩の平均層数 Ncが 5以下である請求項 7記載の成形体。
1 2. (A) ジカルボン酸またはそのエステル誘導体と脂肪族グリコール Zま たはヒドロキシカノレボン酸を、 有機ホスホニゥムイオンでイオン交換能対比 6 0 〜 1 00 %ィオン交換された層状珪酸塩の存在下で重合することにより、 層状珪 酸塩がポリエステル 1 00重量部に対し 0. 0 1〜 3 0重量部であるポリエステ ル樹脂組成物を得て、 ついで
(B) ポリエステルの融点以上の温度において、 せん断速度 2 50 s以上で溶 融混練する工程を経て製造することを特徴とする、 請求項 1に記载のポリエステ ル榭脂組成物の製造方法。
1 3. (A) の重合工程により得られた層状珪酸塩を含むポリエステル樹脂組 成物において、 X線散乱の回折ピークから算出される層間距離 dAが 2. 0 nm 以上の層状珪酸塩が 5 0 %以上であり、 力ゝっ線散乱ピーク及ぴその半値幅から S c h e r r e rの式により算出される層状珪酸塩の平均層数 NAが 7以下である 請求項 1 2に記載のポリエステル樹脂組成物の製造方法。
PCT/JP2005/004142 2004-03-05 2005-03-03 ポリエステル樹脂組成物 WO2005085349A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05720413A EP1724307A4 (en) 2004-03-05 2005-03-03 POLYESTER RESIN COMPOSITION
JP2006510800A JPWO2005085349A1 (ja) 2004-03-05 2005-03-03 ポリエステル樹脂組成物
US10/591,423 US20070191525A1 (en) 2004-03-05 2005-03-03 Polyester resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004062107 2004-03-05
JP2004-062107 2004-05-03
JP2004-198970 2004-06-07
JP2004198970 2004-07-06

Publications (1)

Publication Number Publication Date
WO2005085349A1 true WO2005085349A1 (ja) 2005-09-15

Family

ID=34921702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004142 WO2005085349A1 (ja) 2004-03-05 2005-03-03 ポリエステル樹脂組成物

Country Status (6)

Country Link
US (1) US20070191525A1 (ja)
EP (1) EP1724307A4 (ja)
JP (1) JPWO2005085349A1 (ja)
KR (1) KR20070009608A (ja)
TW (1) TW200540222A (ja)
WO (1) WO2005085349A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298751A (ja) * 2004-04-15 2005-10-27 Teijin Ltd ポリエステル樹脂組成物およびポリエステルフィルム
JP2011021296A (ja) * 2009-07-16 2011-02-03 Teijin Fibers Ltd 寸法安定性に優れたスクリーン紗用モノフィラメント
WO2017159719A1 (ja) * 2016-03-18 2017-09-21 日東電工株式会社 波長変換機能を有する粘着テープ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4337773B2 (ja) * 2005-05-25 2009-09-30 日立電線株式会社 改質ふっ素樹脂組成物
WO2013036766A1 (en) * 2011-09-09 2013-03-14 University Of Georgia Research Foundation, Inc. Small molecule naphthoquinone- and phthalimide-based lipocations as anti-parasitic agents

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121397A (ja) * 2000-10-13 2002-04-23 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP2003012899A (ja) * 2001-07-02 2003-01-15 Teijin Chem Ltd 樹脂組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806548C2 (de) * 1987-03-04 1996-10-02 Toyoda Chuo Kenkyusho Kk Verbundmaterial und Verfahren zu dessen Herstellung
JP3269277B2 (ja) * 1994-04-15 2002-03-25 三菱化学株式会社 熱可塑性樹脂組成物
JP3336787B2 (ja) * 1995-01-23 2002-10-21 三菱化学株式会社 ポリエチレンテレフタレート樹脂組成物
JPH08333475A (ja) * 1995-06-07 1996-12-17 Kunimine Kogyo Kk 合成樹脂材
US5962553A (en) * 1996-09-03 1999-10-05 Raychem Corporation Organoclay-polymer composites
US6084019A (en) * 1996-12-31 2000-07-04 Eastman Chemical Corporation High I.V. polyester compositions containing platelet particles
JP3964497B2 (ja) * 1997-06-12 2007-08-22 ユニチカ株式会社 ポリエステル組成物
JP4374685B2 (ja) * 1998-11-17 2009-12-02 東レ株式会社 ポリエステル樹脂組成物
EP1172409B1 (en) * 1999-04-05 2007-02-21 Kaneka Corporation Thermoplastic resin composition and process for producing the same
US6486253B1 (en) * 1999-12-01 2002-11-26 University Of South Carolina Research Foundation Polymer/clay nanocomposite having improved gas barrier comprising a clay material with a mixture of two or more organic cations and a process for preparing same
US6737464B1 (en) * 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
JP2002088255A (ja) * 2000-09-14 2002-03-27 Toray Ind Inc 熱可塑性樹脂組成物およびその製造方法
JP2002179897A (ja) * 2000-12-11 2002-06-26 Teijin Ltd 熱可塑性芳香族ポリエステルに生分解性を付与する方法
JP2003238819A (ja) * 2002-02-15 2003-08-27 Co-Op Chem Co Ltd 耐熱性フィラー
JP2004051722A (ja) * 2002-07-18 2004-02-19 Idemitsu Petrochem Co Ltd ポリオレフィン系複合樹脂組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121397A (ja) * 2000-10-13 2002-04-23 Sekisui Chem Co Ltd 樹脂−層状珪酸塩複合材料及びその製造方法
JP2003012899A (ja) * 2001-07-02 2003-01-15 Teijin Chem Ltd 樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1724307A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298751A (ja) * 2004-04-15 2005-10-27 Teijin Ltd ポリエステル樹脂組成物およびポリエステルフィルム
JP2011021296A (ja) * 2009-07-16 2011-02-03 Teijin Fibers Ltd 寸法安定性に優れたスクリーン紗用モノフィラメント
WO2017159719A1 (ja) * 2016-03-18 2017-09-21 日東電工株式会社 波長変換機能を有する粘着テープ
CN110352224A (zh) * 2016-03-18 2019-10-18 日东电工株式会社 具有波长转换机能的粘合带

Also Published As

Publication number Publication date
KR20070009608A (ko) 2007-01-18
EP1724307A1 (en) 2006-11-22
EP1724307A4 (en) 2008-04-30
JPWO2005085349A1 (ja) 2008-01-24
US20070191525A1 (en) 2007-08-16
TW200540222A (en) 2005-12-16

Similar Documents

Publication Publication Date Title
US6071988A (en) Polyester composite material and method for its manufacturing
TWI436891B (zh) 太陽能電池背面保護膜用聚酯薄膜
WO2005085349A1 (ja) ポリエステル樹脂組成物
CN113813796B (zh) 一种纳米复合分散液、高气体阻隔性纳米复合膜及其制备方法
KR20070028438A (ko) 높은 형태 계수의 결정성 지르코늄 인산염, 그의 제조 방법및 고분자 물질에서의 그의 용도
JP5473244B2 (ja) ポリエステル樹脂組成物の製造方法、ポリエステル樹脂組成物および成形体
JPH1017753A (ja) ポリエステル組成物およびその製造方法
EP0994914B1 (en) Polyester composite material and method for its manufacturing
JP2005298751A (ja) ポリエステル樹脂組成物およびポリエステルフィルム
JP2006214057A (ja) ポリエステル系繊維およびその製造法
KR100589890B1 (ko) 열가소성수지 조성물, 그 제조방법 및 그 조성물로이루어진 2축 배향 필름
JP2011068756A (ja) ポリエステル組成物およびそれを用いたフィルム
WO2005028366A1 (ja) 層状珪酸塩、およびそれを含む熱可塑性樹脂組成物
KR100392101B1 (ko) 결정성이 우수한 성형용 포화 폴리에스테르 수지
JPH111605A (ja) ポリエステル複合材料
JPS6218424A (ja) ポリエステルの製造方法
JP2006328210A (ja) ポリエステル樹脂組成物および成形体
JPH11335542A (ja) 二酸化チタン含有ポリエステル組成物及びその製造方法
JP2006028241A (ja) ポリエステルフィルム
JP3574826B2 (ja) ポリエステル樹脂組成物及びその製造方法
JPH11335541A (ja) 二酸化チタン含有ポリエステル組成物及びその製造方法
JP2006117760A (ja) ポリエステル系樹脂組成物およびその製造法
JPS59204617A (ja) ポリエステルの製造方法
JPS6131428A (ja) ポリエステルの製造方法
JP3546604B2 (ja) ポリエステル樹脂組成物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510800

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10591423

Country of ref document: US

Ref document number: 2007191525

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580007145.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005720413

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067020341

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005720413

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020341

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10591423

Country of ref document: US