WO2005083808A1 - 熱電変換デバイス、およびこれを用いた冷却方法および発電方法 - Google Patents

熱電変換デバイス、およびこれを用いた冷却方法および発電方法 Download PDF

Info

Publication number
WO2005083808A1
WO2005083808A1 PCT/JP2004/019532 JP2004019532W WO2005083808A1 WO 2005083808 A1 WO2005083808 A1 WO 2005083808A1 JP 2004019532 W JP2004019532 W JP 2004019532W WO 2005083808 A1 WO2005083808 A1 WO 2005083808A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion device
electrodes
insulating layer
pair
Prior art date
Application number
PCT/JP2004/019532
Other languages
English (en)
French (fr)
Inventor
Satoshi Yotsuhashi
Tsutomu Kanno
Hideaki Adachi
Akihiro Odagawa
Yasunari Sugita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005518740A priority Critical patent/JP3874365B2/ja
Priority to US11/194,685 priority patent/US7312392B2/en
Publication of WO2005083808A1 publication Critical patent/WO2005083808A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a thermoelectric conversion device that mutually converts thermal energy and electric energy by the Peltier effect and the Seebeck effect.
  • Thermoelectric power generation is a technology that directly converts heat energy into electric energy using the Seebeck effect, that is, the phenomenon that when a temperature difference is applied to both ends of a substance, a thermoelectromotive force is generated according to the temperature difference. By connecting a load externally to form a closed circuit, power can be extracted.
  • This technology has been put to practical use as a power source for remote areas, a power source for space, and a power source for military use.
  • Thermoelectric cooling is a technique that utilizes the Peltier effect, that is, a phenomenon in which heat is transferred by electrons carried by an electric current. Specifically, for example, when two substances having different signs of a p-type semiconductor, an n-type semiconductor, V, and a carrier are thermally connected in parallel and electrically in series, and a current flows, The difference in the sign of is reflected in the difference in the direction of the heat flow, and the joint is absorbed.
  • This technology has been put to practical use as local cooling, such as cooling electronic equipment in a space station, as a wine cooler, and the like.
  • thermoelectric conversion material In general, the performance of a thermoelectric conversion material is evaluated by a performance index Z or a dimensionless performance index ZT multiplied by an absolute temperature T.
  • S Seebeck coefficient of the material
  • thermal conductivity
  • thermoelectric conversion materials Many materials have been studied as thermoelectric conversion materials. For example, it has been reported that NaCoO, which is a layered oxide, exhibits excellent thermoelectric conversion performance (Japanese Unexamined Patent Publication No.
  • WO 03/08 5748 discloses, as a thermoelectric conversion film, a Na CoO film formed on a c-plane of a sapphire substrate and having a c-axis orientation, that is, a c-axis oriented perpendicular to the surface of the substrate. Been Yes.
  • thermoelectric conversion performance in the in-plane direction of the electric conductive layer.
  • Japanese Patent Application Laid-Open No. 2000-269560 discloses a sintered body having a uniform crystal orientation.
  • Japanese Patent Application Laid-Open No. 2003-95741 also discloses a polycrystal having orientation.
  • the level of ZT> 1 which is regarded as a practical standard, is slightly exceeded in a limited substance and in a certain temperature range, and the aim was to spread the substance more widely.
  • the level of thermoelectric conversion performance index ⁇ ⁇ ⁇ > 3 is far more accessible.
  • thermoelectric conversion devices [0011] Publications disclosing conventional thermoelectric conversion devices are collectively described below.
  • thermoelectric conversion performance of the layered material in the in-plane direction of the electric conductive layer has not reached the level required for a practical level even if its crystal orientation is improved.
  • the present inventors have eagerly studied the thermoelectric conversion characteristics of various layered substances not only in the in-plane direction of the electric conductive layer but also in the direction in which the electric conductive layers and the electric insulating layers are alternately arranged (interlayer direction). As a result of repeated research, they discovered that the direction of the interlayer between the electrically conductive layer and the electrically insulating layer of the layered material exhibited unexpectedly high thermoelectric conversion performance depending on the magnitude of the applied external field, and reached the present invention.
  • the present invention was.
  • the present invention is a thermoelectric conversion device including a base, a thermoelectric conversion film disposed on the base, and a pair of electrodes, wherein the thermoelectric conversion film is obtained by epitaxy growth, And an electrically conductive layer and an electrically insulating layer are alternately arranged.
  • the electrically conductive layer has an octahedral crystal structure in which a transition metal atom M is located at the center and an oxygen atom is located at a vertex.
  • the insulating layer is made of a single metal element or a crystalline metal oxide.
  • a c-axis of the layered material including the electric conductive layer and the electric insulating layer is parallel to an in-plane direction of the base, and the pair of electrodes is Provides a thermoelectric conversion device that is arranged so that current flows along the c-axis.
  • the present invention also provides a cooling method and a power generation method using the thermoelectric conversion device.
  • a temperature difference is generated between the pair of electrodes by flowing a current between the pair of electrodes using the thermoelectric conversion device described above, and one of the pair of electrodes is cooled to a low-temperature portion. Is a cooling method.
  • the above-described thermoelectric conversion device is used, and heat is applied so as to generate a temperature difference between the pair of electrodes. A potential difference is created between the electrodes.
  • thermoelectric conversion characteristics in the interlayer direction in which the electrically conductive layers and the electrically insulating layers are alternately arranged it is possible to obtain better thermoelectric conversion performance in a wide temperature range than before. .
  • This advantage is based on the interlayer conduction of the layered material.
  • FIG. 1 is a perspective view showing one embodiment of a thermoelectric conversion device according to the present invention.
  • FIG. 2 is a view showing a crystal structure of a thermoelectric conversion film in the thermoelectric conversion device shown in FIG. 1.
  • FIG. 3 is a perspective view showing another embodiment of the thermoelectric conversion device according to the present invention.
  • FIG. 4A is a perspective view showing one embodiment of a thermoelectric conversion device having a buffer layer.
  • FIG. 4B is a perspective view showing another embodiment of the thermoelectric conversion device having a buffer layer.
  • FIG. 9 is a perspective view showing another embodiment of a thermoelectric conversion device having a buffer layer.
  • FIG. 5 is a view showing a result of X-ray diffraction of the Na CoO thin film prepared in Example 1.
  • FIG. 6 shows the temperature dependence of the electrical resistivity of the Na CoO thin film prepared in Example 1.
  • FIG. 1 A first figure.
  • FIG. 7 shows the temperature dependence of the Seebeck coefficient of the Na CoO thin film prepared in Example 1.
  • FIG. 1 A first figure.
  • FIG. 8A shows a Na CoO thin film coated with an epoxy resin in Example 1.
  • FIG. 8B is a perspective view showing the state
  • FIG. 8B is a perspective view showing the thermoelectric conversion device produced in Example 1 and having an epoxy resin as a base
  • FIG. 9 is a view showing a result of X-ray diffraction of the Ca CoO thin film prepared in Example 2.
  • FIG. 10 shows the temperature dependence of the electrical resistivity of the Ca CoO thin film prepared in Example 2.
  • FIG. 1 A first figure.
  • FIG. 11 shows the temperature dependence of the Seebeck coefficient of the Ca CoO thin film prepared in Example 2.
  • FIG. 1 A first figure.
  • FIG. 12A shows each configuration to show the configuration of the thermoelectric conversion device manufactured in Example 3.
  • FIG. 12B is an exploded perspective view showing elements, and
  • FIG. 12B is a perspective view showing the thermoelectric conversion device manufactured in Example 3.
  • FIG. 13 is a view showing a crystal structure of a Bi Pb Sr Co O single crystal produced in Example 4.
  • FIG. 14 shows the results of the formation of the Bi Pb Sr Co O epitaxial growth film prepared in Example 4.
  • FIG. 15A shows the results of X-ray diffraction of the Bi Pb Sr Co O single crystal prepared in Example 4.
  • FIG. 15B shows Pb of the Bi Pb Sr Co O single crystal prepared in Example 4.
  • FIG. 3 is a diagram showing a relationship between a content X and a c-axis length.
  • FIG. 16A is a Laue diffraction image obtained from the BiSrCoO single crystal prepared in Example 4.
  • FIG. 16B shows a Laue diffraction image of the Bi Pb Sr Co O single crystal prepared in Example 4.
  • FIG. 17 is an X-ray diffraction of the Bi Sr Co O epitaxial growth film prepared in Example 4.
  • FIG. 18 shows the electric resistivity p, of the Bi Pb Sr Co O single crystal prepared in Example 4.
  • FIG. 3 is a diagram showing the temperature dependence of a Seebeck coefficient S and a thermal conductivity ⁇ .
  • FIG. 19 shows the crystal structure of the Ca Co O epitaxial growth film prepared in Example 5.
  • FIG. 1 A first figure.
  • FIG. 20 shows the results of X-ray diffraction of the Ca Co O epitaxial growth film prepared in Example 5.
  • FIG. 21 shows the electrical resistivity of the Ca Co O epitaxial growth film prepared in Example 5.
  • FIG. 3 is a diagram showing the temperature dependence of the present invention.
  • thermoelectric conversion device shown in FIG. 1 includes a plate-shaped base 11, a thermoelectric conversion film 12 on the base 11,
  • FIG. 2 illustrates a crystal structure of the thermoelectric conversion film 12.
  • the thermoelectric conversion film 12 has a layered structure in which electric conductive layers 22 and electric insulating layers 23 are alternately arranged. That is, the thermoelectric conversion film 12 is formed of a crystalline thin film in which the electric conductive layers 22 and the electric insulating layers 23 are alternately arranged.
  • the direction between layers that is, the direction perpendicular to the layer plane, is referred to as the c-axis direction 10.
  • the pair of electrodes 13a and 13b are arranged so that current can flow along the c-axis direction 10.
  • thermoelectric conversion film 12 is an epitaxy thin film (epitaxial growth film), and has an orientation in which the c-axis direction 10 is along the in-plane direction of the base 11. In other words, the thermoelectric conversion film 12 has a crystal structure in which the layers 22 and 23 are grown almost perpendicular to the surface of the base 11.
  • the electrodes 13a and 13b are spaced apart in this direction so that when a voltage is applied between the electrodes, a current flows in the thermoelectric conversion film 12 along the c-axis direction 10. It is not necessary to provide in contact with the surface of the thermoelectric conversion film 12 as shown in FIG.
  • the substrate 11 provides a starting point for epitaxy growth of the thermoelectric conversion film 12.
  • Preferred substrates 11 include single crystal substrates of Al O, MgAl O, SrTiO, MgO, TiO, etc.
  • thermoelectric conversion film epitaxially grown on the single crystal base may be separated from the base and placed on the base 11 prepared separately.
  • the thermoelectric conversion film 12 is a crystalline thin film having a crystal structure in which electric conductive layers 22 and electric insulating layers 23 are alternately arranged. Oxide layered materials are desirable because they are stable in air.
  • the electric conductive layer 22 has an octahedral (octahedral) crystal structure in which the transition metal atom M is located at the center and oxygen is located at the apex.
  • the transition metal atom M is preferably at least one element selected from the elements exemplified below, particularly Co and Mn.
  • thermoelectric conversion performance can be obtained.
  • MO octahedrons share ridges with each other
  • a structure that forms a layer by itself is called a Cdl-type structure.
  • thermoelectric conversion film 12 in which the electric conduction layer 22 has a Cdl-type structure is represented by the formula AMO.
  • This film is a layered material in which layers A as the electric insulating layers 23 and layers MO as the electric conductive layers 22 are alternately arranged.
  • A is at least one element selected from alkali metals such as Na, K, and Li; alkaline earth metals such as Ca, Sr, and Ba; Hg, ⁇ , and Pb.
  • M is a transition metal element, preferably at least one element selected from Co, Ni, Ti, Mn, Fe and Rh, and more preferably at least one element selected from Co and Mn forces.
  • 0.1 ⁇ X1 ⁇ 0.8, preferably 0.2 ⁇ X1 ⁇ 0.8, 1.5 ⁇ Y1 ⁇ 2.5, preferably 1.8 ⁇ ⁇ 1 ⁇ 2.2. is there.
  • the elements ⁇ and ⁇ may be two or more.
  • the element A is obtained by substituting a part of an alkali metal and / or an alkaline earth metal with Hg, Tl, Pb, or Bi. Is also good.
  • the layer A Since the metal element A randomly occupies each site in the crystal at a rate of (XI) X 100%, carrier scattering frequently occurs. For this reason, even if an element (metal element) which becomes a metal by itself is used as the element A, the layer A has an electrically insulating property. Further, the layer made of the metal element A has a carrier (having a composition represented by the formula AMO) in the electrically conductive layer 22 having an octahedral crystal structure in which the transition metal atom M is located at the center and oxygen is located at the apex.
  • AMO carrier
  • XI may be 1.0, that is, the metal element A may be located at all sites in the crystal.
  • thermoelectric conversion film 12 having the composition represented by the formula AMO has more specifically one layer.
  • the electric conduction layer 22 consisting of three monolayers of MO, and whether one layer is one to four monolayers
  • thermoelectric conversion film 12 having an electric conductive layer 22 with a thickness of 4 monolayers or more, or an electrical insulating layer 23 with a thickness of 5 monolayers or more. It is not excluded from the invention.
  • FIG. 2 shows a crystal structure in which electric conductive layers 22 and electric insulating layers 23 are alternately arranged for each monolayer.
  • the illustrated device can be used as a thermoelectric cooling device.
  • the electrode 13a and the electrode 13b are strictly distinguished from each other, the former is described as a “first electrode (reference numeral: 13a)" and the latter is described as a “second electrode (reference numeral: 13b)".
  • thermoelectric conversion film 12 having a layered structure, in the c-axis direction 10, the electric resistance is large and the Seebeck coefficient is small, so the thermoelectric conversion performance ZT is considered to be unsuitable for use.
  • the present inventors succeeded in producing a layered material on the substrate 11 with the interlayer direction (c-axis direction 10) along the in-plane direction. Then, in the process of examining the relationship between the thermoelectric conversion performance depending on the direction of the external field in detail as the thermoelectric conversion film 12 using this layered material, unexpectedly large thermoelectric conversion performance can be obtained in the interlayer orientation depending on the size of the external field. I found that.
  • thermoelectron emission mechanism is a thermoelectron emission mechanism.
  • the emission medium is not the vacuum but the electrical insulating layer 23, so that the tunneling effect is also included. It is presumed that the complex mechanism involved is involved.
  • thermoelectric conversion film 12 by providing a temperature difference between the electrodes 13a and 13b, carriers having thermal energy in the thermoelectric conversion film 12 cancel the temperature difference so that carriers having thermal energy cancel out the temperature difference. As a result, the current flows. By utilizing this effect, electric power can be extracted through the electrodes 13a and 13b.
  • the device shown can also be used as a thermoelectric device.
  • the distance between the electrodes 13a and 13b in the c-axis direction 10 of the thermoelectric conversion film 12 can be freely set, so that a highly efficient device with little heat return can be realized. This makes it possible to increase the temperature difference between the high-temperature part and the low-temperature part.
  • a thermoelectric conversion film 12 having a structure in which each layer 22, 23 stands perpendicular to the surface of the substrate 11 (see FIG. 2) in other words, a structure in which the c-axis direction 10 is an in-plane direction.
  • the material of the substrate 11 and the heating temperature of the substrate 11 during thin film production are important.
  • the substrate temperature is preferably in the range of 650 to 750 ° C. depending on the type of the element A.
  • the composition of the thin film is, for example, 0.3 ⁇ x ⁇ 0.6 when the element A is Na, 0.3 ⁇ x ⁇ 0.5 when the element A is Sr, and When A is Ca If 0.4 ⁇ x ⁇ 0.7, a film with good crystallinity can be obtained.
  • thermoelectric conversion film 12 is not particularly limited, and may be formed by vapor phase growth such as sputtering, vapor deposition, laser ablation, or chemical vapor deposition, or from a liquid phase or solid phase. Various methods can be used, such as growth.
  • Single crystal materials such as AIO, MgAl O, ZnO, ZrO, TiO, Fe O, Cr O, Si, GaAs
  • the c-axis direction 10 would be oriented in the in-plane direction of the substrate.
  • a film having a structure in which the c-axis direction 10 extends along the in-plane direction is formed in advance, and then the film is formed into a thick film by a liquid-phase epitaxy process or the like. It is also possible to obtain the conversion film 12. According to this method, the effective area of the current or the heat flow flowing between the layers can be increased, so that more efficient thermoelectric conversion can be achieved.
  • a liquid-phase process for example, in the case of an Na-CoO thin film with an a-axis
  • the thickness of the base 11 may be reduced in a part of the area sandwiched between the pair of electrodes 13a and 13b.
  • FIG. 3 exemplifies the base 11 having the constricted structure 31.
  • the substrate 11 is processed by mechanical polishing using a diamond grindstone, chemical etching, ion beam etching, or the like from the back surface of the substrate 11 (the surface opposite to the surface on which the thermoelectric conversion film 12 is formed). It may be performed by ching or the like. With the constriction structure 31 formed in this manner, the relaxation (heat loss) of the temperature difference generated in the thermoelectric conversion film 12 due to the heat conduction of the base 11 can be suppressed.
  • the constricted structure 31 may be cut into the thermoelectric conversion film 12 (see also FIG. 4 (c) described later). That is, the thickness of the base 11 may be locally zero. As shown in FIG. 3, it is preferable to reduce the thickness of the base 11 in a region 31 crossing the base 11 so as to intersect the c-axis direction 10.
  • the thermoelectric conversion film 12 does not need to use the substrate (growth substrate) that provides the starting point of the epitaxial growth obtained by the epitaxial growth as the substrate (use substrate) 11 in the device. That is, after the thermoelectric conversion film 12 is epitaxially grown on the growth substrate, the growth substrate may be removed and moved onto the use substrate.
  • the growth substrate may be removed by grinding the growth substrate, separating the film from the growth substrate, or the like, and more specifically, by laser irradiation, water vapor exposure, electric discharge machining, or the like. If a base made of a resin such as resin or glass having a low thermal conductivity, particularly a resin substrate is used as the base 11, a thermoelectric conversion device with low heat loss can be obtained.
  • thermoelectric conversion film 12 The support of the thermoelectric conversion film 12 by the used substrate may be performed before or after the growth substrate is removed.
  • the thermoelectric conversion film 12 may be separated from the growth substrate while the thermoelectric conversion film 12 is supported by the resin substrate used as the base to be used. It may be arranged on a substrate.
  • thermoelectric conversion device may further include a shock absorbing layer disposed between the base 11 and the thermoelectric conversion layer 12.
  • FIGS. 4A to 4C illustrate a thermoelectric conversion device including a buffer layer.
  • an underlying buffer layer 41 is epitaxially grown on the substrate 11, and the thermoelectric conversion film 12 is epitaxially grown using the underlying buffer layer 41 as a template so that the c-axis direction 10 is in-plane (FIG. 4A). .
  • the substrate 11 is not limited as long as the base buffer layer 41 is epitaxially grown.
  • a semiconductor substrate such as Si may be used.
  • the material of the base buffer layer 41 include oxides and metals, specifically, CeO, ZrO, TiO, ZnO, NiO, Material containing at least one selected from FeO, CrO, AlO, CrO, Cr and Pt
  • thermoelectric conversion film 12 When the thermoelectric conversion film 12 is grown using the base buffer layer 41, the base 11 can be easily removed, and the degree of freedom in the element configuration increases.
  • the base buffer layer 41 can also be applied to a form in which the thickness of a part of the base 11 is reduced.
  • the base 11 is ground by a method such as ion beam etching
  • the base 11 can be ground with high accuracy.
  • the substrate 11 is divided (the thickness of the substrate 11 is partially reduced to 0), and the thermoelectric conversion film 12 maintains the thickness.
  • a conversion device can be obtained (Fig. 4B).
  • the base buffer layer 41 and the base 11 are separated by the constricted structure 42 to prevent an electrical short circuit between the high-temperature part and the low-temperature part! ( Figure 4C).
  • the base buffer layer 41 may be a multilayer film in which two or more layers are stacked.
  • thermoelectric conversion film having the composition represented by the formula A MO.
  • thermoelectric conversion film 12 in the present invention is not limited to this.
  • another electrically conductive layer 22 having an octahedral crystal structure in which the transition metal atom M is located at the center includes a layer having a perovskite structure.
  • the electric insulating layer 23 may have a single metal element force.
  • the metal element may be at least one element selected from alkali metals, alkaline earth metals, Bi, Pb, Hg, and T1. It may be composed of:
  • the electric insulating layer 23 may be made of a crystalline metal oxide. In this case, the electrical insulation layer may also be configured with 114 monolayer forces.
  • the electric insulating layer has a rock salt type structure!
  • the rock salt type structure is composed of metal atoms and oxygen atoms. For example, Sr (Bi Pb) O
  • thermoelectric conversion film 12 As another example of the thermoelectric conversion film 12, a composition represented by the formula Bi Pb Sr Co O
  • the membrane is made of, for example, a CoO conductive layer and a four-monolayer rock-salt structure.
  • thermoelectric conversion film 12 Another example of the thermoelectric conversion film 12 is represented by the formula (Ca Sr Bi) Co O
  • this film having the following composition.
  • this film is composed of, for example, a CoO conductive layer and a three-monolayer rock-salt structure.
  • It has a laminated structure with an insulating layer made of.
  • thermoelectric conversion film 12 is such that the electric conductive layer 22 contains at least one of cobalt and manganese forces selected from the group consisting of a perovskite structure and a Cdl structure, and the electric insulating layer 23
  • thermoelectric conversion element utilizes the physical properties of the layered material in the interlayer direction. In that case, it is desirable that the distance between the electrodes is long and the area of the electrodes is small. The reason is as follows.
  • thermoelectric conversion device it is preferable that the heat conduction is small in order to prevent the temperature difference caused by the Peltier effect from being relaxed. To reduce the actual heat conduction, it is better for the element to have a long area and a small area. For this reason, it is desirable to use the device after it is processed to be elongated.
  • the performance of small devices such as thin films can be improved by processing using photolithography technology or the like.
  • the current flows in the film surface direction, not in the film thickness direction of the thermoelectric conversion film, so that it is easy to secure the element length of 1.
  • the element length 1 is limited by the film thickness, and it is difficult to make the length 1 mm or more.
  • the element length 1 can be 1 mm or more, preferably 3 mm or more, more preferably 5 mm or more, particularly preferably 9 mm or more.
  • the pair of electrodes 13a and 13b may be arranged apart from each other by a predetermined distance or more, for example, 1 mm or more.
  • the cooling method and the power generation method according to the present invention may be performed by applying a conventionally performed method to the thermoelectric conversion device according to the present invention.
  • a pair of electrodes 13 It is preferable to supply a pulse current between a and 13b.
  • a pulse current When a pulse current is used, the heat generated by the thermoelectric conversion device of the present invention can be cooled while the amount of generated heat is suppressed, and the thermoelectric conversion performance is enhanced.
  • the amount of heat flow is not so much reduced even if pulse current is used because the carried heat flow depends on the integrated value of the flowing current, but the use of pulse current can suppress the generation of Joule heat that also generates electric resistance.
  • the film formation method is as follows.
  • Atmosphere gas of 80% Ar and 20% O was kept at 5.
  • FIG. 5 shows the result of the X-ray diffraction measurement of the thus obtained Na CoO thin film.
  • the NaCoO thin film is crystal-aligned such that the (100) plane is parallel to the substrate surface.
  • physical properties can be measured in two directions: a c-axis direction and a direction perpendicular to the C-axis, that is, a direction parallel to each layer.
  • FIG. 6 shows the temperature dependence of the electrical resistivity of the Na CoO thin film measured in each direction.
  • p is the electrical resistivity in the C-axis direction, that is, in the interlayer direction of each layer. . p
  • ab is the electrical resistivity in the direction parallel to each layer.
  • FIG. 7 shows the temperature dependence of the Seebeck coefficient of the Na CoO thin film. Where S is the interlayer
  • thermoelectric conversion device In order to examine the validity of this assumption in actual use, a thermoelectric conversion device was created. First, as shown in FIG. 8A, the epoxy is placed on the thermoelectric conversion film (Na CoO thin film) 12.
  • a support 81 was formed by coating with resin and solidifying. Next, the laminate composed of the substrate 11Z thermoelectric conversion film 12Z support 81 was left in a sealed container containing water vapor for 30 hours.
  • thermoelectric conversion film (Na CoO thin film) 12 opposite to the support 81,
  • thermoelectric conversion device 82 having a new base 81 made of epoxy resin was obtained.
  • the resistance between the two Pt electrodes 13a, 13b was about 100 ⁇ .
  • a constant current of 0.1 mA was applied between the electrodes, a temperature difference of about 3 ° C was observed at both ends.
  • the direction of the current was reversed, the high temperature part and the low temperature part were reversed.
  • thermoelectric performance (p, S) in the c-axis direction shown in FIGS. 6 and 7, the effect of heat loss by the substrate, and the like is c or less. Therefore, the experimental value was more than three times the conversion efficiency expected from steady thermoelectric performance.
  • thermoelectric conversion performance index ZT has a term of the square of the Seebeck coefficient. Therefore, when the physical quantity corresponding to the Seebeck coefficient is three times or more, the ZT is improved by about one digit. The reason why the measured value deviates greatly from the estimated value shown in FIGS. 6 and 7 is analyzed below (see the column of Example 4).
  • Example 1 using a 4 inch raw material target that also provides a sintered compact of CaO and CoO powders
  • a thin film with a thickness of 1 OOOnm was grown on a 10 mm square, 100 m thick sapphire M-plane substrate.
  • Figure 9 shows the results. In addition to the diffraction peak from the sapphire substrate, only the peak indexed as (020) due to diffraction from the thin film was observed.
  • the Ca CoO thin film is made epitaxially so that the (010) plane is parallel to the substrate.
  • the Ca CoO thin film immediately after the thin film was formed had a light brown color.
  • the Ca CoO thin film turned black with metallic luster.
  • FIG. 10 shows the temperature dependence of the electric resistance of the Ca CoO thin film. Where p is the c-axis direction
  • FIG. 11 shows the temperature dependence of the Seebeck coefficient of the Ca CoO thin film. Where S is the c-axis
  • 0.5 is the Seebeck coefficient in the c-direction
  • S is the Seebeck coefficient in the direction parallel to each layer.
  • the width of the Ca CoO thin film was set to 0.5 mm so as to maintain a 9 mm interval in the c-axis direction.
  • a 400 nm thick Au electrode was deposited on the thin film by sputtering.
  • the thickness is about 2 mm across the area between the electrodes to reduce the effect of immediately eliminating the generated temperature difference due to heat conduction through the substrate.
  • the thickness of the substrate was reduced to 1 ⁇ m by ion beam etching.
  • the resistance value between the two Au electrodes was about 400 ⁇ .
  • a current of 0.003 mA was constantly passed between the electrodes, a temperature difference of about 2 ° C. was obtained between both ends.
  • Figure 10 and The temperature difference calculated in consideration of the thermoelectric conversion performance value in the c-axis direction shown in Fig. 11, the effect of heat loss by the substrate, etc. is 0.1 ° C, so the experimental value is 20 times the theoretical value. Also When the temperature difference actually obtained was converted to the thermoelectric conversion figure of merit ZT, it was 400 times.
  • thermoelectric conversion devices obtained from Example 1, a device having a larger effective area was manufactured. Specifically, as shown in FIG.12A, there are also 1000 thermoelectric conversion elements 82 having a length between the electrodes 13a and 13b of 30 mm, a width of 5 mm, and a thickness of 2 mm, and a 700 mm square alminaka. A heat absorbing plate 121a and a heat radiating plate 121b were prepared.
  • thermoelectric conversion elements 82 In order to electrically connect the thermoelectric conversion elements 82, the surfaces of the heat absorbing plate 121a and the heat radiating plate 121b were coated with copper having high electric conductivity.
  • thermoelectric conversion device 82 Using a silver paste, the electrodes 13a and 13b of the thermoelectric conversion device 82 were joined to the heat-absorbing plate 121a and the surface coated with 12-lb copper, respectively, and the thermoelectric conversion device shown in FIG. Got.
  • a plurality of thermoelectric conversion devices provided by the present invention are electrically connected in parallel between the heat absorbing plate 121a and the heat radiating plate 12b. This device had a cooling capacity of about 3 ° C for lmW of power.
  • thermoelectric conversion characteristics of this substance will be described.
  • the mixture was mixed, and the temperature was increased to 200 ° C. and dried. After the obtained powder was formed into a pellet, it was sintered in the air at 1000 ° C. for 24 hours to obtain a powder again. The obtained powder was pressed to match the size of the rod of the device, and after sintering at 1150 ° C for about 15 hours, the crystal was grown in an oxygen atmosphere at 3 atm. A single crystal with a radius of 5 mm was obtained. [0096] The crystal structure is shown in FIG. In this example, in order to make the crystal more stable, a crystal in which the Bi site of the crystal in FIG. 13 was partially substituted with Pb was also used.
  • FIG. 15A The crystal structure of the resulting material was confirmed by X-ray diffraction, and the results are shown in FIG. 15A.
  • FIG. 15B shows the relationship between the Pb content X (X2) and the c-axis length of the crystal. Further, the diffraction images by Laue are shown in FIGS. 16A and 16B.
  • FIG. 17 shows the X-ray diffraction data of the obtained thin film.
  • a power supply and a thermometer are connected to the outside of the dual unit, and a current is applied to the element, and the wall interface was measured for the temperature difference on both sides.
  • a current of 10 mA was passed between the electrodes, a temperature difference of about 2K was applied to both ends of the device.
  • the direction of the current was changed, the high temperature part and the low temperature part were reversed. This phenomenon had a 2K temperature difference even when the temperature was lowered from room temperature to 50K.
  • Figure 18 shows the electrical resistivity ⁇ , Seebeck coefficient S, and thermal conductivity ⁇ of the sample.
  • the values of the Seebeck coefficient S and the thermal conductivity K are both values measured by a method called the steady state method.In the thermal equilibrium state, a temperature difference of about 0.1 K is applied to both sides of the element and the thermoelectromotive force and the temperature difference This is the value obtained by measuring.
  • the Seebeck coefficient S was increased by about 30 times compared to the case where the heat conduction K in which the value of SZK was about 30 times the measurement result by the steady state method was reduced to about 1Z30. It is more natural to think.
  • the figure of merit ZT S 2 Z
  • the PK is about 900 times larger than the steady-state method.
  • thermoelectric conversion characteristics in the interlayer direction of a layered material in which an electrically conductive layer and an electrically insulating layer are alternately arranged are obtained by a steady method measured by a small temperature difference in a normal thermal equilibrium state.
  • the figure of merit ZT is about 900 times larger than the specified thermoelectric conversion performance.
  • thermoelectric conversion performance in the in-plane direction of the electric conductive layer is based on the data obtained by the steady-state method in which a small temperature difference is applied to the thermal equilibrium state, as shown in this embodiment. It was shown that the data showed a very good agreement with the data obtained by the Harman method, which was measured by applying a current.
  • thermoelectric conversion characteristics due to the difference in the magnitude of the perturbation is a phenomenon peculiar to the interlayer direction, and is understood by the new effects of the tunnel current and the electron emission phenomenon. Due to this effect, the thermoelectric conversion characteristics in the interlayer direction between the electrically conductive layer and the electrically insulating layer are about 900 times larger in terms of figure of merit ZT than the thermoelectric conversion performance obtained by the steady-state method, and between 50K and 800K. To achieve high performance comparable to ZT> 1 over a wide temperature range
  • thermoelectric performance of Ca Co O grown epitaxially on a substrate was examined.
  • FIG. 19 shows a Ca Co O thin film epitaxially grown on the substrate 11 in this example.
  • Ca Co O has a CoO layer as the electrically conductive layer 22 and a formula Ca CoO
  • the a-axis direction 20 of the crystal of this thin film is perpendicular to the surface of the substrate 11 (in other words, the crystal is a-axis oriented), and the c-axis direction 10 is along the in-plane direction.
  • the substrate an A-plane sapphire Al 2 O substrate was used.
  • This thin film uses a 4 inch raw material target consisting of a sintered body of powdered Co O and CaO.
  • Atmosphere gas of 80% Ar and 20% O is kept at 5.
  • FIG. 20 shows the result of the X-ray diffraction measurement of the Ca Co O thin film thus obtained.
  • Sapphire substrate In addition to the diffraction peaks, the same series of peaks due to diffraction from the thin film were observed. These were the peaks at (110) and (220), respectively. As a result, the Ca Co O thin film becomes (1
  • Figure 21 shows the temperature dependence of the electrical resistivity of the Ca Co O thin film measured in each direction.
  • p is the electrical resistivity in the c-axis direction and the interlayer direction, and is the electrical resistivity in a direction parallel to each cab layer.
  • the above-obtained force was applied so that a distance of 9 mm was maintained in the c-axis direction of the Ca CoO thin film.
  • An Au electrode having a width of 0.5 mm and a thickness of 400 nm was deposited on this thin film by a sputtering method.
  • ion beam etching is performed so that the base with a width of about 2 mm between the electrodes has a thickness of about 1 ⁇ m. And a constricted structure is provided in the base portion.
  • the resistance between the two Au electrodes was about 400 ⁇ .
  • a temperature difference of about 1 K was applied to both ends.
  • the temperature difference calculated in consideration of the electrical resistance in the c-axis direction, the Seebeck coefficient, and the effect of heat loss due to the substrate was 0.1 K, so the experimental value was 10 times the theoretical value.
  • this is converted to the thermoelectric conversion index ZT, it is about 100 times larger than the measurement by the stationary method. In this case, too, it was found that a high temperature equivalent to ZT> 1 could be achieved in a wide temperature range from 50K to 800K.
  • thermoelectric conversion having a high thermoelectric conversion performance that has not been assumed conventionally is caused by a tunnel current or a thermoelectron emission phenomenon that exceeds the effect of the normal electric conduction phenomenon (Thermoelectric effect).
  • Device can be provided.
  • a conventional thin film element forming process represented by photolithography can be applied to the fabrication of this device. In this device, it is easy to ensure the distance between the electrodes freely and easily. I'm sorry.
  • the present invention has a high industrial utility value in the field of thermoelectric conversion devices.

Abstract

 本発明は、高い熱電変換性能を有する熱電変換デバイスを提供する。このデバイスでは、従来の技術常識から導かれる配置とは異なり、層状物質の層間方向に沿って電流が流れるように電極が配置される。本発明による熱電変換デバイスでは、熱電変換膜が、エピタキシャル成長により得られた膜であって、かつ電気伝導層と電気絶縁層とが交互に配置されてなり、電気伝導層は、遷移金属原子Mが中心に位置すると共に酸素原子が頂点に位置する八面体結晶構造を有し、電気絶縁層は、金属元素または結晶性金属酸化物からなる。そして、電気伝導層および電気絶縁層からなる層状物質についてのc軸は基体の面内方向と平行であって、一対の電極はc軸に沿って電流が流れるように配置されている。

Description

明 細 書
熱電変換デバイス、およびこれを用いた冷却方法および発電方法 技術分野
[0001] 本発明は、ペルチェ効果ゃゼーベック効果により、熱エネルギーと電気エネルギー とを相互に変換する熱電変換デバイスに関する。
背景技術
[0002] 熱電発電は、ゼーベック効果、すなわち物質の両端に温度差を付与するとその温 度差に応じて熱起電力が生じる現象、を利用して熱エネルギーを直接電気工ネルギ 一に変換する技術であり、外部に負荷を接続して閉回路を構成することにより電力を 取り出すことができる。この技術は僻地用電源、宇宙用電源、軍事用電源等として実 用化されている。
[0003] 熱電冷却は、ペルチェ効果、すなわち電流によって運ばれる電子によって熱が移 動する現象、を利用する技術である。具体的には、例えば p型半導体と n型半導体と V、つたキャリアの符合の異なる 2つの物質を熱的に並列に、かつ電気的に直列に接 続して電流を流したときに、キャリアの符号の違いが熱流の向きの違いに反映するこ とを利用して接合部を吸熱する。この技術は、宇宙ステーションにおける電子機器の 冷却のような局所冷却、ワインクーラー等として実用化されて 、る。
[0004] 通常、熱電変換材料の性能は、性能指数 Z、またはこれに絶対温度 Tをかけて無次 元化された性能指数 ZTで評価される。 ZTは、当該材料の S :ゼーベック係数、 :電 気抵抗率、 κ :熱伝導率、を用い、 式 ZT= S2Z /0 κ により示される。性能指数 ZT による評価において、従来の熱電変換材料は、十分な実用レベルに達しているとは いえない。
[0005] これまで、多くの材料が熱電変換材料として検討されてきた。例えば、層状酸化物 である Na CoOが優れた熱電変換性能を示すことが報告されている(特開平 9 32
2
1346号公報、国際公開第 03Z085748号パンフレット参照)。国際公開第 03/08 5748号パンフレットでは、熱電変換膜として、サファイア基体の c面上に形成された、 c軸配向の、すなわち c軸が基体の面に垂直に配向した、 Na CoO膜が開示されて いる。
[0006] Na CoOは、電気伝導層である CoO層と電気絶縁層である Na層とが交互に配置
2 2
された構造を有する。上記式より明らかなように、性能指数 ZTを上げるためには低い 電気抵抗率が望ましい。このため、 Na CoOに代表される層状酸化物を熱電変換材
2
料とする場合、従来は、専ら、電気伝導層の面内方向についての熱電変換性能を引 き出す試みが為されてきた。
[0007] 層状酸ィ匕物については、結晶配向を良好にすることによって面内方向の電気抵抗 の低減が図られている。例えば、特開 2000— 269560号公報では、結晶方位の揃つ た焼結体が開示されている。特開 2003— 95741号公報にも、配向性を有する多結 晶体が開示されている。
[0008] 結晶方位の揃った物質の製造方法としては、板状テンプレートを用いて結晶配向し た物質を製造する方法 (特開 2002— 321922号公報、特開 2002— 26407号公報参 照)、焼結体を粉砕、成型した後に加熱溶融、冷却して結晶化する方法 (特開 2002 —111077号公報)、原料を溶媒に溶力して得たゲルを焼成して板状結晶を成長させ る方法 (特開 2003— 34583号公報)等が提案されて 、る。
[0009] これらの技術は、すべて、層状酸ィ匕物の配向性を向上することによって面内方向の 電気抵抗率を低減させ、その結果として、熱電変換性能を向上させるものである。
[0010] しかし、上記従来の方法では、実用の目安とされている ZT> 1のレベルを限られた 物質において、またある温度範囲でわずかに超えるにとどまっており、さらに広い普 及を目指した熱電変換性能指数のレベル ΖΤ> 3には遥かに届力な 、のが現状であ る。
[0011] 従来の熱電変換デバイスを開示する公報を、以下にまとめて記載する。
[0012] 特開平 9 321346号公報
特開 2000— 269560号公報
特開 2003— 95741号公報
特開 2002— 321922号公報
特開 2002— 26407号公報
特開 2002—111077号公報 特開 2003— 34583号公報
特開 2003—133600号公報
特開 2002— 270907号公報
特開平 11—330569号公報(段落番号 0002)
国際公開第 03Z085748号パンフレット
特開 2002— 316898号公報
特開 2002— 141562号公報
発明の開示
[0013] 層状物質における電気伝導層の面内方向についての熱電変換性能は、その結晶 配向性を改善しても、実用レベルに要求されるレベルには到達できていない。
[0014] 本発明者らは様々な層状物質の熱電変換特性を電気伝導層の面内方向だけでな ぐ電気伝導層と電気絶縁層とが交互に配置された方向(層間方向)についても鋭意 研究を重ねた結果、印加する外場の大きさによっては層状物質の電気伝導層と電気 絶縁層の層間方向が意外にも高い熱電変換性能を示すことを発見し、本発明に到 達するに至った。
[0015] 本発明は、基体と、前記基体上に配置された熱電変換膜と、一対の電極とを具備 する熱電変換デバイスであって、前記熱電変換膜は、ェピタキシャル成長により得ら れ、かつ電気伝導層と電気絶縁層とが交互に配置されてなり、前記電気伝導層は、 遷移金属原子 Mが中心に位置すると共に酸素原子が頂点に位置する八面体結晶 構造を有し、前記電気絶縁層は、金属元素単体または結晶性金属酸化物からなり、 前記電気伝導層および前記電気絶縁層からなる層状物質についての c軸は、前記 基体の面内方向と平行であり、前記一対の電極は、前記 c軸に沿って電流が流れる ように配置されている、熱電変換デバイスを提供する。
[0016] また、本発明は、この熱電変換デバイスを用いた冷却方法および発電方法を提供 する。本発明の冷却方法は、上記の熱電変換デバイスを用い、一対の電極の間に電 流を流すことにより、一対の電極の間に温度差を生じさせ、一対の電極のいずれか 一方を低温部とする冷却方法である。本発明の発電方法では、上記の熱電変換デ バイスを用い、一対の電極の間に温度差が生じるように熱を与えることにより、一対の 電極の間に電位差を生じさせる。
[0017] 本発明によれば、電気伝導層と電気絶縁層とが交互に配置された層間方向の熱電 変換特性を利用することにより、広い温度領域で従来よりも優れた熱電変換性能が 得られる。この優位性は層状物質の層間伝導に基づ 、て 、る。
図面の簡単な説明
[0018] [図 1]図 1は、本発明による熱電変換デバイスの一形態を示す斜視図である。
[図 2]図 2は、図 1に示した熱電変換デバイスにおける熱電変換膜の結晶構造を示す 図である。
[図 3]図 3は、本発明による熱電変換デバイスの別の一形態を示す斜視図である。
[図 4]図 4Aは、緩衝層を有する熱電変換デバイスの一形態を示す斜視図であり、図 4Bは、緩衝層を有する熱電変換デバイスの別の一形態を示す斜視図であり、図 4C は、緩衝層を有する熱電変換デバイスのまた別の一形態を示す斜視図である。
[図 5]図 5は、実施例 1で作製した Na CoO薄膜の X線回折の結果を示す図である
0. 4 2
[図 6]図 6は、実施例 1で作製した Na CoO薄膜の電気抵抗率の温度依存性を示
0. 4 2
す図である。
[図 7]図 7は、実施例 1で作製した Na CoO薄膜のゼーベック係数の温度依存性を
0. 4 2
示す図である。
[図 8]図 8Aは、実施例 1において Na CoO薄膜にエポキシ榭脂をコーティングした
0. 4 2
状態を示す斜視図であり、図 8Bは、実施例 1で作製した、エポキシ榭脂を基体とする 熱電変換デバイスを示す斜視図であり、
[図 9]図 9は、実施例 2で作製した Ca CoO薄膜の X線回折の結果を示す図である
0. 5 2
[図 10]図 10は、実施例 2で作製した Ca CoO薄膜の電気抵抗率の温度依存性を
0. 5 2
示す図である。
[図 11]図 11は、実施例 2で作製した Ca CoO薄膜のゼーベック係数の温度依存
0. 5 2
性を示す図である。
[図 12]図 12Aは、実施例 3で作製した熱電変換デバイスの構成を示すために各構成 要素を分解して示す斜視図であり、図 12Bは、実施例 3で作製した熱電変換デバィ スを示す斜視図である。
[図 13]図 13は、実施例 4で作製した Bi Pb Sr Co O単結晶の結晶構造を示す図
2-X X 2 2 Y
である。
[図 14]図 14は、実施例 4で作製した Bi Pb Sr Co Oェピタキシャル成長膜の結
2-X X 2 2 Y
晶構造を示す図である。
[図 15]図 15Aは、実施例 4で作製した Bi Pb Sr Co O単結晶の X線回折の結
1. 6 0. 4 2 2 Y
果を示す図であり、図 15Bは、実施例 4で作製した Bi Pb Sr Co O単結晶の Pb
2-X X 2 2 Y
含有率 Xと c軸長さとの関係を示す図である。
[図 16]図 16Aは、実施例 4で作製した Bi Sr Co O単結晶から得たラウエ回折像で
2 2 2 Y
あり、図 16Bは、実施例 4で作製した Bi Pb Sr Co O単結晶からラウエ回折像
1. 8 0. 2 2 2 Y
である。
[図 17]図 17は、実施例 4で作製した Bi Sr Co Oェピタキシャル成長膜の X線回折
2 2 2 Y
の結果を示す図である。
[図 18]図 18は、実施例 4で作製した Bi Pb Sr Co O単結晶の電気抵抗率 p、
1. 6 0. 4 2 2 Y
ゼーベック係数 S、および熱伝導率 κの温度依存性を示す図である。
[図 19]図 19は、実施例 5で作製した Ca Co Oェピタキシャル成長膜の結晶構造を
3 4 9
示す図である。
[図 20]図 20は、実施例 5で作製した Ca Co Oェピタキシャル成長膜の X線回折の
3 4 9
結果を示す図である。
[図 21]図 21は、実施例 5で作製した Ca Co Oェピタキシャル成長膜の電気抵抗率
3 4 9
の温度依存性を示す図である。
発明を実施するための最良の形態
[0019] 以下、本発明の実施形態について、図面を参照しながら説明する。
[0020] (実施の形態 1)
図 1に示した熱電変換デバイスは、板状の基体 11と、基体 11上の熱電変換膜 12と
、熱電変換膜 12に接して基体 11の左右に配置された一対の電極 13a, 13bと、を備 えている。 [0021] 図 2に、熱電変換膜 12の結晶構造を例示する。熱電変換膜 12は、電気伝導層 22 と電気絶縁層 23とが交互に配置された層状構造を有する。すなわち、熱電変換膜 1 2は、電気伝導層 22と電気絶縁層 23とが交互に配置された結晶性薄膜からなる。
[0022] 結晶学的には、層間方向、すなわち層面に対して垂直な方向を c軸方向 10と呼ぶ 。一対の電極 13a, 13bは、 c軸方向 10に沿って電流を流すことができるように配置さ れている。
[0023] 熱電変換膜 12は、ェピタキシャル薄膜 (ェピタキシャル成長膜)であり、 c軸方向 10 が基体 11の面内方向に沿った配向性を有する。換言すれば、熱電変換膜 12は、各 層 22, 23が基体 11の表面に対してほぼ垂直に成長した結晶構造を有する。
[0024] 電極 13a, 13bは、これら電極の間に電圧を与えたときに電流が熱電変換膜 12内 を c軸方向 10に沿って流れるようにこの方向にっ 、て離間して配置されて!、ればよく 、図 1に示したように熱電変換膜 12の表面に接して設ける必要はな 、。
[0025] 基体 11は、熱電変換膜 12のェピタキシャル成長の起点を提供する。好ましい基体 11としては、 Al O、 MgAl O、 SrTiO、 MgO、 TiO等の単結晶基板を挙げること
2 3 2 4 3 2
ができる。ただし、単結晶基体の上にェピタキシャル成長させた熱電変換膜を当該 基体と分離し、別に準備した基体 11の上に配置してもよ 、。
[0026] 熱電変換膜 12は、図 2に示すように、電気伝導層 22と電気絶縁層 23とが交互に配 置された結晶構造を有する結晶性薄膜である。酸化物層状物質は、空気中でも安定 であるために望ましい。熱電変換性能に優れる層状物質としては、電気伝導層 22は 、遷移金属原子 Mが中心に位置すると共に頂点に酸素が位置する八面体 (正八面 体)結晶構造を有する。遷移金属原子 Mは、下記に例示する元素、特に Coおよび M nから選ばれる少なくとも 1種が好ましい。電気伝導層 22が遷移金属原子 Mとして Co を含有し、かつ互いに稜を共有する CoO八面体結晶構造を有する熱電変換膜 12
2
力 は、優れた熱電変換性能が得られる。 MO八面体が互いに稜を共有しながら連
2
なって層を構成する構造は、 Cdl型構造と呼ばれる。
2
[0027] 電気伝導層 22が Cdl型構造を有する熱電変換膜 12としては、式 A MO により
2 XI Y1 示される組成を有する膜が挙げられる。この膜は、電気絶縁層 23としての層 Aと、電 気伝導層 22としての層 MO とが交互に配置された層状物質である。 [0028] ここで、 Aは、 Na、 K、 Li等のアルカリ金属、 Ca、 Sr、 Ba等のアルカリ土類金属、 H g、 τι、 Pbおよび から選ばれる少なくとも 1種の元素である。 Mは、遷移金属元素、 好ましくは Co、 Ni、 Ti、 Mn、 Feおよび Rhから選ばれる少なくとも 1種の元素、より好 ましくは Coおよび Mn力も選ばれる少なくとも 1種である。また、 0. 1≤X1≤0. 8、好 ましくは 0. 2≤X1≤0. 8であり、 1. 5≤Y1≤2. 5、好ましくは 1. 8≤Υ1≤2. 2であ る。元素 Αおよび Μは、 2種以上であってもよぐ例えば元素 Aは、アルカリ金属およ び/またはアルカリ土類金属の一部を、 Hg、 Tl、 Pb、 Biにより置換したものであって もよい。 Y1は 2が好ましいが、 Y1は膜の作製方法、条件等に依存するため、厳密に 2とすることは困難である。以下の説明では Yl = 2と便宜上表記することがある力 こ の表記は厳密に 2であることを意味しない。一方、 XIについては、ある程度人為的に 調整できる。なお、上記式において、 0 (酸素)に代えて、 S (ィォゥ)や Se (セレン)を 用いることち考免られる。
[0029] 金属元素 Aは結晶中の各サイトを (XI) X 100%の割合でランダムに占有するため 、キャリアの散乱が頻繁に起こる。このため、元素 Aとして単体では金属となる元素( 金属元素)を用いても、層 Aは電気絶縁的な性質を有する。また、金属元素 Aからな る層は、遷移金属原子 Mが中心に位置すると共に頂点に酸素が位置する八面体結 晶構造を有する電気伝導層 22にキャリア (式 A MO により示される組成を有する
XI Y1
膜では電子)を供給する役割を有する。この役割を有する層は絶縁性となる。この限 りにおいて、 XIは 1. 0、すなわち、結晶中の全てのサイトに金属元素 Aが位置してい てもよい。
[0030] 式 A MO により示される組成を有する熱電変換膜 12は、より詳しくは、 1層が 1な
XI Y1
いし 3モノレイヤーの MOからなる電気伝導層 22と、 1層が 1ないし 4モノレイヤーか
2
らなる電気絶縁層 23との交互積層体である。 4モノレイヤー以上の厚みの電気伝導 層 22、または 5モノレイヤー以上の厚みの電気絶縁層 23を有する熱電変換膜 12を 作製することは現状の技術では困難であるが、このような膜が本発明から排除される わけではない。
[0031] なお、図 2では、電気伝導層 22と電気絶縁層 23とが 1モノレイヤーごとに交互に配 置された結晶構造が示されて!/ヽる。 [0032] 電極 13a, 13bの間に直流電圧を印加すると、熱電変換膜 12の c軸方向に沿って 電流が流れ、それに付随して熱が運ばれ、その結果、電極 13aの側で吸熱、電極 13 bの側で発熱現象が生じる。電流を逆に流せば、発熱と吸熱とが反転する。
[0033] キャリアがホールである場合、電極 13aをプラス極、電極 13bをマイナス極とすれば 、電極 13aの側で吸熱、電極 13bの側で発熱現象が起こる。元素 Mを Niとするとキヤ リアが電子になる傾向がある。この場合、電極 13aをマイナス極、電極 13bをプラス極 とすれば、電極 13aの側で吸熱、電極 13bの側で発熱現象が生じる。このように、図 示したデバイスは、熱電冷却デバイスとして用いることができる。なお、電極 13aと電 極 13bとを厳密に区別する場合には、前者を「第 1電極 (参照符号: 13a)」、後者を「 第 2電極 (参照符号: 13b)」と記述する。
[0034] これまで、層状構造を有する熱電変換膜 12では、その c軸方向 10については、電 気抵抗が大きくゼーベック係数が小さいため、熱電変換性能 ZTは使用に足るもので はないと考えられてきた。本発明者等は様々な条件を検討し最適化することにより、 基体 11上に、層間方向(c軸方向 10)が面内方向に沿った層状物質の作製に成功 した。そして、この層状物質を熱電変換膜 12として外場の方位による熱電変換性能 の関係を詳細に調べていく過程で、外場の大きさによっては層間方位において予想 外に大きい熱電変換性能が得られることを見出した。
[0035] この理由として、一つは熱電子放出的な機構が考えられるが、この層状物質の場合 には放出媒体が真空ではなく電気絶縁層 23であるため、トンネル伝導的な効果も入 り交じった複雑な機構が関与していると推察される。
[0036] 同様の構成において、電極 13a, 13bとの間に温度差を付与することにより、熱電 変換膜 12内で熱エネルギーを持ったキャリアがその温度差を打ち消すように電極 13 a, 13bの間を移動することから、結果として電流が流れる。この効果を利用し、電極 1 3a, 13bを介して電力を取り出すことができる。このように、図示したデバイスは、熱電 発電デバイスとしても使用できる。
[0037] 本発明によれば、熱電変換膜 12の c軸方向 10についての電極 13a, 13bの間隔は 自在に設定することができるため、熱の戻りの少ない高効率のデバイスを実現できる 。これにより、高温部と低温部との温度差を大きくすることが可能となる。 [0038] 基体 11の表面に対して各層 22, 23が垂直に立った構造(図 2参照)、換言すれば c軸方向 10が面内方向となった構造を有する熱電変換膜 12を得るためには、基体 1 1の材料と薄膜作製時の基体 11の加熱温度が重要である。スパッタ法を用いる場合 の基体温度は、元素 Aの種類にもよる力 通常、 650— 750°Cの範囲が好ましい。
[0039] なお、薄膜の組成に関しては、例えば元素 Aが Naの場合には 0. 3≤x≤0. 6、元 素 Aが Srの場合には 0. 3≤x≤0. 5、元素 Aが Caの場合 0. 4≤x≤0. 7とすると、 結晶性が良好な膜が得られる。
[0040] 熱電変換膜 12の作製方法は特に限定されず、スパッタ法、蒸着法、レーザーアブ レーシヨン法、化学的気相成長法等の気相成長によるもの、あるいは液相や固相か らの成長等、種々の方法を使用できる。
[0041] 基体 11の材料としては、基体 11と熱電変換膜 12との格子整合性が比較的良い、 サファイア Al O、 MgO、 SrTiO、 LaAlO、 NdGaO、 YAIO、 LaSrGaO、 LaSr
2 3 3 3 3 3 4
AIO、 MgAl O、 ZnO、 ZrO、 TiO、 Fe O、 Cr O、 Si、 GaAs等の単結晶材料
4 2 4 2 2 2 3 2 3
が好ましい。ただし、基体の結晶面は適切に選択する必要がある。例えば、 Na Co
XI
O 膜をサファイアの C面上に成膜したのでは、 c軸方向 10を基体の面内方向に配
Y1
向させることは困難である。この場合は、サファイアの A面または M面を選択する必要 がある。
[0042] 基体 11上に、 c軸方向 10が面内方向に沿った構造を有する膜を予め形成し、その 後、液相ェピタキシャルプロセス等によりこの膜を厚膜ィ匕することにより、熱電変換膜 12を得ることも可能である。この方法によれば、層間に流れる電流、または熱流の有 効面積を大きくとれるので、より効率の良い熱電変換が達成される。液相プロセスとし ては、例えば層が垂直に立った a軸配向の Na CoO薄膜の場合には、 NaClをフ
0. 5 2
ラックスとして Co Oおよび Na COの粉体を混ぜて 1000°Cで溶かした融液中に薄
3 4 2 3
膜を基体ごと浸し、 900°Cにまで徐々に冷却することにより lmm程度の Na CoO
0. 5 2 厚膜を得ることが可能である。
[0043] 本発明による熱電変換デバイスでは、一対の電極 13a, 13bの間に狭持された領 域の一部において、基体 11の厚みを減少させてもよい。図 3に、くびれ構造 31を有 する基体 11を例示する。 [0044] 基体 11の加工は、基体 11の裏面 (熱電変換膜 12を形成した面と反対側の面)から 、ダイヤモンド砥石等を用いた機械的な研肖 ij、化学的エッチング、イオンビームエツ チング等によって行えばよい。こうして形成したくびれ構造 31により、基体 11の熱伝 導による熱電変換膜 12で発生する温度差の緩和 (熱損失)を抑制できる。熱電変換 膜 12が厚い場合には、くびれ構造 31を熱電変換膜 12に食い込ませてもよい (後述 する図 4 (c)も参照)。すなわち、基体 11の厚みは局部的に 0であってもよい。図 3に 示したように、 c軸方向 10と交差するように基体 11を横断する領域 31において、基体 11の厚みを低減させることが好ま 、。
[0045] 熱電変換膜 12は、ェピタキシャル成長により得られる力 ェピタキシャル成長の起 点を提供する基体 (成長基体)をそのままデバイスにおける基体 (使用基体) 11とす る必要はない。すなわち、熱電変換膜 12を、成長基体上にェピタキシャル成長させ た後に、当該成長基体を除去し、使用基体上に移動させてもよい。成長基体の除去 は、成長基体の研削、成長基体からの膜の分離、等により行えばよぐ具体的には、 レーザー照射、水蒸気暴露、放電加工等により行うことができる。熱伝導率が低い榭 脂、ガラス等カゝらなる基体、特に榭脂基板を使用基体 11として用いれば、熱損失の 少な 、熱電変換デバイスを得ることができる。
[0046] 使用基体による熱電変換膜 12の支持は、成長基体を除去する前後のいずれに行 つてもよい。例えば、使用基体とする榭脂基板により熱電変換膜 12を支持しながらこ の膜を成長基体から分離してもよぐ熱電変換膜 12を成長基体から分離してから使 用基体とする榭脂基板上に配置してもよい。
[0047] 本発明による熱電変換デバイスは、基体 11と熱電変換層 12との間に配置された緩 衝層をさらに含んで 、てもよい。
[0048] 緩衝層を含む熱電変換デバイスの図 4A—図 4Cに例示する。まず、基体 11上に下 地緩衝層 41をェピタキシャル成長させ、この下地緩衝層 41をテンプレートとして、 c 軸方向 10が面内方向に沿った熱電変換膜 12をェピタキシャル成長させる(図 4A)。
[0049] この場合、基体 11は、下地緩衝層 41がェピタキシャル成長する限り制限はなぐ上 記に例示した基板に加え、 Si等の半導体基板を用いてもよい。下地緩衝層 41の材 料としては、例えば、酸化物、金属、具体的には、 CeO、 ZrO、 TiO、 ZnO、 NiO、 Fe O、 Cr O、 Al O、 Cr O、 Crおよび Ptから選ばれる少なくとも 1種を含む材料
2 3 2 3 2 3 2 3
が挙げられる。
[0050] 下地緩衝層 41を用いて熱電変換膜 12を成長させると基体 11の除去が容易となり 、素子構成についての自由度が高くなる。
[0051] 下地緩衝層 41は、基体 11の一部の厚みを低減する形態に適用することもできる。
例えば基体 11をイオンビームエッチング等の方法で研削する場合には、下地緩衝層 41を構成する元素を検出する手段を設置しておくと、精度良く基体 11を研削できる 。この研削により、くびれ構造 42の最深部を下地緩衝層 41内にとどめれば、基体 11 を分断し (基体 11の厚みを部分的に 0とし)、かつ熱電変換膜 12の厚みを維持した 熱電変換デバイスを得ることができる(図 4B)。
[0052] 金属膜を下地緩衝層 41とする場合には、くびれ構造 42により下地緩衝層 41を基 体 11とともに分断し、高温部と低温部との電気的な短絡を防ぐとよ!、(図 4C)。
[0053] 下地緩衝層 41は、 2以上の層を積層した多層膜としてもよい。
[0054] 以上では、式 A MO により示される組成を有する熱電変換膜を中心に説明した
XI Y1
力 本発明における熱電変換膜 12がこれに限られるわけではない。
[0055] 例えば、遷移金属原子 Mが中心に位置する八面体結晶構造を有する別の電気伝 導層 22としては、ぺロブスカイト型構造を有する層が挙げられる。
[0056] 電気絶縁層 23は、層 Aのように、単一の金属元素力も構成されていてもよい。この 場合、金属元素は、アルカリ金属、アルカリ土類金属、 Bi、 Pb、 Hg、および T1力ゝら選 ばれる少なくとも 1種の元素であってもよぐこの電気絶縁層は、 1一 3モノレイヤーか ら構成されていてもよい。電気絶縁層 23は、結晶性金属酸ィ匕物から構成されていて もよい。この場合、この電気絶縁層は、 1一 4モノレイヤー力も構成されていてもよい。
[0057] 電気絶縁層は、岩塩型構造を有して!/ヽてもよ ヽ。岩塩型構造は、金属原子と酸素 原子とから構成され、例えば、 Sr (Bi Pb ) O
4、 Ca (Co Cu ) O
2 1— X5 X5 2 4、 (Ca, B
2 2-X4 X4 2
i) CoO、および Sr TiO力 選ばれる少なくとも 1つにより示される組成を有してい
2 3 2 3
てもよい。ここで、 0≤X4≤1、 0≤X5≤1である。
[0058] 熱電変換膜 12の別の例としては、式 Bi Pb Sr Co O により示される組成を
2-X2 X2 2 2 Y2
有する膜が挙げられる。ここで、 0≤X2≤0. 5であり、 7. 5≤Y2≤8. 5である。この 膜は、後述するように、例えば、 CoO電気伝導層と、 4モノレイヤーの岩塩型構造か
2
らなる絶縁層との積層構造を有する。
[0059] 熱電変換膜 12のまた別の例としては、式 (Ca Sr Bi ) Co Oにより示され
1-X3-Y3 X3 Y3 3 4 9
る組成を有する膜が挙げられる。ここで、 0≤Χ3く 1であり、 0≤Υ3≤0. 3である。こ の膜は、後述するように、例えば、 CoO電気伝導層と、 3モノレイヤーの岩塩型構造
2
からなる絶縁層との積層構造を有する。
[0060] 熱電変換膜 12は、電気伝導層 22が、コバルトおよびマンガン力も選ばれる少なくと も 1種を含み、かつぺロブスカイト型構造または Cdl型構造を有し、電気絶縁層 23が
2
、アルカリ金属、アルカリ土類金属、 Bi、 Pb、 Hg、および T1から選ばれる少なくとも 1 種の元素を含み、かつ岩塩型構造を有する、膜であってもよい。
[0061] 本発明による熱電変換素子は、層状物質の層間方向の物性を利用するが、その際 に電極間の距離は長ぐかつ電極の面積は小さいことが望ましい。この理由を以下に 示す。実際の熱伝導 Kは熱伝導率 κ、素子の面積 Sおよび長さ 1を用い、 K= K - S
0 0
Ziの関係で示される。熱電変換デバイスでは、ペルチェ効果により生じた温度差の 緩和を防ぐため、熱伝導は小さいほうが好ましい。実際の熱伝導を小さくしょうとする と、素子は、その長さが長ぐ面積が小さいほうがよい。このため、素子は細長く加工 して使用することが望ましい。薄膜等の小さな素子においては、フォトリソグラフィー技 術等による加工でその性能を上げることもできる。
[0062] 本発明の熱電変換デバイスでは、熱電変換膜の膜厚方向にではなぐ膜面方向に 電流を流すため、素子の長さ 1を確保することは容易である。 c軸が基体面に対して垂 直に配向するようにェピタキシャル成長させた膜の場合、素子の長さ 1は膜の厚みに よって制限され、 1mm以上とすることは困難である。これに対し、本発明の熱電変換 デバイスでは、素子の長さ 1を lmm以上、好ましくは 3mm以上、より好ましくは 5mm 以上、特に好ましくは 9mm以上とすることができる。具体的には、 c軸方向 10につい て、一対の電極 13a, 13bを所定距離以上、例えば lmm以上、離間して配置すると よい。
[0063] 本発明による冷却方法および発電方法は、従来から行われてきた方法を、本発明 による熱電変換デバイスに適用して実施すればよい。冷却の際には、一対の電極 13 a, 13bの間に、パルス電流を流すとよい。パルス電流を用いると、発熱量を抑えなが ら、本発明の熱電変換デバイスによる高 、熱電変換性能を活力ゝした冷却を行うことが できる。運ばれる熱流は流れた電流の積分値によるため、パルス電流を用いても熱 流の量はそれほど低減しな 、が、パルス電流を用いると電気抵抗力も生じるジュール 熱の発生を抑えることができる。
[0064] 以下、実施例により、本発明をさらに詳細に説明するが、以下の実施例も上記と同 様、本発明の好ましい実施形態の例示に過ぎない。
[0065] (実施例 1)
10mm角、厚さ 100 μ mのサファイア Al Oの A面基板上に、層状酸化物 Na Co
2 3 0. 4
Oを成膜した。成膜方法は、直径 4インチの Na CoO焼結体ターゲットを用いた R
2 0. 5 2
Fマグネトロンスパッタリングとした。
[0066] Arが 80%、Oカ 20%の雰囲気ガスを 5. OPaに保ち、出力 60Wで 1時間プレスパ
2
ッタリングをした後、 700°Cに加熱した基板上にプレスパッタリングの時と同様の条件 で 5時間堆積を行い、その後加熱された基板上の薄膜を酸素雰囲気中で 2時間かけ て室温まで冷やした結果、膜厚 lOOOnmの金属光沢を持つ薄膜が得られた。
[0067] エネルギー分散型蛍光 X線分析により、薄膜における Naと Coとの組成比がおよそ Na : Co = 0. 4 : 1であることを確認した。
[0068] こうして得られた Na CoO薄膜の X線回折測定の結果を図 5に示す。
0. 4 2
[0069] サファイア基板からの回折ピークの他には、薄膜からの回折による同系列のピーク が観測された。これらはそれぞれ(200)、 (400)のピークであった。
[0070] これにより、 Na CoO薄膜は(100)面と基板の表面とが平行となるように結晶配
0. 4 2
向してェピタキシャル成長したことが確認された。さらに 4軸 X線回折測定により Na
0. 4
CoOの結晶の c軸が薄膜面内方向に配向していることが確認された。
2
[0071] この Na CoO薄膜の基板に対する結晶配向は図 2と同様である。このような配向
0. 4 2
性を有する結晶では、 c軸方向と、 C軸に対して垂直な方向、すなわち各層に平行な 方向、との 2つの方向につ 、ての物性測定が可能である。
[0072] 図 6に、各方向について測定した Na CoO薄膜の電気抵抗率の温度依存性を
0. 4 2
示す。ここで p は C軸方向、すなわち各層の層間方向についての電気抵抗率である 。 p
abは各層に平行な方向についての電気抵抗率である。
[0073] 図 7に、 Na CoO薄膜のゼーベック係数の温度依存性を示す。ここで、 Sは層間
0. 4 2 c 方向についてのゼーベック係数であり、 S は各層に平行な方向についてのゼ一べッ ab
ク係数である。
[0074] これらの結果をそのまま受け入れると、以下の推測が成り立つ。すなわち、各層に 平行な方向では電気抵抗率が低ぐかつゼーベック係数が大きいために、電気抵抗 率が高ぐゼーベック係数が小さい層間方向からよりも、良好な熱電変換特性が得ら れる、という推測である。
[0075] この推測の現実の使用における妥当性を検討するために、熱電変換デバイスを作 製した。まず、図 8Aに示すように、熱電変換膜 (Na CoO薄膜) 12の上にェポキ
0. 4 2
シ榭脂をコーティングして凝固させ、支持体 81とした。次いで、基板 11Z熱電変換 膜 12Z支持体 81からなる積層体を、水蒸気を含む密閉容器中に 30時間放置した。
[0076] その結果、 Na CoO薄膜 12とサファイア基板 11との界面に水分子が浸透するこ
0. 4 2
とにより、薄膜に応力が加わって Na CoO薄膜 12がサファイア基板 11から剥離し
0. 4 2
た。
[0077] さらに、熱電変換膜 (Na CoO薄膜) 12の支持体 81と反対側の表面に、 c軸方
0. 4 2
向 10について 9mmの間隔が保たれるように、幅 0. 5mm、厚さ 500nmの Pt電極 13 a, 13bをスパッタ法で堆積した。こうして、エポキシ榭脂からなる新たな基体 81を有 する熱電変換デバイス 82を得た。
[0078] 室温において、 2つの Pt電極 13a, 13bの間の抵抗値は約 100 Ωであった。電極 間に 0. 1mAの直流電流を定常的に流したところ、両端に約 3°Cの温度差がついた。 電流の向きを反転させると、高温部と低温部は反転した。
[0079] 図 6および図 7に示した c軸方向の熱電性能( p , S )、基体による熱損失の効果等 を考慮して計算された温度差は c以下である。従って、実験値は定常的な熱電性 能から予想される変換効率の 3倍以上にもなつた。
[0080] 一般的に熱電変換性能指数 ZTはゼーベック係数の 2乗の項を有するため、ゼー ベック係数に相当する物理量が 3倍以上の場合、 ZTは 1桁程度向上していることに なる。 [0081] 図 6および図 7による推測値から実測値が大きく乖離した理由については、下記で 解析する(実施例 4の欄参照)。
[0082] (実施例 2)
CaO、 Co Oの粉体の焼結体力もなる 4インチの原料ターゲットを用い、実施例 1
2 3 4
と同様のスパッタリング条件で 10mm角、 100 m厚のサファイア M面基板に膜厚 1 OOOnmの薄膜を成長させた。
[0083] エネルギー分散型蛍光 X線分析により、この薄膜における Caと Coとの組成比がお よそ Ca: Co = 0. 5: 1であることが確認された。この Ca CoO薄膜の X線回折測定
0. 5 2
の結果を図 9に示す。サファイア基板からの回折ピークの他には、薄膜からの回折に よる (020)と指数付けされるピークのみが観測された。
[0084] これにより、 Ca CoO薄膜は (010)面と基板とが平行となるようにェピタキシャル
0. 5 2
成長したことが確認された。また 4軸 X線回折測定により Ca CoOの結晶の c軸は
0. 5 2
薄膜の面内に配向していることが確認された。
[0085] 薄膜作成直後の Ca CoO薄膜は薄い褐色をしていたが、酸素雰囲気中、 300
0. 5 2
°Cで 2時間ァニールを行うと Ca CoO薄膜は金属光沢をもつ黒色になった。
0. 5 2
[0086] 図 10に、 Ca CoO薄膜の電気抵抗の温度依存性を示す。ここで、 p は c軸方向
0. 5 2 c
、即ち Ca層と Co層とからなる層状物質の層間方向についての電気抵抗率であり、 は各層に平行な方向の電気抵抗率である。
ab
[0087] 図 11に、 Ca CoO薄膜のゼーベック係数の温度依存性を示す。ここで、 Sは c軸
0. 5 2 c 方向についてのゼーベック係数であり、 S は各層に平行な方向のゼーベック係数で ab
ある。
[0088] さらに、 Ca CoO薄膜の c軸方向に 9mmの間隔が保たれるように、幅 0. 5mm、
0. 5 2
厚さ 400nmの Au電極を薄膜上にスパッタ法で堆積させた。また、基板を介した熱伝 導により、発生した温度差が直ちに解消される効果を軽減するため、図 3に示したよう に、電極間を横断する幅約 2mmの領域において、厚さが約 1 μ mになるように基板 をイオンビームエッチングにより薄型化した。
[0089] 室温において、 2つの Au電極間の抵抗値は約 400 Ωであった。電極間に 0. 003 mAの電流を定常的に流したところ、両端に約 2°Cの温度差がついた。図 10および 図 11に示した c軸方向の熱電変換性能の値、基体による熱損失の効果等を考慮し て計算された温度差は 0. 1°Cであるため、実験値は理論値の 20倍にもなつた。実際 に得られた温度差を熱電変換性能指数 ZTに換算すると 400倍となった。
[0090] (実施例 3)
実施例 1から得た熱電変換デバイスを複数用いて、より大きな実効面積を有するデ バイスを作製した。具体的には、図 12Aに示したように、電極 13a, 13bの間の長さが 30mm,幅が 5mm、厚さ 2mmである 1000本の熱電変換素子 82と、 700mm角のァ ルミナカもなる吸熱板 121aおよび放熱板 121bとを準備した。
[0091] 吸熱板 121aおよび放熱板 121bの材料としてアルミナを用いたのは熱伝導率が高 ぐ温度分布が均一になるからである。
[0092] 各々の熱電変換素子 82を電気的に接続するために、吸熱板 121aおよび放熱板 1 21 bの表面を電気伝導率の高い銅でコーティングした。
[0093] 銀ペーストを用いて、熱電変換デバイス 82の電極 13a, 13bと吸熱板 121aおよび 放熱板 12 lbの銅でコーティングされた面とをそれぞれ接合して、図 12Bに示した熱 電変換デバイスを得た。このデバイスでは、本発明により提供された複数の熱電変換 デバイスが吸熱板 121aと放熱板 12bとの間に電気的に並列に接合されている。この デバイスは、 lmWの電力に対し、約 3°Cの冷却能力を有していた。
[0094] (実施例 4)
本実施例では、 Bi Pb Sr Co O (X2 = 0. 4等、 Y2=7. 5—8. 5)の組成式
2-X2 X2 2 2 Y2
で記載される層状酸ィ匕物の単結晶およびェピタキシャル成長膜の例を取り上げ、こ の物質の熱電変換特性にっ 、て記載する。
[0095] Bi Pb Sr Co O (X2 = 0. 4等、 Y2=7. 5— 8. 5)の単結晶はフローティング
2-X2 X2 2 2 y
ゾーン法で作製した。 Co (NO ) ·Η Οのプレカーサ一と PbO
2 2、 SrO、 BiOとを組成
3
のとおりに秤量した後に混合し、 200°Cまで温度を上げて乾燥させた。得られた粉末 をペレット状にした後、 1000°Cで 24時間大気中において焼結して再び紛体状にし た。得た粉末を装置のロッドのサイズに適合するようにプレスし、 1150°Cで約 15時間 焼結した後に 3気圧の酸素雰囲気中で結晶成長させると、黒い光沢を有する長さ 4 一 6mm、 5mm半径の単結晶が得られた。 [0096] その結晶構造は図 13に示してある。本実施例では結晶をより安定ィ匕させるために 図 13の結晶の Biのサイトを一部 Pbに置換したものも用いた。できた物質の結晶構造 は X線回折で確認し、その結果を図 15Aに示した。図 15Aに示したデータは X2 = 0 . 4の単結晶に対応する。解析の結果、 Pb含有率 X(X2)と結晶の c軸長さとの関係 を図 15Bに示す。さらに、ラウエによる回折像を図 16A,図 16Bに示す。
[0097] ネ守られ 7こ結晶の糸且成^ aCP (inductively coupled plasma emission spectroscopy)と EDX (electron dispersive X-ray spectroscopy)を用いて確認した。実際の結晶にお ける酸素の量については、糸且成式のとおり作製できていれば Y2 = 8となるところであ る力 実際にはこれよりも多く酸素が入ってしまうことが多い。酸素の量は ICPや EDX でも同定が困難であるため、 Υ2は 7. 5以上 8. 5以下と表示している。
[0098] ここまで Bi Pb Sr Co O (x=0. 4等、 Y2=7. 5—8. 5)の単結晶の作製方法
2 2 2 Y2
を記したが、 Bi Sr Co O (y=7. 5-8. 5)をサファイア A面基板上にェピタキシャ
2 2 2 y
ル成長させて得ることもできた(図 14)。具体的には、 BiO、 SrO、 Co Oの紛体の焼
3 4 結体からなる 4インチの原料ターゲットを用い、 Arが 80%、 O力 20%の雰囲気ガス
2
を 5. OPaに保ち、出力 60Wで 1時間プレスパッタリングした後、 700°Cに加熱したサ ファイア A面基板上にプレスパッタリングと同様の条件で 5時間かけて堆積を行った。 その後、酸素雰囲気中で 2時間かけて室温まで冷やすと、膜厚 lOOOnmの金属光沢 を有する薄膜が得られた。得られた薄膜の X線回折のデータを図 17に示す。
[0099] 次に、測定方法および測定結果の記述に移るが、単結晶の場合と、ェピタキシャル 成長膜の場合とでほぼ同様の結果が得られたので、以下には、単結晶の場合の測 定方法および測定結果を述べる。
[0100] 上記より得た単結晶を壁開面で壁開して表面を平らに仕上げた後に、壁開面の両 側に銀ペーストで電極とクロメルーコンスタンタンで作製した熱電対を取り付けた。こ の状態で、電気伝導層と電気絶縁層との層間方向に電場を印加して温度差を測る 構成になっている。このときの素子の大きさは、 2. Omm X 2. Omm X O. 2mmであつ た。次に、電極を取り付けた素子をデュア一の中に移し、約 2 X 10— 4torrの真空下に 設置した。この際、熱のリークを少しでも防ぐためにサンプルは浮力して設置した。
[0101] デュア一の外に電源と温度計をそれぞれつなぎ、素子に電流を流してその壁界面 の両側の温度差を測定した。電極間に 10mAの電流を流すと約 2Kの温度差が素子 の両端についた。電流の向きを変えると高温部と低温部が反転した。この現象は室 温から 50Kまで温度を下げても同じように 2Kの温度差がついた。
[0102] ところで、孤立系に電流を流した際に、流した電流と温度差の間にはゼーベック係 数 Sと熱伝導 Kと用い、 ST1=K A Tという関係がある。電流によって注入されたェネル ギ一が熱伝導率を通して温度差となって現れることを示した式で、熱伝導率を測定 する際の Harman法と呼ばれる測定法の基本となる式でもある。ここで、熱伝導 Kは 、熱伝導率 κと素子の面積 Sおよび長さ 1を用い、上記のとおり、 Κ= κ - S Zlと表
0 0 すことができる。
[0103] 現在までに得られている Bi Pb Sr Co O (Y2=7. 5— 8. 5)における各方向
1. 6 0. 4 2 2 Υ2
の電気抵抗率 ρ、ゼーベック係数 S、および熱伝導率 κを図 18に示す。ゼーベック 係数 Sと熱伝導率 Kの値はともに定常法と呼ばれる方法で測定された値であり、熱平 衡状態において素子の両側に 0. 1Kほどの温度差をつけて熱起電力と温度差を測 定して得られた値である。
[0104] 室温の定常法における結果、 κ一 5mWZcmKと S— 100 μ VZKとを用いて、 ST 1=Κ Δ Tという関係式から見積もられる温度差は Δ Τ— 0. 06Κであり本実施例にお ける実測値はこの見積もり値よりも 30倍ほど大きな温度差を示していることがわかる。
[0105] このことは、 0. 1Kほどの温度差をつけて熱起電力と温度差を測定する際には素子 には 10 Vほどの電圧力かかるのに対して、 10mAの電流を流した際には約 0. 5m Vもの電圧が力かっていることに起因している。つまり、電流を流した本発明の実施例 における測定は通常の定常法における測定よりも遙かに大きな摂動を系に加えて測 定して 、ることになる。定常法では超えな力つた電気伝導層と絶縁層のポテンシャル 障壁を本実施例で与えた電流が超えてしまったために通常の電気伝導の効果を超 えたトンネル電流や電子放出の効果による熱電変換効果が観測されたと考えられる
[0106] 本実施例では、 SZKが定常法による測定結果の約 30倍の値が得られた力 熱伝 導 Kが約 1Z30に小さくなつたと考えるよりもゼーベック係数 Sが約 30倍大きくなつた と考える方が自然である。この結果を性能指数で考えた場合、性能指数 ZT= S2Z P K は定常法による測定に比べて約 900倍も大きくなつたことになる。
[0107] このように、電気伝導層と電気絶縁層とが交互に配列した層状物質の層間方向に ついての熱電変換特性は、通常の熱平衡状態において微小な温度差によって測定 される定常法で得られている熱電変換性能よりも性能指数 ZTで約 900倍もの大きさ になる。
[0108] 上記の実施例とは対照的に、電気伝導層の面内方向の熱電変換性能では、熱平 衡状態に微小な温度差をつけた定常法によるデータと、本実施例のように電流を流 して測定する Harman法によるデータとは極めてよい一致を示すことがわ力つた。
[0109] つまり摂動の大きさの違いによる熱電変換特性の違 ヽは層間方向に特有の現象で あり、トンネル電流や電子放射現象という新しい効果によって理解されるものである。 この効果により、電気伝導層と電気絶縁層との層間方向の熱電変換特性は定常法で 得られている熱電変換性能よりも性能指数 ZTで約 900倍もの大きさになり、 50Kから 800Kの間での広い温度範囲で ZT> 1に匹敵する高性能を実現することがわ力つた
[0110] (実施例 5)
本実施例では、基体上にェピタキシャル成長させた Ca Co Oの熱電性能につい
3 4 9
て記載する。
[0111] 図 19に、本実施例で基体 11上にェピタキシャル成長させた Ca Co O薄膜を示す
3 4 9
。 Ca Co Oは電気伝導層 22として CoO層を、電気絶縁層 23として式 Ca CoOに
3 4 9 2 2 3 より示される 3層の岩塩構造を有する。この薄膜の結晶の a軸方向 20は、基体 11の 表面に垂直であり(換言すれば結晶は a軸配向しており)、 c軸方向 10は面内方向に 沿っている。基体としては、サファイア Al Oの A面基板を用いた。
2 3
[0112] この薄膜は、 Co O、 CaOの紛体の焼結体からなる 4インチの原料ターゲットを用
3 4 2
い、 Arが 80%、Oカ 20%の雰囲気ガスを 5. OPaに保ち、出力 60Wで 1時間プレス
2
ノ ッタリングした後、 700°Cに加熱した基板上にプレスパッタリングと同様の条件で 5 時間かけて堆積を行った。その後酸素雰囲気中で 2時間かけて室温まで冷やすと、 膜厚 lOOOnmの金属光沢をもつ薄膜が得られた。
[0113] こうして得た Ca Co O薄膜の X線回折測定の結果を図 20に示す。サファイア基板 力もの回折ピークの他には、薄膜からの回折による同系列のピークが観測された。こ れらは、それぞれ(110)、(220)のピークであった。これにより、 Ca Co O薄膜は(1
3 4 9
10)面と基板とが平行となるように結晶配向して成長したことが確認された。さらに 4 軸 X線回折測定により Ca Co Oの結晶の c軸は薄膜面内に配向していることがわか
3 4 9
つた o
[0114] 図 19のような結晶配向をとると、 c軸方向と、 c軸に対して垂直な方向、すなわち Co O層に平行な方向との 2つの向きの物性測定が可能である。
2
[0115] 図 21に、各々の向きに測定して得た Ca Co O薄膜の電気抵抗率の温度依存性
3 4 9
を示す。ここで、 p は c軸方向、層間方向についての電気抵抗率であり、 は、各 c ab 層に平行な方向にっ 、ての電気抵抗率である。
[0116] 上記力 得た素子に、 Ca CoO薄膜の c軸方向に 9mmの間隔が保たれるように
0. 5 2
、幅 0. 5mm、厚さ 400nmの Au電極をこの薄膜上にスパッタ法で堆積させた。また、 基体を介した熱伝導により、発生した温度差が直ちに解消される効果を軽減するた めに、電極間において幅約 2mmの部分の基体を厚さ約 1 μ mになるようにイオンビ ームエッチングにより薄型化し、基体部にくびれ構造を設けた。
[0117] 室温において、 2つの Au電極間の抵抗値は約 400 Ωであった。電極間に 0. 003 mAの電流を定常的に流したところ、両端に約 1Kの温度差がついた。 c軸方向の電 気抵抗とゼーベック係数、その他基体による熱損失の効果等を考慮して計算された 温度差は 0. 1Kであるので、実験値は理論値の 10倍にもなつた。これを熱電変換性 能指数 ZTに換算すると定常法による測定と比べて約 100倍も大きくなつたことになる 。この場合も 50Kから 800Kの間での広い温度範囲で ZT> 1に匹敵する高性能を実 現することがわ力つた。
産業上の利用可能性
[0118] 本発明によれば、通常の電気伝導現象の効果 (Thermoelectric効果)を超えたトン ネル電流や熱電子放射現象により、従来は想定されていなかった程度に高い熱電 変換性能を有する熱電変換デバイスを提供できる。このデバイスの作製には、フォトリ ソグラフィ一に代表される従来の薄膜素子形成のプロセスも適用できる。このデバイ スは、電極間の距離を自在に長く確保することが容易であるため、高効率化を図りや すい。このように、本発明は、熱電変換デバイスの分野において、高い工業的利用価 値を有する。

Claims

請求の範囲
[1] 基体と、前記基体上に配置された熱電変換膜と、一対の電極とを具備する熱電変 換デバイスであって、
前記熱電変換膜は、ェピタキシャル成長により得られ、かつ電気伝導層と電気絶縁 層とが交互に配置されて形成されている結晶性薄膜であり、
前記電気伝導層は、遷移金属原子 Mが中心に位置すると共に酸素原子が頂点に 位置する八面体結晶構造を有し、
前記電気絶縁層は、金属元素または結晶性金属酸化物からなり、
前記電気伝導層および前記電気絶縁層から形成されている前記結晶性薄膜の c 軸は、前記基体の面内方向と平行であり、
前記一対の電極は、前記 c軸に沿って電流が流れるように配置されている、熱電変 換デバイス。
[2] 前記遷移金属原子 Mが、 Coおよび Mnから選ばれる少なくとも 1種である請求項 1 に記載の熱電変換デバイス。
[3] 前記電気伝導層が、前記遷移金属原子 Mとして Coを含有し、かつ互いに稜を共 有する CoO八面体結晶構造を有する請求項 2に記載の熱電変換デバイス。
2
[4] 前記電気絶縁層が、金属元素からなる請求項 1に記載の熱電変換デバイス。
[5] 前記金属元素が、アルカリ金属、アルカリ土類金属、 Hg、 τι、 Pbおよび から選ば れる少なくとも 1種である請求項 4に記載の熱電変換デバイス。
[6] 前記電気絶縁層が、 1一 3モノレイヤー力もなる請求項 4に記載の熱電変換デバィ ス。
[7] 前記電気絶縁層が、結晶性金属酸化物からなる請求項 1に記載の熱電変換デバィ ス。
[8] 前記電気絶縁層が、 1一 4モノレイヤー力もなる請求項 7に記載の熱電変換デバィ ス。
[9] 前記電気絶縁層が、岩塩型構造を有する請求項 7に記載の熱電変換デバイス。
[10] 前記電気絶縁層が、 Sr (Bi Pb ) O CoO
2 2-X4 X4 2 4、 Ca (Co Cu ) O
2 1— X5 X5 2 4、 (Ca, Bi)
2
、または Sr TiOにより示される組成を有する請求項 7に記載の熱電変換デバイス。 ただし、 0≤X4≤1、 0≤X5≤1である。
[11] 前記熱電変換膜が、式 A MO により示される組成を有する請求項 1に記載の熱
XI Y1
電変換デバイス。
ただし、 Aは、アルカリ金属、アルカリ土類金属、 Hg、 Tl、 Pbおよび から選ばれる 少なくとも 1種の元素であり、 Mは、遷移金属元素から選ばれる少なくとも 1種であり、
XIは 0. 1以上 0. 8以下の数値、 Y1は 1. 5以上 2. 5以下の数値である。
[12] 前記 Mが、 Co、 Ni、 Ti、 Mn、 Feおよび Rhから選ばれる少なくとも 1種である請求 項 11に記載の熱電変換デバイス。
[13] 前記 Mが、 Coおよび Mnから選ばれる少なくとも 1種である請求項 12に記載の熱電 変換デバイス。
[14] 前記熱電変換膜が、式 Bi Pb Sr Co O により示される組成を有する請求項 1
2-X2 X2 2 2 Y2
に記載の熱電変換デバイス。
ただし、 X2は 0以上 0. 5以下の数値であり、 Y2は 7. 5以上 8. 5以下の数値である
[15] 前記熱電変換膜が、式 (Ca Sr Bi ) Co Oにより示される組成を有する請
1-X3-Y3 X3 Y3 3 4 9
求項 1に記載の熱電変換デバイス。
ただし、 X3は 0以上 1未満の数値であり、 Y3は 0以上 0. 3以下の数値である。
[16] 前記電気伝導層が、 Coおよび Mnから選ばれる少なくとも 1種を含み、かつべロブ スカイト型構造または Cdl型構造を有し、
2
前記電気絶縁層が、アルカリ金属、アルカリ土類金属、 Hg、 τι、 Pbおよび から選 ばれる少なくとも 1種の元素を含み、かつ岩塩型構造を有する、請求項 1に記載の熱 電変換デバイス。
[17] 前記 c軸方向について、前記一対の電極が lmm以上離間して配置されている請 求項 1に記載の熱電変換デバイス。
[18] 前記一対の電極の間に狭持された領域の一部において、基体の厚みが減少して
Vヽる請求項 1に記載の熱電変換デバイス。
[19] 前記基体と前記熱電変換膜との間に配置された緩衝層をさらに含む請求項 1に記 載の熱電変換デバイス。
[20] 前記緩衝層が、 CeO、 ZrO、 TiO、 ZnO、 NiO、 Fe O、 Cr O、 Al O、 Cr O
2 2 2 2 3 2 3 2 3 2 3
、 Crおよび Ptから選ばれる少なくとも 1種を含む請求項 19に記載の熱電変換デバィ ス。
[21] 前記基体の材料が榭脂である請求項 1に記載の熱電変換デバイス。
[22] 基体と、前記基体上に配置された熱電変換膜と、一対の電極とを具備する熱電変 換デバイスを用い、
前記一対の電極の間に電流を流すことにより、前記一対の電極の間に温度差を生 じさせ、前記一対の電極の 、ずれか一方を低温部とする冷却方法であって、 前記熱電変換膜は、ェピタキシャル成長により得られ、かつ電気伝導層と電気絶縁 層とが交互に配置されて形成されている結晶性薄膜であり、
前記電気伝導層は、遷移金属原子 Mが中心に位置すると共に酸素原子が頂点に 位置する八面体結晶構造を有し、
前記電気絶縁層は、金属元素または結晶性金属酸化物からなり、
前記電気伝導層および前記電気絶縁層からなる結晶性薄膜の c軸は、前記基体の 面内方向と平行であり、
前記一対の電極は、前記 c軸に沿って電流が流れるように配置されている、冷却方 法。
[23] 前記一対の電極の間にパルス電流を流す請求項 22に記載の冷却方法。
[24] 基体と、前記基体上に配置された熱電変換膜と、一対の電極とを具備する熱電変 換デバイスを用い、
前記一対の電極の間に温度差が生じるように熱を与えることにより、前記一対の電 極の間に電位差を生じさせる発電方法であって、
前記熱電変換膜は、ェピタキシャル成長により得られ、かつ電気伝導層と電気絶縁 層とが交互に配置されて形成されている結晶性薄膜であり、
前記電気伝導層は、遷移金属原子 Mが中心に位置すると共に酸素原子が頂点に 位置する八面体結晶構造を有し、
前記電気絶縁層は、金属元素または結晶性金属酸化物からなり、
前記電気伝導層および前記電気絶縁層からなる結晶性薄膜の c軸は、前記基体の 面内方向と平行であり、
前記一対の電極は、前記 C軸に沿って電流が流れるように配置されている、発電方 法。
PCT/JP2004/019532 2004-03-01 2004-12-27 熱電変換デバイス、およびこれを用いた冷却方法および発電方法 WO2005083808A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005518740A JP3874365B2 (ja) 2004-03-01 2004-12-27 熱電変換デバイス、およびこれを用いた冷却方法および発電方法
US11/194,685 US7312392B2 (en) 2004-03-01 2005-08-02 Thermoelectric conversion device, and cooling method and power generating method using the device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004055952 2004-03-01
JP2004-055952 2004-03-01
JP2004-164200 2004-06-02
JP2004164200 2004-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/194,685 Continuation US7312392B2 (en) 2004-03-01 2005-08-02 Thermoelectric conversion device, and cooling method and power generating method using the device

Publications (1)

Publication Number Publication Date
WO2005083808A1 true WO2005083808A1 (ja) 2005-09-09

Family

ID=34914473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019532 WO2005083808A1 (ja) 2004-03-01 2004-12-27 熱電変換デバイス、およびこれを用いた冷却方法および発電方法

Country Status (3)

Country Link
US (1) US7312392B2 (ja)
JP (1) JP3874365B2 (ja)
WO (1) WO2005083808A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091539A (ja) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc 熱電変換素子及び熱電変換装置
WO2010058559A1 (ja) * 2008-11-21 2010-05-27 パナソニック株式会社 放射検出器および放射検出方法
WO2010095199A1 (ja) * 2009-02-20 2010-08-26 パナソニック株式会社 放射検出器および放射検出方法
CN104465976A (zh) * 2013-09-22 2015-03-25 中国科学院上海硅酸盐研究所 受保护的热电元件、包含所述热电元件的热电器件及其形成方法
US9048380B2 (en) * 2004-11-16 2015-06-02 Japan Science And Technology Agency Thermoelectric conversion material and production method for thermoelectric conversion material
JP2015170707A (ja) * 2014-03-06 2015-09-28 富士通株式会社 熱電変換素子及びその製造方法
JP2015537191A (ja) * 2012-10-02 2015-12-24 コヒレント, インコーポレイテッド 異方性熱電材料を利用するレーザーパワーおよびエネルギーセンサ
JP2019517128A (ja) * 2016-03-30 2019-06-20 クアルコム,インコーポレイテッド モバイル電子機器のための面内能動冷却デバイス
JP2019106410A (ja) * 2017-12-08 2019-06-27 株式会社東芝 熱電変換素子、及び熱電変換素子の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101032038B (zh) * 2005-08-16 2010-04-21 松下电器产业株式会社 热电转换器件、以及使用该热电转换器件的冷却方法和发电方法
US20070095381A1 (en) * 2005-10-28 2007-05-03 Taiwan Semiconductor Manufacturing Co., Ltd. Stacked thermoelectric device for power generation
US8178843B2 (en) * 2005-12-01 2012-05-15 Bae Systems Information And Electronic Systems Integration Inc. Polycrystalline heterostructure infrared detector
US20080017238A1 (en) * 2006-07-21 2008-01-24 Caterpillar Inc. Thermoelectric device
WO2008109564A1 (en) * 2007-03-02 2008-09-12 The Regents Of The University Of California Complex oxides useful for thermoelectric energy conversion
FR2918926B1 (fr) * 2007-07-18 2009-10-16 Michelin Soc Tech Pneumatique muni d'un dispositif thermoelectrique
US8604571B2 (en) * 2008-06-12 2013-12-10 Tohoku University Thermoelectric conversion device
KR100997994B1 (ko) * 2009-04-13 2010-12-03 삼성전기주식회사 열전소자
JP4951088B2 (ja) * 2009-05-21 2012-06-13 韓國電子通信研究院 輻射熱を熱源として利用する熱電素子及びその製造方法
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
US9153729B2 (en) * 2012-11-26 2015-10-06 International Business Machines Corporation Atomic layer deposition for photovoltaic devices
WO2015157513A1 (en) * 2014-04-09 2015-10-15 Cornell University Misfit p-type transparent conductive oxide (tco) films, methods and applications
JP6439509B2 (ja) * 2015-03-09 2018-12-19 富士通株式会社 熱電変換素子、熱電変換モジュール、及び熱電変換素子の製造方法
US10672969B2 (en) 2017-06-29 2020-06-02 Taiwan Semiconductor Manufacturing Co., Ltd. Thermocouple device
US11384107B2 (en) * 2018-04-27 2022-07-12 Japan Science And Technology Agency Thermoelectric conversion element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284622A (ja) * 2000-03-31 2001-10-12 Canon Inc 半導体部材の製造方法及び太陽電池の製造方法
JP2003179272A (ja) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc 熱電変換材料及びその使用方法
JP2003218411A (ja) * 2002-01-21 2003-07-31 Matsushita Electric Ind Co Ltd 熱電変換材料、その製造方法および薄膜熱電変換素子
JP2003282968A (ja) * 2002-03-26 2003-10-03 Japan Science & Technology Corp 酸化物熱電変換材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596643B2 (ja) 1996-05-29 2004-12-02 財団法人国際超電導産業技術研究センター 熱電変換材料及び熱電変換素子
JPH11330569A (ja) 1998-05-13 1999-11-30 Sharp Corp 熱電変換素子およびその製造方法
JP3751764B2 (ja) 1999-03-15 2006-03-01 株式会社東芝 複合酸化物焼結体およびその製造法、複合酸化物の薄膜の製造法、ならびに熱電変換素子
JP3515478B2 (ja) 2000-03-30 2004-04-05 株式会社東芝 熱電変換材料、熱電変換素子、熱電池及び冷却器
JP4595236B2 (ja) 2000-04-28 2010-12-08 株式会社豊田中央研究所 熱電材料の製造方法
JP2002111077A (ja) 2000-09-26 2002-04-12 Sumitomo Special Metals Co Ltd 酸化物熱電変換材料およびその製造方法
JP3472814B2 (ja) 2000-10-31 2003-12-02 独立行政法人産業技術総合研究所 優れた熱電変換性能を有する複合酸化物
JP2002270907A (ja) 2001-03-06 2002-09-20 Nec Corp 熱電変換材料とそれを用いた素子
JP2002316898A (ja) 2001-04-13 2002-10-31 Hitachi Cable Ltd 窒化物半導体基板の製造方法及び窒化物半導体基板
JP5017747B2 (ja) 2001-04-23 2012-09-05 株式会社豊田中央研究所 酸化水酸化コバルト板状粒子
JP2002368292A (ja) 2001-06-08 2002-12-20 Unitika Ltd 高温用熱電変換モジュール
JP4635387B2 (ja) 2001-07-18 2011-02-23 株式会社豊田中央研究所 板状粉末の製造方法及び結晶配向セラミックスの製造方法
JP3981716B2 (ja) 2001-09-27 2007-09-26 独立行政法人産業技術総合研究所 金属酸化物多結晶体、熱電材料、熱電素子およびその製造方法
JP3927784B2 (ja) 2001-10-24 2007-06-13 北川工業株式会社 熱電変換部材の製造方法
US6914343B2 (en) * 2001-12-12 2005-07-05 Hi-Z Technology, Inc. Thermoelectric power from environmental temperature cycles
JP3626169B2 (ja) 2002-04-09 2005-03-02 松下電器産業株式会社 熱電変換材料およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284622A (ja) * 2000-03-31 2001-10-12 Canon Inc 半導体部材の製造方法及び太陽電池の製造方法
JP2003179272A (ja) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc 熱電変換材料及びその使用方法
JP2003218411A (ja) * 2002-01-21 2003-07-31 Matsushita Electric Ind Co Ltd 熱電変換材料、その製造方法および薄膜熱電変換素子
JP2003282968A (ja) * 2002-03-26 2003-10-03 Japan Science & Technology Corp 酸化物熱電変換材料

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048380B2 (en) * 2004-11-16 2015-06-02 Japan Science And Technology Agency Thermoelectric conversion material and production method for thermoelectric conversion material
JP2008091539A (ja) * 2006-09-29 2008-04-17 Chubu Electric Power Co Inc 熱電変換素子及び熱電変換装置
JPWO2010058559A1 (ja) * 2008-11-21 2012-04-19 パナソニック株式会社 放射検出器および放射検出方法
WO2010058559A1 (ja) * 2008-11-21 2010-05-27 パナソニック株式会社 放射検出器および放射検出方法
JP4574746B2 (ja) * 2008-11-21 2010-11-04 パナソニック株式会社 放射検出器および放射検出方法
US8026486B2 (en) 2008-11-21 2011-09-27 Panasonic Corporation Radiation detector and radiation detection method
JPWO2010095199A1 (ja) * 2009-02-20 2012-08-16 パナソニック株式会社 放射検出器および放射検出方法
US8049154B2 (en) 2009-02-20 2011-11-01 Panasonic Corporation Radiation detector with AL2O3 substrate and radiation detection method
JP4592826B2 (ja) * 2009-02-20 2010-12-08 パナソニック株式会社 放射検出器および放射検出方法
WO2010095199A1 (ja) * 2009-02-20 2010-08-26 パナソニック株式会社 放射検出器および放射検出方法
JP2015537191A (ja) * 2012-10-02 2015-12-24 コヒレント, インコーポレイテッド 異方性熱電材料を利用するレーザーパワーおよびエネルギーセンサ
USRE48028E1 (en) 2012-10-02 2020-06-02 Coherent, Inc. Laser power and energy sensor utilizing anisotropic thermoelectric material
CN104465976A (zh) * 2013-09-22 2015-03-25 中国科学院上海硅酸盐研究所 受保护的热电元件、包含所述热电元件的热电器件及其形成方法
CN104465976B (zh) * 2013-09-22 2017-06-06 中国科学院上海硅酸盐研究所 受保护的热电元件、包含所述热电元件的热电器件及其形成方法
JP2015170707A (ja) * 2014-03-06 2015-09-28 富士通株式会社 熱電変換素子及びその製造方法
JP2019517128A (ja) * 2016-03-30 2019-06-20 クアルコム,インコーポレイテッド モバイル電子機器のための面内能動冷却デバイス
JP2019106410A (ja) * 2017-12-08 2019-06-27 株式会社東芝 熱電変換素子、及び熱電変換素子の製造方法

Also Published As

Publication number Publication date
JP3874365B2 (ja) 2007-01-31
JPWO2005083808A1 (ja) 2008-01-17
US20060021646A1 (en) 2006-02-02
US7312392B2 (en) 2007-12-25

Similar Documents

Publication Publication Date Title
US7312392B2 (en) Thermoelectric conversion device, and cooling method and power generating method using the device
EP1737053B1 (en) Thermoelectric conversion element and thermoelectric conversion module
CN101032038B (zh) 热电转换器件、以及使用该热电转换器件的冷却方法和发电方法
Mueller et al. Functionally graded materials for sensor and energy applications
WO2006054550A1 (ja) 熱電変換材料及び熱電変換材料の製造方法
US7763793B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device including the thermoelectric conversion element
CN100461479C (zh) 热电转换装置、使用该装置的冷却方法以及发电方法
JP4168628B2 (ja) 熱電変換材料及びその使用方法
Reimann et al. Fabrication of a transversal multilayer thermoelectric generator with substituted calcium manganite
JP3922651B2 (ja) 熱電変換材料とこれを用いた熱電変換素子ならびにこの素子を備える電子機器および冷却装置
Merkulov et al. Tubular thermoelectric module based on oxide elements grown by the laser floating zone
Dehkordi An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics
JP2007149996A (ja) デラフォッサイト構造を持つ層状酸化物熱電材料
EP1012887B1 (en) Thermoelectric compositions
Lu La doped SrTiO3 Based Oxide Thermoelectrics
JPH07206437A (ja) 超電導体およびその製造方法
JP4275172B2 (ja) デラフォッサイト構造を持つ層状酸化物熱電材料
JP2990257B2 (ja) 熱電変換素子用酸化物部材
Kabir The development of manganite-based materials for thermoelectric power generation
Abutaha Nanostructured Thermoelectric Oxides for Energy Harvesting Applications
JP2006032624A (ja) ロジウム酸化物からなる熱電変換材料
Sakai et al. Preparation and anisotropic thermoelectric properties in misfit cobaltite thin films
JP2003282963A (ja) パラジウム酸化物からなる熱電変換材料とその製造方法
JPH0672714A (ja) 超電導体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023312.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11194685

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005518740

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11194685

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase