WO2007020775A1 - 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法 - Google Patents

熱電変換デバイス、並びにそれを用いた冷却方法および発電方法 Download PDF

Info

Publication number
WO2007020775A1
WO2007020775A1 PCT/JP2006/314660 JP2006314660W WO2007020775A1 WO 2007020775 A1 WO2007020775 A1 WO 2007020775A1 JP 2006314660 W JP2006314660 W JP 2006314660W WO 2007020775 A1 WO2007020775 A1 WO 2007020775A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
thermoelectric conversion
conversion device
area
layered oxide
Prior art date
Application number
PCT/JP2006/314660
Other languages
English (en)
French (fr)
Inventor
Tsutomu Kanno
Akihiro Sakai
Akihiro Odagawa
Satoshi Okada
Hideaki Adachi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800008740A priority Critical patent/CN101032038B/zh
Priority to JP2006529383A priority patent/JP3922652B2/ja
Priority to US11/643,708 priority patent/US7446256B2/en
Publication of WO2007020775A1 publication Critical patent/WO2007020775A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a thermoelectric conversion device using a thermoelectric conversion material capable of mutually converting heat energy and electric energy, and a cooling method and a power generation method using the thermoelectric conversion device.
  • Thermoelectric conversion is a technique that utilizes the Seebeck effect in which an electromotive force is generated when a temperature gradient is applied to a substance, and the Peltier effect in which a temperature gradient is generated when a current is passed through a material.
  • a temperature is obtained by a configuration in which two substances having different carrier signs such as a p-type semiconductor and an n-type semiconductor are connected in parallel and electrically in series.
  • This is a technology that performs thermoelectric generation by the Seebeck effect when a difference is applied, and thermoelectric cooling by the Peltier effect when a current is applied.
  • thermoelectric conversion is currently less efficient than other technologies! Therefore, there are only a limited number of power supplies for remote areas, space power supplies, local cooling of electronic devices, wine coolers, etc. Used only for special purposes.
  • thermoelectric conversion material used for a thermoelectric conversion device is evaluated by a figure of merit Z or a figure of merit ZT made dimensionless by applying an absolute temperature T to Z.
  • ZT is expressed as ZT using the Seebeck coefficient S, electrical resistivity p, and thermal conductivity ⁇ of a substance.
  • thermoelectric conversion material S 2 T / p ⁇
  • thermoelectric conversion material mainly used for practical use although it is a special application is Bi Te of semiconductor.
  • Bi Te is not rich in instability, toxicity, and elements at high temperatures.
  • the layered oxide Na CoO is a material that exhibits good thermoelectric conversion performance.
  • the layered oxide has advantages such as being stable even in high-temperature air.
  • the dimensional anisotropy is strong, and many substances have a layered crystal structure composed of a two-dimensional electrically conductive layer and an electrically insulating layer (hereinafter referred to as layer). It may be referred to as a “like structure”).
  • Fig. 1 shows that an electric conductive layer made of CoO and an electric insulating layer made of Na are each in a monolayer.
  • Na CoO has strong anisotropy in thermoelectric properties SS cZS
  • the Seebeck coefficient and the electrical resistivity in the direction perpendicular to the c-axis that is, in the direction parallel to the layered structure (for each layer) are represented as S and p ⁇ c, respectively.
  • thermoelectric conversion device so that carriers or heat flow in a direction perpendicular to the c-axis of the layered oxide, that is, in a direction parallel to the layer structure. It has also been said that the surface power of is advantageous.
  • thermoelectric conversion material produced by a normal method has no crystal orientation and is polycrystalline. Therefore, it is practically impossible to use such a polycrystalline material so that the carrier or heat flows only in the direction perpendicular to the c-axis.
  • thermoelectric conversion material having a uniform crystal orientation.
  • a method of producing thermoelectric conversion materials with uniform crystal orientation for example, in the case of a thin film, the crystal orientation is obtained by using a single crystal C-plane substrate of AlO as a template.
  • thermoelectric cooling device with a cooling-side electrode with a smaller area than the heat-dissipating electrode (Applied Physics Letters Vol. 85, pp. 2977- 297).
  • thermoelectric cooling device used is a material having isotropic thermoelectric characteristics
  • the above configuration promotes current diffusion in the material and returns Joule heat.
  • the effects other than the suppression were ineffective. Therefore, the efficiency is improved only a few times at most, and a device with sufficient efficiency has been realized!
  • thermoelectric conversion device has not been able to obtain a sufficient efficiency to be generally used in consumer applications with insufficient performance.
  • an object of the present invention is to provide a highly efficient thermoelectric conversion device, and a cooling method and a power generation method using the device.
  • thermoelectric conversion device having practical performance
  • the present inventors have conducted extensive research on a device configuration using a layered oxide thermoelectric conversion material.
  • the layered structure of the layered oxide has been obtained.
  • an unexpected finding that the thermoelectric characteristics are greatly improved compared to the conventional one was found, and based on this finding, this thermoelectric effect performance is effectively demonstrated.
  • the inventors have arrived at the invention of the thermoelectric conversion device according to the present invention.
  • the thermoelectric conversion device of the present invention has a first electrode, a second electrode, and a layered oxide sandwiched between the first electrode and the second electrode, and the first electrode
  • the layered oxide and the second electrode force are arranged in this order to form a multilayer body, and the layered oxide is formed by alternately arranging an electrically conductive layer and an electrically insulating layer,
  • the c-axis of the layered oxide is perpendicular to the interface between the first electrode and the layered oxide, and the surface of the second electrode Productive force It is comprised so that it may become smaller than the area of the said 1st electrode.
  • the "area of the electrode” refers to the area of the interface formed between the electrode and the layered oxide, that is, the junction area between the electrode and the layered oxide unless otherwise specified. It is.
  • the c-axis of the layered oxide is “perpendicular” to the interface between the first electrode and the layered oxide, and the c-axis of the layered oxide and the interface It is meant to include the case where the angle formed by is within an angle range where a specific effect of the present invention described later can be obtained. That is, in the present invention, if the specific effect of the present invention can be obtained, it is also included in “vertical”, and is considered to be within a range of 0 ° to 15 °, for example.
  • thermoelectric conversion device of the present invention the layered oxide having anisotropic electric conductivity and the electrodes (first electrode and second electrode) arranged so as to sandwich the layered oxide are sandwiched between the layered oxide and the layered oxide.
  • High thermoelectric conversion characteristics can be obtained due to the unique effect between the two electrodes). This enables high-efficiency thermoelectric conversion that surpasses conventional performance, and realizes a practical thermoelectric conversion device.
  • thermoelectric conversion device of the present invention since a conventional thin film element forming process such as photolithography can be applied to the thermoelectric conversion device of the present invention, fine element design and manufacture are facilitated. In other words, since the application of energy conversion between heat and electricity can be promoted, the industrial value of the present invention is high.
  • the cooling method of the present invention is a method using the above-described thermoelectric conversion device of the present invention, wherein a voltage is applied between the first electrode and the second electrode to cause a current to flow.
  • a temperature difference is generated between one electrode and the second electrode, and one of the first electrode and the second electrode is used as a low temperature part.
  • the power generation method of the present invention is a method using the above-described thermoelectric conversion device of the present invention, wherein the first power is applied by applying a temperature difference between the first electrode and the second electrode. In this method, a potential difference is generated between the electrode and the second electrode.
  • FIG. 1 is an example of a layered oxide used in the embodiment of the thermoelectric conversion device of the present invention, in which an electrically conductive layer and an electrically insulating layer are laminated for each monolayer.
  • FIG. 4 is a view showing a crystal structure of a layered oxide.
  • FIG. 2 is a diagram showing a cross-sectional configuration of the thermoelectric conversion device in the first embodiment
  • FIG. 3 is another example of a layered oxide used in the embodiment of the thermoelectric conversion device of the present invention, and shows the crystal structure of the layered oxide having an electrically insulating layer composed of four atomic layers.
  • FIG. 3 is another example of a layered oxide used in the embodiment of the thermoelectric conversion device of the present invention, and shows the crystal structure of the layered oxide having an electrically insulating layer composed of four atomic layers.
  • FIG. 4A is a diagram showing a cross-sectional configuration of the thermoelectric conversion device according to Embodiment 2
  • FIG. 4B is a cross-sectional view taken along the line I I of FIG. 4A.
  • FIG. 5A to FIG. 5D are cross-sectional views showing configuration examples of thermoelectric conversion devices having different contact hole shapes in the thermoelectric conversion device according to the second exemplary embodiment.
  • Fig. 6 shows X of the Bi Sr Co O thin film used in the thermoelectric conversion device in Example 1.
  • 3 is a graph showing a 2 2 2 y-ray diffraction pattern.
  • FIG. 7 is a diagram schematically showing a carrier flow and a heat flow in the thermoelectric conversion device in Example 1.
  • FIG. 8A to FIG. 8D are cross-sectional views showing the manufacturing process of the thermoelectric conversion device in Example 4.
  • FIG. 2 is a cross-sectional view showing the configuration of the thermoelectric conversion device according to the first embodiment of the present invention.
  • thermoelectric conversion device of the present embodiment shown in FIG. 2 is formed by a multilayer body (laminated body) in which a first electrode 21, a material layer 22, and a second electrode 23 are arranged in this order.
  • the material layer 22 is formed of a layered oxide having a layered crystal structure, and the first electrode 21 and the second electrode 23 so as to sandwich the layered structure (so that the layered structure is sandwiched between planes parallel to the layer). Is placed.
  • electrode area means the area of the interface formed between the electrode and the material layer 22, that is, the bonding area between the electrode and the material layer 22.
  • the second electrode 2 is compared with the area of the first electrode 21.
  • the area of 3 is small.
  • the area of the first electrode 21 is preferably 20 times or more the area of the second electrode 23.
  • the area ratio of the first electrode 21 and the second electrode 23 ((area of the second electrode) Z (area of the first electrode)) is preferably 0.05 or less. More preferred correct area ratio, 2. is a 0 X 10- 3 or less, it is not still more preferably from 5 is 0 X 10- 4 or less.
  • Thermoelectric conversion materials having a layered crystal structure include layered oxides and the like, but crystallographically, the c-axis indicates the direction of the crystal of these substances, that is, the direction substantially perpendicular to the layer. Called direction.
  • the material layer 22 is formed of a thin film or a single crystal. In the case of a thin film, it is a c-axis oriented thin film or a single crystal epitaxial thin film.
  • the crystal orientation is such that the c-axis of the crystal is substantially perpendicular to the end face of the material layer 22 on which the second electrode 23 is disposed.
  • the first electrode 21 and the second electrode 23 are formed so as to sandwich the layered structure of the material layer 22, and a voltage is applied between the first electrode 21 and the second electrode 23.
  • a current flows parallel to the c-axis direction of the crystal of the material layer 22, that is, in a direction perpendicular to the layer structure.
  • This configuration is different from a normal concept that has been considered to be more efficient when a current is passed in a direction perpendicular to the c-axis.
  • the first electrode 21 is not particularly limited as long as it is a material having good electrical conductivity.
  • the material layer 22 serves as a base point for c-axis oriented growth or epitaxial growth in a single crystal form.
  • crystal-oriented metals such as Pt, Ti, Au, Cr, Ni, Ir, Ru, TiN, IrO,
  • Nitride or oxide such as RuO, SrRuO, ITO (indium tin oxide) is suitable
  • the second electrode 23 is not particularly limited as long as it has good electrical conduction and is a material. Specifically, metals such as Pt, Au, Ag, Cu, Al, Ti, Cr, W, or TiN, IrO, RuO, SrRuO, ITO A nitride or an oxide such as is preferably used.
  • the material layer 22 is a layered oxide having a layered crystal structure and different electrical conductivity depending on the orientation in the crystal. This layered oxide is advantageous in comparison with other thermoelectric conversion materials such as semiconductors in that it is stable in the air.
  • thermoelectric conversion characteristics is a layered oxide as shown in FIG.
  • This layered oxide has a crystal structure in which the electrically conductive layer 11 and the electrically insulating layer 12 are alternately laminated, and the electrically conductive layer 11 is composed of a CoO octahedron, and is a perovskite type.
  • thermoelectric conversion device of the present embodiment having high thermoelectric conversion characteristics.
  • the layers of the electrical insulating layer 12 are separated from each other by one or more atomic layers or oxide layers.
  • X should be within a range where the material can be stably produced. Specifically, 0 ⁇ x ⁇ 0.5.
  • the electrical insulating layer 12 may have a three-layer rock salt structure (a three-atom rock salt type insulating layer).
  • the composition formula of the layered oxide is ((Ca Sr) Bi) Co O (0 ⁇ xl ⁇
  • the electrical insulating layer 12 may be a single layer (one atomic layer) as shown in FIG. this
  • the chemical formula of the material layer 22 is sometimes expressed as A CoO.
  • the element A also has at least one elemental force among alkali metals such as Na, K, and Li, and alkaline earth metals such as Ca, Sr, and Ba.
  • a part of the element A may be replaced with Hg, Tl, Pb, or Bi! /.
  • the electrical insulating layer 12 is composed of an A element.
  • the element A is a force that can also be a metal element such as an alkali metal or alkaline earth metal. These elements occupy each site in the crystal at a random rate of 100x%! Occur, even if it is a single metal, it has electrical insulating properties.
  • X can be artificially adjusted to some extent within the range of 0.1 ⁇ 0.8.
  • a part of Co may be substituted with at least one element selected from Ni, Ti, Mn, Fe, and Rh.
  • the amount of oxygen in the layered oxide is preferably according to the chemical formula. However, the following description will be given with reference to each chemical formula. However, the amount of oxygen in the layered oxide is strictly determined depending on the manufacturing method, manufacturing conditions, etc. when actually manufacturing the thermoelectric conversion device according to this embodiment. It is difficult to follow the academic formula, and it is assumed that there is actually an oxygen non-stoichiometry of about ⁇ 0.5.
  • This layered oxide is composed of more monolayers or 3 monolayers of MO (M is a metal)
  • Electrically conductive layer 11 and one layer is one! And it also has an alternate laminating force of 4 electrical insulation layers 12 which has monolayer force.
  • the endothermic electrode becomes the low temperature part.
  • thermoelectric conversion performance ZT is small and not sufficient for use.
  • thermoelectric conversion device of the present invention Although details will be described in the examples described later, the present inventors have studied and optimized various conditions, so that various types of material layers 22 having a layered structure and anisotropic thermoelectric characteristics can be electrically connected.
  • the area of the first electrode 21 is made larger than the area of the second electrode 22.
  • thermoelectric conversion performance realized by the thermoelectric conversion device of the present invention is greatly different from that of the device disclosed in Reference 3 , the mere return of Joule heat is suppressed. Therefore, it was something that could not be understood only by interpretation.
  • thermoelectric conversion device of the present embodiment can function as a cooling element. Snow That is, by applying a voltage between the first electrode 21 and the second electrode 23 to pass a current, and setting one of the first electrode 21 and the second electrode 23 as a low temperature part, A highly efficient cooling method using the thermoelectric conversion device of the form can be realized.
  • thermoelectric conversion device of the present embodiment functions as a power generation element.
  • thermoelectric conversion device of the present embodiment it is possible to take out electric power via the first electrode 21 and the second electrode 23 by using this device force. That is, by applying a temperature difference between the first electrode 21 and the second electrode 23, a highly efficient power generation method using the thermoelectric conversion device of the present embodiment can be realized.
  • thermoelectric power generation device As described above, according to the present invention, it is possible to obtain a high effect as a thermoelectric power generation device.
  • the material layer 22 in the thermoelectric conversion device of the present embodiment is required to have a form in which the orientation of the crystal layer, that is, the orientation of the c-axis of the crystal is aligned.
  • Single crystals of layered materials are synthesized by techniques commonly used for single crystal production, such as the floating zone method and the flux method.
  • thermoelectric conversion device of the present invention is manufactured using a thin film process such as sputtering, the process is facilitated by using a substrate for supporting the structure of the device.
  • the first electrode 21 is first formed on the substrate, and then the material layer 22 and the second electrode 23 are formed in this order.
  • the base material used for promoting crystal growth is appropriately selected. It is preferable to select. In the material layer 22, the heating temperature at the time of film formation is important.
  • the substrate temperature when using the sputtering method is preferably in the range of 650 ° C to 800 ° C for the layered oxide.
  • the manufacturing method is not particularly limited, and therefore, by vapor phase growth such as sputtering, vapor deposition, laser ablation, chemical vapor deposition, or the like, or Various thin film forming methods such as electrodeposition and other liquid phases and growth from a solid phase can be used.
  • Materials of the substrate include Al 2 O, MgO, SrTiO, LaAlO, NdGaO, YAIO, LaSr
  • Single crystal materials such as TiO (rutile or anatase), Fe 2 O, Cr 2 O, Si, and GaAs are preferred.
  • a thick film of the material layer 22 is manufactured by a liquid phase epitaxial process or the like, the substrate surface force of a single crystal material can be directly grown.
  • a method such as sputtering. For example, Na CoO
  • the current that flows when the thermoelectric conversion device in the present embodiment is used for cooling may be a direct current that is not an alternating current that contributes only to the loss due to the generation of Joule heat without an effective heat transfer. preferable.
  • DC pulse current as well as constant current, it is possible to drive with high efficiency according to the desired cooling performance.
  • the material layer 22 has a cross-sectional area (hereinafter referred to as “cross-sectional area”) that appears when the material layer 22 is cut along a plane parallel to the substrate surface (that is, the upper surface of the first electrode 21). Regardless of the height (ie, thickness) of the material layer 22, it is preferably constant.
  • the thickness of the material layer 22 can be set within a range of, for example, 0.1 ⁇ m to 1000 ⁇ m, Preferably it is the range of 50 micrometers-200 micrometers.
  • FIG. 4A is a cross-sectional view showing the configuration of the thermoelectric conversion device according to Embodiment 2 of the present invention.
  • FIG. 4B is a diagram showing a cut surface (II-I line cross section) at the location indicated in FIG. 4A. In FIG. 4B, hatching of the second electrode 23 is omitted.
  • thermoelectric conversion device of the present embodiment the material layer 22 and the second electrode 23 are in contact with each other in a plurality of regions.
  • a plurality of second electrodes 23 are disposed on the material layer 22, and each of the second electrodes 23 is electrically connected to each other.
  • the thermoelectric conversion device of the present embodiment can increase the effective area while maintaining high thermoelectric characteristics.
  • the plurality of second electrodes 23 electrically connected to each other may be collectively referred to as the second electrode 23.
  • the configuration as described above can be realized by first forming the interlayer insulating layer 41 having a plurality of contact hole patterns with a small area on the material layer 22 and forming the second electrode 23 thereon.
  • the second electrode 23 is in contact with the material layer 22 through a contact hole formed in the interlayer insulating layer 41.
  • the materials and the production methods described in the first embodiment can be applied.
  • the relationship (area ratio, etc.) between the area of the second electrode 23 (the contact area between the material layer 23 and one second electrode 23) and the area of the first electrode 21 is the same as in the first embodiment. The relationship can be applied.
  • a simple method such as plating or cream solder coating can be used in addition to a vapor phase growth method such as sputtering or vapor deposition.
  • the interlayer insulating layer 41 is not particularly limited as long as it is a material having electrical insulation, but it is preferable to use a material having low thermal conductivity. Forming the interlayer insulating layer 41 with such a material is advantageous because a temperature difference is effectively generated only in the vicinity of the contact point between the material layer 22 and the second electrode 23.
  • an inorganic porous material such as porous silica or an organic resin
  • organic resins it is advantageous to use a photoresist or a photosensitive polyimide because a pattern can be easily formed by a general photolithography technique.
  • a solvent-resistant material such as many negative photoresists and photosensitive polyimide because the structure can be maintained even after a process using a solvent.
  • the film coverage of the second electrode 23 on the side wall of the contact hole may be poor.
  • the side wall of the contact hole 51 is raised, good conductivity may not be obtained.
  • the contact hole 52 having the tapered shape as shown in FIG. 5B There are various methods for manufacturing the contact hole 52 having the tapered shape as shown in FIG. 5B. For example, when using negative photosensitive polyimide for the interlayer insulating layer 41, the process as described above is used. After forming the contact hole pattern with an inert gas such as Ar or N
  • the contact hole 52 having a taper-shaped side wall can be formed by performing beta for about 30 to 60 minutes at 200 to 350 ° C. in an atmosphere.
  • the second electrode 23 has a thick film as shown in FIGS. 5C and 5D in addition to the configuration formed in a thin film on the surface of the interlayer insulating layer 41.
  • CMP Chemical Mechanical Polishing
  • thermoelectric conversion device (hereinafter referred to as “BSCO”) is used to manufacture the thermoelectric conversion device of this example.
  • thermoelectric conversion device having the configuration shown in FIG. 2 was produced.
  • BSCO has an electric conductivity in the in-layer direction of about 10000 times that in the inter-layer direction (c-axis direction), which has a relatively large anisotropy.
  • Pt having a thickness of 200 nm was used for the lower electrode serving as the first electrode 21
  • BSCO having a thickness of 5 ⁇ m was used for the material layer 22
  • Au having a thickness of lOOOnm was used for the upper electrode serving as the second electrode 23.
  • y is in the range of 7.5 ⁇ y ⁇ 8.5 because oxygen nonstoichiometry of about 0.5 occurs.
  • a 10 mm square, 500 ⁇ m thick sapphire Al O C-plane substrate was used as the substrate.
  • the first electrode 21 was fabricated on the entire surface of the substrate (area 1. OX lom 2 ).
  • the manufacturing conditions for the first electrode 21 were as follows: the substrate temperature was 650 ° C., the gas pressure during growth was lPa, the atmosphere gas was only Ar, and the input power was 80 W. From the X-ray diffraction measurement results, it was found that Pt was epitaxially grown in the (111) orientation.
  • the substrate temperature was 650 ° C
  • the gas pressure during growth was 5 Pa
  • the mixture was introduced in a mixed gas atmosphere with a partial pressure ratio of Ar of 80% and O of 20%.
  • the power was 60W
  • the inside of the sputtering apparatus was placed in a pure oxygen atmosphere of 81 kPa (0.8 atm), and the sample was cooled to room temperature over 5 hours.
  • BSCO is a single crystal thin film epitaxially grown with (001) orientation.
  • the layered structure of BSCO was parallel to the substrate surface (the in-plane direction of each layer of BSCO was parallel to the substrate surface).
  • the substrate temperature was room temperature
  • the gas pressure during growth was lPa
  • the atmosphere gas was only Ar
  • the input voltage was 80W.
  • a sample was prepared by depositing Au as the second electrode 23 on the entire surface of the BSCO (area 1.0 x 10 8 m 2 ) without using a metal mask (Comparative Example 1-1) ).
  • a Pt (100) -oriented thin film was formed on an Al-O A-plane substrate.
  • BSCO is a (100) -oriented thin film.
  • the layered structure of BSCO was perpendicular to the substrate surface (the in-plane direction of each layer of BSCO was perpendicular to the substrate surface) (see also pamphlet of International Publication No. 05Z083808)
  • the Au of the upper electrode (second electrode 23) had a diameter of 30 m, 50 m, 100 m, 500 ⁇ m, and an area of 7.1, respectively, as in Examples 1 1 to 14.
  • X 10 2 2.0X10 3 m 2 , 7.9 10 3 ⁇ ⁇ 2 , 2.
  • OX 10 5 m 2 were prepared (Comparative Examples 1-2 and 1-5).
  • Table 1 shows the maximum cooling temperature ⁇ T when the second electrode 23 is cooled by passing an electric current through each sample having the second electrode 23 having a different diameter, and the original performance index Z of the material. Use ⁇ obs 0
  • T ZT 2/2 of the formula force calculated by the ratio .DELTA..tau / .DELTA..tau the upper .DELTA..tau cooling temperature, ⁇ max 0 max obs max
  • the effective Seebeck coefficient S converted to T is also shown.
  • the optimal size of the second electrode 23 depends on the film thickness, electrical resistivity, thermal conductivity, etc. of the material layer 22, but it cannot be generally stated, but in this example, the BSCO used as the material layer 22 In this case, since the electrical resistivity in the c-axis direction is large, it is considered optimal that the diameter is at least: L m or more.
  • the magnitude of the electromotive force generated by applying a steady temperature difference to the sample ie, the force.
  • the force Seebeck coefficient is calculated and the BSCO Seebeck coefficient Ss is estimated to be approximately 140 ⁇ VZK at room temperature. Met.
  • thermoelectric conversion figure of merit ZT has a term of the square of the Seebeck coefficient, so in this example, when converted to ZT, the characteristic is improved by about 240 times at the maximum. .
  • the c-axis of the material layer 22 (layered oxide) represented by BSCO is perpendicular to the interface between the first electrode 21 and the layered oxide (Examples). 1 1 to 14 and Comparative Example 1 2 to 1-5)), and the area of the interface between the first electrode 21 and the material layer 22 and the interface between the second electrode 23 and the material layer 22 Only when the area was different (comparison between Examples 1 1 to 14 and Comparative Example 1 1), it was found that very high thermoelectric conversion characteristics were realized.
  • Example 1 When the sample of 1 was driven by passing a constant current, the generated temperature difference ⁇ It gradually relaxes over time, and after 1 minute, it is half obs compared to the maximum value of ⁇ .
  • the DC pulse input at this time was a pulse having a rectangular shape with a width of lmsec and repeated at intervals of 10 msec.
  • thermoelectric conversion device of this example was fabricated using a single crystal of the layered acid oxide.
  • a thermoelectric conversion device having the configuration shown in FIG. 2 was produced.
  • CCO is a layered oxide with an insulating layer consisting of three layers of rock salt structure, and its electric conductivity in the in-layer direction is about 100 times that in the inter-layer direction.
  • the mixture was mixed and sintered in the atmosphere at 1000 ° C. for 24 hours to form powder again.
  • the resulting powder is pressed, sintered at 1150 ° C for 15 hours, and then grown in a 3 atmosphere oxygen atmosphere to obtain a black single crystal with a length of 7-8mm and a radius of 7mm. It was.
  • composition of the obtained single crystal was confirmed using analysis by ICP (Inductively Coupled Plasma) and EDX (Energy Dispersive X-ray).
  • the single crystal produced as described above was cleaved to obtain a rectangular parallelepiped material layer 22 having a size of 2. Omm X 2. OmmXO.2 mm.
  • A1 which is the second electrode 23, was vapor-deposited on the other surface.
  • the diameter was 30 m (area 7. ⁇ 2 ⁇ m 2 ) and 50 m (area 2.0 X 10 m 2 ) through a metal mask having one circular hole as in Example 1. 100 m (area 7.9 ⁇ 10 3 / ⁇ 2 ) and 500 m (area 2. OX 10 5 m 2 ) (Examples 2-1 to 2-4).
  • a sample was prepared by depositing A1 of the second electrode 23 on the entire surface of the material layer 22 (area 4.0 X 10 6 m 2 ) without using a metal mask (Comparative Example 2-1 ).
  • Table 2 shows that the maximum cooling temperature ⁇ when the upper electrode is cooled by flowing current to each sample having the upper electrode of different diameter, ⁇ obs 0 max
  • thermoelectric conversion device of this example was fabricated by RF magnetron sputtering and liquid phase epitaxy. In this example, a thermoelectric conversion device having the configuration shown in FIG. 2 was produced.
  • the lower electrode to be the first electrode 21 is SrRuO with a thickness of 200 nm, and the material layer 22 is with a thickness of 200 ⁇ m.
  • the upper electrode which is the second electrode 23 has a thickness of lOOOnm
  • thermoelectric conversion device using Ti was fabricated.
  • SCO is a layered oxide with an insulating layer composed of a monolayer of Sr atoms. In comparison, the electrical conductivity in the in-layer direction is about 40 times.
  • X can be adjusted within a range of 0.1 to 0.8 by weighing the raw materials.
  • a (111) plane substrate of SrTiO having a size of 10 mm square and a thickness of 500 m was used.
  • the first electrode 21 (SrRuO 2 ) was fabricated on the entire surface of the substrate (area 1. OX lo m 2 ).
  • the manufacturing conditions of the first electrode 21 are as follows: the substrate temperature is 750 ° C, the gas pressure during growth is 3 Pa, and the atmospheric gas is a mixed gas with a partial pressure ratio of Ar 70% and oxygen 30%.
  • the input power was 100W.
  • the material layer 22 made of SCO is prepared by first depositing a lOOnm-thick template plate using RF magnetron sputtering and then forming a 200 m thick SCO thick film by liquid phase epitaxy. did.
  • the RF magnetron sputtering conditions were as follows: the substrate temperature was 650 ° C, and the gas pressure during growth was 5 Pa.
  • the input power was 60 W in a mixed gas atmosphere with 80% Ar and 20% oxygen.
  • the inside of the sputtering apparatus was placed in a pure oxygen atmosphere of 81 kPa (0.8 atm), and the sample was cooled to room temperature over 5 hours.
  • a sample was immersed in and slowly cooled while rotating to obtain a SCO thick film having a thickness of 200 ⁇ m.
  • X-ray diffraction revealed that the obtained SCO thick film was (001) oriented.
  • the layered structure of the SCO was parallel to the substrate surface (the in-plane direction of each SCO layer was parallel to the substrate surface).
  • the substrate temperature was room temperature
  • the gas pressure during growth was lPa
  • the atmosphere was The gas used was only Ar and the input voltage was 80W.
  • the film was formed through a metal mask having one circular hole, and the diameter of each electrode was 3 ⁇ , 10 7.
  • a total of 4 types of samples such as 9X10 m 2 , 2. OX 10 3 m 2 , 3.1 X10 4 m 2 ) were prepared (Examples 31 to 34).
  • a sample was fabricated by depositing Ti of the second electrode 23 on the entire CCO surface (area 1.0 x 10 8 m 2 ) without using a metal mask (Comparative Example 3— 1).
  • an SrRuO (100) oriented thin film was formed on an SrTiO (100) substrate
  • the upper electrode 1 has a diameter of 3 111, 10 ⁇ m, 50 ⁇ m, 20 as in Examples 3-1 to 3-4.
  • Example 3-1 parallel 7.1 X 10- 8 12.73 63.7 654
  • Example 3-2 parallel 7.9 X 10- 7 7.1 1 35.6 489
  • Example 3-3 parallel 2.0 X 10 "5 3.91 19.6 363
  • Example 3-4 parallel 3.1 X 10— 4 2.26 1 1.3 275 Comparative Example 3-1 Parallel 1.0 0.20 1.0 82 Comparative Example 3-2 Non-oriented 7.1 10 " 8 0.43 2.2 120 Comparative Example 3-3 Non-oriented 7.9 X 10— 7 0.35 1.8 108 Comparative Example 3 -4 Non-oriented 2.0 X 10 " 5 0.30 1.5 100 Comparative Example 3-5 Non-oriented 3.1 X 10" 4 0.25 1.3 92
  • Table 3 shows that the maximum cooling temperature ⁇ when the upper electrode is cooled by passing an electric current through each sample having the upper electrode of different diameter, ⁇ obs 0 mas
  • the SCO Seebeck coefficient Ss measured by the steady-state method was 82 VZK at room temperature. In this example, S was about 8 times better than S.
  • a sample was also prepared for Ca CoO, which has almost the same crystal structure as SCO, and measurement was performed.
  • Example 4 in order to increase the effective area, the material layer 22 and the first layer as shown in FIG.
  • thermoelectric conversion device having a configuration with a plurality of contacts with the two electrodes 23 was produced.
  • thermoelectric conversion device of this example is shown in FIGS. 8A to 8D.
  • a (111) plane substrate of SrTiO having a size of 10 mm square and a thickness of 500 m was used.
  • the first electrode 21 is SrRuO
  • the material layer 22 is Sr CoO (hereinafter referred to as "SCO")
  • the second electrode is SrRuO
  • the first electrode 21 and the material layer 22 are formed on the entire surface of the substrate 81 (area 1. OX lo m 2 ) on the substrate 81, and the conditions described in Example 3 are satisfied. It produced on the same conditions.
  • the thickness of the first electrode 21 was 200 nm, and the thickness of the material layer 22 was 200 ⁇ m.
  • a negative photosensitive polyimide raw material solution was spin-coated, and pre-betaged at 70 ° C for 3 minutes on a hot plate and then at 90 ° C for 3 minutes to volatilize the solvent, and a 10 m thick film Got.
  • the sample thus obtained was exposed to ultraviolet light from a mercury lamp through a photomask, and then developed with a mixed solution of ⁇ -petit-mouth rataton and cyclohexanone, with butyl acetate and cyclohexanone.
  • a pattern shape of the interlayer insulating layer 41 having the contact hole 51 was obtained as shown in FIG.
  • a beta process was held for 30 minutes at 200 ° C and 30 minutes at 350 ° C to create a tapered shape as shown in Fig. 8C.
  • the thickness of the interlayer insulating layer 41 after beta was 6 ⁇ m.
  • the size and arrangement of the contact holes 51 can be freely set according to the pattern of the photomask used.
  • the circular contact hole patterns are equidistant from each other. An array was produced while keeping it.
  • the contact hole 51 has a diameter of 3 ⁇ m at the interface between the material layer 22 and the second electrode 23, and a total of 1000 contact holes of 7.1 ⁇ m 2 in terms of area. did.
  • thermoelectric conversion device As shown in FIG. 8D (Example 4).
  • thermoelectric conversion device of Example 4 fabricated in this manner, a current of 3 A was passed between the first electrode 21 and the second electrode 23 to perform cooling.
  • a seat heater is disposed on the second electrode 23 on the cooling side so that a predetermined temperature difference is maintained, and the power consumption power of the seat heater at this time is also the thermoelectric conversion device of this embodiment.
  • the cooling capacity endothermic amount per unit time
  • Table 4 shows the difference in cooling capacity in Example 4 when the temperature difference during cooling is changed.
  • thermoelectric conversion device of this example By applying a temperature difference between the first electrode 21 and the second electrode 23 to the thermoelectric conversion device of this example, it is possible to extract electric power from between the electrodes.
  • thermoelectric conversion device of this example a heat bath that keeps the temperature at room temperature is attached to the first electrode 21 side, and a seat heater is attached to the second electrode 23 side, giving a temperature difference of 5 ° C.
  • the power generation capacity at that time was about lmW.
  • thermoelectric conversion device can realize a highly efficient device that reduces loss due to heat conduction.
  • the device can be made thinner and finer and can be used as an unprecedented thin cooler or generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 本発明の熱電変換デバイスは、第1電極(21)と、第2電極(23)と、第1電極(21)および第2電極(23)との間に挟まれた層状酸化物(22)と、を有している。第1電極(21)、層状酸化物(22)および第2電極(23)は、この順に配置されて、多層体を形成している。前記層状酸化物(22)は、電気伝導層(11)と電気絶縁層(12)とが交互に配置されて形成されている。層状酸化物(22)のc軸は、第1電極(21)と層状酸化物(22)との間の界面に対して垂直である。第2電極(23)の面積は、第1電極(21)の面積よりも小さい。

Description

明 細 書
熱電変換デバイス、並びにそれを用いた冷却方法および発電方法 技術分野
[0001] 本発明は、熱エネルギーと電気エネルギーとを相互に変換することのできる熱電変 換材料を用いた熱電変換デバイスと、それを用いた冷却方法および発電方法とに関 する。
背景技術
[0002] 熱電変換は、物質に温度勾配を付けたときに起電力が生じるゼーベック効果と、物 質中に電流を流した際に温度勾配が生じるペルチェ効果とを利用した技術である。
[0003] より具体的には、例えば p型半導体と n型半導体といったキャリアの符合が互いに異 なる 2つの物質を、熱的に並列に、かつ、電気的に直列に接続した構成によって、温 度差を印加した場合にはゼーベック効果による熱電発電を、電流を流した場合には ペルチ 効果による熱電冷却を行う技術である。
[0004] 熱電変換を利用した技術は、現状では他の技術に比べて効率が低!、ので、僻地 用電源、宇宙用電源、電子機器などの局所冷却、ワインクーラーなどの、ごく限られ た特殊用途にのみ利用されている。
[0005] 熱電変換デバイスに用いられる熱電変換材料の性能は、性能指数 Z、または、 Zに 絶対温度 Tをかけて無次元化された性能指数 ZTで評価される。
[0006] ZTは、物質のゼーベック係数 S、電気抵抗率 pおよび熱伝導率 κ、を用いて、 ZT
= S2T/ p κで記述される量で、 ZTの値が大きい材料ほど熱電変換材料として優れ て 、ること〖こなる。
[0007] 現在、特殊用途ながらも実用として主に用いられている熱電変換材料は、半導体 の Bi Teである。
2 3
[0008] し力しながら、 Bi Teには、高温での不安定性、毒性、元素が豊富には存在しない
2 3
こと、などの問題がある。
[0009] 層状酸化物の Na CoOが良 ヽ熱電変換性能を示す物質であることが発見されて
2
以来 (特開平 9— 321346号公報 (文献 1)および国際公開第 03Z085748号パンフ レット (文献 2)参照)、より高い熱電変換性能を持つ層状酸ィ匕物の発見を目指し、鋭 意、物質を探索することが行われている。
[0010] 層状酸ィ匕物は、高温空気中でも安定であるなどの利点を持つ。
[0011] また、層状酸化物の大きな特徴として、次元異方性が強いこと、多くの物質は電気 伝導を担う 2次元の電気伝導層と電気絶縁層とからなる層状の結晶構造 (以下、層 状構造という場合がある。)を持つこと、が挙げられる。
[0012] 図 1に、 CoOからなる電気伝導層と、 Naからなる電気絶縁層とが、 1モノレイヤーご
2
とに c軸方向に積層した、 Na CoOの結晶構造を示す。
2
[0013] Na CoOの熱電特性は異方性が強ぐ S丄 cZS || c〜2、 丄 c/ p || c〜0. 025 x 2
程度である。
[0014] ここで、 c軸に対して垂直方向、すなわち層状構造に対して (各層に対して)平行方 向のゼーベック係数と電気抵抗率とをそれぞれ S丄じと p丄 cと表し、 c軸に対して平 行方向、すなわち層状構造に対して (各層に対して)垂直方向のゼーベック係数と電 気抵抗率とをそれぞれ S II c^ p II cと表している。
[0015] すなわち、 Na CoOについては、 ZTで比較した場合、 c軸に対して垂直方向の方
2
力 軸方向よりも特性が良 、と考えられて 、る。
[0016] したがって、従来においては、層状酸ィ匕物の c軸に対して垂直方向、すなわち層構 造に対して平行方向にキャリアまたは熱が流れるように熱電変換デバイスを構成する ことが、効率の面力も有利であるとされてきた。
[0017] 一方、通常の方法で作製される熱電変換材料は、結晶配向性を持たな!、多結晶で ある。したがって、このような多結晶材料を用いて、 c軸に対して垂直方向にのみキヤ リアまたは熱が流れるような構成にすることは、事実上不可能である。
[0018] また、多結晶材料中に多数存在する結晶粒界においてキャリアが散乱され電気抵 抗が増大することも、性能悪化の要因になる。
[0019] このような理由から、熱電変換材料としては、結晶方位の揃った状態のものを作製 する必要がある。結晶方位の揃った熱電変換材料を作製する方法として、例えば薄 膜の場合は、 Al Oの単結晶 C面基板をテンプレートとして用いるなどして結晶配向
2 3
を制御する方法が挙げられる。 [0020] 現状では、 Bi Teや層状酸化物をもってしても、通常のデバイス構成では性能が不
2 3
十分であり、民生用途での本格的な実用化のためにはさらなる性能の向上が必要で ある。
[0021] 一方、材料自体の ZTを向上させる試みとは別に、デバイス構成の改善による効率 向上を目指した試みもある。
[0022] Shakouriらは、放熱側の電極に比べて小面積の冷却側電極を配置した熱電冷却 デノ イスを提案して ヽる(Applied Physics Letters Vol. 85, pp. 2977- 297
9 (2004) (文献 3)参照)。
[0023] しかし、この熱電冷却デバイスに用いられているのは等方的な熱電特性を有する材 料であるため、上記の構成では、材料内での電流の拡散を促進し、ジュール熱の戻 りを抑制する以外の効果は無力つた。したがって、高々数倍程度効率が向上するの みであり、十分な効率を有するデバイスの実現には至って!/ヽな 、。
[0024] 前述の通り、従来の熱電変換デバイスは性能が十分ではなぐ民生用途で一般的 に用いられるに足るだけの十分な効率を得ることができな力つた。
発明の開示
[0025] そこで、本発明は、高効率の熱電変換デバイスと、それを用いた冷却方法および発 電方法とを提供することを目的とする。
[0026] 本発明者らは、実用的な性能を持つ熱電変換デバイス実現のため、層状酸化物の 熱電変換材料を用いたデバイス構成に関して鋭意研究を重ねてきた結果、層状酸 化物の層状構造を挟み込むように、面積の異なる電極を配置した熱電変換デバイス において、熱電特性が従来と比較して大幅に向上するという意外な知見を見出し、こ の知見に基づいて、この熱電効果性能を有効に発揮することが可能な本発明の熱 電変換デバイスの発明に至った。
[0027] 本発明の熱電変換デバイスは、第 1電極と、第 2電極と、前記第 1電極および前記 第 2電極との間に挟まれた層状酸化物と、を有し、前記第 1電極、前記層状酸化物お よび前記第 2電極力この順に配置されて多層体を形成しており、前記層状酸ィ匕物は 、電気伝導層と電気絶縁層とが交互に配置されてなり、前記層状酸化物の c軸は、前 記第 1電極と前記層状酸化物との間の界面に対して垂直であり、前記第 2電極の面 積力 前記第 1電極の面積よりも小さくなるように構成されている。
[0028] なお、本発明において、「電極の面積」とは、特に説明がない限り、電極と層状酸化 物とが形成する界面の面積、すなわち電極と層状酸ィ匕物との接合面積のことである。 また、本発明において、層状酸ィ匕物の c軸が第 1電極と層状酸ィ匕物との間の界面に 対して「垂直」とは、層状酸ィ匕物の c軸と前記界面とのなす角度が、後述する本発明 の特異な効果が得られる程度の角度範囲内にある場合も含む意味である。すなわち 、本発明においては、本発明の特異な効果が得られる場合であれば、それも「垂直」 に含むものであり、例えば、 0° 〜15° の範囲内と考えられる。
[0029] 本発明の熱電変換デバイスによれば、異方的な電気伝導度を有する層状酸化物と 、前記層状酸ィ匕物を挟み込むように配置された面積の異なる電極 (第 1電極および 第 2電極)と、の間における特異な効果により、高い熱電変換特性が得られる。これに より、従来の性能を超える高効率の熱電変換が可能となり、実用的な熱電変換デバ イスを実現できる。
[0030] また、本発明の熱電変換デバイスには、フォトリソグラフィーなどの従来の薄膜素子 形成のプロセスが適用できるので、微細な素子設計および製造が容易となる。すな わち、熱と電気とのエネルギー変換の応用を促進させることができるため、本発明の 工業的価値は高い。
[0031] 本発明の冷却方法は、上記した本発明の熱電変換デバイスを用いる方法であって 、前記第 1電極と前記第 2電極との間に電圧を印加して電流を流すことによって前記 第 1電極と前記第 2電極との間に温度差を生じさせ、前記第 1電極および前記第 2電 極の何れか一方を低温部とする方法である。
[0032] 本発明の発電方法は、上記した本発明の熱電変換デバイスを用いる方法であって 、前記第 1電極と前記第 2電極との間に温度差を印加することによって、前記第 1電 極と前記第 2電極との間に電位差を生じさせる方法である。
図面の簡単な説明
[0033] [図 1]図 1は、本発明の熱電変換デバイスの実施の形態において用いられる層状酸 化物の一例であって、電気伝導層と電気絶縁層とが 1モノレイヤー毎に積層してなる 層状酸ィ匕物の結晶構造を示した図である。 [図 2]図 2は、実施の形態 1における熱電変換デバイスの断面構成を示した図である
[図 3]図 3は、本発明の熱電変換デバイスの実施の形態において用いられる層状酸 化物の他の例であって、電気絶縁層が 4原子層からなる層状酸ィヒ物の結晶構造を示 した図である。
[図 4]図 4Aは、実施の形態 2における熱電変換デバイスの断面構成を示した図であ り、図 4Bは、図 4Aの I I線断面図である。
[図 5]図 5A〜図 5Dは、実施の形態 2における熱電変換デバイスにおいて、コンタクト ホールの形状が異なる熱電変換デバイスの各構成例を示した断面図である。
[図 6]図 6は、実施例 1における熱電変換デバイスに用いられた Bi Sr Co O薄膜の X
2 2 2 y 線回折パターンを示すグラフである。
[図 7]図 7は、実施例 1における熱電変換デバイスにおいて、キャリアの流れと熱の流 れを模式的に表した図である。
[図 8]図 8A〜図 8Dは、実施例 4における熱電変換デバイスの製造工程を示した断 面図である。
発明を実施するための最良の形態
[0034] 以下、本発明の実施の形態について、図面を参照しながら説明する。
[0035] (実施の形態 1)
図 2は、本発明の実施の形態 1における熱電変換デバイスの構成を示した断面図 である。
[0036] 図 2に示す本実施の形態の熱電変換デバイスは、第 1電極 21、材料層 22、第 2電 極 23がこの順に配置された多層体 (積層体)によって形成されている。材料層 22は 層状の結晶構造を有する層状酸化物によって形成されており、その層状構造を挟む ように (その層状構造を層に平行な面で挟むように)第 1電極 21および第 2電極 23が 配置されている。
[0037] 以降、特に説明が無い限り、「電極の面積」と記載した場合、電極と材料層 22とが 形成する界面の面積、すなわち電極と材料層 22との接合面積を表すこととする。
[0038] 本実施の形態の熱電変換デバイスでは、第 1電極 21の面積に比較して第 2電極 2 3の面積が小さ 、ことを特徴とする。
[0039] 大きな熱電変換効果を得るためには、第 1電極 21の面積が第 2電極 23の面積の 2 0倍以上であることが好ましい。言い換えると、第 1電極 21と第 2電極 23の面積比(( 第 2電極の面積) Z (第 1電極の面積))は、 0. 05以下であることが好ましい。より好ま しい面積比は、 2. 0 X 10— 3以下であり、 5. 0 X 10— 4以下であることがさらにより好まし い。また、第 1電極 21と第 2電極 23の面積比は、 1. 0 X 10— 5以上が好ましい。
[0040] 層状の結晶構造を持つ熱電変換材料には層状酸ィ匕物などがあるが、結晶学的に はこれらの物質の結晶の層間方向、すなわち層に対してほぼ垂直な方向を c軸方向 と呼んでいる。
[0041] 本実施の形態の熱電変換デバイスでは、材料層 22は、薄膜または単結晶で形成 されている。薄膜の場合は、 c軸配向した薄膜または単結晶ェピタキシャル薄膜であ る。
[0042] 前述のいずれの場合も、結晶の c軸が、第 2電極 23が配置される材料層 22の端面 に対してほぼ垂直になるような結晶配向をとる。
[0043] 図 2に示したように、第 1電極 21および第 2電極 23は、材料層 22の層状構造を挟 むように形成され、第 1電極 21と第 2電極 23との間に電圧を印加した際、材料層 22 の結晶の c軸方向に平行、すなわち層構造に対して垂直方向に電流が流れるように なっている。
[0044] この構成は、 c軸に対して垂直方向に電流を流す方が効率が良いと考えられてきた 通常の概念とは異なる。
[0045] 第 1電極 21は電気伝導の良い材料であれば特に限定されるものでないが、材料層
22が薄膜の場合は、材料層 22が c軸配向成長もしくは単結晶状にェピタキシャル成 長する基点となるような材料を用いるのが好ましい。
[0046] 具体的には、結晶配向した Pt、 Ti、 Au、 Cr、 Ni、 Ir、 Ruなどの金属、 TiN、 IrO、
2
RuO、 SrRuO、 ITO (スズ添カ卩酸化インジウム)などの窒化物または酸化物が好適
2 3
に用いられる。
[0047] 第 2電極 23は電気伝導の良 、材料であれば特に限定されな 、。具体的には、 Pt、 Au、 Ag、 Cu、 Al、 Ti、 Cr、 Wなどの金属または TiN、 IrO、 RuO、 SrRuO、 ITO などの窒化物または酸ィ匕物が好適に用いられる。
[0048] 材料層 22は、層状の結晶構造を持ち、かつ、結晶中の方位によって電気伝導度が 異なる層状酸ィ匕物である。この層状酸化物は、空気中で安定である点で、半導体な どの他の熱電変換材料と比較して有利である。
[0049] この中で熱電変換特性に優れて ヽる材料は、例えば図 1に示したような層状酸ィ匕 物である。この層状酸ィ匕物は、電気伝導層 11と電気絶縁層 12とが交互に積層し、電 気伝導層 11が CoO八面体によって構成される結晶構造であり、ぺロブスカイト型の
2
他に特に良く知られている結晶構造は、 CoO八面体が互いに稜を共有しながら層
2
を形成する、いわゆる Cdl型構造力 成る結晶構造である。
2
[0050] Na CoOをはじめとする Cdl型構造を有する層状酸化物は、他の酸化物と比較し
2 2
て熱電変換特性が高ぐ本実施の形態の熱電変換デバイスを構成するのに適してい る。
[0051] ここで、電気絶縁層 12の各層は、 1層以上の原子層または酸ィ匕物の層によって、 互いに隔てられている。
[0052] より具体的には、電気絶縁層 12として図 3に示したような 4層の岩塩構造 (4原子層 の岩塩型絶縁層)である Sr Bi Oが挿入された Bi Sr Co Oや、結晶の安定性を強
2 2 4 2 2 2 y
化するために Biの一部を Pbで置き換えた Bi Pb Sr Co Oなどを挙げることができ
2 2 2
る。
[0053] ここで、 Xは材料が安定に作製できる範囲であれば良ぐ具体的には 0≤x≤0. 5で ある。
[0054] 酸素の組成は化学量論比では y=8となるが、作製条件などにより不定比性が存在 することが考えられることと、酸素量の測定が困難であること、などから、 yは 7. 5≤y ≤8. 5の範囲にあると考えられる。
[0055] この電気絶縁層 12は、 3層の岩塩構造 (3原子層の岩塩型絶縁層)をとることも可能 である。その場合の層状酸化物の組成式は、 ( (Ca Sr ) Bi ) Co O (0≤xl≤
1-xl xl l-x2 x2 3 4 y
1、 0≤x2≤0. 3、 8. 5≤y≤9. 5)となる。
[0056] xl、 x2および yの範囲は、前述の Bi Pb Sr Co Oと同様の理由力 規定される。
2 2 2
[0057] さらに、電気絶縁層 12は、図 1のように 1層(1原子層)であることも可能である。この ときの材料層 22の化学式は、 A CoOと表される。
2
[0058] ここで、 A元素は、 Na、 K、 Liなどのアルカリ金属、 Ca、 Sr、 Baなどのアルカリ土類 金属のうち少なくとも 1種類の元素力もなる。
[0059] なお、 A元素の一部を、 Hg、 Tl、 Pb、 Biに置換してもよ!/、。
[0060] 電気絶縁層 12は、 A元素によって構成される。 A元素はアルカリ金属やアルカリ土 類金属などの金属元素力もなる力 これらの元素は結晶中の各サイトを 100x%の割 合でランダムに占有して!/、るためにキャリアの散乱が頻繁に起こり、たとえ単体で金 属であるものを用いても電気絶縁的な性質を持つ。
[0061] なお、 Xについては、 0. 1≤χ≤0. 8の範囲で、ある程度人為的に調整可能である
[0062] 電気絶縁層 12に 0 (酸素)が含まれる場合、この 0 (酸素)に代えて、 S (ィォゥ)や S e (セレン)を用いることも考えられる。
[0063] 上記の層状酸化物において、 Coの一部を Ni、 Ti、 Mn、 Fe、 Rhのうち少なくとも 1 種類の元素で置換してもよ 、。
[0064] なお、層状酸ィ匕物における酸素の量は、化学式通りであることが好ましい。しかし、 以下各々の化学式を参照して説明するが、実際に本実施の形態に係る熱電変換デ バイスを作製する際の作製方法、作製条件などにより、厳密に層状酸化物における 酸素の量をィ匕学式通りにすることは困難であり、実際には ±0. 5程度の酸素不定比 性が存在することが想定される。
[0065] この層状酸化物は、一層力^ないし 3モノレイヤーの MOからなる(Mは金属であり
2
、例えば、 Mn、 Coなどを含む遷移金属が挙げられる。)電気伝導層 11と、一層が 1 な!、し 4モノレイヤー力もなる電気絶縁層 12との交互積層力もなる。
[0066] 4モノレイヤー以上の厚みの電気伝導層 11を有する材料層 22や、 5モノレイヤー以 上の厚みの電気絶縁層 12を有する材料層 22を作製することは、技術的に困難であ る。
[0067] この構成によれば、キャリアがホールである場合、図 2に示す熱電変換デバイスに おいて第 2電極 23から第 1電極 21へ電流を流すことで、材料層 22の内部に電流が 流れ、それに付随して熱が運ばれることにより、第 2電極 23の側で吸熱、第 1電極 21 の側で発熱現象が起こる。
[0068] 言うまでもないが、電流の流す向きを逆にすれば、第 2電極 23の側で発熱、第 1電 極 21の側で吸熱現象が起こる。
[0069] 一方、キャリアが電子である場合、図 2に示す熱電変換デバイスにおいて第 2電極 2
3から第 1電極 21へ電流を流すことで、第 2電極 23の側で発熱、第 1電極 21の側で 吸熱現象が起こる。
[0070] 電流の流す向きを逆にすれば第 2電極 23の側で吸熱、第 1電極 21の側で発熱現 象; 0ゝ起こる。
[0071] 上記それぞれの場合において、吸熱側の電極が低温部となる。
[0072] 従来、材料層 22の c軸方向の電気抵抗は大きぐまたゼーベック係数は小さいので 、熱電変換性能 ZTは小さくて使用に足るものではな 、と考えられて ヽた。
[0073] 詳細は後述する実施例で述べるが、本発明者らは様々な条件を検討し最適化する ことにより、層状構造および異方的な熱電特性を有する様々な種類の材料層 22と電 極界面との関係、電極の大きさ、および印加する外場の大きさと熱電変換性能の関 係を詳細に調べていく過程で、第 1電極 21の面積を第 2電極 22の面積よりも大きく することにより、本発明の熱電変換デバイスにおいて予想外に大きな熱電変換性能 が得られることを見出した。
[0074] この理由として、一つは文献 3に開示されたデバイスと同様の電流の拡散現象によ るジュール熱の戻りの抑制によるものが考えられる。しかし、本発明の熱電変換デバ イスが実現する熱電変換性能は析違いに大きぐまた文献 3に開示されたデバイスと は異なる振る舞 、を示して 、たので、単なるジュール熱の戻りが抑制されて 、ると 、う 解釈だけでは理解できな 、ものであった。
[0075] 材料層 22の層方向に平行な 1対の端面に面積が互いに異なる第 1電極 21および 第 2電極 23を配置し、これら第 1電極 21と第 2電極 23とで材料層 22を挟み込むよう にして熱電変換デバイスを作製し、これらの第 1電極 21および第 2電極 23との間に 電流のような外場をカ卩えた場合、第 1電極 21の面積と第 2電極 23の面積とが同じで ある場合と比較して、大きな熱電変換性能が確認された。この効果を利用して、本実 施の形態の熱電変換デバイスを冷却素子として機能させることが可能である。すなわ ち、第 1電極 21と第 2電極 23との間に電圧を印加して電流を流して、第 1電極 21お よび第 2電極 23の何れか一方を低温部とすることによって、本実施の形態の熱電変 換デバイスを用いた高効率の冷却方法を実現できる。
[0076] また、同様の構成において、第 1電極 21と第 2電極 23との間に温度差を設けること により、材料層 22内で熱エネルギーを持ったキャリアがその温度差を打ち消すように 第 1電極 21および第 2電極 23の間を移動することから、結果として電流が流れる。す なわち、第 1電極 21および第 2電極 23間に温度差が印加されることによって、本実 施の形態の熱電変換デバイスが電力発生素子として機能する。
[0077] この効果を利用し、本デバイス力ゝら第 1電極 21および第 2電極 23を介して電力を取 り出すことが可能である。すなわち、第 1電極 21と第 2電極 23との間に温度差を印加 することによって、本実施の形態の熱電変換デバイスを用いた高効率の発電方法を 実現できる。
[0078] 以上のように、本発明によれば、熱電発電デバイスとしての高!ヽ効果を得ることがで きる。
[0079] 本実施の形態の熱電変換デバイスにおける材料層 22は、結晶の層の向き、すなわ ち結晶の c軸の向きが揃った形態であることが要求される。
[0080] より具体的には、単結晶ゃェピタキシャル薄膜であることが望ましい。層状物質の 単結晶は、フローティングゾーン法やフラックス法など、単結晶作製に一般的に用い られる手法によって合成される。
[0081] 本発明の熱電変換デバイスを、スパッタ法などの薄膜プロセスを利用して作製する 場合、デバイスの構造を支持するための基体を使用することによってプロセスが容易 になる。
[0082] この場合、まず基体上に第 1電極 21を形成し、その後材料層 22、第 2電極 23の順 に成膜を行う。
[0083] 小面積の第 2電極 23のパターン作製には、メタルマスクを介した電極材料の気相 成長またはクリームはんだ塗布や、フォトレジストを用いたリフトオフ、イオンビームェ ツチングまたは電解めつきなどの様々な方法が用いられる。
[0084] 第 1電極 21の作製時には、結晶成長を促すために使用する基体の材料を適切に 選択することが好ましい。また、材料層 22においては、成膜時の加熱温度が重要で ある。
[0085] スパッタ法を用いる場合の基板温度は、層状酸ィ匕物では 650°Cから 800°Cの範囲 であることが好ましい。
[0086] これらの条件を満たして 、れば、作製方法は特に限定されな 、ので、スパッタ法、 蒸着法、レーザーアブレーシヨン法、化学的気相成長法などの気相成長によるもの、 あるいは電着などの液相や固相からの成長など、種々の薄膜形成方法が使用可能 である。
[0087] 基体の材料としては、 Al O、 MgO、 SrTiO、 LaAlO、 NdGaO、 YAIO、 LaSr
2 3 3 3 3 3
GaO、 LaSrAlO、 MgA120、 ZnO、 YSZ (イットリウム安定化ジルコユア)、 ZrO、
4 4 4 2
TiO (ルチルもしくはアナターゼ)、 Fe O、 Cr O、 Si、 GaAsなどの単結晶材料が好
2 2 3 2 3
ましい。
[0088] 液相ェピタキシャルプロセスなどで材料層 22の厚膜を作製する場合、単結晶材料 の基体表面力も直接成長を行うこともできるが、より結晶性の良い厚膜を得るために は、結晶性薄膜の初期成長層をスパッタなどの方法であらかじめ形成した後に、厚 膜形成を行うのが好ましい。液相プロセスとしては、例えば Na CoO
0.5 2薄膜の場合に は、 NaClをフラックスとして Co Oおよび Na COの粉体を混ぜて 1000°Cで溶かし
3 4 2 3
た融液中に薄膜を基体ごと浸し、 900°Cにまで徐々に冷却することにより、 1mm程度 の Na CoO厚膜を構成することが可能である。
0.5 2
[0089] 本実施の形態における熱電変換デバイスを冷却用途に用いる場合に流す電流は 、実効的な熱の移動を伴わずにジュール熱の発生による損失だけに寄与する交流 ではなぐ直流であることが好ましい。また、定電流だけではなぐ直流のパルス電流 も組み合わせることで、所望の冷却性能に応じた効率の良 、駆動を行うことができる
[0090] 材料層 22は、基板面 (すなわち、第 1電極 21の上面)と平行な面で材料層 22を切 断した際に現れる断面の面積 (以下、「断面積」という。)が、材料層 22の高さ (すなわ ち、厚み)に拘わらず、一定であることが好ましい。
[0091] 材料層 22の厚みは、例えば 0. 1 μ m〜1000 μ mの範囲で設定することができ、 好ましくは 50 μ m〜200 μ mの範囲である。
[0092] (実施の形態 2)
図 4Aは、本発明の実施の形態 2における熱電変換デバイスの構成を示した断面図 である。図 4Bは、図 4Aで指示した箇所での切断面 (I—I線断面)を示した図である。 なお、図 4Bにおいて、第 2電極 23のハッチングを省略する。
[0093] 本実施の形態の熱電変換デバイスでは、材料層 22と第 2電極 23とが複数領域で 接している。言い換えれば、材料層 22上に複数の第 2電極 23が配置されており、か つ、各々の第 2電極 23が互いに電気的に接続されて形成されている。このような構 成によって、本実施の形態の熱電変換デバイスは、高い熱電特性を維持しながら、 実効的な面積を大きくすることができる。なお、説明の便宜上、電気的に互いに接続 された複数の第 2電極 23を、まとめて第 2電極 23と 、うことがある。
[0094] 上記のような構成は、まず材料層 22上に小面積のコンタクトホールパターンを複数 有する層間絶縁層 41を形成し、その上に第 2電極 23を作製することによって実現で きる。第 2電極 23は、層間絶縁層 41に形成されたコンタクトホールを介して、材料層 22と接している。これにより、高い熱電特性と広い実効面積を有するデバイスが実現 可能である。
[0095] 本実施の形態における第 1電極 21、材料層 22および第 2電極 23の作製には、実 施の形態 1に記載した材料や作製方法が適用可能である。また、第 2電極 23の面積 (材料層 23と 1つの第 2電極 23との接触面積)と第 1電極 21の面積との関係(面積比 など)についても、実施の形態 1の場合と同様の関係を適用できる。
[0096] さらに、第 2電極 23の作製には、スパッタ法ゃ蒸着法などの気相成長による方法の 他に、めっきやクリームはんだ塗布などの簡便な方法を用いることができる。
[0097] 層間絶縁層 41としては、電気的な絶縁性を持つ材料であれば特に限定されるもの でないが、熱伝導率が低い材料を用いることが好ましい。このような材料で層間絶縁 層 41を形成することによって、材料層 22と第 2電極 23との接点近傍においてのみ効 率的に温度差が生じるので、有利である。
[0098] 熱伝導率が低い絶縁材料としては、例えば、多孔質シリカなどの無機多孔体や有 機樹脂が使用可能である。 [0099] 有機樹脂のうち、特にフォトレジストや感光性ポリイミドを用いると、一般的なフォトリ ソグラフィ一の手法で簡便にパターン形成ができるので有利である。
[0100] 多くのネガ型フォトレジストや感光性ポリイミドのような耐溶剤性の材料を用いた場 合、後で溶剤を使用するプロセスを経ても構造を維持できるので好まし 、。
[0101] 第 2電極 23の作製に、蒸着など飛来粒子の直進性が高いプロセスを用いた場合、 コンタクトホールの側壁における第 2電極 23の膜のカバレッジが良くない場合がある 。この場合、図 5Aに示すようにコンタクトホール 51の側壁が切り立っていると、良好な 導電性が得られな 、可能性がある。
[0102] したがって、直進性が高いプロセスを用いる場合は、図 5Bに示すように、側壁が緩 やかなテーパー形状を有するコンタクトホール 52を形成することが好ましい。
[0103] 図 5Bに示すようなテーパー形状を有するコンタクトホール 52を作製する方法は様 々なものがあるが、例えば層間絶縁層 41にネガ型感光性ポリイミドを用いる場合、前 述のようなプロセスでコンタクトホールパターンを形成した後、 Arや Nなど不活性ガ
2
ス雰囲気下において 200〜350°Cで 30〜60分程度ベータすることで、側壁がテー パー形状のコンタクトホール 52を形成することができる。
[0104] 第 2電極 23は、図 5Aや図 5Bに示したように、層間絶縁層 41の表面上に薄膜状に 形成される構成の他に、図 5Cや図 5Dのような厚膜とすることもできる。この場合、表 面を CMP (Chemical Mechanical Polishing)などの方法で平滑化することによ つて、本デバイスの上にさらにセンサーなどの別の機能素子を形成し、全体としてモ ノリシックなデバイスを作製することができる。
実施例
[0105] 本発明について、実施例を用いてより具体的に説明する。
[0106] (実施例 1)
RFマグネトロンスパッタにより、 4層の岩塩構造力 なる絶縁層を有する Bi Sr Co
2 2 2
O (以下、「BSCO」と表記する。)を用いて、本実施例の熱電変換デバイスを作製し y
た。なお、本実施例では、図 2に示した構成の熱電変換デバイスを作製した。
[0107] BSCOは、層状酸ィ匕物の中でも比較的異方性が大きぐ層間方向(c軸方向)に比 ベて層内方向の電気伝導度は約 10000倍である。 [0108] 第 1電極 21となる下部電極に厚さ 200nmの Pt、材料層 22に厚さ 5 μ mの BSCO、 第 2電極 23となる上部電極に厚さ lOOOnmの Auを用いた。
[0109] BSCOにおける yの値は、理想的には y= 8である。し力し、作製条件によっては士
0. 5程度の酸素不定比性を生じるため、 yは、 7. 5≤y≤8. 5の範囲内にあると考え られる。
[0110] 基板には、 10mm角、厚さ 500 μ mのサファイア Al Oの C面基板を使用した。
2 3
[0111] 第 1電極 21 (Pt)は基板の表面全体 (面積 1. O X lo m2)に作製した。第 1電極 2 1の作製条件は、基板温度を 650°C、成長時のガス圧を lPaとし、雰囲気ガスは Ar のみを使用し、投入電力を 80Wとした。 X線回折の測定結果から、 Ptは(111)配向 でェピタキシャル成長して 、ることがわかった。
[0112] BSCOカゝらなる材料層 22の作製では、基板温度を 650°C、成長時のガス圧を 5Pa とし、分圧比で Arが 80%、 Oが 20%の混合ガス雰囲気下で投入電力を 60Wとした
2
[0113] 成膜完了後、スパッタ装置内を 81kPa (0. 8atm)の純酸素雰囲気にし、 5時間か けて試料を室温に冷やした。
[0114] 図 6に示した X線回折の測定結果から、 BSCOは(001)配向でェピタキシャル成長 した単結晶薄膜であることがわ力つた。すなわち、基板面に対して BSCOの層状構 造が平行 (BSCOの各層の面内方向が基板面に対して平行)になつて ヽた。
[0115] 第 2電極 23 (Au)の作製では、基板温度を室温、成長時のガス圧を lPaとし、雰囲 気ガスは Arのみを使用し、投入電圧を 80Wとした。
[0116] この際、円形の穴が一つ開いたメタルマスクを介して成膜を行い、電極の直径がそ れぞれ 30 m、 50 m、 100 μ m、 500 μ m、面積に換算するとそれぞれ 7. 1 X 10
Figure imgf000015_0001
2. O X 103 μ m2、 7. 9 X 103 μ 2. O X 105 μ m2となるような試料を合計 4 種類作製した (実施例 1— 1〜1— 4)。
[0117] 比較例として、メタルマスクを使わずに第 2電極 23である Auを BSCOの表面全面( 面積 1. 0 X 108 m2)に成膜した試料を作製した (比較例 1— 1)。
[0118] さらに別の比較例として、 Al Oの A面基板上に Pt ( 100)配向薄膜を形成し、その
2 3
上に BSCO薄膜を成長させた。 [0119] X線回折の測定結果より、 BSCOは(100)配向薄膜であることがわかった。
[0120] すなわち、基板面に対して BSCOの層状構造が垂直(BSCOの各層の面内方向が 基板面に対して垂直)になっていた(国際公開第 05Z083808号パンフレットも参照
)o
[0121] 上部電極(第 2電極 23)の Auは、実施例 1 1〜1 4と同様に、直径が 30 m、 5 0 m、 100 m、 500 μ m、面積に換算するとそれぞれ 7. 1 X 102
Figure imgf000016_0001
2.0X10 3 m2、 7. 9Χ103^πι2, 2. OX 105 m2のものを作製した(比較例 1— 2〜1— 5)。
[0122] こうして作製した実施例 1— 1〜1— 4および比較例 1— 1〜1— 5の試料にっ 、て、 第 1電極 21と第 2電極 23との間に 0.01mA〜100mAの範囲で定電流を流し、第 2 電極 23を冷却した際の冷却温度の測定を行った。
[0123] 結果を表 1に示した。
[0124] [表 1]
Figure imgf000016_0002
[0125] 表 1には、異なる直径の第 2電極 23を有する各々の試料に対して電流を流して第 2 電極 23を冷却した際の最大の冷却温度 Δ T 、材料本来の性能指数 Zを用いて Δ obs 0
T =ZT2/2の式力 算出される冷却温度の上限 ΔΤ との比 ΔΤ /ΔΤ 、 Δ max 0 max obs max
T カゝら換算される実効的なゼーベック係数 S も示した。
obs obs
[0126] 表 1から、第 2電極 23の大きさが小さいほど ΔΤ の値が大きぐそれに伴いゼ一べ obs
ック係数 S の値も大きくなる傾向にあることがわ力つた。 [0127] しかし、第 2電極 23のサイズを本実施例よりもさらに小さくしていくと、電極間の抵抗 が大きくなるために、あるサイズを境にして生じる温度差が減少していくと思われる。
[0128] すなわち、第 2電極 23のサイズには効率が最大となる最適値が存在すると推察さ れる。
[0129] 第 2電極 23の最適なサイズは、材料層 22の膜厚、電気抵抗率や熱伝導率などに 依存するので一概には言えないが、本実施例で材料層 22として用いた BSCOにお いては c軸方向の電気抵抗率が大きいので、少なくともその直径が: L m以上である 場合が最適であると考えられる。
[0130] 定常法、すなわち試料にわず力な温度差をつけることにより生じる起電力の大きさ 力 ゼーベック係数を算出する方法で BSCOのゼーベック係数 Ssを見積もると、室 温においてはおよそ 140 μ VZKであった。
[0131] 本実施例の S は、 Ssに比べて最大で約 15. 6倍向上していた (実施例 1— 1)。
obs
[0132] 一般的に、熱電変換性能指数 ZTはゼーベック係数の 2乗の項を持つので、本実 施例においては、 ZTに換算すると、最大でおよそ 240倍特性が向上していることに なる。
[0133] 一方、比較例 1 1〜1 5における S は140〜168 ¥ :《:でぁり、定常法での obs
値 Ssとほぼ同様の値であった。
[0134] これらの結果から、 BSCOに代表される材料層 22 (層状酸ィ匕物)の c軸は、第 1電極 21と層状酸化物との間の界面に対して垂直であり(実施例 1 1〜 1 4と比較例 1 2〜1— 5との間の比較)、かつ、第 1電極 21と材料層 22との界面の面積と、第 2電極 23と材料層 22との界面の面積とが異なる時のみ(実施例 1 1〜1 4と比較例 1 1との間の比較)に、非常に高い熱電変換特性が実現することがわ力つた。
[0135] また、文献 3で議論されているような電流の拡散による効果だけを勘案した場合の S は、比較例 (比較例 1—2〜 1— 5)で観測された程度か、高々数倍程度であると考 obs
えられ、本実施例(実施例 1 1〜1—4)の S には及ばなかった。
ODS
[0136] さらに、本実施例の熱電変換デバイスを用いて冷却を行った際に発生した温度差
ΔΤ 1S 時間の経過によってどのように変化していくかを調べた。
obs
[0137] 実施例 1 1の試料に定電流を流して駆動した場合には、発生した温度差 ΔΤ が 時間とともに徐々に緩和していき、 1分経過した後には ΔΤ の最大値と比較して半 obs
分程度になっていた。
[0138] これに対し、定電流で駆動した時の 1. 5倍の大きさの直流パルスを印加して冷却を 行うと、 ΔΤ は定電流で駆動した時と同程度になり、し力も生じた温度差 ΔΤ は 1 obs obs 分経過した後も ΔΤ の最大値と比べて 70%程度に保たれていた。
obs
[0139] この際入力した直流パルスは、幅 lmsecの矩形形状で、 10msecの間隔で繰り返 すパルスであった。
[0140] さらに、直流パルスの形状を、立ち上がりのみが急峻な鋸型にすると、 1分経過した 後の ΔΤ は最大値と比べて 80%程度にまで向上した。
obs
[0141] 直流ノ ルスによって ΔΤ の緩和が抑えられていたのは、定電流で駆動した場合よ obs
りも発生するジュール熱の総量が少ないからだと考えられる。
[0142] (実施例 2)
材料層 22に Ca Co O (y=8. 5〜9. 5、以下「CCO」と表記する。)の組成式で記
3 4 y
載される層状酸ィ匕物の単結晶を用いて、本実施例の熱電変換デバイスを作製した。 なお、本実施例では、図 2に示した構成の熱電変換デバイスを作製した。
[0143] CCOは、 3層の岩塩構造からなる絶縁層を有する層状酸化物で、層間方向に比べ て層内方向の電気伝導度は約 100倍である。
[0144] CCOの単結晶はフローティングゾーン法で作製した。 CaOと Co Oを前記組成通り
3 4
に秤量した後に混合し、 1000°Cで 24時間大気中において焼結して再び紛体状にし た。出来た粉末をプレスし、 1150°Cで 15時間保ち焼結した後に 3気圧の酸素雰囲 気中で結晶成長させると、黒い光沢をもつ長さ 7〜8mm、半径 7mmの単結晶が得ら れた。
[0145] 出来た物質の結晶構造は X線回折で確認した。
[0146] 得られた単結晶の組成は、 ICP (Inductively Coupled Plasma)と EDX(Ener gy Dispersive X— ray)による分析を用いて確認した。
[0147] 実際の単結晶における酸素の量は糸且成式上の理想どおり出来て ヽれば y= 9とな るところであるが、酸素の量は ICPや EDXでも同定が困難であるため、 yを 8. 5以上
9. 5以下としている。 [0148] 以上のようにして作製した単結晶を劈開して 2. Omm X 2. OmmXO.2mmのサイ ズの直方体状の材料層 22を得た。
[0149] このとき 2.0mmX2. Ommの面の表面は、ラウエ回折により CCOの結晶構造の層 に対して平行な (001)面を有して 、ることを確認した。
[0150] 2.0mmX2. Ommの一対の表面を平坦ィ匕した後、一方の面の全体(面積 4. OX lO m2)に第 1電極 21である Agをマグネトロンスパッタ法により形成した。
[0151] 他方の面には第 2電極 23である A1を蒸着した。
[0152] この時、実施例 1と同様に円形の穴が一つ開いたメタルマスクを介して直径が 30 m (面積 7. ΙΧΙΟ2^ m2)、 50 m (面積 2.0 X 10 m2)、 100 m (面積 7.9X10 3/ζπι2)、 500 m (面積 2. OX 105 m2)となるようにした(実施例 2— 1〜2— 4)。
[0153] 比較例として、メタルマスクを使わずに第 2電極 23の A1を材料層 22の表面全面(面 積 4.0 X 106 m2)に成膜した試料を作製した (比較例 2— 1)。
[0154] さらに別の比較例として、 CCOの単結晶を 2.0mmX2. OmmXO.2mmの直方 体に切り出したもののうち、 2.0mmX2. Ommの面が CCOの(100)面となっている ような試料を用い、それ以外は実施例 2— 1〜2—4と同様の構成となるような比較例 2— 2〜2— 5を作製した。
[0155] こうして作製した実施例 2— 1〜2— 4および比較例 2— 1〜2— 5の試料について、 第 1電極 21と第 2電極 23との間に 0.01mA〜100mAの範囲で電流を流し、発生 する温度差の測定を行った。
[0156] 結果を表 2に示す。
[0157] [表 2]
第 1電極 21と第 2電極 23
層構造に対する との面積比 厶 TobsZ
AT。bs(K) °obs 試料 電極界面の向き (第 2電極の面積/ △Tmax ( V/K) 第 1電極の面積)
実施例 2-1 平行 1.775 X 10—4 12.0 45.9 814 実施例 2-2 平行 5.0 X 10"4 9.21 35.3 713 実施例 2 - 3 平行 1.975 X 10"3 6.09 23.3 579 実施例 2-4 平行 0.05 1.51 5.8 289 比較例 2-1 平行 1.0 0.26 1.0 120 比較例 2-2 垂直 1.775 X 10—4 0.43 1.7 154 比較例 2-3 垂直 5.0 X 10"4 0.38 1.5 145 比較例 2-4 垂直 1.975 X 10"3 0.32 1.2 133 比較例 2-5 垂直 0.05 0.28 1.1 125
[0158] 表 2には、異なる直径の上部電極を有する各々の試料に対して電流を流して上部 電極を冷却した際の最大の冷却温度 ΔΤ 、材料本来の性能指数 Zを用いて ΔΤ obs 0 max
=Z T2/2の式力 算出される冷却温度の上限 ATmaxとの比 ΔΤ / ΔΤ 、 ΔΤ
0 obs max o 力 換算される実効的なゼーベック係数 S も示して 、る。
bs obs
[0159] 定常法で CCOのゼーベック係数 Ssを測定すると、室温においてはおよそ 120 V ZKであった。本実施例の S は Ssに比べて約 6. 8倍向上していた。
obs
[0160] 一方、比較例 2—1〜2— 5における S は120〜154 ¥ :《:でぁり、定常法での obs
値 Ssとほぼ同様の値であった。
[0161] CCOとほぼ同一の結晶構造を持つ Sr Co O、 CCOと Sr Co Oについてそれぞ
3 4 9 3 4 9
れ Biを置換した Ca Bi Co Oと Sr Bi Co O、そして Ca Sr Bi Co Oについ
2.7 0.3 4 9 2.7 0.3 4 9 2 0.7 0.3 4 9 ても試料を作製し、測定を行ったところ、いずれも CCOと同様の傾向を示した。
[0162] (実施例 3)
RFマグネトロンスパッタと液相エピタキシーにより、本実施例の熱電変換デバイスを 作製した。なお、本実施例では、図 2に示した構成の熱電変換デバイスを作製した。
[0163] 第 1電極 21となる下部電極に厚さ 200nmの SrRuO、材料層 22に厚さ 200 μ mの
3
Sr CoO (以下、 SCOと表記する。)、第 2電極 23となる上部電極に厚さ lOOOnmの
Tiを用いた熱電変換デバイスを作製した。
[0164] SCOは Sr原子のモノレイヤーからなる絶縁層を有する層状酸ィ匕物で、層間方向に 比べて層内方向の電気伝導度は約 40倍である。
[0165] SCOの酸素の量は理想的には y= 2であるところ、作製条件によっては ±0. 5程度 の酸素不定比性を生じるため、 yは 1. 5≤y≤2. 5の範囲内にあると考えられる。
[0166] Xは、原料の秤量によって 0. 1〜0. 8の範囲内で調整可能である。
[0167] 本実施例では、 Xがおよそ 0. 3の SCOを作製した。
[0168] 基板には、 10mm角、厚さ 500 mの SrTiOの(111)面基板を使用した。
3
[0169] 第 1電極 21 (SrRuO )は、基板の表面全体 (面積 1. OX lo m2)に作製した。
3
[0170] 第 1電極 21の作製条件は基板温度を 750°C、成長時のガス圧を 3Paとし、雰囲気 ガスは、分圧比で Arが 70%、酸素が 30%の混合ガスを使用し、投入電力を 100W とした。
[0171] X線回折の測定結果から、 SrRuOは(111)配向でェピタキシャル成長しているこ
3
とがわかった。
[0172] SCOから成る材料層 22は、まず RFマグネトロンスパッタを用いて厚さ lOOnmのテ ンプレート層を堆積した後に、液相エピタキシーにより厚さ 200 mの SCO厚膜を成 膜することによって作製した。
[0173] RFマグネトロンスパッタの条件は、基板温度を 650°C、成長時のガス圧を 5Paとし、
Arが 80%、酸素が 20%の混合ガス雰囲気下で投入電力を 60Wとした。
[0174] 成膜完了後、スパッタ装置内を 81kPa (0. 8atm)の純酸素雰囲気にし、 5時間か けて試料を室温に冷やした。
[0175] X線回折の測定結果から、 SCOは(001)配向でェピタキシャル成長した単結晶薄 膜であることがわ力 た。
[0176] この後に、 SrOと Co Oの原料粉末を KC1からなるフラックス中に溶力した融液中
2 3 4
に試料を浸積し、これを回転させながら徐冷することによって、厚さ 200 μ mの SCO 厚膜を得た。
[0177] X線回折により、得られた SCO厚膜は (001)配向していることがわ力つた。すなわ ち、基板面に対して SCOの層状構造は平行 (SCOの各層の面内方向が基板面に 対して平行)になっていた。
[0178] 第 2電極 23 (Ti)の作製では、基板温度を室温、成長時のガス圧を lPaとし、雰囲 気ガスは Arのみを使用し、投入電圧を 80Wとした。
[0179] この際、円形の穴が一つ空いたメタルマスクを介して成膜を行い、電極の直径がそ れぞれ 3 πι、 10
Figure imgf000022_0001
7. 9X10 m2、 2. OX 103 m2、 3. 1X104 m2)であるような試料を合計 4種類作製した (実施例 3 1〜3 4)。
[0180] また、比較例として、メタルマスクを使わずに第 2電極 23の Tiを CCOの表面全面( 面積 1. 0 X 108 m2)に成膜した試料を作製した (比較例 3— 1)。
[0181] さらに別の比較例として、 SrTiO (100)基板上に SrRuO (100)配向薄膜を形成
3 3
し、その上に実施例 3— 1〜3— 4と同様の条件で SCOの作製を行った。
[0182] X線回折の測定により、 SCO薄膜は配向性を持たない多結晶薄膜であることがわ かった。
[0183] 上部電極の1は実施例3— 1〜3—4と同様に直径が3 111、 10 ^m, 50 ^m, 20
(面積 7.: m2、 7. 9X10 m2, 2. OXlO^m2, 3. 1 X 10 m2)のものを 作製した (比較例 3— 2〜3— 5)。
[0184] こうして作製した実施例 3— 1〜3— 4および比較例 3— 1〜3— 5の試料について、 第 1電極 21と第 2電極 23との間に 0. 01mA〜100mAの範囲で電流を流し、発生 する温度差の測定を行った。
[0185] 結果を表 3に示す。
[0186] [表 3]
第 1電極 21と第 2電極 23
層構造に対する との面積比 厶 Tobs/
試料 厶 Tobs (K)
電極界面の向き (第 2電極の面積/ 厶 ( V K) 第 1電極の面積)
実施例 3-1 平行 7.1 X 10— 8 12.73 63.7 654 実施例 3-2 平行 7.9 X 10—7 7.1 1 35.6 489 実施例 3-3 平行 2.0 X 10"5 3.91 19.6 363 実施例 3-4 平行 3.1 X 10—4 2.26 1 1.3 275 比較例 3-1 平行 1.0 0.20 1.0 82 比較例 3-2 無配向 7.1 10"8 0.43 2.2 120 比較例 3-3 無配向 7.9 X 10—7 0.35 1.8 108 比較例 3-4 無配向 2.0 X 10"5 0.30 1.5 100 比較例 3-5 無配向 3.1 X 10"4 0.25 1.3 92
[0187] 表 3には、異なる直径の上部電極を有する各々の試料に対して電流を流して上部 電極を冷却した際の最大の冷却温度 ΔΤ 、材料本来の性能指数 Zを用いて ΔΤ obs 0 mas
=Z T2Z2の式力 算出される冷却温度の上限 ΔΤ との比 ΔΤ / ATmax, ΔΤ
0 max obs c 力 換算される実効的なゼーベック係数 S も示して 、る。
bs obs
[0188] 定常法により SCOのゼーベック係数 Ssを測定すると室温においては 82 VZKで あった。本実施例の S は Sに比べて約 8倍向上していた。
obs s
[0189] 一方、比較例 3— 1〜3— 4における S は 82〜120 /z VZKであり、定常法での値 obs
Ssとほぼ同程度の値であった。
[0190] また、 SCOとほぼ同一の結晶構造を持つ Ca CoOについても試料を作製し、測
0.3 2
定を行ったところ、 SCOと同様の傾向を示した。
[0191] (実施例 4)
実施例 4では、実効面積をより大きくするために、図 4に示したような材料層 22と第
2電極 23との接点が複数となる構成の熱電変換デバイスを作製した。
[0192] 本実施例の熱電変換デバイスの作製工程を図 8A〜図 8Dに示す。
[0193] 基板には、 10mm角、厚さ 500 mの SrTiOの(111)面基板を使用した。
3
[0194] 第 1電極 21に SrRuO、材料層 22に Sr CoO (以下、「SCO」と表記する)、第 2電
3 κ y
極 23に Ti、層間絶縁層 41にネガ型の感光性ポリイミドを用いた。 [0195] xがおよそ 0. 3となるように、 SCOを作製した。
[0196] まず、図 8Aのように、基板 81の上に第 1電極 21と材料層 22を、基板 81の全面(面 積 1. OX lo m2)に、実施例 3に記載の条件と同様の条件にて作製した。
[0197] 第 1電極 21の厚さは 200nm、材料層 22の厚さは 200 μ mとした。
[0198] 層間絶縁層 41に感光性ポリイミドを使用する場合は、一般的なフォトレジストのバタ 一-ング手法と同様のプロセスが適用可能である。
[0199] まず、ネガ型感光性ポリイミドの原料溶液をスピンコートし、ホットプレートにて 70°C で 3分、その後 90°Cで 3分プリベータして溶媒を揮発させ、厚さ 10 mの膜を得た。
[0200] こうしてできた試料に対して、フォトマスクを介して水銀ランプの紫外線による露光を 行い、その後 γ—プチ口ラタトンとシクロへキサノンとの混合液による現像工程、酢酸 ブチルとシクロへキサノンとの混合液によるリンス工程を経て、図 8Βのようにコンタクト ホール 51を有する層間絶縁層 41のパターン形状を得た。
[0201] さらに、コンタクトホール 51の側壁をテーパー形状にするために、 Νガス雰囲気下
2
で、 200°Cで 30分、 350°Cで 30分保持するベータ工程を設け、図 8Cに示したような テーパー形状を作製した。
[0202] ベータ後の層間絶縁層 41の厚さは 6 μ mであった。
[0203] コンタクトホール 51の大きさと配列は、使用するフォトマスクのパターンによって自 由に設定可能である力 本実施例では図 4Bに示すように円形のコンタクトホールパ ターンが互いに等間隔の距離を保ちながら配列したものを作製した。
[0204] 具体的には、コンタクトホール 51として、材料層 22と第 2電極 23との界面における 直径が 3 μ m、面積に換算すると 7. 1 μ m2のコンタクトホールを、合計 1000個配置 した。
[0205] 次に、第 2電極 23 (Ti)を実施例 3と同様の条件にて作製し、図 8Dに示すような熱 電変換デバイスを得た (実施例 4)。
[0206] こうして作製した実施例 4の熱電変換デバイスについて、第 1電極 21と第 2電極 23 との間に 3Aの電流を流し、冷却を行った。
[0207] この際、冷却側となる第 2電極 23にシートヒーターを配置し、所定の温度差が保た れるようにし、この時のシートヒーターの消費電力力も本実施例の熱電変換デバイス の冷却能力(単位時間当たりの吸熱量)の算出を行った。
[0208] 結果を表 4に示す。
[0209] [表 4]
Figure imgf000025_0001
[0210] 表 4は、冷却時の温度差を変化させた時の実施例 4における冷却能力の違いを示 している。
[0211] 例えば 5°Cの冷却を行う際、本実施例のデバイス 1つにつき冷却対象物から最大 3
OmWの熱を吸熱することができる。
[0212] このような結果から、熱容量の大きい冷却対象物に対しても、本実施例の熱電変換 デバイスを複数用いることで、温度制御が可能になることがわ力つた。
[0213] 本実施例の熱電変換デバイスに対して、第 1電極 21と第 2電極 23との間に温度差 を印加することによって、電極間から電力を取り出すことが可能である。
[0214] 本実施例の熱電変換デバイスにおいて、第 1電極 21の側には温度を室温に保つ 熱浴を、第 2電極 23の側にはシートヒーターを取り付け、 5°Cの温度差を与えた時の 発電能力は、約 lmWであった。
産業上の利用可能性
[0215] 本発明にかかる熱電変換デバイスは、熱伝導による損失を軽減する高効率のデバ イスを実現することができる。また従来の薄膜素子設計および製造のプロセスが適用 できるため、デバイスの薄型化、微細化が容易となり、従来にない薄型の冷却機又は 発電機として利用可能である。
[0216] また、電子デバイス中に回路の一部として組み込むことができるので、従来よりも効 率よく回路内の発熱部位を冷却することができる。

Claims

請求の範囲
[I] 第 1電極と、
第 2電極と、
前記第 1電極および前記第 2電極との間に挟まれた層状酸ィ匕物と、を有し、 前記第 1電極、前記層状酸化物および前記第 2電極がこの順に配置されて多層体 を形成しており、
前記層状酸化物は、電気伝導層と電気絶縁層とが交互に配置されてなり、 前記層状酸化物の c軸は、前記第 1電極と前記層状酸化物との間の界面に対して 垂直であり、
前記第 2電極の面積が、前記第 1電極の面積よりも小さい、熱電変換デバイス。
[2] 前記第 1電極と前記第 2電極との間に流される電流によって冷却素子として機能す る、請求項 1に記載の熱電変換デバイス。
[3] 前記電流がパルス電流である、請求項 2に記載の熱電変換デバイス。
[4] 前記第 1電極と前記第 2電極との間に印加される温度差によって電力発生素子とし て機能する、請求項 1に記載の熱電変換デバイス。
[5] 前記第 1電極の面積に対する前記第 2電極の面積の比が、 1. O X 10—5以上 0. 05 以下である、請求項 1に記載の熱電変換デバイス。
[6] 前記第 1電極の面積に対する前記第 2電極の面積の比が、 2. 0 X 10—3以下である
、請求項 5に記載の熱電変換デバイス。
[7] 前記第 1電極の面積に対する前記第 2電極の面積の比が、 5. 0 X 10—4以下である
、請求項 6に記載の熱電変換デバイス。
[8] 前記電気伝導層が、コバルト酸ィ匕物を含み、
前記電気絶縁層が、アルカリ金属元素、アルカリ土類金属元素、 Biおよび Pbから 選ばれる少なくとも 1種の元素を含む、請求項 1に記載の熱電変換デバイス。
[9] 金属元素を Mと表記した場合、前記電気伝導層が、稜を共有する MO八面体から
2 なる、請求項 1に記載の熱電変換デバイス。
[10] Mが Coである、請求項 9に記載の熱電変換デバイス。
[II] 前記層状酸化物の組成式が、 Bi Pb Sr Co O (0≤x≤0. 5、 7. 5≤y≤8. 5)で
2-x x 2 2 y あり、
前記電気伝導層が、稜を共有する CoO八面体からなり、
2
前記電気絶縁層が、 4原子層の岩塩型絶縁層からなる、請求項 1に記載の熱電変 換デバイス。
[12] 前記層状酸化物の組成式が、((Ca Sr ) Bi ) Co O (0≤xl≤ 1、 0≤x2≤
1-xl xl l-x2 x2 3 4 y
0. 3、 8. 5≤y≤9. 5)であり、
前記電気伝導層が、稜を共有する CoO八面体からなり、
2
前記電気絶縁層が、 3原子層の岩塩型絶縁層からなる、請求項 1に記載の熱電変 換デバイス。
[13] 前記層状酸化物の組成式が、(Ca Sr ) CoO (0≤xl≤l, 0. 1≤χ2≤0. 8, l-χΐ xl x2 y
1. 5≤y≤2. 5)であり、
前記電気伝導層が、稜を共有する CoO八面体からなり、
2
前記電気絶縁層が、 1原子層からなる、請求項 1に記載の熱電変換デバイス。
[14] 前記第 2電極が複数設けられて 、る、請求項 1に記載の熱電変換デバイス。
[15] 請求項 1に記載の熱電変換デバイスを用いる冷却方法であって、
前記第 1電極と前記第 2電極との間に電圧を印加して電流を流すことによって前記 第 1電極と前記第 2電極との間に温度差を生じさせ、前記第 1電極および前記第 2電 極の何れか一方を低温部とする冷却方法。
[16] 請求項 1に記載の熱電変換デバイスを用いる発電方法であって、
前記第 1電極と前記第 2電極との間に温度差を印加することによって、前記第 1電 極と前記第 2電極との間に電位差を生じさせる発電方法。
PCT/JP2006/314660 2005-08-16 2006-07-25 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法 WO2007020775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800008740A CN101032038B (zh) 2005-08-16 2006-07-25 热电转换器件、以及使用该热电转换器件的冷却方法和发电方法
JP2006529383A JP3922652B2 (ja) 2005-08-16 2006-07-25 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法
US11/643,708 US7446256B2 (en) 2005-08-16 2006-12-22 Thermoelectric conversion device, and cooling method and power generation method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-235738 2005-08-16
JP2005235738 2005-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/643,708 Continuation US7446256B2 (en) 2005-08-16 2006-12-22 Thermoelectric conversion device, and cooling method and power generation method using the same

Publications (1)

Publication Number Publication Date
WO2007020775A1 true WO2007020775A1 (ja) 2007-02-22

Family

ID=37757440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314660 WO2007020775A1 (ja) 2005-08-16 2006-07-25 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法

Country Status (4)

Country Link
US (1) US7446256B2 (ja)
JP (1) JP3922652B2 (ja)
CN (1) CN101032038B (ja)
WO (1) WO2007020775A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087362A (ja) * 2008-10-01 2010-04-15 Chubu Electric Power Co Inc 熱電変換材料及びその製造方法
US9269883B2 (en) 2012-05-14 2016-02-23 Fujitsu Limited Thermoelectric conversion device
JP2016167508A (ja) * 2015-03-09 2016-09-15 富士通株式会社 熱電変換素子、熱電変換モジュール、及び熱電変換素子の製造方法
US10424708B2 (en) 2013-04-11 2019-09-24 Fujitsu Limited Thermoelectric generator

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110023927A1 (en) * 2005-07-08 2011-02-03 Irvine Sensors Corporation Micro-combustion power system with metal foam heat exchanger
US8614392B1 (en) 2008-09-09 2013-12-24 Ying Hsu Micro-combustion power system with dual path counter-flow system
US8415761B2 (en) * 2008-11-06 2013-04-09 Carrier Corporation Polarization aligned and polarization graded thermoelectric materials and method of forming thereof
WO2010095199A1 (ja) * 2009-02-20 2010-08-26 パナソニック株式会社 放射検出器および放射検出方法
JP5025749B2 (ja) * 2010-03-26 2012-09-12 パナソニック株式会社 熱電変換装置
US9082928B2 (en) 2010-12-09 2015-07-14 Brian Isaac Ashkenazi Next generation thermoelectric device designs and methods of using same
KR20140021510A (ko) * 2011-05-19 2014-02-20 후지 덴키 가부시키가이샤 열전 변환 구조체 및 그 제조 방법
US9580307B2 (en) * 2011-06-09 2017-02-28 Cornell University Single crystal mixed metal oxide nanosheet material compositions, methods and applications
CN103259460A (zh) * 2013-05-10 2013-08-21 广东欧珀移动通信有限公司 一种带发电系统的移动终端
US20230048760A1 (en) * 2020-02-04 2023-02-16 Massachusetts Institute Of Technology Fabrication of single-crystalline ionically conductive materials and related articles and systems
JPWO2021200265A1 (ja) * 2020-03-30 2021-10-07
US11611029B2 (en) * 2020-05-21 2023-03-21 Saudi Arabian Oil Company Methods to harvest thermal energy during subsurface high power laser transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284662A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 熱電変換材料、熱電変換素子、熱電池及び冷却器
JP2002016297A (ja) * 2000-04-28 2002-01-18 Toyota Central Res & Dev Lab Inc 結晶配向バルクZnO系焼結体材料の製造方法およびそれにより製造された熱電変換デバイス
JP2003229605A (ja) * 2001-11-29 2003-08-15 Sk Kaken Co Ltd 熱電変換材料及びその製造方法
JP2005150534A (ja) * 2003-11-18 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd 熱電半導体材料、該熱電半導体材料による熱電半導体素子、該熱電半導体素子を用いた熱電モジュール並びにこれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596643B2 (ja) 1996-05-29 2004-12-02 財団法人国際超電導産業技術研究センター 熱電変換材料及び熱電変換素子
AU2003227243A1 (en) 2002-04-09 2003-10-20 Matsushita Electric Industrial Co., Ltd. Thermo-electric conversion material and method for preparation thereof
JP3874365B2 (ja) * 2004-03-01 2007-01-31 松下電器産業株式会社 熱電変換デバイス、およびこれを用いた冷却方法および発電方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284662A (ja) * 2000-03-30 2001-10-12 Toshiba Corp 熱電変換材料、熱電変換素子、熱電池及び冷却器
JP2002016297A (ja) * 2000-04-28 2002-01-18 Toyota Central Res & Dev Lab Inc 結晶配向バルクZnO系焼結体材料の製造方法およびそれにより製造された熱電変換デバイス
JP2003229605A (ja) * 2001-11-29 2003-08-15 Sk Kaken Co Ltd 熱電変換材料及びその製造方法
JP2005150534A (ja) * 2003-11-18 2005-06-09 Ishikawajima Harima Heavy Ind Co Ltd 熱電半導体材料、該熱電半導体材料による熱電半導体素子、該熱電半導体素子を用いた熱電モジュール並びにこれらの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087362A (ja) * 2008-10-01 2010-04-15 Chubu Electric Power Co Inc 熱電変換材料及びその製造方法
US9269883B2 (en) 2012-05-14 2016-02-23 Fujitsu Limited Thermoelectric conversion device
US10424708B2 (en) 2013-04-11 2019-09-24 Fujitsu Limited Thermoelectric generator
US10873017B2 (en) 2013-04-11 2020-12-22 Fujitsu Limited Thermoelectric generator
JP2016167508A (ja) * 2015-03-09 2016-09-15 富士通株式会社 熱電変換素子、熱電変換モジュール、及び熱電変換素子の製造方法

Also Published As

Publication number Publication date
JPWO2007020775A1 (ja) 2009-02-19
JP3922652B2 (ja) 2007-05-30
CN101032038B (zh) 2010-04-21
US20070102034A1 (en) 2007-05-10
US7446256B2 (en) 2008-11-04
CN101032038A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3922652B2 (ja) 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法
US7312392B2 (en) Thermoelectric conversion device, and cooling method and power generating method using the device
EP1737053B1 (en) Thermoelectric conversion element and thermoelectric conversion module
JP3701302B2 (ja) 熱スイッチ素子およびその製造方法
US9065014B2 (en) Thermoelectric material including coating layers, method of preparing the thermoelectric material, and thermoelectric device including the thermoelectric material
JP6859805B2 (ja) 積層体、熱電変換素子
JP2010183067A (ja) 圧電材料および圧電素子
JP6907323B2 (ja) 多層薄膜およびその調製
JPH09107129A (ja) 半導体素子及びその製造方法
CN106784279A (zh) 一种高性能掺杂钛酸锶氧化物热电薄膜的制备方法
US20120090657A1 (en) Reduced low symmetry ferroelectric thermoelectric systems, methods and materials
WO2004061881A1 (ja) 薄膜コンデンサおよびその製造方法
WO2004105144A1 (ja) 熱電変換材料及びその製法
JP6587125B2 (ja) 酸化物半導体薄膜、半導体素子、光電変換素子、太陽電池、及び酸化物半導体薄膜の製造方法
JP4024294B2 (ja) 熱電変換材料とこれを用いた熱電変換素子ならびにこの素子を備える電子機器および冷却装置
KR20010062429A (ko) 에피택셜 복합 구조체 및 이를 포함하는 장치
CN101969096B (zh) 纳米结构热电材料、器件及其制备方法
JP3922651B2 (ja) 熱電変換材料とこれを用いた熱電変換素子ならびにこの素子を備える電子機器および冷却装置
US20130101733A1 (en) Method for producing thermoelectric conversion material, thermoelectric conversion material, and production apparatus used in the method
CN112864300B (zh) 一种碲化铋基合金薄膜-钙钛矿型氧化物异质结复合热电材料及其制备与应用
US11444229B2 (en) Thermoelectric material, and thermoelectric device and electronic device comprising the same
JP2001278700A (ja) ナノ構造体、その製造方法および磁気デバイス
JP2008117531A (ja) 発光素子及びその製造方法
Luo et al. Ultrahigh thermoelectric performance in RbGe I 3/CsSn I 3 superlattices
JP6562453B2 (ja) 発光ダイオード及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006529383

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680000874.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781572

Country of ref document: EP

Kind code of ref document: A1