WO2005057263A1 - ドロップ光ファイバケーブル用frp製抗張力体 - Google Patents

ドロップ光ファイバケーブル用frp製抗張力体 Download PDF

Info

Publication number
WO2005057263A1
WO2005057263A1 PCT/JP2004/012736 JP2004012736W WO2005057263A1 WO 2005057263 A1 WO2005057263 A1 WO 2005057263A1 JP 2004012736 W JP2004012736 W JP 2004012736W WO 2005057263 A1 WO2005057263 A1 WO 2005057263A1
Authority
WO
WIPO (PCT)
Prior art keywords
frp
optical fiber
tensile strength
fiber cable
strength member
Prior art date
Application number
PCT/JP2004/012736
Other languages
English (en)
French (fr)
Inventor
Tatsumi Iwata
Nobuyuki Tauchi
Masayoshi Yamano
Takashi Tanaka
Kaoru Okuno
Original Assignee
Ube-Nitto Kasei Co., Ltd.
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co., Ltd., Sumitomo Electric Industries, Ltd. filed Critical Ube-Nitto Kasei Co., Ltd.
Priority to KR1020067011256A priority Critical patent/KR101081788B1/ko
Publication of WO2005057263A1 publication Critical patent/WO2005057263A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • G02B6/4432Protective covering with fibre reinforcements
    • G02B6/4433Double reinforcement laying in straight line with optical transmission element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Definitions

  • the present invention is suitable for an optical fiber cable in which an optical fiber core and a tensile member are collectively coated with a thermoplastic resin, particularly a lightweight, non-metallic drop optical fiber cable which can be reduced in diameter.
  • the present invention relates to a tensile strength member made of FRP.
  • a linear material made of FRP can be cited, but if instead of a metal wire tensile member, simply using an FRP wire, the body coating would not be obtained. If the bonding with the thermoplastic resin is difficult and the bonding is insufficient, it may lead to an increase in optical transmission loss due to the heat history of the cable construction and subsequent shrinkage strain, as well as abnormalities such as disconnection. It cannot function well.
  • Patent Document 2 discloses a method for producing a rod made of a thermoplastic resin-coated fiber-reinforced synthetic resin in which an FRP interface and a thermoplastic resin coating are anchor-bonded.
  • an uncured reinforcing core obtained by impregnating a reinforcing fiber bundle with an uncured thermosetting resin is coated with a molten thermoplastic resin, and then directly coated with a molten thermoplastic resin.
  • the thermoplastic resin coating layer is cooled and solidified, it is guided to a pressurized high-temperature steam curing tank, and the interface between the reinforcing core and the coating layer is softened, and the thermosetting resin is brought into contact with the fluidized state.
  • the curable resin is heated and cured, and subsequently, the coated thermoplastic resin is cooled to anchor the core interface made of fiber reinforced thermosetting resin (FRP) to the coated thermoplastic resin.
  • FRP fiber reinforced thermosetting resin
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-337255
  • Patent Document 2 Japanese Patent Publication No. 63-2772
  • the present applicant has previously proposed a drop optical fiber cable characterized by a uniform FRP tensile strength member in Japanese Patent Application No. 2002-326513.
  • the present inventors when manufacturing a drop optical fiber cable, apply a body made of thermoplastic resin to a coated FRP tensile strength body under manufacturing conditions, particularly at a relatively low speed and a high temperature range of extrusion temperature.
  • a body made of thermoplastic resin to a coated FRP tensile strength body under manufacturing conditions, particularly at a relatively low speed and a high temperature range of extrusion temperature.
  • make sure that the coating of the main body or the coated FRP tensile strength make sure that the coating of the main body or the coated FRP tensile strength
  • the residual styrene monomer in the FRP portion was the cause of this foaming phenomenon, and it was found that limiting this to a predetermined range would eliminate this phenomenon.
  • the present invention has been completed.
  • the present invention aims at greatly reducing the foaming phenomenon in the FRP tensile strength member for drop optical fiber cables.
  • the present invention provides an FR having a reinforcing fiber bound with a thermosetting resin.
  • the amount of the residual styrene monomer in the FRP portion was reduced to 0.018% by weight or less by using the FRP tensile strength member for a drop optical fiber cable having a P portion.
  • the present invention provides an FRP portion in which reinforcing fibers are bound with a thermosetting resin, and a thermoplastic resin formed on the outer periphery of the FRP portion by covering the outer surface of the FRP portion with an anchor bonding structure.
  • the amount of the residual styrene monomer in the FRP portion was set to 0.03% by weight or less.
  • thermosetting resin can be composed of a vinyl ester resin.
  • the surface of the thermoplastic resin coating layer has been subjected to diameter-regulating processing, and the surface of the coating layer can have a degree of surface irregularity of 2-3 mm / 100 mm or less measured by a laser outer diameter measuring instrument.
  • thermoplastic resin coating layer can be composed of LLDPE.
  • the FRP section can use glass yarn for the reinforcing fiber.
  • the FRP tensile strength member for a drop optical fiber cable can be adjusted to have a weight loss rate of 0.1% or less after drying at 80 ° C. for 40 hours using a hot-air gear oven.
  • the amount of residual styrene monomer and / or the weight loss rate is within a predetermined range, so that a drop optical fiber cable is manufactured using these tensile strength members.
  • the foaming phenomenon that occurs during the process can be suppressed.
  • the coated FRP tensile strength member when used, since the outer periphery of the FRP portion and the inner periphery of the coating layer have an anchor bonding structure, the main body coating layer is fused or adhered to this coating layer. Let Then, the heat shrinkage of the entire drop optical fiber cable can be suppressed, and the optical fiber core can be effectively protected.
  • the anchor bonding structure eliminates the need to separately apply an adhesive to the outer periphery of the FRP, thereby eliminating the need for an adhesive, an application process, and equipment, thereby simplifying the process and reducing costs, and is extremely economical. It is a target.
  • the exposure of the FRP tensile strength member at the core in the connection operation can be easily peeled off by making a cut in the coating layer.
  • the work of retaining the cable in the termination cabinet is safer in a good environment. It can be done easily.
  • FIG. 1 shows an example of a drop optical fiber cable using the FRP tensile strength member or the coated tensile strength member according to the present invention.
  • Drop optical fiber cable shown in the figure is a drop optical fiber cable using the FRP tensile strength member or the coated tensile strength member according to the present invention.
  • optical fiber cores 2 and 3 include optical fiber cores 2 and 3, tensile strength member 4, support wire 5, and main body coating 6.
  • the optical fiber cores 2 and 3 are arranged on the center axis of the cable 1 so as to be vertically adjacent to each other.
  • the tensile members 4 are arranged in a pair at predetermined intervals above and below the optical fibers 2 and 3.
  • the support wire 5 is located above the upper strength member 4 and has a larger diameter than the strength member 4.
  • the body coating 6 is formed so as to collectively cover the outer circumferences of the optical fiber cores 2 and 3, the strength member 4 and the support wire 5.
  • the tensile strength member 4 includes an FRP tensile strength member having an FRP portion in which reinforcing fibers are bound with a thermosetting resin, or an FRP portion in which reinforcing fibers are bound with a thermosetting resin, and an FRP portion. It is composed of a coated FRP tensile strength member having an outer surface of the FRP portion and a thermoplastic resin coating layer formed by coating with an anchor bonding structure.
  • Such an FRP strength member the residual styrene monomer 0.018 weight FRP parts 0/0 (Compared to FRP section).
  • the residual styrene monomer In the coated FRP tensile strength material, the residual styrene monomer must be not more than 0.03% by weight (based on the whole coated FRP tensile strength material).
  • the coated portion is in contact with the molten main body-coated thermoplastic resin at the time of coating the main body in the manufacturing process of the drop optical cable, and the remaining styrene monomer is volatilized. Or, an abnormality such as foaming of the main body covering portion occurs.
  • the measurement of the residual styrene monomer was performed by the following method.
  • the amount of the residual styrene monomer is controlled to a predetermined value or less by selecting a highly reactive thermosetting resin and a highly reactive catalyst, securing a curing time, performing post-treatment after curing, and the like. You only have to control it.
  • FIG. 2 shows a coated FRP tensile strength member 10 that can be used as the tensile strength member 4 of the drop optical fiber cable.
  • the tensile strength member 10 has an FRP (fibre-reinforced thermosetting resin) portion 11 and a coating layer 12 of a thermoplastic resin provided on the outer periphery of the FRP portion 11.
  • FRP fuse-reinforced thermosetting resin
  • the outer periphery of the FRP tensile strength member 11 and the inner periphery of the coating layer 12 are mutually anchored.
  • thermosetting resin In order to obtain such an anchor bonding structure, a method described in JP-B-63-2772, that is, an uncured supplement formed by impregnating an uncured thermosetting resin into a reinforcing fiber bundle is used.
  • the hard core portion is covered with the molten thermoplastic resin in a ring shape, and immediately thereafter, the coating layer of the thermoplastic resin is cooled and solidified.
  • the interface part of the layer is softened, the thermosetting resin is heated and cured while being in contact with the fluidized state, and then the coated thermoplastic resin is cooled and the core interface made of fiber reinforced thermosetting resin (FRP) And the coated thermoplastic resin may be anchor-bonded.
  • FRP fiber reinforced thermosetting resin
  • reinforcing fibers that can be used in the FRP portion 11 of the tensile strength member of the present invention, various glass fibers, aromatic polyamide fibers, carbon fibers, and the like are generally used, and are selected according to the required tensile strength and elastic modulus. .
  • glass yarns are desired to have properties required from glass fibers such as E, S, and T.
  • E-glass is recommended from the viewpoint of economic efficiency.
  • a single yarn having a single fiber diameter of 313 ⁇ m and a plurality of yarns that are not twisted is desirably used.
  • the glass yarn is selected because, for example, the yarn is twisted at 1 piece / inch or the like, and during the impregnation or drawing step of the thermosetting resin, the glass single fiber is disturbed, slackened, or the like. This is because a non-stretched rod-like material having a small amount of fray and a uniform outer periphery can be obtained.
  • the volume content of the glass fiber of the tensile strength member 4 is determined by the required physical properties. However, in the present invention for the purpose of making the diameter smaller, it is approximately 55-7. About 0V 0L% is desirable.
  • thermosetting resin that can be used in the present invention is generally a terephthalic acid-based or isophthalic acid-based unsaturated polyester resin, a bielester resin (such as an epoxy acrylate resin), or an epoxy resin.
  • a curing catalyst or the like is added to these and used, but a butyl ester resin (epoxy acrylate resin or the like) is particularly preferable because of its properties such as heat resistance.
  • the thermoplastic resin used for the coating layer 12 of the uncured reinforcing core portion is selected from resins compatible with the thermoplastic resin of the main body coating portion 6, and a flame-retardant resin is used for the main body coating portion 6. In order to improve the compatibility with the resin, it is desirable to use an adhesive resin or to add a master batch of the adhesive resin. It may be colored by adding a master batch.
  • the thermoplastic resin used for the coating layer 12 may have been subjected to various modifications for imparting flame retardancy in accordance with the flame retardation of the main body coating portion 6.
  • thermoplastic resin used for the coating layer 12 has a molten or softened state at least at the inner periphery when the thermosetting resin is heat-cured.
  • a polyolefin-based resin having a melting point or softening point in a curing temperature range of 110 to 150 ° C is more preferable.
  • the FRP section 11 is desirably a cured fiber-reinforced thermosetting resin having an outer diameter of 0.9 mm or less in terms of bending resistance and small diameter.
  • the coating thickness more than necessary is a factor that inhibits flame retardancy. Therefore, the thickness of the coating layer 12 is preferably 0.3 mm or less.
  • the thickness of the coating layer 12 is preferably 0.08 mm or more before the diameter adjustment. More preferably, the thickness is about 2 mm.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • the coated FRP tensile strength member 10 used in the drop optical fiber cable of the present invention preferably has a pull-out force of 13N / 1 Omm or more of the FRP portion 11 from the thermoplastic resin used for the coating layer 12. It is. This pull-out force is used as an index of the adhesion force due to the anchor bonding structure, and was measured by the following measurement method.
  • the surface of the thermoplastic resin coating layer is subjected to diameter-sizing processing.
  • the degree of surface irregularity measured by a laser outer diameter measuring device is 2-3 / 3/100 mm or less. If it exceeds this, a foaming trouble at the time of coating the main body tends to occur easily.
  • the coated FRP tensile strength member 10 of the present invention desirably has a weight loss rate of 0.1% by weight or less after drying at 80 ° C. for 40 hours using a hot-air gear oven.
  • the above-mentioned limitation of the amount of residual styrene monomer, reduction of the retention of water and the like on the surface of the coating portion and the interface with the FRP, or by giving a secondary heat treatment, can be carried out at 80 ° C for 40 hours.
  • the weight loss rate after drying can be 0.1% or less.
  • the secondary heat treatment may be a method in which the resin is passed through a heat treatment tank following the step of curing the thermosetting resin, or may be performed after winding.
  • the coated uncured linear material was introduced at a speed of 15 mZmin into an 18 m long pressurized steam curing tank provided with a pressure seal portion at an inlet and an outlet to obtain a vapor pressure of 32.5 Pa (145 ° C.).
  • a vapor pressure of 32.5 Pa 145 ° C.
  • a shaping machine with shaping dies of 0.93mm and 0.80mm inside diameter to shape the coating outer surface and coat
  • a coated tensile strength member 10 having an outer diameter of 0.8 mm was obtained, and was continuously wound around a bobbin.
  • the bobbin was subjected to a dry heat treatment (secondary heat treatment) in a constant temperature room at 40 ° C. for 40 hours.
  • the coated tensile strength body 10 had a glass fiber content of 61.9 VOL% and a drawing force of 15 NZl0 mm.
  • a 24-hour heat-resistant bending diameter test at a hot temperature of 80 ° C it cleared 38 mm, and the sample length was _30 at 1000 mm. C ⁇ 80.
  • the heat cycle test of C was repeated three times, and the adhesion between the coating layer 12 of the coated tensile strength member 10 and the FRP tensile strength member 11 was observed. The shrinkage of the coating layer 12 hardly occurred.
  • the amount of the residual styrene monomer determined by the above-described measurement method was 0.015% by weight.
  • the weight reduction rate of the coated FRP tensile strength body by the above-described measurement method was 0.08%, which was a flat average.
  • the coated tensile strength body 10 was inserted through a crosshead die of a melt extruder to extrude a flame-retardant polyethylene resin at 175 ° C.
  • the film was run at a coating speed of 30 mZmin, and it was determined whether or not foaming abnormality occurred in 100 minutes.
  • Example 2 In Comparative Example 1 in which the secondary heat treatment was omitted as compared with Example 1, the weight loss at 80 ° C for 40 hours was 0.25%, and the vapor pressure was 28 Pa (curing bath temperature 140 ° C).
  • Example 2 had 0.045% residual styrene and 0.09% weight loss.
  • thermosetting resin was an unsaturated polyester resin (Polyset manufactured by Hitachi Chemical Co., Ltd.)
  • the hardening temperature was set to 145 ° C and the secondary heat treatment was performed, but the residual styrene was 0.11% and the weight loss was 0.09%.
  • the FRP tensile strength material for a drop optical cable which is effective in the present invention, since the foaming phenomenon is greatly reduced, there is no bad appearance and no adverse effect on the optical fiber. Can be.
  • FIG. 1 is a cross-sectional view showing an example of a drop optical fiber cable to which the strength member of the present invention can be applied.
  • FIG. 2 is an explanatory view of a cross section of a coated FRP tensile strength member according to the present invention. Explanation of reference numerals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ropes Or Cables (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】   発泡現象の解消 【解決手段】 ドロップ光ファイバケーブル1は、光ファイバ心線2,3と、抗張力体4と、支持線5と、本体被覆6を備えている。抗張力体4は、補強繊維を熱硬化性樹脂で結着したFRP部を有するFRP製抗張力体から構成される。FRP製抗張力体は、FRP部分の残存スチレンモノマーが0.018重量%(FRP部対比)以下であることを要する。残存スチレンモノマーがこれらの量を超えると、ドロップ光ケーブル製造工程での本体被覆時に、溶融状の本体被覆熱可塑性樹脂と接触して、残存スチレンモノマーが揮発するなどして被覆部、または、本体被覆部が発泡するなどの異常を来す。残存スチレンモノマー量を所定の値以下に制御するには、高反応性熱硬化性樹脂,高反応性触媒の選択、硬化時間の確保、硬化後の後処理等により制御すれば良い。

Description

明 細 書
ドロップ光ファイバケーブル用 FRP製抗張力体
技術分野
[0001] 本発明は、光ファイバ心線と抗張力体とを熱可塑性樹脂によって一括被覆した光フ アイバケーブル、とりわけ軽量で細径化が可能で、ノンメタリック型のドロップ光フアイ バケーブルに好適な FRP製抗張力体に関する。
背景技術
[0002] 情報化社会が到来し、インターネット等の伝送情報容量の増大化に伴ない、ビル、 住宅等加入者へも光ファイバケーブルを敷設する FTTH化が急激に進展している。
[0003] FTTH用ドロップ光ファイバケーブルとして、抗張力体に金属線を使用したもの力 例えば、特許文献 1に提案されている。しかし、抗張力体に金属線を使用すると、雷 によるサージングを回避するために、アースが必要となる。
アースを取るには、工事に手間を要し、それに伴なう工事費の負担を要することとな つて、各家庭への普及の障害となる。そこで、アース工事が不要となるノンメタリック製 の抗張力体を採用したノンメタリック型のドロップ光ファイバケーブルが求められてい た。
[0004] この種の光ファイバケーブルに用いるノンメタリック型の抗張力体としては、 FRP製 線状物が上げられるが、金属線抗張力体に替えて、単に、 FRP線を使用したのでは 、本体被覆の熱可塑性樹脂との接着が難しぐ接着が不十分な場合、ケーブル化工 事の熱履歴やその後の収縮歪などによる光伝送損失の増大や、断線などの異常を 招来し、ドロップ光ファイバケーブルとして充分に機能することができない。
[0005] この場合、硬化した FRP線の外周に接着剤を塗布するか、あるいは、接着性樹脂 を被覆することで、接着力を強化することも可能であるが、工数、材料費の増加に伴 なうコスト増を招き、得策でないし、 FRPとの接着が強固過ぎると、接続工事の際、成 端キャビネットへ引止めるための被覆部の剥離に難渋する。
[0006] 一方、 FRP界面と熱可塑性樹脂被覆とがアンカー接着した熱可塑性樹脂被覆繊 維強化合成樹脂製棒状物の製造方法が、特許文献 2に開示されている。 [0007] この文献に開示されている製造方法は、補強繊維束に未硬化の熱硬化性樹脂を 含浸させてなる未硬化状補強芯部を、溶融した熱可塑性樹脂で被覆し、その後、直 ちに該熱可塑性樹脂の被覆層を冷却固化した後、これを加圧高温蒸気の硬化槽に 導いて、補強芯部と該被覆層の界面部分を軟化、流動状態で接触させつつ該熱硬 化性樹脂を加熱硬化させ、引続いて、被覆熱可塑性樹脂を冷却して繊維強化熱硬 化性樹脂 (FRP)からなる芯部界面と被覆熱可塑性樹脂とをアンカー接着するもので ある。
[0008] し力 ながら、このような製造方法によって得られる棒状物を、ドロップ光ファイバケ 一ブルの抗張力体に用いる場合には、以下に説明する技術的な課題があった。 特許文献 1:特開 2001 - 337255号公報
特許文献 2:特公昭 63 - 2772号公報
発明の開示
発明が解決しょうとする課題
[0009] すなわち、上述した特許文献 2に開示されている製造方法によれば、例えば、ガラ ス繊維を補強繊維とし、熱硬化性樹脂に不飽和ポリエステルを用レ、、ポリエチレンで 被覆した場合には、棒状物は、 106kg/cm2 (10MPa)程度の接着強度が得られる が、被覆表面が必ずしも平滑でなぐ均一で細い径のものが得難いという問題があつ た。
[0010] そこで、本出願人は、先に、均一性を有する FRP抗張力体に特徴があるドロップ光 ファイバケーブルについて、特願 2002—326513号で提案している。
[0011] しかし、この特許出願で開示した FRP抗張力体においては、実際にドロップ光ファ ィバケーブルを製造する際に、製造条件、とりわけ比較的低速で FRP抗張力体に熱 可塑性樹脂による本体被覆を行なう場合、及び押出温度のやや高温域での本体被 覆を施す場合、被覆部が発泡する現象により、外観不良と光ファイバへの悪影響の 問題が発生した。
[0012] そこで、本発明者らは、ドロップ光ファイバケーブルを製造する際に、製造条件、とり わけ比較的低速、及び押出温度の高温域で被覆付 FRP製抗張力体に熱可塑性榭 脂による本体被覆を施す際に、本体被覆部又は被覆付 FRP製抗張力体の被覆部が 発泡する現象を鋭意検討した結果、特に、 FRP部の残存スチレンモノマーがこの発 泡現象の原因であることを見出し、これを所定の範囲に制限することでこの現象が解 消すること知得し、本発明を完成した。
[0013] すなわち、本発明は、ドロップ光ファイバケーブル用 FRP製抗張力体において、発 泡現象を大幅に低減することを目的としてレ、る。
課題を解決するための手段
[0014] 上記目的を達成するために、本発明は、補強繊維を熱硬化性樹脂で結着した FR
P部を有するドロップ光ファイバケーブル用 FRP製抗張力体にぉレ、て、前記 FRP部 の残存スチレンモノマー量を、 0. 018重量%以下にした。
[0015] また、本発明は、補強繊維を熱硬化性樹脂で結着した FRP部と、前記 FRP部の外 周に、前記 FRP部の外表面とアンカー接着構造で被覆形成された熱可塑性樹脂被 覆層とを有するドロップ光ファイバケーブル用 FRP製抗張力体において、前記 FRP 部の残存スチレンモノマー量を、 0. 03重量%以下にした。
[0016] 前記熱硬化性樹脂は、ビニルエステル樹脂で構成することができる。
前記熱可塑性樹脂被覆層は、表面が整径加工されたものであって、当該被覆層の 表面は、レーザー外径測定器による表面凹凸度を 2— 3/l00mm以下にすることが できる。
[0017] 前記熱可塑性樹脂被覆層は、 LLDPEで構成することができる。
前記 FRP部は、補強繊維にガラスヤーンを用いることができる。
前記ドロップ光ファイバケーブル用 FRP製抗張力体は、熱風式ギヤオーブンを用い 、 80°Cで 40時間乾燥後の重量減少率力 0. 1%以下になるようにすることができる。 発明の効果
[0018] 本発明のドロップ光ファイバケーブル用 FRP製抗張力体では、残存スチレンモノー 量及び/又は重量減少率を所定の範囲としたので、これらの抗張力体を用いてドロ ップ光ファイバケーブルを製造する際に発生する発泡現象を抑制出来る。
[0019] また、特に、被覆付 FRP製抗張力体によるときは、 FRP部外周と被覆層内周とがァ ンカー接着構造を有しているので、この被覆層に本体被覆層を融着ないし密着させ れば、ドロップ光ファイバケーブル全体の熱収縮を抑制して、光ファイバ心線を有効 に保護できる。
[0020] さらに、アンカー接着構造により、 FRP外周に別途接着剤を塗布する必要がないの で、接着剤、塗布工程、設備が不要で工程の簡略化とコストダウンをはかることができ 、極めて経済的である。
[0021] 一方、アンカー接着構造であるため、接続作業において芯部の FRP製抗張力体の 露出は、被覆層に切込みを入れることによって容易に剥離できる。このため、刃物に よる削り出しや、溶剤の使用を要していた従来の接着剤を使用したドロップ光ケープ ノレと比較して、成端キャビネットへの引留め作業が、安全に良環境下で容易に行うこ とができる。
[0022] よって、本発明によれば、細径で実用的なノンメタリックのドロップ光ファイバケープ ル用抗張力体を提供することができる。
発明を実施するための最良の形態
[0023] 以下に、本発明の実施の形態について、添付図面を参照にして詳細に説明する。
図 1は、本発明にかかる FRP製抗張力体または被覆付抗張力体が使用されるドロッ プ光ファイバケーブルの一例を示している。同図に示したドロップ光ファイバケーブル
1は、光ファイバ心線 2, 3と、抗張力体 4と、支持線 5と、本体被覆 6を備えている。
[0024] 光ファイバ心線 2, 3は、ケーブル 1の中心軸上に上下に隣接するように配置されて いる。抗張力体 4は、光ファイバ心線 2, 3上下に、所定の間隔を設けて、一対配置さ れている。
[0025] 支持線 5は、上側の抗張力体 4の上方に位置していて、抗張力体 4よりも大きな直 径を備えている。本体被覆 6は、光ファイバ心線 2, 3と、抗張力体 4および支持線 5と の外周を一括被覆するように形成されてレ、る。
[0026] 抗張力体 4は、補強繊維を熱硬化性樹脂で結着した FRP部を有する FRP製抗張 力体、または、補強繊維を熱硬化性樹脂で結着した FRP部と、この FRP部の外周に 、FRP部の外表面とアンカー接着構造で被覆形成された熱可塑性樹脂被覆層とを 有する被覆付 FRP製抗張力体から構成される。
[0027] このような FRP製抗張力体は、 FRP部分の残存スチレンモノマーが 0. 018重量0 /0 (FRP部対比)以下であることを要する。また、被覆付 FRP製抗張力体では、残存ス チレンモノマーが 0. 03重量% (被覆付 FRP製抗張力体全体に対して)以下であるこ とを要する。
[0028] 残存スチレンモノマーがこれらの量を超えると、ドロップ光ケーブル製造工程での本 体被覆時に、溶融状の本体被覆熱可塑性樹脂と接触して、残存スチレンモノマーが 揮発するなどして被覆部、または、本体被覆部が発泡するなどの異常を来す。
[0029] 本発明において、残存スチレンモノマーの測定は、次ぎのような方法で行なった。
測定用試料を 2 3mmの長さに細力べ切断し、正確に約 3g秤量して、酢酸ェチル( 抽出液) 10mlをカ卩えて室温にて一昼夜放置する。
[0030] 抽出液 1 μ 1をガスクロマトグラフでカラム温度 150°Cにて気化させ、気化物の成分、 及び発生量を測定する。別途、事前にスチレンモノマーの各濃度の標準液を作成、 ガスクロマトグラフの測定から作成した標準液の検量線との比較により、試料の残存 スチレンモノマー濃度(%)を算出する。
[0031] 本発明において、残存スチレンモノマー量を所定の値以下に制御するには、高反 応性熱硬化性樹脂,高反応性触媒の選択、硬化時間の確保、硬化後の後処理等に より制御すれば良い。
[0032] 図 2は、上記ドロップ光ファイバケーブルの抗張力体 4に用いることができる被覆付 FRP製抗張力体 10を示している。この抗張力体 10は、 FRP (維強化熱硬化性樹脂) 部 11と、この FRP部 11の外周に熱可塑性樹脂の被覆層 12を施したものである。この 場合、 FRP製抗張力体 11の外周と被覆層 12の内周とは、相互にアンカー接着して いる。
[0033] このようなアンカー接着構造を得るためには、特公昭 63— 2772号に記載された方 法、すなわち、補強繊維束に未硬化の熱硬化性樹脂を含浸させてなる未硬化状補 強芯部を、溶融した熱可塑性樹脂で環状に被覆し、その後直ちに該熱可塑性樹脂 の被覆層を冷却固化した後、これを加圧高温蒸気の硬化槽に導いて、補強芯部と該 被覆層の界面部分を軟化、流動状態で接触させつつ該熱硬化性樹脂を加熱硬化さ せ、引続レ、て被覆熱可塑性樹脂を冷却して繊維強化熱硬化性樹脂(FRP)からなる 芯部界面と被覆熱可塑性樹脂とをアンカー接着させればよい。 [0034] 本発明の抗張力体の FRP部 11において使用できる補強繊維としては、各種ガラス 繊維、芳香族ポリアミド繊維、カーボン繊維等が一般的であり、要求される引張強度 や弾性率によって選択される。
[0035] ガラス繊維を使用する場合においては、 FRP部 11を、直径が 0. 9mm以下に細く するためには、ガラスヤーンが望ましぐ E, S, Tなどのガラス繊維から要求される性 能により選択されるが、経済性の面からは Eガラスが奨用される。
[0036] ガラスヤーンとしては、構成する単繊維径が 3 13 μ mで 、複数のヤーンを合撚 していない単糸状のものが望ましぐ 11. 2-67. 5Texが使用される。
[0037] この場合、番手の大きレ、もの、つまり 67. 5Texを超えるガラスヤーンを用いた場合 、 FRPとした際の真円度に悪影響を及ぼし、後の熱可塑性樹脂による薄肉被覆成形 工程において、均一な被覆を行うことが難しくなる。一方、 11. 2Tex以下のヤーンも 市販されているが、工程が煩雑となる上、コスト上昇につながり経済的でない。
[0038] ガラスヤーンを選択するのは、ヤーンには、例えば、 1個/インチ等の撚りが施され ており、熱硬化性樹脂の含浸ないしは絞り工程で、ガラス単繊維の乱れや、弛み、も つれが少なぐ外周が均一な未延伸棒状物が得られるからである。
[0039] 図 1に示した構成において、抗張力体 4のガラス繊維の体積含有率は、要求される 物性により決定されるが、より細径化を目的とする本願発明においては、概ね 55— 7 0V〇L%程度が望ましい。
[0040] また、本発明に使用できる熱硬化性樹脂は、テレフタル酸系又はイソフタル酸系の 不飽和ポリエステル樹脂、ビエルエステル樹脂(エポキシアタリレート樹脂など)また はエポキシ樹脂等が一般的であり、これらに硬化用触媒等を添加して使用されるが、 とりわけビュルエステル樹脂(エポキシアタリレート樹脂など)が耐熱性等の物性の点 力、ら好ましい。
[0041] 未硬化状補強芯部の被覆層 12に用いる熱可塑性樹脂は、本体被覆部 6の熱可塑 性樹脂と相溶性のある樹脂から選択され、本体被覆部 6に難燃性樹脂を使用する場 合は、該樹脂との相溶性向上のため、接着性樹脂を使用するか、あるいは、接着性 樹脂のマスターバッチを添加することが望ましぐさらに本体被覆部 6の色にあわせて 着色用マスターバッチを添加して着色しておいても良い。 [0042] また、被覆層 12に用いる熱可塑性樹脂は、本体被覆部 6の難燃化に合せて難燃 性付与のための各種変性を施したものであっても良い。さらに、被覆層 12に用いる 熱可塑性樹脂は、 FRP部 11とのアンカー接着構造を得るため、熱硬化性樹脂の加 熱硬化時に少なくとも内周が、溶融状ないし軟化状態を呈することが望ましぐ硬化 温度 110— 150°Cの範囲に融点または軟化点を有する、ポリオレフイン系樹脂がより 好適である。
[0043] また、 FRP部 11は、ガラスヤーンを補強繊維とする場合、耐曲げ性ゃ細径化の点 力 外径が 0. 9mm以下の繊維強化熱硬化性樹脂硬化物とすることが望ましぐ同じ く細径化の点、及び被覆層に難燃性を付与しない場合であって、難燃性を本体樹脂 に求められる場合は、必要以上の被覆厚みは、難燃性の阻害要因となるため、被覆 層 12は、 0. 3mm以下にすることが望ましい。
[0044] さらに、被覆層 12の厚みは、整径前の被覆厚みは、 0. 08mm以上が望ましぐ糸田 径化の目的で表面層を整径することによって、 0· 07力ら 0. 2mm程度の厚みとする ことがより望ましい。
[0045] 整径前の被覆厚みの薄膜化のためには、薄膜成形性の良い樹脂が望ましぐ例え ば、低密度ポリエチレン (LDPE)、直鎖状低密度ポリエチレン (LLDPE)等が好適で ある。
[0046] 本発明のドロップ光ファイバケーブルに用いる被覆 FRP製抗張力体 10は、被覆層 12に用レ、た熱可塑性樹脂からの FRP部 11の引抜力が 13N/ 1 Omm以上であるこ とが好適である。この引抜力は、アンカー接着構造による密着力の指標とするもので 、以下の測定方法により測定した。
[0047] FRP芯部の外径より僅かに径大の透孔を有する測定冶具を取着した試験機を準 備する一方、被覆付 FRP製抗張力体 11の端部の被覆層 12を剥離し、それに連続し て被覆層 12に力ミソリ刃により 10mm長の刻線を施して、 10mm長さの被覆層 12を 残したサンプル Sを準備した。
[0048] サンプノレ Sを試験機の透孔に揷通し、 50mmZ分の速度で引張荷重を負荷して、 そのチャートから引抜力を求めた。
[0049] 被覆付 FRP抗張力体において、熱可塑性樹脂被覆層表面は整径加工されるが、 その外径精度は、レーザー外径測定器による表面凹凸度を 2— 3/100mm以下と することが望ましぐこれを超えると本体被覆時の発泡トラブルが発生し易くなる傾向 にある。
[0050] また、本発明の被覆付 FRP製抗張力体 10は、熱風式ギヤオーブンを用い 80°Cで 40時間乾燥後の重量減少率が 0. 1重量%以下となっていることが望ましい。
[0051] これは、高温高圧蒸気で FRP部を硬化するに際して、未硬化状の熱硬化性樹脂成 分の揮発や、硬化発熱状態と軟化状態の被覆層および、外部から作用する蒸気圧 等との関係において、硬化がほぼ完結されているがこの工程のみで製造されたドロッ プ光ファイバケーブル用被覆付 FRP製抗張力体では不十分であり、前記の発泡など のトラブルが発生する。
[0052] 前述した残存スチレンモノマー量の制限や、被覆部表面、及び FRPとの界面の水 分等の滞留を少なくするか、或いは、二次加熱処理を与えることによって、 80°Cで 40 時間乾燥後の重量減少率を 0. 1%以下とすることが出来る。二次熱処理は、熱硬化 性樹脂の硬化工程に連続して加熱処理槽に通す方法でも良いが、卷取後に行なつ ても良い。
[0053] 卷取後に二次熱処理を行なう場合は、卷取ボビンに ABS樹脂などを使用している とボビン自体が熱変形することがあるので、 40°C程度で長時間処理することが望まし レ、。
[0054] 以下に、本発明のより具体的な実施例について説明するが、本発明は下記実施例 に限定されるものではない。
実施例 1
[0055] ビュルエステル樹脂(三井化学社製: H8100)に熱硬化性触媒 (ィ匕薬ァクゾ一社製 、力ドックス BCH50)を 4 部、カャブチル Bを 1部添加した樹脂含浸槽中に、単糸 径 10 z mで 22. 5Texの Eガラスヤーン(日東紡績社製: ECEN225 I/O 1. OZ R) 14本を、ガイドを介して導き、引き続いて、内径を段階的に小さくした絞りノズノレに 導いて、未硬化状樹脂を絞り成形し、外径が 0. 505mmの細径棒状物を得、これを 溶融押出機のクロスヘッドダイ(200°C)に通して、黒色マスターバッチを添加した Ml = 2. 4、密度 0· 921g/cm3、 30 μ mのキャストフィルムによる 1 %モジュラスが 17 OMPaである LLDPE樹脂(日本ュニカー社製: TUF2060)により、被覆厚み 0· 25 mmで環状に被覆し、直ちに冷却水槽に導いて、表面の被覆部を冷却固化した。
[0056] 引き続いて、この被覆未硬化線状物を入口及び出口に加圧シール部を設けた長さ 18mの加圧蒸気硬化槽に 15mZminの速度で導いて蒸気圧 32. 5Pa ( 145°C) で硬化し、引続いて、 210°C— 250°Cに段階的に加熱された内径 0. 93mmおよび 0 . 80mmの整形ダイスを備えた整形器に導いて被覆外周面を整形し、被覆外径 0. 8 mmの被覆抗張力体 10を得、ボビンに連続状に卷き取った。引続いて、ボビンを 40 °Cの恒温室中で 40時間乾燥熱処理(二次熱処理)を行なった。
[0057] この被覆抗張力体 10は、ガラス繊維含有率が、 61. 9VOL%であり、前述の引抜 力が、 15NZl0mmであった。また、 80°C熱間での 24時間耐熱曲げ直径テストでは 、 38mmをクリアし、サンプル長 1000mmで _30。C→80。Cのヒートサイクルテストを 3 回繰り返し、被覆抗張力体 10の被覆層 12と FRP製抗張力体 11との接着状況を見 た力 被覆層 12の収縮は、殆ど発生していなかった。
[0058] また、前述の測定方法による残存スチレンモノマー量は、 0. 015重量%であった。
さらに、前述の測定方法による被覆付 FRP製抗張力体の重量減少率は、 0. 08%で 平後 ΐとなった。
[0059] 被覆抗張力体 10の製造時の二次熱処理行なわなかった場合 (比較例 1)、硬化温 度を変更した場合、(比較例 2)、熱硬化性樹脂を変更した場合 (比較例 3)の残存ス チレンモノマー量及び 80°C X 40時間の重量減少率及び、以下に示す本体被覆試 験による発泡現象発生の有無についてまとめて表 1に示す。
[0060] 本体被覆試験は、被覆抗張力体 10を、溶融押出機のクロスヘッドダイに挿通して、 難燃性ポリエチレン樹脂を 175°Cで押出し、被覆厚み 0. 6mmで環状に本体被覆部 6を形成するに際して、被覆速度 30mZminで走行させ、 100分間での発泡異常の 発生の有無で判定した。
[0061] [表 1] 熱硬化性樹脂、 残存スチレンモノマ- (%) 80 °C X 40時間 本体被覆テスト 硬化温度 (対被覆付 FRP 重量減少率 (%). 発泡現象
製抗張力体)
実施例 1 H 8100 0. 015 0. 08
145°C
比較例 1 H8100 0. 01 5 0. 25 有
145°C
比較例 2 H 8100 0. 045 0. 09 有
140。C
比較例 3 ポリセッ ト 0. 1 10 0. 09 有
145°C
比較例 1一 3
[0062] 実施例 1に比べて二次加熱処理を省略した比較例 1では、 80°C X 40時間の重量 減少が 0.25%であり、蒸気圧を 28Pa (硬化槽温度 140°C)とした比較例 2では、残 存スチレン%が 0.045%、重量減少が 0.09%であった。
[0063] 熱硬化性樹脂を不飽和ポリエステル樹脂(日立化成社製 ポリセット)とした比較例
3では、硬化温度を 145°Cとし、二次熱処理を行なったが、残存スチレンが 0.11%と 多ぐ重量減少は 0· 09%であった。
[0064] これらの比較例について、本体被覆試験による発泡現象発生の有無を確認した。
これらの結果を、表 1に纏めて示す。比較例に示すものは、残存スチレンモノマー量 が 0.030%以上である力 \重量減少率が 0.1%以上であり、何れも本体被覆試験 におレ、て発泡現象が発生した。
産業上の利用可能性
[0065] 本発明に力かるドロップ光ケーブル用 FRP製抗張力体によれば、発泡現象が大幅 に低減されるので、外観不良と光ファイバへの悪影響がなくなり、高品質のドロップ光 ケーブルとして適用することができる。
図面の簡単な説明
[0066] [図 1]本発明の抗張力体が適用できるドロップ光ファイバケーブルの一例を示す断面 図である。
[図 2]本発明にかかる被覆付 FRP製抗張力体の断面の説明図である。 符号の説明
1 ドロップ光ファイバケーブル 2、 3 光ファイバ心線
4 抗張力体
5 支持線
6 本体被覆層
10 被覆付 FRP製抗張力体 11 FRP製抗張力体

Claims

請求の範囲
[1] 補強繊維を熱硬化性樹脂で結着した FRP部を有するドロップ光ファイバケーブル 用 FRP製抗張力体において、
前記 FRP部の残存スチレンモノマー量を、 0. 018重量%以下にしたことを特徴と するドロップ光ファイバケーブル用 FRP製抗張力体。
[2] 補強繊維を熱硬化性樹脂で結着した FRP部と、
前記 FRP部の外周に、前記 FRP部の外表面とアンカー接着構造で被覆形成され た熱可塑性樹脂被覆層とを有するドロップ光ファイバケーブル用 FRP製抗張力体に おいて、
前記 FRP部の残存スチレンモノマー量を、 0. 03重量%以下にしたことを特徴とす るドロップ光ファイバケーブル用 FRP製抗張力体。
[3] 前記熱硬化性樹脂は、ビニルエステル樹脂であることを特徴とする請求項 1又は 2 記載のドロップ光ファイバケーブル用 FRP製抗張力体。
[4] 前記熱可塑性樹脂被覆層は、表面が整径加工されたものであって、当該被覆層の 表面は、レーザー外径測定器による表面凹凸度を 2— 3/100mm以下にしたことを 特徴とする請求項 2又は 3記載のドロップ光ファイバケーブル用 FRP製抗張力体。
[5] 前記熱可塑性樹脂被覆層は、 LLDPEであることを特徴とする請求項 4記載のドロ ップ光ファイバケーブル用 FRP製抗張力体。
[6] 前記 FRP部は、補強繊維にガラスヤーンを用いることを特徴とする請求項 1ないし 5 記載のドロップ光ファイバケーブル用 FRP製抗張力体。
[7] 請求項 2ないし 6記載のドロップ光ファイバケーブル用 FRP製抗張力体は、熱風式 ギヤオーブンを用い、 80°Cで 40時間乾燥後の重量減少率が、 0. 1 %以下になるよ うにしたことを特徴とするドロップ光ファイバケーブル用 FRP製抗張力体。
PCT/JP2004/012736 2003-12-08 2004-09-02 ドロップ光ファイバケーブル用frp製抗張力体 WO2005057263A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067011256A KR101081788B1 (ko) 2003-12-08 2004-09-02 드롭 광섬유 케이블용 섬유 강화 열경화성 수지제 항장력체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003409353A JP4116968B2 (ja) 2003-12-08 2003-12-08 ドロップ光ファイバケーブル用frp製抗張力体
JP2003-409353 2003-12-08

Publications (1)

Publication Number Publication Date
WO2005057263A1 true WO2005057263A1 (ja) 2005-06-23

Family

ID=34674895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012736 WO2005057263A1 (ja) 2003-12-08 2004-09-02 ドロップ光ファイバケーブル用frp製抗張力体

Country Status (5)

Country Link
JP (1) JP4116968B2 (ja)
KR (1) KR101081788B1 (ja)
CN (1) CN100454065C (ja)
TW (1) TW200519442A (ja)
WO (1) WO2005057263A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131728B2 (ja) 2006-06-02 2013-01-30 独立行政法人物質・材料研究機構 高強力Ti−Ni−Cu形状記憶合金とその製造方法
US20100219931A1 (en) 2007-05-11 2010-09-02 Akira Ishida Bidirectional shape memory alloy thin film actuator and method for manufacturing shape memory alloy thin film used therefor
JP2009172995A (ja) * 2007-12-27 2009-08-06 Ube Nitto Kasei Co Ltd 熱可塑性樹脂被覆frp線条物及びその製造方法
CN102733214B (zh) * 2011-04-08 2016-01-20 上海斯瑞科技有限公司 光缆用一体式高柔韧性加强芯及其制备方法
KR20220011248A (ko) 2020-07-20 2022-01-28 대한광통신 주식회사 광케이블 및 전원선의 일체형 케이블

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632772B2 (ja) * 1983-06-28 1988-01-20 Ube Nitto Kasei Co
JPH0271207A (ja) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd 光ファイバ用保護パイプ及びそれを用いてなる平型光ファイバコード
JPH0467004A (ja) * 1990-07-05 1992-03-03 Sumitomo Electric Ind Ltd 押出成形品の製造方法
JPH09110949A (ja) * 1995-10-17 1997-04-28 Kayaku Akzo Kk 不飽和ポリエステル樹脂又はビニルエステル樹脂用硬化剤組成物及び硬化方法
JPH10104477A (ja) * 1996-09-26 1998-04-24 Fujikura Ltd 架空集合屋外用光ケーブル
JPH10148737A (ja) * 1996-11-20 1998-06-02 Fujikura Ltd 架空屋外用光ケーブル
JPH10148739A (ja) * 1996-11-18 1998-06-02 Fujikura Ltd 架空集合屋外用光ケーブル
JPH10148738A (ja) * 1996-11-20 1998-06-02 Fujikura Ltd 架空集合屋外用光ケーブルおよびその製造方法
JP2000238143A (ja) * 1999-02-23 2000-09-05 Ube Nitto Kasei Co Ltd 繊維強化合成樹脂製線状物
JP2003227984A (ja) * 2002-01-31 2003-08-15 Fujikura Ltd 光ファイバドロップケーブル
JP2003253042A (ja) * 2002-03-05 2003-09-10 Nof Corp 熱硬化性樹脂用硬化剤、成形材料、硬化成形品およびその製造方法
JP2003327716A (ja) * 2002-05-10 2003-11-19 Japan Composite Co Ltd 成形品

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632772B2 (ja) * 1983-06-28 1988-01-20 Ube Nitto Kasei Co
JPH0271207A (ja) * 1988-06-20 1990-03-09 Ube Nitto Kasei Co Ltd 光ファイバ用保護パイプ及びそれを用いてなる平型光ファイバコード
JPH0467004A (ja) * 1990-07-05 1992-03-03 Sumitomo Electric Ind Ltd 押出成形品の製造方法
JPH09110949A (ja) * 1995-10-17 1997-04-28 Kayaku Akzo Kk 不飽和ポリエステル樹脂又はビニルエステル樹脂用硬化剤組成物及び硬化方法
JPH10104477A (ja) * 1996-09-26 1998-04-24 Fujikura Ltd 架空集合屋外用光ケーブル
JPH10148739A (ja) * 1996-11-18 1998-06-02 Fujikura Ltd 架空集合屋外用光ケーブル
JPH10148737A (ja) * 1996-11-20 1998-06-02 Fujikura Ltd 架空屋外用光ケーブル
JPH10148738A (ja) * 1996-11-20 1998-06-02 Fujikura Ltd 架空集合屋外用光ケーブルおよびその製造方法
JP2000238143A (ja) * 1999-02-23 2000-09-05 Ube Nitto Kasei Co Ltd 繊維強化合成樹脂製線状物
JP2003227984A (ja) * 2002-01-31 2003-08-15 Fujikura Ltd 光ファイバドロップケーブル
JP2003253042A (ja) * 2002-03-05 2003-09-10 Nof Corp 熱硬化性樹脂用硬化剤、成形材料、硬化成形品およびその製造方法
JP2003327716A (ja) * 2002-05-10 2003-11-19 Japan Composite Co Ltd 成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOKUNI H. ET AL: "Styrene Teikisansei FRP Seikeiyo "POLYLITE" Kyoka Plastic.", vol. 46, no. 6, 15 June 2000 (2000-06-15), pages 253 - 255, XP002989386 *

Also Published As

Publication number Publication date
TW200519442A (en) 2005-06-16
JP2005172939A (ja) 2005-06-30
CN1890590A (zh) 2007-01-03
JP4116968B2 (ja) 2008-07-09
KR20060121147A (ko) 2006-11-28
CN100454065C (zh) 2009-01-21
TWI352225B (ja) 2011-11-11
KR101081788B1 (ko) 2011-11-09

Similar Documents

Publication Publication Date Title
JP3176390B2 (ja) 強化プラスチック製鎧装ケーブルの製造方法
CA1269552A (en) Reinforced optical fiber and production of the same
KR910005200B1 (ko) 봉상 성형물의 연속 성형방법
CN100520468C (zh) 引入线光缆和在该光缆中使用的frp制抗张力体
WO2005057263A1 (ja) ドロップ光ファイバケーブル用frp製抗張力体
JP4077300B2 (ja) ドロップ光ファイバケーブル
JP2984021B2 (ja) 繊維強化熱硬化性樹脂製撚構造体及びその製造方法
JPH0271207A (ja) 光ファイバ用保護パイプ及びそれを用いてなる平型光ファイバコード
JP2869116B2 (ja) 繊維強化熱硬化性樹脂製撚構造体及びその製造方法
JP2996481B2 (ja) 光ファイバ担持用繊維強化硬化性樹脂製スペーサの製造方法
JPH1010382A (ja) 繊維強化光ファイバコードおよびその製造方法
JP2024061005A (ja) 繊維強化樹脂線状体
JP2008307720A (ja) 繊維強化複合材料方法及び繊維強化複合材料
JPH0749450Y2 (ja) 光ファイバー用テンションメンバー
JP2019211642A (ja) 光ファイバケーブル用線状体、繊維強化光ファイバケーブル及び光ファイバセンサ
CN108381817A (zh) 一种高强度碳合非金属加强件的制备方法
JPS6183651A (ja) 繊維強化光フアイバ−の製造方法
JPH0445914A (ja) 強化プラスチック鎧装ケーブルの製造方法
JPH04284409A (ja) 光フアイバーケーブル用中心構造体
JPH02131923A (ja) 長尺frp材の製造方法
JPH03167513A (ja) 光ファイバテープ心線補強用テンションメンバー及びその製造方法
JPS61221714A (ja) 繊維強化光フアイバ−製造方法
JPH03192211A (ja) 光ファイバ担持用スペーサ及びその製造方法
JP2012185243A (ja) 光ファイバケーブルおよびその製造方法
JPS634212A (ja) 耐熱性強化光フアイバおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480036570.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 3308/DELNP/2006

Country of ref document: IN

Ref document number: 1020067011256

Country of ref document: KR

122 Ep: pct application non-entry in european phase