WO2005041225A1 - 電気二重層キャパシタ電極用バインダー - Google Patents

電気二重層キャパシタ電極用バインダー Download PDF

Info

Publication number
WO2005041225A1
WO2005041225A1 PCT/JP2004/015600 JP2004015600W WO2005041225A1 WO 2005041225 A1 WO2005041225 A1 WO 2005041225A1 JP 2004015600 W JP2004015600 W JP 2004015600W WO 2005041225 A1 WO2005041225 A1 WO 2005041225A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder
electric double
double layer
layer capacitor
Prior art date
Application number
PCT/JP2004/015600
Other languages
English (en)
French (fr)
Inventor
Hidekazu Mori
Masahiro Yamakawa
Mayumi Kaneko
Keita Tokura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to KR1020067010016A priority Critical patent/KR101062563B1/ko
Priority to JP2005514970A priority patent/JP4483784B2/ja
Priority to US10/576,676 priority patent/US7939600B2/en
Publication of WO2005041225A1 publication Critical patent/WO2005041225A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention provides a binder for an electric double layer capacitor electrode, a binder composition for an electric double layer capacitor electrode containing the binder, a slurry composition for an electric double layer capacitor electrode, and a slurry produced using the slurry composition. And an electric double layer capacitor having the electrode.
  • An electric double layer capacitor using an electric double layer formed at an interface between a polarizing electrode and an electrolyte has been rapidly growing in demand as a memory backup power supply in recent years. Also, its use is attracting attention for applications requiring a large capacity, such as a power supply for an electric vehicle, and a high electrode density is required for increasing the capacity.
  • An electrode for an electric double layer capacitor is usually prepared by dissolving or dispersing a binder in water or an organic solvent, and mixing the resulting mixture with an electrode active material and a conductivity-imparting material added as necessary. It is manufactured by applying a slurry composition for electrodes to a current collector such as aluminum foil and drying.
  • a current collector such as aluminum foil and drying.
  • fluoropolymers such as polytetrafluoroethylene and polyvinylidene fluoride have generally been used as binders.However, electrodes manufactured using fluoropolymers have an electrode active material and a current collector. The bondability with the body was not sufficient, and the electrode density was low.
  • a binder using a polymer having a specific glass transition temperature and a specific particle diameter has been proposed as a binder having excellent binding force even when used in a small amount (see Patent Document 1).
  • Patent Document 1 A binder using a polymer having a specific glass transition temperature and a specific particle diameter has been proposed as a binder having excellent binding force even when used in a small amount.
  • this noinder even with this noinder, the binding between the electrode active material and the current collector was not sufficient, and the electrode density was low.
  • Patent Document 1 JP-A-11-162794
  • the present invention provides a binder for an electric double layer capacitor electrode which provides an electrode having a high electrode density and a high binding force, a binder composition for an electric double layer capacitor containing the binder, and an electric double layer capacitor.
  • An object is to provide a slurry composition for an electrode.
  • Another object of the present invention is to provide an electrode manufactured using the slurry composition and an electric double layer capacitor having the electrode.
  • the inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, when a polymer that gives a polymer film having a small tensile stress and a large elongation at break is used as a binder, the binding force is high and the electrode density is high. The present inventors have found that an electrode having a high value can be obtained, and have completed the present invention based on this finding.
  • a binder for an electric double layer capacitor electrode that has a polymer force that gives a polymer film having a tensile stress at 100% elongation of 2 MPa or less and an elongation at break of 450% or more.
  • R 2 represents an alkyl group or a cycloalkyl group. ) Is preferably contained in total of 60% by weight or more of a monomer unit obtained by polymerizing the compound represented by the formula (1).
  • the polymer preferably has a crosslinkable functional group.
  • the crosslinkable functional group is preferably an N-methylolamide group.
  • crosslinkable functional group is preferably a combination of a sulfonic acid group or a salt thereof and an epoxy group.
  • An electrode for an electric double layer capacitor wherein an electrode layer containing the binder according to (1) and an electrode active material is bound to a current collector.
  • a method for producing an electrode for an electric double layer capacitor comprising a step of applying the slurry composition for an electrode according to (3) to a current collector and drying.
  • the present manufacturing method further includes a step of performing a press treatment.
  • the present production method preferably further includes a step of performing a heat treatment at 150 to 250 ° C.
  • an electrode having a high electrode density and a strong binding force can be obtained.
  • an electric double layer capacitor having a large capacitance and a small internal resistance can be obtained.
  • the binder for an electrode of an electric double layer capacitor of the present invention (hereinafter simply referred to as “binder”) is a polymer film having a tensile stress at 100% elongation of 2 MPa or less and an elongation at break of 450% or more.
  • the polymer power that gives Here, the polymer film is prepared from an aqueous dispersion of the polymer based on the method described in ISO 498. Further, the tensile stress and the elongation at break are values measured by JIS K6251 using a dumbbell-shaped No. 4 type test piece prepared from the polymer film.
  • the tensile stress at 100% elongation is preferably 1.5 MPa or less, more preferably 0.1-IMPa.
  • the elongation at break is preferably 500% or more, more preferably 600-2,000%. When the tensile stress at 100% elongation and the elongation at break are within these ranges, the binding density is high and the electrode density can be easily increased by light pressing.
  • Elastomer is a polymer having a glass transition temperature of room temperature (25 ° C.) or lower, preferably 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower. When the glass transition temperature is in this range, particularly the binding force Excellent.
  • a gen-based elastomer containing as a main component a monomer unit obtained by polymerizing a conjugated gen such as butadiene or isoprene or a monomer unit obtained by hydrogenating the monomer unit is used.
  • Examples of the above-mentioned gen-based elastomer include polybutadiene, polyisoprene, carboxy-modified or styrene-butadiene copolymer, acrylonitrile-butadiene copolymer and hydrides thereof. .
  • R 2 represents an alkyl group or a cycloalkyl group;
  • a polymer containing a total of 60% by weight or more, more preferably 80% by weight or more of monomer units obtained by polymerizing the compound represented by the formula (1) is preferable.
  • the atalylate-based elastomer is obtained by copolymerizing a compound represented by the general formula (1) and a monomer copolymerizable therewith.
  • Specific examples of the compound represented by the general formula (1) include ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, and acrylic acid.
  • n alkyl acrylates such as pentyl, isopentyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, hexyl acrylate, noel acrylate, acrylyl acrylate, and stearyl acrylate;
  • Acrylic acid cycloalkyl esters such as ethyl; methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, n-methacrylate Hexil, meta Alkyl methacrylates such as 2-ethylhexyl acrylate, otatyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, ste
  • Monomers copolymerizable with the compound represented by the general formula (1) include aromatic styrene such as styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, and 4-methylstyrene.
  • ⁇ -unsaturated tolyl compounds such as acrylonitrile and metal-tolyl
  • 1-olefins such as ethylene, propylene and 1-butene; methyl crotonate, ethyl crotonate, propyl crotonate, butyl crotonate, isobutyl crotonate, ⁇ -pentyl crotonate, isopentyl crotonate, ⁇ -hexyl crotonate
  • Crotonic acid esters such as dimethyl, crotonic acid 2-ethylhexyl; maleic acid diesters such as dimethyl maleate, dibutyl maleate and diethylhexyl maleate; fumaric acid diesters such as dimethyl fumarate and dibutyl fumarate; itaconic acid Dimethic acid diesters such as dimethyl and dibutyl itaconate; and acrylamide conjugates such as acrylamide and methacrylamide.
  • a monomer having a crosslinkable functional group described below can also be used.
  • the method for producing the polymer as the binder of the present invention is not particularly limited.
  • each of the above monomers can be prepared by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method. It can be obtained by polymerization. Among them, production by an emulsion polymerization method is preferred because it is easy to control the particle diameter of the binder.
  • the crosslinked structure is small.
  • the electrode density can be easily increased by light pressing.
  • the content ratio of the crosslinked structure can be adjusted by the polymerization temperature and time during the production of the polymer, and the amounts of the polyfunctional monomer and the chain transfer agent used.
  • the polymerization temperature when producing a gen-based elastomer is preferably 5 to 90 ° C, and the polymerization time is preferably 2 to 100 hours.
  • the chain transfer agent include mercaptans such as n-butyl octyl mercaptan, n-dodecyl mercaptan, and t-dodecyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride and carbon tetrabromide; and the like.
  • chain transfer agents can be added before the start of the polymerization or during the polymerization.
  • the amount of the chain transfer agent is usually 0.01 to 5 parts by weight based on 100 parts by weight of the monomer.
  • the chain transfer agent is a mercaptan
  • the amount used is preferably based on 100 parts by weight of the monomer. 0.01-2 parts by weight.
  • the chain transfer agent is a halogenated hydrocarbon
  • the amount used is preferably 2 to 5 parts by weight based on 100 parts by weight of the monomer. Yes, and more preferably 0.01-1 part by weight of mercaptans.
  • the amount of the polyfunctional monomer such as ethylene glycol dimethacrylate or trimethylolpropane trimetatalate used in the production of the acrylate copolymer is 1% by weight or less in the whole monomer. Is preferred,.
  • the polymer used in the present invention preferably has a crosslinkable functional group in the molecule.
  • the crosslinkable functional group is a functional group capable of forming a crosslinked structure by heating or irradiation with actinic radiation after the formation of the electrode layer, and is more preferably a thermally crosslinkable functional group capable of forming a crosslinked structure by heating.
  • thermally crosslinkable functional group examples include an N-methylolamide group.
  • the cross-linked structure is formed by a combination of two or more functional groups such as a combination of a carboxyl group, an acid anhydride group, a hydroxyl group or a sulfonic acid group or a salt thereof and an epoxy group, and a combination of a carboxyl group and an ethyleneimine group. May be formed.
  • the crosslinkable functional group capable of forming a crosslinked structure upon irradiation with actinic radiation include an attaryloyl group, a methacryloyl group, and an aryl group.
  • a polymer having a crosslinkable functional group in the molecule is obtained by copolymerizing a monomer having a crosslinkable functional group in the production of the polymer.
  • the monomer having a thermally crosslinkable functional group include N-methylolacrylamide and N-methylolmethacrylamide.
  • Examples of the monomer having a functional group capable of forming a crosslinked structure by a combination of two or more kinds of the functional groups include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, and isocrotonic acid.
  • unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, glutaconic acid, itaconic acid
  • unsaturated dicarboxylic anhydrides such as maleic anhydride, citraconic anhydride, itaconic anhydride
  • acrylic acid Unsaturated carboxylic esters having a hydroxyl group such as hydroxyethyl, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxypropyl crotonate
  • vinyl sulfonic acid methyl vinyl sulfone Acid, aryl sulfonic acid, methallyl sulfonic Unsaturated organics such as acid, styrene sulfonic acid, 2-ethyl sulfonic acid acrylate, 2-ethyl methacrylate sulfonic acid, 2-acrylamido-2
  • the binder composition for an electric double layer capacitor electrode of the present invention (hereinafter, also simply referred to as “binder composition”) is obtained by dispersing the above-mentioned binder in water.
  • the method for dispersing the binder in water is not particularly limited.
  • a binder that has been made into fine particles by spray-drying and pulverization may be mixed and dispersed with water according to a conventional method.
  • the concentration may be adjusted as necessary by concentration, dilution, etc., and the binder may be used as it is as the binder composition of the present invention without isolation. it can.
  • the concentration (solid content) of the noinder composition is usually 20 to 70% by weight.
  • the slurry composition for an electric double layer capacitor electrode of the present invention contains the kinder composition of the present invention and an electrode active material, and is increased as necessary. It includes a tackifier and a conductivity-imparting material.
  • the electrode active material used in the present invention is an allotrope of carbon having pores capable of forming an electric double layer, and has a specific surface area of 30 m 2 Zg or more, preferably 500-5, More preferably, it is 1,000-3,000 m 2 Zg.
  • powders or fibers of activated carbon, polyacene, carbon whiskers, graphite and the like can be used.
  • the electrode active material is preferably activated carbon.
  • As the activated carbon phenol-based, rayon-based, acrylic-based, pitch-based, or coconut husk-based can be used.
  • non-porous carbon having microcrystalline carbon similar to graphite and having an increased interphase distance is also used as an electrode active material.
  • An electrode active material Can be used as a substance.
  • the particle diameter of the electrode active material is preferably 0.1-100 / ⁇ , more preferably 112 / zm, because the thin film of the capacitor electrode can be easily formed and the capacity density can be increased.
  • the amount of the binder in the slurry composition of the present invention is based on 100 parts by weight of the electrode active material. Thus, it is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight. If the amount of the binder is too small, the electrode active material and the conductivity-imparting material are liable to fall off from the electrode. On the other hand, if the amount is too large, the electrode active material may be covered by the binder to increase the internal resistance of the electrode.
  • the slurry composition of the present invention preferably contains a thickener.
  • the addition of the thickener improves the coatability and fluidity of the slurry composition.
  • the type of the thickener is not particularly limited, but a water-soluble polymer is preferred.
  • Specific examples of the water-soluble polymer include cenorellose polymers such as carboxymethinoresenorelose, methinoresenorelose, hydroxypropinoresenorelose and the like, and their ammonium salts and alkali metal salts; poly (meta).
  • Poly (meth) acrylates such as sodium acrylate, polybutyl alcohol, polyethylene oxide, polybutylpyrrolidone, copolymers of acrylic acid or acrylates and butyl alcohol, maleic anhydride or maleic acid or fumaric acid
  • examples thereof include copolymers with bur alcohol, modified polybutyl alcohol, modified polyacrylic acid, polyethylene glycol, polycarboxylic acid, oxidized starch, starch phosphate, casein, and various modified starches.
  • those preferably used are cellulosic polymers and salts thereof, and more preferable are the ammonium salts of cellulosic polymers.
  • the preferred use amount of these water-soluble polymers is 0.5 to 5 parts by weight based on the electrode active material.
  • the slurry composition of the present invention may contain other binders in a range that does not impair the object of the present invention.
  • binders Specifically, homopolymers of ⁇ , ⁇ -unsaturated-toluyl conjugates such as acrylonitrile-methacrylo-tolyl; a, j8-unsaturated-toluyl conjugates and monomers copolymerizable therewith Copolymer resins; fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, and polypentafluoropropylene; and the like.
  • the content of these binders is preferably 50% by weight or less, more preferably 20% by weight or less, based on the binder of the present invention.
  • the slurry composition of the present invention preferably contains a conductivity-imparting material.
  • a conductivity-imparting material such as acetylene black, Ketjen black, or carbon black can be used, and these are used in combination with the above-mentioned electrode active material.
  • the amount of the conductivity-imparting material to be used is generally 0.1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the electrode active material.
  • a photocrosslinking agent may be added as necessary.
  • the photocrosslinking agent include benzyldimethyl ketal, trimethylsilylbenzophenone, benzoin, 4-methoxybenzophenone, and benzoin methyl ether anthraquinone.
  • the slurry composition of the present invention can be produced by mixing the binder composition and the electrode active material of the present invention with the above-mentioned other components added as necessary using a mixer.
  • a mixer a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, a Hobart mixer, or the like can be used.
  • the electrode active material and the conductivity-imparting material are first mixed using a mixer such as a crusher, a planetary mixer, a Henschel mixer, or an omni mixer, and then the binder composition is added and uniformly mixed.
  • the method is also preferred. By employing this method, a uniform slurry composition can be easily obtained.
  • the electrode for an electric double layer capacitor of the present invention (hereinafter, also simply referred to as “electrode”) is one in which an electrode layer containing the binder and the electrode active material of the present invention is bound to a current collector. is there.
  • the current collector is not particularly limited as long as it is conductive and electrochemically durable, but from the viewpoint of heat resistance, aluminum, titanium, tantalum, stainless steel, gold, Aluminum and platinum are particularly preferred, where metal materials such as platinum are preferred.
  • the shape of the current collector is not particularly limited, but usually, a sheet-like one having a thickness of about 0.001 to 0.5 mm is used.
  • the electrode of the present invention can be manufactured by applying the slurry composition of the present invention to a current collector and drying.
  • the method for applying the slurry composition to the current collector is not particularly limited. For example, methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an etastrusion method, and a brush coating method may be mentioned.
  • the viscosity of the slurry yarn composition varies depending on the type of coating machine and the shape of the coating line. 00,000 mPa-s, preferably 1,000-50, OOOmPa-s, more preferably 5,000-20, OOOmPa's.
  • the amount of the slurry composition to be applied is not particularly limited, the thickness of the electrode layer formed of the electrode active material, binder, and the like formed after drying is usually 0.005 to 5 mm, and preferably 0.01 to 5 mm. — An amount of 2mm is common.
  • the drying method include drying by warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying temperature is usually 50-250 ° C.
  • the dried electrode is preferably subjected to a press treatment.
  • the electrode of the present invention can easily increase the electrode density by press processing.
  • a pressing method a method such as a mold press or a roll press is used.
  • the pressing temperature is not particularly limited, and usually may be room temperature.
  • the electrode after pressing is preferably subjected to a heat treatment at 150 to 250 ° C. By performing heat treatment after pressing, moisture in the electrode can be completely removed. Further, when a polymer having a heat crosslinkable functional group in a molecule is used as a binder, it is preferable because the polymer can form a crosslinked structure by heat treatment and the strength of the electrode can be improved. Caro The heat treatment time is usually 10 minutes to 20 hours.
  • the crosslinkable structure may be formed by irradiating actinic radiation such as an ultraviolet ray or an electron beam. .
  • An electric double layer capacitor of the present invention has the above-mentioned electrode of the present invention.
  • the electric double layer capacitor can be manufactured by using the above-mentioned components such as the electrode, the electrolytic solution, and the separator according to an ordinary method.
  • the electrode can be manufactured by overlapping electrodes via a separator, winding and folding the electrodes in a container according to the shape of the capacitor, and then filling the container with an electrolytic solution and sealing the container.
  • Examples of the separator include a microporous membrane or nonwoven fabric made of polyolefin such as polyethylene and polypropylene; a porous membrane mainly made of knoll, which is generally called electrolytic capacitor paper; a porous resin containing inorganic ceramic powder; Known ones can be used.
  • a solid electrolyte may be used instead of the separator, or a gel electrolyte may be used.
  • the electrolyte is not particularly limited !, but a non-aqueous electrolyte in which an electrolyte is dissolved in an organic solvent is preferred. That's right.
  • any of conventionally known electrolytes can be used, such as tetraethylammonium tetrafluoroborate, triethylmonomethylammonium-tetrafluoroborate, and tetraethylammonium-dimethylhexafluorophosphate. Fate and the like.
  • the solvent for dissolving these electrolytes is not particularly limited as long as it is generally used as an electrolyte solvent.
  • Specific examples thereof include carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate; ratatones such as ⁇ -butyrolataton; sulfolanes; -tolyls such as acetonitrile; these may be used alone or in combination of two or more.
  • carbonates are preferred because of their high withstand voltage.
  • the concentration of the electrolytic solution is usually 0.5 mol ZL or more, preferably 0.8 mol ZL or more.
  • the glass transition temperature of the polymer used as the binder was measured at a rate of 5 ° C./min using a differential scanning calorimeter (DSC).
  • a polymer film is prepared from the binder composition based on the method described in ISO 498.
  • a dumbbell-shaped No. 4 test piece was prepared, and the tensile stress at the bow I at 100% elongation of the polymer film and the elongation at break were measured according to JIS K6251.
  • the electrode was cut into 5 cm ⁇ 5 cm, and its weight and thickness were measured, and the weight and thickness of the current collector were subtracted, respectively, to obtain the electrode layer density (g / cm 3 ) calculated.
  • the electrode Cut the electrode into a rectangle 100 mm long and 25 mm wide, with the coating direction on the long side, and fix it with the electrode layer side up.
  • Cellophane on the surface of the electrode layer of the test piece After attaching the tape, the stress was measured when one end of the cellophane tape was peeled off in a vertical direction at a pulling speed of 50 mmZ. The measurement was performed three times, the average value was determined, and this was defined as the peel strength. The larger the peel strength! /, The higher the binding force of the electrode layer to the current collector.
  • the electric double layer capacitor was charged at a constant current of 10 mA at 25 ° C to 2.7 V for 10 minutes, and then discharged to 0 V at a constant current of 1 mA.
  • the capacitance was obtained from the obtained charging / discharging curve, and the capacitance per unit weight of the electrode layer was obtained by dividing the weight of the electrode by the weight of the electrode layer obtained by subtracting the weight of the current collector from the weight of the electrode. .
  • the internal resistance was calculated from the charge / discharge curve according to the calculation method of the standard RC-2377 specified by the Japan Electronics and Information Technology Industries Association.
  • the reactor equipped with a stirrer was purged with nitrogen, 38 parts of acrylonitrile, 59.5 parts of 1,3-butadiene, 2.5 parts of methacrylic acid, 4 parts of t-decyl mercaptan (TDM) O.4 as a molecular weight regulator, and polymerization
  • TDM t-decyl mercaptan
  • initiators 0.1 part of 1,1,3,3-tetramethylbutylmethyl peroxide and 0.108 parts of ferrous sulfate, 120 parts of soft water and an emulsifier (perolate u: a product of Toshini-Dagakusha Co., Ltd.) 6) was fed and stirred at 5 ° C for 40 hours to carry out polymerization.
  • the polymerization conversion ratio was 95%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers.
  • Table 1 shows the Tg of the obtained polymer.
  • potassium hydroxide was added to adjust the pH to 7, and then steam was introduced to remove unreacted monomers.
  • the mixture was concentrated to a solid content concentration of 40% to obtain a binder composition A as an aqueous dispersion of Atari-mouth-tolyl-butadiene-based elastomer.
  • Table 1 shows the tensile stress at 100% elongation and the elongation at break of the polymer film obtained using the binder composition A.
  • acetylene black (denka black powder: manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductivity-imparting material
  • 200 parts of a 5% carboxymethyl cellulose aqueous solution (Cellogen 7A: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
  • 50 parts of water were mixed and dispersed using a planetary mixer to obtain a dispersion of a conductivity-imparting material having a solid content of 20%.
  • the obtained slurry composition was applied to a 20- ⁇ m-thick aluminum foil using a doctor blade, dried at 60 ° C for 20 minutes and then at 120 ° C for another 20 minutes, and then roll-pressed. Thus, an electrode having a thickness of 120 ⁇ m was obtained.
  • the obtained electrode was heat-treated at 150 ° C for 6 hours under reduced pressure. Table 1 shows the electrode density and peel strength of the obtained electrode.
  • the electrode obtained above was cut into a circle having a diameter of 12 mm.
  • the electrode layers of the two electrodes were opposed to each other, and a separator made of a circular rayon-based porous film having a diameter of 16 mm and a thickness of 35 ⁇ m was sandwiched therebetween.
  • This is housed in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) together with a stainless steel spacer, and the electrolyte is poured so that no air remains. After impregnation, the container was sealed to produce an electric double layer capacitor.
  • the electrolytic solution a solution prepared by dissolving triethyl monomethylammonium-tetrafluoroborate in propylene carbonate at a concentration of 1.8 mol Z liter was used.
  • the storage of the electrodes after heat treatment and the assembly of the capacitors were performed in a dry room with a dew point of 60 ° C.
  • Table 1 shows the capacitance and internal resistance of the obtained electric double layer capacitor.
  • a binder composition C was obtained in the same manner as in Example 2, except that the amount of 2-ethylhexyl acrylate in the monomer mixture was changed to 83 parts, and 2 parts of N-methylolacrylamide was used. The polymerization conversion was 98.5%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers. Table 1 shows the Tg of the obtained polymer. With respect to the polymer film obtained using the binder composition C, and the slurry composition, the electrode, and the electric double layer capacitor manufactured in the same manner as in Example 1 using the binder composition C, respective characteristics were measured. Table 1 shows the results.
  • This monomer mixture was continuously added to the reactor over 4 hours to carry out polymerization. During the addition, the reaction was performed at 60 ° C. After the addition, the reaction was further stirred at 70 ° C. for 3 hours to complete the reaction. The polymerization conversion was 98.5%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers. Table 1 shows the Tg of the obtained polymer. After cooling the reaction solution to 25 ° C, the pH was adjusted to 8 by adding aqueous ammonia, and then steam was introduced to remove unreacted monomers. Then, the mixture was concentrated to a solid content concentration of 40% to obtain a binder composition D as an aqueous dispersion of an acrylate polymer.
  • a binder composition E was obtained in the same manner as in Example 1 except that TDM was not used.
  • the polymerization conversion ratio was 98.5%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers.
  • Table 1 shows the Tg of the obtained polymer. With respect to the polymer film obtained using the binder composition E, and the slurry composition, the electrode, and the electric double layer capacitor manufactured in the same manner as in Example 1 using the binder composition E, respective characteristics were measured. The results are shown in Table 1.
  • a binder composition F was obtained in the same manner as in Example 2, except that the amount of styrene in the monomer mixture was changed to 9 parts and 3 parts of diethylene glycol dimethacrylate was used. The polymerization conversion was 98.9%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers. Table 1 shows the Tg of the obtained polymer. With respect to the polymer film obtained using the binder composition F, and the slurry composition, the electrode, and the electric double layer capacitor manufactured in the same manner as in Example 1 using the binder composition F, respective characteristics were measured. The results are shown in Table 1.
  • a binder composition G was obtained in the same manner as in Example 2, except that the addition time was 15 hours and the reaction time after completion of the addition was 5 hours. The polymerization conversion was 98.3%, and the composition ratio of the obtained polymer coincided with the charged ratio of the monomers. Table 1 shows the Tg of the obtained polymer. The properties of the polymer film obtained using the binder composition G, and the slurry composition, electrodes, and electric double layer capacitors manufactured in the same manner as in Example 1 using the binder composition G were measured. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 100%伸び時の引張応力が2MPa以下であり、かつ切断時伸びが450%以上であるポリマーフィルムを与えるポリマーからなる、電極密度が高くかつ結着力が高い電極を与える電気二重層キャパシタ電極用バインダー、該バインダーを含有する電気二重層キャパシタ電極用バインダー組成物および電気二重層キャパシタ電極用スラリー組成物、該スラリー組成物を用いて製造された電極、並びに、該電極を有する静電容量が大きくかつ内部抵抗が小さい電気二重層キャパシタを提供する。

Description

明 細 書
電気二重層キャパシタ電極用バインダー
技術分野
[0001] 本発明は電気二重層キャパシタ電極用バインダー、該バインダーを含有する電気 二重層キャパシタ電極用バインダー組成物および電気二重層キャパシタ電極用スラ リー組成物、ならびに該スラリー組成物を用いて製造された電極および該電極を有 する電気二重層キャパシタに関する。
背景技術
[0002] 分極性電極と電解質との界面で形成される電気二重層を利用した電気二重層キヤ パシタは、メモリバックアップ電源として近年急速に需要が伸びている。また、電気自 動車用電源等の大容量を必要とする用途へもその適用が注目されており、大容量化 のために高 、電極密度が求められて 、る。
[0003] 電気二重層キャパシタ用の電極は、通常、バインダーを水または有機溶媒に溶解 または分散させ、これに電極活物質および必要に応じ加えられる導電性付与材など を混合して電気二重層キャパシタ電極用スラリー組成物とし、これをアルミニウム箔な どの集電体に塗布、乾燥して製造される。従来は、バインダーとしては、一般的にポリ テトラフルォロエチレン、ポリフッ化ビ-リデンなどのフッ素系ポリマーが使われてきた が、フッ素系ポリマーを用いて製造した電極は電極活物質と集電体との結着性が十 分ではなぐまた、電極密度が低いものであった。
[0004] 少量の使用でも結着力に優れたバインダーとして特定のガラス転移温度と粒子径 を有する重合体を用いたノインダ一が提案されている(特許文献 1参照)。しかしこの ノインダーを用いても電極活物質と集電体との結着性は十分ではなぐまた電極密 度も低かった。
特許文献 1:特開平 11—162794号公報
発明の開示
発明が解決しょうとする課題
[0005] ここで、電極層を形成する際は、電極層を均一化し、かつ電極密度を高めるために プレスを行うのが通常である。し力しながら、本発明者らの検討によると、上記従来技 術のバインダーを用いた場合は、プレスによって電極の密度を高めるためにプレス圧 を上げると、集電体のアルミニウム箔が損傷したり、電極の内部抵抗が増大したりする 傾向が見られ、所望の密度に高められた電極層を得ることが困難であった。
[0006] そこで本発明は、電極密度が高ぐかつ結着力が高い電極を与える電気二重層キ ャパシタ電極用バインダー、該ノ インダーを含有する電気二重層キャパシタ電極用 ノインダー組成物および電気二重層キャパシタ電極用スラリー組成物を提供すること を課題とする。また本発明は、該スラリー組成物を用いて製造された電極および該電 極を有する電気二重層キャパシタを提供することを課題とする。
課題を解決するための手段
[0007] 本発明者らは、上記課題を解決すべく鋭意検討の結果、引張応力が小さぐかつ 切断時伸びが大きいポリマーフィルムを与えるポリマーをバインダーとして用いると、 結着力が高ぐかつ電極密度が高い電極が得られることを見出し、この知見に基づき 本発明を完成するに至った。
[0008] 力べして本発明によれば、下記(1)一(6)が提供される。
(1) 100%伸び時の引張応力が 2MPa以下であり、かつ切断時伸びが 450%以 上であるポリマーフィルムを与えるポリマー力 なる電気二重層キャパシタ電極用バイ ンダ一。
[0009] 前記ポリマーは、一般式(1): CH =CI^ COOR2 (式中、 R1は水素原子またはメ
2
チル基を、 R2はアルキル基またはシクロアルキル基を表す。)で表される化合物を重 合してなる単量体単位を合計で 60重量%以上含むものであることが好ましい。
[0010] また、前記ポリマーは、架橋性官能基を有するものであることが好ましい。
前記架橋性官能基は、 N—メチロールアミド基であることが好ま 、。
また、前記架橋性官能基は、スルホン酸基またはその塩とエポキシ基との組み合わ せであることが好ましい。
[0011] (2) (1)に記載の電極用バインダーが水に分散されてなる電気二重層キャパシタ 電極用バインダー糸且成物。
[0012] (3) (2)に記載のバインダー組成物と、電極活物質とを含有してなる電気二重層 キャパシタ電極用スラリー組成物。
[0013] (4) (1)に記載のバインダーと、電極活物質とを含有する電極層が集電体に結着 されてなる電気二重層キャパシタ用電極。
[0014] (5) (3)に記載の電極用スラリー組成物を、集電体に塗布し、乾燥する工程を有 する電気二重層キャパシタ用電極の製造方法。
本製造方法においては、さらにプレス処理する工程を有することが好ましい。
また、本製造方法においては、さらに 150— 250°Cで加熱処理する工程を有するこ とが好ましい。
[0015] (6) (4)に記載の電極を有する電気二重層キャパシタ。
発明の効果
[0016] 本発明のバインダーを用いて電極を製造すると、電極密度が大きぐかつ結着力が 強い電極が得られる。そして該電極を用いると、静電容量が大きくかつ内部抵抗が小 さ 、電気二重層キャパシタを得ることができる。
発明を実施するための最良の形態
[0017] (1)電気二重層キャパシタ電極用バインダー
本発明の電気二重層キャパシタ電極用バインダー(以下、単に「バインダー」とも言 う。)は、 100%伸び時の引張応力が 2MPa以下であり、かつ切断時伸びが 450%以 上であるポリマーフィルムを与えるポリマー力もなる。ここで、ポリマーフィルムは、ポリ マーの水分散体から ISO 498に記載の方法に基づき作成されるものである。また、 引張応力および切断時伸びは、該ポリマーフィルムカゝら作成されたダンベル状 4号形 試験片を用いて JIS K6251により測定される値である。
[0018] 100%伸び時の引張応力は、好ましくは 1. 5MPa以下、より好ましくは 0. 1— IMP aである。また、切断時伸びは、好ましくは 500%以上、より好ましくは 600— 2, 000 %である。 100%伸び時の引張応力と切断時伸びがこの範囲であると、結着力が高 ぐかつ軽度のプレスにより容易に電極密度を高めることができる。
[0019] このようなポリマーとしては、具体的には、エラストマ一を用いることができる。エラス トマ一とは、ガラス転移温度が常温(25°C)以下、好ましくは 10°C以下、より好ましく は— 20°C以下のポリマーである。ガラス転移温度がこの範囲であると、特に結着力に 優れる。
[0020] エラストマ一としては、ブタジエン、イソプレンなどの共役ジェンを重合してなる単量 体単位またはそれを水素化してなる単量体単位を主成分とするジェン系エラストマ一
;アクリル酸エステルおよび zまたはメタクリル酸エステルを重合してなる単量体単位 を主成分とするアタリレート系エラストマ一;などが好ましぐ得られる電極の内部抵抗 を小さくできるので、アタリレート系エラストマ一がより好ましい。ここで、「主成分とする
」とは、そのような単量体単位を 40重量%以上含むことをいう。
[0021] 前記ジェン系エラストマ一としては、例えば、ポリブタジエン、ポリイソプレン、カルボ キシ変性されて 、てもよ 、スチレン ·ブタジエン共重合体、アクリロニトリル ·ブタジエン 共重合体およびこれらの水素化物などが挙げられる。
[0022] アタリレート系エラストマ一としては、一般式(1): CH =CI^ COOR2 (式中、 R1
2
水素原子またはメチル基を、 R2はアルキル基またはシクロアルキル基を表す。)で表 される化合物を重合してなる単量体単位を合計で 60重量%以上、さらには 80重量 %以上含むポリマーが好ましい。アタリレート系エラストマ一は、一般式(1)で表され る化合物と、これと共重合可能な単量体とを共重合して得られる。
[0023] 一般式(1)で表される化合物の具体例としては、アクリル酸ェチル、アクリル酸プロ ピル、アクリル酸イソプロピル、アクリル酸 n—ブチル、アクリル酸イソブチル、アクリル 酸 t-ブチル、アクリル酸 n ペンチル、アクリル酸イソペンチル、アクリル酸 n—へキシル 、アクリル酸 2—ェチルへキシル、アクリル酸へキシル、アクリル酸ノエル、アクリル酸ラ ゥリル、アクリル酸ステアリルなどのアクリル酸アルキルエステル;アクリル酸イソボル- ルなどのアクリル酸シクロアルキルエステル;メタクリル酸ェチル、メタクリル酸プロピル 、メタクリル酸イソプロピル、メタクリル酸 n—ブチル、メタクリル酸イソブチル、メタクリル 酸 t-ブチル、メタクリル酸 n ペンチル、メタクリル酸イソペンチル、メタクリル酸 n—へキ シル、メタクリル酸 2—ェチルへキシル、メタクリル酸オタチル、メタクリル酸イソデシル、 メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリルなどのメタクリル酸 アルキルエステル;メタクリル酸シクロへキシルなどのメタクリル酸シクロアルキルエス テル;等が挙げられる。これらの中でも、アクリル酸 n ブチルおよびアクリル酸 2—ェチ ルへキシルが特に好まし 、。 [0024] 一般式(1)で表される化合物と共重合可能な単量体としては、スチレン、 α -メチル スチレン、 2—メチルスチレン、 3—メチルスチレン、 4ーメチルスチレンなどの芳香族ビ
-ル化合物、;アクリロニトリル、メタタリ口-トリルなどの OL , β 不飽和-トリル化合物
;エチレン、プロピレン、 1—ブテンなどの 1ーォレフイン;クロトン酸メチル、クロトン酸ェ チル、クロトン酸プロピル、クロトン酸ブチル、クロトン酸イソブチル、クロトン酸 η ペン チル、クロトン酸イソペンチル、クロトン酸 η—へキシル、クロトン酸 2—ェチルへキシル などのクロトン酸エステル;マレイン酸ジメチル、マレイン酸ジブチル、マレイン酸ジー 2 ェチルへキシルなどのマレイン酸ジエステル;フマル酸ジメチル、フマル酸ジブチル などのフマル酸ジエステル;ィタコン酸ジメチル、ィタコン酸ジブチルなどのィタコン酸 ジエステル;アクリルアミド、メタクリルアミドなどのアクリルアミドィ匕合物;等が挙げられ る。また、後述の架橋性官能基を有する単量体も挙げることができる。
[0025] 本発明のバインダーであるポリマーの製法は特に限定されず、例えば、乳化重合 法、懸濁重合法、分散重合法または溶液重合法などの公知の重合法により前記の 各単量体を重合して得ることができる。中でも、乳化重合法で製造することが、バイン ダ一の粒子径の制御が容易であるので好まし 、。
[0026] 本発明で用いるポリマーが上記範囲の引張応力および切断時伸びを有するために は、架橋構造が少ないことが好ましい。架橋構造が少ない重合体を用いると、軽度の プレスにより容易に電極密度を高めることができる。
[0027] 架橋構造の含有割合は、ポリマー製造時の重合温度、時間、多官能単量体および 連鎖移動剤の使用量などにより調節できる。例えば、ジェン系エラストマ一を製造す るときの重合温度は 5— 90°Cが好ましぐ重合時間は 2— 100時間が好ましい。連鎖 移動剤としては、 n—才クチルメルカプタン、 n—ドデシルメルカプタン、 tードデシルメル カブタンなどのメルカブタン類;四塩ィ匕炭素、四臭化炭素などのハロゲン化炭化水素 類;などを用いることができる。これらの連鎖移動剤は重合開始前、または重合途中 に添加することができる。連鎖移動剤の使用量は単量体 100重量部に対して通常 0 . 01— 5重量部であり、連鎖移動剤がメルカブタン類であるときの使用量は好ましく は単量体 100重量部に対して 0. 01— 2重量部である。連鎖移動剤がハロゲンィ匕炭 化水素類であるときの使用量は好ましくは単量体 100重量部に対して 2— 5重量部で あり、さらに 0. 01— 1重量部のメルカブタン類を併用することがより好ましい。
[0028] また、アタリレート系エラストマ一を製造するときの、エチレングリコールジメタクリレー ト、トリメチロールプロパントリメタタリレートなどの多官能単量体の使用量は、全単量 体中 1重量%以下が好まし 、。
[0029] また、本発明で用いるポリマーは、分子内に架橋性官能基を有していることが好ま しい。架橋性官能基とは、電極層形成後に加熱や活性放射線照射などにより架橋構 造を形成し得る官能基であり、加熱により架橋構造を形成し得る熱架橋性官能基が より好まし 、。
[0030] 熱架橋性官能基としては、例えば、 N—メチロールアミド基が挙げられる。また、カル ボキシル基、酸無水物基、ヒドロキシル基またはスルホン酸基もしくはその塩とェポキ シ基との組合せ、カルボキシル基とエチレンィミン基との組合せなど、二種以上の官 能基の組合せにより架橋構造を形成し得るものであってもよい。また、活性放射線照 射により架橋構造を形成し得る架橋性官能基としては、アタリロイル基、メタクリロイル 基、ァリル基などが挙げられる。
[0031] 分子内に架橋性官能基を有するポリマーは、ポリマーの製造において、架橋性官 能基を有する単量体を共重合させて得られる。熱架橋性官能基を有する単量体とし ては、 N—メチロールアクリルアミド、 N—メチロールメタクリルアミドなどが挙げられる。
[0032] また、上記二種以上の官能基の組合せにより架橋構造を形成し得る官能基を有す る単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸などの不飽和モ ノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、グルタコン酸、イタコ ン酸、などの不飽和ジカルボン酸;無水マレイン酸、無水シトラコン酸、無水ィタコン 酸などの不飽和ジカルボン酸無水物;アクリル酸ヒドロキシェチル、アクリル酸ヒドロキ シプロピル、アクリル酸ヒドロキシブチル、メタクリル酸ヒドロキシェチル、メタクリル酸ヒ ドロキシプロピル、クロトン酸ヒドロキシプロピルなどのヒドロキシル基を有する不飽和 カルボン酸エステル;ビニルスルホン酸、メチルビ-ルスルホン酸、ァリルスルホン酸 、メタァリルスルホン酸、スチレンスルホン酸、アクリル酸 2—スルホン酸ェチル、メタ クリル酸 2—スルホン酸ェチル、 2—アクリルアミドー 2—メチルプロパンスルホン酸およ び 3—ァリロキシー2—ヒドロキシプロパンスルホン酸などの不飽和有機スルホン酸、なら びにそのアルカリ金属塩およびアンモ-ゥム塩;アクリル酸グリシジル、メタクリル酸グ リシジルなどのエポキシ基を有する不飽和カルボン酸エステル;ァリルグリシジルエー テルなどのエポキシ基を有する不飽和エーテル類;などが挙げられる。架橋性官能 基を有する単量体の総量は、好ましくは全単量体中 0. 1— 10重量%である。
[0033] (2)電気二重層キャパシタ電極用バインダー組成物
本発明の電気二重層キャパシタ電極用バインダー組成物(以下、単に「バインダー 組成物」とも言う。)は、上記のノインダ一が水に分散されてなるものである。バインダ 一を水に分散させる方法は特に限定されない。例えば、スプレードライ法ゃ微粉砕に より微粒子状としたバインダーを常法に従い水と混合分散させればよい。また、乳化 重合法によりバインダーを水分散体として得た場合は、必要に応じて濃縮、希釈など により濃度を調整し、バインダーを単離せずにそのまま本発明のバインダー組成物と して用いることができる。ノインダー組成物の濃度(固形分量)は、通常 20— 70重量 %である。
[0034] (3)電気二重層キャパシタ電極用スラリー組成物
本発明の電気二重層キャパシタ電極用スラリー組成物(以下、単に「スラリー組成物 」とも言う。)は、本発明のノインダー組成物と、電極活物質とを含有してなり、必要に 応じて増粘剤および導電性付与材などが含まれる。
[0035] 本発明で用いる電極活物質は、電気二重層を形成し得る細孔を有する炭素の同 素体であり、その比表面積は 30m2Zg以上、好ましくは 500— 5,
Figure imgf000008_0001
より好 ましくは 1, 000— 3, 000m2Zgである。具体的には、活性炭、ポリアセン、カーボン ウイスカ、グラフアイト等の粉末あるいは繊維を使用することができる。電極活物質は 好ましくは活性炭であり、活性炭としてはフエノール系、レーヨン系、アクリル系、ピッ チ系、又はヤシガラ系等を使用することができる。また、特開平 11— 317333号公報 ゃ特開 2002— 25867号公報などに記載される、黒鉛類似の微結晶炭素を有しその 微結晶炭素の相間距離が拡大された非多孔性炭素も電極活物質として用いることが できる。電極活物質の粒子径は 0. 1— 100 /ζ πι、さらに好ましくは 1一 20 /z mである と、キャパシタ用電極の薄膜ィ匕が容易で、容量密度も高くできるので好ましい。
[0036] 本発明のスラリー組成物におけるバインダーの量は、電極活物質 100重量部に対 して、好ましくは 0. 1— 20重量部、より好ましくは 0. 5— 10重量部である。ノインダー 量が少なすぎると電極から電極活物質や導電性付与材が脱落しやすくなり、逆に多 すぎると電極活物質がバインダーに覆い隠されて電極の内部抵抗が増大するおそ れがある。
[0037] 本発明のスラリー組成物は、増粘剤を含有することが好ま ヽ。増粘剤を添加する ことにより、スラリー組成物の塗工性や流動性が向上する。増粘剤の種類は特に限定 されないが、水溶性のポリマーが好ましい。水溶性ポリマーの具体例としては、カル ボキシメチノレセノレロース、メチノレセノレロース、ヒドロキシプロピノレセノレロースなどのセノレ ロース系ポリマーおよびこれらのアンモ-ゥム塩並びにアルカリ金属塩;ポリ(メタ)ァ クリル酸ナトリウムなどのポリ(メタ)アクリル酸塩、ポリビュルアルコール、ポリエチレン ォキシド、ポリビュルピロリドン、アクリル酸又はアクリル酸塩とビュルアルコールとの 共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビュルアルコールとの 共重合体、変性ポリビュルアルコール、変性ポリアクリル酸、ポリエチレングリコール、 ポリカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが 挙げられる。この中で、好ましく用いられるものはセルロース系ポリマーおよびその塩 であり、さらに好ましいのは、セルロース系ポリマーのアンモニゥム塩である。これらの 水溶性ポリマーの好ましい使用量は、電極活物質に対して 0. 5— 5重量部である。
[0038] 本発明のスラリー組成物は、本発明の目的を損なわな!/、範囲で他のバインダーを 含有していてもよい。具体的には、アクリロニトリルゃメタクリロ-トリルなどの α, β— 不飽和-トリルイ匕合物の単独重合体; a , j8—不飽和-トリルイ匕合物およびそれと共 重合可能な単量体との共重合体榭脂;ポリフッ化ビ-リデン、ポリテトラフルォロェチ レン、ポリペンタフルォロプロピレンのようなフッ素系ポリマー;などが挙げられる。これ らのバインダーの含有量は、前記本発明のバインダーに対し、好ましくは 50重量% 以下、より好ましくは 20重量%以下である。
[0039] 本発明のスラリー組成物は、導電性付与材を含有することが好ま ヽ。導電性付与 材としては、アセチレンブラック、ケッチェンブラック、カーボンブラック等の導電性力 一ボンを使用することができ、これらは上記電極活物質と混合して使用する。導電性 付与材を併用することにより、前記活物質同士の電気的接触が一段と向上し、電気 二重層キャパシタの内部抵抗が低くなり、かつ容量密度を高くすることができる。導電 性付与材の使用量は、電極活物質 100重量部に対して通常 0. 1— 20重量部、好ま しくは 2— 10重量部である。
[0040] また、活性放射線により構造を形成し得る架橋性官能基を有するポリマーをバイン ダ一として用いる場合は、必要に応じて光架橋剤を添加してもよい。光架橋剤として は、例えば、ベンジルジメチルケタール、トリメチルシリルべンゾフエノン、ベンゾイン、 4ーメトキシベンゾフエノン、ベンゾインメチルエーテルアントラキノン等が挙げられる。
[0041] 本発明のスラリー組成物は、本発明のバインダー組成物および電極活物質と、必 要に応じて添加されるその他の上記各成分とを、混合機を用いて混合して製造でき る。混合機としては、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、 ホモジナイザー、プラネタリーミキサー、ホバートミキサーなどを用いることができる。ま た、電極活物質と導電性付与材とを擂潰機、プラネタリーミキサー、ヘンシェルミキサ 一、ォムニミキサーなどの混合機を用いて先ず混合し、次いでバインダー組成物を添 加して均一に混合する方法も好ましい。この方法を採ることにより、容易に均一なスラ リー組成物を得ることができる。
[0042] (4)電気二重層キャパシタ用電極
本発明の電気二重層キャパシタ用電極 (以下、単に「電極」とも言う。)は、前記本発 明のバインダーと電極活物質とを含有する電極層が集電体に結着してなるものであ る。集電体は、導電性を有しかつ電気化学的に耐久性のある材料であれば特に制 限されないが、耐熱性を有するとの観点から、アルミニウム、チタン、タンタル、ステン レス鋼、金、白金などの金属材料が好ましぐアルミニウムおよび白金が特に好ましい 。集電体の形状は特に制限されないが、通常、厚さ 0. 001—0. 5mm程度のシート 状のものを用いる。
[0043] 本発明の電極は、集電体に、上記本発明のスラリー組成物を塗布し、乾燥すること により製造することができる。スラリー組成物の集電体への塗布方法は特に制限され ない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法 、グラビア法、エタストルージョン法、ハケ塗り法などの方法が挙げられる。スラリー糸且 成物の粘度は、塗工機の種類や塗工ラインの形状によっても異なる力 通常 100— 1 00, 000mPa- s,好ましくは、 1, 000— 50, OOOmPa- s,より好ましくは 5, 000— 2 0, OOOmPa' sである。塗布するスラリー組成物の量も特に制限されないが、乾燥し た後に形成される、電極活物質、バインダーなどカゝらなる電極層の厚さ力 通常、 0. 005— 5mm、好ましくは 0. 01— 2mmになる量が一般的である。乾燥方法としては 例えば温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射 による乾燥法が挙げられる。乾燥温度は、通常 50— 250°Cである。
[0044] 乾燥後の電極は、プレス処理することが好ましい。本発明の電極は、プレス処理に より容易に電極密度を高めることができる。プレス方法は、金型プレスやロールプレス などの方法が挙げられる。プレス温度は特に限定されず、通常は室温でよい。
[0045] プレス後の電極は、 150— 250°Cで加熱処理することが好ましい。プレス後に加熱 処理することにより、電極中の水分を完全に除去することができる。また、分子内に熱 架橋性官能基を有するポリマーをバインダーとして用いる場合は、加熱処理によりポ リマーが架橋構造を形成し、電極の強度を向上させることができるので好ましい。カロ 熱処理の時間は、通常 10分一 20時間である。
[0046] さらに、活性放射線により構造を形成し得る架橋性官能基を有するポリマーをバイ ンダ一として用いる場合は、紫外線、電子線などの活性放射線を照射することで架橋 構造を形成せしめてもよい。
[0047] (5)電気二重層キャパシタ
本発明の電気二重層キャパシタは、上記本発明の電極を有するものである。電気 二重層キャパシタは、上記の電極や電解液、セパレーター等の部品を用いて、常法 に従って製造することができる。具体的には、例えば、セパレーターを介して電極を 重ね合わせ、これをキャパシタ形状に応じて巻ぐ折るなどして容器に入れ、容器に 電解液を注入して封口して製造できる。
[0048] セパレーターとしては、ポリエチレン、ポリプロピレンなどのポリオレフイン製の微孔 膜または不織布;一般に電解コンデンサ紙と呼ばれるノ ルプを主原料とする多孔質 膜;無機セラミック粉末を含む多孔質の榭脂;など公知のものを用いることができる。 また、セパレーターに代えて固体電解質ある 、はゲル電解質を用いてもよ!、。
[0049] 電解液は、特に限定されな!ヽが、電解質を有機溶媒に溶解した非水電解液が好ま しい。電解質としては、従来より公知のものがいずれも使用でき、テトラエチルアンモ 二ゥムテトラフルォロボレート、トリェチルモノメチルアンモ-ゥムテトラフルォロボレ一 ト、テトラエチルアンモ -ゥムへキサフルオロフォスフェートなどが挙げられる。
[0050] これらの電解質を溶解させる溶媒 (電解液溶媒)も、一般的に電解液溶媒として用 いられるものであれば特に限定されない。具体的には、プロピレンカーボネート、ェチ レンカーボネート、ブチレンカーボネートなどのカーボネート類; γ—ブチロラタトンな どのラタトン類;スルホラン類;ァセトニトリルなどの-トリル類;が挙げられ、これらは単 独または二種以上の混合溶媒として使用することができる。中でも、耐電圧が高いの でカーボネート類が好ましい。電解液の濃度は通常 0. 5モル ZL以上、好ましくは 0 . 8モル ZL以上である。
実施例
[0051] 以下に、実施例を挙げて本発明を説明するが、本発明はこれに限定されるもので はない。なお、本実施例における部および%は、特に断りがない限り重量基準である
[0052] 実施例および比較例中の試験および評価は以下の方法で行った。
(1)ガラス転移温度 (Tg)
バインダーとして用いたポリマーのガラス転移温度は、示差走査型熱量計 (DSC) を用いて毎分 5°Cで昇温して測定した。
[0053] (2)ポリマーフィルムの 100%伸び時の引張応力および切断時伸び
バインダー組成物から ISO 498に記載の方法に基づきポリマーフィルムを作成す る。該ポリマーフィルム力もダンベル状 4号形試験片を作成し、 JIS K6251によりポリ マーフィルムの 100%伸び時の弓 I張応力および切断時伸びを測定した。
[0054] (3)電極密度
電極を 5cm X 5cmに切り出してその重量および厚さを測定し、集電体の重量およ び厚さをそれぞれ差し引いて算出される電極層の密度 (g/cm3)として求めた。
[0055] (4)電極のピール強度
電極を塗布方向が長辺となるようにして長さ 100mm、幅 25mmの長方形に切り出 して試験片とし、電極層面を上にして固定する。試験片の電極層表面にセロハンテ ープを貼り付けた後、セロハンテープの一端を垂直方向に引張り速度 50mmZ分で 引張って剥がしたときの応力を測定した。測定を 3回行い、その平均値を求めてこれ をピール強度とした。ピール強度が大き!/、ほど電極層の集電体への結着力が大き ヽ ことを示す。
[0056] (5)電気二重層キャパシタの静電容量および内部抵抗
電気二重層キャパシタについて、 25°Cにおいて、 10mAの定電流で 2. 7Vまで 10 分間充電を行い、その後 0Vまで、 1mAの一定電流で放電を行った。得られた充放 電曲線より静電容量を求め、電極の重量から集電体の重量を引いて得られる電極層 の重量で除して、電極層の単位重量あたりの静電容量を求めた。また、内部抵抗は 、充放電曲線より社団法人電子情報技術産業協会が定める規格 RC— 2377の計算 方法に従って算出した。
[0057] 実施例 1
撹拌機を備えた反応器を窒素置換し、アクリロニトリル 38部、 1, 3-ブタジエン 59. 5部、メタクリル酸 2. 5部、分子量調整剤として tードデシルメルカプタン (TDM) O. 4 部、重合開始剤として 1, 1, 3, 3—テトラメチルプチルノヽイド口パーオキサイド 0. 1部 と硫酸第一鉄 0. 008部、さらに軟水 120部および乳化剤 (ヮロラート u:東振ィ匕学社 製品) 6部を供給し、 5°Cで 40時間撹拌し重合した。重合転ィ匕率は 95%であり、得ら れたポリマーの組成比は単量体の仕込み比と一致した。得られたポリマーの Tgを表 1に示す。次いで水酸ィ匕カリウムを添加して pHを 7に調整し、その後スチームを導入 して未反応の単量体を除去した。次いで濃縮して固形分濃度を 40%とし、アタリ口- トリル.ブタジエン系エラストマ一の水分散体としてバインダー組成物 Aを得た。このバ インダー組成物 Aを用いて得られたポリマーフィルムの 100%伸び時の引張応力お よび切断時伸びを表 1に示す。
[0058] 次に、導電性付与材としてアセチレンブラック (デンカブラック粉状:電気化学工業 社製) 50部、分散剤として 5%カルボキシメチルセルロース水溶液 (セロゲン 7A:第 一工業製薬社製) 200部、および水 50部をプラネタリーミキサーを用いて混合分散し 、固形分濃度 20%の導電性付与材分散液を得た。得られた分散液 30部、電極活物 質として平均粒径 5 μ mで比表面積が 2000m2Zgの高純度活性炭粉末 100部およ びバインダー糸且成物 A7. 5部に適当量の水をカ卩えてプラネタリーミキサーで混合して スラリー組成物を得た。
[0059] 得られたスラリー組成物を厚さ 20 μ mのアルミニウム箔にドクターブレードを用いて 塗布し、 60°Cで 20分、次いで 120°Cでさらに 20分乾燥した後、ロールプレスを行い 、厚さ 120 μ mの電極を得た。得られた電極を 150°Cで 6時間減圧下に加熱処理し た。得られた電極の電極密度およびピール強度を表 1に示す。
[0060] 上記で得られた電極を、直径 12mmの円形に切り抜いた。この 2枚の電極の電極 層面を対向させ、直径 16mm、厚さ 35 μ mの円形レーヨン系多孔膜からなるセパレ ータを挟んだ。これをステンレス鋼製スぺーサと共にステンレス鋼製のコイン型外装 容器(直径 20mm、高さ 1. 8mm、ステンレス鋼厚さ 0. 25mm)内に収納し、空気が 残らな ヽように電解液を含浸させた後に密閉して電気二重層キャパシタを製造した。 なお、電解液としては、トリェチルモノメチルアンモ-ゥムテトラフルォロボレートをプロ ピレンカーボネートに 1. 8モル Zリットルの濃度で溶解させた溶液を用いた。また、加 熱処理後の電極の保管およびキャパシタの組み立ては、露点温度 60°Cのドライル ームで行った。得られた電気二重層キャパシタの静電容量および内部抵抗を表 1に 示す。
[0061] 実施例 2
撹拌機を備えた反応器に、イオン交換水 70部、ドデシルベンゼンスルホン酸ソーダ 0. 2部および過硫酸カリウム 0. 3部をそれぞれ供給し、気相部を窒素ガスで置換し、 80°Cに昇温した。一方、別の容器でイオン交換水 50部、ドデシルベンゼンスルホン 酸ソーダ 0. 5部、アクリル酸 2 ェチルへキシル 85部、スチレン 12部、メタクリル酸 3 部を混合して単量体混合物を得た。この単量体混合物を 5時間かけて前記反応器に 連続的に添加して重合を行った。添加中は、 80°Cで反応を行った。添加終了後、さ らに 85°Cで 3時間撹拌して反応を終了した。重合転化率は 98. 3%であり、得られた ポリマーの組成比は単量体の仕込み比と一致した。得られたポリマーの Tgを表 1に 示す。反応液を 25°Cに冷却後、水酸ィ匕カリウムを添加して pHを 7に調整し、その後 スチームを導入して未反応の単量体を除去した。次 、で濃縮して固形分濃度を 40 %とし、アタリレート系エラストマ一の水分散体としてバインダー組成物 Bを得た。この バインダー組成物 Bを用いて得られたポリマーフィルムの 100%伸び時の引張応力 および切断時伸びを測定した。また、このバインダー組成物 Bを用いて実施例 1と同 様にスラリー組成物、電極および電気二重層キャパシタを製造し、各特性を測定した 。結果を表 1に示す。
[0062] 実施例 3
単量体混合物のアクリル酸 2—ェチルへキシルの量を 83部とし、 N—メチロールァク リルアミド 2部を用いた他は、実施例 2と同様にしてバインダー組成物 Cを得た。重合 転化率は 98. 5%であり、得られたポリマーの組成比は単量体の仕込み比と一致し た。得られたポリマーの Tgを表 1に示した。このバインダー組成物 Cを用いて得られ たポリマーフィルム、ならびにノ インダー組成物 Cを用いて実施例 1と同様に製造した スラリー組成物、電極および電気二重層キャパシタについて、各特性を測定した。結 果を表 1に示す。
[0063] 実施例 4
撹拌機を備えた反応器に、イオン交換水 70部、ドデシルベンゼンスルホン酸ソーダ 0. 2部および過硫酸カリウム 0. 3部をそれぞれ供給し、気相部を窒素ガスで置換し、 60°Cに昇温した。一方、別の容器でイオン交換水 50部、ドデシルベンゼンスルホン 酸ソーダ 0. 5部、アクリル酸ブチル 88. 5部、アクリロニトリル 10部、グリシジルメタタリ レート 1部、 2—アクリルアミドー 2—メチルプロパンスルホン酸 0. 5部を混合して単量体 混合物を得た。この単量体混合物を 4時間かけて前記反応器に連続的に添加して重 合を行った。添加中は、 60°Cで反応を行った。添加終了後、さらに 70°Cで 3時間撹 拌して反応を終了した。重合転化率は 98. 5%であり、得られたポリマーの組成比は 単量体の仕込み比と一致した。得られたポリマーの Tgを表 1に示す。反応液を 25°C に冷却後、アンモニア水を添加して pHを 8に調整し、その後スチームを導入して未 反応の単量体を除去した。次いで濃縮して固形分濃度を 40%とし、アタリレート系ェ ラストマーの水分散体としてバインダー組成物 Dを得た。このバインダー組成物 Dを 用 、て得られたポリマーフイノレムの 100%伸び時の弓 I張応力および切断時伸びを測 定した。また、このバインダー組成物 Dを用いて実施例 1と同様にスラリー組成物、電 極および電気二重層キャパシタを製造し、各特性を測定した。結果を表 1に示す。 [0064] 比較例 1
TDMを用いな ヽ他は実施例 1と同様にしてバインダー組成物 Eを得た。重合転ィ匕 率は 98. 5%であり、得られたポリマーの組成比は単量体の仕込み比と一致した。得 られたポリマーの Tgを表 1に示す。このバインダー組成物 Eを用いて得られたポリマ 一フィルム、ならびにバインダー組成物 Eを用いて実施例 1と同様に製造したスラリー 組成物、電極および電気二重層キャパシタについて、各特性を測定した。結果を表 1 に示す。
[0065] 比較例 2
単量体混合物のスチレンの量を 9部とし、ジエチレングリコールジメタタリレート 3部 を用いた他は、実施例 2と同様にしてバインダー組成物 Fを得た。重合転化率は 98. 9%であり、得られたポリマーの組成比は単量体の仕込み比と一致した。得られたポ リマーの Tgを表 1に示す。このバインダー組成物 Fを用いて得られたポリマーフィルム 、ならびにノ インダー組成物 Fを用いて実施例 1と同様に製造したスラリー組成物、 電極および電気二重層キャパシタについて、各特性を測定した。結果を表 1に示す。
[0066] 比較例 3
単量体混合物としてイオン交換水 50部、ドデシルベンゼンスルホン酸ソーダ 0. 5部 、スチレン 47部、ブタジエン 39部、メチルメタタリレート 10部、ィタコン酸 4部の混合物 を用い、単量体混合物の添加時間を 15時間、添加終了後の反応時間を 5時間とし た他は、実施例 2と同様にしてバインダー組成物 Gを得た。重合転化率は 98. 3%で あり、得られたポリマーの組成比は単量体の仕込み比と一致した。得られたポリマー の Tgを表 1に示す。このバインダー組成物 Gを用いて得られたポリマーフィルム、なら びにバインダー組成物 Gを用いて実施例 1と同様に製造したスラリー組成物、電極お よび電気二重層キャパシタについて、各特性を測定した。結果を表 1に示す。
[0067] [表 1]
表 1
実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 比較例 3
Tg(°c) -35 -53 -50 -35 -53 -10
10(»伸び時引張応力(MPa) 1.5 0.8 0.8 0.8 3.0 2.5 2.1 切断時伸び (%) >欄0% 550 700 700 300 300 400 釐榡密度 m3) 0.632 0.634 0.641 0.640 0,583 0.600 0.596 ピール強度(N/cm) 0.059 0.078 0.098 0.100 0 49 0039 0 039 静電齊 60.1 60.7 58.8 61.0 54.6 56.2 55,6 内部 抗 3.60 3.30 3.32 3.12 3.72 3.32 3.73 表 1に示すように、本発明のバインダーを用いて製造した電極は電極密度が大きく 、かつ結着力が強いことが分かる。そして該電極を用いると、静電容量が大きくかつ 内部抵抗が小さい電気二重層キャパシタが得られた。

Claims

請求の範囲
[1] 100%伸び時の引張応力が 2MPa以下であり、かつ切断時伸びが 450%以上であ るポリマーフィルムを与えるポリマーからなる電気二重層キャパシタ電極用バインダー
[2] 前記ポリマーが、一般式(1): CH =CI^ COOR2 (式中、 R1は水素原子またはメチ
2
ル基を、 R2はアルキル基またはシクロアルキル基を表す。)で表される化合物を重合 してなる単量体単位を合計で 60重量%以上含むものである請求の範囲第 1項に記 載のバインダー。
[3] 前記ポリマーが、架橋性官能基を有するものである請求の範囲第 1項に記載のバイ ンダ一。
[4] 前記架橋性官能基が、 N -メチロールアミド基である請求の範囲第 3項に記載のバイ ンダ一。
[5] 前記架橋性官能基が、スルホン酸基またはその塩とエポキシ基との組み合わせであ る請求の範囲第 3項に記載のバインダー。
[6] 請求の範囲第 1項に記載のバインダーが水に分散されてなる電気二重層キャパシタ 電極用バインダー糸且成物。
[7] 請求の範囲第 6項に記載のバインダー組成物と、電極活物質とを含有してなる電気 二重層キャパシタ電極用スラリー組成物。
[8] 請求の範囲第 1項に記載のバインダーと、電極活物質とを含有する電極層が集電体 に結着されてなる電気二重層キャパシタ用電極。
[9] 請求の範囲第 7項に記載の電極用スラリー組成物を、集電体に塗布し、乾燥するェ 程を有する電気二重層キャパシタ用電極の製造方法。
[10] さらにプレス処理する工程を有する請求の範囲第 9項に記載の製造方法。
[11] さらに 150— 250°Cで加熱処理する工程を有する請求の範囲第 10項に記載の製造 方法。
[12] 請求の範囲第 8項に記載の電極を有する電気二重層キャパシタ。
PCT/JP2004/015600 2003-10-24 2004-10-21 電気二重層キャパシタ電極用バインダー WO2005041225A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020067010016A KR101062563B1 (ko) 2003-10-24 2004-10-21 전기 이중층 캐패시터 전극용 바인더
JP2005514970A JP4483784B2 (ja) 2003-10-24 2004-10-21 電気二重層キャパシタ電極用バインダー
US10/576,676 US7939600B2 (en) 2003-10-24 2004-10-21 Binder for electric double layer capacitor electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003365277 2003-10-24
JP2003-365277 2003-10-24

Publications (1)

Publication Number Publication Date
WO2005041225A1 true WO2005041225A1 (ja) 2005-05-06

Family

ID=34510163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015600 WO2005041225A1 (ja) 2003-10-24 2004-10-21 電気二重層キャパシタ電極用バインダー

Country Status (4)

Country Link
US (1) US7939600B2 (ja)
JP (1) JP4483784B2 (ja)
KR (1) KR101062563B1 (ja)
WO (1) WO2005041225A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087314A (ja) * 2008-09-30 2010-04-15 Nippon Chemicon Corp 電気二重層キャパシタ用電極
US20130087737A1 (en) * 2007-04-13 2013-04-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2014157715A1 (ja) * 2013-03-27 2014-10-02 Jsr株式会社 蓄電デバイス用バインダー組成物
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154291B1 (ko) * 2005-03-23 2012-06-13 니폰 제온 가부시키가이샤 비수 전해질 2차 전지 전극용 바인더, 전극, 및 비수 전해질 2차 전지
CN103400705A (zh) * 2013-06-07 2013-11-20 山东精工电子科技有限公司 超级电容器浆料的制备方法
JP5975953B2 (ja) 2013-08-06 2016-08-23 日本バルカー工業株式会社 電気二重層キャパシタ用電極膜の製造方法
WO2015129408A1 (ja) * 2014-02-27 2015-09-03 日本ゼオン株式会社 二次電池多孔膜用バインダー組成物、二次電池多孔膜用スラリー、二次電池用多孔膜及び二次電池
MX2016013413A (es) 2014-04-18 2017-04-06 Maxwell Lab Electrodo de dispositivo para almacenamiento de energia en seco y metodos para elaborar el mismo.
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
KR101802352B1 (ko) * 2015-09-24 2017-11-29 한국원자력연구원 방사선 가교형 폴리비닐알코올을 포함하는 탄소 전극 소재 및 탄소 전극의 제조방법
WO2017201180A1 (en) 2016-05-20 2017-11-23 Avx Corporation Multi-cell ultracapacitor
CN114868284A (zh) * 2019-12-27 2022-08-05 日本瑞翁株式会社 电化学装置、电化学装置用电极、电化学装置用涂覆液及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855761A (ja) * 1994-08-16 1996-02-27 Asahi Glass Co Ltd 電気二重層キャパシタおよびその製造方法
JPH1021964A (ja) * 1996-07-05 1998-01-23 Fuji Photo Film Co Ltd 非水二次電池とその製造方法
JPH11162794A (ja) * 1997-12-01 1999-06-18 Jsr Corp 電気二重層コンデンサ電極用バインダー
JP2002110169A (ja) * 2000-07-26 2002-04-12 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2002522872A (ja) * 1998-08-06 2002-07-23 ビーエーエスエフ アクチェンゲゼルシャフト 電気化学セルに適する組成物
JP2003151554A (ja) * 2001-11-16 2003-05-23 Hitachi Maxell Ltd 電極およびそれを用いた電気化学素子
JP2003331848A (ja) * 2002-05-15 2003-11-21 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3147007C2 (de) * 1981-11-27 1983-10-06 Roehm Gmbh, 6100 Darmstadt Selbstvernetzende wäßrige Kunststoff dispersion
JP3669380B2 (ja) 1994-10-07 2005-07-06 日本ゼオン株式会社 電極用バインダー
KR100582518B1 (ko) * 1997-03-04 2006-05-24 제온 코포레이션 전지용 바인더조성물, 전지 전극용 슬러리, 리튬 2차전지용 전극 및 리튬 2차전지
DE19939325A1 (de) * 1999-08-19 2001-02-22 Basf Ag Verfahren zur Herstellung wässriger Polymerdispersionen
DE10014399A1 (de) * 2000-03-23 2001-10-04 Wacker Polymer Systems Gmbh Vernetzbare Polymerzusammensetzung
US6656633B2 (en) * 2000-07-26 2003-12-02 Zeon Corporation Binder for electrode for lithium ion secondary battery, and utilization thereof
JP3911145B2 (ja) * 2000-11-10 2007-05-09 三洋化成工業株式会社 電気化学素子の電極用結合剤および電極の製造方法
DE10062176A1 (de) * 2000-12-14 2002-07-04 Wacker Polymer Systems Gmbh Polyvinylacetal-gepfropfte Polymerisate
JP5164031B2 (ja) 2001-04-27 2013-03-13 日本エイアンドエル株式会社 二次電池負極用バインダー
JP4273687B2 (ja) 2001-09-21 2009-06-03 日本ゼオン株式会社 二次電池電極用バインダー組成物および二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0855761A (ja) * 1994-08-16 1996-02-27 Asahi Glass Co Ltd 電気二重層キャパシタおよびその製造方法
JPH1021964A (ja) * 1996-07-05 1998-01-23 Fuji Photo Film Co Ltd 非水二次電池とその製造方法
JPH11162794A (ja) * 1997-12-01 1999-06-18 Jsr Corp 電気二重層コンデンサ電極用バインダー
JP2002522872A (ja) * 1998-08-06 2002-07-23 ビーエーエスエフ アクチェンゲゼルシャフト 電気化学セルに適する組成物
JP2002110169A (ja) * 2000-07-26 2002-04-12 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用
JP2003151554A (ja) * 2001-11-16 2003-05-23 Hitachi Maxell Ltd 電極およびそれを用いた電気化学素子
JP2003331848A (ja) * 2002-05-15 2003-11-21 Sanyo Chem Ind Ltd 電気化学素子の電極用結合剤および電極の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130087737A1 (en) * 2007-04-13 2013-04-11 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP2010087314A (ja) * 2008-09-30 2010-04-15 Nippon Chemicon Corp 電気二重層キャパシタ用電極
JP2014212122A (ja) * 2009-08-07 2014-11-13 Jsr株式会社 電気化学デバイス及びバインダー組成物
WO2014157715A1 (ja) * 2013-03-27 2014-10-02 Jsr株式会社 蓄電デバイス用バインダー組成物
JP5673987B1 (ja) * 2013-03-27 2015-02-18 Jsr株式会社 蓄電デバイス用バインダー組成物
US9966606B2 (en) 2013-03-27 2018-05-08 Jsr Corporation Binder composition for power storage devices

Also Published As

Publication number Publication date
JPWO2005041225A1 (ja) 2007-06-21
JP4483784B2 (ja) 2010-06-16
US7939600B2 (en) 2011-05-10
US20070274023A1 (en) 2007-11-29
KR20060113713A (ko) 2006-11-02
KR101062563B1 (ko) 2011-09-06

Similar Documents

Publication Publication Date Title
JP4483783B2 (ja) 電気二重層キャパシタ電極用バインダー
JP5098954B2 (ja) 電気化学素子用電極の製造方法および電気化学素子
WO2005041225A1 (ja) 電気二重層キャパシタ電極用バインダー
WO2004077467A1 (ja) 電気化学デバイス用電極の製造方法
KR102125396B1 (ko) 전기 화학 소자 전극용 복합 입자, 전기 화학 소자 전극, 및 전기 화학 소자
JP5522364B2 (ja) 電極用スラリー組成物
JP2018534220A (ja) カーボンナノチューブ分散液およびその製造方法
JP4432906B2 (ja) 電気二重層キャパシタ用バインダー
WO1998014519A1 (en) Dispersed polymer composition
JP4501857B2 (ja) 電気二重層キャパシタ電極用バインダー組成物
JP6314402B2 (ja) 電気化学キャパシタ用バインダー組成物、電気化学キャパシタ用スラリー組成物、電気化学キャパシタ用電極及び電気化学キャパシタ
JP2005166756A (ja) 電気化学素子用バインダー
JP2012150896A (ja) 樹脂集電体および二次電池
KR20160134637A (ko) 전기 화학 소자 전극용 복합 입자
JP3661382B2 (ja) 電気二重層コンデンサ電極用バインダー
JP2006269827A (ja) 電気化学素子電極用組成物
CN117678043A (zh) 用于负极的粘合剂组合物
JP7220216B2 (ja) 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2014216432A (ja) キャパシタ用電極形成用組成物、キャパシタ用電極、及びキャパシタ
JP6244783B2 (ja) キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
JP2005064293A (ja) 電気二重層キャパシタ電極用バインダー
JP2005294575A (ja) 電気二重層キャパシタ電極用バインダー組成物および電気二重層キャパシタ
JP4457606B2 (ja) 電気二重層キャパシタ電極用バインダー組成物
JP2005064288A (ja) 電気二重層キャパシタ電極用バインダーおよびその利用
JP2005064221A (ja) 電気二重層キャパシタ電極用バインダー

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514970

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067010016

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067010016

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10576676

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10576676

Country of ref document: US