WO2005006482A1 - 電解質組成物、これを用いた光電変換素子および色素増感太陽電池 - Google Patents

電解質組成物、これを用いた光電変換素子および色素増感太陽電池 Download PDF

Info

Publication number
WO2005006482A1
WO2005006482A1 PCT/JP2004/010245 JP2004010245W WO2005006482A1 WO 2005006482 A1 WO2005006482 A1 WO 2005006482A1 JP 2004010245 W JP2004010245 W JP 2004010245W WO 2005006482 A1 WO2005006482 A1 WO 2005006482A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolyte composition
composition according
oxide semiconductor
particles
Prior art date
Application number
PCT/JP2004/010245
Other languages
English (en)
French (fr)
Inventor
Hiroki Usui
Nobuo Tanabe
Hiroshi Matsui
Tetsuya Ezure
Shozo YANAGIDA
Original Assignee
Fujikura Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd. filed Critical Fujikura Ltd.
Priority to US10/564,314 priority Critical patent/US8785765B2/en
Priority to JP2005511605A priority patent/JP4579160B2/ja
Priority to AU2004256669A priority patent/AU2004256669C1/en
Priority to EP04747709.6A priority patent/EP1653549B1/en
Publication of WO2005006482A1 publication Critical patent/WO2005006482A1/ja
Priority to US12/485,464 priority patent/US8790551B2/en
Priority to US12/486,004 priority patent/US7872191B2/en
Priority to AU2010235977A priority patent/AU2010235977B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs

Definitions

  • Electrolyte composition, photoelectric conversion element and dye-sensitized solar cell using the same
  • Dye-sensitized solar cells have been developed by Gretzell et al. In Switzerland, have the advantages of high conversion efficiency and low manufacturing cost, and are attracting attention as new types of solar cells (for example, Japanese Patent 2664194, Homeland Patent 2001-160427, M. Graetzel et al., Nature, (UK), 1999, No. 737, p. 353).
  • the schematic structure of a dye-sensitized solar cell consists of a transparent conductive electrode substrate composed of oxide semiconductor particles (nanoparticles) such as titanium dioxide, and a porous material on which a photosensitizing dye is supported.
  • a working electrode having a membrane and a counter electrode provided opposite to the working electrode are provided, and the working electrode and the counter electrode are filled with an electrolyte containing a redox couple.
  • oxide semiconductor fine particles are sensitized by a photosensitizing dye that has absorbed incident light such as sunlight, and an electromotive force is generated between a working electrode and a counter electrode. It functions as a photoelectric conversion element that converts light energy into electric power.
  • the electrolyte it is common to use an electrolytic solution dissolved in an organic solvent such as Asetonitoriru an oxidation-reduction pair, such as I _ / I 3.
  • Ionic liquids are also called room-temperature fusible salts, exist as stable liquids over a wide temperature range including around room temperature, and are salts composed of cations and anions. Since the ionic liquid has a very low vapor pressure and hardly evaporates at room temperature, there is no need to worry about volatilization or ignition as with general organic solvents. Proposed as a method (for example, N. Papageorgiou et al., Journal “Ob” The "Electrochemical Canole. Society” (J. Electrochem. Soc.) N (USA), 1996 143 (10), p. 309).
  • electrolyte liquid
  • the electrolyte may be exposed and leak (liquid leakage) during the manufacturing process or when the cell is damaged.
  • an appropriate gelling agent for example, Japanese Patent Application Laid-Open No. 2002-184478.
  • the ionic liquid has a problem that its electric resistance is higher than that of an electrolytic solution dissolved in an organic solvent such as acetonitrile.
  • Examples of the gelling agent used in the conventional gel electrolyte include, for example, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyethylene oxide derivative, polyatarilonitrile derivative, amino There are acid derivatives.
  • these gelling agents are electric insulators having a very high electric resistance, there is a problem that the conversion efficiency of the photoelectric conversion element is significantly lower than when no gelling agent is added.
  • an object of the present invention is to provide an electrolyte composition in which the conversion efficiency of a photoelectric conversion element is comparable to that of a liquid electrolyte (electrolyte solution), a photoelectric conversion element using the same, and a dye-sensitized solar cell.
  • a first aspect of the present invention provides an electrolyte composition comprising an ionic liquid and conductive particles as main components. This electrolyte composition is preferably in a gel state.
  • the content of the conductive particles is preferably set to 0.05% by mass or more and 10% by mass or less based on the ionic liquid.
  • the content of the conductive particles is more preferably 0.05% by mass or more and 10% by mass relative to the total amount of the electrolyte composition. It is preferable to set the following.
  • conductive particles for example, a substance mainly composed of carbon can be used.
  • conductive particles include carbon nanotubes, carpon fibres, and carbon black, or a mixture of one or more of them.
  • carbon nanotube include a single-walled carbon nanotube or a multi-walled carbon nanotube, or a mixture thereof.
  • a first aspect of the present invention provides a photoelectric conversion element characterized by including the electrolyte composition as an electrolyte.
  • a first aspect of the present invention includes a working electrode having a dye-supported oxide semiconductor porous film on an electrode substrate, and a counter electrode disposed to face the working electrode, And a counter electrode, provided with an electrolyte layer made of the electrolyte composition.
  • a first aspect of the present invention includes a working electrode having a dye-supported oxide semiconductor porous film on an electrode substrate, and a counter electrode disposed to face the working electrode, And a counter electrode, provided with an electrolyte layer made of the electrolyte composition.
  • a second aspect of the present invention provides an electrolyte composition comprising an ionic liquid (A) and oxide semiconductor particles (B).
  • This electrolyte composition may include conductive particles (C).
  • the electrolyte composition according to the second aspect of the present invention is preferably in a gel state.
  • T i 0 2 is titanium oxide nanotubes or oxidation nanoparticles is preferably displaced either or mixtures thereof.
  • the conductive particles are made of a substance mainly composed of carbon.
  • the substance mainly composed of carbon is preferably one kind or a mixture of two or more kinds selected from the group consisting of carbon nanotubes, carbon fibers, and carbon black.
  • the carbon nanotube is either a single-walled carbon nanotube or a multi-walled carbon nanotube, or a mixture thereof.
  • the compounding amount of the oxide semiconductor particles (B) is 0.05% by mass or more based on the total amount of the electrolyte composition. It is preferable that the content is not more than mass%.
  • the total blending amount of the oxide semiconductor particles (B) and the conductive particles (C) is 0.05% by mass or more and 70% by mass or less based on the total amount of the electrolyte composition. It is preferable that
  • the compounding amount of the oxide semiconductor particles (B) is 0.05% by mass with respect to the ionic liquid (A). It is preferably at least 70% by mass.
  • the total content of the oxide semiconductor particles (B) and the conductive particles (C) is 0.05% by mass or more and 70% by mass with respect to the ionic liquid (A). The following is preferred.
  • a second aspect of the present invention provides a photoelectric conversion element comprising the above-mentioned electrolyte composition as an electrolyte.
  • a second aspect of the present invention includes a working electrode having a dye-supported oxide semiconductor porous film on an electrode substrate, and a counter electrode disposed to face the working electrode, wherein the working electrode and the counter electrode are And a photoelectric conversion element provided with an electrolyte layer made of the electrolyte composition.
  • a dye-supported oxide semiconductor porous film is formed on an electrode substrate.
  • a counter electrode disposed opposite to the working electrode, wherein an electrolyte layer made of the electrolyte composition is provided between the working electrode and the counter electrode.
  • the ionic liquid can be gelled to obtain a highly conductive gel electrolyte.
  • an electrolyte composition as an electrolyte of a photoelectric conversion element, it is possible to stably achieve high output characteristics and photoelectric conversion characteristics.
  • the electrolyte composition since the electrolyte composition has a gel-like property and is poor in fluidity, it has superior safety, durability, and handleability as compared with the case where a liquid electrolyte is used.
  • a third aspect of the present invention provides an electrolyte composition comprising an ionic liquid (A) and insulator particles (C).
  • This electrolyte composition is preferably in a gel state.
  • the insulator particles (C) are preferably one or a mixture of two or more members selected from the group consisting of diamond and boron nitride. .
  • the blending amount of the insulating particles (C) is preferably from 0.05% by mass to 70% by mass based on the total amount of the electrolyte composition.
  • a third aspect of the present invention provides a photoelectric conversion element comprising the above-mentioned electrolyte composition as an electrolyte.
  • a third aspect of the present invention includes a working electrode having a dye-supported oxide semiconductor porous film on an electrode substrate, and a counter electrode disposed to face the working electrode, wherein the working electrode and the counter electrode are And a photoelectric conversion element provided with an electrolyte layer made of the electrolyte composition.
  • a third aspect of the present invention provides a working electrode having a dye-supported oxide semiconductor porous film on an electrode substrate, and a counter electrode disposed opposite to the working electrode, wherein the working electrode and the counter electrode are provided.
  • the ionic liquid is gelled to form a highly conductive gel.
  • An electrolyte can be obtained.
  • an electrolyte composition as an electrolyte of a photoelectric conversion element, it is possible to stably achieve high output characteristics and photoelectric conversion characteristics.
  • the electrolyte composition has a gel-like property and is poor in fluidity, it has superior safety, durability, and handleability as compared with the case where a liquid electrolyte is used.
  • FIG. 1 is a schematic configuration diagram showing one example of the photoelectric conversion element of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the electrolyte composition of the first embodiment of the present invention contains an ionic liquid and conductive particles as main components.
  • the electrolyte composition according to the first embodiment of the present invention contains an ionic liquid as a first essential component.
  • the ionic liquid examples include, but are not particularly limited to, a room-temperature fusible salt which is a liquid at room temperature and has a compound having a quaternized nitrogen atom as a cation.
  • the cation of the room-temperature fusible salt examples include a quaternized imidazolium derivative, a quaternized pyridium derivative, and a quaternized ammonium derivative.
  • cold-melting salt anions include BF 4 —, PF 6 _, F (HF) n- , bistrifluoromethylsulfonylimide [N (CF 3 S 0 2 ) 2- ], and iodide ions Is mentioned.
  • Specific examples of the ionic liquid include salts composed of a quaternized imidazolym-based cation and a trihydride or bistrifluoromethylsulfonylimide ion.
  • the electrolyte composition according to the i-th embodiment of the present invention has conductive particles as the second essential component. Containing.
  • conductive particles such as a good conductor and a semiconductor are used. Range of the specific resistance of the conductive particles is preferably not 1. 0 X 1 0- 2 ⁇ . Cm or less, more preferably 1. Or less 0 X 1 0- 3 ⁇ ⁇ cm .
  • the type and particle size of the substance in the conductive particles are not particularly limited, but those that have excellent miscibility with an electrolyte mainly composed of an ionic liquid and that gel the electrolyte are used.
  • an electrolyte mainly composed of an ionic liquid and that gel the electrolyte are used.
  • 10 cc of the electrolyte was placed in a cylindrical glass tube with an inner diameter of 15 mm and a depth of 10 cm, and the glass tube was turned upside down at room temperature (23 ° C), If all the electrolyte does not fall down after 15 minutes, this electrolyte is defined as a gel.
  • the oxide composition (insulating film) or the like is not formed in the electrolyte composition to lower the conductivity, and that the electrolyte composition has excellent chemical stability against other coexisting components contained in the electrolyte composition. It is. In particular, even when the electrolyte composition contains a redox couple such as iodine / iodide or bromine Z bromide, it is preferable that the electrolyte composition does not deteriorate due to the oxidation reaction.
  • Such conductive particles include particles made of a substance mainly composed of carbon. Specific examples thereof include particles such as carbon nanotubes, carbon fibers, and carbon black. Methods for producing these substances are all known, and commercially available products can also be used.
  • the carbon nanotube has a tubular structure in which the graph ensheet is formed in a cylindrical shape or a truncated cone shape.
  • single-walled carbon nanotubes SWCNT: single-walled carbon nanotubes
  • MW-CNT multi-walled carbon nanotubes
  • These substances have excellent stability against oxidizing agents such as iodine and bromine which can be used for the redox couple, and are preferably used as conductive particles in the electrolyte composition of the present invention.
  • One kind of the conductive particles may be used alone, or a plurality of kinds may be used in combination.
  • the preferred size of the above particles is that for single-walled carbon nanotubes, the diameter is Those having a length of about 0.5 nm to 10 nm and a length of about 10 nm to 10 ⁇ are preferred.
  • Multilayer force In the case of monobon nanotubes, those having a diameter of about 1 nm to 100 nm and a length of about 50 nm to 50 m are preferable.
  • a carbon fiber a carbon fiber having a diameter of about 50 nm to 1 ⁇ and a length of about 1 ⁇ to 100 ⁇ is preferable.
  • carbon black those having a particle size of about 1 nm to 500 nm are preferred.
  • the content of the conductive particles is preferably from 0.05% by mass to 10% by mass with respect to the ionic liquid.
  • the content of the conductive particles is more preferably in the range of 0.05% by mass to 10% by mass with respect to the total amount of the electrolyte composition.
  • the electrolytic solution containing the ionic liquid does not gel, and there is a possibility of liquid leakage or the like at the time of breakage. If the content of the conductive particles exceeds 10% by mass with respect to the total amount of the electrolyte composition, the conductive particles may absorb all the electrolytic solution containing the ionic liquid, and may not function as an electrolyte. . A more preferred content of the conductive particles is about 1% by mass based on the total amount of the electrolyte composition.
  • a redox couple can be added to the electrolyte composition of the first embodiment of the present invention.
  • the redox couple is preferably added when the electrolyte composition is applied to a dye-sensitized solar cell or the like.
  • the redox couple is not particularly limited, and can be obtained by adding a pair of iodine / iodide ion, bromine Z bromide ion, or the like.
  • a source of iodide ion or bromide ion a lithium salt, a quaternized imidazolium salt, a tetrabutylammonium salt, or the like can be used alone or in combination.
  • organic solvent for dissolving the redox couple examples include acetonitrile, methoxyacetonitrile, propionitrile, ethylene carbonate, propylene carbonate, getyl carbonate, and ⁇ -petit mouth ratataton.
  • Various additives such as tert-butylpyridine are added to the electrolyte composition of the first embodiment of the present invention, if necessary, within a range that does not impair the properties and characteristics of the electrolyte composition. Can.
  • the method for producing the electrolyte composition of the present invention from the above components is not particularly limited.
  • an additive such as a redox couple is added to an ionic liquid to obtain an electrolytic solution.
  • an electrolytic solution There is a method of uniformly mixing the conductive particles in an electrolytic solution.
  • a known suitable stirring device, mixing device, centrifuge, or the like can be used.
  • the conductive particles may be mixed at the above-mentioned content suitable for gelling the electrolytic solution.
  • the electrolyte composition of the first embodiment of the present invention can be preferably used for a photoelectric conversion element such as a dye-sensitive solar cell.
  • the conductive particles can also play a role of charge transfer, the electric resistance is lower than that of the ionic liquid, and the conductivity of the obtained electrolyte composition is improved. Is good. As a result, the conversion efficiency of the photoelectric conversion element and the like can be improved as compared with the case where the ionic liquid is used as the electrolyte.
  • the conductive particles can also play a role of charge transfer, and the electrolyte is gelled by the conductive particles.
  • the conductivity of the composition is good, and photoelectric conversion characteristics comparable to those using a liquid electrolyte can be obtained.
  • it since it is in a gel state, there is no risk of leakage (liquid leakage) even when the electrolyte composition is exposed during the manufacturing process or when the cell is damaged, and the productivity and handling properties are excellent.
  • FIG. 1 is a cross-sectional view showing a schematic configuration example of a dye-sensitized solar cell as one embodiment of the photoelectric conversion element of the present invention.
  • the dye-sensitized solar cell 1 includes a working electrode 6 having an oxide semiconductor porous film 5 made of oxide semiconductor fine particles such as titanium oxide and carrying a photosensitive dye on a transparent electrode substrate 2, And a counter electrode 8 provided opposite to the working electrode 6. And An electrolyte layer 7 made of the above-mentioned electrolyte composition is formed between the working electrode 6 and the counter electrode 8.
  • the transparent electrode substrate 2 is obtained by forming a conductive layer 3 made of a conductive material on a transparent substrate 4 such as a glass plate or a plastic sheet.
  • the material of the transparent substrate 4 is preferably a material having high light transmittance in terms of application.
  • a material having high light transmittance in terms of application.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyether sulfone
  • a transparent plastic sheet such as, for example, a polished plate of ceramics such as titanium oxide and alumina can be used.
  • the conductive layer 3 is made of a transparent oxide such as tin-doped indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (FTO) from the viewpoint of the light transmittance of the transparent electrode substrate 2. It is preferable to use a single semiconductor or a combination of a plurality of types. However, the material is not particularly limited to these, and an appropriate material suitable for the intended use may be selected and used from the viewpoints of light transmittance and conductivity. In addition, in order to improve the current collection efficiency from the oxide semiconductor porous film 5 and the electrolyte layer 7, gold, silver, platinum, aluminum, and the like have an area ratio that does not significantly impair the light transmittance of the transparent electrode substrate 2.
  • a metal wiring layer made of nickel, titanium, or the like may be used in combination.
  • the transparent electrode substrate 2 is arranged in a pattern such as a lattice, a stripe, or a comb so as to transmit light as uniformly as possible.
  • the conductive layer 3 As a method for forming the conductive layer 3, a known appropriate method according to the material of the conductive layer 3 may be used.
  • the conductive layer 3 is formed from an oxide semiconductor such as ITO, a sputtering method, Thin-film forming methods such as CVD, SPD (spray thermal angle separation and deposition), and vapor deposition. Then, in consideration of light transmittance and conductivity, it is usually formed to a thickness of about 0.05 ⁇ m to 2.0 ⁇ m.
  • the oxide semiconductor porous film 5 titanium oxide (T i 0 2), tin oxide (Sn0 2), oxidation of tungsten (W0 3), zinc oxide (ZnO), 1 such as oxidation Eobu (Nb 2 O 5) It is a porous thin film mainly composed of oxide semiconductor fine particles with an average particle diameter of 1 to 1000 nm and a thickness of about 0.5 to 50 m.
  • Examples of the method for forming the oxide semiconductor porous film 5 include commercially available oxide semiconductors.
  • the sensitizing dye supported on the oxide semiconductor porous film 5 is not particularly limited, and may be, for example, a ruthenium complex / iron complex having a ligand having a viviridine structure, a terpyridine structure, or the like, a porphyrin It can be appropriately selected from organic and phthalocyanine-based metal complexes and organic dyes such as eosin, rhodamine, merocyanine, and coumarin, depending on the application and the material of the oxide semiconductor porous film.
  • the counter electrode 8 is, for example, a thin film made of a conductive oxide semiconductor such as ITO or FTO formed on a substrate made of a non-conductive material such as glass, or gold, platinum, or carbon on a substrate.
  • An electrode formed by depositing or coating a conductive material such as a system material can be used.
  • a layer of platinum, carbon, or the like may be formed on a thin film of a conductive oxide semiconductor such as ITO or FTO.
  • a method for producing such a counter electrode 8 for example, a method of forming a platinum layer by performing a heat treatment after applying chloroplatinic acid can be mentioned.
  • a method in which an electrode is formed on a substrate by an evaporation method or a sputtering method may be used.
  • the method for forming the electrolyte layer 7 made of the electrolyte composition on the working electrode 6 is not particularly limited. For example, a method in which the electrolyte composition is dropped little by little on the working electrode 6 can be mentioned. Can be Thereby, when the electrolyte composition is cast on the working electrode 6, the electrolyte composition can be well penetrated into the voids of the porous oxide semiconductor film 5 and filled.
  • the properties of the electrolyte composition of the photoelectric conversion device of the present invention obtained as described above are It has low volatility and fluidity because it is in the form of a solid.When used in photoelectric conversion elements such as dye-sensitive solar cells, there is no deterioration or loss of electrolyte due to evaporation of the solvent, and stable high output characteristics And photoelectric conversion characteristics can be achieved. In addition, leakage of electrolyte from gaps in the container, scattering when the photoelectric conversion element is damaged, etc. are suppressed, and it is superior in safety and durability compared to the case where a liquid electrolyte is used. Become.
  • 1-Ethyl-3-methylimidazolium-bis (trifluoromethylsulfur) imide is used as the ionic liquid, and an appropriate amount of iodine, lithium iodide and 4-tert-butyl are added to this ionic liquid.
  • an electrolytic solution containing iodine / iodide ions as an oxidation-reduction pair was prepared.
  • An electrolyte containing an ionic liquid is obtained by mixing one of carbon nanotubes, carbon fibers, and carbon black as conductive particles in the above electrolyte at a ratio of 1% by mass with respect to the total amount of the electrolyte composition, and centrifuging the mixture.
  • Example A-1 in which the composition was gelled The electrolyte compositions of 1 to 10 were obtained. At this time, the blending amount of the conductive particles with respect to the ionic liquid is about 1.25% by mass.
  • the transparent electrode substrate a glass substrate with an FTO film of 100 mm x 100 mm was used.
  • the surface of the transparent electrode substrate 2 on the side of the FTO film (conductive layer) was titanium oxide having an average particle size of 20 nm.
  • the slurry-like aqueous dispersion solution was applied, dried, and heated at 450 ° C. for 1 hour to form a 7 ⁇ m thick oxide semiconductor porous film.
  • the dye was supported by immersing it in ethanol solution of luteuium bipyridine complex (N 3 dye) for 1 ⁇ to prepare the working electrode.
  • N 3 dye luteuium bipyridine complex
  • an FTO glass electrode substrate provided with an electrode layer made of platinum by a sputtering method was prepared.
  • the working electrode and the counter electrode used were the same as the test cells according to Examples A1-1 to A5, A2, and A3.
  • an ionic liquid containing iodine / iodide ions [1-ethyl-3-methylimidazolidin-bis (trifluoromethylsulfonyl) imide] was used as a redox couple.
  • This electrolyte solution was the same as the electrolyte solution used for preparing the electrolyte compositions of the test cells of Examples A1-1-5, A2 and A3, except that no conductive particles were added.
  • the working electrode and the counter electrode were opposed to each other, and the electrolyte was injected between the working electrode and the counter electrode to form an electrolyte layer.
  • a dye-sensitized solar cell serving as a test cell of Comparative Example A1 was produced.
  • an electrolytic solution serving as an electrolyte an acetutrile solution containing quaternized imidazolyl iodide, lithium iodide, iodine, and 4-tert-butylpyridine was prepared and used.
  • the working electrode and the counter electrode faced each other, and the electrolyte was injected between the working electrode and the counter electrode to form an electrolyte layer.
  • a dye-sensitized solar cell serving as a test cell of Comparative Example A2 was produced.
  • SWCNT / MWCNT represents the ratio between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT).
  • the electrolyte composition containing the ionic liquid can be gelled to obtain a highly conductive gel electrolyte.
  • an electrolyte composition as an electrolyte of a photoelectric conversion element, it is possible to stably achieve high output characteristics and photoelectric conversion characteristics.
  • the electrolyte composition is in a gel state, the fluidity is poor, so that the safety, durability, handleability, and the like are excellent as compared with the case where a liquid electrolyte is used.
  • the electrolyte composition according to the second embodiment of the present invention contains the ionic liquid (A) and the oxide semiconductor particles (B), or contains the ionic liquid (A) and the oxide semiconductor particles (B) and the conductive material. Particles (C).
  • the electrolyte composition of the present invention is in a gel state.
  • 10 cc of electrolyte was placed in a cylindrical glass tube with an inner diameter of 15 mm and a depth of 10 cm, and the glass tube was turned upside down at room temperature (23 ° C), If all the electrolyte does not fall down after 15 minutes, the electrolyte is defined as a gel.
  • the electrolyte composition according to the second embodiment of the present invention contains an ionic liquid (A) as a first essential component.
  • Examples of the ionic liquid (A) include, but are not particularly limited to, a room-temperature fusible salt which is a liquid at room temperature and has a quaternized compound having a nitrogen atom as a cation. Shown.
  • Examples of the cation of the room-temperature fusible salt include a quaternized imidazolym derivative, a quaternized pyridinium derivative, a quaternized pyrrolidinium derivative, and a quaternized ammonium derivative.
  • Examples of the quaternized imidazolym-based cations include, for example, 1-ethyl-3-methylimidazolium, 1-ethyl-13-propylimidazolym, 1-ethyl-13-hexylimidazole, and 1-hexyl-13-methyl Examples thereof include 1,3-dialkylimidazolymes such as imidazolymes.
  • Examples of the quaternized pyridinium cation include N-alkylpyridinium such as N-butylpyridinium.
  • Examples of the quaternized pyrrolidinium cation include N, N-dialkylpyrrolidinium such as N-methyl-N-propylpyrrolidinium and N-methyl-1-N-butylpyrrolidinium.
  • anions of room-temperature fusible salts include BF 4 _, PF 6 —, F (HF) n —, pistol trifluoromethylsulfonylimide [N (CF 3 S0 2 ) 2- ], trioxide ion, and odor. And dicyanamide.
  • the ionic liquid (A) include salts composed of a quaternized imidazolym-based cation and an iodide ion or a bistrifluoromethylsulfonylimide ion, a dicyanoamide ion, or the like.
  • the electrolyte composition according to the second embodiment of the present invention contains oxide semiconductor particles (B) as a second essential component.
  • the kind and particle size of the substance in the oxide semiconductor particles (B) are not particularly limited, but they are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid, and may cause gelation of the electrolytic solution. Things are used. In addition, it is necessary that the electrolyte composition does not lower the conductivity and has excellent chemical stability against other coexisting components contained in the electrolyte composition.
  • the electrolyte or the composition contains a redox couple such as iodine / iodide ion or bromide bromide ion, it is preferable that the electrolyte and the composition do not cause deterioration due to the oxidation reaction.
  • oxide semiconductor particles (B) T i O 2 , SnO 2, W0 3, Z nO, I TO, B aT I_ ⁇ 3, Nb 2 0 5, I n 2 ⁇ 3, Z r 0 2, Ta 2 0 5, L a 2 0 3, S r T i OY 2 0 3, Ho 2 0 3, B i 2 0 3, C e0 2, and A 1 2 0 3
  • I TO is tin-added indium oxide.
  • the oxide semiconductor applied to the oxide semiconductor particles (B) may be an impurity-doped oxide semiconductor or a composite oxide.
  • titanium dioxide fine particles are particularly preferable.
  • the average particle size of the oxide semiconductor particles (B) is 2 ⁇ ! It is preferably about 1000 nm.
  • the average particle size of titanium dioxide nanoparticles is 1 ⁇ ! About 1 ⁇ m is preferred.
  • Titanium dioxide nanotubes have a diameter of about 5 ⁇ ! It is a tube-shaped titanium oxide with a thickness of about 20 nm and a length of about 10 nm to 10 ⁇ .
  • the electrolyte composition of the second embodiment of the present invention may contain conductive particles (C) as an optional component.
  • conductive particles (C) As the conductive particles (C), conductive particles such as good conductors and semiconductors are used.
  • Range of the specific resistance of the conductive particles is preferably 1 or less 0 X 1 0- 2 Q 'cm , and more preferably, 1. or less 0 X 1 0- 3 ⁇ ⁇ cm .
  • the type and particle size of the substance in the conductive particles (C) are not particularly limited, but are excellent in miscibility with an electrolyte mainly composed of an ionic liquid, and may cause gelation of the electrolyte. Things are used.
  • the electrolyte composition does not form an oxide film (insulating film) or the like to lower the conductivity, and that the electrolyte composition has excellent chemical stability with respect to other coexisting components contained in the electrolyte composition. It is.
  • the electrolyte yarn composition contains a redox couple such as iodine / iodide or bromine / bromide ion, it is preferable that the electrolyte yarn does not deteriorate due to the oxidation reaction.
  • Examples of such conductive particles (C) include those composed mainly of carbon. Specific examples thereof include particles such as carbon nanotubes, carbon fibers, and carbon black. In the production method of these substances, deviations are also known, and commercially available products can also be used.
  • the carbon nanotube has a tubular structure in which the graphity 1 is formed in a cylindrical shape or a truncated cone shape.
  • single-layer car with one layer of graph ensheet We use carbon nanotubes (SWCNTs: single-wall carbon nanotubes) and multi-wall carbon nanotubes (MWCNTs) that have multiple (two or more) graphene sheets.
  • SWCNTs single-wall carbon nanotubes
  • MWCNTs multi-wall carbon nanotubes
  • These substances have excellent stability against oxidizing agents such as iodine and bromine that can be used for the redox couple, and can be suitably used as the conductive particles (C) in the electrolyte composition of the present invention.
  • one type may be used alone, or two or more types may be used in combination.
  • each particle is about 0.5 ⁇ !
  • ⁇ 10 nm preferably about 10 nm ⁇ l / xm in length.
  • the diameter is about 1 ⁇ ! 100100 nm and a length of about 50 nm-50 ⁇ are preferred.
  • the diameter is about 50 ⁇ ! ⁇ L ⁇ m, length of about 1 ⁇ m ⁇ 100 ⁇ is preferred.
  • carbon black those having a particle size of about 1 nm to 500 nm are preferred.
  • the compounding amount of the oxide semiconductor particles (B) is 0.05% by mass or more and 70% by mass with respect to the total amount of the electrolyte composition. It is preferably less than or equal to. More preferably, the content is 0.05% by mass or more and 50% by mass or less.
  • the total amount of the oxide semiconductor particles (B) and the conductive particles (C) is 0.05% by mass or more and 70% by mass or less based on the total amount of the electrolyte composition. It is preferable that More preferably, the content is 0.05% by mass or more and 50% by mass or less.
  • the electrolytic solution containing the ionic liquid (A) can be gelled, and the production process and the cell At the time of breakage, there is no danger of liquid leakage even if the electrolyte composition is exposed.
  • the amount of the oxide semiconductor particles (B) or the total amount of the oxide semiconductor particles (B) and the conductive particles (C) is less than 0.05% by mass based on the total amount of the electrolyte composition, the ionizable liquid Is not gelled, and there is a danger of liquid leakage etc. in the event of damage.
  • the compounding amount of the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) If the total blending amount exceeds 70% by mass based on the total amount of the electrolyte composition, the particles (B) or (B) and (C) absorb all of the ionic liquid, and the function as the electrolyte is reduced. The performance may be significantly impaired.
  • the preferable blending amount of (B) or (B) + (C) is 0.05 mass. / 0 or more and 70% by mass or less. Further, a more preferable blending amount of (B) or (B) + (C) is 0.05% by mass or more and 50% by mass or less based on the total amount of the electrolyte composition.
  • oxide semiconductor particles (B) are nanotubes, the above (B) or (B) +
  • the preferred blending amount of (C) is from 0.05% by mass to 50% by mass. Further, a more preferable blending amount of (B) or (B) + (C) is about 10% by mass based on the total amount of the electrolyte composition.
  • a redox couple can be added to the electrolyte and the composition of the second embodiment of the present invention.
  • the redox couple is preferably added when the electrolyte composition is applied to a dye-sensitized solar cell or the like.
  • the redox pair is no particular limitation, iodide ion (I I), bromide ion (B r-), chloride ions (C 1 -) and halide Ion such as, I 3 one, I 5 -, I 7 -, B r 3 one, C 1 2 I one, C 1 I 2 one, B r 2 I-, B r I 2 - a halogen-based redox pair comprising a polyhalide Ion such as It is preferable to use it.
  • I I iodide ion
  • bromide ion B r-
  • chloride ions C 1 -
  • halide Ion such as, I 3 one, I 5 -, I 7 -, B r 3 one, C 1 2 I one, C 1 I 2 one, B r 2 I-, B r I 2 - a halogen-based redox pair comprising a polyhalide Ion such as It is preferable to use it.
  • a redox couple can be obtained by adding a pair such as triiodide / iodide ion and bromide / bromide ion.
  • a source of iodide ion or bromide ion lithium salt, quaternized imidazolium salt, tetrabutylammonium salt and the like can be used alone or in combination.
  • various additives such as tert-butylpyridin and a solvent can be added to the electrolyte composition of the second embodiment of the present invention within a range that does not impair the properties and characteristics of the electrolyte composition. .
  • the electrolyte composition of the second embodiment of the present invention may contain insulator particles as long as the properties of the lysing composition are not adversely affected.
  • examples of the insulator particles include particles such as diamond-boron nitride (BN).
  • the method for producing the electrolyte composition of the present invention using each of the above components is not particularly limited. For example, first, an additive such as a redox couple (ionic liquid) is added to the ionic liquid (A). ) To obtain an electrolytic solution. The oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) (that is, ions) are added to the electrolytic solution. (A particle insoluble in an ionic liquid) to form a gel.
  • a known suitable stirring device, mixing device, centrifuge, etc. can be used for mixing the electrolyte and the particles (B) and (C).
  • the electrolyte composition of the second embodiment of the present invention can be preferably used as an electrolyte used in a photoelectric conversion element such as a dye-sensitized solar cell.
  • the electrolyte composition of the present invention has good photoelectric conversion characteristics as shown in the following Examples, and is higher than a liquid electrolyte composed of an ionic liquid and a component soluble therein. The photoelectric conversion characteristics can be obtained. The reason for this is not clear, but the present inventors consider as follows.
  • the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) can play a role of charge transfer, and the electrolyte is composed of the oxide semiconductor particles (B) or the oxide. Since the gel is formed by the semiconductor particles (B) and the conductive particles (C), the conductivity of the gel electrolyte composition obtained by the gelation is improved, and the gel electrolyte composition obtained by the gelation can be compared with the case using a liquid electrolyte. Comparable photoelectric conversion characteristics can be obtained.
  • the electrolyte composition of the second embodiment of the present invention is in a gel state, there is no risk of leakage (liquid leakage) even if the electrolyte composition is exposed in the manufacturing process or at the time of cell breakage, etc. Excellent handling characteristics and properties.
  • FIG. 1 is a cross-sectional view showing a schematic configuration example of a dye-sensitized solar cell as one embodiment of the photoelectric conversion element of the present invention.
  • the dye-sensitized solar cell 1 has a working electrode 6 having an oxide semiconductor porous film 5 made of fine particles of an oxide semiconductor such as titanium oxide and carrying a photosensitizing dye on a transparent electrode substrate 2;
  • a counter electrode 8 is provided opposite to the working electrode 6, and the electrolyte composition is filled between the working electrode 6 and the counter electrode 8 to form an electrolyte layer 7.
  • the transparent electrode substrate 2 is obtained by forming a conductive layer 3 made of a conductive material on a transparent substrate 4 such as a glass plate or a plastic sheet.
  • the material of the transparent substrate 4 a material having high light transmittance is preferable in terms of application.
  • a material having high light transmittance is preferable in terms of application.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyether sulfone
  • a transparent plastic sheet, a polished plate of ceramics such as titanium oxide and alumina can be used.
  • the conductive layer 3 is made of transparent oxide such as tin-doped tin oxide (ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (FTO) from the viewpoint of the light transmittance of the transparent electrode substrate 2. It is preferable to use the compound semiconductor alone or in combination of plural kinds. However, the material is not particularly limited to these, and an appropriate material suitable for the intended use may be selected and used from the viewpoint of light transmittance and conductivity. Further, in order to improve the current collection efficiency from the oxide semiconductor porous film 5 and the electroconductive layer 7, the area ratio of the gold, silver, and platinum is set within a range that does not significantly impair the light transmittance of the transparent electrode substrate 2.
  • a metal wiring layer made of aluminum, nickel, titanium or the like may be used in combination.
  • the transparent electrode substrate 2 may be arranged in a pattern such as a lattice, a stripe, or a comb so as to transmit light evenly. . 10245
  • the conductive layer 3 As a method for forming the conductive layer 3, a known appropriate method according to the material of the conductive layer 3 may be used.
  • the conductive layer 3 is formed from an oxide semiconductor such as ITO, a sputtering method, Thin-film formation methods such as CVD, SPD (spray pyrolysis deposition), and vapor deposition.
  • CVD chemical vapor deposition
  • SPD spray pyrolysis deposition
  • vapor deposition considering light transmittance and conductivity, usually 0.05 ⁇ ! It is formed to a thickness of about 2.0 ⁇ m.
  • the oxide semiconductor porous film 5 titanium dioxide (T i 0 2), tin oxide (SnO 2), tungsten oxide (WO 3), zinc oxide (ZnO), niobium oxide (Nb 2 0 5) 1 or the like Alternatively, it is a porous thin film mainly composed of oxide semiconductor particles having an average particle diameter of 1 to 1000 nm and a thickness of about 0.5 to 50 ⁇ .
  • a commercially available dispersion liquid in which fine particles of an oxide semiconductor are dispersed in a desired dispersion medium or a colloid solution that can be prepared by a sol-gel method is required.
  • a coating method such as screen printing, ink jet printing, roll coating, doctor blade, spin coating, spray coating, or in a colloid solution.
  • Electrophoretic deposition method in which the electrode substrate 2 is immersed and the oxide semiconductor fine particles are adhered to the electrode substrate 2 by electrophoresis.A foaming agent is mixed and applied to a colloid solution or dispersion and then sintered to make it porous.
  • the polymer microphone mouth beads are removed by heat treatment or chemical treatment to form voids, And the like.
  • the sensitizing dye supported on the oxide semiconductor porous film 5 is not particularly limited, and may be, for example, a ruthenium complex / iron complex having a ligand containing a bipyridine structure, a terpyridine structure, or the like, porbuirin It can be appropriately selected and used from organic dyes such as eosin, rhodamine, merocyanine, coumarin and the like, as well as metal complexes of the system-phthalocyanine system, depending on the application and the material of the oxide semiconductor porous film.
  • the counter electrode 8 is, for example, a thin film made of a conductive oxide semiconductor such as ITO or FTO formed on a substrate made of a non-conductive material such as glass, or gold, platinum, or carbon on a substrate.
  • An electrode formed by depositing or coating a conductive material such as a system material can be used. It is also possible to form a layer of platinum, carbon, etc. on a thin film of conductive oxide semiconductor such as ITO or FTO. Monkey.
  • a method for producing such a counter electrode 8 for example, a method of forming a platinum layer by performing a heat treatment after applying chloroplatinic acid can be mentioned.
  • a method in which an electrode is formed on a substrate by an evaporation method or a sputtering method may be used.
  • the method for forming the electrolyte layer 7 made of the electrolyte composition on the working electrode 6 is not particularly limited.
  • a method in which the electrolyte composition is dropped little by little on the working electrode 6 can be mentioned.
  • the electrolyte layer can be formed by applying an electrolyte on the working electrode 6 or the counter electrode 8 or the like.
  • the electrolyte composition can be satisfactorily permeated into the voids of the porous oxide semiconductor film 5 and filled.
  • the photoelectric conversion element according to the second embodiment of the present invention obtained as described above has a low volatility and fluidity because the electrolyte composition has a gel-like property, and thus the photoelectric conversion element such as a dye-sensitized solar cell is used.
  • the photoelectric conversion element such as a dye-sensitized solar cell is used.
  • the dye-sensitized solar cell of the second embodiment of the present invention has the photoelectric conversion element, there is no alteration or loss of the electrolyte due to evaporation of the solvent, and stable high output characteristics and photoelectric conversion characteristics are obtained. Can be achieved. In addition, leakage of electrolyte from gaps in the container, scattering when the photoelectric conversion element is damaged, etc. are suppressed, resulting in superior safety and durability compared to the case where a liquid electrolyte is used. .
  • EMIm-TFSI 1-Ethyl-3-methylimidazolicum-bis (trifluoromethylsulfonyl) imide
  • EMIm-TFSI 1-Ethyl-3-methylimidazolicum-bis (trifluoromethylsulfonyl) imide
  • A ionic liquid
  • EMIm-I 1-ethyl-3 -methylimidazonium monoiodide
  • lithium iodoiodide lithium iodoiodide
  • 4-tert-butylpyridine 4-tert-butylpyridine
  • the oxide semiconductor particles (B) have an average particle size of 2 ⁇ ! ⁇ 1000 nm of titanium dioxide (in Table 2, T i 0 2 and denoted) nanoparticles added to the Hare by a 10% by mass with respect to the electrolyte solution the total amount (Example B- 1), or the nanoparticles of titanium dioxide
  • the carbon nanotubes (referred to as CNT in Table 2) as the conductive particles (C) were mixed at the blending ratio shown in Table 2 (the ratio of the total blended amount of the particles being 100%).
  • the amount of the electrolyte solution was adjusted to 1% by mass with respect to the total amount of the electrolytic solution (Examples B-2 to 10), and the electrolyte composition of Examples B-1 to 10 in which the ionic liquid was gelled by centrifugation. Thing was obtained.
  • carbon nanotubes single-walled carbon nanotubes (denoted as SWCNT in Table 2) and multi-walled carbon nanotubes (denoted as MWCNT in Table 2) were used in the amounts shown in Table 2.
  • SWCNT ⁇ Pi MWC NT is the blending ratio of each particle in the total compounding amount before centrifuging the particles (1% by mass with respect to the electrolyte solution total) mass% Represents.
  • titanium oxide nanotubes were added as oxide semiconductor particles (B) so as to be 10% by mass with respect to the total amount of the electrolytic solution.
  • Example B—11 Or, mix titanium oxide nanotubes and titanium oxide nanoparticles at the compounding ratio shown in Table 3 (the ratio of the total amount of particles to the total amount of particles is 100%).
  • the amount of the electrolyte was increased to 10% by mass with respect to the total amount of the electrolytic solution (Examples B_12 to 14), and centrifuged to gel the ionic liquid to the electrolytes of Examples B-11 to 14. A composition was obtained.
  • Example B With respect to the electrolyte (containing EMI m-TFS I as an ionic liquid) The mixing ratio shown in Table 4 (the ratio of the total compounding amount of the particles being 100%) between the titanium oxide nanotubes as the oxide semiconductor particles (B) and the carbon nanotubes (CNT) as the conductive particles (C) ), And the total amount of these components is added to 1% by mass with respect to the total amount of the electrolyte solution (Example B-15-15.17), and the ionic liquid is gelled by centrifugation.
  • Example B The electrolyte compositions of 15 to 17 were obtained. In Example B-15 to 17, MWCNT was used as the carbon nanotube.
  • the column of ⁇ Ratio of particles after centrifugation '' in Table 4 shows the percentage of particles of components insoluble in the ionic liquid (here, the sum of titanium oxide nanotubes and carbon nanotubes) after centrifugation. The entire composition is indicated as 100%.
  • oxide semiconductor particles (B) With respect to the electrolyte solution (containing EMIm-TFS I as an ionic liquid), nanoparticles of various substances shown in the column of “Oxide semiconductor” in Table 5 as oxide semiconductor particles (B) were added to the total amount of the electrolyte solution. The mixture was adjusted to 10% by mass and centrifuged to obtain an electrolyte composition of Example B-18-25 in which the ionic liquid was gelled.
  • the column of “Ratio of particles after centrifugation” in Table 5 shows the percentage of particles of the component insoluble in the ionic liquid (here, the sum of oxide semiconductor particles) after centrifugation, and the total electrolyte composition. Is shown as 100%.
  • ionic liquid (A) 1-hexyl 3-methyl imidazolide iodide (which may be abbreviated as HMI m-I) or 1-ethyl 3--3-methylimidazolidic diimide (this is referred to as EM Im- DC A), and dissolve an appropriate amount of EM Im-I, lithium iodide and lithium 4-tert-butyl pyridine in this ionic liquid.
  • An electrolyte containing iodine / iodide ions as a redox couple was prepared.
  • the oxide semiconductor particles (B) As the oxide semiconductor particles (B), an average particle diameter of 2 iim ⁇ 10 OO nm titanium dioxide against the electrolyte whole amount of nanoparticles (in Table 2, T i 0 2 hereinafter) 10 %, And centrifuged to obtain the electrolyte compositions of Examples B-26 to 27 in which the ionic liquid was gelled.
  • the transparent electrode substrate a glass substrate with an FTO film of 100 mm x 100 mm was used.
  • the surface of the transparent electrode substrate 2 on the side of the FTO film (conductive layer) was titanium oxide having an average particle size of 20 nm.
  • the slurry uniform dispersion aqueous solution was applied, dried, and heated at 450 ° C. for 1 hour to form a 7 / xm-thick porous oxide semiconductor film.
  • the dye was supported by immersing it in ethanol solution of lute-dubipyridine complex (N3 dye) for 1 hour to prepare the working electrode.
  • N3 dye lute-dubipyridine complex
  • an FTO glass electrode substrate provided with an electrode layer made of platinum by a sputtering method was prepared.
  • the gelled electrolyte composition is dropped little by little on the oxide semiconductor porous film of the working electrode, and further superimposed while strongly pressing the counter electrode.
  • the electrolyte layer was joined.
  • the electrolyte used as the electrolyte may be an ionic liquid containing iodine Z iodide ion as a redox couple [1-ethyl-3-methylimidazolymidine (trifluoromethylsulfonyl) imide (EMIm-TFSI)] was prepared and used.
  • This electrolyte solution was prepared in the same manner as in Example B- :! except that the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) were not added.
  • the same electrolyte solution was used for preparing the electrolyte composition of the cell.
  • the working electrode and the counter electrode faced each other, and the electrolyte solution was injected between the working electrode and the counter electrode to form an electrolyte layer, thereby producing a test cell of Comparative Example B-1.
  • an electrolytic solution serving as an electrolyte an acetonitrile solution containing quaternized imidazolium iodide, lithium triiodide, iodine, and 4-tert-butylpyridine was prepared and used.
  • the working electrode and the counter electrode face each other, and the electrolyte is injected between them to form an electrolyte layer.
  • a dye-sensitized solar cell which was formed and used as a test cell of Comparative Example B-2 was produced.
  • the working electrode and the counter electrode those similar to the test cells according to Examples B-1 to 27 were used.
  • an electrolyte serving as an electrolyte an ionic liquid containing iodine Z iodide ions as a redox couple was prepared and used.
  • HM Im-I was used as the ionic liquid in Comparative Example B_3
  • EM Im-DCA was used in Comparative Example B_4.
  • This electrolytic solution was prepared in the same manner as in Examples B-1 to 27 shown in Table 6 except that the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) were not added. It is the same as the electrolytic solution used for preparing the electrolyte composition of the test cell.
  • the working electrode and the counter electrode faced each other, and the electrolyte was injected between the working electrode and the counter electrode to form an electrolyte layer.
  • dye-sensitive solar cells serving as test cells of Comparative Examples B-3 and 4 were produced.
  • Example B-1 100 1-15.3% Gel 5.0
  • Example B-2 80 20-1 1.2% Gel 4.7
  • Example B-3 50 50 1 5.2% Gel 4.5
  • Example B-5 80-20 5.2% Gel 4.7
  • Example B-6 50-50 3.2% Gel 4.8
  • Example B-7 20-80 2.3% Gel 4.3
  • Example B-8 80 10 10 7.6 % Gel-like 4.9
  • Example B-9 60 20 20 4.1% Gel-like 4,9
  • Example B-10 20 40 40 1.5% Gel-like 4.7 Comparative example B-1 Ionic liquid only Liquid 4.1 Comparative example B-2 Redox Pair of acetate nitrile solution Liquid 5.5 Table 3
  • Example B-1 100% 0% 10.2% Gel 5.1
  • Example B-12 80% 20% 1 1.2% Gel 5.2
  • Example B-13 50% 50% 15.2% Gel 5.0
  • Example B-14 20% 80% 15.8% Gel 5.5 Comparative
  • Example B-1 Ionic liquid only Liquid 4.1 Table 4
  • Example B-1 Titanium oxide Carbon Properties after centrifugation Conversion efficiency Nanotube 'Nanotube' Particle ratio (%) Example B-1 1 100% 0% 10.2% Gel 5.1 Example B-15 80% 20% 5.2% Gel 5.5 Example B-16 50% 50% 4.2% Gel 5.3 Example B-17 20% 80% 2.3% Gel 5.5 Comparative example B-1 Ionic liquid only Liquid 4.1
  • Example B-18 Ti0 2 (anatase - Se ') 15.2% gel 5.1
  • Example B-19 Ti0 2 (rutile) 14.6% gel 5.2
  • Example B- 20 Ti0 2 (Burutsukaito) 29.3 percent gel 5.0
  • Example B-23 ITO 36.1% Gel 4.9
  • Comparative Example B-1 Ionic liquid only Liquid 4.1 45
  • a liquid electrolyte (electrolyte) was used while the property of the electrolyte was a gel.
  • High conversion efficiency was obtained, comparable to the case.
  • the initial conversion efficiency of the photoelectric conversion element when the electrolyte is gelled is described as 2.0%.
  • the conversion efficiency was significantly lower than when the electrolytic solution was used, such a phenomenon did not occur in the present invention. Therefore, the effect of gelling an electrolyte solution (such as an ionic liquid) using the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) is apparent.
  • the effect of the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) is as follows.
  • the ionic liquid is EMI m-TF SI (Example B—;! To 25 and Comparative Example B—1)
  • the HMIm In the case of I (Example B-26 and Comparative Example B-3) and in the case of EM Im—DCA (Example B-27 and Comparative Example B-4)
  • the oxide semiconductor particles The surprising result that the conversion efficiency was higher when B) or the oxide semiconductor particles (B) and the conductive particles (C) were added was obtained.
  • liquid electrolyte electrolyte solution
  • iodine, lithium iodide, dialkyl imidazolium iodide and 4-tert-butylpyridin ionic liquid as a main component
  • ionic liquids include 1-ethyl-3-methylimidazolidin-bis (trifluoromethylsulfonyl) imide (EM I m—T FS 1) and 1-hexyl 3-methyl Imidazolym-iodide (HM Im-1) and 1-ethyl-13-methylimidazolyl-dicyanoid (EM I m-DCA) were used.
  • EM I m—T FS 1 1-ethyl-3-methylimidazolidin-bis (trifluoromethylsulfonyl) imide
  • HM Im-1 1-hexyl 3-methyl Imidazolym-iodide
  • EM I m-DCA 1-ethyl-13-methylimidazolyl-dicyanoid
  • Example B- As the gel electrolyte of 28 to 35, the liquid electrolyte and the oxide semiconductor particles (B) described in Table 7 were obtained by the same procedure as the method described in the section of “Preparation of Electrolyte Composition”. Was used, and the electrolyte composition of the present invention obtained by mixing was used.
  • T I_ ⁇ 2 [1] anatase and ( ⁇ 28 ⁇ ) shows, T i 0 2 [2] represents anatase (80 nm), T i 0 2 [3] is And Ruchinore ( ⁇ 70 nm).
  • the gel electrolyte has a composition obtained by adding the oxide semiconductor particles (B) or the gelling agent to the liquid electrolyte.
  • the liquid electrolyte corresponding to the gel electrolyte refers to a liquid electrolyte corresponding to a composition obtained by removing the oxide semiconductor particles (B) or the gelling agent from the composition of the gel electrolyte.
  • I lim is the limiting current
  • n is the number of reactive electrons
  • F is the Faraday constant
  • C is the carrier concentration
  • D app is the diffusion constant
  • r is the electrode radius.
  • the equilibrium potential (E eq ) was determined as the electrode potential corresponding to zero current in the italic voltammogram.
  • D app diffusion coefficient
  • E eq equilibrium potential
  • the diffusion constant measured using a liquid electrolyte is called the “diffusion constant of the liquid system”, and the diffusion constant measured using the gel electrolyte is called the “diffusion constant of the gel system”.
  • the equilibrium potential measured using the liquid electrolyte is referred to as the “equilibrium potential of the liquid system”, and the equilibrium potential measured using the gel electrolyte is referred to as the “equilibrium potential of the gel system”. Is defined as ("the equilibrium potential of the gel system"-"the equilibrium potential of the liquid system”).
  • the measurement conditions for the photoelectric conversion characteristics were light irradiation conditions with an air mass (AM) of 1.5 and an irradiance of 100 mW / cm 2 .
  • the "diffusion rate change rate" with respect to the corresponding liquid electrolyte was positive. It has a relatively large value. From this, the charge transfer was faster in the gel electrolyte of Example B-28 to 35 than in the corresponding liquid electrolyte, and as a result, the conversion efficiency was improved. It is considered. Also, the "shift width of the equilibrium potential" has a relatively large positive value, and is biased (shifted) to the positive potential side. It is thought that it can be done.
  • the oxide semiconductor particles (B) or the oxide semiconductor particles (B) and the conductive particles (C) are ionic liquids. It is thought that by adding to (A), an electrolyte with better properties than the original ionic liquid (A) can be obtained.
  • An electrolyte composition comprising:
  • the insoluble component may contain insulator particles as long as the characteristics of the electrolyte composition are not adversely affected.
  • examples of the insulator particles include particles such as diamond-boron nitride (BN).
  • the present invention has been made in view of the above circumstances, and has an electrolyte composition having a photoelectric conversion efficiency which is equal to or higher than that of a liquid electrolyte (electrolyte) when used as an electrolyte of a photoelectric conversion element.
  • Another object is to provide a gel electrolyte composition, a photoelectric conversion element and a dye-sensitized solar cell using the same.
  • the electrolyte composition of the present invention contains an ionic liquid (A) and insulator particles (C).
  • the electrolyte composition of the present invention is in a gel form.
  • an electrolyte of 10 cc was put in a cylindrical glass tube having an inner diameter of 15 mm and a depth of 10 cm, and the glass tube was turned upside down at room temperature (23 ° C).
  • the electrolyte is defined as a gel.
  • the electrolyte composition according to the third embodiment of the present invention contains an ionic liquid (A) as a first essential component.
  • the ionic liquid (A) is not particularly limited, but a room-temperature fusible salt which is a liquid at room temperature and has a cation as a compound having a quaternized nitrogen atom is exemplified.
  • a room-temperature fusible salt which is a liquid at room temperature and has a cation as a compound having a quaternized nitrogen atom is exemplified.
  • the cation of the room-temperature fusible salt include a quaternized imidazolyme derivative, a quaternized pyridinium derivative, a quaternized pyrrolidinium derivative, and a quaternized ammonium salt. 45
  • Examples of the quaternized imidazolium-based cation include, for example, 1-ethyl-3-methylimidazolium, 1-ethyl-3-propylimidazolidum, 1-ethyl-3-hexylimidazolium, and 1-hexyl-3-methylimidazolium. 1,3-dialkylimidazolime can be exemplified.
  • Examples of the quaternized pyridinium cation include N-alkylpyridinium such as N-butylpyridinium.
  • Examples of the quaternized pyrrolidinium cation include N, N-dialkylpyrrolidinium such as N-methyl-N-propylpyrrolidinium and N-methyl-N-butylpyrrolidinium.
  • the ionic liquid (A) include salts composed of a quaternized imidazolym-based cation and an iodide ion or bistrifluoromethylsulfonylimide ion, dishyanamidion, or the like.
  • the electrolyte composition of the third embodiment of the present invention contains insulator particles (C) as a second essential component.
  • the kind and particle size of the substance in the insulating particles (C) are not particularly limited, but they are excellent in miscibility with an electrolyte mainly composed of an ionic liquid and may cause gelation of the electrolyte. Things are used.
  • the electrolyte composition does not lower the conductivity and has excellent chemical stability against other coexisting components contained in the electrolyte composition.
  • the electrolyte composition contains a redox couple such as iodine / iodide ion or bromine / bromide ion, it is preferable that the electrolyte composition does not deteriorate due to the oxidation reaction.
  • Examples of such insulating particles (C) include one or a mixture of two or more selected from the group consisting of diamond and boron nitride (BN).
  • the insulator particles (C) are preferably nanoparticles.
  • Nanoparticles are particles having a particle size on the order of nm (less than 100 nm). When the nanoparticles are in the form of a tube, the diameter (minor axis) may be on the order of nm, and the length (major axis) may be several um. Or more.
  • the amount of the insulating particles (C) is preferably from 0.05% by mass to 70% by mass with respect to the total amount of the electrolyte composition. More preferably, the content is 0.05% by mass or more and 50% by mass or less.
  • the electrolytic solution containing the ionic liquid (A) can be gelled, and the electrolyte composition is exposed during the manufacturing process or cell breakage. There is no risk of liquid leakage.
  • the blending amount of the insulating particles (C) is less than 0.05% by mass with respect to the total amount of the electrolyte composition, the ionic liquid does not gel and there is a possibility of liquid leakage or the like at the time of breakage.
  • the blending amount of the insulating particles (C) exceeds 7% by mass with respect to the total amount of the electrolyte composition, the particles (C) absorb all of the ionic liquid and cannot function as an electrolyte. May be present.
  • a redox couple can be added to the electrolyte composition of the third embodiment of the present invention.
  • the redox couple is preferably added when the electrolyte composition is applied to a dye-sensitized solar cell or the like.
  • the oxidation-reduction pair is not particularly limited, but may be a halide ion such as an iodide ion (I-I), a bromide ion (Br-), or a chloride ion (C1-). 3 one, I 5 -, I 7 - , B r 3 -, C 1 2 I one, C 1 I 2 one, B r 2 I _, B r I 2 - halogen consisting of Poriha port Gen product Ion such as It is preferable to use a redox pair.
  • a halide ion such as an iodide ion (I-I), a bromide ion (Br-), or a chloride ion (C1-). 3 one, I 5 -, I 7 - , B r 3 -, C 1 2 I one, C 1 I 2 one, B r 2 I _, B r I 2 - halogen consisting of Poriha port Gen
  • a pair such as iodine / iodide ion or bromine / bromide ion as a redox pair.
  • a source of iodide ion or bromide ion lithium salt, quaternized imidazolium salt, tetrabutylammonium salt and the like can be used alone or in combination.
  • Various additives such as tert-butylpyridin and a solvent can be added to the electrolyte composition of the third embodiment of the present invention, if necessary, as long as the properties and characteristics of the electrolyte composition are not impaired. .
  • the method for producing the electrolyte composition of the present invention using each of the above components is not particularly limited.
  • an additive such as a redox couple is added to the ionic liquid (A).
  • the insulator particles (C) that is, the component that is insoluble in the ionic liquid
  • a well-known appropriate stirring device, mixing device, centrifuge, or the like can be used.
  • the electrolyte composition of the third embodiment of the present invention can be preferably used as an electrolyte used in a photoelectric conversion element such as a dye-sensitized solar cell.
  • the electrolyte yarn composition of the present invention has good photoelectric conversion characteristics as shown in the following examples, and is more effective than a liquid electrolyte composed of an ionic liquid and a component soluble therein. High photoelectric conversion characteristics can be obtained. The reason for this is not clear, but the present inventors consider as follows.
  • the electrolyte composition of the third embodiment of the present invention is in a gel state, even if the electrolyte composition is exposed during the manufacturing process or when the cell is damaged, there is no possibility of leakage (liquid leakage), and productivity and Excellent handling characteristics and properties.
  • FIG. 1 is a cross-sectional view showing a schematic configuration example of a dye-sensitized solar cell as one embodiment of the photoelectric conversion element of the present invention.
  • This dye-sensitized solar cell 1 has a transparent electrode substrate 2 on which an oxide semiconductor such as titanium oxide is applied.
  • a working electrode 6 having conductive oxide fine particles and having an oxide semiconductor porous film 5 carrying a photosensitizing dye, and a counter electrode 8 provided opposite to the working electrode 6 are provided.
  • An electrolyte layer 7 is formed between the counter electrode 8 and the electrolyte layer by filling the electrolyte composition.
  • the transparent electrode substrate 2 is obtained by forming a conductive layer 3 made of a conductive material on a transparent substrate 4 such as a glass plate or a plastic sheet.
  • the material of the transparent substrate 4 is preferably a material having high light transmittance in terms of application.
  • a material having high light transmittance in terms of application.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PES polyether sulfone
  • a transparent plastic sheet such as, for example, a polished plate of ceramics such as titanium oxide and alumina can be used.
  • the conductive layer 3 is made of a transparent oxide semiconductor such as tin-doped indium oxide (ITO), tin oxide (SnO 2 ), and fluorine-doped tin oxide (FTO) from the viewpoint of the light transmittance of the transparent electrode substrate 2. It is preferable to use singly or in combination of two or more. However, the material is not particularly limited to these, and an appropriate material suitable for the intended use may be selected and used from the viewpoints of light transmittance and conductivity. Further, in order to improve the current collection efficiency from the oxide semiconductor porous film 5 and the electrolyte layer 7, gold, silver, platinum, aluminum, and the like have an area ratio that does not significantly impair the light transmittance of the transparent electrode substrate 2.
  • ITO tin-doped indium oxide
  • SnO 2 tin oxide
  • FTO fluorine-doped tin oxide
  • a metal wiring layer made of nickel, titanium, or the like may be used in combination.
  • the transparent electrode substrate 2 may be arranged in a pattern such as a lattice, a stripe, or a comb so as to transmit light evenly.
  • the conductive layer 3 As a method for forming the conductive layer 3, a known appropriate method according to the material of the conductive layer 3 may be used.
  • a known appropriate method according to the material of the conductive layer 3 may be used.
  • the conductive layer 3 is formed from an oxide semiconductor such as ITO
  • a sputtering method a sputtering method
  • Thin-film formation methods such as CVD, SPD (spray pyrolysis deposition), and vapor deposition are listed.
  • light transmittance and conductivity 0.05 ⁇ ! It is formed to a thickness of about 2.0 ⁇ .
  • the oxide semiconductor porous film 5 titanium (T i O 2) dioxide, tin oxide (S N_ ⁇ 2), tungsten oxide (WO 3), zinc oxide (ZnO), niobium oxide (Nb 2 O 5), such as Oxide semiconductor fine particles with an average particle size of 1 to 1000 nm in which one or more compounds are combined It is a porous thin film with a thickness of about 0.5 to 50 Aim, mainly composed of particles.
  • a commercially available dispersion liquid in which fine particles of an oxide semiconductor are dispersed in a desired dispersion medium or a colloid solution that can be prepared by a sol-gel method is required. After adding the desired additives according to the requirements, it is applied by a known coating method such as a screen printing method, an ink jet printing method, a roll coating method, a doctor blade method, a spin coating method, a spray coating method, or in a colloid solution.
  • Electrode substrate 2 is immersed in electrode substrate and electrophoretically attaches oxide semiconductor fine particles to electrode substrate 2 by electrophoretic deposition.
  • a foaming agent is mixed and applied to a colloid solution or dispersion, and then sintered and porous. After mixing and applying the polymer microphone mouth beads, the polymer microphone mouth beads are removed by heat treatment or chemical treatment to form voids. It can be applied a method of structure forming.
  • the sensitizing dye supported on the oxide semiconductor porous film 5 is not particularly limited, and may be, for example, a ruthenium complex / iron complex having a ligand having a viviridine structure, a terpyridine structure, or the like, a porphyrin It can be appropriately selected and used from organic dyes such as eosin, rhodamine, merocyanine, coumarin and the like, as well as phthalocyanine-based metal complexes, depending on the application and the material of the oxide semiconductor film.
  • the counter electrode 8 is, for example, a thin film made of a conductive oxide semiconductor such as ITO or FTO formed on a substrate made of a non-conductive material such as glass, or gold or platinum on a substrate.
  • An electrode formed by depositing or applying a conductive material such as a carbon-based material can be used.
  • a layer of platinum, carbon, or the like can be formed on a thin film of a conductive oxide semiconductor such as ITO or FTO.
  • a method for producing such a counter electrode 8 for example, a method of forming a platinum layer by performing a heat treatment after applying chloroplatinic acid can be mentioned.
  • a method in which an electrode is formed on a substrate by an evaporation method or a sputtering method may be used.
  • the method for forming the electrolyte layer 7 made of the electrolyte composition on the working electrode 6 is not particularly limited.
  • a method in which the electrolyte composition is dropped little by little on the working electrode 6 can be mentioned.
  • the electrolyte layer can be formed by applying an electrolyte on the working electrode 6 or the counter electrode 8 or the like. This allows the electrolyte When the fibrous composition is cast on the working electrode 6, the electrolyte composition can be satisfactorily permeated into the voids of the porous oxide semiconductor membrane 5 and filled.
  • the photoelectric conversion device of the present invention obtained as described above has low volatility and fluidity because the electrolyte composition has a gel-like property, and was used for a photoelectric conversion device such as a dye-sensitized solar cell. Occasionally, there is no alteration or loss of the electrolyte due to evaporation of the solvent, and it is possible to stably achieve high output characteristics and photoelectric conversion characteristics. In addition, leakage of electrolyte from gaps in the container, scattering when the photoelectric conversion element is damaged, etc. are suppressed, and it is superior in safety and durability as compared with the case where a liquid electrolyte is used. Become.
  • the dye-sensitized solar cell of the present invention has the photoelectric conversion element, there is no deterioration or loss of the electrolyte due to volatilization of the solvent or the like, and it is possible to stably achieve high output characteristics and photoelectric conversion characteristics. It becomes possible. In addition, leakage of electrolyte from the gap of the container and scattering when the photoelectric conversion element is damaged are suppressed, and the safety and durability are superior to those using a liquid electrolyte. .
  • EMIm-TFSI 1-ethyl-13-methylimidazolium-bis (trifluoromethylsulfonyl) imide
  • A the ionic liquid
  • EM I m-I Metal iodine
  • 4-tert-butylpyridin An electrolytic solution containing a chloride ion was prepared.
  • the insulator particles (C) as the insulator particles (C) were adjusted to be 10% by mass with respect to the total amount of the electrolyte. (Examples D 1-2) and centrifuged to obtain the electrolyte compositions of Examples C-1 and C-2 in which the ionic liquid was gelled.
  • aqueous solution of a uniform dispersion of titanium oxide having an average particle diameter of 20 nm is applied, dried, and then left at 450 ° C for 1 hour.
  • the working electrode was fabricated by immersing the ruthenium bipyridine complex ( ⁇ ⁇ ⁇ ⁇ 3 dye) in ethanol for 1 ⁇ to carry the dye.
  • a glass electrode substrate provided with an electrode layer made of platinum by a sputtering method was prepared.
  • the gelled electrolyte composition is applied on the oxide semiconductor porous film of the working electrode, and further superimposed while strongly pressing the counter electrode, thereby forming the counter electrode and the electrolyte layer.
  • the gelled electrolyte composition is applied on the oxide semiconductor porous film of the working electrode, and further superimposed while strongly pressing the counter electrode, thereby forming the counter electrode and the electrolyte layer.
  • a dye-sensitized solar cell serving as a test cell of Example C-11 was produced.
  • Example C_1 As the working electrode and the counter electrode, the same as the test cell according to Example C_1 was used.
  • This electrolytic solution was the same as the electrolytic solution used for preparing the electrolyte composition of the test cell of Example C-11, except that the insulating particles (C) were not added.
  • the working electrode and the counter electrode were opposed to each other, and the electrolyte solution was injected between the working electrode and the counter electrode to form an electrolyte layer.
  • a dye-sensitized solar cell serving as a test cell of Comparative Example C-1 was produced.
  • the effect of the insulating particles (C) is that the addition of these particles results in a gel (pseudo-solid state) (Example C-11), and that the addition of these particles causes Comparing with the case of the ionic liquid solution (Comparative Examples C-1, 2), surprising results were obtained that the conversion efficiency was higher when the insulating particles (C) were added.
  • the insulating particles (C) by adding the insulating particles (C) to the ionic liquid solution (electrolyte solution), it was possible to prepare an electrolyte composition that was superior to the case without the addition.
  • liquid electrolyte electrolyte solution
  • ionic liquid is used as a main component, and iodine,
  • Example C-13 As the gel electrolyte of Example C-13, the liquid electrolyte and the insulating particles described in Table 10 were obtained by the same procedure as the method described in the section of “Preparation of Electrolyte Composition”.
  • the gel electrolyte has a composition obtained by adding the insulating particles (C) or the gelling agent to the liquid electrolyte.
  • the liquid electrolyte corresponding to the gel electrolyte refers to a liquid electrolyte corresponding to a composition obtained by removing the insulating particles (C) or the gelling agent from the composition of the gel electrolyte.
  • I im is the limiting current
  • n is the number of reactive electrons
  • F is the Faraday constant
  • C is the carrier concentration
  • D app is the diffusion constant
  • r is the electrode radius.
  • the equilibrium potential (E eq ) was determined as the electrode potential corresponding to the current port in the italic voltammogram.
  • the diffusion constant measured using a liquid electrolyte is called the “diffusion constant of the liquid system”, and the diffusion constant measured using the gel electrolyte is called the “diffusion constant of the gel system”.
  • the equilibrium potential measured using a liquid electrolyte is referred to as “equilibrium potential of a liquid system”, and the equilibrium potential measured using a gel electrolyte is referred to as “equilibrium potential of a gel system”. Is defined as (“the equilibrium potential of the gel system"-"the equilibrium potential of the liquid system”).
  • the measurement conditions of the photoelectric conversion characteristics were light irradiation conditions of an air mass (AM) of 1.5 and an irradiance of 100 mW / cm 2 .
  • the conversion efficiency of the gel system is higher than the conversion efficiency of the liquid system.
  • the conversion efficiency of the gel system is lower than that of the liquid system.
  • the electrolyte composition of the present invention by adding the insulating particles (C) to the ionic liquid (A), the characteristics are superior to those of the original ionic liquid (A). It is believed that an electrolyte is obtained.
  • the electrolyte composition has a diffusion coefficient larger than a diffusion coefficient of the redox pair in a composition composed of a plurality of components.
  • the electrolyte composition of the present invention can be preferably used as an electrolyte used in a photoelectric conversion element such as a dye-sensitive solar cell.
  • a photoelectric conversion element such as a dye-sensitive solar cell.
  • it is expected to be useful as an electrolyte for various elements having an electric or electrochemical action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

イオン性液体と導電性粒子とを主たる成分として含む電解質組成物、イオン性液体と、酸化物半導体粒子または酸化物半導体粒子と導電性粒子とを含む電解質組成物、およびイオン性液体と、絶縁体粒子とを含む電解質組成物が提供される。また、これら電解質組成物を電解質として含む光電変換素子、ならびに、色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、この作用極に対向して配置された対極とを備え、作用極と対極との間に、上記の電解質組成物からなる電解質層が設けられた光電変換素子とが提供される。

Description

電解質組成物、 これを用いた光電変換素子およぴ色素増感太陽電池 技術分野
本願は、 以下に対し優先権を主張し、 その内容をここに援用する: 2003年 7月 23日に出願された特願第 2003— 200626号、 2003年 10月 6 日に出願された特願第 2003— 3明47193号、 2004年 3月 22日に出願 された特願第 2004— 82934号;糸 12003年 7月 14日に提出された特願 第 2003— 196561号、 2003年 7月 23日に出願された特願第 200 3— 200629号; 2004年 3月 22日に出願された特願第 2004-82 586号。 本発明は、 色素增感太陽電池などの光電変換素子に用いられる電解質組成物お よびこれを用いた光電変換素子に関する。 背景技術
色素增感太陽電池は、 スイスのグレッツエルらにより開発されたものであり、 変換効率が高く、 製造コストが安い等の利点をもち、 新しいタイプの太陽電池と して注目を集めている (例えば、 日本国特許第 2664194号公報、 曰本国特 開 2001— 160427号公報、 ミ力エル ·グレッツエル (M. Graetzel) ら、 ネイチヤー (Nature) 誌、 (英国)、 1 991年、 第 737号、 p. 353参照)。 色素増感太陽電池の概略構成は、 透明な導電性の電極基板の上に、 二酸化チタ ンなどの酸化物半導体 ί敷粒子 (ナノ粒子) からなり、 光増感色素が担持された多 孔質膜を有する作用極と、 この作用極に対向して設けられた対極とを備え、 これ ら作用極と対極との間に、酸化還元対を含有する電解質が充填されたものである。 この種の色素増感太陽電池は、 太陽光などの入射光を吸収した光増感色素により 酸化物半導体微粒子が増感され、 作用極と対極との間に起電力が生じることによ り、 光エネルギーを電力に変換する光電変換素子として機能する。 電解質としては、 I _/ I 3 などの酸化還元対をァセトニトリル等の有機溶媒 に溶解させた電解液を用いることが一般的である。 この他、 不揮発性のイオン性 液体を用いた構成、 液状の電解質を適当なゲル化剤でゲル化させ、 擬固体化した 構成、 P型半導体などの固体半導体を用いた構成などが知られている。
イオン性液体は、 常温溶融性塩ともよばれ、 室温付近を含む広い温度範囲にお いて安定な液体として存在し、 陽イオンおよび陰イオンからなる塩である。 ィォ ン性液体は、 蒸気圧が極めて低く、 室温では実質的に殆ど蒸発しないので、 一般 的な有機溶媒のように揮発や引火の心配がないことから、 揮発によるセル特性の 低下を解決する方法として提案されている (例えば、 ェヌ ·パパゲオルギゥ (N. Papageorgiou) ら、 ジャーナル 'ォブ 'ジ 'エレクトロケミカノレ . ソサエティ (J. Electrochem. Soc. ) N (米国)、 1 9 9 6年、 第 1 4 3 ( 1 0 ) 号、 p . 3 0 9 9参照)。
また、電解質として、電解液(液状) を用いた場合、製造工程やセル破損時に、 電解液が露出して漏れ出す (液漏れ) おそれがある。 液漏れ対策として、 適当な ゲル化剤を添加することも試みられている (例えば、 日本国特開 2 0 0 2— 1 8 4 4 7 8号公報)。
しかしながら、 イオン性液体は、 ァセトニトリル等の有機溶媒に溶解させた電 解液に比べて、 電気抵抗が高いという問題がある。
また、 従来のゲル状電解質に用いられたゲル化剤としては、 例えば、 ポリフッ 化ビニリデン、 ポリフッ化ビニリデン一へキサフルォロプロピレン共重合体、 ポ リエチレンォキシド誘導体、 ポリアタリロニトリル誘導体、 ァミノ酸誘導体など がある。 しかしながら、 これらのゲル化剤は、 電気抵抗が非常に高い電気絶縁体 であるため、 ゲルィヒ剤を添加しない場合に比べて、 光電変換素子の変換効率が著 しく低くなるという問題がある。
発明の開示
従って、 本発明の課題は、 光電変換素子の変換効率が液状電解質 (電解液) と 比べて遜色ない電解質組成物、 これを用いた光電変換素子および色素増感太陽電 池を提供することである。 前記課題を解決するため、 本発明の第 1態様は、 イオン性液体と導電性粒子と を主たる成分として含むことを特徴とする電解質組成物を提供する。 この電解質 組成物は、 好ましくはゲル状となっている。
この電解質組成物において、前記導電性粒子の含有量は、イオン性液体に対し、 0. 05質量%以上 10質量%以下とすることが好ましい。 前記導電性粒子の含 有量は、 さらに好ましくは、 電解質組成物全量に対し、 0. 05質量%以上 10 質量。ん以下とすることが好ましい。
前記導電性粒子としては、 例えば、 カーボンを主体とする物質を用いることが できる。 このような導電性粒子としては、 カーボンナノチューブ、 カーポンファ ィパー、 おょぴカーボンブラックからなる群から選択されるレ、ずれか一種または 複数種の混合物が挙げられる。 カーボンナノチューブとしては、 単層カーボンナ ノチューブまたは多層カーボンナノチューブのいずれかもしくはこれらの混合物 が挙げられる。
また、 本発明の第 1態様は、 電解質として、 前記電解質組成物を含むことを特 徴とする光電変換素子を提供する。
さらに、 本発明の第 1態様は、 色素担持された酸化物半導体多孔質膜を電極基 板上に有する作用極と、 この作用極に対向して配置された対極とを具備し、 前記 作用極と対極との間に、 前記電解質組成物からなる電解質層が設けられたことを 特徴とする光電変換素子を提供する。
さらに、 本発明の第 1態様は、 色素担持された酸化物半導体多孔質膜を電極基 板上に有する作用極と、 この作用極に対向して配置された対極とを具備し、 前記 作用極と対極との間に、 前記電解質組成物からなる電解質層が設けられたことを 特徴とする色素増感太陽電池を提供する。
前記目的を達成するため、 本発明の第 2態様は、 イオン性液体 (A) と酸化物 半導体粒子 (B) とを含むことを特徴とする電解質組成物を提供する。 この電解 質組成物は、 導電性粒子 (C) を含んでいてもよい。
本発明の第 2態様の電解質組成物は、 好ましくはゲル状となっている。
本発明の第 2態様の電解質組成物において、 前記酸化物半導体粒子 (B) は、 T i 02、 S ii02、 WO ZnO、 I TO、 B aT i O。、 Nb205、 I n 20 3、 Z r 02、 Ta 2Os、 L a 203、 S r T i 03、 Y203、 Ho2O3、 B i 20 3、 C e 02、および A 1203からなる群から選択される 1種または 2種以上の混 合物であることが好ましい。 前記 T i 02は、 酸化チタンナノチューブまたは酸 化チタンナノ粒子のレ、ずれかもしくはこれらの混合物であることが好ましい。 また前記導電性粒子は、 カーボンを主体とする物質からなることが好ましい。 さらに前記カーボンを主体とする物質は、 カーボンナノチューブ、 カーポンファ ィバー、 おょぴカーボンブラックからなる群から選択される 1種または 2種以上 の混合物であることが好ましい。 また前記カーボンナノチューブが、 単層カーボ ンナノチューブまたは多層カーボンナノチューブのいずれかもしくはこれらの混 合物であることが好ましい。
本発明の第 2態様の電解質組成物において、 前記導電性粒子 (C) を含まない 場合、 前記酸化物半導体粒子 (B) の配合量は電解質組成物全量に^し 0. 05 質量%以上 70質量%以下であることが好ましい。
また前記導電性粒子 (C) を含む場合、 前記酸化物半導体粒子 (B) と導電性 粒子 (C) との合計配合量が電解質組成物全量に対し 0. 05質量%以上 70質 量%以下であることが好ましい。
本発明の第 2態様の電解質組成物において、 前記導電性粒子 (C) を含まない 場合、 前記酸化物半導体粒子 (B) の配合量がイオン性液体 (A) に対し 0. 0 5質量%以上 70質量%以下であることが好ましい。
また前記導電性粒子 (C) を含む場合、 前記酸化物半導体粒子 (B) と導電性 粒子 (C) との合計配合量がイオン性液体 (A) に対し 0. 05質量%以上 70 質量%以下であることが好ましい。
また本発明の第 2態様は、 電解質として前記電解質組成物を含むことを特徴と する光電変換素子を提供する。
さらに本発明の第 2態様は、 色素担持された酸化物半導体多孔質膜を電極基板 上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用 極と対極との間に、 前記電解質組成物からなる電解質層が設けられたことを特徴 とする光電変換素子を提供する。
また本発明の第 2態様は、 色素担持された酸化物半導体多孔質膜を電極基板上 に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極 と対極との間に、 前記電解質組成物からなる電解質層が設けられたことを特徴と する色素増感太陽電池を提供する。
本発明の第 2態様によれば、 イオン性液体をゲル化して、 導電 1·生の高いゲル状 電解質を得ることができる。 このような電解質組成物を光電変換素子の電解質と して用いることにより、 安定的に高い出力特性や光電変換特性を達成することが 可能となる。 また、 電解質組成物の性状がゲル状であり、 流動性に乏しいので、 液状の電解液を用いた場合に比べて、 安全性、 耐久性、 取扱い性などに優れたも のとなる。
前記課題を解決するため、 本発明の第 3態様は、 イオン性液体 (A) と、 絶縁 体粒子 ( C) とを含むことを特徴とする電解質組成物を提供する。
この電解質組成物は、 好ましくはゲル状となっている。
本発明の第 3態様の電解質組成物において、 前記絶縁体粒子 (C ) は、 ダイヤ モンド、 およぴ窒化ホウ素からなる群から選択される 1種または 2種以上の混合 物であることが好ましい。
本発明の第 3態様の電解質組成物において、前記絶縁体粒子(C )の配合量は、 電解質組成物全量に対し 0 . 0 5質量%以上 7 0質量%以下であることが好まし い。
また本発明の第 3態様は、 電解質として前記電解質組成物を含むことを特徴と する光電変換素子を提供する。
さらに本発明の第 3態様は、 色素担持された酸化物半導体多孔質膜を電極基板 上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用 極と対極との間に、 前記電解質組成物からなる電解質層が設けられたことを特徴 とする光電変換素子を提供する。
また本発明の第 3態様は、 色素担持された酸化物半導体多孔質膜を電極基板上 に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極 と対極との間に、 前記電 #質組成物からなる電解質層が設けられたことを特徴と する色素増感太陽電池を提供する。
本発明の第 3態様によれば、 イオン性液体をゲル化して、 導電性の高いゲル状 電解質を得ることができる。 このような電解質組成物を光電変換素子の電解質と して用いることにより、 安定的に高い出力特性や光電変換特性を達成することが 可能となる。 また、 電解質組成物の性状がゲル状であり、 流動性に乏しいので、 液状の電解液を用いた場合に比べて、 安全性、 耐久性、 取扱い性などに優れたも のとなる。 図面の簡単な説明
図 1は、 本発明の光電変換素子の一例を示す概略構成図である。 発明を実施するための最良の形態
以下、図面を参照しつつ、本発明の好適な実施形態について説明する。ただし、 本発明は以下の各実施形態に限定されるものではなく、 例えばこれら実施形態の 構成要素同士を適宜組み合わせてもよい。
(第 1実施形態)
以下、 本発明の第 1実施形態に基づいて、 本発明を詳しく説明する。
本発明の第 1実施形態の電解質組成物は、 ィオン性液体と導電性粒子とを主た る成分として含有する。
本発明の第 1実施形態の電解質組成物は、 第 1の必須成分としてィオン性液体 を含有する。
イオン性液体としては、 特に限定されるものではないが、 室温で液体であり、 四級化された窒素原子を有する化合物をカチオンとした常温溶融性塩が例示され る。 常温溶融性塩のカチオンとしては、 四級化イミダゾリウム誘導体、 四級化ピ リジユウム誘導体、 四級化アンモニゥム誘導体などが挙げられる。 常温溶融性塩 のァニオンとしては、 B F 4—、 P F 6 _、 F (H F ) n -、 ビストリフルォロメチ ルスルホニルイミド [N ( C F 3 S 0 2 ) 2 -]、 ョゥ化物イオンなどが挙げられる。 イオン性液体の具体例としては、 四級化イミダゾリゥム系カチオンと 3ゥ化物 ィ才ンまたはビストリフルォロメチルスルホニルイミドイオン等からなる塩類を 挙げることができる。
本発明の第 i実施形態の電解質組成物は、 第 2の必須成分として、 導電性粒子 を含有する。
導電性粒子としては、良導体や半導体など、導電性を有する粒子が用いられる。 導電性粒子の比抵抗の範囲は、 好ましくは 1 . 0 X 1 0—2 Ω . c m以下であり、 より好ましくは、 1 . 0 X 1 0— 3 Ω · c m以下である。
導電性粒子における物質の種類や粒子サイズ等は特に限定されるものではない が、 イオン性液体を主体とする電解液との混和性に優れ、 該電解液をゲル化する ようなものが用いられる。 ここで、 内径 1 5 mm、 深さ 1 0 c mの円筒状ガラス 管の中に 1 0 c cの電解質を入れ、 室温 (2 3 °C) にてガラス管を逆さにして放 置したときに、 1 5分後に全ての電解質が下まで落下しなければ、 この電解質は ゲルであると定義する。 また、 電解質組成物中で酸化皮膜 (絶縁皮膜) 等を形成 して導電性を低下させてしまうことがなく、 該電解質組成物に含まれる他の共存 成分に対する化学的安定性に優れることが必要である。 特に、 電解質組成物がョ ゥ素/ョゥ化物ィオンや臭素 Z臭化物ィオンなどの酸化還元対を含む場合でも、 酸化反応による劣化を生じないものが好ましい。
このような導電性粒子としては、 カーボンを主体とする物質からなるものが挙 げられ、 具体例としては、 カーボンナノチューブ、 カーボンファイバー、 カーボ ンブラックなどの粒子が例示できる。 これらの物質の製造方法はいずれも公知で あり、 また、 市販品を用いることもできる。
カーボンナノチューブは、 グラフエンシートが円筒形状または円錐台形状に形 成された筒状構造を有する。 詳しくは、 グラフヱンシートが 1層である単層カー ボンナノチューブ ( S WC N T : single-wall carbon nanotubes) や、 グラフェ ンシートが多層 (2層以上) である多層カーボンナノチューブ (MW— C N T : multi-wall carbon nanotuoes) など力、あ · 0
これらの物質は、 酸化還元対に使用されうるヨウ素や臭素等の酸化剤に対する 安定性に優れ、 本発明の電解質組成物における導電性粒子として、 好適に使用で 含る。 '
上記導電性粒子は、 1種類を単独で使用してもよく、 また、 複数種類を複合し て用いることもできる。
上記粒子の好適なサイズとしては、 単層カーボンナノチューブの場合、 直径が 約 0 . 5 n m〜l 0 n m、 長さが約 1 0 n m〜l μ πιのものが好ましい。 多層力 一ボンナノチューブの場合、 直径が約 1 n m〜l 0 0 n m、 長さが約 5 0 n m〜 5 0 mのものが好ましい。 カーボンフアイパーの場合、 直径が約 5 0 n m〜l μ ΐη、長さが約 1 μ ιη〜1 0 0 μ παのものが好ましい。カーボンブラックの場合、 粒径が約 1 n m〜 5 0 0 n mのものが好ましい。
前記導電性粒子の含有量は、 イオン性液体に対し、 0 . 0 5質量%以上 1 0質 量%以下とすることが好ましい。 導電性粒子の含有量は、 さらに好ましくは、 電 解質組成物全量に対して、 0 . 0 5質量%以上 1 0質量%以下の範囲内であるこ とが好ましい。 これにより、 イオン性液体を含む電解液をゲル化させることがで き、 製造工程やセル破損時に、 電解質組成物が露出しても液漏れするおそれがな い。
導電性粒子の含有量が電解質組成物全量に対して 0 . 0 5質量%未満では、 ィ オン性液体を含む電解液がゲル化せず、 破損時などに液漏れ等のおそれがある。 導電性粒子の含有量が電解質組成物全量に対して 1 0質量%を超えると、 導電性 粒子がイオン性液体を含む電解液をすベて吸収してしまい、 電解質として機能し なくなるおそれがある。 前記導電性粒子のより好ましい含有量は、 電解質組成物 全量に対して、 1質量%程度である。
本発明の第 1実施形態の電解質組成物には、 必須の成分ではないが、 酸化還元 対 (レドックス対) を添加することができる。 酸化還元対は、 電解質組成物が色 素増感太陽電池などに適用される場合、 添加することが好ましい。
酸化還元対としては、 特に限定されることなく、 ヨウ素/ヨウ化物イオン、 臭 素 Z臭化物イオンなどのペアを添カ卩して得ることができる。 ョゥ化物イオンまた は臭化物イオンの供給源としては、 リチウム塩、 四級化イミダゾリウム塩、 テト ラプチルァンモニゥム塩などを単独または複合して用いることができる。
酸化還元対を溶解するための有機溶媒としては、 ァセトニトリル、 メトキシァ セトニトリル、 プロピオ二トリル、 エチレンカーボネート、 プロピレンカーボネ ート、 ジェチルカーボネート、 γ—プチ口ラタトンなどが拳げられる。
本発明の第 1実施形態の電解質組成物には、 必要に応じて、 tert—ブチルピリ ジンなどの各種添加物を、 電解質組成物の性状や特性を損ねない範囲内で添加す ることができる。
上記成分から本発明の電解質組成物を製造する方法は特に限定されるものでは ないが、 例えば、 まず、 イオン性液体に酸化還元対などの添加物を添加して電解 液を得たのち、 この電解液に上記導電性粒子を均一に混合する方法がある。 電解 液と導電性粒子との混合には、 公知の適当な撹拌装置、 混合装置、 遠心分離機な どを用いることができる。ゲル状の電解質組成物を得る場合には、導電性粒子を、 電解液のゲル化に適した前記の含有量にて混合すればよい。
本発明の第 1実施形態の電解質組成物は、 例えば色素增感太陽電池などの光電 変換素子に好ましく用いることができる。
本発明の第 1実施形態の電解質組成物では、 導電性粒子も電荷移動の役割を担 うことができるので、 イオン性液体に比べて電気抵抗が低く、 得られた電解質組 成物の導電性が良好である。 この結果、 イオン性液体を電解質として用いた場合 に比べて、 光電変換素子等の変換効率を向上することができる。
さらに、 本発明の第 1実施形態の電解質組成物がゲル状となった場合、 下記の ような優れた効果を発揮する。
従来のゲル状電解質で用いられたポリマーなどのゲル化剤の場合、 電気抵抗が 高く、 ゲル化すると電解質の導電性が低下して光電変換素子の光電変換特性が悪 くなる問題があった。 これに対して、 本発明の電解質組成物では、 導電性粒子も 電荷移動の役割を担うことができ、 電解液が導電性粒子によりゲル化されている ので、 ゲル化により得られたゲル状電解質組成物の導電性が良好であり、 液状電 解質を用いた場合と比べても遜色のない光電変換特性が得られる。 また、 ゲル状 であるので、製造工程やセル破損時などで電解質組成物が露出しても漏れ出す (液 漏れ) おそれがなく、 生産性や取扱い性に優れる。
次に、 本発明の第 1実施形態の電解質組成物を用いた光電変換素子について説 明する。 図 1は、 本発明の光電変換素子の一実施の形態として、 色素増感太陽電 池の概略構成例を示す断面図である。
この色素增感太陽電池 1は、 透明電極基板 2上に、 酸化チタンなどの酸化物半 導体微粒子からなり、 光增感色素が担持された酸化物半導体多孔質膜 5を有する 作用極 6と、この作用極 6に対向して設けられた対極 8とを備えている。そして、 これらの作用極 6と対極 8との間には、 上記電解質組成物からなる電解質層 7が 形成されている。
透明電極基板 2は、 ガラス板やプラスチックシートなどの透明基材 4の上に、 導電材料からなる導電層 3を形成したものである。
透明基材 4の材料としては、 用途上、 光透過性の高いものが好ましく、 ガラス の他、 ポリエチレンテレフタレート (PET)、 ポリエチレンナフタレート (PE N)、 ポリカーボネート (PC)、 ポリエーテルスルホン (PES) などの透明プ ラスチックシート、 酸化チタン、 アルミナなどのセラミックスの研磨板などを用 いることができる。
導電層 3としては、 透明電極基板 2の光透過率の観点から、 スズ添加酸化ィン ジゥム (I TO)、 酸化スズ (Sn02)、 フッ素添加酸化スズ (FTO) などの透 明な酸化物半導体を単独で、 もしくは複数種類を複合化して用いることが好まし い。 しかしながら、 特にこれらに限定されるものではなく、 光透過率および導電 性の観点で、 使用目的に適合する適当な材料を選択して用いればよい。 また、 酸 化物半導体多孔質膜 5や電解質層 7からの集電効率を向上するため、 透明電極基 板 2の光透過率を著しく損ねない範囲の面積率で、金、銀、白金、アルミニウム、 ニッケル、 チタンなどからなる金属配線層を併用してもよい。 金属配線層を用い る場合、 格子状、 縞状、 櫛状などのパターンとして、 透明電極基板 2になるべく 均一に光が透過するように配設するとよい。
導電層 3を形成する方法としては、 導電層 3の材料に応じた公知の適切な方法 を用いればよいが、 例えば、 I TOなどの酸化物半導体から導電層 3を形成する 場合、 スパッタ法、 CVD法、 SPD法 (スプレー熱分角军堆積法)、 蒸着法などの 薄膜形成法が挙げられる。 そして、 光透過性と導電性を考慮して、 通常、 0. 0 5 β m〜 2. 0 μ m程度の膜厚に形成される。
酸化物半導体多孔質膜 5は、 酸化チタン (T i 02)、 酸化スズ (Sn02)、 酸 化タングステン (W03)、 酸化亜鉛 (ZnO)、 酸化ェォブ (Nb2O5) などの 1 種または 2種以上を複合させた平均粒径 1〜1000 nmの酸化物半導体微粒子 を主成分とし、 厚さが 0. 5〜 50 m程度の多孔質の薄膜である。
酸化物半導体多孔質膜 5を形成する方法としては、 例えば、 市販の酸化物半導 体微粒子を所望の分散媒に分散させた分散液、 あるいは、 ゾルーゲル法により調 整できるコロイド溶液を、 必要に応じて所望の添加剤を添加した後、 スクリーン プリント法、インクジェットプリント法、ロールコート法、 ドクターブレード法、 スピンコート法、 スプレー塗布法など公知の塗布により塗布するほか、 コロイド 溶液中に電極基板 2を浸漬して電気泳動により酸化物半導体微粒子を電極基板 2 上に付着させる泳動電着法、 コロイド溶液や分散液に発泡剤を混合して塗布した 後、焼結して多孔質化する方法、ポリマーマイク口ビーズを混合して塗布した後、 このポリマーマイク口ビーズを加熱処理や化学処理により除去して空隙を形成さ せ多孔質化する方法などを適用することができる。
酸化物半導体多孔質膜 5に担持される増感色素は、 特に制限されるものではな く、 例えば、 ビビリジン構造、 ターピリジン構造などを含む配位子を有するルテ 二ゥム錯体ゃ鉄錯体、 ポルフィリン系やフタロシアニン系の金属錯体をはじめ、 ェォシン、 ローダミン、 メロシアニン、 クマリンなどの有機色素などから、 用途 や酸化物半導体多孔質膜の材料に応じて適宜選択して用いることができる。
対極 8としては、 例えば、 ガラスなどの非導電性材料からなる基板上に、 I T Oや F T O等の導電性酸化物半導体からなる薄膜を形成したもの、 あるいは、 基 板上に、 金、 白金、 炭素系材料などの導電性材料を蒸着、 塗布などすることによ り電極を形成したものを用いることができる。 また、 I T Oや F T O等の導電性 酸化物半導体の薄膜上に白金、 カーボンなどの層を形成したものとすることもで さる。
このような対極 8を作製する方法としては、 例えば、 塩化白金酸の塗布後に熱 処理することにより、 白金層を形成する方法が挙げられる。 または、 蒸着法ゃス パッタ法によつて電極を基板上に形成する方法でもよい。
前記電解質組成物からなる電解質層 7を作用極 6の上に形成する方法としては、 特に限定されるものではないが、 例えば、 前記電解質組成物を作用極 6上に少量 ずつ滴下する方法が挙げられる。 これにより、 電解質組成物を作用極 6上にキヤ ストしたときに、 電解質組成物を酸化物半導体多孔質膜 5の空隙中に良好に浸透 させて充填することができる。
以上のようにして得られる本発明の光電変換素子は、 電解質組成物の性状がゲ ル状であるので、 揮発性や流動性が乏しく、 色素增感太陽電池などの光電変換素 子に用いたときに、 溶媒の揮発などによる電解質の変質や欠損がなく、 安定的に 高い出力特性や光電変換特性を達成することが可能となる。 また、 容器の隙間な どからの電解質の漏出や、 光電変換素子の破損時の散乱などが抑制され、 液状の 電解液を用いた場合に比べて、 安全性や耐久性等に優れたものとなる。
以下、 本発明の第 1実施形態の実施例について説明する。
ぐ電解質組成物の調製 >
ィオン性液体として、 1ーェチルー 3—メチルイミダゾリウムービス (トリフ ルォロメチルスルホュル) ィミドを用い、 このイオン性液体に適量のョゥ素およ ぴョゥ化リチウムと 4一 tert—ブチルピリジン適量を溶解させることにより、 酸 化還元対としてヨウ素/ョゥ化物イオンを含有する電解液を調製した。
上記電解液に導電性粒子として、カーボンナノチューブ、カーボンファイバー、 カーボンブラックのいずれかを、 電解質組成物全量に対して 1質量%の比で混合 し、 遠心分離することにより、 ィオン性液体を含む電解質組成物がゲル化された 実施例 A— 1〜1 0の電解質組成物を得た。 なお、 この際、 イオン性液体に対す る導電性粒子の配合量は、 約 1 . 2 5質量%である。
く実施例 A 1—1〜 5 , A 2, A 3に係る光電変換素子の作製 >
透明電極基板として、 1 0 O mm X 1 0 0 mmの F T O膜付きガラス基板を用 い、 この透明電極基板 2の F T O膜 (導電層) 側の表面に、 平均粒径 2 0 n mの 酸化チタンのスラリ一状分散水溶液を塗布し、 乾燥後、 4 5 0 °Cにて 1時間加熱 処理することにより、 厚さ 7 μ mの酸化物半導体多孔質膜を形成した。 さらに、 ルテユウムビピリジン錯体 ( N 3色素) のェタノール溶液中に 1晚浸漬して色素 を担持させ、 作用極を作製した。 また、 対極として、 白金からなる電極層をスパ ッタ法により設けた F T Oガラス電極基板を用意した。
電解質層を作用極上に形成するため、 ゲル化した前記電解質組成物を、 作用極 の酸化物半導体多孔質膜上に少量ずつ滴下し、 さらに前記対極を強く押しつけな がら重ね合わせ、 対極と電解質層とを接合した。 以上の手順により、 実施例 A 1 — 1〜5 , A 2 , A 3の試験セルとなる色素増感太陽電池を作製した。 <比較例 A 1に係る試験セルの作製 >
作用極および対極としては、 上記実施例 A1— 1〜5, A2, A 3に係る試験 セルと同様なものを用いた。 電解質となる電解液としては、 酸化還元対としてョ ゥ素/ョゥ化物イオンを含有するイオン性液体 [ 1ーェチルー 3—メチルイミダ ゾリゥム一ビス (トリフルォロメチルスルホニル) ィミド] を調製して用いた。 この電解液は、 導電性粒子が添加されていないこと以外、 実施例 A 1 - 1-5, A 2, A 3の試験セルの電解質組成物の調製に用いた電解液と同じものである。 作用極と対極とを向かい合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 A 1の試験セルとなる色素増感太陽電池を作製した。
<比較例 A 2に係る試験セルの作製〉
作用極おょぴ対極としては、 上記実施例 Al_ l〜5, A2, A 3に係る試験 セルと同様なものを用いた。 電解質となる電解液としては、 四級化ィミダゾリゥ ムーョゥ化物、 ヨウ化リチウム、 ヨウ素、 4 _tert—プチルピリジンを含有する ァセトュトリル溶液を調製して用いた。 ,
作用極と対極とを向かい合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 A 2の試験セルとなる色素増感太陽電池を作製した。
<試験セルの光電変換特性 >
上記のそれぞれの試験セルの光電変換特性を測定した。 それぞれの試験セルに ついて、 変換効率を表 1に示す。 表 1において、 SWCNT/MWCNTは、 単 層カーボンナノチューブ (SWCNT) と多層カーボンナノチューブ (MWCN T) との比を表す。
表 1
導電性粒子 SWCNT/MWCNT 性状 変換効率
[%] 寅施例 A1- 1 カーホ'ンナノチュ-ブ 100%/0% ゲル状 4.4 実施例 A1-2 カーホンナノチューフ 80%/20% ゲル状 4.4 実施例 A1 - 3 カーホ'ンナノチューブ 50%/50% ゲル状 4.5 実施例 A1-4 カーホ'ンナノチューブ 20%/80% ゲル状 4.3 実施例 A1- 5 カ-ホ'ンナノチュ-ブ 0%/100 ゲル状 4.7 実施例 A2 カーホンフアイ 一 一 ゲル状 4.4 実施例 A3 カーホ"ンフ'ラック ― ゲル状 4.3 比較例 A1 なし ― 液状 4.1 比較例 なし (ァセトニトリル溶液) 一 液状 5.5 上記結果に示すように、実施例 A 1— 1〜5 , A 2, A 3の試験セルによれば、 電 質の性状がゲル状でありながら、 液状電解質 (電解液) を用いた場合と遜色 のない、 高い変換効率が得られた。 例えば日本国特開 2 0 0 2— 1 8 4 4 7 8号 公報に電解質をゲル化した場合の光電変換素子の初期の変換効率が 2 . 0 %と記 載されているように、 従来、 ゲル化した電解質を用いると、 電解液を用いた場合 に比べて変換効率が著しく低くなっていたが、 本発明ではそのようなことは起こ らなかった。 従って、 導電性粒子を用いて電解液 (イオン性液体等) をゲル化し たことによる効果は明らかである。
本発明の第 1実施形態によれば、 イオン性液体の性質を改善して、 導電性がよ り優れた電解質を得ることができる。 また、 イオン性液体を含有する電解質組成 物をゲル化して、 導電性の高いゲル状電解質を得ることができる。
このような電解質組成物を光電変換素子の電解質として用いることにより、 安 定的に高い出力特性や光電変換特性を達成することが可能となる。 また、 電解質 組成物の性状がゲル状である場合、 流動性に乏しいので、 液状の電解液を用いた 場合に比べて、 安全性、 耐久性、 取扱い性などに優れたものとなる。
(第 2実施形態)
以下、 本発明の第 2実施形態に基づいて、 本発明を詳しく説明する。
本発明の第 2実施形態の電解質組成物は、 イオン性液体 (A) と酸化物半導体 粒子 (B ) とを含むか、 あるいはイオン性液体 (A) と酸化物半導体粒子 ( B ) と導電性粒子 ( C ) とを含んでいる。 また好ましい実施形態において、 本発明の 電解質組成物は、 ゲル状となっている。 ここで、 内径 1 5 mm、 深さ 1 0 c mの 円筒状ガラス管の中に 1 0 c cの電解質を入れ、 室温 (2 3 °C) にてガラス管を 逆さにじて放置したときに、 1 5分後に全ての電解質が下まで落下しなければ、 この電解質はゲルであると定義する。
本発明の第 2実施形態の電解質組成物は、 第 1の必須成分としてイオン性液体 (A) を含んでいる。
イオン性液体 (A) としては、 特に限定されるものではないが、 室温で液体で あり、 四級化された窒素原子を有する化合物をカチオンとした常温溶融性塩が例 示される。 常温溶融性塩のカチオンとしては、 四級化イミダゾリゥム誘導体、 四 級化ピリジニゥム誘導体、 四級化ピロリジニゥム誘導体、 四級化アンモユウム誘 導体などが挙げられる。
四級化イミダゾリゥム系カチオンとしては、 例えば、 1—ェチルー 3—メチル イミダゾリゥム、 1一ェチル一 3 _プロピルイミダゾリゥム、 1一ェチル一3— へキシルイミダゾリゥム、 1一へキシル一 3—メチルイミダゾリゥムなどの 1, 3—ジアルキルイミダゾリゥムが例示できる。 四級化ピリジニゥム系カチオンと しては、 例えば、 N -ブチルピリジニゥムなどの N—アルキルピリジニゥムが例 示できる。 四級化ピロリジ -ゥム系カチオンとしては、 N—メチルー N—プロピ ルピロリジニゥム、 N—メチル一N—ブチルピロリジニゥムなどの N, N—ジァ ルキルピロリジニゥムが例示できる。
常温溶融性塩のァニオンとしては、 BF4_、 PF6—、 F (HF) n―、 ピスト リフルォロメチルスルホニルイミ ド [N (CF3S02) 2- ]、 3ゥ化物イオン、 臭 化物イオン、 ジシァノアミ ド (dicyanamide) などが挙げられる。
イオン性液体 (A) の具体例としては、 四級化イミダゾリゥム系カチオンとョ ゥ化物イオンまたはビストリフルォロメチルスルホニルイミ ドイオン、 ジシァノ アミドイオン等からなる塩類を挙げることができる。
本発明の第 2実施形態の電解質組成物は、 第 2の必須成分として、 酸化物半導 体粒子 (B) を含んでいる。
酸化物半導体粒子 (B) における物質の種類や粒子サイズ等は特に限定される ものではないが、 ィォン性液体を主体とする電解液との混和性に優れ、 該電解液 をゲルイ匕するようなものが用いられる。 また、 電解質組成物中で導電性を低下さ せてしまうことがなく、 該電解質組成物に含まれる他の共存成分に対する化学的 安定性に優れることが必要である。
特に、 電解質,組成物がヨウ素/ョゥ化物イオンや臭素 臭化物イオンなどの酸化 還元対を含む場合でも、 酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子 (B) としては、 T i O2、 SnO2、 W03、 Z nO、 I TO, B aT i〇3、 Nb 205、 I n23、 Z r 02、 Ta 205、 L a 2 03、 S r T i O Y203、 Ho 203、 B i 203、 C e02、 および A 1203 からなる群から選択される 1種または 2種以上の混合物が好ましい。 ここで、 I TOは、 スズ添加酸化インジウムである。 前記酸化物半導体粒子 (B) に適用さ れる酸化物半導体は、 不純物がドープされたものや複合酸化物などであってもよ い。
酸化物半導体粒子 (B) としては、 特に二酸化チタン微粒子 (ナノ粒子または ナノチューブ) が特に好ましい。
酸化物半導体粒子(B)の平均粒径は、 2 ηπ!〜 1000 nm程度が好ましい。 二酸化チタンナノ粒子の平均粒径は、 1 ηπ!〜 1 μ m程度が好ましい。
二酸化チタンナノチューブは、 直径が約 5 ηπ!〜 20 nm、 長さが約 10 nm 〜10 μπιのチューブ状の酸ィ匕チタンである。
本発明の第 2実施形態の電解質組成物は、 任意成分として導電性粒子 (C) を 配合することができる。
導電性粒子 (C) としては、 良導体や半導体など、 導電性を有する粒子が用い られる。
導電性粒子の比抵抗の範囲は、 好ましくは 1. 0 X 1 0— 2Q ' c m以下であり、 より好ましくは、 1. 0 X 1 0— 3Ω · cm以下である。
導電性粒子 (C) における物質の種類や粒子サイズ等は特に限定されるもので はないが、 イオン性液体を主体とする電解液との混和性に優れ、 該電解液をゲル 化するようなものが用いられる。 また、 電解質組成物中で酸化皮膜 (絶縁皮膜) 等を形成して導電性を低下させてしまうことがなく、 該電解質組成物に含まれる 他の共存成分に対する化学的安定性に優れることが必要である。 特に、 電解質糸且 成物がヨウ素/ョゥ化物ィオンや臭素/臭化物ィオンなどの酸化還元対を含む場 合でも、 酸化反応による劣化を生じないものが好ましい。
このような導電性粒子 (C) としては、 カーボンを主体とする物質からなるも のが挙げられ、 具体例としては、 カーボンナノチューブ、 カーボンファイバー、 カーボンブラックなどの粒子が例示できる。 これらの物質の製造方法は 、ずれも 公知であり、 また、 市販品を用いることもできる。
カーボンナノチューブは、 グラフエンシー 1、が円筒形状または円錐台形状に形 成された筒状構造を有する。 詳しくは、 グラフエンシートが 1層である単層カー ボンナノチューブ (SWCNT: single-wall carbon nanotubes) や、 グラフェ ンシートが多層 (2層以上) である多層カーボンナノチューブ (MWCNT : multi-wall carbon nanotubes) などかめる。
これらの物質は、 酸化還元対に使用し得るョゥ素ゃ臭素等の酸化剤に対する安 定性に優れ、 本発明の電解質組成物における導電性粒子 (C) として、 好適に使 用できる。
前記導電性粒子 (C) は、 1種類を単独で使用してもよく、 また、 複数種類を 複合して用いることもできる。
前記各粒子の好適なサイズとしては、 単層カーボンナノチューブの場合、 直径 が約 0. 5 ηιι!〜 10 nm、 長さが約 10 nm〜l /xmのものが好ましい。 多層 カーボンナノチューブの場合、 直径が約 1 ηπ!〜 100 nm、 長さが約 50 nm 〜50 μηιのものが好ましい。 カーボンファイバーの場合、 直径が約 50 ηπ!〜 l〃m、 長さが約 1〃 m〜 100 μπιのものが好ましレ、。 カーボンブラックの場 合、 粒径が約 1 nm〜500 nmのものが好ましい。
前記導電性粒子 (C) を含まない場合、 前記酸化物半導体粒子 (B) の配合量 は、 電解質組成物全量に対し、 0. 05質量%以上 70質量。ん以下であることが 好ましい。 より好ましくは、 0. 05質量%以上 50質量%以下であることが好 ましい。
また前記導電性粒子 (C) を含む場合、 前記酸化物半導体粒子 (B) と導電性 粒子 (C) との合計配合量は、 電解質組成物全量に対し 0. 05質量%以上 70 質量%以下であることが好ましい。 より好ましくは、 0. 05質量%以上 50質 量%以下であることが好ましい。
酸化物半導体粒子 (B) と導電性粒子 (C) との配合量を前記範囲内とするこ とで、 イオン性液体 (A) を含む電解液をゲル化させることができ、 製造工程や セル破損時に、 電解質組成物が露出しても液漏れするおそれがない。
酸化物半導体粒子 (B) の配合量または酸化物半導体粒子 (B) と導電性粒子 (C) との合計配合量が電解質組成物全量に対して 0. 05質量%未満では、 ィ オン性液体がゲル化せず、 破損時などに液漏れ等のおそれがある。 一方、 酸ィ匕物 半導体粒子 (B) の配合量または酸化物半導体粒子 (B) と導電性粒子 (C) と の合計配合量が電解質組成物全量に対して 70質量%を超えると、 粒子 (B) ま たは (B) と (C) がイオン性液体をすベて吸収してしまい、 電解質としての機 能を著しく損なうおそれがある。
酸化物半導体粒子 (B) がナノ粒子である場合、 前記 (B) 又は (B) + (C) の好ましい配合量は、 0. 05質量。 /0以上 70質量%以下である。また、前記(B) 又は (B) + (C) のより好ましい配合量は、 電解質組成物全量に対して 0. 0 5質量%以上 50質量%以下である。
• 酸化物半導体粒子 (B) がナノチューブである場合、 前記 (B) 又は (B) +
(C) の好ましい配合量は、 0. 05質量%以上 50質量%以下である。 また、 前記 (B) 又は (B) + (C) のより好ましい配合量は、 電解質組成物全量に対 して 10質量%程度である。
本発明の第 2実施形態の電解質,袓成物には、 必須の成分ではないが、 酸化還元 対 (レドックス対) を添加することができる。 酸化還元対は、 電解質組成物が色 素増感太陽電池などに適用される場合、 添加することが好ましい。
酸化還元対としては、 特に限定されることはないが、 ヨウ化物イオン (I一)、 臭化物イオン (B r―)、 塩化物イオン (C 1 -) などのハロゲン化物ィオンと、 I 3一、 I 5—、 I 7—、 B r 3一、 C 12 I一、 C 1 I 2一、 B r 2 I—、 B r I 2—などの ポリハロゲン化物ィオンとからなるハロゲン系レドックス対を用いることが好ま しい。
例えば、 酸化還元対として、 3ゥ素/ョゥ化物イオン、 臭素ノ臭化物イオンな どのペアを添加して得ることができる。 ョゥ化物イオンまたは臭化物イオンの供 給源としては、 リチウム塩、 四級化イミダゾリウム塩、 テトラプチルアンモニゥ ム塩などを単独または複合して用いることができる。
本発明の第 2実施形態の電解質組成物には、 必要に応じて、 tert—ブチルピリ ジンなどの各種添加物や溶媒を、 電解質組成物の性状や特性を損なわない範囲内 で添加することができる。
本発明の第 2実施形態の電解質組成物には、 寧解質組成物の特性に悪影響を与 えない範囲で、絶縁体粒子が含まれていてもよい。ここで、絶縁体粒子としては、 ダイヤモンドゃ窒化ホウ素 (BN) などの粒子が例示される。 前記各成分を用いて本発明の電解質組成物を製造する方法は特に限定されるも のではないが、例えば、まず、イオン性液体(A) に酸化還元対などの添加物(ィ オン性液体に可溶な成分) を添カ卩して電解液を得たのち、 この電解液に前記酸化 物半導体粒子 (B ) または酸化物半導体粒子 (B ) と導電性粒子 (C ) (つまり、 イオン性液体に不溶な粒子) とを混合してゲル化させる方法がある。 電解液と粒 子 (B ), ( C ) との混合には、 公知の適当な撹拌装置、 混合装置、 遠心分離機な どを用いることができる。
本発明の第 2実施形態の電解質組成物は、 例えば色素増感太陽電池などの光電 変換素子において用いられる電解質として好ましく用いることができる。
従来のゲル状電解質で用いられたポリマーなどのゲルィヒ剤の場合、 電気抵抗が 高く、 ゲル化すると電解質の導電性が低下して光電変換素子の光電変換特性が悪 くなる問題があった。 これに対して、 本発明の電解質組成物では、 下記の実施例 に示すように光電変換特性が良好であり、 イオン性液体およびこれに可溶な成分 から構成される液状電解質に比べて、 高い光電変換特性が得られる。 この理由は 明確ではないが、 本発明者らは以下のように考えている。
(ィ) 酸化物半導体粒子( B )または酸化物半導体粒子( B ) と導電性粒子 ( C ) とが電荷移動の役割を担うことができ、 電解液が酸化物半導体粒子 (B ) または 酸化物半導体粒子 ( B ) と導電性粒子 ( C ) とによりゲル化されているので、 ゲ ル化により得られたゲル状電解質組成物の導電性が良好となり、 液状電解質を用 いた場合と比べても遜色のない光電変換特性が得られる。
(口) ゲル電解質中のナノ粒子表面にカチオン (例えばイミダゾリゥムイオン) が吸着し、 さらに対ァニオン (I—や 1 3一) がこれを取り囲む形で配列すると考 えられる。その結果、ナノ粒子表面では、局所的にレドックス対濃度が増大する。 特に、 イオン性液体を用いた色素増感太陽電池の場合、 電解質中で物理拡散と電 子交換反応との共役により電荷が移動するケースが示されており、 より迅速な電 荷移動過程である後者は、 レドックス濃度の高い組成において促進される。 つま り、 上記のレドックス濃度が局所的に濃い領域を経路として電子交換反応過程が 促進されることにより、 絶対的なレドックス濃度を増大させることなく ( I 3一の 絶対量の増大は電解質の光透過性を低下させ、光電変換を阻害する可能性がある) 迅速な電荷移動が可能となり、 発電特性が向上したものと予想している。
また、 本発明の第 2実施形態の電解質組成物は、 ゲル状であるので、 製造工程 やセル破損時などで電解質組成物が露出しても漏れ出す (液漏れ)おそれがなく、 生産性や取扱レ、性に優れる。
次に、 本発明の第 2実施形態の電解質組成物を用いた光電変換素子について説 明する。 図 1は、 本発明の光電変換素子の一実施形態として、 色素増感太陽電池 の概略構成例を示す断面図である。
この色素増感太陽電池 1は、 透明電極基板 2上に、 酸化チタンなどの酸化物半 導体微粒子からなり、 光増感色素が担持された酸化物半導体多孔質膜 5を有する 作用極 6と、 この作用極 6に対向して設けられた対極 8とを備え、 これらの作用 極 6と対極 8との間には、 前記電解質組成物を充填して電解質層 7が形成されて いる。
透明電極基板 2は、 ガラス板やプラスチックシートなどの透明基材 4の上に、 導電材料からなる導電層 3を形成したものである。
透明基材 4の材料としては、 用途上、 光透過性の高いものが好ましく、 ガラス の他、 ポリエチレンテレフタレート ( P E T) , ポリエチレンナフタレート ( P E N)、 ポリカーボネート ( P C ) , ポリエーテルスルホン ( P E S ) などの透明ブ' ラスチックシート、 酸化チタン、 アルミナなどのセラミックスの研磨板などを用 いることができる。
導電層 3としては、 透明電極基板 2の光透過率の観点から、 スズ添加酸化ィン ジゥム (I T O)、 酸化スズ (S n 02)、 フッ素添加酸化スズ (F T O) などの透 明な酸化物半導体を単独で、 もしくは複数種類を複合化して用いることが好まし い。 しかしながら、 特にこれらに限定されるものではなく、 光透過率おょぴ導電 性の観点で、 使用目的に適合する適当な材料を選択して用いればよい。 また、 酸 化物半導体多孔質膜 5や電角军質層 7からの集電効率を向上するため、 透明電極基 板 2の光透過率を著しく損なわない範囲の面積率で、 金、 銀、 白金、 アルミユウ ム、 ニッケル、 チタンなどからなる金属配線層を併用してもよい。 金属配線層を 用いる場合、 格子状、 縞状、 櫛状などのパターンとして、 透明電極基板 2になる ベく均一に光が透過するように配設するとよい。 . 10245
21
導電層 3を形成する方法としては、 導電層 3の材料に応じた公知の適切な方法 を用いればよいが、 例えば、 I TOなどの酸化物半導体から導電層 3を形成する 場合、 スパッタ法、 CVD法、 SPD法 (スプレー熱分解堆積法)、 蒸着法などの 薄膜形成法が挙げられる。 そして、 光透過性と導電性を考慮して、 通常、 0. 0 5 μη!〜 2. 0 μ m程度の膜厚に形成される。
酸化物半導体多孔質膜 5は、 二酸化チタン (T i 02)、 酸化スズ (SnO2)、 酸化タングステン (WO3)、 酸化亜鉛 (ZnO)、 酸化ニオブ (Nb205) などの 1種または 2種以上を複合させた平均粒径 1〜 1000 nmの酸化物半導体微粒 子を主成分とし、 厚さが 0. 5〜50 μπι程度の多孔質の薄膜である。
酸化物半導体多孔質膜 5を形成する方法としては、 例えば、 市販の酸化物半導 体微粒子を所望の分散媒に分散させた分散液、 あるいは、 ゾルーゲル法により調 製できるコロイド溶液を、 必要に応じて所望の添加剤を添加した後、 スクリーン プリント法、ィンクジエツトプリント法、ロールコート法、 ドクターブレード法、 スピンコート法、 スプレー塗布法など公知の塗布により塗布するほか、 コロイド 溶液中に電極基板 2を浸漬して電気泳動により酸化物半導体微粒子を電極基板 2 上に付着させる泳動電着法、 コロイド溶液や分散液に発泡剤を混合して塗布した 後、焼結して多孔質化する方法、ポリマーマイク口ビーズを混合して塗布した後、 このポリマーマイク口ビーズを加熱処理や化学処理により除去して空隙を形成さ せ多孔質化する方法などを適用することができる。
酸化物半導体多孔質膜 5に担持される増感色素は、 特に制限されるものではな く、 例えば、 ビピリジン構造、 ターピリジン構造などを含む配位子を有するルテ 二ゥム錯体ゃ鉄錯体、 ポルブイリン系ゃフタロシアニン系の金属錯体をはじめ、 ェォシン、 ローダミン、 メロシアニン、 クマリンなどの有機色素などから、 用途 や酸化物半導体多孔質膜の材料に応じて適宜選択して用いることができる。
対極 8としては、 例えば、 ガラスなどの非導電性材料からなる基板上に、 I T Oや FTO等の導電性酸化物半導体からなる薄膜を形成したもの、 あるいは、 基 板上に、 金、 白金、 炭素系材料などの導電性材料を蒸着、 塗布などすることによ り電極を形成したものを用いることができる。 また、 I TOや FTO等の導電性 酸化物半導体の薄膜上に白金、 カーボンなどの層を形成したものとすることもで さる。
このような対極 8を作製する方法としては、 例えば、 塩化白金酸の塗布後に熱 処理することにより、 白金層を形成する方法が挙げられる。 または、 蒸着法ゃス パッタ法によつて電極を基板上に形成する方法でもよい。
前記電解質組成物からなる電解質層 7を作用極 6の上に形成する方法としては、 特に限定されるものではないが、 例えば、 前記電解質組成物を作用極 6上に少量 ずつ滴下する方法が挙げられる。 または、 作用極 6または対極 8上などに電解質 を塗布すること等により電解質層を形成することもできる。 これにより、 電^^質 組成物を作用極 6上にキャストしたときに、 電解質組成物を酸化物半導体多孔質 膜 5の空隙中に良好に浸透させて充填することができる。
以上のようにして得られる本発明の第 2実施形態の光電変換素子は、 電解質組 成物の性状がゲル状であるので、 揮発性や流動性が乏しく、 色素増感太陽電池な どの光電変換素子に用いたときに、 溶媒の揮発などによる電解質の変質や欠損が なく、安定的に高い出力特性や光電変換特性を達成することが可能となる。また、 容器の隙間などからの電解質の漏出や、 光電変換素子の破損時の散乱などが抑制 され、 液状の電解液を用いた場合に比べて、 安全性や耐久性等に優れたものとな る。
また本発明の第 2実施形態の色素増感太陽電池は、 前記光電変換素子を有する ものなので、 溶媒の揮発などによる電解質の変質や欠損がなく、 安定的に高い出 力特性や光電変換特性を達成することが可能となる。 また、 容器の隙間などから の電解質の漏出や、 光電変換素子の破損時の散乱などが抑制され、 液状の電解液 を用いた場合に比べて、 安全性や耐久性等に優れたものとなる。
以下、 本発明の第 2実施形態の実施例について説明する。
<電解質組成物の調製 (1 ) >
イオン性液体 (A) として、 1—ェチルー 3—メチルイミダゾリクム一ビス (ト リフルォロメチルスルホニル) イミド (これを EM I m- T F S Iと略記するこ とがある) を用い、 このイオン性液体に適量の 1ーェチル— 3—メチルイミダゾ リゥム一ヨウ化物 ( E M I m- I )、ョゥ素おょぴョゥ化リチウムと 4— tert—ブ チルピリジン適量を溶解させることにより、 酸化還元対としてヨウ素/ヨウ化物 イオンを含有する電解液を調製した。
前記電解液 (イオン性液体として EMI m— TF S Iを含むもの) に対して、 酸化物半導体粒子 (B) として、 平均粒径 2 ηπ!〜 1000 nmの二酸化チタン (表 2中、 T i 02と記す) のナノ粒子を電解液全量に対し 10質量%となるよ うに加え (実施例 B— 1)、 または二酸化チタンのナノ粒子と、 導電性粒子 (C) としてカーボンナノチューブ (表 2中、 CNTと記す) とを、 表 2中に記す配合 比 (粒子の合計配合量を 100%とする比) で混合し、 これらの合計配合量が電 解液全量に対し 1質量%となるように加え(実施例 B— 2〜 10 )、遠心分離する ことにより、 ィオン性液体がゲル化された実施例 B— 1〜 10の電解質組成物を 得た。
なお、 カーボンナノチューブとしては単層カーボンナノチューブ (表 2中、 S WCNTと記す) と多層カーボンナノチューブ (表 2中、 MWCNTと記す) と を用い、 これらを表 2中に記す配合量で用いた。 ¾2中、 T i 02、 SWCNT 及ぴ MWC NTの各欄の数値は、 これら粒子の遠心分離前の合計配合量 (電解液 全量に対し 1質量%) における各粒子の配合比を質量%で表している。
表 2の 「遠心分離後の粒子の割合」 の欄には、 ィオン性液体に不溶な成分の粒 子 (ここでは T i 02ナノ粒子と CNTの合計) の遠心分離後の割合を電解質組 成物全体を 100 %として示す。
前記電解液 (イオン性液体として EMI m— TF S Iを含むもの) に対して、 酸化物半導体粒子 (B) として、 酸化チタンナノチューブを、 電解液全量に対し 10質量%となるように加え(実施例 B— 1 1)、または、酸化チタンナノチュー ブと酸化チタンナノ粒子とを表 3中に示す配合比 (粒子の合計酉'己合量を 100% とする比) で混合し、 これらの合計配合量が電解液全量に対し 10質量%となる ように加え(実施例 B _ 1 2〜 14 )、遠心分離することにより、ィォン性液体が ゲル化された実施例 B— 1 1〜 14の電解質組成物を得た。
表 3の 「遠心分離後の粒子の割合」 の欄には、 イオン性液体に不溶な成分の粒 子(ここでは T i 02のナノチューブとナノ粒子の合計)の遠心分離後の割合を、 電解質組成物全体を 100 %として示す。
前記電解液 (イオン性液体として EMI m— TFS Iを含むもの) に対して、 酸化物半導体粒子 (B) としての酸化チタンナノチューブと、 導電性粒子 (C) としてのカーボンナノチューブ (CNT) とを、 表 4中に示す配合比 (粒子の合 計配合量を 100%とする比) で混合し、 これらの合計配合量が電解液全量に対 し 1質量%となるように加え(実施例 B— 1 5〜.17 )、遠心分離することにより、 イオン性液体がゲル化された実施例 B— 15〜17の電解質組成物を得た。 実施 例 B— 1 5〜17では、 カーボンナノチューブとして、 MWCNTを用いた。 表 4の 「遠心分離後の粒子の割合」 の欄には、 イオン性液体に不溶な成分の粒 子 (ここでは酸化チタンナノチューブとカーボンナノチユーブの合計) の遠心分 離後の割合を、 電解質組成物全体を 100%として示す。
前記電解液 (イオン性液体として EMIm— TFS Iを含むもの) に対して、 酸化物半導体粒子 (B) として表 5の 「酸化物半導体」 欄に示す各種物質のナノ 粒子を電解液全量に対し 10質量%となるように加え、遠心分離することにより、 ィオン性液体がゲル化された実施例 B— 18-25の電解質組成物を得た。
表 5の 「遠心分離後の粒子の割合」 の欄には、 イオン性液体に不溶な成分の粒 子 (ここでは酸化物半導体粒子の合計) の遠心分離後の割合を、 電解質組成物全 体を 100%として示す。
<電解質組成物の調製 (2) 〉
イオン性液体 (A) として、 1—へキシルー 3—メチルイミダゾリゥムーヨウ 化物 (これを HMI m— Iと略記することがある) または 1ーェチルー 3—メチ ルイミダゾリゥム一ジシァノィミド (これを EM I m— DC Aと略記することが ある) を用い、 このイオン性液体に適量の EM I m— Iとョゥ素おょぴョゥ化リ チウムと 4一 tert—ブチルピリジン適量を溶解させることにより、 酸化還元対と してヨウ素/ョゥ化物イオンを含有する電解液を調製した。
前記電解液に対して、 酸化物半導体粒子 (B) として、 平均粒径 2 iim〜10 O O nmの二酸化チタン (表 2中、 T i 02と記す) のナノ粒子を電解液全量に 対し 10質量%となるように加え、 遠心分離することにより、 イオン性液体がゲ ル化された実施例 B— 26〜 27の電解質組成物を得た。
表 6の 「遠心分離後の粒子の割合」 の欄には、 イオン性液体に不溶な成分の粒 子 (ここでは T i 02ナノ粒子) の遠心分離後の割合を電解質組成物全体を 10 0 %として示す。
く実施例 B—:!〜 2 7に係る光電変換素子の作製〉
透明電極基板として、 1 0 O mm X 1 0 0 mmの F T O膜付きガラス基板を用 い、 この透明電極基板 2の F T O膜 (導電層) 側の表面に、 平均粒径 2 0 n mの 酸化チタンのスラリ一状分散水溶液を塗布し、 乾燥後、 4 5 0 °Cにて 1時間加熱 処理することにより、 厚さ 7 /x mの酸化物半導体多孔質膜を形成した。 さらに、 ルテ -ゥムビピリジン錯体 ( N 3色素) のェタノール溶液中に 1晚浸漬して色素 を担持させ、 作用極を作製した。 また、 対極として、 白金からなる電極層をスパ ッタ法により設けた F T Oガラス電極基板を用意した。
電解質層を作用極上に形成するため、 ゲル化した前記電解質組成物を、 作用極 の酸化物半導体多孔質膜上に少量ずつ滴下し、 さらに前記対極を強く押しっけな がら重ね合わせ、 対極と電解質層とを接合した。 以上の手順により、 実施例 B— 1〜2 7の試験セルとなる色素増感太陽電池を作製した。
<比較例 B— 1に係る試験セルの作製 >
作用極および対極としては、 前記実施例 B— 1〜 2 7に係る試験セルと同様な ものを用いた。 電解質となる電解液としては、 酸化還元対としてヨウ素 Zヨウ化 物イオンを含有するィォン性液体 [ 1ーェチルー 3—メチルイミダゾリゥムービ ス (トリフルォロメチルスルホニル) イミド ( EM I m- T F S I ) ] を調製して 用いた。 この電解液は、 酸化物半導体粒子 ( B ) または酸化物半導体粒子 (B ) と導電性粒子 (C ) とが添加されていないこと以外、 実施例 B— :!〜 2 7の試験 セルの電解質組成物の調製に用いた電解液と同じものである。
作用極と対極とを向かい合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 B— 1の試験セルとなる色秦増感太陽電池を作製した。
く比較例 B— 2に係る試験セルの作製 >
作用極および対極としては、 前記実施例 B— 1〜 2 7に係る試験セルと同様な ものを用いた。電解質となる電解液としては、四級化ィミダゾリウムーョゥ化物、 3ウイ匕リチウム、 ヨウ素、 4一 tert—ブチルピリジンを含有するァセトニトリル 溶液を調製して用いた。
作用極と対極とを向かい合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 B— 2の試験セルとなる色素増感太陽電池を作製した。
<比較例 B— 3 , 4に係る試験セルの作製 >
作用極および対極としては、 前記実施例 B— 1〜 2 7に係る試験セルと同様な ものを用いた。 電解質となる電解液としては、 酸化還元対としてヨウ素 Zヨウ化 物イオンを含有するイオン性液体を調製して用いた。 表 6に示すように、 イオン 性液体として比較例 B _ 3では HM I m— Iを、 比較例 B _ 4では EM I m— D C Aを用いた。 この電解液は、 酸化物半導体粒子 (B ) または酸化物半導体粒子 ( B ) と導電性粒子 ( C ) とが添加されていないこと以外、 表 6に記載の実施例 B— 1〜2 7の試験セルの電解質組成物の調製に用いた電解液と同じものである。 作用極と対極とを向かい合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 B— 3, 4の試験セルとなる色素增感太陽電池を作製した。
<試験セルの光電変換特性 >
前記のそれぞれの試験セルの光電変換特性を測定した。 それぞれの試験セルに ついて、 変換効率を表 2 ~ 7に示す。 なお、 実施例 B— 1 1の結果は、 表 3と表 4に重複して載せている。 また、 比較例 B— 1の結果は、 表 2、 表 3、 表 4、 表 5に重複して载せている。
表 2
Ti02 CNT 遠心分離後の 性状 変換効率
SWCNT MWCNT 粒子の割合 (%) 実施例 B - 1 100 一 一 15.3% ゲル状 5.0 実施例 B - 2 80 20 ― 1 1.2% ゲル状 4.7 実施例 B - 3 50 50 一 5.2% ゲル状 4.5
II施例 B - 4 20 80 ― 4.3% ゲル状 4.3
II施例 B - 5 80 一 20 5.2% ゲル状 4.7 賽施例 B - 6 50 ― 50 3.2% ゲル状 4.8 実施例 B-7 20 一 80 2.3% ゲル状 4.3 実施例 B-8 80 10 10 7.6% ゲル状 4.9 実施例 B-9 60 20 20 4.1% ゲル状 4,9 実施例 B-10 20 40 40 1.5% ゲル状 4.7 比較例 B - 1 イオン性液体のみ 液状 4.1 比較例 B-2 酸化還元対のァセ卜二トリル溶液 液状 5.5 表 3
酸化チタン 酸化チタン 遠心分離後の 性状 変換効率 ナノチューブ ナノ粒子 粒子の割合 (%) 実施例 B - 1 1 100% 0% 10.2% ゲル状 5.1 実施例 B - 12 80% 20% 1 1.2% ゲル状 5.2 実施例 B - 13 50% 50% 15.2% ゲル状 5.0 実施例 B-14 20% 80% 15.8% ゲル状 5.5 比較例 B-1 イオン性液本のみ 液状 4.1 表 4
酸化チタン カーホ'ン 遠心分離後の 性状 変換効率 ナノチューフ' ナノチュ-フ' 粒子の割合 (%) 実施例 B-1 1 100% 0% 10.2% ゲル状 5.1 実施例 B - 15 80% 20% 5.2% ゲル状 5.5 実施例 B-16 50% 50% 4.2% ゲル状 5.3 実施例 B-17 20% 80% 2.3% ゲル状 5.5 比較例 B- 1 イオン性液 のみ 液状 4.1
表 5
酸化物半導体 遠心分離後の 性状 変換効率 (%) 粒子 粒子の割合
実施例 B-18 Ti02 (アナタ-セ') 15.2% ゲル状 5.1 実施例 B-19 Ti02 (ルチル) 14.6% ゲル状 5.2 実施例 B- 20 Ti02 (ブルツカイト) 29.3% ゲル状 5.0 実施例 B-21 ZnO 36.5% ゲル状 4.9 実施例 B - 22 ¾n02 30.2% ゲル状 4.8
II施例 B- 23 ITO 36.1 % ゲル状 4.9 実施例 B - 24 Ba ΓίΟ-, 80.2% ゲル状 4.9 実施例 B- 25 Al203 21.8% ゲル状 4.6 比較例 B - 1 イオン性液体のみ 液状 4.1 45
28
表 6
Figure imgf000030_0001
前記結果に示すように、 本発明の第 2実施形態に係る各実施例 B— 1〜27の 試験セルによれば、 電解質の性状がゲル状でありながら、 液状電解質 (電解液) を用いた場合と遜色のない、 高い変換効率が得られた。 例えば日本国特開 200 2-184478号公報に電解質をゲル化した場合の光電変換素子の初期の変換 効率が 2. 0%と記載されているように、 従来、 ゲル化した電解質を用いると、 電解液を用いた場合に比べて変換効率が著しく低くなっていたが、 本発明ではそ のようなことは起こらなかった。 従って、 酸化物半導体粒子 (B) または酸化物 半導体粒子 (B) と導電性粒子 (C) とを用いて電解液 (イオン性液体等) をゲ ル化したことによる効果は明らかである。
また、酸化物半導体粒子(B)または酸化物半導体粒子(B) と導電性粒子 (C) の効果として、これら粒子の添加によりゲル状(擬固体状)となっている場合と、 これら粒子が添加されず液状を呈するィォン性液体溶液である場合とを比較する と、 ィオン性液体が EM I m-TF S Iである場合 (実施例 B—;!〜 25と比較 例 B— 1)、 HMIm— Iである場合 (実施例 B— 26と比較例 B— 3 )、 EM I m— DCAである場合 (実施例 B—27と比較例 B— 4) のいずれにおいても、 酸化物半導体粒子 (B) または酸化物半導体粒子 (B) と導電性粒子 (C) を添 加したほうが変換効率が高くなつているという驚くべき結果が得られた。つまり、 イオン性液体溶液 (電解液) に対して酸化物半導体粒子 (B) または酸化物半導 体粒子 (B) と導電性粒子 (C) を添加することにより、 これを添加しない場合 よりも優れた電解質組成物を調製できた。
く液状電解質とゲル状電解質との対比 >
次に、 液状電解質と、 これに不溶な成分を含むゲル状電解質とについて特性の 対比を行い (表 7, 表 8参照)、 前記不溶成分の性質を検証した。 0245
29
液状電解質(電解液) としては、イオン性液体を主成分として、これにヨウ素、 ヨウ化リチウム、 ジアルキルィミダゾリウムョゥ化物、 4一 tert—ブチルピリジ ンを添加することにより調製したものを用いた。
ここで、 イオン性液体 (表 7, 表 8参照) としては、 1ーェチルー 3—メチル イミダゾリゥム一ビス (トリフルォロメチルスルホニル) イミド (EM I m— T FS 1)、 1一へキシルー 3—メチルイミダゾリゥム—ヨウ化物(HM I m— 1)、 1ーェチル一 3—メチルイミダゾリゥム一ジシァノィミド (EM I m-DCA) を用いた。
実施例 B— 28〜 35のゲル状電解質としては、 前記 「電解質組成物の調製」 の項目で記載した方法と同様の手順により、 前記液状電解質と表 7に記載の酸化 物半導体粒子 (B) とを混合することにより得られる本発明の電解質組成物を用 いた。 なお、 表 7において、 T i〇2 [1] は、 アナターゼ (ψ 28 ηπι) を示 し、 T i 02 [2] は、 アナターゼ ( 80 nm) を示し、 T i 02 [3] は、 ル チノレ (φ 70 nm) を示す。
比較例 B— 5 , 6のゲル状電解質としては、 前記液状電解質を表 8に記載のゲ ル化剤を用いてゲル化 (擬固体化) することにより得られるものを用いた。 表 8 において、 P V d F— HF Pは、 フッ素樹脂系ゲル化剤 (ポリフッ化ビニリデン 一へキサフルォロプロピレン共重合体) を示す。 また、 低分子系ゲル化剤として は、 市販の低分子系ゲル化剤を用いた。
つまり、 この対比試験において、 ゲル状電解質は、 液状電解質に酸化物半導体 粒子 (B) またはゲル化剤を添加した組成をもつものである。 また、 ゲル状電解 質に対応する液状電解質とは、 当該ゲル状電解質の組成から酸化物半導体粒子 (B)またはゲルィ匕剤が除去された組成に相当する液状電解質を指すものとする。 表 7
Figure imgf000032_0001
TiOz [1] : アナターセ' (028nm)
TiOz [2] : アナターセ * ( φ 80nm)
Ti02 [3] : ルチル (07Onm) 表 8
Figure imgf000032_0002
<液状電解質およびゲル状電解質のサイクリ ックポルタンメ トリ一測定〉 表 7およぴ表 8に記載の前記ゲル状電解質および液状電解質に対して、 白金マ イク口電極 (直径 1 0 μ m) を用いて、 2 5。C、 アルゴン雰囲気下の条件でサイ クリソクボルタンメ トリーを行った (掃引速度 2mV/s)。得られた限界電流値 から下記式 (1) に基づいて、 1 -/ 1 3—の拡散定数 (見掛けの拡散定数) を算 出し /こ。
I l im=4 nFCDa ppr · · · 式 (1)
ここで、 I l imは限界電流、 nは反応電子数、 Fはファラデー定数、 Cはキヤ リア濃度、 Da ppは前記拡散定数、 rは電極半径である。
また、 サイタリックボルタモグラムにおいて電流ゼロに対応する電極電位とし て平衡電位 (Ee q) を求めた。 なお、 マイクロ電極を用いたサイクリックボルタンメ トリーによって拡散係数 (Dapp)及び平衡電位 (Eeq) を測定することに関しては、例えば、川野竜司、 渡邊正義による報告 [ケムコム誌 (Ch em. C ommun.)、 (英国)、 200 3年、 330〜331頁] がある。
液状電解質を用いて測定された拡散定数を「液系の拡散定数」、ゲル状電解質を 用いて測定された拡散定数を「ゲル系の拡散定数」 というものとして、 「拡散定数 の変化率」を、 (「ゲル系の拡散定数 J一「液系の拡散定数」 /「液系の拡散定数」) として定義した。 また、 液状電解質を用いて測定された平衡電位を 「液系の平衡 電位」、 ゲル状電解質を用いて測定された平衡電位を「ゲル系の平衡電位」 という ものとして、 「平衡電位のシフト幅」 を、 ( 「ゲル系の平衡電位の」 一 「液系の平 衡電位」) として定義した。
実施例 B— 28〜 35および比較例 B— 5, 6に係る各ゲル状電解質と、 これ に対応する液状電解質とについて、 「拡散定数の変化率」および「平衡電位のシフ ト幅」 を算出し、 その結果を上記表 7および表 8にまとめた。 なお、 表 8におい て、 「拡散定数の変化率」 の絶対値が 5%未満である場合はあるいは、 「平衡電位 のシフト幅」 が 1 OmV未満である場合には、 「変化微小」 と記載した。
く液状電解質およびゲル状電解質を用いた試験セルの作製および評価〉 表 7および表 8に記載の前記ゲル状電解質およぴ液状電解質に対して、前記「試 験セルの作製」 と同様の手順により色素増感太陽電池を作製し、 光電変換特性の 評価を行った。
光電変換特性の測定条件は、 エアマス (AM) 1. 5、 放射照度 100mW/c m2の光照射条件とした。
実施例 B— 28〜 35およぴ比較例 B— 5, 6に係る各ゲル状電解質と、 これ に対応する液状電解質とについて素測定された光電変換効率 (変換効率) の結果 は、 上記表 7およぴ表 8にまとめた。 上記表 7および表 8において、 液状電解質 を用いて測定された光電変換効率を 「変換効率/液系」 の欄に示し、 ゲル状電解 質を用いて測定された拡散定数を 「変換効率/ゲル系」 の欄に示す。
表 7および表 8の結果から分かるように、 実施例 B— 28~35のゲル状電解 質においては、 これに対応する液状電解質に対する 「拡散定数の変化率」 が正の 比較的大きな値をとつている。 このことから、 実施例 B— 2 8〜 3 5のゲル状電 解質中では、 これに対応する液状電解質中に比べて電荷移動が速くなっており、 この結果、変換効率が向上しているものと考えられる。また、 「平衡電位のシフト 幅」 も正の比較的大きな値をとつており、 正電位側に偏っている (シフトしてい る) こと力 ら、 起電力のより大きい光電変換セルを作製することができるものと 考えられる。
これに対して、比較例 B— 5, 6のゲル状電解質においては、 「拡散定数の変化 率 J や 「平衡電位のシフト幅」 は変化が微小であるか、 あるいはむしろ負の値を とっており、 ゲル化による特性変化は横ばいか、 あるいは悪くなつている。 また、 変換効率を対比すると、 実施例 B— 2 8〜 3 5のゲル状電解質において は、 ゲル系の変換効率は液系の変換効率よりも高い数値を示している。 これに対 して、 比較例 B— 5 , 6のゲル状電解質においては、 ゲル系の変換効率は液系の 変換効率よりも低い数値を示している。
以上のことから、 本発明の第 2実施形態の電解質組成物によれば、 酸化物半導 体粒子 ( B ) または酸化物半導体粒子 (B ) と導電性粒子 ( C ) とがイオン性液 体 (A) に添加されることにより、 もとのイオン性液体 (A) よりも特性の優れ た電解質が得られるものと考えられる。
上述の説明おょぴ実施例から、 以下の付記に示された発明が導出される。
(付記 1 ) イオン性液体と、 前記イオン性液体に可溶な一又は複数の成分と、 前記ィオン性液体に不溶な一又は複数の成分とから構成され、 前記可溶成分が酸 化還元対を含有し、 かつ前記不溶成分が酸化物半導体粒子または酸化物半導体粒 子と導電性粒子を含有する電解質組成物であって、 前記電解質組成物中の前記酸 化還元対の拡散係数が、 ィオン性液体と前記ィオン性液体に可溶な一又は複数の 成分とから構成される組成物中の前記酸化還元対の拡散係数よりも大きいことを 特徴とする電解質組成物。
(付記 2 ) ィオン性液体と、 前記ィオン性液体に可溶な一又は複数の成分と、 前記ィオン性液体に不溶な一又は複数の成分とから構成され、 前記可溶成分が酸 化還元対を含有し、 かつ前記不溶成分が酸化物半導体粒子または酸化物半導体粒 子と導電性粒子を含有する電解質組成物であって、 前記電解質組成物中の前記酸 化還元対の平衡電位が、 ィオン性液体と前記ィオン性液体に可溶な一又は複数の 成分とから構成される組成物中の前記酸化還元対の平衡電位よりも正電位側にシ フトしているを特徴とする電解質組成物。
(付記 3 ) ゲル状となっていることを特徴とする付記 1記載の電解質組成物。
(付記 4 ) 前記不溶成分がナノ粒子またはナノチューブであることを特徴とする 付記 1に記載の電解質組成物。
(付記 5 ) 前記酸化還元対がハロゲン系レドックス対であることを特徴とする付 記 1に記載の電解質組成物。
なお、 前記不溶成分は、 電解質組成物の特性に悪影響を与えない範囲で、 絶縁 体粒子が含まれていてもよい。 ここで、 絶縁体粒子としては、 ダイヤモンドゃ窒 化ホウ素 ( B N) などの粒子が例示される。
本発明は前記事情に鑑みてなされたものであって、 光電変換素子の電解質とし て用いた際に光電変換効率が液状電解質 (電解液) と比べて遜色ないか又はそれ 以上である電解質組成物またはゲル状電解質組成物、 それを用いた光電変換素子 及び色素増感太陽電池の提供を課題とする。
(第 3実施形態)
以下、 本発明の第 3実施形態に基づいて、 本発明を詳しく説明する。
本発明の電解質組成物は、 イオン性液体 (A) と絶縁体粒子 (C ) とを含んで いる。 また好ましい実施形態において、 本発明の電解質組成物は、 ゲル状となつ ている。 ここで、 内径 1 5 mm、 深さ 1 0 c mの円筒状ガラス管の中に 1 0 c c の電解質を入れ、 室温 (2 3 °C) にてガラス管を逆さにして放置したときに、 1
5分後に全ての電解質が下まで落下しなければ、 この電解質はゲルであると定義 する。
本発明の第 3実施形態の電解質組成物は、 第 1の必須成分としてィオン性液体 (A) を含んでいる。
イオン性液体 (A) としては、 特に限定されるものではないが、 室温で液体で あり、 四級化された窒素原子を有する化合物をカチオンとした常温溶融性塩が例 示される。 常温溶融性塩のカチオンとしては、 四級化ィミダゾリゥム誘導体、 四 級化ピリジニゥム誘導体、 四級化ピロリジニゥム誘導体、 四級化アンモニゥム誘 45
34
導体などが挙げられる。
四級化ィミダゾリゥム系カチオンとしては、 例えば、 1ーェチルー 3—メチル イミダゾリゥム、 1—ェチルー 3—プロピルィミダゾリゥム、 1ーェチルー 3― へキシルイミダゾリウム、 1一へキシルー 3—メチルイミダゾリウムなどの 1, 3—ジアルキルィミダゾリゥムが例示できる。 四級化ピリジニゥム系カチオンと しては、 例えば、 N _ブチルピリジニゥムなどの N—アルキルピリジニゥムが例 示できる。 四級化ピロリジニゥム系カチオンとしては、 N—メチルー N—プロピ ルピロリジニゥム、 N—メチルー N—ブチルピロリジニゥムなどの N, N—ジァ ルキルピロリジニゥムが例示できる。
常温溶融性塩のァニオンとしては、 B F 4一、 P F 6—、 F (H F ) n一、 ビス ト リフルォロメチルスルホニルイミ ド [N ( C F 3 S 0 2) 2一]、 3ゥ化物イオン、 臭 化物イオン、 ジシァノアミ ド (dicyanamide) などが挙げられる。
イオン性液体 (A) の具体例としては、 四級化ィミダゾリゥム系カチオンとョ ゥ化物イオンまたはビストリフルォロメチルスルホニルイミ ドイオン、 ジシァノ アミ ドィォン等からなる塩類を挙げることができる。
本発明の第 3実施形態の電解質組成物は、 第 2の必須成分として、 絶縁体粒子 ( C) を含んでいる。
絶縁体粒子 (C) における物質の種類や粒子サイズ等は特に限定されるもので はないが、 ィォン性液体を主体とする電解液との混和性に優れ、 該電解液をゲル 化するようなものが用いられる。 また、 電解質組成物中で導電性を低下させてし まうことがなく、 該電解質組成物に含まれる他の共存成分に対する化学的安定性 に優れることが必要である。 特に、 電解質組成物がヨウ素/ヨウ化物イオンや臭 素/臭化物イオンなどの酸化還元対を含む場合でも、 酸化反応による劣化を生じ ないものが好ましい。
このような絶縁体粒子 ( C ) としては、 ダイヤモンド、 および窒化ホウ素 ( B N) からなる群から選択される 1種または 2種以上の混合物が例示される。
絶縁体粒子 ( C) は、 ナノ粒子であることが好ましい。 ナノ粒子は、 粒子径が n mオーダー ( 1 0 0 0 n m未満) の粒子である。 ナノ粒子がチューブ状である 場合には、 直径 (短径) が n mオーダーであればよく、 長さ (長径) は、 数 u m またはそれ以上であってもよい。
前記絶縁体粒子 (C ) の配合量は、 電解質組成物全量に対し、 0 . 0 5質量% 以上 7 0質量%以下であることが好ましい。 より好ましくは、 0 . 0 5質量%以 上 5 0質量%以下であることが好ましい。
絶縁体粒子 (C ) の配合量を前記範囲内とすることで、 イオン性液体 (A) を 含む電解液をゲル化させることができ、 製造工程やセル破損時に、 電解質組成物 が露出しても液漏れするおそれがない。
絶縁体粒子 (C ) の配合量が電解質組成物全量に対して 0 . 0 5質量%未満で は、 イオン性液体がゲル化せず、 破損時などに液漏れ等のおそれがある。 一方、 絶縁体粒子 (C) の配合量が電解質組成物全量に対して 7◦質量%を超えると、 粒子 (C ) がイオン性液体をすベて吸収してしまい、 電解質として機能しなくな るおそれがある。
本発明の第 3実施形態の電解質組成物には、 必須の成分ではないが、 酸化還元 対 (レドックス対) を添加することができる。 酸化還元対は、 電解質組成物が色 素増感太陽電池などに適用される場合、 添加することが好ましい。
酸化還元対としては、 特に限定されることはないが、 ョゥ化物イオン ( I一)、 臭化物イオン ( B r―)、 塩化物イオン ( C 1 -) などのハ口ゲン化物イオンと、 I 3一、 I 5—、 I 7—、 B r 3—、 C 1 2 I一、 C 1 I 2一、 B r 2 I _、 B r I 2—などの ポリハ口ゲン化物ィオンとからなるハロゲン系レドックス対を用いることが好ま しい。
例えば、 酸化還元対として、 ヨウ素/ヨウ化物イオン、 臭素/臭化物イオンな どのペアを添加して得ることができる。 ョゥ化物イオンまたは臭化物イオンの供 給源としては、 リチウム塩、 四級化イミダゾリウム塩、 テトラプチルアンモニゥ ム塩などを単独または複合して用いることができる。
本発明の第 3実施形態の電解質組成物には、 必要に応じて、 tert—プチルピリ ジンなどの各種添加物や溶媒を、 電解質組成物の性状や特性を損なわない範囲内 で添加することができる。
前記各成分を用いて本発明の電解質組成物を製造する方法は特に限定されるも のではないが、例えば、まず、イオン性液体(A) に酸化還元対などの添加物(ィ オン性液体に可溶な成分) を添カ卩して電解液を得たのち、 この電解液に前記絶縁 体粒子 ( C) (つまり、ィオン性液体に不溶な成分) を混合してゲル化させる方法 がある。 電解液と絶縁体粒子 ( C ) との混合には、 公知の適当な撹拌装置、 混合 装置、 遠心分離機などを用いることができる。
本発明の第 3実施形態の電解質組成物は、 例えば色素増感太陽電池などの光電 変換素子において用いられる電解質として好ましく用いることができる。
従来のゲル状電解質で用いられたポリマーなどのゲル化剤の場合、 電気抵抗が 高く、 ゲル化すると電解質の導電性が低下して光電変換素子の光電変換特性が悪 くなる問題があった。 これに対して、 本発明の電解質糸且成物では、 下記の実施例 に示すように光電変換特性が良好であり、 イオン性液体およびこれに可溶な成分 から構成される液状電解質に比べて、 高い光電変換特性が得られる。 この理由は 明確ではないが、 本発明者らは以下のように考えている。
ゲル電解質中のナノ粒子表面にカチオン (例えばィミダゾリゥムイオン) が吸 着し、 さらに対ァニオン ( I 一や I 3っ がこれを取り囲む形で配列すると考えら れる。 その結果、 ナノ粒子表面では、 局所的にレドックス対濃度が増大する。 特 に、 イオン性液体を用いた色素増感太陽電池の場合、 電解質中で物理拡散と電子 交換反応との共役により電荷が移動するケースが示されており、 より迅速な電荷 移動過程である後者は、レドックス濃度の高い組成において促進される。つまり、 上記のレドックス濃度が局所的に濃い領域を経路として電子交換反応過程が促進 されることにより、 絶対的なレドックス濃度を増大させることなく (I 3一の絶対 量の増大は電解質の光透過性を低下させ、 光電変換を阻害する可能性がある) 迅 速な電荷移動が可能となり、 発電特性が向上したものと予想している。
また、 本発明の第 3実施形態の電解質組成物は、 ゲル状であるので、 製造工程 やセル破損時などで電解質組成物が露出しても漏れ出す (液漏れ)おそれがなく、 生産性や取扱レ、性に優れる。
次に、 発明の第 3実施形態の電解質組成物を用いた光電変換素子の実施形態に ついて説明する。 図 1は、 本発明の光電変換素子の一実施形態として、 色素増感 太陽電池の概略構成例を示す断面図である。
この色素増感太陽電池 1は、 透明電極基板 2上に、 酸化チタンなどの酸化物半 導体微粒子からなり、 光増感色素が担持された酸化物半導体多孔質膜 5を有する 作用極 6と、 この作用極 6に対向して設けられた対極 8とを備え、 これらの作用 極 6と対極 8との間には、 前記電解質組成物を充填して電解質層 7が形成されて いる。
透明電極基板 2は、 ガラス板やプラスチックシートなどの透明基材 4の上に、 導電材料からなる導電層 3を形成したものである。
透明基材 4の材料としては、 用途上、 光透過性の高いものが好ましく、 ガラス の他、 ポリエチレンテレフタレート (PET), ポリエチレンナフタレート (PE N)、 ポリカーボネート (PC)、 ポリエーテルスルホン (PES) などの透明プ ラスチックシート、 酸化チタン、 アルミナなどのセラミックスの研磨板などを用 いることができる。
導電層 3としては、 透明電極基板 2の光透過率の観点から、 スズ添加酸化イン ジゥム ( I TO), 酸化スズ (Sn02)、 フッ素添加酸化スズ (FTO) などの透 明な酸化物半導体を単独で、 もしくは複数種類を複合化して用いることが好まし い。 し力 しながら、 特にこれらに限定されるものではなく、 光透過率および導電 性の観点で、 使用目的に適合する適当な材料を選択して用いればよい。 また、 酸 化物半導体多孔質膜 5や電解質層 7からの集電効率を向上するため、 透明電極基 板 2の光透過率を著しく損なわない範囲の面積率で、 金、 銀、 白金、 アルミニゥ ム、 ニッケル、 チタンなどからなる金属配線層を併用してもよい。 金属配線層を 用いる場合、 格子状、 縞状、 櫛状などのパターンとして、 透明電極基板 2になる ベく均一に光が透過するように配設するとよい。
導電層 3を形成する方法としては、 導電層 3の材料に応じた公知の適切な方法 を用いればよいが、 例えば、 I TOなどの酸化物半導体から導電層 3を形成する 場合、 スパッタ法、 CVD法、 SPD法 (スプレー熱分解堆積法)、蒸着法などの 薄膜形成法が挙げられる。 そして、 光透過性と導電性を考慮して、 通常、 0. 0 5 μπ!〜 2. 0 μπι程度の膜厚に形成される。
酸化物半導体多孔質膜 5は、 二酸化チタン (T i O2)、 酸化スズ (S n〇2)、 酸化タングステン (WO3)、 酸化亜鉛 (ZnO)、 酸化ニオブ (Nb2O5) などの 1種または 2種以上を複合させた平均粒径 1〜 1000 n mの酸化物半導体微粒 子を主成分とし、 厚さが 0 . 5〜 5 0 Ai m程度の多孔質の薄膜である。
酸化物半導体多孔質膜 5を形成する方法としては、 例えば、 市販の酸化物半導 体微粒子を所望の分散媒に分散させた分散液、 あるいは、 ゾルーゲル法により調 製できるコロイド溶液を、 必要に応じて所望の添加剤を添加した後、 スクリーン プリント法、ィンクジエツトプリント法、ロールコート法、 ドクターブレード法、 スピンコート法、 スプレー塗布法など公知の塗布により塗布するほか、 コロイ ド 溶液中に電極基板 2を浸漬して電気泳動により酸化物半導体微粒子を電極基板 2 上に付着させる泳動電着法、 コロイド溶液や分散液に発泡剤を混合して塗布した 後、焼結して多孔質化する方法、ポリマーマイク口ビーズを混合して塗布した後、 このポリマーマイク口ビーズを加熱処理や化学処理により除去して空隙を形成さ せ多孔質化する方法などを適用することができる。
酸化物半導体多孔質膜 5に担持される増感色素は、 特に制限されるものではな く、 例えば、 ビビリジン構造、 ターピリジン構造などを含む配位子を有するルテ 二ゥム錯体ゃ鉄錯体、 ポルフィリン系ゃフタロシアニン系の金属錯体をはじめ、 ェォシン、 ローダミン、 メロシアニン、 クマリンなどの有機色素などから、 用途 や酸ィ匕物半導体多孔質膜の材料に応じて適宜選択して用いることができる。
対極 8としては、 例えば、 ガラスなどの非導電性材料からなる基板上に、 I T Oや F T O等の導電性酸ィヒ物半導体からなる薄膜を形成したもの、 あるいは、 基 板上に、 金、 白金、 炭素系材料などの導電性材料を蒸着、 塗布などすることによ り電極を形成したものを用いることができる。 また、 I T Oや F T O等の導電性 酸化物半導体の薄膜上に白金、 カーボンなどの層を形成したものとすることもで きる。
このような対極 8を作製する方法としては、 例えば、 塩化白金酸の塗布後に熱 処理することにより、 白金層を形成する方法が挙げられる。 または、 蒸着法ゃス パッタ法によつて電極を基板上に形成する方法でもよい。 '
前記電解質組成物からなる電解質層 7を作用極 6の上に形成する方法としては、 特に限定されるものではないが、 例えば、 前記電解質組成物を作用極 6上に少量 ずつ滴下する方法が挙げられる。 または、 作用極 6または対極 8上などに電解質 を塗布すること等により電解質層を形成することもできる。 これにより、 電解質 糸且成物を作用極 6上にキャストしたときに、 電解質組成物を酸化物半導体多孔質 膜 5の空隙中に良好に浸透させて充填することができる。
以上のようにして得られる本発明の光電変換素子は、 電解質組成物の性状がゲ ル状であるので、 揮発性や流動性が乏しく、 色素増感太陽電池などの光電変換素 子に用いたときに、 溶媒の揮発などによる電解質の変質や欠損がなく、 安定的に 高い出力特性や光電変換特性を達成することが可能となる。 また、 容器の隙間な どからの電解質の漏出や、 光電変換素子の破損時の散乱などが抑制され、 液状の 電 液を用いた場合に比べて、 安全性や耐久性等に優れたものとなる。
また本発明の色素増感太陽電池は、 前記光電変換素子を有するものなので、 溶 媒の揮発などによる電解質の変質や欠損がなく、 安定的に高い出力特性や光電変 換特性を達成することが可能となる。 また、 容器の隙間などからの電解質の漏出 や、 光電変換素子の破損時の散乱などが抑制され、 液状の電解液を用いた場合に 比べて、 安全性や耐久性等に優れたものとなる。
以下、 本発明の第 3実施形態の実施例について説明する。
<電解質組成物の調製 >
ィオン性液体 (A) として、 1ーェチル一 3ーメチルイミダゾリウム一ビス (ト リフルォロメチルスルホニル) イミド (以下、 EM I m - T F S Iと略記する) を用い、 このイオン性液体に適量の 1—ェチルー 3—メチルイミダゾリゥムーョ ゥ化物 ( EM I m- I )、 ョゥ素おょぴョウイ匕リチウムと 4— tert—ブチルピリジ ン適量を溶解させることにより、 酸化還元対としてヨウ素/ョゥ化物イオンを含 有する電解液を調製した。
イオン性液体として EM I m— T F S Iを含む前記電解液に対して、 絶縁体粒 子 (C) として、 表 9に示す絶縁体粒子 (C ) を電解液全量に対し 1 0質量%と なるように加え(実施例 D 1〜 2 )、遠心分離することにより、ィオン性液体がゲ ル化された実施例 C— 1 , 2の電解質組成物を得た。
表 9の 「遠心分離後の粒子の割合」 の欄には、 絶縁体粒子 ( C ) の遠心分離後 の割合を電解質組成物全体を 1 0 0 %として示す。
<実施例 C一 1 , 2に係る光電変換素子の作製 >
透明電極基板として、 1 0 O mm X 1 0 0 mmの F T O膜付きガラス基板を用 い、 この透明電極基板 2の F T O膜 (導電層) 側の表面に、 平均粒径 2 0 n mの 酸化チタンのスラリ一状分散水溶液を塗布し、 乾燥後、 4 5 0 °Cにて 1時間加熱 処理することにより、 厚さ 7 μ πιの酸化物半導体多孔質膜を形成した。 さらに、 ルテニウムビピリジン錯体 (Ν 3色素) のェタノール溶液中に 1晚浸漬して色素 を担持させ、 作用極を作製した。 また、 対極として、 白金からなる電極層をスパ ッタ法により設けた F Τ Οガラス電極基板を用意した。
電解質層を作用極上に形成するため、 ゲル化した前記電解質組成物を、 作用極 の酸ィ匕物半導体多孔質膜上に塗布し、 さらに前記対極を強く押しつけながら重ね 合わせ、 対極と電解質層とを接合した。 以上の手順により、 実施例 C一 1の試験 セルとなる色素增感太陽電池を作製した。
<比較例 C一 1に係る試験セルの作製 >
作用極おょぴ対極としては、 前記実施例 C _ 1に係る試験セルと同様なものを 用いた。 電解質となる電解液としては、 酸化還元対としてヨウ素 Zヨウ化物ィォ ンを含有するイオン性液体 [ 1—ェチルー 3—メチルイミダゾリウム一ビス (ト リフルォロメチルスルホニル) イミド] を調製して用いた。 この電解液は、 絶縁 体粒子 ( C ) が添加されていないこと以外、 実施例 C一 1の試験セルの電解質組 成物の調製に用いた電解液と同じものである。
作用極と対極とを向かレ、合わせて、 その間に前記電解液を注入して電解質層を 形成し、 比較例 C - 1の試験セルとなる色素増感太陽電池を作製した。
く試験セルの光電変換特性 >
前記のそれぞれの試験セルの光電変換特性を測定した。 それぞれの試験セルに ついて、 変換効率を表 9に示す。
表 9
Figure imgf000042_0001
前記結果に示すように、 本努明に係る各実施例の試験セルによれば、 電解質の 性状がゲル状でありながら、 液状電解質 (電解液) を用いた場合と遜色のない、 高い変換効率が得られた。 例えば日本国特開 2002— 1 84478号公報に電 解質をゲル化した場合の光電変換素子の初期の変換効率が 2. 0 %と記載されて いるように、 従来、 ゲル化した電解質を用いると、 電解液を用いた場合に比べて 変換効率が著しく低くなっていたが、 本発明ではそのようなことは起こらなかつ た。 従って、 絶縁体粒子 (C) を用いて電解液 (イオン性液体等) をゲル化した ことによる効果は明らかである。
また、 絶縁体粒子 (C) の効果として、 これら粒子の添加によりゲル状 (擬固 体状) となっている場合 (実施例 C一 1) と、 これら粒子が添加されず液状を呈 するイオン性液体溶液である場合 (比較例 C一 1, 2) とを比較すると、 絶縁体 粒子 (C) を添加したほうが変換効率が高くなつているという驚くべき結果が得 られた。 つまり、 イオン性液体溶液 (電解液) に絶縁体粒子 (C) を添加するこ とにより、 これを添加しない場合よりも優れた電解質組成物を調製できた。
く液状電解質とゲル状電解質との対比 >
次に、 液状電解質と、 これに不溶な成分を含むゲル状電解質とについて特性の 対比を行い (表 10, 表 1 1参照)、 前記不溶成分の性質を検証した。
液状電解質(電解液) としては、イオン性液体を主成分として、これにヨウ素、
3ゥ化リチウム、 ジアルキルィミダゾリウムョゥ化物、 4— tert—プチルピリジ ンを添加することにより調製したものを用いた。
ここで、 イオン性液体 (表 10, 表 1 1参照) としては、 1ーェチルー 3—メ チルイミダゾリウムービス (トリフルォロメチルスルホニル) イミ ド (EM I m -TF S I) を用いた。
実施例 C一 3のゲル状電解質としては、 前記 「電解質組成物の調製」 の項目で 記載した方法と同様の手順により、 前記液状電解質と表 1 0に記載の絶縁体粒子
(C) とを混合することにより得られる本発明の電解質組成物を用いた。
比較例 C— 2, 3のゲル状電解質としては、 前記液状電解質を表 1 1に記載の ゲル化剤を用いてゲル化 (擬固体化) することにより得られるものを用いた。 表 1 1において、 PV d F— HF Pは、 フッ素樹脂系ゲル化剤 (ポリフッ化ビニリ デン一へキサフルォロプロピレン共重合体) を示す。 また、 低分子系ゲル化剤と しては、 市販の低分子系ゲル化剤を用いた。
つまり、この対比試験において、ゲル状電解質は、液状電解質に絶縁体粒子(C) またはゲル化剤を添加した組成をもつものである。 また、 ゲル状電解質に対応す る液状電解質とは、 当該ゲル状電解質の組成から絶縁体粒子 (C) またはゲル化 剤が除去された組成に相当する液状電解質を指すものとする。
表 10
Figure imgf000044_0001
<液状電解質およびゲル状電解質のサイクリックボルタンメトリ一測定 > 表 10および表 1 1に記載の前記ゲル状電解質および液状電解質に対して、 白 金マイクロ電極 (直径 10 μ m) を用いて、 25。C、 アルゴン雰囲気下の条件で サイクリックボルタンメトリーを行った (掃引速度 2mVZs)。得られた限界電 流値から下記式 (1) に基づいて、 I— /13_の拡散定数 (見掛けの拡散定数) を算出した。
I l im=4nFCDappr … 式 (1)
ここで、 I l imは限界電流、 nは反応電子数、 Fはファラデー定数、 Cはキヤ リア濃度、 Dappは前記拡散定数、 rは電極半径である。
また、 サイタリックボルタモグラムにおいて電流ゼ口に対応する電極電位とし て平衡電位 (Eeq) を求めた。
なお、 マイクロ電極を用いたサイクリックボルタンメトリーによって拡散係数 (Dapp)及び平衡電位 (Eeq) を測定することに関しては、例えば、川野竜司、 渡邊正義による報告 [ケムコム誌 (C h e m. C o mm u n . )、 (英国)、 2 0 0 3年、 3 3 0〜3 3 1頁] がある。
液状電解質を用いて測定された拡散定数を「液系の拡散定数」、ゲル状電解質を 用いて測定された拡散定数を「ゲル系の拡散定数」 というものとして、 「拡散定数 の変化率」を、 (「ゲル系の拡散定数」 -「液系の拡散定数」 Z「液系の拡散定数」) として定義した。 また、 液状電解質を用いて測定された平衡電位を 「液系の平衡 電位」、ゲル状電解質を用いて測定された平衡電位を「ゲル系の平衡電位」 という ものとして、 「平衡電位のシフト幅」 を、 ( 「ゲル系の平衡電位の」 一 「液系の平 衡電位」) として定義した。
実施例 C一 3および比較例 C一 2 , 3に係る各ゲル状電解質と、 これに対応す る液状電解質とについて、 「拡散定数の変化率」および「平衡電位のシフト幅」 を 算出し、その結果を上記表 1 0およぴ表 1 1にまとめた。なお、表 1 1において、
「拡散定数の変化率」の絶対値が 5 %未満である場合はあるいは、 「平衡電位のシ フト幅」 が 1 O mV未満である場合には、 「変化微小」 と記載した。
く液状電解質およぴゲル状電解質を用!/ヽた試験セルの作製およぴ評価 > 表 1 0および表 1 1に記載の前記ゲル状電解質および液状電解質に対して、 前 記 「試験セルの作製」 と同様の手順により色素増感太陽電池を作製し、 光電変換 特性の評価を行った。
光電変換特性の測定条件は、 エアマス (AM) 1 . 5、 放射照度 1 0 0 mW/ c m2の光照射条件とした。
実施例 C一 3およぴ比較例 C一 2, 3に係る各ゲル状電解質と、 これに対応す る液状電解質とについて素測定された光電変換効率 (変換効率) の結果は、 上記 表 1 0およぴ表 1 1にまとめた。 上記表 1 0および表 1 1において、 液状電解質 を用いて測定された光電変換効率を 「変換効率/液系」 の櫚に示し、 ゲル状電解 質を用いて測定された拡散定数を 「変換効率/ゲル系」 の欄に示す。
表 1 0および表 1 1の結果から分かるように、 実施例 C一 3のゲル状電解質に おいては、 これに対応する液状電解質に対する 「拡散定数の変化率」 が正の比較 的大きな値をとつている。 このことから、 実施例 C一 3のゲル状電解質中では、 これに対応する液状電解質中に比べて電荷移動が速くなつており、 この結果、 変 換効率が向上しているものと考えられる。また、 「平衡電位のシフト幅」も正の比 較的大きな値をとつており、正電位側に偏っている(シフトしている)ことから、 起電力のより大きい光電変換セルを作製することができるものと考えられる。 これに対して、比較例 C一 2, 3のゲル状電解質においては、 「拡散定数の変化 率」 や 「平衡電位のシフト幅」 は変化が微小であるか、 あるいはむしろ負の値を とっており、 ゲル化による特性変化は横ばいか、 あるいは悪くなつている。
また、 変換効率を対比すると、 実施例 C一 3のゲル状電解質においては、 ゲル 系の変換効率は液系の変換効率よりも高い数値を示している。 これに対して、 比 較例のゲル状電解質においては、 ゲル系の変換効率は液系の変換効率よりも低い 数値を示している。
以上のことから、 本発明の電解質組成物によれば、 絶縁体粒子 (C ) がイオン 性液体 (A) に添加されることにより、 もとのイオン性液体 (A) よりも特性の 優れた電解質が得られるものと考えられる。
上述の説明および実施例から、 以下の付記に示された発明が導出される。
(付記 6 ) イオン性液体と、 前記イオン性液体に可溶な一又は複数の成分と、 前記イオン性液体に不溶な一又は複数の成分とから構成され、 前記可溶成分が酸 化還元対を含有し、 かつ前記不溶成分が絶縁体粒子を含有する電解質組成物であ つて、 前記電解質組成物中の前記酸化還元対の拡散係数が、 イオン性液体と前記 ィオン性液体に可溶な一又は複数の成分とから構成される組成物中の前記酸化還 元対の拡散係数よりも大きいことを特徴とする電解質組成物。
(付記 7 ) イオン性液体と、 前記イオン性液体に可溶な一又は複数の成分と、 前記イオン性液体に不溶な一又は複数の成分とから構成され、 前記可溶成分が酸 化還元対を含有し、 かつ前記不溶成分が絶縁体粒子を含有する電解質組成物であ つて、 前記電解質組成物中の前記酸化還元対の平衡電位が、 イオン性液体と前記 ィォン性液体に可溶な一又は複数の成分とから構成される組成物中の前記酸化還 元対の平衡電位よりも正電位側にシフトしていることを特徴とする電解質組成物。
(付記 8 ) ゲル状となっていることを特徴とする付記 6に記載の電解質糸且成物。 (付記 9 ) 前記不溶成分がナノ粒子またはナノチューブであることを特徴とする 付記 6に記载の電解質組成物。 (付記 1 0 ) 前記酸化還元対がハロゲン系レドックス対であることを特徴とする 付記 6に記載の電解質組成物。 産業上の利用の可能性
本発明の電解質組成物は、 例えば色素增感太陽電池などの光電変換素子におい て用いられる電解質として好ましく用いることができる。 その他、 電気的または 電気化学的な作用を有する各種素子の電解質としても有用性が期待される。

Claims

請求の範囲
1 . イオン性液体と導電性粒子とを主たる成分として含む電解質組成物。
2 . ゲル状となっている請求項 1に記載の電解質組成物。 '
3 . 前記導電性粒子の含有量が、 電解質組成物全量に対し、 0 . 0 5質量%以 上 1 0質量%以下である請求項 1に記載の電解質組成物。
4 . 前記導電性粒子の含有量が、 ィオン性液体に対し、 0 . 0 5質量%以上 1 0質量%以下である請求項 1に記載の電解質組成物。
5 . 前記導電性粒子が、 カーボンを主体とする物質からなる請求項 1に記載の 電解質組成物。
6 . 前記カーボンを主体とする物質が、 カーボンナノチューブ、 カーポンファ ィバー、 およびカーボンブラックからなる群から選択されるレ、ずれか一種または 複数種の混合物である請求項 5に記載の電解質組成物。
7 . 前記カーボンナノチューブが、 単層カーボンナノチューブおよび多層カー ボンナノチューブのいずれかもしくはこれらの混合物である請求項 6に記載の電 解質組成物。
8 . 電解質として請求項 1に記載の電解質組成物を含む光電変換素子。
9 . 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 こ の作用極に対向して配置された対極とを具備し、
前記作用極と対極との間に、 請求項 1に記載の電解質組成物からなる電解質層 が設けられた光電変換素子。
10. 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 この作用極に対向して配置された対極とを具備し、
前記作用極と対極との間に、 請求項 1に記載の電解質組成物からなる電解質層 が設けられた色素増感太陽電池。
1 1. ィオン性液体と酸化物半導体粒子とを含む電解質組成物。
1 2. 導電性粒子をさらに含む請求項 1 1に記載の電解質組成物。
13. ゲル状となっている請求項 1 1に記載の電解質組成物。
14. 前記酸化物半導体粒子が、 T i 02、 S n02、 W03、 Z nO、 I TO, B aT i〇3、 Nb 205、 l n 203、 Z r〇2、 Ta 25、 L a 203、 S r T i 03、 Y203、 Ho 203、 B i 203、 C e 02、 および A 1203からなる群から 選択される 1種または 2種以上の混合物である請求項 1 1に記載の電解質組成物。
1 5. 前記 T i 02が、 酸化チタンナノチユーブぉよび酸化チタンナノ粒子の いずれかもしくはこれらの混合物である請求項 14に記載の電解質組成物。
16. 前記導電性粒子が、 カーボンを主体とする物質からなる請求項 12に記 載の電解質組成物。
1 7. 前記カーボンを主体とする物質が、 カーボンナノチューブ、 カーボンフ アイバー、 およびカーボンブラックからなる群から選択される 1種または 2種以 上の混合物である請求項 16に記載の電解質組成物。
18. 前記カーボンナノチューブが、 単層カーボンナノチューブおよび多層力 一ボンナノチューブのいずれかもしくはこれらの混合物である請求項 1 7に記載 の電解質組成物。 48
1 9 . 前記酸化物半導体粒子の配合量が電解質組成物全量に対し 0 . 0 5質量% 以上 7 0質量%以下である請求項 1 1に記載の電解質組成物。
2 0 . 前記酸化物半導体粒子と導電性粒子との合計配合量が電解質組成物全量 に対し 0 . 0 5質量%以上 7 0質量%以下である請求項 1 2に記載の電解質組成 物 o
2 1 . 前記酸化物半導体粒子の配合量がィオン性液体に対し 0 . 0 5質量%以 上 7 0質量%以下である請求項 1 1に記載の電解質組成物。
2 2 . 前記酸化物半導体粒子と導電性粒子との合計配合量がイオン性液体に対 し 0 . 0 5質量%以上 7 0質量%以下である請求項 1 2に記載の電解質組成物。
2 3 . 電 質として請求項 1 1に記載の電解質組成物を含む光電変換素子。
2 4 . 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極と対極との間に、 請 求項 1 1に記載された電解質組成物からなる電解質層が設けられた光電変換素子。
2 5 . 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極と対極との間に、 請 求項 1 1に記载された電解質組成物からなる電解質層が設けられた色素增感太陽 電池。
2 6 . ィオン性液体と、 絶縁体粒子とを含む電解質組成物。
2 7 . ゲル状となっている請求項 2 6に記載の電解質組成物 ,
2 8 . 前記絶縁体粒子が、 ダイヤモンド、 および窒化ホウ素からなる群から選 択される 1種または 2種以上の混合物である請求項 2 6に記載の電解質組成物。
2 9 . 前記絶縁体粒子の配合量が電解質 成物全量に対し 0 . 0 5質量%以上 7 0質量%以下である請求項 2 6に記載の電解質組成物。
3 0 . 電解質として請求項 2 6に記載の電解質組成物を含む光電変換素子。
3 1 . 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極と対極との間に、 請 求項 2 6に記載された電解質組成物からなる電解質層が設けられた光電変換素子。
3 2 . 色素担持された酸化物半導体多孔質膜を電極基板上に有する作用極と、 この作用極に対向して配置された対極とを備え、 前記作用極と対極との間に、 請 求項 2 6に記載された電解質組成物からなる電解質層が設けられた色素増感太陽 電池。
PCT/JP2004/010245 2003-07-14 2004-07-12 電解質組成物、これを用いた光電変換素子および色素増感太陽電池 WO2005006482A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/564,314 US8785765B2 (en) 2003-07-14 2004-07-12 Electrolyte composition, photoelectric converter and dye-sensitized solar cell using same
JP2005511605A JP4579160B2 (ja) 2003-07-14 2004-07-12 電解質組成物、これを用いた光電変換素子および色素増感太陽電池
AU2004256669A AU2004256669C1 (en) 2003-07-14 2004-07-12 Electrolyte composition, and photoelectric converter and dye-sensitized solar cell using same
EP04747709.6A EP1653549B1 (en) 2003-07-14 2004-07-12 Photoelectric conversion element and dye-sensitized solar cell
US12/485,464 US8790551B2 (en) 2003-07-14 2009-06-16 Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell
US12/486,004 US7872191B2 (en) 2003-07-14 2009-06-17 Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell
AU2010235977A AU2010235977B2 (en) 2003-07-14 2010-10-22 Electrolyte composition, and photoelectric converter and dye-sensitized solar cell using same

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2003196561 2003-07-14
JP2003-196561 2003-07-14
JP2003200629 2003-07-23
JP2003-200629 2003-07-23
JP2003-200626 2003-07-23
JP2003200626 2003-07-23
JP2003-347193 2003-10-06
JP2003347193 2003-10-06
JP2004082586 2004-03-22
JP2004-82586 2004-03-22
JP2004-82934 2004-03-22
JP2004082934 2004-03-22

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/564,314 A-371-Of-International US8785765B2 (en) 2003-07-14 2004-07-12 Electrolyte composition, photoelectric converter and dye-sensitized solar cell using same
US12/485,464 Division US8790551B2 (en) 2003-07-14 2009-06-16 Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell
US12/486,004 Division US7872191B2 (en) 2003-07-14 2009-06-17 Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell

Publications (1)

Publication Number Publication Date
WO2005006482A1 true WO2005006482A1 (ja) 2005-01-20

Family

ID=34069457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010245 WO2005006482A1 (ja) 2003-07-14 2004-07-12 電解質組成物、これを用いた光電変換素子および色素増感太陽電池

Country Status (7)

Country Link
US (3) US8785765B2 (ja)
EP (3) EP2234133B1 (ja)
JP (1) JP4579160B2 (ja)
KR (1) KR100838805B1 (ja)
AU (2) AU2004256669C1 (ja)
TW (1) TWI292225B (ja)
WO (1) WO2005006482A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093307A (ja) * 2003-09-19 2005-04-07 Konica Minolta Medical & Graphic Inc 光電変換素子
JP2006236807A (ja) * 2005-02-25 2006-09-07 Ngk Spark Plug Co Ltd 色素増感型太陽電池
US20070175510A1 (en) * 2006-01-30 2007-08-02 Sony Corporation Photoelectric conversion apparatus and gelling agent
JP2007280948A (ja) * 2006-03-17 2007-10-25 Nippon Synthetic Chem Ind Co Ltd:The 電解質およびそれを用いたリチウム二次電池
JPWO2006054402A1 (ja) * 2004-11-19 2008-05-29 国立大学法人 奈良先端科学技術大学院大学 半導体超微粒子を含有する組成物及びその製造方法
JP2009238571A (ja) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd 色素増感型太陽電池用電解質
JP2010051863A (ja) * 2008-08-27 2010-03-11 Omega:Kk 電極構造
JP2010123462A (ja) * 2008-11-20 2010-06-03 Dainippon Printing Co Ltd 電解質形成用塗工液、及びそれを用いた色素増感型太陽電池
WO2010061663A1 (ja) * 2008-11-27 2010-06-03 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
WO2010074237A1 (ja) * 2008-12-26 2010-07-01 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
EP2237293A2 (en) 2009-03-30 2010-10-06 TDK Corporation Photoelectric conversion device and manufacturing method of the same
JP2011023200A (ja) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd 電解質形成用塗工液、及びそれを用いた色素増感型太陽電池
JP2011512636A (ja) * 2008-02-19 2011-04-21 ソーラープリント・リミテッド 電解質組成物
DE112009003578T5 (de) 2008-11-27 2012-04-26 The Yokohama Rubber Co., Ltd. Elektrolyt für photoelektrische Umwandlungselemente sowie photoelektrisches Umwandlungselement und farbstoffsensibilisierte Solarzelle, die den Elektrolyt verwendet.
WO2012128016A1 (ja) * 2011-03-22 2012-09-27 ソニー株式会社 光電変換素子の製造方法および電子装置の製造方法
JP2012212533A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 光電変換素子及び光電気化学電池
KR101202345B1 (ko) 2006-02-06 2012-11-16 삼성디스플레이 주식회사 고전도성 습식 코팅 조성물 및 이로부터 제조된 고전도성박막
JP2012238444A (ja) * 2011-05-11 2012-12-06 Seiko Epson Corp 高分子固体電解質及びその製造方法、リチウムイオン二次電池
US8338692B2 (en) 2008-11-27 2012-12-25 The Yokohama Rubber Co., Ltd. Electrolyte for photoelectric conversion elements, and photoelectric conversion element and dye-sensitized solar cell using the electrolyte
JP2013157233A (ja) * 2012-01-31 2013-08-15 Osaka Gas Co Ltd 電解質ゲル及び光電変換素子
US8586975B2 (en) 2006-02-10 2013-11-19 Seiko Epson Corporation Photoelectric conversion element, method for manufacturing photoelectric conversion element, and electronic apparatus
JP2014522375A (ja) * 2011-03-03 2014-09-04 ウィシス テクノロジー ファウンデーション,インコーポレイティド 金属酸化物、金属カルコゲニド、混合金属酸化物、及びカルコゲニドの熱力学的溶液
US8871974B2 (en) 2005-12-02 2014-10-28 Kanto Denka Kogyo Co., Ltd. Ionic liquid containing phosphonium cation having P—N bond and method for producing same
JP2016127263A (ja) * 2014-12-26 2016-07-11 株式会社フジクラ 光電変換素子用電解質、及び、これを用いた光電変換素子
US9496093B2 (en) 2010-03-30 2016-11-15 Dai Nippon Printing Co., Ltd. Dye-sensitized solar cell
JP2020132447A (ja) * 2019-02-14 2020-08-31 株式会社ダイセル ナノダイヤモンド分散組成物

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758684B2 (ja) * 2005-06-14 2011-08-31 セイコーエプソン株式会社 光電変換素子および電子機器
GB0518611D0 (en) * 2005-09-13 2005-10-19 Eastman Kodak Co Transparent conductive system
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US9105776B2 (en) * 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
JP4062346B2 (ja) * 2006-08-17 2008-03-19 富士ゼロックス株式会社 カーボンナノチューブ膜およびその製造方法、並びにそれを用いたキャパシタ
KR100837808B1 (ko) * 2006-09-13 2008-06-13 한국광기술원 아발란치 광검출기의 제조방법
KR100825730B1 (ko) * 2006-09-28 2008-04-29 한국전자통신연구원 전도성 입자가 분산된 고분자 전해질을 포함하는 염료감응태양전지 및 그 제조 방법
KR100869802B1 (ko) * 2006-11-17 2008-11-21 삼성에스디아이 주식회사 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR100924711B1 (ko) * 2006-11-22 2009-11-04 전북대학교산학협력단 타이타니아 나노튜브를 이용한 고분자 전해질 및 이를 이용한 염료감응형 태양전지
US8038853B2 (en) 2007-06-18 2011-10-18 E.I. Du Pont De Nemours And Company Photo-induced reduction-oxidation chemistry of carbon nanotubes
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
JP2009048946A (ja) * 2007-08-22 2009-03-05 Teijin Dupont Films Japan Ltd 色素増感型光電変換素子
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
KR100949762B1 (ko) * 2007-12-10 2010-03-25 한국과학기술연구원 복합 전해질 및 그 제조 방법과, 이를 이용한 중공형금속산화물 입자를 포함하는 전해질 기반의 염료감응태양전지
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
JP5320853B2 (ja) * 2008-06-25 2013-10-23 Tdk株式会社 光電変換素子
JP2010009831A (ja) * 2008-06-25 2010-01-14 Tdk Corp 光電変換素子
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US7910399B1 (en) 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
DE102008053027A1 (de) * 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Verfahren zum Herstellen einer Kohlenstoff-Nanoröhren,Fullerene und/oder Graphene enthaltenden Beschichtung
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
TW201024267A (en) * 2008-12-19 2010-07-01 Ind Tech Res Inst Electrolyte composition and dye-sensitized solar cell using the same
US20110262816A1 (en) * 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
KR101016099B1 (ko) * 2009-03-02 2011-02-17 주식회사 어플라이드카본나노 염료감응 태양전지용 액상 탄소나노선재를 이용한 태양전지의 상대전극, 이를 포함하는 태양전지와 그 제조방법
JP2010277854A (ja) * 2009-05-28 2010-12-09 Tdk Corp 色素増感型太陽電池、及び、色素増感型太陽電池用の有機溶媒非含有電解質
JP5428555B2 (ja) * 2009-06-08 2014-02-26 ソニー株式会社 色素増感光電変換素子の製造方法
US20100311615A1 (en) * 2009-06-09 2010-12-09 Ut-Battelle, Llc Method for synthesis of titanium dioxide nanotubes using ionic liquids
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
JP2011044357A (ja) * 2009-08-21 2011-03-03 Sony Corp 光電池モジュール及び光電池モジュールの製造方法
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
DE102010045073B4 (de) * 2009-10-30 2021-04-22 Taiwan Semiconductor Mfg. Co., Ltd. Elektrische Sicherungsstruktur
JP2011124122A (ja) * 2009-12-11 2011-06-23 Konica Minolta Holdings Inc 電気化学デバイス
US20110162701A1 (en) * 2010-01-03 2011-07-07 Claudio Truzzi Photovoltaic Cells
US20110192462A1 (en) * 2010-01-03 2011-08-11 Alchimer, S.A. Solar cells
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US20110203644A1 (en) * 2010-02-22 2011-08-25 Brite Hellas Ae Quasi-solid-state photoelectrochemical solar cell formed using inkjet printing and nanocomposite organic-inorganic material
US20110203632A1 (en) * 2010-02-22 2011-08-25 Rahul Sen Photovoltaic devices using semiconducting nanotube layers
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
JP2012004010A (ja) * 2010-06-18 2012-01-05 Sony Corp 光電変換素子およびその製造方法ならびに電子機器
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
CN103140905B (zh) 2010-09-30 2016-09-28 默克专利有限公司 电解质配制剂
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8668984B2 (en) 2010-10-14 2014-03-11 Wnc Solar, Llc Multilayer composite
KR101239966B1 (ko) * 2010-11-04 2013-03-06 삼성전자주식회사 리튬 공기 전지용 양극, 그 제조방법 및 이를 채용한 리튬 공기 전지
US20130139887A1 (en) * 2011-01-07 2013-06-06 Brite Hellas Ae Scalable production of dye-sensitized solar cells using inkjet printing
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
EP2506276A1 (de) * 2011-03-31 2012-10-03 Bayer MaterialScience AG Farbstoffsensibilisierte Solarzelle mit stickstoffdotierten Kohlenstoffnanoröhren
KR101313634B1 (ko) * 2011-06-01 2013-10-02 광주과학기술원 산화아연 반구체를 포함하는 광전극, 그 제조방법 및 이를 이용한 염료감응 태양전지
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
KR101275636B1 (ko) * 2011-08-30 2013-06-17 전자부품연구원 도핑 폴리머층을 포함하는 그래핀 기반 적층체
TWI467784B (zh) * 2011-12-21 2015-01-01 Univ Nat Cheng Kung 太陽能電池
JP5274691B1 (ja) * 2012-05-30 2013-08-28 株式会社フジクラ 色素増感太陽電池
US20140298762A1 (en) * 2013-04-03 2014-10-09 William A Kelley Nano Filter Pump
US10315164B2 (en) 2013-04-03 2019-06-11 William A. Kelley Nanoscale gaseous material filtering and pumping systems and methods of use thereof
TWI571898B (zh) * 2014-05-15 2017-02-21 國立虎尾科技大學 A flexible supercapacitor method with porous electrodes
US9711293B1 (en) * 2015-01-07 2017-07-18 The United States Of America, As Represented By The Secretary Of The Navy Capacitor with ionic-solution-infused, porous, electrically non-conductive material
JP7090400B2 (ja) * 2017-03-08 2022-06-24 浜松ホトニクス株式会社 半導体光検出素子
JP7543642B2 (ja) * 2019-11-25 2024-09-03 株式会社リコー 液体組成物、液体吐出方法、電極の製造方法及び電気化学素子の製造方法
CN112619701B (zh) * 2021-01-19 2021-12-07 河海大学 一种制备染料-氮化硼复合光催化材料的方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157914A (ja) * 2001-11-22 2003-05-30 Fuji Photo Film Co Ltd 光電変換素子、光電変換素子の製造方法、及び光電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189827A (en) * 1978-11-03 1980-02-26 The United States Of America As Represented By The United States Department Of Energy Treatment of electrochemical cell components with lithium tetrachloroaluminate (LiAlCl4) to promote electrolyte wetting
CH674596A5 (ja) * 1988-02-12 1990-06-15 Sulzer Ag
US5128006A (en) * 1991-01-23 1992-07-07 At&T Bell Laboratories Deposition of diamond films on semicondutor substrates
WO1995018456A1 (fr) * 1993-12-29 1995-07-06 Ecole Polytechnique Federale De Lausanne Pile photo-electrochimique et electrolyte pour cette pile
JP3103507B2 (ja) 1996-06-07 2000-10-30 株式会社石塚研究所 不純ダイヤモンド粉末の精製法
EP0855726B1 (en) 1997-01-22 2006-01-25 Greatcell Solar S.A. Solar cell and process of making same
US6683783B1 (en) 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
JP3472133B2 (ja) 1998-04-17 2003-12-02 Tdk株式会社 リチウム二次電池、および電気二重層キャパシタの製造方法
JP3587982B2 (ja) 1998-04-17 2004-11-10 Tdk株式会社 高分子固体電解質およびこれを用いたリチウム二次電池と電気二重層キャパシタ
JP3946947B2 (ja) 1999-09-24 2007-07-18 株式会社東芝 光増感型太陽電池用電解質組成物、光増感型太陽電池及び光増感型太陽電池の製造方法
JP2001229967A (ja) 2000-02-10 2001-08-24 Mitsui Chemicals Inc ゲル状電解質およびリチウム電池
US6878492B2 (en) * 2000-07-10 2005-04-12 Showa Denko Kabushiki Kaisha Polymerizable composition and use thereof
JP4799776B2 (ja) * 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
US6301039B1 (en) * 2000-09-13 2001-10-09 Rockwell Technologies, Llc Reversible electrochemical mirror (REM) state monitoring
JP2002184478A (ja) 2000-12-15 2002-06-28 Fuji Xerox Co Ltd 電解質、光電変換素子、光電気化学電池および電解質の製造方法
JP5081352B2 (ja) 2001-08-22 2012-11-28 トーメイダイヤ株式会社 炭化物被覆ダイヤモンド粉末の製造方法
US7232790B2 (en) * 2001-09-11 2007-06-19 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
JP2003157719A (ja) * 2001-11-22 2003-05-30 Hitachi Maxell Ltd 常温溶融塩型固体電解質およびそれを用いた全固体電気化学素子
EP1456861B1 (en) * 2001-12-21 2011-10-05 Sony Deutschland GmbH A polymer gel hybrid solar cell
US20040038251A1 (en) * 2002-03-04 2004-02-26 Smalley Richard E. Single-wall carbon nanotubes of precisely defined type and use thereof
JP4392741B2 (ja) 2002-04-17 2010-01-06 日揮触媒化成株式会社 光電気セル
EP1551036A1 (en) 2002-10-03 2005-07-06 Daikin Industries, Ltd. Fluorine-containing polymer solid electrolyte having fluorine-containing ether chain
EP1473745A1 (en) * 2003-04-30 2004-11-03 Ecole Polytechnique Federale De Lausanne (Epfl) Dye sensitized solar cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157914A (ja) * 2001-11-22 2003-05-30 Fuji Photo Film Co Ltd 光電変換素子、光電変換素子の製造方法、及び光電池

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093307A (ja) * 2003-09-19 2005-04-07 Konica Minolta Medical & Graphic Inc 光電変換素子
JPWO2006054402A1 (ja) * 2004-11-19 2008-05-29 国立大学法人 奈良先端科学技術大学院大学 半導体超微粒子を含有する組成物及びその製造方法
JP4997503B2 (ja) * 2004-11-19 2012-08-08 国立大学法人 奈良先端科学技術大学院大学 半導体超微粒子を含有する組成物及びその製造方法
JP2006236807A (ja) * 2005-02-25 2006-09-07 Ngk Spark Plug Co Ltd 色素増感型太陽電池
US8871974B2 (en) 2005-12-02 2014-10-28 Kanto Denka Kogyo Co., Ltd. Ionic liquid containing phosphonium cation having P—N bond and method for producing same
US20070175510A1 (en) * 2006-01-30 2007-08-02 Sony Corporation Photoelectric conversion apparatus and gelling agent
US8790552B2 (en) 2006-02-06 2014-07-29 Samsung Display Co., Ltd. Conductive wet coating composition and thin-film prepared therefrom
KR101202345B1 (ko) 2006-02-06 2012-11-16 삼성디스플레이 주식회사 고전도성 습식 코팅 조성물 및 이로부터 제조된 고전도성박막
US8586975B2 (en) 2006-02-10 2013-11-19 Seiko Epson Corporation Photoelectric conversion element, method for manufacturing photoelectric conversion element, and electronic apparatus
JP2007280948A (ja) * 2006-03-17 2007-10-25 Nippon Synthetic Chem Ind Co Ltd:The 電解質およびそれを用いたリチウム二次電池
JP2011512636A (ja) * 2008-02-19 2011-04-21 ソーラープリント・リミテッド 電解質組成物
JP2009238571A (ja) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd 色素増感型太陽電池用電解質
JP2010051863A (ja) * 2008-08-27 2010-03-11 Omega:Kk 電極構造
JP2010123462A (ja) * 2008-11-20 2010-06-03 Dainippon Printing Co Ltd 電解質形成用塗工液、及びそれを用いた色素増感型太陽電池
WO2010061663A1 (ja) * 2008-11-27 2010-06-03 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
US8338692B2 (en) 2008-11-27 2012-12-25 The Yokohama Rubber Co., Ltd. Electrolyte for photoelectric conversion elements, and photoelectric conversion element and dye-sensitized solar cell using the electrolyte
DE112009003578T5 (de) 2008-11-27 2012-04-26 The Yokohama Rubber Co., Ltd. Elektrolyt für photoelektrische Umwandlungselemente sowie photoelektrisches Umwandlungselement und farbstoffsensibilisierte Solarzelle, die den Elektrolyt verwendet.
DE112009003810T5 (de) 2008-12-26 2012-06-06 The Yokohama Rubber Co., Ltd. Elektrolyt für photoelektrische Umwandlungselemente sowiephotoelektrisches Umwandlungselement und farbstoffsensibilisierte Solarzelle, die den Elektrolyten verwendet
CN102265452A (zh) * 2008-12-26 2011-11-30 横滨橡胶株式会社 光电转换元件用电解质以及使用了该电解质的光电转换元件和染料敏化太阳能电池
US8222515B2 (en) 2008-12-26 2012-07-17 The Yokohama Rubber Co., Ltd. Electrolyte for photoelectric conversion elements, and photoelectric conversion element and dye-sensitized solar cell using the electrolyte
JP4725689B2 (ja) * 2008-12-26 2011-07-13 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
WO2010074237A1 (ja) * 2008-12-26 2010-07-01 横浜ゴム株式会社 光電変換素子用電解質ならびにその電解質を用いた光電変換素子および色素増感太陽電池
DE112009003810B4 (de) * 2008-12-26 2014-12-11 The Yokohama Rubber Co., Ltd. Elektrolyt für photoelektrische Umwandlungselemente sowiephotoelektrisches Umwandlungselement und farbstoffsensibilisierte Solarzelle, die den Elektrolyten verwenden
EP2237293A2 (en) 2009-03-30 2010-10-06 TDK Corporation Photoelectric conversion device and manufacturing method of the same
JP2011023200A (ja) * 2009-07-15 2011-02-03 Dainippon Printing Co Ltd 電解質形成用塗工液、及びそれを用いた色素増感型太陽電池
US9496093B2 (en) 2010-03-30 2016-11-15 Dai Nippon Printing Co., Ltd. Dye-sensitized solar cell
US10112156B2 (en) 2011-03-03 2018-10-30 Wisys Technology Foundation, Inc. Thermodynamic solutions of metal chalcogenides and mixed metal oxides and chalcogenides
JP2014522375A (ja) * 2011-03-03 2014-09-04 ウィシス テクノロジー ファウンデーション,インコーポレイティド 金属酸化物、金属カルコゲニド、混合金属酸化物、及びカルコゲニドの熱力学的溶液
WO2012128016A1 (ja) * 2011-03-22 2012-09-27 ソニー株式会社 光電変換素子の製造方法および電子装置の製造方法
JP2012212533A (ja) * 2011-03-30 2012-11-01 Fujifilm Corp 光電変換素子及び光電気化学電池
JP2012238444A (ja) * 2011-05-11 2012-12-06 Seiko Epson Corp 高分子固体電解質及びその製造方法、リチウムイオン二次電池
JP2013157233A (ja) * 2012-01-31 2013-08-15 Osaka Gas Co Ltd 電解質ゲル及び光電変換素子
JP2016127263A (ja) * 2014-12-26 2016-07-11 株式会社フジクラ 光電変換素子用電解質、及び、これを用いた光電変換素子
JP2020132447A (ja) * 2019-02-14 2020-08-31 株式会社ダイセル ナノダイヤモンド分散組成物
JP7304567B2 (ja) 2019-02-14 2023-07-07 株式会社ダイセル ナノダイヤモンド分散組成物

Also Published As

Publication number Publication date
AU2004256669B2 (en) 2007-05-24
US20060174932A1 (en) 2006-08-10
EP2234132A3 (en) 2011-03-02
EP2234133A2 (en) 2010-09-29
US8790551B2 (en) 2014-07-29
AU2010235977A1 (en) 2010-11-11
EP1653549B1 (en) 2016-02-17
US20090293953A1 (en) 2009-12-03
AU2010235977B2 (en) 2011-09-08
US20090253031A1 (en) 2009-10-08
EP2234133A3 (en) 2011-03-09
JPWO2005006482A1 (ja) 2006-08-24
AU2004256669C1 (en) 2009-09-24
TWI292225B (en) 2008-01-01
EP2234133B1 (en) 2014-12-03
KR100838805B1 (ko) 2008-06-17
US7872191B2 (en) 2011-01-18
KR20060038992A (ko) 2006-05-04
EP1653549A1 (en) 2006-05-03
EP2234132A2 (en) 2010-09-29
AU2004256669A1 (en) 2005-01-20
JP4579160B2 (ja) 2010-11-10
TW200507287A (en) 2005-02-16
EP1653549A4 (en) 2009-08-12
EP2234132B1 (en) 2014-11-26
US8785765B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
WO2005006482A1 (ja) 電解質組成物、これを用いた光電変換素子および色素増感太陽電池
de Freitas et al. New insights into dye-sensitized solar cells with polymer electrolytes
Priya et al. High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF− HFP membrane electrolyte
Saidi et al. Enhancing the efficiency of a dye-sensitized solar cell based on a metal oxide nanocomposite gel polymer electrolyte
Yue et al. Glucose aided synthesis of molybdenum sulfide/carbon nanotubes composites as counter electrode for high performance dye-sensitized solar cells
Kang et al. Pt-free counter electrodes with carbon black and 3D network epoxy polymer composites
Jiao et al. Development of rapid curing SiO2 aerogel composite-based quasi-solid-state dye-sensitized solar cells through screen-printing technology
JP5075913B2 (ja) 電解質組成物およびこれを用いた光電変換素子
Wu et al. Electrophoresis of randomly and vertically embedded graphene nanosheets in activated carbon film as a counter electrode for dye-sensitized solar cells
Mahalingam et al. Bio and non‐bio materials‐based quasi‐solid state electrolytes in DSSC: A review
Bharwal et al. Ionic-Liquid-like Polysiloxane Electrolytes for Highly Stable Solid-State Dye-Sensitized Solar Cells
JP4522673B2 (ja) 電解質組成物、これを用いた光電変換素子および色素増感太陽電池
WO2013036052A2 (ko) 염료감응 태양전지용 광전극과 그 제조방법 및 이를 이용한 염료감응 태양전지
CN100438206C (zh) 电解质组合物、使用其的光电变换元件和色素增感太阳电池
JP4799852B2 (ja) 光電変換素子用電極、光電変換素子および色素増感太陽電池
Farhana et al. Sonochemically tailored Copper Oxide as nanofiller in terpolymer composite gel electrolytes for dye-sensitized solar cells
Chou et al. Characteristics and analyses of various counter electrodes applied in quasi-solid electrolyte dye-sensitized solar cells
KR101091198B1 (ko) 알칼리 금속을 포함하지 않는 전해질을 사용한 염료감응 태양전지
AU2007202986B2 (en) Electrolyte composition, and photoelectric converter and dye-sensitized solar cell using same
JP4799853B2 (ja) 光電変換素子用電極、光電変換素子および色素増感太陽電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020095.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005511605

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067000624

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004256669

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004747709

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004256669

Country of ref document: AU

Date of ref document: 20040712

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004256669

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006174932

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10564314

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004747709

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067000624

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10564314

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004256669

Country of ref document: AU