WO2004111285A1 - 水素ガス用オーステナイトステンレス鋼とその製造方法 - Google Patents
水素ガス用オーステナイトステンレス鋼とその製造方法 Download PDFInfo
- Publication number
- WO2004111285A1 WO2004111285A1 PCT/JP2004/008380 JP2004008380W WO2004111285A1 WO 2004111285 A1 WO2004111285 A1 WO 2004111285A1 JP 2004008380 W JP2004008380 W JP 2004008380W WO 2004111285 A1 WO2004111285 A1 WO 2004111285A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stainless steel
- austenitic stainless
- less
- chemical composition
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Definitions
- the present invention relates to a stainless steel used in a hydrogen gas environment and having excellent mechanical properties (strength and ductility) and corrosion resistance, and a method for producing the same. Furthermore, the present invention relates to hydrogen gas equipment such as a hydrogen gas pipe, a cylinder and a valve made of such stainless steel.
- the stainless steel according to the present invention is particularly suitable as a steel material for structural equipment exposed to a high-pressure hydrogen gas environment such as a fuel cell vehicle or a hydrogen gas station, particularly a steel material for piping, cylinders, and valves.
- Typical methods include a method in which a hydrogen gas cylinder is directly mounted on a vehicle, a method in which methanol and gasoline are reformed by a vehicle-mounted reformer to obtain hydrogen, and a method in which a hydrogen storage alloy that absorbs hydrogen is mounted on a vehicle. Method, etc.
- the fuel cell vehicle marketed last year uses the existing austenitic stainless steel SUS316-based material, whose soundness is now widely recognized. This is because hydrogen embrittlement resistance in a hydrogen gas environment up to about 35 MPa is better than other structural steels (for example, carbon steel STS480 (JIS G3455) and SUS 304 stainless steel). This is because utilization technologies such as workability and weldability have been established.
- JP-A-5-98391 JP-A-5-65601, JP-A-7-21 6453, and JP-A-7-26350
- austenitic stainless steel is used. It is generally known that the strength is increased by cold working, and it is possible to increase the strength by drawing, drawing or rolling to reduce the wall thickness of the pipe.
- Fig. 1 is a graph showing the general relationship between the degree of cold work (reduction in area) and tensile strength. According to this graph, increasing the degree of cold work achieves high strength.
- Fig. 2 is a graph showing the relationship between the elongation in the direction perpendicular to the working direction in cold working and the degree of cold work (cross-sectional reduction ratio, the same applies hereinafter). It can be seen that the elongation is greatly reduced as the size increases. In practice, it is desirable for the elongation to be about 30% or more, but when the degree of cold work is large, the reduction in elongation becomes a problem.
- An object of the present invention is to provide an austenitic stainless steel that can be used in a hydrogen gas environment such as a high-pressure hydrogen gas of 70 MPa or more, has excellent mechanical properties and corrosion resistance, and a method for producing the same. is there.
- Austenitic stainless steel increases in strength when cold worked However, as the cold work is applied in one direction, strong anisotropy is exhibited in the mechanical properties. In particular, ductility and toughness in the direction perpendicular to the processing direction are significantly lower than in the processing direction.
- FIG. 3 is a graph showing the relationship between the degree of cold work and hydrogen embrittlement divided into the working direction and the direction perpendicular to the working direction, and the above tendency can be seen.
- a rolling texture in which> becomes parallel is formed.
- a fibrous texture is formed in which ⁇ 11 ⁇ > or ⁇ 001> is parallel to the processing (stretching) direction.
- the development of such a texture can be measured by measuring the integrated X-ray intensity I (hk 1) (where h, k, and 1 are the Mira-index) obtained from the X-ray diffraction of the rolled surface.
- the degree of integration of the texture can be obtained by measuring the X-ray integrated intensity I (1 ⁇ ) or I (002) for a cross section perpendicular to the processing direction.
- the hydrogen embrittlement susceptibility in the working direction increases with the increase in the degree of integration of the X-ray integrated intensity I (111) in a cross section perpendicular to the direction of processing, and when the degree of integration exceeds 5, the hydrogen embrittlement susceptibility; elongation (hydrogen) Z elongation (atmosphere) ⁇ 0.75.
- the degree of integration of the cross section perpendicular to the processing direction is set to 5 or less, the hydrogen embrittlement susceptibility in the processing direction can be reduced.
- the elongation refers to the elongation in a tensile test in a hydrogen gas environment
- the elongation (atmosphere) refers to the elongation in a tensile test in the atmosphere.
- Fig. 4 is a graph showing the relationship between the X-ray integrated intensity I (111) of the cross section perpendicular to the processing direction and the hydrogen embrittlement resistance divided into the processing direction and the direction perpendicular thereto. It can be seen that the hydrogen embrittlement resistance in the processing direction has a strong correlation with the X-ray integrated intensity I (111).
- the hydrogen embrittlement susceptibility in the direction perpendicular to the processing direction also has a correlation with the X-ray integrated intensity I (111) of the cross section perpendicular to the processing direction.
- I (111) There is a very strong correlation with I (111), and when the ratio I (220) / I (111) exceeds 10, the susceptibility to hydrogen embrittlement significantly increases (susceptibility to hydrogen embrittlement; elongation (hydrogen) / elongation (atmosphere ) ⁇ 0.75).
- the hydrogen embrittlement susceptibility in the direction perpendicular to the working direction can be reduced by setting the X-ray integrated intensity ratio I (220) / I (111) of the cross section in the working direction to 10 or less.
- Fig. 5 is a graph showing the relationship between the X-ray integrated intensity ratio I (220) / I (111) of the cross section in the processing direction and the hydrogen embrittlement resistance divided into the processing direction and the direction perpendicular thereto. From FIG. 5, it can be seen that the hydrogen embrittlement resistance in the direction perpendicular to the working direction has a strong correlation with the X-ray integrated intensity ratio I (220) / I (111).
- the working direction is different from the working direction of the plastic working.
- the X-ray integrated intensity I (111) of the cross section perpendicular to the processing direction is 5 times or less of the random orientation, and the X-ray integrated intensity ratio of the cross section in the processing direction I (220) ZI (111) can be suppressed to 10 or less.As a result, hydrogen embrittlement susceptibility can be significantly reduced. is there.
- working direction does not mean “the direction of the plastic working itself” but means “the direction of plastic deformation of the workpiece”.
- the X-ray integrated intensity 1 (111) of the cross section perpendicular to the working direction is set to 5 times or less of the random orientation, and By limiting the X-ray integral intensity ratio of the cross section in the processing direction to 1 (220) / 1 (111) to 10 or less, it has excellent toughness and high hydrogen embrittlement resistance despite high strength. It is possible to obtain austenitic stainless steel that can be used even under a high anisotropic hydrogen gas environment with a low anisotropy, for example, 70 MPa or more.
- the balance has a chemical composition consisting of Fe and impurities, and the X-ray integrated intensity 1 (111) of the cross section perpendicular to the processing direction is random.
- the working direction means the direction of plastic deformation of the workpiece.
- the chemical composition according to the present invention may further contain at least one species selected from the following group.
- V 0.001 to 1.0%
- Nb 0.001 to 1.0%
- Ta 0.00 to 1.0%
- Ti 0.001 to 1.0%
- Zr 0.001 to 1.0%
- Hf 0.001 to 1.0% 1 More than species.
- Mg 0.0001 to 0.0050%
- Ca 0.0001 to 0.0050%
- La 0.0001 to 0.20%
- Ce 0.0001 to 0.20%
- Y 0.0001 to 0.40%
- Sm 0.0001 to 0.40%
- Pr 0.0001 0.40.40%
- Nd 0.0001 0.50.50%.
- the austenite average particle size is 20 / zm or less.
- plastic working of the austenitic stainless steel having the above chemical composition at a temperature in the range of room temperature to 200 ° C with a cross-sectional reduction rate of 10 to 50% is performed.
- plastic working of 5% or more may be performed in a direction different from the processing direction of the plastic working.
- a high-strength austenitic stainless steel that does not cause hydrogen embrittlement even in a high-pressure hydrogen gas environment of, for example, 70 MPa or more and has no anisotropic mechanical properties. It is used in hydrogen gas stations or fuel cell vehicles, and exhibits particularly excellent properties for containers, piping, valves, etc. exposed to high-pressure hydrogen gas.
- FIG. 1 is a graph showing the relationship between the cold workability and tensile strength of conventional steel.
- FIG. 2 is a diagram showing the relationship between the degree of cold work and elongation of conventional steel.
- FIG. 3 is a diagram showing that hydrogen embrittlement resistance differs greatly between the processing direction and the direction perpendicular to the processing direction.
- Figure 4 shows that the hydrogen embrittlement resistance in the processing direction shows the integrated X-ray intensity I
- FIG. 5 is a diagram showing that the hydrogen embrittlement resistance in the direction perpendicular to the processing direction has a strong correlation with the X-ray integral / intensity ratio I (220) Z I (1 1 1) of the cross section in the processing direction.
- FIG. 6 is a diagram showing the relationship between the particle size and hydrogen embrittlement resistance in the example.
- the content of C should be 0.10% or less.
- M is (Ti, Nb, Ta, etc.
- M is (Ti, Nb, Ta, etc.)
- C should be suppressed to 0.10% or less.
- Nb more than 0.20% to 1.0% or less
- Ta more than 0.40% to 1.0% or less
- Ti more than 0.10% to 1.0% or less Limit to the range C + N ⁇ 0.05%.
- Si is known as an effective element for improving corrosion resistance in various environments.However, if contained in large amounts, it may form intermetallic compounds with Ni, Cr, etc., or may form intermetallic compounds such as sigma phase. In some cases, hot workability may be significantly reduced. Therefore, the content of Si is set to 1.0% or less, preferably 0.5% or less. In addition, Si does not need to have a Si content of zero in consideration of the refining cost similarly to C, and preferably has a content of 0.001% or more.
- Mn is not only effective as a deoxidizing or desulfurizing agent, but may be added in large amounts as an inexpensive austenite stabilizing element.
- proper combination with Cr, Ni, N and the like contributes to high strength and ductility * improvement in toughness. Therefore, Mn is added in an amount of 0.01% or more. However, if it exceeds 30%, the hot workability and the weather resistance may decrease, so the content is set to 0.01% to 30%. Preferably, it is 0.1 to 20%.
- Cr is to be contained 15% or more because indispensable as an element for improving the corrosion resistance in the environment of use, harmful CrN ductility-toughness when a large amount is added, a nitride or M 23 C 6 type carbide such as Cr 2 N
- the content of Cr is set to 15 to 30% because a large amount is easily formed. Preferably, it is 15 to 27%.
- Ni is added as an austenite stabilizing element, but in the steel of the present invention, it contributes to high strength and improvement of ductility and toughness in the direction perpendicular to the working direction by proper combination with Cr, Mn, N, etc. . Therefore, Ni is added at 5.0% or more, but it is not preferable to add more than 30% from the viewpoint of cost. ⁇ 30%. Preferably, it is 6 to 23%.
- the content of A1 should be 0.10% or less.
- A1 is an important element as a deoxidizing agent, a large amount of residue exceeding 0.10% for achieving both the intended strength and toughness of the present invention promotes the formation of intermetallic compounds such as a sigma phase. Not good.
- N is an important solid-solution strengthening element, and when it is contained in an appropriate range together with Mn, Cr, Ni, and C, it contributes to high strength and suppresses the formation of intermetallic compounds such as sigma phase. In particular, it contributes to the improvement of toughness in the direction perpendicular to the processing direction. For this purpose, 0.001% or more is added, but if it exceeds 0.30%, the cold workability decreases, so the content should be 0.001% to 0.30%.
- one or more of Nb, Ta, and Ti described below are contained in the range of Nb: more than 0.20% to 1.0% or less, Ta: more than 0.40% to 1.0% or less, and Ti: more than 0.10% to 1.0% or less, to achieve higher strength. If it is aimed at, limit to the range of C + N ⁇ 0.05%.
- Mo and / or W are added as necessary as a solid solution strengthening element, so that at least one of them is added.
- austenite becomes unstable, and when Mo and W are added, respectively, Mo: 0.3 to 3.0% and W: 0.3 to 6.0%.
- V, Nb, Ta, Ti, Zr, and Hf form cubic carbonitrides and contribute to high strength.Therefore, at least one type is added as necessary, but a large amount of these carbonitrides are precipitated. Then, the ductility and toughness in the direction perpendicular to the working direction decrease, so that the content of the steel of the present invention is set to 0.001 to 1.0%, respectively.
- Nb, Ta, and Ti should be used in the range of Nb: more than 0.20% to 1.0% or less, Ta: more than 0.40% to 1.0% or less, and Ti: more than 0.10% to 1.0% or less. More preferably, it is contained to suppress the content to the range of C + N ⁇ 0.05%.
- B is added in an amount of 0.0001% or more as necessary, because it contributes to the refinement of precipitates and the austenite crystal grain size.However, when added in a large amount, a compound having a low melting point is formed and the hot workability is reduced. In some cases, the upper limit is set to 0.020%.
- Cu and Co are austenite stabilizing elements, but in the steel of the present invention, Mn and As appropriate combination with Ni, C, and Cr contributes to higher strength. Add 0.3% or more of each as needed. However, it is not necessary to add a large amount in terms of cost, so Cu: 0.3-2.0% and Co: 0.3-5.0%, respectively.
- Mg 0.0001-0.0050%
- Ca 0.0001-0.0050%
- La 0.0001-0.20%
- Ce 0.0001-0.20%
- Y 0.0001-0.40%
- Sm 0.0001 to 0.40%
- Pr 0.0001 to 0.40%
- Nd 0.0001 to 0.50%.
- the steel of the present invention contains P: 0.040% or less and S: 0.01% or less as impurities, no significant deterioration in the general performance of the steel is observed. All are originally found to be elements that have an adverse effect on toughness, workability, etc., but in combination with other chemical compositions, this level of impurity content is considered to be a satisfactory level.
- the austenitic stainless steel according to the present invention has a tensile strength level of 800 MPa or more, preferably 900 MPa or more, and an elongation of 30% or more, and is used as a plate, pipe, or bar. It is used as a steel material such as shape, wire, etc. It is used after further surface treatment such as plating if necessary.
- the first cold working (first plastic working) with a cold working degree of 10 to 50%, which is referred to as a cross-sectional reduction rate
- the first cold working Perform a second cold working (second plastic working) with a cold working degree of 5% or more in a working direction different from that of cold working.
- plastic working methods include, for example, in the case of a pipe material, pipe forming by cold drawing or cold rolling, and pipe expanding by a plug or pipe expanding by spinging. Can be considered as a combination. Alternatively, a combination of the pipe forming process and the axial swaging process is also effective.
- the working direction of the first plastic working and the working direction of the second plastic working are obtained.
- the cold-worked product there is no particular limitation on the cold-worked product as long as the anisotropy of the structure according to the present invention can be eliminated.
- the working direction at this time refers to the direction of plastic deformation of the workpiece, for example, when a steel pipe is stretched, it is the longitudinal direction of the steel pipe, and the steel pipe is compressed. When swaging is performed, it is in the radial direction of the steel pipe.
- the processing order of the first and second cold working is generally such that processing with a high degree of processing is performed first, and then processing with a low degree of processing is performed.
- predetermined molding is performed, and There is no particular limitation as long as the anisotropy is eliminated.
- the first cold machining is first performed several times, and then the machining direction is changed once or more.
- the first and second cold working of each stage is performed so that the first cold working is performed again by changing the working direction, or vice versa. It is also possible to combine them as appropriate.
- the “working direction” when measuring the integrated X-ray intensity for evaluating the anisotropy of the metallographic structure is determined by the above-described first and second cold working as long as the requirements of the present invention are satisfied.
- the direction may be any direction, but for convenience, in the embodiment of the present specification, the direction in which the maximum cold working is performed is set. Specifically, in the case of cold working of steel pipes, it is the longitudinal direction.
- such a texture is intended to improve hydrogen embrittlement resistance, it is sufficient that such a texture can be formed only at least in the surface layer where contact with a hydrogen gas atmosphere is performed.
- the anisotropy of the texture may be eliminated only in the surface layer (the inner surface or outer surface of the pipe) by the shot peening after the pipe making process.
- Table 1 exemplifies the chemical composition (% by mass) of the stainless steel and comparative steel according to the present invention.
- Starting code C Si Mn PS Cr Ni sol-AI N Mo w Other Manufacturing method
- a 30% cold rolling is performed on a water-cooled sheet, and then another 10% cold rolling is performed in a direction perpendicular to the working direction (manufacturing method A). After cold-rolling, a further 10% cold-rolling (manufacturing method B) was performed in the direction perpendicular to the working direction to obtain a test material.
- test material was used as hot forged and solution treated.
- the comparative steels H to K were used as test materials by the above-mentioned production method B.
- a tensile test specimen with a diameter of 4 mm and a GL of 20 mm was drawn along the final cold rolling direction (that is, the final plastic deformation direction of the specimen).
- a 2.54 mm diameter, GL30 tensile test specimen under hydrogen gas environment, and a lOmmXIOmmX 55 mm-2 mm V-notch Charpy impact test specimen were cut out.
- Tensile tests were performed at room temperature under a high-pressure hydrogen gas of 70 MPa at a strain rate of 10 Vs, and comparisons were made between the steel of the present invention and a comparative steel.
- the ductility is greatly reduced when the strength is improved by cold working, and the working degree is set at the cold working degree that can achieve the required room temperature tensile strength (TS) ⁇ 800 MPa.
- the X-ray integrated intensity 1 (111) of the cross section perpendicular to the direction is more than 5 times of the random orientation, and the X-ray integrated intensity ratio 1 (220) / 1 (111) of the cross section in the processing direction is more than 10, In such a case, the hydrogen embrittlement resistance is extremely reduced, which is a serious problem in practical use.
- all of the steels of Nos. 1 to 32 in Table 2 have an X-ray integrated intensity I (111) of a cross section along a direction perpendicular to the processing direction (a cross section perpendicular to the processing direction) not more than 5 times the random orientation.
- the X-ray integrated intensity ratio of the cross section along the processing direction is I (220) / I (111) ⁇ 10, and the strength at room temperature TS ⁇ 800MPa, YS ⁇ 400MPa, It has an elongation of 30% or more, and has extremely low hydrogen embrittlement susceptibility as evaluated by the ratio of the ductility of a tensile test in a hydrogen gas environment to the ductility of a tensile test in the atmosphere.
- the comparative steels H to 0 are out of the composition range of the steel of the present invention or the degree of texture accumulation is such that the X-ray integrated intensity I (111) of the cross section perpendicular to the processing direction exceeds 5 times the random orientation, or the processing direction
- the X-ray integrated intensity ratio I (220) / I (111) of the cross section also exceeds 10.
- Hydrogen embrittlement susceptibility which is evaluated by the ratio of the ductility of a tensile test in a hydrogen gas environment to the ductility of a tensile test in the atmosphere, is extremely high.
- the sheet material is subjected to two cold rolling operations in different working directions, but the steel tube is subjected to two cold rolling operations in different working directions (for example, tube drawing by cold drawing and plugging).
- the same effect as in the present example can be obtained even when the pipe expansion process is performed.
- Figure 6 shows that the solution heat treatment after hot forging was performed on invention steel 6 in Table 1 at various temperatures in the range of 950 to 1150 ° C (holding water for 30 minutes and then water cooling). This shows the results of evaluating the susceptibility to hydrogen embrittlement for each of the test materials having various particle sizes. Hydrogen embrittlement susceptibility was evaluated by the ratio of the ductility of the tensile test in a hydrogen gas environment to the ductility of the tensile test in the atmosphere in the same manner as the above evaluation. As is evident from the results shown in Fig. 6, by setting the average austenite particle size to 20 or less, the hydrogen embrittlement susceptibility becomes extremely high. Lower. Industrial potential
- an austenitic stainless steel having excellent mechanical properties (strength and ductility) and corrosion resistance as structural equipment members exposed to a high-pressure hydrogen gas, mainly a hydrogen environment such as a fuel cell vehicle or a hydrogen gas station. I can do it.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005506967A JP4539559B2 (ja) | 2003-06-10 | 2004-06-09 | 水素ガス用オーステナイトステンレス鋼とその製造方法 |
CN200480022838.5A CN1833043B (zh) | 2003-06-10 | 2004-06-09 | 氢气用奥氏体不锈钢及其制造方法 |
CA2528743A CA2528743C (en) | 2003-06-10 | 2004-06-09 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
EP04745932.6A EP1645649B1 (en) | 2003-06-10 | 2004-06-09 | Austenitic stainless steel for hydrogen gas and method for production thereof |
US11/297,418 US20060193743A1 (en) | 2003-06-10 | 2005-12-09 | Austenitic stainless steel for hydrogen gas and method for its manufacture |
US12/953,576 US8696835B2 (en) | 2003-06-10 | 2010-11-24 | Austenitic stainless steel for hydrogen gas and a method for its manufacture |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003165670 | 2003-06-10 | ||
JP2003-165670 | 2003-06-10 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/297,418 Continuation US20060193743A1 (en) | 2003-06-10 | 2005-12-09 | Austenitic stainless steel for hydrogen gas and method for its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004111285A1 true WO2004111285A1 (ja) | 2004-12-23 |
Family
ID=33549224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/008380 WO2004111285A1 (ja) | 2003-06-10 | 2004-06-09 | 水素ガス用オーステナイトステンレス鋼とその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20060193743A1 (ja) |
EP (1) | EP1645649B1 (ja) |
JP (1) | JP4539559B2 (ja) |
KR (1) | KR100689783B1 (ja) |
CN (1) | CN1833043B (ja) |
CA (1) | CA2528743C (ja) |
WO (1) | WO2004111285A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100666727B1 (ko) * | 2005-04-19 | 2007-01-09 | 포스코신기술연구조합 | 스프링용 304h 오스테나이트계 스테인레스강 |
WO2008117680A1 (ja) * | 2007-03-26 | 2008-10-02 | Sumitomo Metal Industries, Ltd. | 坑井内で拡管される拡管用油井管及び拡管用油井管に用いられる2相ステンレス鋼 |
JP2009542907A (ja) * | 2006-06-28 | 2009-12-03 | ハイドロジェン・テクノロジーズ・アーエス | オーステナイト系ステンレス鋼の使用及びこのような鋼から製造される電解槽 |
JP2010121190A (ja) * | 2008-11-21 | 2010-06-03 | Nisshin Steel Co Ltd | 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法 |
JP2012047629A (ja) * | 2010-08-27 | 2012-03-08 | Japan Steel Works Ltd:The | 高強度低合金鋼の高圧水素環境脆化感受性の評価方法 |
JP2012082488A (ja) * | 2010-10-13 | 2012-04-26 | Sumitomo Metal Ind Ltd | 皮膜に対する密着性に優れたオーステナイト系ステンレス鋼 |
WO2012132992A1 (ja) | 2011-03-28 | 2012-10-04 | 住友金属工業株式会社 | 高圧水素ガス用高強度オーステナイトステンレス鋼 |
US8333851B2 (en) * | 2007-07-20 | 2012-12-18 | Sumitomo Metal Industries, Ltd. | Method for producing two-phase stainless steel pipe |
JP2014047409A (ja) * | 2012-09-03 | 2014-03-17 | Nippon Steel & Sumitomo Metal | 高圧水素ガス用高強度オーステナイトステンレス鋼 |
WO2014069467A1 (ja) * | 2012-10-30 | 2014-05-08 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
JP2014088593A (ja) * | 2012-10-30 | 2014-05-15 | Kobe Steel Ltd | オーステナイト系ステンレス鋼 |
JP2014114471A (ja) * | 2012-12-07 | 2014-06-26 | Aichi Steel Works Ltd | 高圧水素用オーステナイト系ステンレス鋼 |
JP5547825B1 (ja) * | 2013-01-23 | 2014-07-16 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
JP5579316B1 (ja) * | 2013-09-30 | 2014-08-27 | 大陽日酸株式会社 | 溶接施工方法及び溶接構造物 |
JP2015189990A (ja) * | 2014-03-27 | 2015-11-02 | 日新製鋼株式会社 | 耐食性に優れた、特に鋭敏化特性が改善された排ガス流路部材用オーステナイト系ステンレス鋼材 |
JP2016029213A (ja) * | 2014-07-22 | 2016-03-03 | 神鋼特殊鋼管株式会社 | ステンレス鋼およびステンレス鋼管 |
WO2016068009A1 (ja) * | 2014-10-29 | 2016-05-06 | 新日鐵住金株式会社 | オーステナイトステンレス鋼及びその製造方法 |
WO2016143486A1 (ja) * | 2015-03-06 | 2016-09-15 | 新日鐵住金ステンレス株式会社 | 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法 |
JP2016199782A (ja) * | 2015-04-08 | 2016-12-01 | 新日鐵住金株式会社 | オーステナイト系ステンレス鋼 |
KR20160138277A (ko) | 2014-04-17 | 2016-12-02 | 신닛테츠스미킨 카부시키카이샤 | 오스테나이트계 스테인리스 강 및 그 제조 방법 |
KR20180125594A (ko) | 2016-04-07 | 2018-11-23 | 신닛테츠스미킨 카부시키카이샤 | 오스테나이트계 스테인리스 강재 |
JP2019194357A (ja) * | 2018-04-26 | 2019-11-07 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
JPWO2020241851A1 (ja) * | 2019-05-31 | 2020-12-03 | ||
JP2021066928A (ja) * | 2019-10-24 | 2021-04-30 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
US11149324B2 (en) | 2015-03-26 | 2021-10-19 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
KR20220010184A (ko) | 2020-07-17 | 2022-01-25 | 주식회사 포스코 | 내수소취성이 개선된 고질소 오스테나이트계 스테인리스강 |
WO2023013353A1 (ja) * | 2021-08-02 | 2023-02-09 | 日鉄ステンレス株式会社 | オーステナイト系ステンレス鋼材及びその製造方法、並びに意匠性物品 |
EP4403664A1 (en) | 2023-01-20 | 2024-07-24 | Daido Steel Co., Ltd. | Austenitic stainless steel for high-pressure hydrogen gas or liquid hydrogen, and manufacturing method therefor |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1605072B1 (en) * | 2003-03-20 | 2012-09-12 | Sumitomo Metal Industries, Ltd. | Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel |
JP4907151B2 (ja) * | 2005-11-01 | 2012-03-28 | 新日鐵住金ステンレス株式会社 | 高圧水素ガス用オ−ステナイト系高Mnステンレス鋼 |
CN101135028B (zh) * | 2006-08-30 | 2010-08-11 | 宝山钢铁股份有限公司 | 一种高强度不锈钢及其热处理方法 |
US20100008813A1 (en) * | 2006-10-02 | 2010-01-14 | Dmitriy Vladimirovich SAVKIN | Hot and corrosion-resistant steel |
KR100832487B1 (ko) * | 2006-12-22 | 2008-05-26 | 한국항공우주연구원 | 초저온에서 높은 항복강도 및 우수한 연신율을 갖는 고강도스테인리스 스틸 |
EP2119802B1 (en) | 2007-01-15 | 2019-03-20 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel welded joint and austenitic stainless steel welding material |
DE102007029400B4 (de) * | 2007-06-26 | 2014-05-15 | Outokumpu Vdm Gmbh | Eisen-Nickel-Chrom-Silizium-Legierung |
WO2009044796A1 (ja) * | 2007-10-03 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
US8865060B2 (en) | 2007-10-04 | 2014-10-21 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
WO2009044802A1 (ja) * | 2007-10-04 | 2009-04-09 | Sumitomo Metal Industries, Ltd. | オーステナイト系ステンレス鋼 |
US20150010425A1 (en) | 2007-10-04 | 2015-01-08 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
US20090129967A1 (en) * | 2007-11-09 | 2009-05-21 | General Electric Company | Forged austenitic stainless steel alloy components and method therefor |
SG10201700586QA (en) | 2007-11-29 | 2017-02-27 | Ati Properties Inc | Lean austenitic stainless steel |
KR20090066000A (ko) * | 2007-12-18 | 2009-06-23 | 주식회사 포스코 | 고진공, 고순도 가스 배관용 오스테나이트계 스테인리스강 |
RU2461641C2 (ru) | 2007-12-20 | 2012-09-20 | ЭйТиАй ПРОПЕРТИЗ, ИНК. | Аустенитная нержавеющая сталь с низким содержанием никеля и содержащая стабилизирующие элементы |
KR101467616B1 (ko) | 2007-12-20 | 2014-12-01 | 에이티아이 프로퍼티즈, 인코퍼레이티드 | 내부식성 린 오스테나이트계 스테인리스 강 |
US8337749B2 (en) | 2007-12-20 | 2012-12-25 | Ati Properties, Inc. | Lean austenitic stainless steel |
CN101724789B (zh) * | 2008-10-23 | 2011-07-20 | 宝山钢铁股份有限公司 | 奥氏体不锈钢中厚板及其制造方法 |
CN101724792B (zh) * | 2008-10-27 | 2012-12-05 | 朱卫 | 一种奥氏体不锈钢及其钢丝制造方法 |
US8430075B2 (en) | 2008-12-16 | 2013-04-30 | L.E. Jones Company | Superaustenitic stainless steel and method of making and use thereof |
KR101091863B1 (ko) * | 2009-03-06 | 2011-12-12 | 포스코특수강 주식회사 | 고온강도가 우수한 스테인레스 강재 및 그 제조방법 |
CN101845605B (zh) * | 2009-03-24 | 2013-01-02 | 宝山钢铁股份有限公司 | 一种中低温强度优异的奥氏体不锈钢板及其制造方法 |
KR20110128924A (ko) * | 2009-03-27 | 2011-11-30 | 수미도모 메탈 인더스트리즈, 리미티드 | 오스테나이트계 스테인리스강 |
EP2287351A1 (en) * | 2009-07-22 | 2011-02-23 | Arcelormittal Investigación y Desarrollo SL | Heat-resistant austenitic steel having high resistance to stress relaxation cracking |
CN101994068B (zh) * | 2009-08-25 | 2012-12-26 | 宝山钢铁股份有限公司 | 奥氏体不锈钢钢板 |
JP5552284B2 (ja) * | 2009-09-14 | 2014-07-16 | 信越化学工業株式会社 | 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法 |
US9175361B2 (en) | 2010-09-29 | 2015-11-03 | Nippon Steel & Sumikin Stainless Steel Corporation | Austenitic high Mn stainless steel and method production of same and member using that steel |
CN101967611B (zh) * | 2010-11-05 | 2012-07-25 | 钢铁研究总院 | 一种高韧性奥氏体锅炉钢 |
DE102010053385A1 (de) * | 2010-12-03 | 2012-06-21 | Bayerische Motoren Werke Aktiengesellschaft | Austenitischer Stahl für die Wasserstofftechnik |
DE102011010316B4 (de) | 2011-02-03 | 2013-03-21 | Bayerische Motoren Werke Aktiengesellschaft | Austenitischer Stahl mit hoher Beständigkeit gegenüber wasserstoffinduzierter Versprödung |
JP5863770B2 (ja) * | 2011-03-31 | 2016-02-17 | 株式会社クボタ | オーステナイト系ステンレス鋳鋼 |
DE102012104254A1 (de) * | 2011-11-02 | 2013-05-02 | Bayerische Motoren Werke Aktiengesellschaft | Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung |
US9347121B2 (en) * | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
JP5794945B2 (ja) * | 2012-03-30 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | 耐熱オーステナイト系ステンレス鋼板 |
DE102012104260A1 (de) * | 2012-05-16 | 2013-11-21 | Bayerische Motoren Werke Aktiengesellschaft | Kostenreduzierter Stahl für die Wasserstofftechnik mit hoher Beständigkeit gegen wasserstoffinduzierte Versprödung |
JP5888737B2 (ja) * | 2012-05-21 | 2016-03-22 | 日本冶金工業株式会社 | オーステナイト系Fe−Ni−Cr合金 |
RU2551340C2 (ru) * | 2012-12-04 | 2015-05-20 | Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") | Аустенитная коррозионно-стойкая сталь |
RU2545856C2 (ru) * | 2013-08-02 | 2015-04-10 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения |
CN103498112B (zh) * | 2013-10-14 | 2015-08-26 | 无锡通用钢绳有限公司 | 不锈钢丝绳的生产工艺 |
CN103722772B (zh) * | 2013-10-31 | 2015-08-19 | 东莞市维美电器有限公司 | 一种家用榨油机的碎渣装置及其制备材料 |
CN103695792B (zh) * | 2013-11-14 | 2016-01-13 | 安徽荣达阀门有限公司 | 一种高碳合金钢耐磨阀门材料及其制备方法 |
CN103643171B (zh) * | 2013-12-24 | 2016-01-06 | 北京科技大学 | 一种复合强化22/15铬镍型高强抗蚀奥氏体耐热钢 |
CN104152814A (zh) * | 2014-05-28 | 2014-11-19 | 无锡兴澄华新钢材有限公司 | 奥化体不锈钢防爆网 |
CN103993238B (zh) * | 2014-06-13 | 2016-06-08 | 四川法拉特不锈钢铸造有限公司 | 一种低镍奥氏体不锈钢 |
FR3027032B1 (fr) * | 2014-10-08 | 2021-06-18 | Air Liquide | Microstructure d'un alliage pour tube de reformage |
RU2585899C1 (ru) * | 2015-02-02 | 2016-06-10 | Григорьянц Александр Григорьевич | Конструкционная криогенная аустенитная высокопрочная свариваемая сталь и способ ее получения |
RU2584315C1 (ru) * | 2015-06-04 | 2016-05-20 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки |
WO2016195106A1 (ja) * | 2015-06-05 | 2016-12-08 | 新日鐵住金株式会社 | オーステナイトステンレス鋼 |
CN106319379A (zh) * | 2015-07-01 | 2017-01-11 | 上海添御石油设备科技有限公司 | 一种石油压裂车的压力泵阀箱用不锈钢材料 |
JP6137434B1 (ja) | 2015-09-30 | 2017-05-31 | 新日鐵住金株式会社 | オーステナイト系ステンレス鋼 |
CN109642291B (zh) * | 2016-08-30 | 2021-07-06 | 日本制铁株式会社 | 奥氏体系不锈钢 |
KR20180054031A (ko) * | 2016-11-14 | 2018-05-24 | 주식회사 포스코 | 내수소취성이 개선된 오스테나이트계 스테인리스강 및 이를 포함하는 고압 수소 가스용 용기 |
CN106555126B (zh) * | 2016-11-22 | 2018-05-15 | 国营芜湖机械厂 | 1Cr15Ni4Mo3N钢用激光熔覆粉末及制备方法 |
CN106702251A (zh) * | 2016-11-24 | 2017-05-24 | 安徽瑞研新材料技术研究院有限公司 | 一种快开式可控温的高压氢气环境的材料及其制备方法 |
KR102030162B1 (ko) * | 2016-12-23 | 2019-11-08 | 주식회사 포스코 | 가공성 및 표면특성이 우수한 오스테나이트계 스테인리스강 및 이의 제조방법 |
CN107747068B (zh) * | 2017-10-20 | 2018-10-19 | 山西太钢不锈钢股份有限公司 | 一种耐热不锈钢无缝管及其制备方法 |
RU2660451C1 (ru) * | 2017-12-19 | 2018-07-06 | Юлия Алексеевна Щепочкина | Сплав на основе железа |
CN108220823B (zh) * | 2018-02-23 | 2020-04-14 | 温州市赢创新材料技术有限公司 | 耐高温不锈钢 |
CN108411208A (zh) * | 2018-04-11 | 2018-08-17 | 石英楠 | 一种电厂发电机组用奥氏体耐热不锈钢的制备方法 |
CN108950404B (zh) * | 2018-08-13 | 2020-07-07 | 广东省材料与加工研究所 | 一种含锆的奥氏体耐热钢及其制备方法 |
KR102202390B1 (ko) * | 2018-12-13 | 2021-01-13 | 한국표준과학연구원 | 가스 처리로부터 개질된 내수소취화 스테인레스 분말결합체 및 이를 위한 스테인레스 분말 |
CN110129658B (zh) * | 2019-05-27 | 2020-07-10 | 北京科技大学 | 一种高锰无氮型高强高韧抗氢脆奥氏体不锈钢及制备方法 |
CN110331340A (zh) * | 2019-07-30 | 2019-10-15 | 深圳市裕丰隆金属材料有限公司 | 一种304亚稳态奥氏体不锈钢及其制备工艺 |
RU2716922C1 (ru) * | 2019-08-14 | 2020-03-17 | Общество с ограниченной отвественностью "Лаборатория специальной металлургии" (ООО "Ласмет") | Аустенитная коррозионно-стойкая сталь с азотом |
DE102019213026A1 (de) * | 2019-08-29 | 2021-03-04 | Robert Bosch Gmbh | Bauteil zum Führen und/oder Speichern von zumindest einem Fluid und Verfahren zu dessen Herstellung |
CN110484836B (zh) * | 2019-09-24 | 2021-01-05 | 南京佑天金属科技有限公司 | 一种铪锆钛钼增强奥氏体不锈钢及其制备方法 |
CN111607691B (zh) * | 2020-05-26 | 2022-02-11 | 东南大学 | 一种具有梯度组织的321奥氏体不锈钢管及制备方法 |
CN112575261B (zh) * | 2020-12-09 | 2022-02-01 | 广东省科学院新材料研究所 | 一种复合变质马氏体合金铸钢 |
CN113493881A (zh) * | 2021-06-24 | 2021-10-12 | 江苏良工精密合金钢有限公司 | 超纯净耐热不锈圆钢及制造工艺 |
CN114737117A (zh) * | 2022-03-31 | 2022-07-12 | 广东潮艺金属实业有限公司 | 高硬度和高防锈的不锈钢316l及其烧结工艺 |
DE102023001726A1 (de) | 2022-09-29 | 2024-04-04 | Christian Martin Erdmann | Produkt zum Speichern und/oder Bereitstellen und/oder Transportieren und/oder Führen von Wasserstoff enthaltendem Fluid und/oder Kontinuum |
CN116200668B (zh) * | 2023-04-17 | 2023-11-14 | 宁波晴力紧固件有限公司 | 一种耐热高强度紧固件材料及其制备方法 |
CN117987749A (zh) * | 2024-04-03 | 2024-05-07 | 清华大学 | 超高强度抗氢脆奥氏体不锈钢及其制备方法 |
CN118028701B (zh) * | 2024-04-11 | 2024-06-11 | 江西理工大学 | 抗氢脆奥氏体不锈钢及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4421572A (en) * | 1982-03-18 | 1983-12-20 | The United States Of America As Represented By The United States Department Of Energy | Thermomechanical treatment of alloys |
US4576641A (en) * | 1982-09-02 | 1986-03-18 | The United States Of America As Represented By The United States Department Of Energy | Austenitic alloy and reactor components made thereof |
SE506886C2 (sv) | 1990-02-26 | 1998-02-23 | Sandvik Ab | Vanadinlegerat utskiljningshärdbart omagnetiskt austenitiskt stål |
JPH0565601A (ja) | 1991-09-03 | 1993-03-19 | Hitachi Metals Ltd | 高強度、高疲労強度オーステナイト系ステンレス鋼およびその製造方法 |
JP2778875B2 (ja) * | 1992-06-04 | 1998-07-23 | 三菱重工業株式会社 | ロールクロス式タンデム圧延機列 |
JP3304001B2 (ja) | 1993-07-09 | 2002-07-22 | 日立金属株式会社 | 耐孔食性の優れたオーステナイト系ステンレス鋼およびその製造方法 |
FR2708741B1 (fr) * | 1993-08-02 | 1995-09-08 | Valinox Nucleaire | Procédé permettant de réduire le bruit de fond au cours du contrôle de tubes métalliques par courant de Foucault et tubes réalisés par ce procédé. |
JPH07216453A (ja) | 1994-02-04 | 1995-08-15 | Sumitomo Metal Ind Ltd | 非磁性プレストレスコンクリート用鋼材の製造方法 |
SE516137C2 (sv) * | 1999-02-16 | 2001-11-19 | Sandvik Ab | Värmebeständigt austenitiskt stål |
-
2004
- 2004-06-09 WO PCT/JP2004/008380 patent/WO2004111285A1/ja active Application Filing
- 2004-06-09 KR KR1020057023575A patent/KR100689783B1/ko active IP Right Grant
- 2004-06-09 EP EP04745932.6A patent/EP1645649B1/en not_active Expired - Lifetime
- 2004-06-09 CN CN200480022838.5A patent/CN1833043B/zh not_active Expired - Fee Related
- 2004-06-09 CA CA2528743A patent/CA2528743C/en not_active Expired - Fee Related
- 2004-06-09 JP JP2005506967A patent/JP4539559B2/ja not_active Expired - Fee Related
-
2005
- 2005-12-09 US US11/297,418 patent/US20060193743A1/en not_active Abandoned
-
2010
- 2010-11-24 US US12/953,576 patent/US8696835B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001049400A (ja) * | 1999-08-06 | 2001-02-20 | Sumitomo Metal Ind Ltd | 熱間加工性に優れるオーステナイト系耐熱鋼 |
Non-Patent Citations (2)
Title |
---|
See also references of EP1645649A4 |
WROBEL M. ET AL., SCRIPTA MET. ET MAT., vol. 32, no. 12, 1995 |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100666727B1 (ko) * | 2005-04-19 | 2007-01-09 | 포스코신기술연구조합 | 스프링용 304h 오스테나이트계 스테인레스강 |
JP2009542907A (ja) * | 2006-06-28 | 2009-12-03 | ハイドロジェン・テクノロジーズ・アーエス | オーステナイト系ステンレス鋼の使用及びこのような鋼から製造される電解槽 |
WO2008117680A1 (ja) * | 2007-03-26 | 2008-10-02 | Sumitomo Metal Industries, Ltd. | 坑井内で拡管される拡管用油井管及び拡管用油井管に用いられる2相ステンレス鋼 |
EA013146B1 (ru) * | 2007-03-26 | 2010-02-26 | Сумитомо Метал Индастриз, Лтд. | Трубы нефтяного сортамента для развальцовки в скважине и дуплексная нержавеющая сталь, используемая для труб нефтяного сортамента для развальцовки |
US8333851B2 (en) * | 2007-07-20 | 2012-12-18 | Sumitomo Metal Industries, Ltd. | Method for producing two-phase stainless steel pipe |
JP2010121190A (ja) * | 2008-11-21 | 2010-06-03 | Nisshin Steel Co Ltd | 高圧水素輸送用オーステナイト系ステンレス鋼溶接管およびその製造方法 |
JP2012047629A (ja) * | 2010-08-27 | 2012-03-08 | Japan Steel Works Ltd:The | 高強度低合金鋼の高圧水素環境脆化感受性の評価方法 |
JP2012082488A (ja) * | 2010-10-13 | 2012-04-26 | Sumitomo Metal Ind Ltd | 皮膜に対する密着性に優れたオーステナイト系ステンレス鋼 |
US10266909B2 (en) | 2011-03-28 | 2019-04-23 | Nippon Steel & Sumitomo Metal Corporation | High-strength austenitic stainless steel for high-pressure hydrogen gas |
WO2012132992A1 (ja) | 2011-03-28 | 2012-10-04 | 住友金属工業株式会社 | 高圧水素ガス用高強度オーステナイトステンレス鋼 |
US10260125B2 (en) | 2011-03-28 | 2019-04-16 | Nippon Steel & Sumitomo Metal Corporation | High-strength austenitic stainless steel for high-pressure hydrogen gas |
JP2014047409A (ja) * | 2012-09-03 | 2014-03-17 | Nippon Steel & Sumitomo Metal | 高圧水素ガス用高強度オーステナイトステンレス鋼 |
WO2014069467A1 (ja) * | 2012-10-30 | 2014-05-08 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
JP2014088593A (ja) * | 2012-10-30 | 2014-05-15 | Kobe Steel Ltd | オーステナイト系ステンレス鋼 |
JP2014114471A (ja) * | 2012-12-07 | 2014-06-26 | Aichi Steel Works Ltd | 高圧水素用オーステナイト系ステンレス鋼 |
JP5547825B1 (ja) * | 2013-01-23 | 2014-07-16 | 株式会社神戸製鋼所 | オーステナイト系ステンレス鋼 |
JP2015066586A (ja) * | 2013-09-30 | 2015-04-13 | 大陽日酸株式会社 | 溶接施工方法及び溶接構造物 |
JP5579316B1 (ja) * | 2013-09-30 | 2014-08-27 | 大陽日酸株式会社 | 溶接施工方法及び溶接構造物 |
JP2015189990A (ja) * | 2014-03-27 | 2015-11-02 | 日新製鋼株式会社 | 耐食性に優れた、特に鋭敏化特性が改善された排ガス流路部材用オーステナイト系ステンレス鋼材 |
KR20160138277A (ko) | 2014-04-17 | 2016-12-02 | 신닛테츠스미킨 카부시키카이샤 | 오스테나이트계 스테인리스 강 및 그 제조 방법 |
US10316383B2 (en) | 2014-04-17 | 2019-06-11 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel and method for producing the same |
JP2016029213A (ja) * | 2014-07-22 | 2016-03-03 | 神鋼特殊鋼管株式会社 | ステンレス鋼およびステンレス鋼管 |
JP6004140B1 (ja) * | 2014-10-29 | 2016-10-05 | 新日鐵住金株式会社 | オーステナイトステンレス鋼及びその製造方法 |
AU2015338140B2 (en) * | 2014-10-29 | 2018-05-24 | Nippon Steel Corporation | Austenitic stainless steel and manufacturing method therefor |
US10662497B2 (en) | 2014-10-29 | 2020-05-26 | Nippon Steel Corporation | Austenitic stainless steel and method of manufacturing the same |
WO2016068009A1 (ja) * | 2014-10-29 | 2016-05-06 | 新日鐵住金株式会社 | オーステナイトステンレス鋼及びその製造方法 |
US10501819B2 (en) | 2015-03-06 | 2019-12-10 | Nippon Steel & Sumikin Stainless Steel Corporation | High-strength austenitic stainless steel having excellent hydrogen embrittlement resistance characteristics and method for producing same |
WO2016143486A1 (ja) * | 2015-03-06 | 2016-09-15 | 新日鐵住金ステンレス株式会社 | 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法 |
JPWO2016143486A1 (ja) * | 2015-03-06 | 2017-11-02 | 新日鐵住金ステンレス株式会社 | 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法 |
US11603573B2 (en) | 2015-03-26 | 2023-03-14 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
US11149324B2 (en) | 2015-03-26 | 2021-10-19 | Nippon Steel Stainless Steel Corporation | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment |
JP2016199782A (ja) * | 2015-04-08 | 2016-12-01 | 新日鐵住金株式会社 | オーステナイト系ステンレス鋼 |
KR20180125594A (ko) | 2016-04-07 | 2018-11-23 | 신닛테츠스미킨 카부시키카이샤 | 오스테나이트계 스테인리스 강재 |
JP7319525B2 (ja) | 2018-04-26 | 2023-08-02 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
JP2019194357A (ja) * | 2018-04-26 | 2019-11-07 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
JP7307366B2 (ja) | 2019-05-31 | 2023-07-12 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
WO2020241851A1 (ja) * | 2019-05-31 | 2020-12-03 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
JPWO2020241851A1 (ja) * | 2019-05-31 | 2020-12-03 | ||
JP2021066928A (ja) * | 2019-10-24 | 2021-04-30 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
JP7339526B2 (ja) | 2019-10-24 | 2023-09-06 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
KR20220010184A (ko) | 2020-07-17 | 2022-01-25 | 주식회사 포스코 | 내수소취성이 개선된 고질소 오스테나이트계 스테인리스강 |
WO2023013353A1 (ja) * | 2021-08-02 | 2023-02-09 | 日鉄ステンレス株式会社 | オーステナイト系ステンレス鋼材及びその製造方法、並びに意匠性物品 |
EP4403664A1 (en) | 2023-01-20 | 2024-07-24 | Daido Steel Co., Ltd. | Austenitic stainless steel for high-pressure hydrogen gas or liquid hydrogen, and manufacturing method therefor |
KR20240116656A (ko) | 2023-01-20 | 2024-07-30 | 다이도 토쿠슈코 카부시키가이샤 | 고압 수소 가스용 또는 액체 수소용 오스테나이트계 스테인레스강 및 그의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
KR100689783B1 (ko) | 2007-03-08 |
CN1833043A (zh) | 2006-09-13 |
JPWO2004111285A1 (ja) | 2006-07-20 |
US20110064649A1 (en) | 2011-03-17 |
US20060193743A1 (en) | 2006-08-31 |
CA2528743C (en) | 2010-11-23 |
CN1833043B (zh) | 2010-09-22 |
EP1645649A4 (en) | 2006-12-13 |
EP1645649A1 (en) | 2006-04-12 |
KR20060018250A (ko) | 2006-02-28 |
EP1645649B1 (en) | 2014-07-30 |
CA2528743A1 (en) | 2004-12-23 |
US8696835B2 (en) | 2014-04-15 |
JP4539559B2 (ja) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004111285A1 (ja) | 水素ガス用オーステナイトステンレス鋼とその製造方法 | |
EP2980247B1 (en) | Method for producing a steel structure for hydrogen gas | |
JP4251229B1 (ja) | 高圧水素ガス環境用低合金鋼および高圧水素用容器 | |
JP6451545B2 (ja) | 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手 | |
JP6004140B1 (ja) | オーステナイトステンレス鋼及びその製造方法 | |
JP6801236B2 (ja) | 低温水素用オーステナイト系ステンレス鋼及びその製造方法 | |
JP5131794B2 (ja) | 高圧水素ガス用高強度オーステナイトステンレス鋼 | |
JP6492163B2 (ja) | 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法 | |
JP5786830B2 (ja) | 高圧水素ガス用高強度オーステナイトステンレス鋼 | |
US11603573B2 (en) | High strength austenitic stainless steel having excellent resistance to hydrogen embrittlement, method for manufacturing the same, and hydrogen equipment used for high-pressure hydrogen gas and liquid hydrogen environment | |
JP7012557B2 (ja) | 高Mnオーステナイト系ステンレス鋼およびその製造方法 | |
JP6684620B2 (ja) | 耐水素脆化特性に優れた高強度オーステナイト系ステンレス鋼およびその製造方法、ならびに高圧水素ガスおよび液体水素環境中で用いる水素用機器 | |
EP3395989B1 (en) | Austenitic steel material having excellent hydrogen-embrittlement resistance | |
JP7262172B2 (ja) | 高Mnオーステナイト系ステンレス鋼 | |
JP7121142B2 (ja) | 耐水素脆性に優れたCr系ステンレス鋼板 | |
JP6455342B2 (ja) | 高圧水素ガス用高Mn鋼鋼材ならびにその鋼材からなる、配管、容器、バルブおよび継手 | |
JP2020111800A (ja) | ステンレス鋼、ステンレス熱延鋼板及びステンレス熱延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480022838.5 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020057023575 Country of ref document: KR Ref document number: 2005506967 Country of ref document: JP Ref document number: 2528743 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11297418 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004745932 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057023575 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004745932 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11297418 Country of ref document: US |