WO2004094808A1 - 内燃機関用ピストン - Google Patents

内燃機関用ピストン Download PDF

Info

Publication number
WO2004094808A1
WO2004094808A1 PCT/JP2004/004629 JP2004004629W WO2004094808A1 WO 2004094808 A1 WO2004094808 A1 WO 2004094808A1 JP 2004004629 W JP2004004629 W JP 2004004629W WO 2004094808 A1 WO2004094808 A1 WO 2004094808A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
less
piston
combustion engine
steel
Prior art date
Application number
PCT/JP2004/004629
Other languages
English (en)
French (fr)
Inventor
Koki Otsuka
Seiichi Endo
Takashi Hattori
Masanori Hara
Susumu Katsuragi
Original Assignee
Hitachi Metals, Ltd.
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals, Ltd., Hino Motors, Ltd. filed Critical Hitachi Metals, Ltd.
Priority to KR1020057015993A priority Critical patent/KR101087562B1/ko
Priority to US10/551,645 priority patent/US7503304B2/en
Priority to JP2005505705A priority patent/JP4500259B2/ja
Priority to EP04724758A priority patent/EP1612395A4/en
Publication of WO2004094808A1 publication Critical patent/WO2004094808A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/16Pistons  having cooling means
    • F02F3/20Pistons  having cooling means the means being a fluid flowing through or along piston
    • F02F3/22Pistons  having cooling means the means being a fluid flowing through or along piston the fluid being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D30/00Cooling castings, not restricted to casting processes covered by a single main group
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49249Piston making

Definitions

  • the present invention relates to a piston for an internal combustion engine suitable for an automobile engine, particularly a diesel engine, and a method for producing the same.
  • seizure resistance also called “scuffing resistance” or “scoring resistance”
  • the surface of the piston or mating member will be scratched, which not only promotes wear, but also causes galling. It can also lead. Therefore, seizure resistance is a very important property for biston.
  • the spherical graphite mirror iron piston is made thinner for the purpose of weight reduction, the high-temperature rigidity becomes too low, and cracks may occur in the pin boss, skirt, etc. in addition to the lip. For this reason, there is a limit to the drastic lightness of spherical graphite cystal iron pistons.
  • FIG. 9 is a sectional view of an example of the piston 100.
  • the piston 100 includes a combustion chamber 105, a top surface 106, a head 101 having an opening edge (lip) 107 of the combustion chamber 105, a skirt portion 102, a top land 108, and a ring groove 109 in which a piston ring is mounted.
  • 100h represents the compression height from the center of the pin hole to the top surface 106.
  • the weight ratio is C: 0.32-0.45%, Si: 0.4-0.9%, Mn: 1.0-; 1.8%, P: 0.035% or less, S: 0.065% or less, V: 0.06 to 0.15%, balance: Forged steel of precipitation hardened ferrite-parlite structure made of Fe, and skirt portion 102 is made of a light alloy such as aluminum.
  • Such a configuration is described as compared with the conventional Fe b AiCr ⁇ 4 alloy (JIS equivalent SCM440) can be produced at low cost.
  • the forged steel piston 100 has excellent high-temperature rigidity, the combustion pressure rises to 20 to 25 MPa due to the absence of self-lubricating graphite in the structure. In this case, seizure resistance and wear resistance may be insufficient.
  • sulfides and nonmetallic inclusions are stretched thinly (along the forging line) in the main deformation direction during forging, and this becomes the starting point, resulting in high thermal and mechanical properties. Thermal cracks may occur in the lip 107 and the like of the combustion chamber 105 under load.
  • the forging method cannot integrally manufacture a piston containing the cooling cavity 103 in a single process, so it is necessary to process the cooling cavity 103 and fix the lid f that closes the cavity 103, etc. However, this may increase manufacturing costs.
  • Japanese Patent No. 2,981,899 discloses a piston ring material which is used by nitriding its surface to improve abrasion resistance and seizure resistance.
  • C 0.6 to: 1.1%, Si: 2.0% or less, Mn: 2% or less, Cr: 10.0-18.0%, Mo and Mo or W (Mo + 1/2 W): 0.5 to 40%
  • V and / or (V + 1/2 Nb) 0.05 to 2.0%, Ni: 2.5% or less, Co: 12% or less, Ni + Co: 0.5% or more, P: 0.015% or less, S: 0.005% or less, 0: 30ppm or less
  • V and Nb not only refine crystal grains to improve toughness, but also form carbides to improve wear resistance and seizure resistance, and to improve tempering softening resistance.
  • the biston ring is formed by processing a narrow plate material into a ring shape, and a steel material containing a large amount of Cr carbide can be easily produced.
  • a monolithic product having a complex shape and a large amount of processing like a piston there are problems such as a low production yield due to difficulties in manufacturing and processing, or enormous costs and man-hours. Therefore, it is extremely difficult to integrally form a piston from the above piston ring material.
  • the above-mentioned biston ring material does not have the required high temperature resistance, high temperature rigidity, heat crack resistance, etc., and seizure resistance, etc., it is not possible to use it for integral biston. Can not.
  • the biston temperature will rise to about 450 to 500 ° C and the combustion pressure will rise to about 20 to 25 MPa as the combustion temperature rises.
  • the piston is required to have heat resistance to withstand such high temperature and pressure.
  • high seizure resistance is ensured so that galling does not occur due to contact with mating members such as cylinder liners, piston pins, and piston rings.
  • mating members such as cylinder liners, piston pins, and piston rings.
  • we have to reduce the inertial force during reciprocation of the piston reduce the weight of bistons, reduce friction, reduce engine noise, and reduce engine room size. There are also requests. Therefore, it has been desired to reduce the thickness of the piston and reduce the compression height.
  • the piston should be high enough so that it does not crack or crack due to vibration or shock when used under high thermal and mechanical loads. / It is required to have strength and ductility. In particular, ductility is required not only for use in engines, but also for production and assembly processes, in order to avoid cracks and cracks. Generally, ductility at low temperatures below room temperature is represented by room temperature elongation. Purpose of the invention
  • an object of the present invention is to provide a high room temperature elongation, a high high temperature proof stress, a high temperature rigidity and a high heat resistance so that it can be used even when the piston temperature rises to 450 ° C or more and the combustion pressure rises to 20 MPa or more.
  • An object of the present invention is to provide a piston for an internal combustion engine that has cracking properties and is excellent in seizure resistance, and is particularly suitable for a diesel engine and the like.
  • Another object of the present invention is to provide a method for producing a powerful internal combustion engine piston. Disclosure of the invention
  • the piston for an internal combustion engine according to the present invention is characterized by being integrally formed. That is, in the piston for an internal combustion engine of the present invention, the head, the pin boss, and the skirt are physically structured. It is preferable that the biston for the internal combustion engine, which is integrally formed, has a cooling cavity.
  • a piston for an internal combustion engine is suitable for a diesel engine, and in particular, preferably has a combustion chamber at the head and a cooling cavity formed near the combustion chamber.
  • the first steel that forms the piston for an internal combustion engine of the present invention is, by mass ratio, C : 0.8% or less, Si: 3% or less, Mn: 3% or less, S: 0.2% or less, Ni: 3% or less. , Cr: 6% or less, Cu: 6% or less, Nb: 0.01 to 3%, and preferably the composition substantially consisting of Fe and unavoidable impurities. More preferable composition is C: 0.1 to 0.55%, Si: 0.2 to 2%, Mn: 0.3 to 3%, S: more than 0.005%, 0.2% or less, Ni: 1% or less, Cr: 3% by mass ratio.
  • Cu 1 to 4%
  • Nb 0.1 to 3%
  • the balance substantially consists of Fe and unavoidable impurities.
  • the second steel which forms the piston for an internal combustion engine of the present invention has a mass ratio of C: 0.:! 0.8%, Si: 3% or less, Mn: 3% or less, S: 0.2% or less, Ni: 10% or less, Cr: 30% or less, Cu: 6% or less, Nb: 0.05 to 8%, balance substantially It is preferable to have a composition consisting of Fe and inevitable impurities. More preferable composition is C: 0.1 to 0.55%, Si: 0.2 to 2%, Mn: 0.3 to 3%, S: 0.05 to 0.2% s Ni: 0.5 to 6%, Cr: 6 to 20% by mass ratio. Cu: 1-4%, Nb: 0.2-5%, balance substantially consists of Fe and unavoidable impurities.
  • the content of C, Ni and Nb preferably satisfies the requirement of 0.05 (C% + 0.15Ni% -0.12Nb%) ⁇ 0.8.
  • the austenite phase of the matrix structure is preferably less than 30% of the entire steel structure.
  • the first and second bell steels for a piston for an internal combustion engine according to the present invention further contain 0.5% by mass or less of V, Z or Ti. It is preferable that the first and second steels further contain at least one of Al, Mg and Ca in an amount of 0.04% by mass or less.
  • the second steel is heat-treated by air cooling after maintaining the temperature at 450 ° C or higher after cylindrical production.
  • treatment is performed. It is more preferable that the second steel is subjected to a heat treatment in which the steel is kept at 1000 ° C. or more after the production, rapidly cooled, and then kept at 450 ° C. or more and air-cooled.
  • steels (1) steel whose base structure is composed of c-fluorite phase and pearlite phase (hereinafter simply referred to as “ ⁇ - ⁇ -based steel”), and (2) base structure whose phase structure is ⁇ -fluorite phase It is preferable to use a steel consisting of a martensite phase and having an austenite phase of less than 30% (hereinafter simply referred to as “ ⁇ -II series steel”).
  • ⁇ -II steel In particular, to withstand severe thermal mechanical loads such as bistons for diesel engines, it is preferable to use ⁇ -II steel, and specifically, precipitation hardening stainless steel is used as ⁇ -II steel.
  • ⁇ -II steel It has seizure resistance based on a material that has heat resistance, corrosion resistance, and wear resistance such as SCS24 (JIS) steel and SUS630 (JIS) (previously known as 17-4PH) precipitation hardening stainless steel. Steel whose composition has been modified as described above is preferred.
  • Integrating the structure into the Nine Net shape not only eliminates the need to assemble or join the components, but also reduces the processing cost. Therefore, the manufacturing cost is significantly lower than that of the assembling forged biston described in U.S. Pat. No. 5,136,992, which requires the attachment of the lid of the heating cavity of the cooling cavity and the assembly of the head and the skirt. Having. In addition, with an integrally forged piston, there is no need to add a space for machining the cooling cavity, and the compression height can be reduced, so that the piston can be made lighter and more compact. If the head, pin boss, and skirt, which are the components of the piston, are integrally formed by structure, they can be used as gasoline engine pistons that do not require a cooling cavity. Furthermore, if it is formed integrally with the structure including the cooling cavity, it is suitable as a piston for diesel engines. It is particularly suitable as a direct injection type diesel engine piston with a combustion chamber at the head of the piston and a cooling cavity formed near the combustion chamber.
  • the eutectic carbide in the structure should have an area ratio of!: ⁇ 35% . Since eutectic carbides have high hardness, by setting the eutectic carbides in the structure to an area ratio of 1 to 35%, the high-hardness eutectic carbides contained in the piston are contained in, for example, the cylinder liner material. Carbide included in biston ring material, martensite by carburizing and quenching the surface of biston pin material Reduces the aggressiveness of the hard phase to biston.
  • the inclusion of an appropriate amount of eutectic carbide reduces the area ratio of the matrix phase (ie, base structure), which has relatively high cohesiveness, and thus suppresses the cohesion of matrix phases between biston and the mating member.
  • the above-mentioned effect can be obtained when the area ratio of eutectic carbide is 1% or more, but if it exceeds 35%, the eutectic carbide has high hardness, so the aggressiveness to the mating member increases and the mating member wears. Progresses, the seizure resistance decreases, and the ductility decreases. For this reason, the area ratio of eutectic carbide in the structure is specified to be 1 to 35%.
  • the area ratio refers to the ratio (percentage) of the total area of the eutectic carbide to the total measured area of the visual field.
  • the eutectic carbides in the structure do not form a uniform and uniform dispersion in the structure, but form eutectic colonies, which are aggregates of the eutectic carbides and the matrix phase (base structure).
  • the presence of dispersed eutectic colonies can improve seizure resistance without significantly impairing ductility.
  • a eutectic colony as schematically shown in Fig. 5, is a fine eutectic carbide 51 densely crystallized in a matrix phase 53, and the eutectic carbide 51 and the matrix phase 53 form an aggregate. It exists in a form.
  • eutectic carbides have high hardness, as described above, they contribute to securing wear resistance and improving seizure resistance.However, if they are present as eutectic colonies and are dispersed in the tissue, seizure resistance is further enhanced. improves.
  • the matrix phase wears preferentially in a concave shape. This concave region acts as an oil pool such as lubricating oil, so that the oil retention of the piston is improved, and as a result, seizure resistance is improved.
  • an increase in carbides causes a decrease in ductility. However, since carbides exist as fine eutectic carbides surrounded by a matrix phase, the decrease in ductility is greatly suppressed.
  • the piston of the present invention slides against a cylinder liner made of high P (phosphorus) flake graphite and iron equivalent to, for example, FC300 as a mating member, the eutectic carbide contained in the piston exists in the cylinder liner structure. Reduces the aggressiveness of the hardened steadite, preventing the piston from being scratched, ensuring abrasion resistance, and at the same time Due to the synergistic effect resulting from the improvement of the heat resistance, it has excellent seizure resistance.
  • the eutectic carbide contained in the biston suppresses the wear of the piston due to the high hardness carburized phase contained in the piston. This results in a piston with excellent wear and seizure resistance.
  • the eutectic carbide preferably has an average equivalent circle diameter of 3 ⁇ or less.
  • the average equivalent circle diameter of the eutectic carbide means the average value of the diameter of a circle (pseudo circle) when the area of the eutectic carbide is converted into a circle having the same area.
  • the number of eutectic colonies having one (cluster) eutectic colony having an area of 50 ⁇ 2 or more is 10 or more in a tissue cross-sectional area of 1 mm 2 (that is, per unit square millimeter area). Is preferred.
  • elements of the IVa group and Va group such as Ti, Zr, Hf, V, Nb, and Ta may be contained. These elements combine with C to make eutectic carbides finer, and form eutectic carbides in the form of aggregates surrounded by a matrix phase, that is, crystallize as eutectic coloes, resulting in seizure resistance and wear resistance. Contribute to improvement. Among them, especially when the eutectic carbide includes N carbide (NC), in addition to the improvement of seizure resistance and abrasion resistance, improvement of machinability and securing of machinability are promoted by the effects described below. More preferred. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view showing a bistone according to the present invention.
  • FIG. 2 is a metallographic micrograph ( ⁇ 100) of Example 41.
  • Figure 3 is a metallographic micrograph (100x) of Comparative Example 5.
  • FIG. 4 is a metallographic micrograph ( ⁇ 400) of Example 41.
  • FIG. 5 is a schematic diagram of a eutectic carbide and a eutectic colony.
  • Figure 6 is a schematic diagram of the thermal crack test device.
  • FIG. 7 is a schematic diagram of a reciprocating friction wear test.
  • Figure 8 is a schematic diagram of the pin-on-disk test.
  • FIG. 9 is a cross-sectional view showing a conventional bistone in which a head including a pin boss portion and a skirt portion manufactured separately are assembled.
  • C forms eutectic carbides, lowers the solidification temperature, and improves the fluidity of the molten metal, that is, the isoformability, which improves the flowability of the molten metal during casting. This effect is very important when the piston is made thin.
  • C exceeds 0.8%, the area ratio of eutectic carbides exceeds 35%, and a large amount of crystallization occurs, and the amount of precipitated carbides such as Cr increases, thereby deteriorating seizure resistance and ductility.
  • the aggressiveness of the opponent member is increased. Therefore, C is less than 0.8%.
  • the content of C is preferably from 0.1 to 0.6%, more preferably from 0.3 to 0.55%.
  • Si has a role as a deoxidizing agent for the molten metal, and secures structural properties such as preventing gas defects due to CO gas and the like. If the Si content exceeds 3%, the thermal shock resistance and machinability are reduced. Therefore, the content of Si is 3% or less, preferably 0.2 to 2%.
  • Mn improves the machinability by deoxidizing the molten metal and generating nonmetallic inclusions. However, if Mn exceeds 3%, the toughness is reduced. Therefore, Mn is set to 3% or less, preferably 0.3 to 3%, more preferably 0.3 to 2%.
  • Ni maintains high-precision dimensional accuracy of pistons by maintaining high-temperature resistance, suppressing high-temperature strength reduction, and maintaining high-temperature rigidity even when the piston temperature rises to 450 ° C or higher. Prevents defects such as pie, galling, seizure and breakage.
  • the content of i having such an effect is 3% or less, preferably 1% or less.
  • Cr has the effect of strengthening the base structure and increasing the high temperature resistance.
  • a passive film is formed on the biston surface, reducing the opportunity for the base structure inside the biston to directly contact the mating member.
  • the Cr content should be 6% or less.
  • the Cr content is more preferably 4% or less, particularly 3% or less.
  • Cu precipitates finely in the matrix structure, enhances self-lubricating properties, and prevents seizure. If the content exceeds 6%, the high-temperature stiffness and ductility decrease, so the Cu content should be 6% or less. Cu is preferably 1-4%.
  • Nb combines with C to crystallize fine eutectic carbides (bC) in the form of eutectic colonies, improving the seizure resistance and wear resistance of the piston. In addition to improving the flowability of the molten metal during fabrication, it also improves the formability, such as preventing shrinkage cavities and cracks (hot cracks) caused by solidification shrinkage and other mirror defects. In addition, Nb suppresses the formation of precipitation-type coarse carbides such as Cr carbide, so that it suppresses a decrease in ductility and an increase in aggressiveness to a mating member and also secures machinability during processing. In addition to eutectic carbides, they have the effect of forming carbonitrides to strengthen pearlite.
  • Nb is set to 0.01 to 3%.
  • Nb is preferably 0.:! 33%, more preferably 0.2-3%.
  • S forms sulfides with Mn and Cr to improve heat crack resistance, Has the effect of improving the machinability of steel. However, if S exceeds 0.2%, S-based inclusions become excessive and heat crack resistance deteriorates. In order to form sulfides and S-based inclusions in a well-balanced manner and to achieve both appropriate heat crack resistance and machinability, S is 0.2% or less, preferably 0 to 0.2%, and more preferably 0.03 to 0.2%. 0.2%. (9) Mo: 5% or less
  • Mo is set to 5% or less, preferably 1% or less to increase the high-temperature strength.
  • Co 5% or less
  • Co is set to 5% or less, preferably 3% or less in order to improve the high-temperature resistance, high-temperature strength, and high-temperature rigidity by forming a solid solution in the base structure.
  • Al, Mg and Ca can be contained because they have an effect as a deoxidizing agent for the molten metal, and also act as sulfide nuclei having an effect on machinability and have an effect of finely dispersing them. . On the other hand, if these are contained excessively, they remain as non-metallic inclusions in the base structure and reduce the heat crack resistance. Therefore, if necessary, at least one of Al, Mg and Ca can be contained at 0.04% or less.
  • Elements of the I Va group and Va group such as Ti, Zr, Hf, V, and Ta have the same effect as N.
  • the contents of V and Ti are each preferably 0.5% or less.
  • W may be contained at 5% or less, B may be contained at 0.05% or less, and N may be contained at 0.1% or less.
  • C is essential for generating eutectic carbides and has an effect of improving the formability. If C exceeds 0.8%, the area ratio of eutectic carbides exceeds 35%, and a large amount of crystallization occurs, and the precipitation carbides such as Cr increase, resulting in a decrease in seizure resistance and ductility. The aggressiveness to the opponent member increases. Therefore, the content of C is 0.;! To 0.8%, preferably 0.1 to 0.55%, and more preferably 0 :! to 0.4%.
  • Si 3% or less
  • Si is less than 3%, preferably 0.2 to 2%.
  • Mn is less than 3%, preferably 0.3-3% c
  • Ni is preferably 0.5-6%.
  • Cr forms a passive film on the surface of the piston, reducing the chance that the base structure inside the piston directly contacts the mating member. It also has the effect of increasing the strength of biston by transforming the base structure into martensite in combination with Ni and Cu. Even if the content is 30% or more, the degree of the effect does not change, the alloy cost rises, it is uneconomical, and the carbide precipitated with C increases, reducing ductility and machinability during processing and reducing 30% or less because this will increase the aggressiveness. Cr is preferably 6 to 20%.
  • Cu precipitates finely in the graveyard structure, enhancing self-lubricating properties and preventing seizure. If the content exceeds 6%, the high-temperature stiffness and ductility decrease, so the Cu content should be 6% or less. Cu is preferably 1-4%.
  • Nb combines with C to crystallize fine eutectic carbides (NbC) in the form of eutectic colonies, improving the seizure and wear resistance of the piston. In addition to improving the flowability of the molten metal at the time of forming, it also improves the formability such as preventing shrinkage cavities and cracks (hot cracks) caused by solidification shrinkage. In addition, Nb suppresses the formation of precipitation-type coarse carbides such as Cr carbide, so that it suppresses a decrease in ductility and an increase in aggressiveness to a mating member, and also secures machinability during processing. NbC also has the effect of improving high-temperature resistance. To achieve such effects, a Nb content of 0.05% or more is required.
  • Nb is set to 0.05 to 8%.
  • Nb is preferably 0.2-5%, More preferably, it is set to 0.2 to 3.5%.
  • S forms sulfides with Mn and Cr to improve heat cracking resistance, and also generates S-based inclusions that reduce heat cracking resistance, thereby improving machinability by its internal lubricating action.
  • S exceeds 0.2%, S-based inclusions become excessive, and the heat crack resistance deteriorates.
  • S is 0.2% or less, preferably 0.05 to 0.2%, more preferably 0.1 to 0.2% or less.
  • Mo is less than 5%, preferably less than 3% for the same reasons as the first mirror steel.
  • Co is 5% or less, preferably 3% or less.
  • the content of C, Ni and Nb preferably satisfies the condition of 0.05 (C% + 0.15%-0.12Nb%) ⁇ 0.8 (mass ratio).
  • NbC is generated, the amount of C in austenite is reduced, and as a result, the amount of Nb that acts to prevent the decrease of the Ms point of the base and the amount of Ni that causes the decrease of the Ms point are reduced by 0.05 (C% + 0.15Ni%- The desired high temperature proof stress and high temperature rigidity can be obtained by limiting the range to 0.12Nb%) ⁇ 0.8.
  • At least one of Al, Mg and Ca may be contained in an amount of 0.04% or less.
  • Group IVa and Va elements such as Ti, Zr, Hf, V and Ta also have the same effect as Nb.
  • the contents of V and Ti are each preferably 0.5% or less.
  • W may be contained at 5% or less, B may be contained at 0.05% or less, and N may be contained at 0.1% or less.
  • P is inevitably mixed from the raw material, but it is preferably as small as possible because it lowers the toughness, and specifically, it is preferably 0.05% or less.
  • the steel preferably has a structure in which the eutectic carbide in the structure has an area ratio of 1 to 35% and the eutectic carbide forms a eutectic colony (an aggregate of the eutectic carbide and the matrix phase).
  • the average equivalent circle diameter of the eutectic carbide is preferably 3 ⁇ or less.
  • the number of eutectic colonies having an area of 50 ⁇ 2 or more is preferably 10 or more per 1 mm 2 of tissue cross-sectional area.
  • the eutectic carbide preferably contains Nb carbide.
  • the area ratio of sulfide containing at least one of Mn and Cr in the tissue is 0.2 to 3.0%, and the sulfide with circularity of 0.7 or more of the total number of sulfides
  • the number of objects is at least 70%.
  • the piston temperature rises to 450 ° C or higher, and the combustion pressure rises to 20 MPa or more.
  • the piston has sufficient high temperature resistance, high temperature rigidity, and heat crack resistance.
  • stainless steel has higher heat cracking resistance than spheroidal graphite iron, etc., so that thermal cracks are less likely to occur in the combustion chamber or near the lip where it becomes hot, and its high-temperature rigidity makes it lighter. Since the shape and dimensions can be maintained even when the thickness of the main part is reduced, problems such as abrasion, blow-by, galling, seizure and breakage do not easily occur and the engine performance is not impaired.
  • the weight of the piston and reducing the compression height, etc. the weight of the entire engine is reduced, the engine output is increased and fuel consumption is reduced, engine noise is reduced, and the engine room capacity is reduced. It becomes possible. Also, by specifying the area ratio of eutectic carbide, sufficient ductility (normal temperature elongation) can be ensured. No cracks or cracks occur during handling such as middle and arrangement to the engine and assembling.
  • the mirror steel has a 0.2% resistance to heat of 350 MPa or more and a modulus of longitudinal elasticity of 140 GPa or more in the range of 350 ° C. to 500 ° C.
  • the modulus of longitudinal elasticity which is an index of high-temperature stiffness
  • the modulus of longitudinal elasticity should be 100 GPa or more at a Biston temperature of 450 ° C or more. If the heat resistance and the rigidity at high temperatures are secured in this way, the synergistic effect ensures the heat crack resistance. Further, room temperature elongation, which is an index of ductility, can be secured at 3.0% or more as a level having no practical problem.
  • the average coefficient of linear expansion from room temperature to 500 ° C. which is an index indicating low thermal expansion, is 10 to: 16 ⁇ 10-G. C is preferred.
  • the average linear expansion coefficient of the flaky graphite-iron cylinder liner (13.1 x 10 " 6 / ° C in the temperature range of 20 to 480 ° C) is almost equal to the temperature from normal temperature to 450 to 500 ° C.
  • the clearance between the outer diameter of the piston and the cylinder liner can be reduced and maintained properly even when used in the range, reducing the consumption of oil for lubrication.
  • the first method for manufacturing a piston for an internal combustion engine is characterized in that after the ⁇ -II stainless steel is manufactured, it is kept at 850 ° C or more and air-cooled.
  • the solidification cooling rate of each part of the piston may vary depending on factors such as product shape, plan arrangement, ⁇ shape, etc.Therefore, the material is made uniform by heat treatment, and wear resistance, hardness and mechanical properties are improved. It is preferable to adjust the physical properties.
  • a normalizing process of air cooling is performed to obtain a mixed structure of pro-eutectoid and dense pearlite, and the strength and wear resistance required for piston materials are obtained. Can be secured.
  • the heating temperature is lower than 850 ° C, it will not completely austenite. Once, all organizations It is necessary to heat to 850 ° C or more in order to convert The preferred heating and holding temperature is 900-950 ° C.
  • the heating and holding time is determined by the size, shape, etc. of the piston, and cannot be unconditionally determined. However, it is 0.5 hours or more for small bistons and 1 hour or more for large bistons.
  • the second method of manufacturing a piston for an internal combustion engine is to produce a ⁇ -M stainless steel and then cool it by (a) holding it at 450 ° C or more and air cooling it, or (b) keeping it at 1000 ° C or more. After rapid cooling, it is maintained at 450 ° C or higher and air-cooled. If the piston undergoes permanent deformation due to a change in material during use, problems such as blow-by, abrasion, seizure or breakage will occur and engine performance will be impaired. Therefore, it is necessary to minimize material change in advance. For this reason, it is effective to stabilize the material by maintaining the temperature above the operating temperature. Specifically, it is preferable to perform an aging treatment in which the piston is maintained at 450 ° C.
  • Table 1 shows the chemical compositions (% by mass) of the samples used in the examples and comparative examples.
  • Examples 1 to 20 show samples made of ⁇ - ⁇ system mirror steels having a low Cr content (within the composition range of the present invention), and Comparative Examples 1 to 4 show samples of ⁇ - ⁇ system outside the composition range of the present invention. ⁇ Steel samples are shown.
  • Comparative Example 1 is steel with too little Nb content
  • Comparative Example 2 is copper with too much Nb content
  • Comparative Example 3 is steel with too much S content.
  • Comparative Example 4 is a steel containing too little Nb and too much S.
  • Example 1 is an example using spheroidal graphite-iron (JIS F CD600) disclosed in Japanese Patent Application Laid-Open No. 10-85924
  • Conventional Example 2 is a forged steel disclosed in US Pat. No. 5,136,992. This is an example of using.
  • Example 1 0.09 0.16 0.22 0.003 0.01 0.02 0.02 0.01--Example 2 0.11 0.25 0.32 0.006 0.04 0.09 0.03 0.11--Example 3 0.20 0.21 0.32 0.021 0.12 0.25 0.05 0.17--Example Example 4 0.54 1.44 0.56 0.084 0.87 1.66 1.59 0.59--Example 5 0.55 1.95 1.97 0.147 0.98 2.93 3.66 2.46--Example 6 0.79 2.87 2.56 0.194 2.86 5.98 5.94 3.00--Example 7 0.20 0.55 2.86 0.030 0.50 0.10 0.11 0.06- -Example 8 0.31 0.87 1.52 0.033 0.11 0.08 1.10 0.10--Example 9 0.55 2.47 0.97 0.022 0.07 0.05 2.50 0.50--Example 10 0.37 2.51 0.30 0.150 2.70 0.31 0.10 0.37--Example 11 0.40 0.91 0.40 0.030 0.05
  • test pieces cut from each sample are embedded in resin, emery, After polishing to # 1000 with paper, polishing with diamond particles of 15 ⁇ , 9 ⁇ , 3 ⁇ , and 1 ⁇ and finish polishing with co-idal silica in order, the observation surface was etched with a nital etching solution. .
  • Image Kaiori apparatus manufactured by Asahi Kasei Corporation, trade name I P-1000 using a magnification of 200 times, for any 5-field of 30396.6 ⁇ 2, the area ratio of the eutectic carbides (%) and average circle equivalent The diameter ( ⁇ ) was measured.
  • the area ratio of the eutectic carbide is a value obtained by averaging the values obtained by dividing the total area of the eutectic carbides in each visual field by the total visual field area (30396.6 ⁇ 2) in five visual fields. Nonmetallic inclusions were excluded from the measurement of the area ratio of eutectic carbides and the average equivalent circle diameter. Table 2 shows the results.
  • the polished and corroded sample was photographed with an optical microscope in five arbitrary visual fields at a magnification of 100 ⁇ . From the obtained micrographs, a group of a plurality of eutectic carbides approaching or contacting each other at 10 ⁇ or less is defined as one eutectic colony. As shown in the schematic diagram of FIG. 5, the area of the eutectic colony is defined by drawing an envelope L surrounding the eutectic colony 52 and encircling the envelope L.
  • the observed part was enlarged by 100 times or more to determine the size and distance.
  • the number of eutectic cogni having an area of 50 ⁇ 2 or more was measured by the above-mentioned image analysis device, divided by the measured area, and the obtained values were averaged over 5 visual fields to obtain a unit area (1 mm 2 ). The number of eutectic colonies per unit was determined. Table 2 shows the results.
  • each sample was processed into a plate-shaped test piece 71 of 60 mm X 20 mm X 5 mm. Polishing was performed to an average surface roughness R a (JIS B 0601) of about 0.2 ⁇ . As shown in FIG. 7, each plate-shaped test piece 71 was attached to a reciprocating motion friction tester (trade name: AFT-15M, manufactured by Orientec Co., Ltd.) not shown. Apply lubricating oil (equivalent to 10W-30) on the surface of the plate-shaped test piece 71 in the direction shown by the arrow 76. Was dropped.
  • a ball 72 made of high-carbon bearing bearing steel SUJ2 (JIS G 4805) equivalent to a biston pin with a diameter of 5 ⁇ was brought into contact with the plate-shaped test piece 71 with a 58.8 mm thrust load 75.
  • the test piece 71 was slid back and forth in the direction shown by the arrow 74 with a sliding width of 1 cm and a reciprocating time of 1.6 seconds, and the frictional force was measured.
  • the number of reciprocating slides until the frictional force reached 6.86 N (hereinafter referred to as the “number of frictions”) was determined, and the pin seizure resistance was evaluated based on the following criteria.
  • The number of times of friction is 400 or more
  • the friction frequency is 300 times or more and less than 400 times
  • The number of times of friction is 200 or more and less than 300
  • the pin-on-disk test was performed with the device shown in FIG.
  • the pin-on-disk test device applies a thrust load 85 to the test piece, and a disc-shaped holder 82 for holding the test piece, a disc 83 made of a material corresponding to a mating member arranged opposite to the disc-shaped holder 82, and a test piece.
  • a thrust load 85 to the test piece
  • a disc-shaped holder 82 for holding the test piece
  • a disc 83 made of a material corresponding to a mating member arranged opposite to the disc-shaped holder 82
  • a test piece for this purpose, there are provided means (not shown) provided on the disc-shaped holder 82, and means (not shown) for rotating the disk 83 in the direction of arrow 84.
  • the disk 83 was 80 mm in diameter and 12 mm in thickness, and was formed of high P (phosphorus) flake graphite-iron equivalent to FC300.
  • the four pin test pieces 81 attached to the disc-shaped holder 82 were brought into contact with the disk 83, and lubricating oil (equivalent to 10W-30) was dropped from the direction of arrow 86 to the contact surface between the test piece 81 and the disk 83.
  • the disk 83 was rotated, and the thrust load 85 was gradually increased.
  • the thrust load 85 is the surface pressure of the contact surface between the pin test piece 81 and the disk 83, and the rotation speed of the disk 83 is the sliding speed.
  • a pin-on-disk test was performed under the following conditions (1) to (7).
  • Lubricating oil temperature 10 ° C (viscosity grade 100)
  • Lubricating oil supply condition After supplying at the test start surface pressure at a speed of 10 cm3 / min for 1 minute, the supply was stopped.
  • the load at the time when one of the pin test piece 81 and the disc 83 was damaged was defined as the seizure load (kgf), and the liner seizure resistance was evaluated based on the following criteria.
  • Seizure load is 120 kgf or more
  • Seizure load is 100 kgf or more and less than 120 kgf
  • Seizure load is 80 kgf or more and less than 100 kgf
  • Table 2 shows the results of the reciprocating friction wear test and the pin-on-disk test.
  • the area ratio of the eutectic carbide in Examples 1-3 and 14 Although less than 1%, Examples 4 to 13 and 15 to 20 are within the preferred range (1 to 35%) of the present invention. Further, the average circle equivalent diameter of the eutectic carbide is within the preferred range of the present invention (3 ⁇ or less) in all of Examples 1 to 20.
  • the number of eutectic colonies having an area per unit area of 50 pm 2 or more is within the preferred range (10 / mm 2 or more) of the present invention in Examples other than Examples 1 to 3, 7 and 14.
  • all except Comparative Example 2 are outside the preferred range of the present invention. It is considered that in the case of steel No. 10 having less than 10 eutectic colonies and less than 10 mm 2 , a large number of eutectic colonies were crystallized in the structure and were connected without being dispersed to form coarse colonies.
  • Examples 1 to 20 all had a large number of friction times of 300 or more, and had excellent pin seizure resistance.
  • all of Examples 1 to 20 have a large seizure load of 100 kgf or more, indicating that they have excellent liner seizure resistance.
  • the test piece of Comparative Example 2 containing 3.22% by mass and excessive Nb had excellent pin seizure resistance and liner seizure resistance, but was inferior in heat crack resistance. .
  • the test pieces of the other comparative examples were all inferior in pin seizure resistance and liner seizure resistance.
  • the seizure resistance increases as the area ratio of eutectic carbides, the average equivalent circle diameter, and the number of eutectic joints with a unit area of 50 ⁇ 2 or more increase. A tendency to increase was observed.
  • a test piece cut from each sample was embedded in resin, polished to # 1000 with emery paper, and polished with diamond particles of 15 ⁇ , 9 ⁇ , 3 ⁇ , and 1 ⁇ . went.
  • the polished surface of each test piece was observed at a magnification of 200 using an image analyzer (IP-1000) manufactured by Asahi Kasei Corporation, and each sulfide particle was converted into a circle having the same area to determine the diameter.
  • the area ratio (%) in the visual field was determined for sulfide particles corresponding to a circle having a diameter of ⁇ . ⁇ ⁇ or more. Table 3 shows the results.
  • the circularity of sulfide was determined by observing the same specimen as above using an image analyzer. From the image of the sulfide particles, it was calculated by the formula of (4 ⁇ ⁇ ⁇ area of sulfide particles) / (perimeter of sulfide particles) 2 . From this, the number of sulfide particles with a circularity of 0.7 or more was calculated, and the ratio of the number of sulfide particles to the total number of sulfides was calculated as the ratio (%) of sulfides with a circularity of 0.7 or more. Table 3 shows the results.
  • the austenite ratio ( ⁇ ratio) was measured as a volume ratio (%) using an X-ray stress measurement device (Strainflex MSF-2M) manufactured by Rigaku. Table 3 shows the results.
  • a No. 4 test piece was prepared from each sample in accordance with JIS Z 2201, and the room temperature elongation (%) at 25 ° C was measured using an Ammsler tensile tester. Table 3 shows the results.
  • the area ratio of sulfide is in the preferable range of 0.23% in all Examples except for Example 13 and in all Examples except Examples 1 and 2. If the ratio of sulfides with a circularity of 0.7 or more falls within the preferred range of 70% or more, Was.
  • the austenite ratio was 0% in all Examples and was within a preferable range of 30% or less. With respect to the room temperature elongation and the high temperature resistance, Examples 1 to 20 were almost equivalent to Comparative Examples 1 to 4 and Conventional Examples 1 and 2.
  • test specimens for measuring high-temperature stiffness plate-shaped test specimens were polished to a total size of 1.5 mm X 10 mm X 60 mm from each sample in accordance with JIS Z 2280 "Test method for high-temperature Young's modulus of metallic materials". Each test piece was placed in a furnace at 350 ° C, 450 ° C and 500 ° C in the atmosphere, and was vibrated by a free-holding electrostatic drive method to detect the resonance frequency of the vibration. The recovery coefficient (GPa) was calculated. Table 4 shows the results. (8) Heat crack resistance
  • the thermal crack test device 60 is a vertically movable water tank 61 for cooling water 62, a high-frequency oscillator 63, a coil 64 connected to the high-frequency oscillator 63 for high-frequency oscillation, and a rod for attaching a test piece 67 to the tip.
  • 66 a shaft 65 for rotatably holding a rod 66, a thermocouple 68 attached to a test piece 67, and a recorder 69 for temperature data connected to the thermocouple 68.
  • the test piece 67 was processed to have a diameter of 90 mm and a thickness of 50 mm.
  • Maximum crack length is more than 50 ⁇ and less than 100 ⁇
  • Maximum crack length is more than 100 ⁇ and less than 150 ⁇
  • Table 4 shows the measurement results of the maximum crack length and the evaluation results of the heat crack resistance.
  • thermomechanical analyzer Rive Denki Co., Ltd.
  • Example 1 194 '' 177 161 90 ⁇ 12.9
  • Example 2 193 173 160 94 O 12.8
  • Example 3 _J 195 176 160 87 ⁇ 12.4
  • Example 4 192 175 158 80 ⁇ 12.5
  • Example 5 191 176 158 80 ⁇ 12.1
  • Example 6 193 177 157 88 ⁇ 12.2
  • Example 7 194 171 153 95 o 11.8
  • Example 8 196 172 153 94 ⁇ 11.9
  • Example 9 197 173 155 155 55 ⁇ 12.1
  • Example 10 197 164 157 51 ⁇ 12.5
  • Example 11 198 168 156 47 ⁇ 12.4
  • Example 12 197 168 158 50 ⁇ 11.9
  • Example 13 199 173 154 90 ⁇ 12.6
  • Example 14 195 173 155 89 ⁇ 12.8
  • Example 15 194 172 155 155 87 ⁇ 12.6
  • Example 16 * 193 168 154 98 ⁇ 12.4
  • the pearlitic stainless steel satisfying the requirements of the present invention has the same room temperature elongation, high temperature resistance and high temperature rigidity as other materials, and also has significantly better seizure resistance and higher heat resistance than other materials. It turns out that it has heat crack resistance.
  • Table 5 shows the chemical compositions (% by mass) of the samples used in the examples and comparative examples.
  • Examples 21 to 45 show samples composed of a ⁇ - ⁇ series steel having a high Cr content (within the composition range of the present invention), and Comparative Examples 5 to: 11 show samples of ⁇ - ⁇ outside the composition range of the present invention.
  • An example of a series steel is shown.
  • Comparative Example 5 is a steel with too small contents of C and S
  • Comparative Examples 6 and 7 are a steel with a too small content of C and a too large amount of S.
  • Comparative Examples 8 to 10 are steels containing too much S
  • Comparative Example 11 is steel containing too little Nb
  • Comparative Example 12 is a steel containing too much Nb. .
  • the area ratio (%) of eutectic carbides, the average equivalent circle diameter ( ⁇ ), and the number of eutectic colonies having an area of 50 ⁇ 2 or more were measured for each of the obtained samples as in Example 120.
  • Table 6 shows the results.
  • the etching process a mixed acid solution of the observation plane was carried out ( ⁇ 2 0: 10 cmK HC1 : 20 c HN0 3:: 4 cm 3, H2SO4 1.3 mixed solution of cm @ 3).
  • the microstructure of the steel of Example 41 is shown in FIG. 2 (micrograph at 100 ⁇ ) and FIG. Micrograph).
  • a martensitic phase 23 a ⁇ _ferrite phase 24
  • a base structure a eutectic collony 22, which is an aggregate of fine eutectic carbides and a matrix phase 23, and nonmetallic inclusions 25 are observed. Is done.
  • eutectic carbide 41, eutectic colony 42, martensite phase 43 as a base structure, and nonmetallic inclusions 45 are observed.
  • the composition of the eutectic carbide was analyzed using a field emission scanning electron microscope with an energy dispersive X-ray spectrometer (FE-SEM EDS, Hitachi Ltd. S-4000, ED KEVE DELTA system). As a result, it was confirmed that the composition of the eutectic carbide mainly consisted of Nb carbide (NbC).
  • FIG. 3 shows an optical micrograph ( ⁇ 100) of Comparative Example 5. In this structure, a martensitic phase 33 and a ⁇ -ferrite phase 34 and a nonmetallic inclusion 35 as a base structure are observed, but no eutectic carbide is observed.
  • Each sample was evaluated for seizure resistance by performing a reciprocating friction wear test equivalent to sliding between a biston and a biston pin and a pin-on-disk test equivalent to sliding between a piston and a cylinder liner.
  • a reciprocating friction wear test was performed in the same manner as in Examples 1 to 20, and the pin seizure resistance was evaluated based on the following criteria.
  • The number of times of friction is 400 or more
  • the friction frequency is 300 times or more and less than 400 times
  • The number of times of friction is 200 or more and less than 300
  • a pin-on-disk test was performed in the same manner as in Examples 1 to 20, and liner seizure resistance was evaluated based on the following criteria.
  • Seizure load is 120 kgf or more
  • Seizure load is 100 kgf or more and less than 120 kgf
  • Seizure load is 80 kgf or more and less than 100 kgf
  • the area ratio of the eutectic carbide is less than 1% in Examples 21 to 25 and 38, but is within the preferred range (135%) of the present invention in Example 26 37 39 45. It is.
  • Examples of the deviation are also within the preferable range (3 ⁇ or less) of the present invention.
  • the number of eutectic colonies having an area of 50 ⁇ 2 or more per unit area is within the preferred range (10 / min 2 or more) of the present invention in any of Examples except for Example 38.
  • Comparative Examples 5 to 12 other than Comparative Examples 9 and 10 are all outside the preferred range of the present invention.
  • Examples 21 to 45 all had a large number of friction times of 300 or more, and had excellent pin seizure resistance. Further, in the pin-on-disk test, Examples 21 to 45 show that the seizure load is as large as 100 kgf or more, and that they have excellent liner seizure resistance. On the other hand, Comparative Examples 5 to 12 were inferior in both the pin seizure resistance and the liner seizure resistance.
  • Seizure resistance pin seizure resistance and liner seizure resistance
  • the area ratio of sulfide is in the preferred range of 0.2 to 3% in all Examples other than Example 21, and in all Examples, the sulfide area ratio is 0.7 or more.
  • the product ratio was within a preferred range of 70% or more.
  • the austenite ratio all the examples were within the preferable range of the present invention of less than 30%.
  • Examples 21 to 45 were equal to or higher than Comparative Examples 5 to 12.
  • the maximum crack length ( ⁇ ) of each sample was measured in the same manner as in Examples 1 to 20, and evaluated according to the following criteria.
  • Maximum crack length is more than 50 ⁇ and less than 100 ⁇
  • Table 8 shows the measurement results of the maximum crack length and the evaluation results of the heat crack resistance.
  • Examples 21 to 45 were all within the preferred range of the present invention of 140 GPa or more.
  • Examples 21 to 45 were all excellent.
  • the maximum crack length exceeded 100 ⁇ .
  • Comparative Example 5 had a small maximum crack length of 35 ⁇ , but was inferior in seizure resistance. From these results, the martensitic steel satisfying the requirements of the present invention has room temperature elongation, high temperature resistance, and high temperature rigidity equal to or higher than other materials, and has significantly better seizure resistance than other materials. It can be seen that it has heat crack resistance.
  • Example 46
  • the piston 10 has a head 11, a skirt 12, a cooling cavity 13, a pin boss 14, a pin fitting inner diameter 14d, a combustion chamber 15, a top 16, a lip 17, a top land 18, and a ring groove 19.
  • Have. 10h indicates the compression height
  • D indicates the outer diameter.
  • the steel was poured into a ladle at 1610 ° C and poured into a sandstone mold having a biston-shaped cavity shown in Fig. 1 at 1520 ° C.
  • solution heat treatment was performed by holding at 1040 ° C for 1 hour and then quenching, followed by aging by holding at 600 ° C for 4 hours and air cooling.
  • the outer periphery of the piston 10 was subjected to cutting and grinding.
  • the average thickness of the main part of Biston 10 was set to 3.0 mm or less. ⁇ There were no mirror defects that would cause problems such as shrinkage cavities, poor running water, and gas defects in the manufacturing process, and no problems such as cutting defects and abnormal wear of the processing tools occurred in the processing process.
  • the area ratio of the eutectic carbide is 3.2 to L2.6%, and the average circle equivalent diameter of the eutectic carbide is 1.8 to 1.8.
  • the eutectic coexistence number was 2.4 ⁇ and the area per unit area was 50 ⁇ 2 or more was 48 to 72 / mm 2 .
  • the obtained piston 10 was mounted on a 10,000 cc 6-cylinder diesel engine and subjected to a 400-hour endurance test at a piston temperature of 452 ° C and a combustion pressure of 20 MPa. No problems such as blow-by and seizure occurred during the durability test. In addition, when the state of the piston 10 was observed after the durability test, it was found that the skirt portion 12, the pin boss portion 14, etc. did not have any abrasion, galling, breakage, etc., and that the lip 17 had no thermal crack. Comparative Example 13
  • a piston was manufactured in the same manner as in Example 46, using the ferrous iron of Conventional Example 1.
  • no eutectic carbide was observed in any of the skirt portion, the pin boss portion and the ring groove.
  • an abnormal noise was generated 5 hours after the start of the test, and the output of the engine was reduced.
  • Observation of the state of the piston after the endurance test revealed that the skirt had scarf marks indicating strong contact, and that the lip had a small thermal crack.
  • the average thickness of the main part of the biston made of ferrous iron of Conventional Example 1 which has relatively good seizure resistance due to the self-lubricating property of graphite, was It can be seen that heat resistance, durability and seizure resistance are insufficient under severe conditions where the piston temperature is 450 ° C or more and the combustion pressure is 20 MPa or more when the thickness is 3.0 nmi or less.
  • the biston for an internal combustion engine of the present invention has good room temperature elongation, and has a sufficient high temperature resistance even under the harsh conditions of a biston temperature of 450 ° C or more and a combustion pressure of 20 MPa or more. It has high temperature rigidity, seizure resistance and heat crack resistance.
  • Such a piston for an internal combustion engine is suitable for an automobile engine, particularly a diesel engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

一体的に鋳造された鋳鋼からなる内燃機関用ピストンであって、前記鋳鋼が、質量比で、(a)C:0.8%以下、Si:3%以下、Mn:3%以下、S:0.2%以下、Ni:3%以下、Cr:6%以下、Cu:6%以下、Nb:0.01~3%、残部実質的にFe及び不可避的不純物からなる組成を有するか、(b)C:0.1~0.8%、Si:3%以下、Mn:3%以下、S:0.2%以下、Ni:10%以下、Cr:30%以下、Cu:6%以下、Nb:0.05~8%、残部実質的にFe及び不可避的不純物からなる組成を有する内燃機関用ピストン。

Description

内燃機関用ビストン
発明の分野
本発明は、 自動車用エンジン、 特にディーゼルエンジン等に好適な内燃機関 用ビストン及ぴその製造方法に関する。 背景技術
自動車用エンジンの燃焼温度及び圧力は、高出力化及び低燃費化を図るため、 益々上昇する傾向にある。そのため、特にディーゼルエンジン用ビストンでは、 高温耐カ、 高温剛性、 耐熱亀裂性等の耐熱性や、 高出力化及び低燃費化を得る ための軽量化が求められている。 さらに例えば、 ピストンのスカート部とシリ ンダライナとの間、 ピストンのピンボス部とピストンピンとの間、 ピストンの リング溝とピストンリングとの間等の摺動部位において、 異常摩耗、 カジリ、. 焼付き等が生じないように、 耐摩耗性、 耐焼付性、 低熱膨張性等の特性の向上 が要求されている。 特に耐焼付性 ( 「耐スカツフィング性」 又は 「耐スコーリ ング性」 とも云われる) が低いと、 ピストンや相手部材の表面に傷が付き、 摩 耗が助長されるばかりか、 カジリゃ焼付きに至ることもある。 そのため、 耐焼 付性はビストンにとつて極めて重要な特性である。
従来ディーゼルエンジン用ビストンには、軽量化を目的に、 JIS AC8A等のァ ルミニゥム合金が用いられていた。 し力 し、 アルミニウム合金からなるピスト ンでは、熱的及び機械的な耐久温度が 350°C程度と低く、また熱膨張量も大きい ので、 焼付きやカジリが発生しやすいといった問題がある。 そのため、 最近ァ ルミニゥム合金の代わりに、約 400°Cまでの耐久性が比較的高く、かつ組織内の 黒鉛による自己潤滑性により耐焼付性が良好な球状黒鉛鎵鉄が採用されるよう になった (例えば特開平 10-85924号参照) 。
しかしながら、 球状黒鉛錶鉄製ピストンは十分な延性を有するものの、 ビス トン温度が 450°C以上になると耐熱性が不足し、熱的機械的負荷の繰返しにより リップ等に熱亀裂が発生するという問題がある。 また 15 MPa程度の燃焼圧力 までは、 黒船による自己潤滑性により比較的良好な耐焼付性を発揮するが、 20 MPa以上に上昇すると、黒鉛潤滑による耐焼付性が満足できなくなるとともに、 高温耐カ及ぴ高温剛性が低下し、 シリンダライナ等の相手部材との強レ、接触に よりピストン及ぴ相手部材の摩耗が進行してブローバイが大きくなり、 また片 当り等に起因して、 カジリ、 焼付き、 破損といった不具合が生じ、 エンジン性 能を損なうおそれがある。
軽量化を狙って、 球状黒鉛鏡鉄製ピス トンを薄肉にしょうとすると、 高温剛 性が低くなり過ぎ、 リップの他にピンボス部、 スカート部等でも亀裂が発生す るおそれがある。 そのため、 球状黒鉛鐃鉄製ピス トンでは大幅な軽量ィヒには限 界がある。
米国特許第 5,136,992号は、 燃焼温度及び圧力の上昇に対応するため、 ビス トンのピンボス部を含む頭部とスカート部とを別に製作し、 一体的に組み立て たピストンを提案している。 図 9はそのピストン 100の一例の断面図である。 ビストン 100は、燃焼室 105、頂面 106及び燃焼室 105の開口縁(リップ) 107 を有する頭部 101と、 スカート部 102と、 トップランド 108と、 ピストンリン グが装着されるリング溝 109と、 ピンボス部 104と、 オイルが循環して燃焼室 105を冷却するクーリングチヤンネル又はギヤラリーと呼ばれる冷却空洞部 103 とを有する。 100hはピン孔中心から頂面 106までの寸法のコンプレツシヨンハ ィトを表す。
頭部 101及ぴピンボス部 104は、高い耐熱性を有するために、重量比で、 C: 0.32〜0.45%、 Si: 0.4—0.9%, Mn: 1.0〜; 1.8%、 P: 0.035%以下、 S: 0.065% 以下、 V: 0.06〜0.15%、 残部: Feからなる析出硬化したフェライトーパーラ ィト組織の鍛鋼からなり、スカート部 102はアルミニウム等の軽合金からなる。 このような構成により、 従来の FebAiCr Μθ4合金 ( JIS SCM440相当) より低 コストで製造できると記載されている。
しかしながら、 鍛鋼ピストン 100は高温剛性に優れているものの、 組織中に 自己潤滑性を有する黒鉛が存在しないため、 燃焼圧力が 20〜25 MPaに上昇す ると、 耐焼付性及ぴ耐摩耗性が不足するおそれがある。 また鍛造法で製造され' るために、 硫化物や非金属介在物が鍛造時の主変形方向に (鍛流線に沿って) 細く伸ばされ、 これが起点となつて高レ、熱的機械的負荷下で燃焼室 105のリツ プ 107等に熱亀裂が発生するおそれがある。
また頭部 101とス力一ト部 102との組み立て工程が必要であるので、 製造コ ストが高いという問題もある。 さらに冷却空洞部 103を加工するためにバイト を挿入するスペースが必要であり、コンプレツションハイト 100hを大きくせざ るを得ないので、 コンパクト化が難しい。 さらに鍛造法では冷却空洞部 103を 含むビストンをー工程で一体的に製造することができないため、冷却空洞部 103 の加工工程と、 空洞部 103を塞ぐ蓋 f を固着する工程等が必要であり、 製造コ スト上昇の原因となる。
日本国特許第 2,981,899号は、 耐摩耗性及び耐焼付性を向上させるために表 面を窒化して使用されるピストンリング材であって、重量%で、 C: 0.6〜: 1.1 %、 Si: 2.0%以下、 Mn: 2%以下、 Cr: 10.0-18.0%, Mo及ぴノ又は W (Mo + 1/2 W) : 0.5〜4·0%、 V及び/又は (V+ 1/2 Nb) : 0.05〜2·0%、 Ni: 2.5% 以下、 C o : 12%以下、 Ni+C o : 0.5%以上、 P: 0.015%以下、 S: 0.005%以 下、 0: 30 ppm以下、 残部: Fe及び不可避的不純物からなり、 硫酸雰囲気中で 腐蝕摩耗特性及び疲労特性に優れたビストンリング材を提案している。 V及び Nbは結晶粒を微細化して靭性を向上させるだけでなく、炭化物を形成して耐摩 耗性及ぴ耐焼付性を向上させ、 また焼戻し軟化抵抗を向上させると記載されて いる。
しかしながらビストンリングは幅の狭い板材をリング状に加工したもので、 Cr炭化物を多量に含有する鋼材でも容易に作製することができる。 ところがピ ストンのように複雑形状で加工量の多い一体铸造品を製造しようとしても、 铸 造及び加工が困難なために製造歩留りが低く、 あるいは膨大なコストと工数が かかる等の問題がある。 そのため、 上記ピス トンリング材からピス トンを一体 的に鎳造することは極めて困難である。 さらに上記ビストンリング材はビスト ンに必要なレベルの高温耐カ、 高温剛性、 耐熱亀裂性等の耐熱性、 及ぴ耐焼付 性等を兼備していないので、 一体鎵造ビストンに使用することはできない。 特にディーゼルエンジン用ビストンでは、 燃焼温度の上昇に伴ってビス トン 温度が 450〜500°C程度に上昇し、 燃焼圧力が 20 MPa〜25 MPa程度に上昇す ると予想されている。 このためピストンには、 このような高温高圧に耐える耐 熱性を有することが要求される。 しかも、 熱的機械的負荷の高い条件での摺動 中に、 シリンダライナ、 ピストンピン、 ピス トンリング等の相手部材との接触 によりカジリゃ焼付き等が生じないように、 高い耐焼付性が要求される。 さら にエンジンの高出力化及ぴ低燃費化を図るため、 ビストンの往復運動時の慣性 力の低減、 ビス トンの軽量化、摩擦の低減、 エンジンの騒音低減、 エンジンルー ムの小型化等の要求もある。 そのためピストンの薄肉化、 コンプレツシヨンハ ィトの低減等が望まれてきている。
その上、 ピストンには、 熱的機械的負荷の高い状況で使用しても振動や衝撃 によつて亀裂や割れを発生しないように、 高!/、強度と延性を有することが要求 される。 特に亀裂や割れを発生させないために、 延性はエンジン内での使用に 際して要求されるだけでなく、 生産工程や組み付け工程等でも要求される。 一 般に常温以下の低温における延性は常温伸びで代表される。 発明の目的
従って、 本発明の目的は、 良好な常温伸ぴを有するとともに、 ビストン温度 が 450°C以上、 燃焼圧力が 20 MPa以上に上昇しても使用可能なように高い高 温耐力、 高温剛性及び耐熱亀裂性とを有し、 かつ耐焼付性にも優れた自動車用 エンジン、 特にディーゼルエンジン等に好適な内燃機関用ビストンを提供する ことである。
本発明のもう一つの目的は、 力かる内燃機関用ピストンを製造する方法を提 供することである。 発明の開示
上記目的に鑑み鋭意研究の結果、 耐熱性、 耐食性、 耐摩耗性を有する錶鋼を 一体的に铸造したビストンは、 450°C以上のビストン温度及び 20 MPa以上の燃 焼圧力という過酷な条件でも十分な高温耐カ、 高温剛性、 耐熱亀裂性及び耐焼 付性を発揮し、 また軽量化が可能であることを発見し、 本発明に想到した。 本発明の内燃機関用ビストンは一体的に铸造されていることを特徴とする。 すなわち、 本発明の内燃機関用ビストンは、 頭部と、 ピンボス部と、 スカート 部とがー体的に铸造されている。 一体的に鐃造された内燃機関用ビス トンは冷 却空洞部を有するのが好ましい。 内燃機関用ビストンはディーゼルエンジンに 好適であり、 特に頭部に燃焼室を有し、 前記燃焼室の近傍に冷却空洞部が形成 されているのが好ましい。
本発明の内燃機関用ピストンを形成する第一の錶鋼は、 質量比で、 C : 0.8% 以下、 Si: 3%以下、 Mn: 3%以下、 S: 0.2%以下、 Ni: 3%以下、 Cr: 6%以 下、 Cu: 6%以下、 Nb: 0.01〜3%、 残部実質的に Fe及ぴ不可避的不純物から なる組成を有するのが好ましい。より好ましい組成は、質量比で、 C:0.1〜0.55%、 Si: 0.2〜2%、 Mn: 0.3〜3%、 S: 0.005%超で 0.2%以下、 Ni: 1%以下、 Cr: 3%以下、 Cu: 1〜4%、 Nb: 0.1〜3%、 残部実質的に Fe及び不可避的不純物 からなる。
本発明の内燃機関用ピストンを形成する第二の錶鋼は、 質量比で、 C: 0.:!〜 0.8%、 Si: 3%以下、 Mn: 3%以下、 S: 0.2%以下、 Ni: 10%以下、 Cr: 30% 以下、 Cu: 6%以下、 Nb: 0.05〜8%、 残部実質的に Fe及び不可避的不純物か らなる組成を有するのが好ましい。 より好ましい組成は、 質量比で、 C: 0.1〜 0.55%, Si: 0.2-2%, Mn: 0.3〜3%、 S: 0.05~0.2%s Ni: 0.5〜6%、 Cr: 6~20% Cu: 1〜4%、 Nb: 0.2〜5%、 残部実質的に Fe及び不可避的不純物 からなる。 C、 Ni及び Nbの含有量は 0.05く (C% + 0.15Ni% - 0.12Nb%) ≤ 0.8の要件を満たすのが好ましい。基地組織のオーステナイト相は铸鋼組織全体 の 30%未満であるのが好ましい。
本発明の内燃機関用ビストン用の第一及ぴ第二の鐘鋼はさらに V及び Z又は Tiを 0.5質量%以下含有するのが好ましレ、。 第一及び第二の铸鋼はいずれもさ らに、 Al、 Mg及び Caの少なくとも 1種を 0.04質量%以下含有するのが好ま しい。
第一の醜には、鐃造後 850°C以上に保持した後に空冷する熱処理を施すのが 好ましい。また第二の鎳鋼には、鐃造後 450°C以上に保持した後に空冷する熱処 理を施すのが好ましい。 第二の鎳鋼には、 鏺造後 1000°C以上に保持した後に急 冷し、次いで 450°C以上に保持した後に空冷する熱処理を施すのがより好ましい。 鎵鋼としては、 (1) 基地組織が c フヱライト相及ぴパーライト相からなる鎵 鋼 (以下、 単に 「α·Ρ系铸鋼」 という) 、 及び (2) 基地組織が δ-フヱライト相 及ぴマルテンサイト相からなり、 オーステナイト相が 30%未満の鎵鋼 (以下、 単に 「δ-Μ系鎵鋼」 という) を使用するのが好ましい。 特にディーゼルエンジン 用ビストン等の過酷な熱的機械的負荷に耐えるには、 δ-Μ系铸鋼を用いるのが好 ましく、δ-Μ系铸鋼としては、具体的には析出硬化型ステンレス铸鋼である SCS24 (JIS) や、 析出硬化型ステンレス鋼である SUS630 (JIS) (通称 17-4PH) の ような耐熱性、 耐食性、 耐摩耗性を有する材料をベースに、 耐焼付性を有する ように組成を修正した铸鋼が好ましい。
ニァネットシヱイプに一体錶造することにより、 構成部分の組み立てや接合 が不要となるだけでなく、 加工代を少なくできる。 このため、 冷却空洞部の加 ェゃ空洞部の蓋の取付け及ぴ頭部とスカート部との組立てが必要な米国特許第 5,136,992号に記載の組立式鍛造ビストンより、製造コストが著しく低いという 利点を有する。 また一体鍛造ピストンでは、 冷却空洞部を加工するのに加エス ペースが不要となり、 コンプレツシヨンハイ トを低くできるので、 ピストンの 軽量ィ匕とコンパク ト化が可能となる。 ピストンの構成部分となる頭部と、 ピン ボス部と、 スカート部とを含めて鎳造で一体に形成すれば、 冷却空洞部を必要 としないガソリンエンジン用のピストンとして使用できる。 さらに冷却空洞部 を含めて铸造一体に形成すれば、 ディーゼルエンジン用ビストンとして好適で ある。 特にピストンの頭部に燃焼室を有し、 燃焼室の近傍に冷却空洞部が形成 されている直噴型のディーゼルエンジン用ビストンとして最適である。
高温耐カ、 高温剛性、 耐熱亀裂性と同時に、 さらに加えて、 常温伸びを確保 するとともに、耐焼付性を兼備するには、組織中の共晶炭化物を面積率で:!〜 35% とする。 共晶炭化物は硬度が高いことから、組織中の共晶炭化物を、 面積率で 1 〜35%とすることで、 ピス トンに含まれる高硬度な共晶炭化物が、 例えば、 シ リンダライナ材に含まれるステダイト、ビストンリング材に含まれる Cr炭化物、 ビストンピン材の表面の浸炭焼入れによるマルテンサイト等相手部材に含まれ る高硬度な相からのビストンへの攻撃性を緩和させる。 また適量の共晶炭化物 を含むことで、 比較的凝着性の高いマトリックス相 (即ち、 基地組織) の面積 率が減少するので、 ビストンと相手部材とのマトリ ックス相同士の凝着を抑制 して耐焼付性を向上できる。上述の効果は共晶炭化物の面積率 1%以上で得られ るが、 これが 35%を超えると、 共晶炭化物が高硬度のため、 かえって相手部材 への攻擊性が増加して相手部材の摩耗を進行させるとともに耐焼付性が低下し、 また延性が低下する。このため組織中の共晶炭化物の面積率は 1〜35%に規定す る。 なお、 面積率とは、 視野の全測定面積に占める共晶炭化物の総面積の割合 (百分率) をいう。
また組織中の共晶炭化物が、 ,組織中に一様で均一に分散した状態ではなく、 共晶炭化物とマトリックス相 (基地組織) との集合体である共晶コロニーを形 成して、 この共晶コロニーが分散して存在することで、 延性を大きく損なわず に、 耐焼付性を向上させることができる。 共晶コロニーとは、 図 5に模式的に 示すように、 マトリックス相 53中に微細な共晶炭化物 51が密集して晶出し、 共晶炭化物 51とマトリ ックス相 53とがひとかたまりの集合体の形態で存在す るものをいう。 共晶炭化物は硬度が高いことから、 前述したとおり、 耐摩耗性 確保と耐焼付性向上に寄与するが、 さらにこれが共晶コロニーとして、 かつ組 織中に分散して存在すると耐焼付性が一層向上する。 すなわち、 ピストンとし て使用した場合、 相手部材との摺動により、 共晶コロニー内における共晶炭化 物同士の間や、 共晶コロニー同士の間に存在する比較的硬度の低い (軟ら力、い) マトリックス相が優先的に凹状に摩耗する。 この凹状の領域は、 潤滑油等の油 だまりとして作用するので、 ピストンの保油性が向上し、 その結果、 耐焼き付 き性が向上する。 また通常、 炭化物の増加は延性低下を招くが、 炭化物が微細 な共晶炭化物としてマトリックス相に囲まれて存在することで延性の低下が大 幅に抑制される。
本発明のピストンは、 相手部材として、 例えば F C300相当の高 P (リン) 片 状黒鉛鎳鉄からなるシリンダライナとの摺動においては、 ピストンに含まれる 共晶炭化物がシリンダライナ組織中に存在する高硬度なステダイトの攻撃性を 緩和してピストンに傷がつくのを防ぎ耐摩耗性が確保され、 同時に上述の保油 性が向上することによる相乗効果により、 耐焼き付き性に優れたものとなる。 また相手部材として、例えば浸炭焼入れした CrMo鋼もしくは Cr鋼からなるピ ストンピンとの摺動においては、 ビストンに含まれる共晶炭化物がビストンピ ンに含まれる高硬度な浸炭相によるビストンの摩耗を抑制して、 耐摩耗性と耐 焼き付き性の優れたピストンとなる。
本発明の内燃機関用ピストンにおいては、前記共晶炭化物の平均円相当径が、 3 μιη以下であるのが好ましい。 共晶炭化物の平均円相当径を 3 μπι以下とする ことで、 共晶炭化物の切り欠き感度を低下させ、 ピストンを加工する際の被削 性を確保し、 延性を大きく低下させない。 さらに共晶炭化物の脱落によるアブ レシブな摩耗を抑制する効果により、 耐焼付性をより一層向上することが可能 となる。 なお、 共晶炭化物の平均円相当径とは、 共晶炭化物の面積を同一の面 積を有する円に換算したときの円 (疑似円) の直径の平均値をいう。
また前記共晶コロニーは、 1つ (ひとかたまり) の共晶コロニーの面積が 50 μηι2以上のものの数が、組織断面積 1 mm2中 (即ち、単位平方ミリ面積当たり) にて 10個以上であるのが好ましい。 組織中の共晶コロニーの大きさと、 その単 位面積当たりの数を上記のように規定することで、 ピス トン自体の耐摩耗性と 保油性、 相手部材への攻撃性等のバランスが適正に保たれて、 ピストンの耐焼 付性をより一層向上できる。
なお、 共晶炭化物を生成するには、 Ti、 Zr、 Hf、 V、 Nb、 Taといった IVa 族、 Va族の元素を含有すればよい。 これらの元素は Cと結合して共晶炭化物を 微細化するとともに、 共晶炭化物をマトリックス相に囲まれた集合体の形態、 すなわち、共晶コロエーとして晶出させ、耐焼付性、耐摩耗性向上に寄与する。 このうち特に共晶炭化物が、 N 炭化物 (N C) を含めば、 耐焼付性、 耐摩耗性 の向上に加えて、 後述する作用効果により、 铸造性の改善や被削性の確保が促 進されより好ましい。 図面の簡単な説明
図 1は本発明のビス トンを示す断面図である。
図 2は実施例 41の金属組織顕微鏡写真 (100倍) である。 図 3は比較例 5の金属組織顕微鏡写真 (100倍) である。
図 4は実施例 41の金属組織顕微鏡写真 (400倍) である。
図 5は共晶炭化物と共晶コロニーの模式図である。
図 6は熱亀裂試験装置の模式図である。
図 7は往復動摩擦摩耗試験の模式図である。
図 8はピンオンデイスク試験の模式図である。
図 9は別に製作したピンボス部を含む頭部とスカート部とを組み立てた従来 のビス トンを示す断面図である。 発明を実施するための最良の形態
[1] 麵の組成
(A) 第一の錶鋼 (α-Ρ系鎳鋼)
(1) C: 0.8%以下
Cは、 共晶炭化物を生成させるとともに、 凝固温度を低下させ、 溶湯の流動 性、すなわち錶造時の湯流れ性を向上する等铸造性を良好にする。この効果は、 ピス トンを薄肉で錄造する場合に非常に重要である。 し力 し、 Cが 0.8%を超え ると共晶炭化物の面積率が 35%を超えて多量に晶出したり、 Cr等の析出炭化物 が増加して、 かえって耐焼付性と延性が低下するとともに、 相手部材への攻撃 性が強くなる。 したがって、 Cは 0.8%以下である。 Cの含有量は好ましくは 0.1 〜0.6%であり、 より好ましくは 0·3〜0·55%である。
(2) Si: 3%以下
Siは、溶湯の脱酸剤としての役割を有し、 COガス等に起因するガス欠陥を防 止する等铸造性を確保する。 Siが 3%を超えると、 耐熱衝撃性、 被削性を低下 させる。 したがって、 Siは 3%以下、 好ましくは 0.2〜2%である。
(3) Mn: 3%以下
Mnは、溶湯の脱酸作用及び非金属介在物を生成して被削性を改善する。 しか し Mnが 3%を超えると靭性が低下するので、 Mnは 3%以下、 好ましくは 0.3 〜3%、 より好ましくは 0·3〜2%とする。
(4) Ni: 3%以下 Niは、 ピストン温度が 450°C以上に上昇しても、 高温耐カ、 高温強度の低下 を抑え、 かつ高温剛性を確保することで、 ピストンの精密に加工した寸法精度 を保ち、 摩耗、 プロ一パイ、 カジリ、 焼付き、破損といった不具合を防止する。 このような作用を有する iの含有量は 3%以下であり、 好ましくは 1%以下で める。
(5) Cr: 6%以下
Crは基地組織を強化して高温耐カを高める作用を有する。 またビス トン表面 に不働態皮膜を形成して、 ビストン内部の基地組織が直接相手部材に触れる機 会を減ずる。 しかし 6%を超えると鏡鋼の被削性を低下させるため、 Crは 6% 以下とする。 Crの含有量はより好ましくは 4%以下であり、 特に 3%以下であ る。
(6) Cu: 6%以下
Cuは、基地組織中に微細に析出して、自己潤滑性を高め、焼付きを防止する。 し力 し、 6%を超えると高温剛性と延性を低下させるため、 Cuは 6%以下とす る。 Cuは好ましくは 1〜4%である。
(7) Nb: 0.01-3%
Nbは Cと結合して、 微細な共晶炭化物 ( bC) を共晶コロニーの形態で晶 出させ、 ピストンの耐焼付性及ぴ耐摩耗性を高める。 さらに铸造時の湯流れ性 を改善するとともに、 凝固収縮により生ずる引け巣、 割れ (熱間亀裂) 等の鏡 造欠陥を防止する等铸造性を向上する。 また Nbは Cr炭化物等の析出型の粗大 炭化物の生成を抑制するので、 延性低下や相手部材への攻撃性の増加を抑える とともに、 加工時の被削性を確保する。 さらに共晶炭化物のほかに、 炭窒化物 を形成してパーライトを強化する作用がある。 上記の効果を得るには、 0.01% 以上の Nbが必要である。 一方、 3%を超えると、 共晶炭化物の面積率が 35%を 超え、 力えって耐焼付性と延性の低下や相手部材への攻撃性の増加を招くとと もに、 耐熱亀裂性及び被削性を低下させる。 したがって、 Nbは 0.01〜3%とす る。 Nbは好ましくは 0.:!〜 3%、 より好ましくは 0.2〜3%である。
(8) S: 0.2%以下
Sは、 Mn、 Crと硫化物を生成して耐熱亀裂性を向上するとともに、 S系介在 物を生成して鍀鋼の被削性を改善する作用を有する。 しかし、 Sが 0.2%を超え ると、 S系介在物が過剰となり、 耐熱亀裂性が悪化する。 硫化物と S系介在物 とをバランスよく生成させて、適切な耐熱亀裂性及ぴ被削性を両立させるには、 Sは 0.2%以下、好ましくは 0駕〜0.2%、より好ましくは 0.03〜0.2%である。 (9) Mo: 5%以下
Moは、 高温強度を上昇させるため 5%以下、 好ましくは 1%以下とする。 (10) C o : 5%以下
C oは、基地組織に固溶して高温耐カ、高温強度、高温剛性を改善するため 5% 以下、 好ましくは 3%以下とする。
(11) Al、 M 及び Caの少なくとも 1種: 0.04%以下
Al、 Mg及び Caは、 溶湯の脱酸剤としての効果があり、 また被削性に効果の ある硫化物の核として作用し、 これを微細に分散する効果を有するため、 含有 させることができる。 一方、 これらを過剰に含有させると非金属介在物として 基地組織中に残留し、耐熱亀裂性を低下させる。 したがって、必要に応じて Al、 Mg及ぴ Caの少なくとも 1種を 0.04%以下含有させることができる。
(12) その他の元素
Ti、 Zr、 Hf、 V、 Ta等の I V a族、 V a族の元素も N と同様の効果を有する。 V及び Tiの含有量はそれぞれ 0.5%以下であるのが好ましい。また Wは 5%以下 含有しても良く、 Bは 0.05%以下含有しても良く、 Nは 0.1%以下含有しても良 い。
(B) 第二の錶鋼 (δ-M系錶鋼)
(1) C: 0.:!〜 0.8%
第一の錶鋼の場合と同様に、 Cは共晶炭化物を生成させるのに必須で、 铸造 性を良好にする作用を有する。 し力 し、 Cが 0.8%を超えると共晶炭化物の面積 率が 35%を超えて多量に晶出したり、 Cr等の析出炭化物が増加して、 かえって 耐焼付性と延性が低下するとともに、相手部材への攻撃性が強くなる。 したがつ て、 Cの含有量は 0.;!〜 0.8%であり、 好ましくは 0.1〜0.55%であり、 より好ま しくは 0·:!〜 0.4%である。
(2) Si: 3%以下 第一の鎊鋼と同じ理由により、 Siは 3%以下であり、 好ましくは 0.2〜2%で ある。
(3) Mn: 3%以下
第一の鎵鋼と同じ理由により、 Mnは 3%以下であり、好ましくは 0.3〜3%で ある c
(4) Ni: 10%以下
第一の錄鋼と同じ理由により、 Niは好ましくは 0.5〜6%である。
(5) Cr: 30%以下
Crは、 ピス トン表面に不働態皮膜を形成して、 ピストン内部の基地組織が直 接相手部材に触れる機会を減ずる。 また Niや Cuとの組合せで基地組織をマル テンサイトにしてビストンの強度を高める作用を有する。 30%以上含有しても 効果の程度は変わらず、 合金コストが上昇して不経済なほか、 Cとの析出炭化 物が増加して、 延性や加工時の被削性の低下や相手部材への攻撃性の増加を招 くことから 30%以下とする。 Crは好ましくは 6〜20%である。
(6) Cu: 6%以下
Cuは墓地組織中に微細に析出して、 自己潤滑性を高め、 焼付きを防止する。 し力 し、 6%を超えると高温剛性と延性を低下させるため、 Cuは 6%以下とす る。 Cuは好ましくは 1〜4%である。
(7) .Nb: 0.05-8%
Nbは Cと結合して、 微細な共晶炭化物 (NbC) を共晶コロニーの形態で晶 出させ、 ピストンの耐焼付性、 耐摩耗性を高める。 さらに铸造時の湯流れ性を 改善するとともに、 凝固収縮により生ずる引け巣、 割れ (熱間亀裂) 等の鍚造 欠陥を防止する等铸造性を向上する。 また Nbは Cr炭化物等の析出型の粗大炭 化物の生成を抑制するので、 延性低下や相手部材への攻撃性の増加を抑えると ともに、 加工時の被削性を確保する。 さらに NbCは高温耐カを向上する効果も 有する。 このような効果を得るには、 0.05%以上の Nb含有量が必要である。 一 方、 8%を超えると、共晶炭化物の面積率が 35%を超え、 かえって耐焼付性と延 性の低下や相手部材への攻撃性の増加を招くとともに、 耐熱亀裂性及ぴ被削性 を低下させる。したがって、 Nbは 0.05〜8%とする。 Nbは好ましくは 0.2〜5%、 より好ましくは 0.2〜3.5%とする。
(8) S: 0.2%以下
Sは、 Mn及び Crと硫化物を生成して耐熱亀裂性を向上するとともに、 耐熱 亀裂性を低下させる S系介在物を生成して、 その内部潤滑作用によつて被削性 を改善する。 しかし、 Sが 0.2%を超えると、 S系介在物が過剰となり、 耐熱亀 裂性を悪化させる。 硫化物と S系介在物とをバランスよく生成させて、 適切な 耐熱亀裂性及び被削性を両立させるには、 Sは 0.2%以下であり、好ましくは 0.05 〜0.2%であり、 より好ましくは 0.1〜0.2%以下である。
(9) Mo: 5%以下
第一の鏡鋼と同じ理由により、 Moは 5%以下であり、 好ましくは 3%以下で ある。
(10) C o : 5%以下
第一の鎳鋼と同じ理由により、 C oは 5%以下であり、 好ましくは 3%以下で ある。
(11) C、 Ni及び N の比率
C、 Ni及ぴ Nb の含有量は、 0.05く (C % + 0.15ΝΪ % - 0.12Nb % ) ≤0.8 (質 量比)の条件を満たすのが好ましい。 ピストンを低コストに鎳造するためには、 安価な原材料を用レ、ることが必要である。 原材料となるスクラップ材によって は、 鎵造時の湯流れ性等、 鎳造性の確保のために、 高い C量で鎳造せざるを得 ない場合もある。 S-M系铸鋼においては、 C量が多くなると Ms点を低下させ、 常温でオーステナイトが多量に残留して、 高温耐カ、 高温剛性が得られない場 合がある。 NbCを生成させ、 オーステナイト中の C量を低下させ、 結果として 基地の Ms点の低下を防ぐ作用のある Nbと、 Ms点の低下を招く Ni量を、 0.05 く (C% + 0.15Ni% -0.12Nb%) ≤0.8の範囲に制限することで、 所望の高温耐 力及び高温剛性が得られる。
(12) Al、 Mg及ぴ Caの少なくとも 1種: 0.04%以下
第一の铸鋼と同じ理由により、 Al、 Mg及び Caの少なくとも 1種を 0.04%以 下含有しても良い。
(13) その他の元素 Ti、 Zr、 Hf、 V、 Ta等の I V a族、 V a族の元素も Nbと同様の効果を有する。 V及ぴ Tiの含有量はそれぞれ 0.5%以下であるのが好ましい。また Wは 5%以下 含有しても良く、 Bは 0.05%以下含有しても良く、 Nは 0.1%以下含有しても良 い。
(14) 不可避的不純物
Pは原料から不可避的に混入するが靭性を低下させるので少ないほど好ましく、 具体的には 0.05%以下にするのがよい。
[2] 内燃機関用ピストンの組織及ぴ特性
鎳鋼は組織中の共晶炭化物が面積率で 1〜35%であり、前記共晶炭化物が共晶 コロニー (共晶炭化物とマトリックス相の集合体) を形成した組織を有するの が好ましい。共晶炭化物の平均円相当径は 3 μπι以下であるのが好ましい。前記 共晶コ口-一は、 1つの共晶コロニーの面積が 50 μπι2以上のものの数が、 組織 断面積 1 mm2中に 10個以上であるのが好ましい。前記共晶炭化物は Nb炭化物 を含むのが好ましい。
第一及ぴ第二の内燃機関用ピストンにおいて、 組織中の Mn、 Crの少なくと も 1種を含む硫化物の面積率が 0.2〜3.0%であり、 全硫化物の数に対する円形 度 0.7以上の硫化物の数が 70%以上であるのが好ましい。
ピストンの部材として、 耐熱性、 耐食性、 耐摩耗性を有する鎳鋼のなかから 材料を適切に選択することで、ビストン温度が 450°C以上と上昇し、燃焼圧力が 20 MPa以上と上昇しても、 十分な高温耐カ、 高温剛性、 耐熱亀裂性とを備えた ピス トンとなる。 例えば、 鑤鋼は球状黒鉛鎳鉄等に較べ、 耐熱亀裂性が高いの で高温となる燃焼室やその近くのリップに熱亀裂が発生しにくく、 また高温剛 性が高いので軽量化のために主要部肉厚を薄肉にしても形状寸法を維持できる ので、 摩耗、 ブローバイ、 カジリ、 焼付き、 破損といった不具合を生じにくく エンジン性能を損なうことがない。 さらにピストンの軽量化やコンプレツショ ンハイ トを低くする等のコンパクト化により、 エンジン全体の重量低減、 ェン ジンの高出力化と低燃費化、 エンジンの騷音低減、 エンジンルームの小容量化 を図ることが可能となる。 また共晶炭化物の面積率を規定することで十分な延 性 (常温伸ぴ) が確保され、 エンジンでの使用はもとより、 部品としての生産 中、 エンジンへの配置、 組み付けの等取扱い最中に亀裂や割れを発生しない。 前記鏡鋼は、 350°Cから 500°Cの範囲において、 350 MPa以上の 0.2%耐カ、 及び 140 GPa以上の縦弾性係数を有する。 具体的には、 350〜500°Cの範囲にお いて、 0.2%耐カは 350°Cで 400 MPa以上、 450°Cで 350 MPa以上、 500°Cで 300 MPa以上を確保するのが好ましい。 また高温剛性の指標となる縦弾性係数 はビストン温度 450°C以上で 100 GPa以上を確保することが望ましい。 このよ うに高温での耐カと剛性とが確保されれば、 その相乗効果により耐熱亀裂性も 確保される。 さらに延性の指標となる常温伸ぴは、 実用上問題のないレベルと して 3.0%以上を確保することができる。
低熱膨張性を示す指標である常温から 500°Cまでの平均線膨張係数は 10〜: 16 X 10-Gノ。 Cであるのが好ましい。 これにより、 片状黒鉛铸鉄製のシリンダライナ の平均線膨張係数 (20〜480°Cの温度範囲で 13.1 X 10"6/°C) とほぼ等しくなつ て、 常温から 450〜500°Cの温度域で使用してもビストンの外径とシリンダライ ナとのクリアランスを小さく、 かつ適正に確保、 維持できて、 潤滑のためのォ ィル消費を少なくする。 また燃焼ガスがビストン、 ピストンリング、 シリンダ ライナのクリァランスを通ってクランクケースへ吹き抜ける、 いわゆるブロー バイを低減してエンジンの出力を確保し、 さらにピストン、 ピストンリング、 シリンダライナ間に生成された油膜を切ることなくこれらの部品の摩耗を抑制 し、 さらにエンジンの騒音を低減できる。
[3] 内燃機関用ビストンの製造方法
(Α) α-Ρ系铸鋼ビストン
第一の内燃機関用ピストンの製造方法は、 α-Ρ系鎵鋼を鎳造後、 850°C以上に 保持して空冷することを特徴とする。 錶放しのピストンでは、 製品形状、 方案 配置、 鎳型形状等の要因で、 ピストン各部の凝固冷却速度がまちまちになる場 合があるので、 熱処理により材質を均一化し、 耐摩耗性、 硬度及び機械的性質 を調整するのが好ましい。铸造後 850°C以上に加熱保持した後、空冷する焼準処 理を施すことで、 初析フ ライトと緻密なパーライトの混合組織が得られ、 ピ ストン材として必要な強度と耐摩耗性が確保できる。
加熱温度が 850°C未満では完全にォーステナイト化しない。一旦、全組織をォー ト化するためには、 850°C以上に加熱する必要がある。 好ましい加熱保 持温度は 900〜950°Cである。
加熱保持時間は、 ピストンのサイズ、 形状等によつて決まるので一概にいえ ないが、小型のビストンで 0.5時間以上、大型のビストンで 1時間以上である。 (B) δ-Μ系铸鋼ビストン
第二の内燃機関用ピストンの製造方法は、 δ-M系铸鋼を鎳造後、 (a) 450°C以 上に保持して空冷するか、 (b) 1000°C以上に保持して急冷した後、 450°C以上に 保持して空冷することを特徴とする。 ピストンは、 使用中の材質変化により永 久変形が生ずると、ブローバイや磨耗、焼付き又は破損といった不具合が生じ、 エンジン性能を損なうので、 材質変化は予め極小化しておく必要がある。 この ため、 使用温度超の温度に保持して材質を安定化させることが有効である。 具 体的には、鎳造後、ピストンの使用温度である 450°C以上に保持して空冷する時 効処理を施すのが好ましい。 さらにこの時効処理に先立ち、 鑤造後、 1000°C以 上に保持して急冷する固溶ィヒ処理を施しておけば、 材料中の脆い炭化物 (例え ば Cr炭化物) が固溶化し、 靭性及び延性が確保されるのでより好ましい。 固溶化処理と時効処理とにおける加熱保持時間は、 ビストンのサイズ、 形状 等によって決まるので一概にいえないが、小型のもので前者 0.5時間以上、後者 2時間以上、 大型のものでは前者 1.5時間以上、 後者 4時間以上を目安とする。 本発明を以下の実施例によりさらに詳細に説明するが、 本発明はそれらに限 定されるものではない。 実施例 1〜20、 比較例 1〜4、 従来例 1, 2
(1) サンプルの作製
表 1は本実施例及び比較例に使用したサンプルの化学組成(質量%)を示す。 実施例 1〜20は、 Cr含有量が少ない α-Ρ系鏡鋼 (本発明の組成範囲内) からな るサンプルを示し、比較例 1〜4は本発明の組成範囲外の α-Ρ系錶鋼のサンプル を示す。比較例 1は Nbの含有量が少なすぎる鎳鋼であり、比較例 2は Nbの含 有量が多すぎる铸銅であり、 比較例 3は Sの含有量が多すぎる鎳鋼であり、 比 較例 4は Nbの含有量が少なすぎて Sの含有量が多すぎる铸鋼である。 また従 来例 1は特開平 10-85924号に開示された球状黒鉛铸鉄 (JIS F CD600) を使 用した例であり、 従来例 2は米国特許第 5,136,992号に開示された鍛造鋼を使 用した例である。
実施例 1〜20及び比較例 1〜4の讓を 100 kg高周波溶解炉 (塩基性ライ二 ング) で溶解した後、 1550°C以上で取鍋に出湯し、 直ちに 1500°C以上で 1イン チ Yプロックに注湯した。 実施例 16及び 20以外の実施例 1〜20の鎳鋼、 及び 比較例 1〜4の錡鋼に対して、鎳造後 850〜: L000°Cで 1時間保持し、次いで空冷 する焼準熱処理を施し、 基地組織がフェライト相及ぴパーライト相からなるサ ンプルとした。
JIS F CD600相当の球状黒鉛铸鉄の従来例 1については、 100 kg高周波溶 解炉 (酸性ライニング) で溶解し、 1500°C以上で取鍋に出湯中に、 Fe-75%Si と Fe-Si-4%Mgを用いたサンドィツチ法で球状化処理し、 さらに注湯直前に、 Fe-75%Siで 2次接種を行い、 1ィンチ Yブロックに注湯してサンプルとした。 また米国特許第 5,136,992号に開示された鍛鋼製ビストンに相当する組成を有 する従来例 2の铸鋼は、 真空溶解してインゴッ トに注湯し、 次いでインゴッ ト を 1100°Cで鍛伸した後、 950°Cから焼準熱処理を施してサンプルとした。
Fe以外の化学組成 (質量%)
例 No.
C Si Mn S Ni Cr Cu Nb V その他 実施例 1 0.09 0.16 0.22 0.003 0.01 0.02 0.02 0.01 - - 実施例 2 0.11 0.25 0.32 0.006 0.04 0.09 0.03 0.11 - - 実施例 3 0.20 0.21 0.32 0.021 0.12 0.25 0.05 0.17 - - 実施例 4 0.54 1.44 0.56 0.084 0.87 1.66 1.59 0.59 - - 実施例 5 0.55 1.95 1.97 0.147 0.98 2.93 3.66 2.46 - - 実施例 6 0.79 2.87 2.56 0.194 2.86 5.98 5.94 3.00 - - 実施例 7 0.20 0.55 2.86 0.030 0.50 0.10 0.11 0.06 - - 実施例 8 0.31 0.87 1.52 0.033 0.11 0.08 1.10 0.10 - - 実施例 9 0.55 2.47 0.97 0.022 0.07 0.05 2.50 0.50 - - 実施例 10 0.37 2.51 0.30 0.150 2.70 0.31 0.10 0.37 - - 実施例 11 0.40 0.91 0.40 0.030 0.05 3.16 0.08 0.48 - - 実施例 12 0.41 2.36 0.68 0.022 0.05 5.99 0.01 0.12 - - 実施例 13 0.30 0.65 0.65 0.033 0.11 0.08 5.80 0.05 - - 実施例 14 0.35 0.80 1.98 0.022 0.08 0.03 0.08 0.04 0.12 Ti: 0.008 実施例 15 0.42 0.68 1.01 0.040 0.08 0.10 0.03 0.31 0.03 Ti: 0.004 実施例 16* 0.42 0.68 1.01 0.040 0.08 0.10 0.03 0.31 0.03 Ti: 0.004 実施例 17 0.40 0.89 0.41 0.120 0.10 0.10 0.12 0.06 - Mo: 1.69 実施例 18 0.46 0.76 0.33 0.132 0.09 0.12 0.09 0.06 - Co: 2.52 実施例 19. 0.43 0.61 1.01 0.020 0.10 0.03 3.70 0.20 - Al: 0.021 実施例 20* 0.43 0.61 1.01 0.020 0.10 0.03 3.70 0.20 Al: 0.021 比較例 1 0.41 0.80 1.00 0.020 0.11 0.10 0.12 0.005
比較例 2 0.38 0.85 0.98 0.019 0.12 0.15 0.12 3.22
比較例 3 0.45 0.87 1.10 0.211 0.11 0.05 0.05 0.04
比較例 4 0.57 0.55 1.75 0.209 0.03 0.03 0.03 0.005 0.50
従来例 1 3.70 2.23 0.35 0.006 0.03 0.02 0.67 Mg: 0.042 従来例 2 0.41 0.65 1.17 0.030 0.10 0.11 0.11 0.08
注: *熱処理なし。
(2) 共晶炭化物及び共晶コロニーの解析
得られた各サンプルの金属組織を観察して、 共晶炭化物及ぴ共晶コロニー ついて解析した。各サンプルから切り出した試験片を樹脂に埋め込み、ェメリ、 紙で # 1000番まで研磨し、 さらに 15 μπι、 9 μηι、 3 μιη、 1 μηιのダイヤモンド 粒子による研磨及ぴコ口ィダルシリカによる仕上げ研磨を順次行つた後、 観察 面をナイタール腐食液でエッチング処理した。
画像解折装置(旭化成(株)製、商品名 I P-1000) を用いて、倍率 200倍で、 30396.6 μηι2の任意の 5視野について、 共晶炭化物の面積率 (%) 及び平均円 相当径 (μπι)を測定した。 共晶炭化物の面積率は、 各視野内の共晶炭化物の面積 の合計を、全視野面積 (30396.6 ιη2)で割った値を 5視野で平均した値である。 なお、 非金属介在物は共晶炭化物の面積率と平均円相当径の測定対象から除外 した。 結果を表 2に示す。
面積 50 μιη2以上の共晶コロニー数については、 まず研磨、 腐食したサンプル を、 光学顕微鏡により倍率 100倍で任意の 5視野を撮影した。 得られた顕微鏡 写真から、 10 μπι以下に接近又は接触した複数の共晶炭化物の集まりを 1つの 共晶コロニーと定義する。共晶コロニーの面積は、図 5の模式図で示すように、 共晶コロニー 52を囲む包絡線 Lを引き、 この包絡線 Lによって囲まれる面積と 定義する。 共晶炭化物 51が小さくて不明瞭な場合や、 共晶炭化物 51同士の距 離が不明確な場合、 観察部分を 100倍以上に拡大して、 その大きさや距離を判 別した。 次に、 上記画像解析装置により面積 50 μιη2以上の共晶コ口ニーの数を 測定し、 これを測定面積で割り、 得られた値を 5視野で平均し、 単位面積 (1 mm2) 当たりの共晶コロニーの数を求めた。 結果を表 2に示す。
(3)耐焼付性
各サンプノレに対して、 ピストンとビストンピンの摺動に相当する往復動摩擦 摩耗試験と、 ビストンとシリンダライナの摺動に相当するピンオンディスク試 験を行い、 耐焼付性を評価した。
(a)耐ピン焼付き性
往復動摩擦摩耗試験は以下の手順で行った。 まず各サンプルを 60 mm X 20 mm X 5 mmの板状試験片 71に加工し、 0.:!〜 0.2 μπιの平均表面粗さ R a (JIS B 0601) に研磨した。 図 7に示すように、 各板状試験片 71を図示しない往復 運動働摩擦試験機 ( (株) オリエンテック製、 商品名 A F T -15M型) に取り付 けた。 板状試験片 71の表面に潤滑油 (10W-30相当) を矢印 76に示す方向か ら滴下した。 相手材としてビストンピンに相当する高炭素ク口ム軸受鋼 SUJ2 (JIS G 4805) 製の直径 5 μιηの球 72を板状試験片 71に 58.8 Νのスラスト荷 重 75で接触させた状態で、板状試験片 71を 1 cmの摺動幅及ぴ 1.6秒の往復時 間で矢印 74に示す方向に往復摺動させ、摩擦力を測定した。摩擦力が 6.86Nに 達するまでの往復摺動回数 (以下、 「摩擦回数」 という) を求め、 以下の基準 で耐ピン焼付き性を評価した。
◎:摩擦回数が 400回以上
〇:摩擦回数が 300回以上 400回未満
△:摩擦回数が 200回以上 300回未満
X:摩擦回数が 200回未満
(b)耐ライナ焼付き性
ピンオンディスク試験は図 8に装置で実施した。 ピンオンディスク試験装置 は、 試験片を保持する円盤状ホルダ 82と、 円盤状ホルダ 82に対向して配置さ れた相手材に相当する材質からなるディスク 83と、 試験片にスラスト荷重 85 をかけるために円盤状ホルダ 82に設けられた手段(図示せず) と、ディスク 83 を矢印 84方向に回転させる手段 (図示せず) とを有する。
各サンプルを 5 mmX 5 mm X 10 nmiの角柱形状に機械加工し、 表面粗さ 0.5 mR a以下に仕上げたピン試験片 81を作製した。 ディスク 83は直径 80 mm X厚さ 12 mmで、 F C300相当の高 P (リン) 片状黒鉛鑤鉄により形成した。 円盤状ホルダ 82に取り付けた 4個のピン試験片 81をディスク 83に接触させ、 試験片 81とディスク 83の接触面に潤滑油 (10W-30相当) を矢印 86の方向か ら滴下した。 この状態でディスク 83を回転させ、 スラスト荷重 85を段階的に 増大させた。スラスト荷重 85はピン試験片 81とディスク 83の接触面の面圧で あり、 ディスク 83の回転速度は摺動速度である。 下記 (1) 〜(7) の条件でピン オンディスク試験を実施した。
(1) 試験開始面圧: 15
Figure imgf000022_0001
(2) 試験終了面圧: 500 kgj^cm2
(3) 面圧力増加間隔: 5 kg£½n2づっ上昇 (4) 各面圧での荷重保持時間: 1 min
(5) ディスク摺動速度: 2 m/s
(6) 潤滑油油温: 10°C (粘度グレード 100)
(7) 潤滑油供給条件:試験開始面圧で 10 cm3/minの速度で 1分間供給した 後、 供給を停止した。
ピン試験片 81及びディスク 83の一方に損傷が発生した時点での荷重を焼付 き荷重 (kgf) とし、 以下の基準で耐ライナ焼付き性を評価した。
◎:焼付き荷重が 120 kgf以上
〇:焼付き荷重が 100 kgf以上 120 kgf未満
Δ:焼付き荷重が 80 kgf以上 100 kgf未満
X :焼付き荷重が 80 kgf未満
往復動摩擦摩耗試験及びピンオンディスク試験の結果を表 2に示す。
表 2
Figure imgf000024_0001
注:(1) 50 μπι2以上の共晶コ口ニーの数。
表 2から明らかなように、 共晶炭化物の面積率は、 実施例 1〜3及び 14では 1%未満であるが、 実施例 4〜: 13及ぴ 15〜20では本発明の好ましい範囲 (1〜 35%) 内である。 また共晶炭化物の平均円相当径については、 実施例 1〜20は いずれも本発明の好ましい範囲 (3 μηι以下) 内である。 単位面積当たりの面積 50 p-m2以上の共晶コロニーの数は、実施例 1〜3、 7及ぴ 14以外の実施例では、 本発明の好ましい範囲 (10個/ mm2以上) 内である。 これに対して、 比較例 2 以外はいずれも本発明の好ましい範囲外である。 共晶コロニーの数が 10個ノ mm2未満の鎳鋼では、 組織中に共晶コロニーが多量に晶出し、 分散せずに連結 して粗大なコロニーが形成されていると考えられる。
表 2から、 往復動摩擦摩耗試験において実施例 1〜20はいずれも摩擦回数が 300回以上と多く、優れた耐ピン焼付き性を有することが分かる。またピンオン ディスク試験において実施例 1〜20はいずれも焼付き荷重が 100 kgf以上と大 きく、 優れた耐ライナ焼付き性を有することが分かる。 これに対して、 3.22質 量%と過剰の Nbを含有する比較例 2の試験片は、耐ピン焼付き性及び耐ライナ 焼付き性のいずれも優れていたが、 耐熱亀裂性に劣っていた。 またその他の比 較例の試験片はいずれも耐ピン焼付き性及び耐ライナ焼付き性に劣っていた。 共晶炭化物の面積率及び平均円相当径、並びに単位面積当たりの 50 μιη2以上 の共晶コ口ニーの数が大きいほど耐焼付性 (耐ピン焼付き性及ぴ耐ライナ焼付 き性) が大きくなる傾向が認められた。
(4)硫化物
(a)硫化物の面積率
各サンプルから切り出した試験片を樹脂に埋め込み、 ェメリー紙で # 1000番 まで研磨し、 さらに 15 μιη、 9 μηι、 3 μπι及ぴ 1 μηιのダイャモンド粒子による 研磨おょぴコロイダルシリカによる仕上げ研磨を順に行った。 各試験片の研磨 面を旭化成 (株) 製の画像解析装置 (I P-1000) を用いて倍率 200で観察し、 各硫化物粒子を同じ面積の円に換算し、直径を求めた。 直径が Ι.Ο μπι以上の円 に相当する硫化物粒子について、 視野における面積率 (%) を求めた。 結果を 表 3に示す。
(b) 円形度 0.7以上の硫化物の割合
硫化物の円形度は、 上記と同じ試験片を画像解析装置で観察して得られた各 硫化物粒子の像から、 (4 X π X硫化物粒子の面積) / (硫化物粒子の周囲長) 2の式で算出した。 これから、 円形度が 0.7以上の硫化物粒子の数を求め、 それ と全硫化物の数との比を計算して、円形度 0.7以上の硫化物の割合(%)とした。 結果を表 3に示す。
(5)組織
オーステナイト率 (γ率) は、 Rigaku製の X線応力測定装置 (ス トレインフ レックス MSF-2M) を用いて、 体積率 (%) として測定した。 結果を表 3に示 す。
(6) 常温伸ぴ
各サンプルから JIS Z 2201に従って 4号試験片を作製し、 ァムスラー引張試 験機で 25°Cにおける常温伸び (%) を測定した。 結果を表 3に示す。
(7) 高温耐カ
各サンプルから切り出した試験片に対して、 高温耐カとして、 JIS G 0567の 「鉄鋼材料及び耐熱合金の高温引張試験方法」に従って、 350°C、 450°C及び 500°C における 0.2%耐カ (MPa) を測定した。 結果を表 3に示す。
表 3
Figure imgf000027_0001
表 3から明らかなように、 実施例 1 3を除いて全ての実施例では、 硫化物の 面積率が 0.2 3%の好ましい範囲内にあり、 また実施例 1及び 2除いて全ての 実施例では、円形度 0.7以上の硫化物の割合が 70%以上の好ましい範囲内にあつ た。 オーステナイト率については、全ての実施例で 0%であり、 30%以下という 好ましい範囲内であった。 常温伸び及び高温耐カに関しては、 実施例 1〜20は 比較例 1〜4及び従来例 1及ぴ 2とほぼ同等であった。
(7) 高温剛性
高温剛性測定用試験片として、 JIS Z 2280の 「金属材料の高温ャング率試験 方法」 に従って、 各サンプルから 1.5 mm X 10 mm X 60 mmの全面研磨加工し た板状試験片を作製した。 各試験片をそれぞれ 350°C、 450°C及び 500°Cの大気 雰囲気の炉内に入れ、 自由保持式静電駆動方式で加振して振動の共振周波数を 検出し、 共振周波数から縦弾†生係数 (GPa) を算出した。 結果を表 4に示す。 (8) 耐熱亀裂性
図 6に示す熱亀裂試験装置 60を用いて、耐熱亀裂性の試験を行った。熱亀裂 試験装置 60は、冷却水 62を入れる昇降自在の水槽 61と、高周波発振機 63と、 高周波発振機 63に接続して高周波発振するコイル 64と、試験片 67を先端に取 り付ける棒 66と、 棒 66を回転自在に保持する軸 65と、 試験片 67に貼り付け る熱電対 68と、熱電対 68に接続した温度データの記録計 69とを有する。試験 片 67は直径 90 mm X厚さ 50 mmに加工した。
(1)試験片 67を水平にした状態で、 高周波発振コイル 64により試験片 67の 表面を 450°Cに加熱し、(2)試験片 67を下方に旋回した後に水槽 61を上昇させ (二点鎖線で示す) 、 常温の冷却水 62により急冷し、 (3) 水槽 61を下降すると ともに試験片 67を元の水平状態に戻す工程からなる加熱冷却サイクル (5秒) を 1000回繰り返した後、 耐熱亀裂性の指標として試験片断面の最大亀裂長さ (μπι) を測定した。 耐熱亀裂性の評価基準は以下の通りである。
◎:最大亀裂長さが 50 μηι以下
〇:最大亀裂長さが 50 μιη超で 100 μπι以下
Δ:最大亀裂長さが 100 μιη超で 150 μιη以下
X :最大鼂裂長さが 150 μηι超
最大亀裂長さの測定結果及ぴ耐熱亀裂性の評価結果を表 4に示す。
(9) 常温〜 500°Cの平均線膨張係数
直径 5 mm X厚さ 20 mmに加工した試験片を、熱機械分析装置 (理学電機 (株) 製、 THEMOFLEX TAS-200 TAS8140C) を用いて、 大気雰囲気中で昇温速度
3°CZ分の条件で常温〜 500°Cの範囲で熱膨張量を測定した。 得られた熱膨張量 から平均線膨張係数を求めた。 結果を表 4に示す。 表 4 縦弾性係数 (GPa) 耐熱亀裂性
例 No. 吊温〜 500 Cの平均綱 最大亀裂
OUし ^touし し 張係数 (Χ 10·6/° 長さ (μιη)
実施例 1 194 」 177 161 90 〇 12.9 実施例 2 193 173 160 94 O 12.8 実施例 3 _J 195 176 160 87 〇 12.4 実施例 4 192 175 158 80 ◎ 12.5 実施例 5 191 176 158 80 ◎ 12.1 実施例 6 193 177 157 88 〇 12.2 実施例 7 194 171 153 95 o 11.8 実施例 8 196 172 153 94 〇 11.9 実施例 9 197 173 155 55 ◎ 12.1 実施例 10 197 164 157 51 ◎ 12.5 実施例 11 198 168 156 47 ◎ 12.4 実施例 12 197 168 158 50 ◎ 11.9 実施例 13 199 173 154 90 〇 12.6 実施例 14 195 173 155 89 〇 12.8 実施例 15 194 172 155 87 〇 12.6 実施例 16* 193 168 154 98 〇 12.4 実施例 17 198 171 155 49 ◎ 12.4 実施例 18 195 174 157 60 ◎ 12.2 実施例 19 195 168 155 46 ◎ 12.0 実施例 20* 195 168 155 46 ◎ 12.0 比較例 1 194 174 152 117 Δ 12.1 比較例 2 197 174 155 100 Δ 12.6 比較例 3 194 171 151 178 X 12.6 比較例 4 195 176 148 156 X 12.6 従来例 1 175 160 135 325 X 13.1 従来例 2 194 174 155 121 Δ 14.0 高温剛性に関しては、実施例 1〜20は比較例 1〜4及び従来例 1及び 2とほぼ 同等であった。 しかし耐熱亀裂性に関しては、 比較例 1〜4及び従来例 1及び 2 ではいずれも最大亀裂長さが 100 μηιを超えていたのに対し、 実施例 1〜20で はいずれも最大亀裂長さが 100 μηι未満であつた。
これらの結果力 ら、 本発明の要件を満たすパーライト系铸鋼は、 他の材質と 同等の常温伸び、 高温耐カ及び高温剛性を有するとともに、 他の材質より著し く優れた耐焼付性及び耐熱亀裂性を有することが分かる。 実施例 21〜45、 比較例 5〜11
(1) サンプルの作製
表 5は本実施例及び比較例に使用したサンプルの化学組成(質量%)を示す。 実施例 21〜45は、 Cr含有量が多い δ-Μ系鎳鋼 (本発明の組成範囲内) からな るサンプルを示し、 比較例 5〜: 11は本発明の組成範囲外の δ-Μ系鎵鋼のサンプ ルを示す。 比較例 5は C及び Sの含有量が少なすぎる铸鋼であり、 比較例 6及 び 7は Cの含有量が少なすぎ、 Sの含有量が多すぎる錶^!である。 比較例 8〜 10は Sの含有量が多すぎる铸鋼であり、 比較例 11は Nbの含有量が少なすぎ る铸鋼であり、 比較例 12は Nbの含有量が多すぎる鎳鋼である。
実施例 21〜45及び比較例 5〜11の錶鋼を 100 kg高周波溶解炉 (塩基性ライ ユング) で溶解した後、 1550°C以上で取鍋に出湯し、 直ちに 1500°C以上で 1ィ ンチ Yブロックに注湯した。 実施例 31及ぴ比較例 6、 8〜10及び 12以外の実 施例及び比較例の鎵鋼に対して、铸造後 1000〜1200°Cで 1時間保持後急冷する 固溶化熱処理を施した後、 550〜630°Cで 2〜4時間保持後空冷する時効処理を 施した。 熱処理した各铸鋼の基地組織は δ-フェライト相及ぴマルテンサイト相 を含有し、 オーステナイト相が 30%未満であった。 表 5
Figure imgf000031_0001
注: *熱処理なし。 表 5 (続き)
Figure imgf000032_0001
(2)共晶炭化物及び共晶コ口ニーの解析
得られた各サンプノレに対して、実施例 1 20と同様に共晶炭化物の面積率(%) 及び平均円相当径 (μηι)、並びに面積 50 μιη2以上の共晶コロニーの数を測定した。 結果を表 6に示す。但し、観察面のエッチング処理は混酸溶液(Η20: 10 cmK HC1: 20 c HN03: 4 cm3, H2SO4: 1.3 cm3の混合溶液) で行った。
実施例 41の錶鋼の組織を図 2 (100倍の顕微鏡写真) 及び図 4 (400倍の顕 微鏡写真) に示す。 組織中には、 基地組織であるマルテンサイト相 23、 δ_フエ ライト相 24、 微細な共晶炭化物とマトリックス相 23との集合体である共晶コ ロニー 22、及び非金属介在物 25が観察される。また図 4には、共晶炭化物 41、 共晶コロニー 42、 基地組織であるマルテンサイト相 43、 及び非金属介在物 45 が観察される。
共晶炭化物の組成を、 エネルギー分散型 X線分光器付き電界放射型走査電子 顕微鏡 (FE-SEM EDS, (株) 日立製作所製 S-4000、 ED KEVE DELTA システム)を用いて分析した。その結果、共晶炭化物の組成は主に Nb炭化物 (NbC) からなることが確認された。 図 3は、 比較例 5の光学顕微鏡写真 (100倍) を 示す。 この組織中には、基地組織であるマルテンサイト相 33と δ-フェライト相 34、 及び非金属介在物 35が観察されるが、 共晶炭化物は観察されない。
(3)耐焼付性
各サンプルに対して、 ビス トンとビストンピンの摺動に相当する往復動摩擦 摩耗試験と、 ビストンとシリンダライナの摺動に相当するピンオンディスク試 験を行い、 耐焼付性を評価した。
(a)耐ピン焼付き性
実施例 1〜20と同様にして往復動摩擦摩耗試験を行い、 以下の基準で耐ピン 焼付き性を評価した。
◎:摩擦回数が 400回以上
〇:摩擦回数が 300回以上 400回未満
△:摩擦回数が 200回以上 300回未満
X :摩擦回数が 200回未満
(b)耐ライナ焼付き性
実施例 1〜20と同様にしてピンオンディスク試験を行い、 以下の基準で耐ラ イナ焼付き性を評価した。
◎:焼付き荷重が 120 kgf以上
〇:焼付き荷重が 100 kgf以上 120 kgf未満
Δ:焼付き荷重が 80 kgf以上 100 kgf未満
X :焼付き荷重が 80 kgf未満 往復動摩擦摩耗試験及びピンオンディスク試験の結果を表 6に示す。 表 6
Figure imgf000034_0001
表 6から明らかなように、 共晶炭化物の面積率は、 実施例 21~25及び 38で は 1%未満であるが、 実施例 26 37 39 45では本発明の好ましい範囲 (1 35%) 内である。 また共晶炭化物の平均円相当径については、 実施例 33以外い ずれの実施例も本発明の好ましい範囲 (3 μηι以下) 内である。 単位面積当たり の面積 50 μπι2以上の共晶コロニーの数は、 実施例 38以外のいずれの実施例で も本発明の好ましい範囲 (10個/ min2以上) 内である。 これに対して、 比較 例 9及び 10 (耐焼付性及び耐熱亀裂性に劣る) 以外の比較例 5〜12はいずれも 本発明の好ましい範囲外である。
表 6から、往復動摩擦摩耗試験において実施例 21〜45はいずれも摩擦回数が 300回以上と多く、優れた耐ピン焼付き性を有することが分かる。またピンオン ディスク試験において実施例 21〜45はレ、ずれも焼付き荷重が 100 kgf以上と大 きく、優れた耐ライナ焼付き性を有することが分かる。 これに対して、比較例 5 〜12は、 耐ピン焼付き性及ぴ耐ライナ焼付き性のいずれも劣っていた。
共晶炭化物の面積率及び平均円相当径、並びに単位面積当たりの 50 μπι2以上 の共晶コ口ニーの数が大きいほど耐焼付性 (耐ピン焼付き性及び耐ライナ焼付 き性) が大きくなる傾向が認められた。
(4)硫化物
(a)硫化物の面積率及び円形度 0.7以上の硫化物の割合
実施例 1〜20と同様にして各サンプルの硫化物の面積率(%)及ぴ円形度 0.7 以上の硫化物の割合を求めた。 結果を表 7に示す。
(5)組織
実施例 1〜20と同様にして各サンプルのオーステナイト率 率) を測定し た。 結果を表 7に示す。
(6) 常温伸び及び高温耐カ
実施例 1〜20と同様にして各サンプルの 25°Cにおける常温伸び (%) 、 及ぴ 350°C、 450°C及ぴ 500°Cにおける 0.2%耐カ ( MPa) を測定した。 結果を表 7 に示す。 表 7
Figure imgf000036_0001
表 7から明らかなように、 実施例 21以外の全ての実施例では、 硫化物の面積 率が 0.2〜3%の好ましい範囲内にあり、 また全ての実施例では、 円形度 0.7以 上の硫化物の割合が 70%以上の好ましい範囲内にあった。 オーステナイ ト率に ついては、 全ての実施例が 30%未満という本発明の好ましい範囲内にあつた。 常温伸び及ぴ高温耐力に関しては、実施例 21〜45は比較例 5〜: 12と同等以上で めった。
(7) 高温剛性
実施例 1〜20と同様にして各サンプルの縦弾性係数 (GPa) を測定した。 結 果を表 8に示す。
(8) 耐熱亀裂性
実施例 1〜20と同様にして各サンプルの最大亀裂長さ (μπι) を測定し、 以下 の基準で評価した。
◎:最大亀裂長さが 50 μπι以下
〇:最大亀裂長さが 50 μπι超で 100 μια以下
△:最大亀裂長さが 100 μηι超で 150 μιη以下
X :最大亀裂長さが 150 μπι超
最大亀裂長さの測定結果及び耐熱亀裂性の評価結果を表 8に示す。
(9) 常温〜 500°Cの平均線膨張係数
実施例 1〜20と同様にして各サンプルの常温〜 500°Cの平均線膨張係数を求め た。 結果を表 8に示す。
04629 表 8
Figure imgf000038_0001
高温剛性に関しては、 実施例 21〜45はいずれも 140 GPa以上という本発明 の好ましい範囲内であった。 耐熱亀裂性に関しても、 実施例 21〜45はいずれも 優れていた。 これに対して、比較例 6〜: 12ではいずれも最大亀裂長さが 100 μιη を超えていた。 比較例 5は最大亀裂長さが 35 μιηと小さかったが、 耐焼付性に 劣っていた。 これらの結果から、 本発明の要件を満たすマルテンサイト系铸鋼は、 他の材 質と同等以上の常温伸び、 高温耐カ及ぴ高温剛性を有するとともに、 他の材質 より著しく優れた耐焼付性及び耐熱亀裂性を有することが分かる。 実施例 46
0.24質量0 /0の C、 0.61質量%の
Figure imgf000039_0001
3.87質量0 /0の Ni、 15.92質量%の Gr、 2.99質量。 /0の Cu、 2.10質量%の Nb、及び 0.072質量0 /0の Sを含有するマルテンサイ 1、系铸銅を用いて、 図 1に示すビス トン 10を一体的 に铸造した。 このピストン 10は、 頭部 11、 スカート部 12、 冷却空洞部 13、 ピ ンボス部 14、 ピン嵌合内径 14d、 燃焼室 15、 頂面 16、 リップ 17、 トップラン ド 18、 及びリング溝 19を有する。 10hはコンプレツシヨンハイトを表し、 D は外径を表す。
上記錶鋼の特性は以下の通りであった。
共晶炭化物の面積率: 7.7%
共晶炭化物の平均円相当径: 2.0 μιη
面積が 50 μηι2以上の共晶コ口ニー数: 50個/ mm2
耐ピン焼付性 (摩擦回数) : 561回
耐ライナ焼付性 (焼付き荷重) : 130 Kgf
硫化物の面積率: 0.7%
円形度 0.7以上の硫化物 Z全硫化物: 86%
7率: 6.1%
常温伸び: 9.8%
0.2%耐カ
at 350°C : 625 MPa
at 450°C: 604 MPa
at 500°C : 512 MPa
縦弾性係数
at 350°C : 194 GPa
at 450°C : 170 GPa at 500°C: 153 GPa
耐熱亀裂性 (最大亀裂長さ) : 48 μηι
常温〜 500°C平均線膨張係数: 12.1 X 10"6/°C
上記铸鋼を 1610°Cで取鍋に出湯し、 図 1に示すビストン形状のキヤビティを 有する砂鎳型に 1520°Cで注湯した。鎳造後、 1040°Cに 1時間保持した後急冷す る固溶化熱処理を行い、 さらに 600°Cで 4時間保持後空冷する時効処理を行つ た。 次いでピストン 10の外周に切削加工及ぴ研削加工を行った。 軽量化を図る ため、 ビストン 10の主要部の平均肉厚を 3.0 mm以下とした。 鎵造工程で引け 巣、 湯廻り不良、 ガス欠陥等の問題となる鏡造欠陥は発生せず、 また加工工程 においても切削不具合や加工工具の異常摩耗等の不具合は生じなかつた。
得られたビストン 10のスカート部 12、 ピンボス部 14及ぴリング溝 19にお いて、 共晶炭化物の面積率は 3.2〜: L2.6%であり、 共晶炭化物の平均円相当径は 1.8〜2.4 μκιであり、単位面積当たりの面積 50 μηι2以上の共晶コ口ニー数は 48 〜72個/ mm2であった。
得られたピストン 10を 10,000 ccの 6気筒ディーゼルエンジンに搭載して、 ビストン温度 452°C、及ぴ燃焼圧力 20 MPaの条件で、 400時間の耐久試験を実 施した。 耐久試験中にブローバイや焼付き等の不具合は生じなかった。 また耐 久試験後にピストン 10の状態を観察したところ、 スカート部 12、 ピンボス部 14等に摩耗、 カジリ、 破損等がなく、 またリップ 17に熱亀裂がなかった。 比較例 13
従来例 1の铸鉄を使用して、 実施例 46と同様にピストンを作製した。 得られ たピス トンは、 スカート部、 ピンボス部及ぴリング溝の任意のいずれにも共晶 炭化物が観察されなかった。 このビストンに対して実施例 46と同じ条件で耐久 試験を行ったところ、 試験開始 5時間後に異常音が生じ、 エンジンの出力が低 下したため、 耐久試験を中止した。 耐久試験後のピストンの状態を観察したと ころ、 スカート部に強い当りを示すスカツフ痕が見られ、 リップには微小な熱 亀裂が発生していた。 この耐久試験結果から、 黒鉛の自己潤滑性により耐焼付 性が比較的良好な従来例 1の鎊鉄からなるビストンでも、 主要部の平均肉厚を 3.0 nmi以下とすると、 ピストン温度 450°C以上、 及び燃焼圧力 20 MPa以上と レヽう過酷な条件では耐熱性、 耐久性及び耐焼付性が不足することが分かる。 上記の通り、 本発明の内燃機関用ビス トンは、 良好な常温伸びを有するとと もに、 ビストン温度が 450°C以上で燃焼圧力が 20 MPa以上という過酷な条件 でも十分な高温耐カ、 高温剛性、 耐焼付性及び耐熱亀裂性を有する。 このよう な内燃機関用ビストンは自動車用エンジン、 特にディーゼルエンジンに好適で ある。

Claims

請求の範囲
1. —体的に錶造された鏡鋼からなることを特徴とする内燃機関用ビストン。
2. 請求項 1に記載の内燃機関用ビストンにおいて、頭部と、ピンボス部と、 スカート部とがー体的に铸造されていることを特徴とする内燃機関用ピストン。
3. 請求項 2に記載の内燃機関用ピストンにおいて、 さらに冷却空洞部を有 し、 一体的に鐯造されていることを特徴とする内燃機関用ビス トン。
4. 請求項 3に記載の内燃機関用ビストンにおいて、 ディーゼルエンジン用 ピストンであり、 頭部に燃焼室を有し、 前記燃焼室の近傍に冷却空洞部が形成 されていることを内燃機関用ビス トン。
5. 一体的に鍚造された铸鋼からなる内燃機関用ピストンであって、 前記铸 鋼が、 質量比で、 C: 0.8%以下、 Si: 3%以下、 Mn: 3%以下、 S: 0.2%以下、 Ni: 3%以下、 Cr: 6%以下、 Cu: 6%以下、 Nb: 0.01〜3%、 残部実質的に Fe 及び不可避的不純物からなる組成を有することを特徴とする内燃機関用ビスト ン。
6. 請求項 5に記載の内燃機関用ビストンにおいて、前記鐃鋼が、質量比で、 C: 0.1〜0.55%、 Si: 0.2〜2%、 Mn: 0.3—3%, S 0.005%超で 0.2%以下、 Ni: 1%以下、 Cr: 3%以下、 Cu: :!〜 4%、 Nb: 0.1〜3%、 残部実質的に Fe 及び不可避的不純物からなる組成を有することを特徴とする内燃機関用ビスト ン。
7. 一体的に铸造された錶鋼からなる内燃機関用ピストンであって、 前記铸 鋼が、 質量比で、 C: 0.1〜0.8%、 Si: 3%以下、 Mn: 3%以下、 S: 0.2%以下、 Ni: 10%以下、 Cr: 30%以下、 Cu: 6%以下、 Nb: 0.05〜8%、 残部実質的に Fe及び不可避的不純物からなる組成を有することを特徴とする内燃機関用ビス トン。
8. 請求項 Ίに記載の内燃機関用ビストンにおいて、前記鎳鋼が、質量比で、 C: 0.1-0.55%, Si: 0.2〜2%、 Mn: 0.3〜3%、 S: 0·05〜0·2%、 Ni: 0.5〜6%、 Cr: 6〜20%、 Cu: 1〜4%、 Nb: 0.2-5%, 残部実質的に Fe及び不可避的不 純物からなる組成を有することを特徴とする内燃機関用ピス トン。
9. 請求項 7又は 8に記載の内燃機関用ピス トンにおいて、 前記鍚鋼が、 質 量比で、 C、 Ni、 Nbを 0.05く (C% + 0.15Ni%-0.12Nb%) ≤0·8の範囲で含 有することを特徴とする内燃機関用ビストン。
10. 請求項 7〜9のいずれかに記載の内燃機関用ビストンにおいて、前記鑤鋼 は、 基地組織のオーステナイト相が 30%未満であることを特徴とする内燃機関 用ピストン。
11. 請求項 5〜10のいずれかに記載の内燃機関用ピストンにおいて、 前記鎵 鋼がさらに V及び/又は Tiを 0.5質量%以下含有することを特徴とする内燃機 関用ピストン。
12. 請求項 5〜: 11のいずれかに記載の内燃機関用ビストンにおいて、 前記鐃 鋼がさらに Al、 Mg及び Caの少なくとも 1種を 0.04質量%以下含有すること を特徴とする内燃機関用ビス トン。
13. 一体的に铸造された歸鋼からなる内燃機関用ピス トンであって、 前記鏡 鋼組織中の共晶炭化物が面積率で 1〜35%であり、 前記共晶炭化物が共晶コ口 ニー (共晶炭化物とマトリックス相の集合体) を形成した組織を有することを 特徴とする内燃機関用ピストン。
14. 請求項 13に記載の内燃機関用ビストンにおいて、前記共晶炭化物の平均 円相当径が 3 μπι以下であることを特徴とする内燃機関用ビストン。
15. 請求項 13又は 14に記載の内燃機関用ビス トンにおいて、 50 μπι2以上の 面積を有する共晶コロニーの数が l mm2の組織断面中に 10個以上であること を特徴とする内燃機関用ビストン。
16. 請求項 13〜: 15のいずれかに記載の内燃機関用ビストンにおいて、前記共 晶炭化物が Nb炭化物を含むことを特徴とする内燃機関用ビス トン。
17. 一体的に錄造された鐃鋼からなる内燃機関用ピス トンであって、 前記錄 鋼組織中の硫化物の面積率が 0.2〜3.0%で、 全硫化物の数に対する円形度 0.7 以上の硫化物の数が 70%以上であることを特徴とする内燃機関用ビストン。
18. 請求項 17に記載の内燃機関用ビストンにおいて、前記硫化物は Mn及ぴ Z又は Crを含むことを特徴とする内燃機関用ピストン。
19. 請求項 5〜: L8のいずれかに記載の内燃機関用ビストンにおいて、 前記鐃 鋼が 350°C〜500°Cの範囲において 350 MPa以上の 0.2%耐カ及び 140 GPa以 上の縦弾性係数を有し、かつ常温〜 500°Cの平均線膨張係数が 10〜: 16 X 10-6/°C であることを特徴とする内燃機関用ビストン。
20. 請求項 5又は 6に記載の内燃機関用ビストンを製造する方法であって、 前記铸鋼を鎵造後 850°C以上に保持してから空冷することを特徴とする方法。
21. 請求項 7〜10のいずれかに記載の内燃機関用ビストンを製造する方法で あって、前記鎵鋼を鐃造後 450°C以上に保持してから空冷することを特徴とする 方法。
22. 請求項 21に記載の内燃機関用ビストンの製造方法において、前記錶鋼を 铸造後、 1000°C以上に保持して急冷した後、 450°C以上に保持してから空冷する ことを特徴とする内燃機関用ビストンの製造方法。
PCT/JP2004/004629 2003-03-31 2004-03-31 内燃機関用ピストン WO2004094808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020057015993A KR101087562B1 (ko) 2003-03-31 2004-03-31 내연기관용 피스톤 및 그 제조 방법
US10/551,645 US7503304B2 (en) 2003-03-31 2004-03-31 Internal engine piston and its production method
JP2005505705A JP4500259B2 (ja) 2003-03-31 2004-03-31 内燃機関用ピストン及びその製造方法
EP04724758A EP1612395A4 (en) 2003-03-31 2004-03-31 PISTON FOR A COMBUSTION ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-097015 2003-03-31
JP2003097015 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004094808A1 true WO2004094808A1 (ja) 2004-11-04

Family

ID=33307899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004629 WO2004094808A1 (ja) 2003-03-31 2004-03-31 内燃機関用ピストン

Country Status (6)

Country Link
US (1) US7503304B2 (ja)
EP (2) EP2295777B1 (ja)
JP (1) JP4500259B2 (ja)
KR (1) KR101087562B1 (ja)
CN (1) CN100535423C (ja)
WO (1) WO2004094808A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406941B2 (en) 2004-07-21 2008-08-05 Federal - Mogul World Wide, Inc. One piece cast steel monobloc piston
JP2009541590A (ja) * 2006-06-30 2009-11-26 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の鋳鋼製ピストン
JP2015522738A (ja) * 2012-05-05 2015-08-06 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH ピストンとクランクケースとから成る内燃機関用のアッセンブリ
JP2016509160A (ja) * 2013-03-05 2016-03-24 フェデラル−モーグル コーポレイション デポジット防止コーティングを伴うピストンおよびその構築方法
WO2019013287A1 (ja) 2017-07-14 2019-01-17 新日鐵住金株式会社 内燃機関用ピストン及びその製造方法
WO2019230938A1 (ja) * 2018-05-31 2019-12-05 日本製鉄株式会社 スチールピストン
WO2019230946A1 (ja) * 2018-05-31 2019-12-05 日本製鉄株式会社 スチールピストン用鋼材

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100535423C (zh) * 2003-03-31 2009-09-02 日立金属株式会社 内燃机用活塞及其制造方法
DE102004003658A1 (de) * 2004-01-24 2005-08-25 Mahle Gmbh Verbrennungsmulde im Boden eines Kolbens für einen Dieselmotor
JP4375359B2 (ja) 2006-05-24 2009-12-02 トヨタ自動車株式会社 内燃機関のピストン
DE102006038670B4 (de) * 2006-08-17 2010-12-09 Federal-Mogul Burscheid Gmbh Hochsiliziumhaltiger Stahlwerkstoff zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
DE102008017023A1 (de) * 2008-04-03 2009-10-08 Schaeffler Kg Bauteil für eine mit Alkoholkraftstoff betriebene Brennkraftmaschine
DE102009010728C5 (de) * 2009-02-26 2019-08-14 Federal-Mogul Burscheid Gmbh Kolbenringe und Zylinderlaufbuchsen
DE102009010726B3 (de) * 2009-02-26 2010-12-09 Federal-Mogul Burscheid Gmbh Kolbenringe und Zylinderlaufbuchsen
DE102009010473A1 (de) * 2009-02-26 2010-11-18 Federal-Mogul Burscheid Gmbh Stahlwerkstoffzusammensetzung zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
DE102009010727B3 (de) * 2009-02-26 2011-01-13 Federal-Mogul Burscheid Gmbh Stahlgusswerkstoffzusammensetzung zur Herstellung von Kolbenringen und Zylinderlaufbuchsen
DE102009015008B3 (de) * 2009-03-26 2010-12-02 Federal-Mogul Burscheid Gmbh Kolbenringe und Zylinderlaufbuchsen
DE102009015009B3 (de) * 2009-03-26 2010-12-09 Federal-Mogul Burscheid Gmbh Kolbenring
DE102009048124A1 (de) 2009-10-02 2011-04-07 Daimler Ag Stahlkolben für Verbrennungsmotoren
US9970384B2 (en) * 2009-11-06 2018-05-15 Federal-Mogul Llc Steel piston with cooling gallery and method of construction thereof
EP2557187A1 (en) * 2010-04-07 2013-02-13 Furukawa Electric Co., Ltd. Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
FR2964156B1 (fr) * 2010-08-31 2012-08-17 Peugeot Citroen Automobiles Sa Piston de moteur a combustion interne
DE102010045221B4 (de) * 2010-09-13 2017-10-05 Daimler Ag Stahlkolben für Verbrennungsmotoren
DE102010051681B4 (de) * 2010-11-17 2019-09-12 Daimler Ag Verfahren zur Herstellung eines Kühlkanalkolbens
WO2012142433A1 (en) 2011-04-15 2012-10-18 Federal-Mogul Corporation Piston and method of making a piston
CN102205409B (zh) * 2011-04-28 2014-07-02 上海交通大学 内燃机用复合式活塞毛坯的制造方法
WO2013082221A1 (en) 2011-11-30 2013-06-06 Federal-Mogul Corporation High modulus wear resistant gray cast iron for piston ring applications
EP2623760B1 (en) 2012-01-27 2017-08-02 BRP-Rotax GmbH & Co. KG Piston for an internal combustion engine
US10184421B2 (en) 2012-03-12 2019-01-22 Tenneco Inc. Engine piston
CN103866202B (zh) * 2012-12-14 2016-08-17 钟庆辉 采用改性不锈钢材料制作发动机活塞环气环方法
CN103397268B (zh) * 2013-07-01 2016-05-25 安徽三联泵业股份有限公司 耐磨铸钢及其制备方法
CN103397269A (zh) * 2013-07-01 2013-11-20 安徽三联泵业股份有限公司 低成本高强度耐磨铸钢及其制备方法
CN103397270A (zh) * 2013-07-01 2013-11-20 安徽三联泵业股份有限公司 高强度耐磨合金铸钢及其制备方法
KR20150061516A (ko) * 2013-11-27 2015-06-04 두산중공업 주식회사 금형강 및 그 제조방법
KR102148756B1 (ko) * 2014-03-12 2020-08-27 두산인프라코어 주식회사 내열 구상흑연주철, 이의 제조 방법 및 이를 포함하는 엔진 배기계
US10087881B2 (en) 2014-10-30 2018-10-02 Federal-Mogul Llc Piston
US20160169152A1 (en) * 2014-12-11 2016-06-16 Caterpillar Inc. Engine Piston
DE102015105448A1 (de) * 2015-04-09 2016-10-13 Gesenkschmiede Schneider Gmbh Legierter Stahl und damit hergestellte Bauteile
CN105088087B (zh) * 2015-09-18 2017-01-11 湖南大学 一种高韧性适焊微合金化铸钢及其制备方法
CN105296870A (zh) * 2015-11-03 2016-02-03 合肥海源机械有限公司 叉车用液压油缸活塞杆制备方法
US20170283943A1 (en) * 2016-03-29 2017-10-05 Silcotek Corp. Treated article, system having treated article, and process incorporating treated article
DE102016208301A1 (de) * 2016-05-13 2017-11-16 Continental Automotive Gmbh Stahl-Werkstoff für Hochtemperatur-Anwendungen und Turbinengehäuse aus diesem Werkstoff
US10662892B2 (en) * 2016-09-09 2020-05-26 Caterpillar Inc. Piston for internal combustion engine having high temperature-capable crown piece
CN106939392A (zh) * 2017-04-05 2017-07-11 西峡县众德汽车部件有限公司 一种用于铸造汽车排气歧管的材料
DE102017205804A1 (de) * 2017-04-05 2018-10-11 Mahle International Gmbh Kolben einer Brennkraftmaschine
CN107191287A (zh) * 2017-06-06 2017-09-22 湖南江滨机器(集团)有限责任公司 一种活塞及活塞制造方法
JP6869155B2 (ja) * 2017-09-21 2021-05-12 日立Astemo株式会社 内燃機関のピストン
US20190161838A1 (en) * 2017-11-28 2019-05-30 GM Global Technology Operations LLC High-strength bainitic steel
DE102018217057A1 (de) * 2018-10-05 2020-04-09 Continental Automotive Gmbh Stahl-Werkstoff für Hochtemperatur-Anwendungen und Abgasturbolader der diesen Stahl-Werkstoff aufweist
CN109371329B (zh) * 2018-12-24 2021-02-02 黄石华中模具材料研究所 一种耐高温人工水晶成型模具钢材料及其制备方法
CN113122771B (zh) * 2019-12-31 2022-01-14 中内凯思汽车新动力系统有限公司 一种高性能摩擦焊接钢质活塞及其制备方法
CN111363977A (zh) * 2020-05-07 2020-07-03 南京中盛铁路车辆配件有限公司 高速列车制动盘用低合金铸钢及其热处理方法与制动盘
CN113073255A (zh) * 2021-03-11 2021-07-06 南京精锋制刀有限公司 一种适用于制作高强钢刀片的金属材料的配方及其制备方法
JP7297808B2 (ja) * 2021-04-12 2023-06-26 トクセン工業株式会社 オイルリング用線
JP7292322B2 (ja) * 2021-04-12 2023-06-16 トクセン工業株式会社 オイルリング用線
CN115074617A (zh) * 2021-11-22 2022-09-20 上海双舜科技发展有限公司 一种抗拉强度高的热作模具钢及其制备方法
DE102022108997A1 (de) 2022-04-13 2023-10-19 Ks Kolbenschmidt Gmbh Kolbenrohling, kolben und verfahren

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190150A (ja) * 1985-02-19 1986-08-23 Yanmar Diesel Engine Co Ltd 一体形ピストン
JPH05230596A (ja) * 1992-02-25 1993-09-07 Hitachi Metals Ltd ピストンリング材

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195552A (en) * 1937-07-23 1940-04-02 Alexander M Alexandrescu Heavy duty piston
US2201405A (en) * 1939-09-07 1940-05-21 Russell H Mccarroll Piston
GB1120206A (en) * 1965-07-09 1968-07-17 Wellworthy Ltd Improvements in or relating to pistons for internal combustion engines
US3876475A (en) * 1970-10-21 1975-04-08 Nordstjernan Rederi Ab Corrosion resistant alloy
DE2253868B2 (de) * 1972-11-03 1980-11-20 M.A.N. Maschinenfabrik Augsburg-Nuernberg Ag, 8500 Nuernberg Einteiliger, mit einer Pleuelstange verbundener Gußeisenkolben
JPS60116748A (ja) * 1984-07-09 1985-06-24 Hitachi Metals Ltd スチ−ル製ピストンリング材
JPH0791619B2 (ja) * 1986-12-02 1995-10-04 日立金属株式会社 ピストンリング材
US4985092A (en) * 1987-06-11 1991-01-15 Aichi Steel Works, Limited Steel having good wear resistance
EP0295111B1 (en) * 1987-06-11 1994-11-02 Aichi Steel Works, Ltd. A steel having good wear resistance
JP2552509B2 (ja) * 1987-10-31 1996-11-13 愛知製鋼株式会社 ピストンリング用鋼
JP2552512B2 (ja) * 1987-11-28 1996-11-13 愛知製鋼株式会社 ピストンリング用溶製鋼
WO1989005869A1 (en) * 1987-12-23 1989-06-29 Uddeholm Tooling Aktiebolag Precipitation hardening tool steel for forming tools and forming tool made from the steel
JP2981899B2 (ja) 1989-10-04 1999-11-22 日立金属株式会社 ピストンリング材
JPH0463046A (ja) * 1990-06-29 1992-02-28 Nec Home Electron Ltd 特定メッセージ誤消去防止装置
US5136992A (en) 1990-07-12 1992-08-11 Mahle Gmbh Piston for internal combustion engines with forged sections made of steel
JPH04263046A (ja) * 1990-12-30 1992-09-18 Aichi Steel Works Ltd ピストンリング用合金鋼
US5322042A (en) * 1992-06-17 1994-06-21 Sonex Research, Inc. Combustion chamber for internal combustion engine and process of combustion using fuel radical species
JPH0770700A (ja) * 1993-08-31 1995-03-14 Nidatsuku Kk 高耐力高耐食性オーステナイト系ステンレス鋳鋼
JP3332189B2 (ja) * 1993-11-25 2002-10-07 日立金属株式会社 鋳造性の優れたフェライト系耐熱鋳鋼
JPH07293326A (ja) * 1994-04-22 1995-11-07 A D D:Kk 内燃機関のピストン構造及びその製作法
JPH1085924A (ja) 1996-09-18 1998-04-07 Yanmar Diesel Engine Co Ltd ディーゼル機関用シリンダピストンの鋳造方法
JP3621818B2 (ja) * 1998-01-09 2005-02-16 三菱重工業株式会社 ステンレス鋳鋼
JPH11216537A (ja) * 1998-01-30 1999-08-10 Isuzu Motors Ltd ピストンの消失性模型
JP2909456B2 (ja) * 1998-03-05 1999-06-23 日立金属株式会社 耐スカッフィング性に優れたピストンリング
DE19910582A1 (de) * 1999-03-10 2000-09-28 Mahle Gmbh Gebauter Kolben
US6527879B2 (en) * 1999-06-25 2003-03-04 Hitachi Metals Ltd. Self-lubricating piston ring material for internal combustion engine and piston ring
JP3514182B2 (ja) * 1999-08-31 2004-03-31 住友金属工業株式会社 高温強度と靱性に優れた低Crフェライト系耐熱鋼およびその製造方法
JP4724275B2 (ja) * 2000-07-17 2011-07-13 株式会社リケン 耐スカッフィング性、耐クラッキング性及び耐疲労性に優れたピストンリング及びその製造方法
WO2002033291A1 (en) * 2000-10-18 2002-04-25 Federal-Mogul Corporation Multi-axially forged piston
DE10131725B4 (de) * 2001-06-29 2004-02-12 Ks Kolbenschmidt Gmbh Unter Krafteinwirkung in der Gießvorrichtung gehaltener Salzkern
DE10244511A1 (de) * 2002-09-25 2004-04-15 Mahle Gmbh Mehrteiliger gekühlter Kolben für einen Verbrennungsmotor
CN100535423C (zh) * 2003-03-31 2009-09-02 日立金属株式会社 内燃机用活塞及其制造方法
US20050076975A1 (en) * 2003-10-10 2005-04-14 Tenaris Connections A.G. Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US7438039B2 (en) * 2004-02-06 2008-10-21 Electro-Motive Diesel, Inc. Large-bore, medium-speed diesel engine having piston crown bowl with acute re-entrant angle
US7406941B2 (en) * 2004-07-21 2008-08-05 Federal - Mogul World Wide, Inc. One piece cast steel monobloc piston
US20060169368A1 (en) * 2004-10-05 2006-08-03 Tenaris Conncections A.G. (A Liechtenstein Corporation) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US20060086326A1 (en) * 2004-10-25 2006-04-27 Ipd, Inc. One piece cast ferrous crown piston for internal combustion engine
US20060226138A1 (en) * 2005-04-11 2006-10-12 Lincoln Global, Inc. High strength flux cored electrode
US20060275168A1 (en) * 2005-06-03 2006-12-07 Ati Properties, Inc. Austenitic stainless steel
US20060285989A1 (en) * 2005-06-20 2006-12-21 Hoeganaes Corporation Corrosion resistant metallurgical powder compositions, methods, and compacted articles
DE102006053179A1 (de) * 2005-11-10 2007-05-16 Ks Kolbenschmidt Gmbh Einteiliger Stahlkolben als Feinguss-Variante mit Kern für die feingusstechnische Herstellung eines Kühlkanales

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190150A (ja) * 1985-02-19 1986-08-23 Yanmar Diesel Engine Co Ltd 一体形ピストン
JPH05230596A (ja) * 1992-02-25 1993-09-07 Hitachi Metals Ltd ピストンリング材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1612395A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7406941B2 (en) 2004-07-21 2008-08-05 Federal - Mogul World Wide, Inc. One piece cast steel monobloc piston
JP2009541590A (ja) * 2006-06-30 2009-11-26 ダイムラー・アクチェンゲゼルシャフト 内燃機関用の鋳鋼製ピストン
JP2013014845A (ja) * 2006-06-30 2013-01-24 Daimler Ag 内燃機関用の鋳鋼製ピストン
US8528513B2 (en) 2006-06-30 2013-09-10 Daimler Ag Cast steel piston for internal combustion engines
JP2015522738A (ja) * 2012-05-05 2015-08-06 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテルハフツングMAHLE International GmbH ピストンとクランクケースとから成る内燃機関用のアッセンブリ
JP2016509160A (ja) * 2013-03-05 2016-03-24 フェデラル−モーグル コーポレイション デポジット防止コーティングを伴うピストンおよびその構築方法
WO2019013287A1 (ja) 2017-07-14 2019-01-17 新日鐵住金株式会社 内燃機関用ピストン及びその製造方法
KR20200008163A (ko) 2017-07-14 2020-01-23 닛폰세이테츠 가부시키가이샤 내연 기관용 피스톤 및 그 제조 방법
WO2019230938A1 (ja) * 2018-05-31 2019-12-05 日本製鉄株式会社 スチールピストン
WO2019230946A1 (ja) * 2018-05-31 2019-12-05 日本製鉄株式会社 スチールピストン用鋼材
KR20210014142A (ko) * 2018-05-31 2021-02-08 닛폰세이테츠 가부시키가이샤 스틸 피스톤용 강재
JPWO2019230946A1 (ja) * 2018-05-31 2021-06-03 日本製鉄株式会社 スチールピストン用鋼材
KR102507644B1 (ko) 2018-05-31 2023-03-08 닛폰세이테츠 가부시키가이샤 스틸 피스톤용 강재

Also Published As

Publication number Publication date
US20060191508A1 (en) 2006-08-31
EP1612395A1 (en) 2006-01-04
JPWO2004094808A1 (ja) 2006-07-13
CN1764775A (zh) 2006-04-26
EP2295777B1 (en) 2016-12-07
KR101087562B1 (ko) 2011-11-28
JP4500259B2 (ja) 2010-07-14
CN100535423C (zh) 2009-09-02
EP2295777A1 (en) 2011-03-16
EP1612395A4 (en) 2010-08-04
KR20050113624A (ko) 2005-12-02
US7503304B2 (en) 2009-03-17

Similar Documents

Publication Publication Date Title
JP4500259B2 (ja) 内燃機関用ピストン及びその製造方法
EP1304393B1 (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
JP5806468B2 (ja) オーステナイトダクタイル鋳鉄
US8333923B2 (en) High strength gray cast iron
JP5650714B2 (ja) 窒化可能な鋼製ピストンリングと鋼製シリンダーライナ及びその製造用鋳造方法
KR101223947B1 (ko) 내열 주철 및 그것으로 이루어진 배기계 부품
WO2013100148A1 (ja) 強度及び靭性に優れた球状黒鉛鋳鉄及びその製造方法
JPH09235648A (ja) 鋳鉄及びピストンリング
JP4923776B2 (ja) 転がり、摺動部品およびその製造方法
JP2002317225A (ja) ピストンリング
KR102050359B1 (ko) 피삭성이 우수한 오스테나이트계 내열 주강 및 그것으로 이루어지는 배기계 부품
JP4616209B2 (ja) 耐焼付性に優れたピストンリング用鋼材、ピストンリング用異形線、並びにピストンリング
JP3491612B2 (ja) 被削性及び耐摩耗性に優れたクランクシャフト用鋼
JP4066307B2 (ja) 自己潤滑性を有する内燃機関用ピストンリング材およびピストンリング
JP4291639B2 (ja) 鉄基焼結合金およびその製造方法
JP2599780B2 (ja) 高速回転部材の製造法
JP2594505B2 (ja) ロッカアーム
JPH111749A (ja) 曲げ疲労強度および転動疲労強度に優れた高周波焼入用鋼
JP2023060831A (ja) スチールピストン
KR20220015198A (ko) 구상 흑연 주철 및 이로 이루어진 엔진 배기계 부품
JPH0559495A (ja) ピストンリング材
JP2017160474A (ja) 軸受部品
JPH1180910A (ja) ピストンリング材における耐スカッフィング性および加工性の改善方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057015993

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048080547

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005505705

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006191508

Country of ref document: US

Ref document number: 10551645

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004724758

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015993

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004724758

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10551645

Country of ref document: US