WO2004083646A1 - 作業機の油圧回路 - Google Patents

作業機の油圧回路 Download PDF

Info

Publication number
WO2004083646A1
WO2004083646A1 PCT/JP2004/003386 JP2004003386W WO2004083646A1 WO 2004083646 A1 WO2004083646 A1 WO 2004083646A1 JP 2004003386 W JP2004003386 W JP 2004003386W WO 2004083646 A1 WO2004083646 A1 WO 2004083646A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
pump
hydraulic pump
oil
Prior art date
Application number
PCT/JP2004/003386
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Nakamura
Genroku Sugiyama
Tsukasa Toyooka
Koji Ishikawa
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP04720712.1A priority Critical patent/EP1605168B1/en
Priority to KR1020047021416A priority patent/KR100657035B1/ko
Priority to US10/514,936 priority patent/US7127887B2/en
Priority to CNB2004800002961A priority patent/CN100378343C/zh
Publication of WO2004083646A1 publication Critical patent/WO2004083646A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31582Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having multiple pressure sources and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7114Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators
    • F15B2211/7128Multiple output members, e.g. multiple hydraulic motors or cylinders with direct connection between the chambers of different actuators the chambers being connected in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7135Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/75Control of speed of the output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member

Definitions

  • the present invention is intended to improve the speed of a working body when driving a working body such as a boom, an arm, a revolving body, etc. of a hydraulic shovel as a working machine, by discharging hydraulic oil discharged from a hydraulic actuator and returned to a tank.
  • the present invention relates to a hydraulic circuit of a working machine having a hydraulic regeneration device to be reused, and in particular, to a hydraulic circuit in which a specific actuator to be recycled and another actuator are connected in parallel to one hydraulic pump.
  • the present invention relates to a hydraulic circuit of a working machine that can eliminate the influence of the load of other factories on the regeneration flow rate even when performing a combined operation. Background art
  • a hydraulic cylinder for an arm and a hydraulic motor for turning are connected in parallel to one hydraulic pump for a hydraulic excavator, and the hydraulic cylinder for the arm is connected to the hydraulic cylinder for the arm.
  • a technology that performs regeneration for example, see Patent Document 1 below.
  • Patent Document 1 International Publication No. WO 94/13 9 5 9
  • the hydraulic regenerator provided in this conventional technology connects a tank side pipe connecting the tank to the tank port of the arm directional control valve for controlling the flow of pressurized oil to the arm cylinder, and connects the pump port to the hydraulic pump.
  • a variable throttle valve provided in the tank side pipeline.
  • a pressure detector for detecting the discharge pressure of the hydraulic pump
  • a control device for inputting a pressure signal from the pressure detector and outputting a drive signal according to the pressure signal, and a drive signal from the control device
  • a pressure reducing valve for reducing the pilot pressure from the pilot pump based on the pilot pressure and generating a pilot secondary pressure as a control signal for the variable throttle valve.
  • the pressure oil discharged from the arm cylinder is throttled by the variable throttle valve, and the tank side line becomes high pressure, and most of the oil discharged from the arm cylinder flows into the pump side line as a regenerated flow rate via the check valve. Then, it merges with the pressure oil discharged from the pump and is supplied again to the arm cylinder.
  • the control device outputs a drive signal to the pressure reducing valve to reduce the pilot pressure, and this causes the variable throttle valve to operate.
  • the opening area increases. For this reason, the pressure in the tank side pipe is almost equal to the tank pressure, and the regeneration flow rate is almost 0, but since the pressure on the discharge side of the arm cylinder is low, the thrust of the arm cylinder must be secured. Can be.
  • the operating speed of the arm differs between the operation of the arm alone and the operation of the combined swing operation, even though the load on the arm is small, and there is room for improvement in operability. Is left.
  • the present invention has been made in view of the above-mentioned problems of the prior art.
  • the hydraulic oil is supplied from the two hydraulic pumps to a specific factory operation to be performed, and the magnitude of the load acting on the specific factory is determined based on the discharge pressures of the two hydraulic pumps.
  • An object of the present invention is to provide a hydraulic regenerator capable of securing a regenerative flow rate when the load of a particular factory is sometimes small.
  • the present invention provides a first hydraulic pump for supplying pressure oil to a plurality of actuators including a specific actuator, and a first hydraulic pump for each of the first hydraulic pumps.
  • a plurality of directional control valves including a specific directional control valve connected in parallel and controlling the flow of hydraulic oil to the plurality of actuators; and a hydraulic oil for an actuator other than the plurality of actuators.
  • a second hydraulic pump for supplying air, another directional control valve for controlling the flow of pressurized oil supplied from the second hydraulic pump, and a pipe connecting a tank port of the specific directional switch valve to a tank.
  • Throttle means provided on the road; and a flow path connecting the tank-side flow path and the pump-side flow path of the specific directional control valve, wherein the pressure of the tank-side flow path is Tank side flow when pressure is higher And a check valve that allows the flow of pressure oil into the pump-side flow path from the hydraulic pump.
  • Control means for generating the control signal to the variable throttle means; first pressure detection means for detecting a discharge pressure of the first hydraulic pump; and A second pressure detecting means for detecting a discharge pressure and pressure signals from the first and second pressure detecting means are inputted, a predetermined arithmetic processing is executed, and a driving signal is outputted to the control signal generating means.
  • Control means It is characterized.
  • the hydraulic oil discharged from the first hydraulic pump during a specific operation is connected to the second hydraulic pump via the joining means. And the pressurized oil discharged from is supplied.
  • the pressure oil discharged from the specific factories is guided to the variable throttle means via the tank port of the specific directional control valve. As the flow rate guided to the variable throttle means increases, the pressure in the tank-side flow path increases, and when the pressure in the tank-side flow path becomes higher than the pressure in the pump-side flow path. The pressure oil in the tank-side flow path flows into the pump-side flow path as a regeneration flow rate through the check valve, and the speed of the specific actuator is increased.
  • the control means executes a predetermined arithmetic processing, generates a drive signal corresponding to the input pressure signal, and outputs the drive signal to the control signal generation means.
  • the control signal generating means generates a control signal according to the drive signal and outputs the control signal to the variable aperture means.
  • the variable throttle means throttles a conduit leading to the tank in accordance with the control signal, and controls a regeneration flow returning from the tank-side flow path to the pump-side flow path.
  • the predetermined arithmetic processing by the control means can be set arbitrarily. For example, for example, the smaller of the input pressure signal of the first hydraulic pump and the input pressure signal of the second hydraulic pump.
  • the relationship between the pressure signal and the drive signal can be set so that the pressure is selected, and the opening area of the variable throttle means increases as the pressure increases.
  • the discharge pressure of the first or second hydraulic pump is low, it is determined that the load of a particular factory is small, and the opening area of the variable throttle means is reduced, thereby increasing the regeneration flow rate.
  • the speed of certain actuyue can be increased.
  • the load on the other actuaries is Even if the discharge pressure of the first hydraulic pump is high, the discharge pressure of the second hydraulic pump will be low if the load on a particular actuator is small, and the controller will increase the regeneration flow rate.
  • a drive signal is output to the control signal generating means.
  • FIG. 1 is an overall hydraulic circuit diagram of a first embodiment according to the present invention.
  • FIG. 2 is a block diagram of the control device according to the first embodiment.
  • FIG. 3 is a diagram showing the appearance of a hydraulic shovel equipped with the above hydraulic circuit.
  • FIG. 4 is a diagram illustrating a relationship between a pump discharge pressure and a regeneration flow rate when the arm is operated alone in the first embodiment.
  • FIG. 5 is a diagram illustrating a relationship between a pump discharge pressure and a regeneration flow rate in a combined operation operation of the arm and the turning operation in the first embodiment.
  • FIG. 6 is an overall hydraulic circuit diagram of a second embodiment according to the present invention.
  • FIG. 7 is a block diagram of a control device according to the second embodiment.
  • FIG. 8 is a diagram showing the relationship between the pump discharge pressure and the regeneration flow rate when the arm is operated alone in the second embodiment.
  • FIG. 9 is a diagram illustrating a relationship between a pump discharge pressure and a regeneration flow rate during a combined operation operation of an arm and a boom according to the second embodiment.
  • FIG. 10 is an overall hydraulic circuit diagram of a third embodiment according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 5 are explanatory diagrams of the first embodiment
  • FIG. 1 is an overall hydraulic circuit diagram
  • FIG. 3 is a block diagram of the device
  • FIG. 3 is a diagram showing an external view of a hydraulic shovel equipped with the above hydraulic circuit
  • FIGS. FIG. 4 is a diagram showing the relationship between the opening area of the regeneration switching valve and the regeneration flow rate.
  • an arm cylinder 4 for driving an arm 204 (see FIG. 3) forming a part of a hydraulic shovel, and a revolving body 201 (See Fig. 3), a swivel motor 5 for driving the boom 203, a boom cylinder 3 for driving the boom 203 (see Fig. 3), and hydraulic oil mainly for the arm cylinder 4 and the swivel motor 5.
  • a variable displacement hydraulic pump 1 as a first hydraulic pump for supplying oil
  • a directional switching valve for an arm for controlling the flow of pressure oil discharged from the hydraulic pump 1 and supplied to the arm cylinder 4 or the swing motor 5 14 and a directional control valve 15 for turning
  • a variable displacement hydraulic pump 2 as a second hydraulic pump for supplying mainly pressurized oil to the brake cylinder 3, and a boom discharged from the hydraulic pump 2.
  • a boom direction switching valve 11 for controlling the flow of the pressure oil supplied to the cylinder 3 is provided. Also, when the arm directional switching valve 14 is operated by the operating device 22, the hydraulic oil discharged from the hydraulic pump 2 is combined with the hydraulic oil discharged from the hydraulic pump 1 to the arm cylinder 4.
  • the directional control valves 12, 14, 15 are center bypass type valves through which a center bypass line 1 A connecting the hydraulic pump 1 and the tank 9 passes. Numerals 15 are connected in parallel to each other via a discharge pipeline 1 OA of the hydraulic pump 1 and a pump line 10 B.
  • the directional control valves 11, 13 are center bypass type valves through which a center bypass line 2 A connecting the hydraulic pump 2 and the tank 9 passes. They are connected in parallel to each other via a discharge line 2 OA and a pump line 20 B of the pump 2.
  • the directional control valve 15 for turning is operated by the pilot pressures Pi 5 and Pi 6 generated by the operation lever device 23, and the directional control valve 14 and the directional control valve 13 for the arm are operated by the operation lever.
  • the directional control valves 11 1 and 12 2 for the boom are operated by the pilot pressures Pi 1 and P 1 generated by the operating lever device 21. Activated by i2.
  • the operating lever device 22 for the arm is operated, the spools of the directional control valve 14 and the directional control valve 13 are moved, and the hydraulic pressure is transmitted through the second line 10 C or the pump line 10 B described later. Hydraulic oil from pump 1 is supplied to arm cylinder 4 and hydraulic oil from hydraulic pump 2 is pumped. It is supplied to the arm cylinder 4 through the pipeline 20 B, the directional control valve 13, and the pipeline 41 or 42.
  • the spools of the directional control valve 11 and the directional control valve 12 move, and the hydraulic oil from the hydraulic pump 2 is transferred to the boom cylinder 3 via the directional control valve 11.
  • the pressure oil from the hydraulic pump 1 is supplied to the boom cylinder 3 via the pump line 10 B, the directional switching valve 12, the pipe 43 or the pipe 44.
  • the directional control valves 11, 14, 15 are, as shown in the figure, representative of the directional control valve 14, in which the throttle amount is set according to the amount of movement of the spool. a and a meterable variable aperture 14 b.
  • the tank port 31 of the directional control valve 14 for the arm is connected to the tank 9 via a first line 34 which is a discharge line, and the pump port 32 is a second line 10C which is a feeder line.
  • the check valve 19 is connected to the pump line 10 B via the throttle 30, and is connected to the second line 10 C and the sensor bypass line 1 A via the check valve 8, and the pump port 36 Is connected to a pump line 10 B via a third line 10 D which is a feeder line and a check valve 19.
  • the check valve 19 is provided to prevent the backflow of the pressure oil from the second line 10C to the pump line 10B.
  • the throttle 30 is provided with a hydraulic pump 1 for each of the arm cylinders 4 which tend to have a smaller load than the turning motor 5 and the turning motor 5 when the turning and the arm are simultaneously operated. It is provided so that the pressure oil discharged from is supplied.
  • the hydraulic regeneration device is provided in the hydraulic circuit of the hydraulic shovel configured as described above.
  • This hydraulic regenerator has a regenerative switching valve 6 installed on the first line 34 as a variable throttling means, and a regenerative valve connecting the bottom side of the amplifying cylinder 4 upstream of the regenerative switching valve 6. And a check valve 7 provided in the directional control valve 14 and allowing only the flow of pressure oil flowing from the first line 34 to the bottom side of the arm cylinder 4. ing.
  • the regeneration switching valve 6 includes a spool 6 b forming a variable throttle 6 a, a pilot pressure P x as a control signal is guided, and a hydraulic drive unit 6 c that drives the spool 6 b in a valve closing direction, and a spool 6 b And a variable throttle at a position where the pilot pressure PX introduced into the hydraulic drive 6c and the biasing force of the spring 6d are balanced.
  • the opening area of 6a is set.
  • pressure detectors 101 and 102 for detecting the discharge pressures of the hydraulic pumps 1 and 2, and a pilot pressure PX to the regeneration switching valve 6 by reducing the pilot-secondary pressure discharged from the pilot pump 50.
  • the solenoid proportional valve 40 as a control signal generating means for generating pressure and the pressure signals S 1 and S 2 from the pressure detectors 101 and 102 are input, and a drive signal corresponding to the pressure signal is generated.
  • control means 100 for outputting to the electromagnetic proportional valve 40.
  • the control device 100 receives the pressure signal S of the hydraulic pump 1 based on a relationship between a predetermined discharge pressure of the hydraulic pump 1 and a target opening area of the regeneration switching valve 6.
  • a first calculation unit 81 that calculates a target opening area according to 1; and a hydraulic pump 2 that is input based on a relationship between a predetermined discharge pressure of the hydraulic pump 2 and a target opening area of the regeneration switching valve 6.
  • the target opening area of the regeneration switching valve 6 calculated by the second arithmetic unit 82 for calculating the target opening area according to the pressure signal S 2 of the regeneration switching valve 6 calculated by the first arithmetic unit 81 and the second arithmetic unit 82.
  • the first calculation unit 81 and the second calculation unit 82 are set so that the target opening area is minimized until the discharge pressure of the hydraulic pump 1 and the hydraulic pump 2 reaches a predetermined low pressure P0. It is set so that the target opening area is gradually increased to the maximum at high pressure P1.
  • the fourth computing unit 89 is set so that the drive current i to the electromagnetic proportional valve 40 decreases as the target opening area increases.
  • FIG. 3 is a diagram showing the appearance of a hydraulic shovel equipped with the above hydraulic circuit.
  • the hydraulic excavator includes a lower traveling body 200, an upper revolving body (referred to as a “revolving body” or “revolving body” as appropriate in the specification), and a front work machine 202.
  • the machine 202 includes a boom 203, an arm 204, and a bucket 205.
  • the lower traveling body 200 has left and right traveling motors 210 and 211 (only one is shown) as a driving means, and the upper revolving body 201 travels lower by the rotating motor 5 shown in FIG. It is driven to turn horizontally on the body 200.
  • the boom 203 is supported at the center on the front side of the upper swing body 201 so as to be rotatable in the vertical direction, and the boom cylinder shown in FIG. Driven by 3.
  • the arm 204 is supported at the tip of the boom 203 so as to be rotatable in the front-rear direction, and is driven by the arm cylinder 4 shown in FIG.
  • the packet 205 is supported by the tip of the arm 204 so as to be rotatable in the front-rear direction, and is driven by the bucket cylinder 212.
  • the traveling motors 210, 211 and the bucket cylinder 212 are omitted.
  • the operating lever device 22 when the operating lever device 22 is operated to generate the pilot pressure P i 4 and the directional control valves 13 and 14 are switched.
  • the hydraulic oil discharged from the hydraulic pump 1 flows into the arm cylinder 4 via the pump port 32 via the discharge line 10A, the check valve 8, and the second line 10C.
  • the pressure oil discharged from the hydraulic pump 2 is also supplied to the arm cylinder 4 via the discharge line 20 A, the sensor bypass line 2 A or the pump line 20 B, the directional control valve 13, and the line 41. It is supplied to the bottom side.
  • the load applied to the arm cylinder 4 becomes almost equal to the no-load state, and Since the pressure on the potom side of 4 becomes extremely low, the discharge pressures of the hydraulic pumps 1 and 2 also become extremely low. Therefore, the pressure signals S 1 and S 2 input to the control device 100 from the pressure detectors 101 and 102 are both low-pressure signals, and the target signals output from the third arithmetic unit 86 are The opening area is also close to the minimum value.
  • the fourth calculation unit 89 calculates a current value close to the maximum value as the drive current i to the electromagnetic proportional valve 40 corresponding to the input target opening area.
  • the solenoid proportional valve 40 shifts the valve position from 40a to 40b, and the pilot opening Px becomes almost the maximum opening area and the pilot pressure Px equivalent to the pilot primary pressure is switched. Introduce to 6.
  • the regenerative switching valve 6 causes the spool 6 b to move in the throttle direction by the pilot pressure P x and the opening area becomes almost minimum, so that the pressure oil discharged from the mouth side of the arm cylinder 4 is regenerated by the regenerative switching valve 6.
  • the pressure in the first line 34 increases.
  • the pressure in the first line 34 becomes higher than the pressure in the second line 10 C, a part of the return oil flowing out from the tank port 31 to the first line 34 becomes a regeneration flow rate.
  • the hydraulic fluid from the hydraulic pump 1 joins the third line 35, the regeneration port 33, and the check valve 7 and is supplied to the bottom side of the arm cylinder 4. This As a result, the moving speed of the arm cylinder 4 increases.
  • Fig. 4 shows the relationship between the discharge pressure of the hydraulic pumps 1 and 2 and the regeneration flow rate.
  • the pressure of the hydraulic pumps 1 and 2 is increased by the load of the arm cylinder 4.
  • the opening area of the regeneration switching valve 6 becomes almost minimum, the pressure oil discharged from the rod side of the arm cylinder 4 is throttled, the pressure in the first line 34 increases, and the regeneration flow rate increases.
  • Path 10 A is supplied to the swing motor 5 via the directional valve 15, and the hydraulic oil discharged from the hydraulic pump 1 is pump line 10 B, check valve 19, throttle 30, second line It is supplied to the pot side of the arm cylinder 4 via 10 C and the pump port 32. At that time, a large load acts on the turning motor 5 particularly immediately after the turning operation, and the pressure of the turning motor 5 becomes higher than the pressure on the bottom side of the arm cylinder 4.
  • the hydraulic oil from hydraulic pump 1 is supplied to 4 and 5 overnight.
  • the pressure oil discharged from the hydraulic pump 2 is supplied to the bottom side of the arm cylinder 4 via the direction switching valve 13 in the same manner as described above.
  • the discharge pressure of the hydraulic pump 1 becomes high, but when the load of the arm cylinder 4 is small, the discharge pressure of the hydraulic pump 2 becomes large.
  • the pressure becomes low, and a high pressure signal S 1 is input from the pressure detector 101, and a low pressure signal S 2 is input from the pressure detector 102 to the control device 100.
  • the target opening area becomes a large value according to the high voltage signal S1
  • the second arithmetic unit 8 2 In, the target opening area becomes a small value in accordance with the low-voltage signal S2, and the third arithmetic unit 86 selects the smaller one of the two signals.
  • the fourth arithmetic unit 89 calculates a large drive current i corresponding to a small value as the target opening area. That is, a large drive current i corresponding to the low-voltage signal S2 is output from the control device 100 to the electromagnetic proportional valve 40. Therefore, the opening area of the regeneration switching valve 6 becomes smaller as described above, and the regeneration flow rate from the first line 34 increases.
  • FIG. 5 shows the situation at this time.
  • the discharge pressure of the hydraulic pump 1 is high because the load on the swing motor 5 is large, but the discharge pressure of the hydraulic pump 2 is low because the load on the arm cylinder 4 is small.
  • the opening area of the regeneration switching valve 6 is controlled to be small as shown by the solid line (a) based on the discharge pressure of the low-pressure hydraulic pump 2, and accordingly, the regeneration flow rate increases as shown by the solid line ( ⁇ ) I do.
  • the regeneration switching valve is controlled according to the discharge pressure of the high-pressure hydraulic pump 1 as shown by broken lines (ports) and (2). While the discharge pressure is maintained at a high pressure, the regeneration flow rate is almost zero.
  • the load on the arm cylinder 4 is small even if the combined operation of the swing 201 and the arm 204 is performed, a large amount of regeneration is performed on the bottom side of the arm cylinder 4.
  • the flow rate can be secured, and the operating speed of the arm cylinder 4 can be increased.
  • the regeneration can be performed on the arm cylinder 4 both in the case of the operation of the arm alone and in the case of the combined operation with the turning, and good operability can be obtained.
  • work efficiency is also improved.
  • By adjusting the throttle amount of the directional control valves 12 and 13 for merging in advance the same effect can be obtained even in the combined operation of the arm 204 and the boom 203.
  • FIG. 6 is an overall hydraulic circuit diagram according to the second embodiment
  • FIG. 7 is a block diagram of a control device
  • FIGS. 8 and 9 are pump discharge pressure and operating pilot pressure and opening of a regeneration switching valve. It is a figure which shows the relationship between a mouth area and a regeneration flow.
  • an operation amount detection device that detects pilot pressures output from operation lever devices 21, 22, and 23 that operate each of the actuators 3, 4, and 5 Pilot pressure detectors 103, 104, 105 are provided as means, and pilot pressure signals S3, S4 from these pilot pressure detectors 103, 104, 105 are provided. , S5 are input to the controller 10OA. Then, the control device 10OA executes an arithmetic process described later based on the pilot pressure signals S3, S4, S5 in addition to the pressure signals S1, S2 of the hydraulic pumps 1, 2.
  • the pilot pressure detector 104 is arranged so that the pilot pressure detector 104 detects the pilot pressure P i 1 for instructing the supply of pressure oil to the bottom side of the boom cylinder 3.
  • the pilot pressure detector 105 detects the pilot pressure P i 4 that instructs the supply of pressurized oil to the bottom side of 4 so that the pilot pressure P i 5 and P i 6 It is provided to detect the pilot pressure on the high pressure side via the shuttle valve 60.
  • the control device 10OA includes the first operation unit 81, the second operation unit 82, the third operation unit 86, and the fourth operation unit used in the first embodiment described above.
  • 8 9 In addition to 9, based on the relationship between the preset pilot pressure Pi 1 for driving the cylinder 3 and the target opening area of the regeneration switching valve 6, the target opening area corresponding to the input pilot pressure signal S 3 And a pilot input based on the relationship between the preset pilot pressure Pi 5 or Pi 6 for driving the swing motor 5 and the target opening area of the regeneration switching valve 6.
  • a sixth computing unit 84 that calculates a target opening area according to the pressure signal S5, and a smaller one of the target opening areas calculated by the fifth computing unit 83 and the sixth computing unit 84.
  • the seventh arithmetic section 85 to be selected, preset pilot pressure P i 4 for driving arm cylinder 4 and regeneration switching valve 6
  • An eighth calculating unit 87 which calculates a target opening area in accordance with the input pilot pressure signal S4 based on the relationship with the opening area, a third calculating unit 86, and a seventh calculating unit 85;
  • a ninth computing unit 88 for selecting the largest opening area from the target opening areas calculated by the eighth computing unit 87.
  • the fifth arithmetic unit 83 and the sixth arithmetic unit 84 have a constant low pilot pressure Pi 1 for driving the boom cylinder 3 and a low pilot pressure Pi 5 or Pi 6 for driving the swing motor 5.
  • the target opening area is set to be the maximum up to P2, and when it exceeds the predetermined pressure P2
  • the target opening area is set to be minimum.
  • the eighth arithmetic unit 87 sets the pilot opening P i 4 for driving the arm cylinder 4 such that the target opening area is maximized up to the predetermined low pressure P 4, and gradually sets the target opening area to the predetermined high pressure P 5.
  • the opening area is set to be reduced to the minimum.
  • the eighth arithmetic unit 87 calculates the target opening area of the regeneration switching valve 6 according to the pilot pressure signal S4.
  • the target opening based on the pump discharge pressure signals S 1 and S 2 is performed in the first calculation unit 81 and the second calculation unit 82.
  • the area is calculated, and the third arithmetic unit 86 outputs the smaller one of the target opening areas output from the first arithmetic unit 81 and the second arithmetic unit 82.
  • the pilot pressure P i 1 for the boom drive and the pilot pressure P i 5 or P i 6 for the swing drive become almost the tank pressure.
  • the target opening area output from the seventh arithmetic unit 85 has the maximum value.
  • the ninth operation unit 88 selects the largest value among the target opening areas calculated by the third operation unit 86, the seventh operation unit 85, and the eighth operation unit 87.
  • the fourth drive section 89 outputs the minimum drive current i corresponding to the maximum aperture area.
  • Fig. 8 shows the relationship between the hydraulic pumps 1 and 2 and the regeneration flow rate at this time.
  • the directional control valves 13 and 14 are opened by operating the arm operating lever device 22, the pressure of the hydraulic pumps 1 and 2 increases due to the load of the arm cylinder 4.
  • the target opening area output from the ninth arithmetic unit 88 has a substantially maximum value
  • the opening area of the regeneration switching valve 6 has a maximum value. Therefore, most of the pressure oil discharged from the arm cylinder 4 flows into the tank 9, and the regeneration flow rate becomes almost zero.
  • the pressure oil is not regenerated to the arm cylinder 4 when the arm is operated alone.
  • the target opening area output from one of the fifth arithmetic unit 83 and the sixth arithmetic unit 84 Is minimized, and the target opening area output from the seventh calculation unit 85 also has the minimum value.
  • the pilot pressure signal S 4 becomes high, and a small target opening area is output from the eighth arithmetic unit 87.
  • the third calculation unit 86 outputs a target opening area corresponding to the lower pressure of the discharge pressure of the hydraulic pump 1 or the hydraulic pump 2, when the load pressure of the arm cylinder 4 is low, Then, the discharge pressure of either the hydraulic pump 1 or the hydraulic pump 2 becomes low, and the target opening area output from the third calculating unit 86 becomes a small value. Therefore, the target opening area output from the third arithmetic unit 86, the seventh arithmetic unit 85, and the eighth arithmetic unit 87 is a small value, and the target aperture area from the ninth arithmetic unit 88 is a small value. And a large drive current i is output from the fourth arithmetic unit 89.
  • FIG. 9 shows the relationship between the hydraulic pumps 1 and 2 and the regeneration flow rate at this time.
  • the pressure of the hydraulic pumps 1 and 2 increases due to the loads of the arm cylinder 4 and the boom cylinder 3. I do.
  • the hydraulic pressure is not regenerated during the independent operation of the arm, and the speed of the arm 204 does not become excessively high.
  • the load pressure on the arm cylinder 4 is low during the combined operation with the swing 201 or the boom 203, the regeneration flow rate increases, so the speed is almost the same as when the arm is operated alone. Operability is improved compared to the conventional method, and as a result, work efficiency is improved.
  • the third embodiment is intended to obtain substantially the same operation and effect as the above-described first embodiment purely hydraulically without using a control device.
  • FIG. 10 is a diagram showing an entire hydraulic circuit according to the third embodiment.
  • a low-pressure selection valve 200 for selectively outputting a low-pressure side of the discharge pressures of the hydraulic pumps 1 and 2, and a low-pressure selection valve
  • a pressure reducing valve 201 for reducing the pilot-next pressure based on the pressure from 200 is provided. Except that the low-pressure selection valve 200 and the pressure-reducing valve 201 are provided, and the control device 100 and the pressure detectors 101 and 102 are eliminated, the above-described first embodiment is different from the first embodiment. It has the same configuration as the hydraulic circuit configuration.
  • the operation lever device 22 when the operation lever device 22 is operated to drive the arm 204, the pressure on the lower pressure side of the discharge pressure of the hydraulic pump 1 and the hydraulic pump 2 is reduced. Is guided to the oil chamber 201c of the pressure-reducing valve 201 by the low-pressure selection valve 200.
  • the position of the pressure-reducing valve 201 is controlled in accordance with the pressure signal P guided by the low-pressure selector valve 200, and the pilot-next pressure from the pilot pump 50 is reduced to hydraulically drive the regeneration switching valve 6. Introduced in Part 6c. Therefore, when the pressure P guided from the low-pressure selection valve 200 is low, the pilot pressure Px from the pressure-reducing valve 201 becomes relatively high, and the opening area of the regeneration switching valve 6 becomes small.
  • the regeneration flow from the first line 34 to the bottom side of the arm cylinder 4 increases. Conversely, when the pressure P guided from the low pressure selection valve 200 is high, the pilot pressure P x from the pressure reducing valve 201 becomes relatively low, and the opening area of the regeneration switching valve 6 becomes large. The regeneration flow rate is reduced.
  • the turning 2 If the load on the arm cylinder 4 is small even when the combined operation of 0 1 and arm 204 is performed, a large amount of regeneration flow can be secured to the bottom side of the arm cylinder 4 and the operating speed of the arm cylinder 4 Can be faster. As a result, the regeneration can be performed on the arm cylinder 4 both in the case of the arm alone operation and in the case of the combined operation with the turning, and good operability can be obtained. Along with this, work efficiency is also improved.
  • the pilot primary pressure is reduced by the pressure reducing valve 201 based on the pressure guided by the low pressure selection valve 200, and the pilot pressure Px is guided to the regeneration switching valve 6.
  • the regeneration switching valve 6 may be directly controlled by the pressure output from the low pressure selection valve 200.
  • the present invention during a combined operation of a particular factory and another factory, if the load of the specific factory is small, the specific factory is discharged from the specific factory.
  • the same pressure oil is used again as the driving oil for driving a specific actuator, so approximately the same speed is assured when a specific actuator is operated alone and when combined with other actuators. Operability is improved compared to the conventional method, and as a result, work efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

アーム用の方向切換弁14を駆動したときにアームシリンダ4に対し、第1の油圧ポンプ1から吐出される圧油が供給されるとともに、第2の油圧ポンプ2から吐出される圧油が供給されるように合流用の方向切換弁13を設け、油圧ポンプ1,2の吐出圧を圧力検出器101,102により検出し、圧力検出器101,102によって検出された圧力のうち低圧側の圧力に応じて再生切換弁6の開口面積を制御することにより、アームシリンダ4の負荷圧が低いときには、アームシリンダ4と他のアクチュエータ3,4との複合動作時にアームシリンダ4に対し再生を行うことができる。このように再生を行う特定のアクチュエータに対し2つの油圧ポンプから圧油の供給を行うようにし、複合操作時に特定のアクチュエータの負荷が小さい場合には再生流量を確保することができる。

Description

明細書 作業機の油圧回路 技術分野
本発明は、 作業機として例えば油圧ショベルのブーム、 アーム、 旋回体等の作 業体を駆動する際、 油圧ァクチユエ一夕から吐出されタンクへと戻される圧油を 作業体の速度向上のために再利用する油圧再生装置を備えた作業機の油圧回路に 係り、 特に、 再生対象となる特定のァクチユエ一夕と他のァクチユエ一夕とが 1 つの油圧ポンプにパラレル接続された油圧回路にあって、 複合操作を行つた場合 でも、 他のァクチユエ一夕の負荷による再生流量への影響を排除できる作業機の 油圧回路に関する。 背景技術
この種の作業機の油圧回路として、 油圧ショベルを対象に、 アーム用の油圧シ リンダと旋回用の油圧モ一夕とが 1つの油圧ポンプに対し互いにパラレル接続さ れ、 アーム用の油圧シリンダに対し再生を行う技術がある (例えば、 下記特許文 献 1参照)。
特許文献 1 :国際公開番号 WO 9 4ノ 1 3 9 5 9
この従来技術に設けられる油圧再生装置は、 アームシリンダへの圧油の流れを 制御するアーム用方向切換弁のタンクポートとタンクとを接続するタンク側管路 と、 ポンプポートと油圧ポンプとを接続するボンプ側管路とを連絡する管路中に、 タンク側管路内の圧力がポンプ側管路内の圧力より高いときにタンク側管路から ポンプ側管路への圧油の流入を許容する逆止弁と、 タンク側管路に設けた可変絞 り弁とを備えている。 また、 油圧ポンプの吐出圧を検出する圧力検出器と、 この 圧力検出器からの圧力信号を入力し、 この圧力信号に応じて駆動信号を出力する 制御装置と、 この制御装置からの駆動信号に基づきパイロットポンプからのパイ ロットー次圧を減圧し可変絞り弁の制御信号としてパイロットニ次圧を生成する 減圧弁とを備えている。 以上のように構成した従来技術では、 旋回モー夕及びアームシリンダに作用す る負荷が小さくポンプ吐出圧が低いときには、 制御装置は減圧弁に対しパイ口ッ ト圧が高圧となるように駆動信号を出力し、 可変絞り弁は高圧のパイロット圧に より開口面積が小さくなり、 タンク側管路が絞られた状態となる。 このため、 ァ 一ムシリンダから排出された圧油が可変絞り弁により絞られタンク側管路が高圧 となり、 アームシリンダからの排出油の多くが逆止弁を介しポンプ側管路に再生 流量として流入し、 ポンプから吐出された圧油と合流して再びアームシリンダに 供給される。 一方、 アームシリンダあるいは旋回モータの負荷が大きくなり、 ポ ンプ吐出圧が高くなると、 制御装置が減圧弁に対しパイ口ット圧が低圧となる駆 動信号を出力し、 これにより可変絞り弁の開口面積が大きくなる。 このためタン ク側管路内の圧力はほぼタンク圧と等しくなり、 再生流量はほぼ 0となるが、 ァ —ムシリンダの排出側の圧力が低圧となるため、 アームシリンダの推力を確保す ることができる。
このように、 上記従来技術によれば、 アームシリンダ及び旋回モータの負荷が小 さくポンプ吐出圧が低い状態では、 再生流量が多くなり、 ァ一ムシリンダの速度 を速めることができる。 発明の開示
しかし、 上記従来技術では例えばアームによる掘削動作と旋回動作とを同時に 操作すると、 起動時の旋回負荷が大きくポンプの吐出圧が非常に高くなり、 制御 装置が可変絞り弁の開口面積を大きくするように減圧弁に対し駆動信号を出力す る。 上述したように、 可変絞り弁の開口面積が大きくなるとタンク側管路内の圧 力は、 ほぼタンク圧と等しい低圧となり、 アームシリンダに作用する負荷が小さ い場合であっても再生流量がほぼ 0となり、 アーム速度を速くすることができな い。
このように上記従来技術では、 アームの負荷が小さいにも関らず、 アーム単独 操作時と、 旋回との複合操作時とでアームの動作速度が異なり、 操作性の面で改 善すべき余地が残されている。
本発明は上記従来技術の問題点に鑑みてなされたもので、 その目的は、 再生を 行う特定のァクチユエ一夕に対し 2つの油圧ポンプから圧油の供給を行うように し、 2つの油圧ポンプの吐出圧から特定のァクチユエ一夕に作用する負荷の大小 を判断することにより、 複合操作時に特定のァクチユエ一夕の負荷が小さい場合 には再生流量を確保できる油圧再生装置を提供することにある。
上記目的を達成するために、 本発明は、 特定のァクチユエ一夕を含む複数のァ クチユエ一夕に対し圧油の供給を行う第 1の油圧ポンプと、 この第 1の油圧ボン プに対しそれぞれパラレルに接続され前記複数のァクチユエ一夕への圧油の流れ を制御する特定の方向切換弁を含む複数の方向切換弁と、 前記複数のァクチユエ 一夕とは別のァクチユエ一夕に対し圧油の供給を行う第 2の油圧ポンプと、 この 第 2の油圧ポンプから供給される圧油の流れを制御する別の方向切換弁と、 前記 特定の方向切換弁のタンクポートとタンクとを結ぶ管路上に設けた絞り手段、 及 び、 前記特定の方向切換弁のタンク側流路とボンプ側流路とを連絡する流路上に 設けられ、 前記タンク側流路の圧力が前記ポンプ側流路の圧力よりも高いときに タンク側流路からポンプ側流路への圧油の流入を許容する逆止弁とから形成され る油圧再生装置とを備えた作業機の油圧回路において、 前記特定の方向切換弁を 駆動したときに前記第 2の油圧ポンプから吐出される圧油を前記特定のァクチュ エー夕へと導くための合流手段を設け、 前記油圧再生装置を形成する前記絞り手 段を制御信号に応じてその開口面積を変化させる可変絞り手段とし、 この可変絞 り手段への前記制御信号を生成する制御信号発生手段と、 前記第 1の油圧ポンプ の吐出圧を検出する第 1の圧力検出手段と、 前記第 2の油圧ポンプの吐出圧を検 出する第 2の圧力検出手段と、 前記第 1及び第 2の圧力検出手段からの圧力信号 を入力し、 所定の演算処理を実行し前記御信号発生手段に対し駆動信号を出力す る制御手段とを備えたことを特徴とする。
以上のように構成した本発明では、 特定の方向切換弁を操作すると特定のァク 'チユエ一夕には第 1の油圧ポンプから吐出された圧油と、 合流手段を介し第 2の 油圧ポンプから吐出された圧油とが供給される。 また、 特定のァクチユエ一夕か ら排出された圧油は、 特定の方向切換弁のタンクポートを介し可変絞り手段に導 かれる。 この可変絞り手段に導かれる流量が増加するにつれてタンク側流路の圧 力が高くなり、 このタンク側流路の圧力がポンプ側流路の圧力よりも高くなると 逆止弁を介してタンク側流路の圧油がポンプ側流路に再生流量として流入し、 特 定のァクチユエ一夕の速度が速くなる。
一方、 特定のァクチユエ一夕の負荷の変化に伴い、 第 1の油圧ポンプ及び第 2 の油圧ポンプの吐出圧が変化すると、 この圧力の変化は、 第 1の圧力検出手段及 び第 2の圧力検出手段によって検出され、 制御手段に入力される。 制御手段では、 所定の演算処理を実行し、 入力した圧力信号に応じた駆動信号を生成し、 制御信 号発生手段に出力する。 制御信号発生手段は、 その駆動信号に応じて制御信号を 生成し、 可変絞り手段に出力する。 可変絞り手段は、 この制御信号に応じてタン クにつながる管路を絞り、 タンク側流路からポンプ側流路に戻る再生流量を制御 する。
ここで、 制御手段による所定の演算処理は任意に設定可能であり、 例えば、 入 力した第 1の油圧ポンプの圧力信号と第 2の油圧ポンプの圧力信号のうち、 いず れか小さい方の圧力を選択するようにし、 かつ、 圧力が高くなるにしたがい可変 絞り手段の開口面積が大きくなるように、 圧力信号と駆動信号との関係を設定す ることができる。 これにより、 第 1又は第 2の油圧ポンプの吐出圧が低いときに は特定のァクチユエ一夕の負荷が小さいものと判断し、 可変絞り手段の開口面積 を小さくし、 これにより再生流量を多くし、 特定のァクチユエ一夕の速度を速く することができる。 一方、 第 1及び第 2の油圧ポンプの吐出圧が高いときには、 特定のァクチユエ一夕に作用する負荷が大きいものと判断し、 可変絞り手段の開 口面積を大きくし、 タンク側流路、 すなわち特定のァクチユエ一夕の排出側の圧 力を低圧にすることで、 ァクチユエ一夕の推力を確保することができる。
また、 第 1の油圧ポンプから圧油が供給される複数のァクチユエ一夕のうち、 特定のァクチユエ一夕と他のァクチユエ一夕とが複合操作されたとき、 他のァク チユエ一夕の負荷が大きく第 1の油圧ポンプの吐出圧が高くなつた場合であって も、 特定のァクチユエ一夕の負荷が小さければ第 2の油圧ポンプの吐出圧が低く なり、 制御装置は再生流量を多くするよう制御信号発生手段に対し、 駆動信号を 出力する。
したがって、 複合操作を行っても特定のァクチユエ一夕の負荷が小さい場合に は多量の再生流量を確保でき、 特定のァクチユエ一夕速度を速くすることができ る。 これにより、 単独操作及び複合操作、 いずれの場合にも特定のァクチユエ一 夕の動作速度をほぼ同じにすることができ、 良好な操作性を得ることができる。 図面の簡単な説明
図 1は、 本発明による第 1の実施形態の全体油圧回路図である。
図 2は、 第 1の実施形態における制御装置のブロック図である。
図 3は上記油圧回路を搭載した油圧ショベルの外観を示す図である。
図 4は、 第 1の実施形態におけるアーム単独操作時のポンプ吐出圧と再生流量 との関係を示す図である。
図 5は、 第 1の実施形態におけるアームと旋回との複合操作操作時のポンプ吐 出圧と再生流量との関係を示す図である。
図 6は、 本発明による第 2の実施形態の全体油圧回路図である。
図 7は、 第 2の実施形態における制御装置のブロック図である。
図 8は、 第 2の実施の形態におけるアーム単独操作時のポンプ吐出圧と再生流 量との関係を示す図である。
図 9は、 第 2の実施の形態におけるアームとブームとの複合操作操作時のボン プ吐出圧と再生流量との関係を示す図である。
図 1 0は、 本発明による第 3の実施形態の全体油圧回路図である。 発明を実施するための最良の形態
以下、 本発明による作業機の油圧回路の実施形態を図に基づき説明する。 本実 施の形態は、 作業機として図示しない油圧ショベルを対象に適用したものであり、 図 1〜図 5は第 1の実施形態の説明図、 図 1は全体油圧回路図、 図 2は制御装置 のブロック図、 図 3は上記油圧回路を搭載した油圧ショベルの外観を示す図、 図 4及び図 5はアーム単独操作時及びアームと旋回との複合操作時におけるポンプ 吐出圧と可変絞り手段としての再生切換弁の開口面積及び再生流量との関係を示 す図である。
図 1に示すように、 この第 1の実施形態では、 油圧ショベルの一部を形成する アーム 2 0 4 (図 3参照) を駆動するためのアームシリンダ 4と、 旋回体 2 0 1 (図 3参照) を駆動するための旋回モータ 5と、 ブーム 2 0 3 (図 3参照) を駆 動するためのブームシリンダ 3と、 主にアームシリンダ 4及び旋回モー夕 5に対 し圧油の供給を行う第 1の油圧ポンプとして可変容量型の油圧ポンプ 1と、 この 油圧ポンプ 1から吐出されアームシリンダ 4又は旋回モータ 5へ供給される圧油 の流れを制御するアーム用の方向切換弁 1 4及び旋回用の方向切換弁 1 5と、 主 にブ一ムシリンダ 3に対し圧油の供給を行う第 2の油圧ポンプとして可変容量型 の油圧ポンプ 2と、 この油圧ポンプ 2から吐出されブームシリンダ 3へ供給され る圧油の流れを制御するブーム用の方向切換弁 1 1とを備えている。 また、 ァー ム用の方向切換弁 1 4が操作装置 2 2により操作されたとき、 油圧ポンプ 2から 吐出された圧油を油圧ポンプ 1から吐出された圧油と合流してアームシリンダ 4 へ供給する合流手段としての方向切換弁 1 3と、 ブーム用の方向切換弁 1 1が操 作装置 2 1により操作されたとき、 油圧ポンプ 1から吐出された圧油を油圧ボン プ 2から吐出された圧油と合流してブ一ムシリンダ 3へ供給する方向切換弁 1 2 とを設けている。
方向切換弁 1 2, 1 4 , 1 5は、 油圧ポンプ 1とタンク 9とを連絡するセンタ バイパスライン 1 Aが貫通するセンタバイパス型の弁であり、 これらの方向切換 弁 1 2 , 1 4, 1 5は油圧ポンプ 1の吐出管路 1 O A及びポンプライン 1 0 Bを 介して互いにパラレルに接続されている。 また、 方向切換弁 1 1 , 1 3は、 油圧 ポンプ 2とタンク 9とを連絡するセンタバイパスライン 2 Aが貫通するセンタバ ィパス型の弁であり、 これらの方向切換弁 1 1, 1 3は油圧ポンプ 2の吐出ライ ン 2 O A及びポンプライン 2 0 Bを介して互いにパラレルに接続されている。 旋回用の方向切換弁 1 5は、 操作レバー装置 2 3により生成されるパイロット 圧 P i 5, P i 6により作動し、 アーム用の方向切換弁 1 4及び方向切換弁 1 3 は操作レバ一装置 2 2により生成されるパイロット圧 P i 3 , P i 4により作動 し、 ブーム用の方向切換弁 1 1 , 1 2は操作レバ一装置 2 1により生成されるパ ィロット圧 P i 1, P i 2により作動する。 ここで、 アーム用の操作レバー装置 2 2を操作すると、 方向切換弁 1 4及び方向切換弁 1 3のスプールが移動し、 後 述する第 2ライン 1 0 Cあるいはポンプライン 1 0 Bを介し油圧ポンプ 1からの 圧油がアームシリンダ 4に供給されるとともに、 油圧ポンプ 2からの圧油がポン プライン 2 0 B、 方向切換弁 1 3、 管路 4 1又は 4 2を介しアームシリンダ 4に 供給される。 また、 ブーム用の操作レバー装置 2 1を操作すると、 方向切換弁 1 1及び方向切換弁 1 2のスプールが移動し、 油圧ポンプ 2からの圧油が方向切換 弁 1 1を介しブームシリンダ 3に供給されるとともに、 油圧ポンプ 1からの圧油 がポンプライン 1 0 B、 方向切換弁 1 2、 管路 4 3又は管路 4 4を介しブームシ リンダ 3に供給される。 なお、 方向切換弁 1 1, 1 4 , 1 5は、 方向切換弁 1 4 に代表させて図示するように、 スプールの移動量に応じて絞り量が設定されるメ 一夕イン可変絞り 1 4 aとメータァゥト可変絞り 1 4 bとを有している。
アーム用の方向切換弁 1 4のタンクポート 3 1は、 排出ラインである第 1ライ ン 3 4を介してタンク 9に接続され、 ポンプポート 3 2はフィーダラインである 第 2ライン 1 0 C及び逆止弁 1 9、 絞り 3 0を介しポンプライン 1 0 Bに接続さ れるとともに、 第 2ライン 1 0 C及び逆止弁 8を介してセン夕バイパスライン 1 Aに接続され、 ポンプポート 3 6はフィ一ダラインである第 3ライン 1 0 D及び 逆止弁 1 9を介してポンプライン 1 0 Bに接続されている。 なお、 逆止弁 1 9は、 第 2ライン 1 0 Cからポンプライン 1 0 Bへの圧油の逆流を防止するために設け られる。 また、 絞り 3 0は、 旋回とアームとが同時に操作されたときに、 負荷の 大きな旋回モー夕 5と旋回モ一夕 5に比べ負荷が小さくなりがちなァ一ムシリン ダ 4のそれぞれに油圧ポンプ 1から吐出された圧油が供給されるように設けられ ている。
以上のように構成された油圧ショベルの油圧回路に本実施形態による油圧再生 装置が設けられている。 この油圧再生装置は、 第 1ライン 3 4に設置した可変絞 り手段としての再生切換弁 6と、 この再生切換弁 6よりも上流側でァ一ムシリン ダ 4のボトム側とを連絡する再生用の第 3ライン 3 5と、 方向切換弁 1 4内に設 けられ第 1ライン 3 4からァ一ムシリンダ 4のボトム側へ流入する圧油の流れの みを許容する逆止弁 7とを備えている。
再生切換弁 6は、 可変絞り 6 aを形成するスプール 6 bと、 制御信号としての パイロット圧 P xが導かれ、 スプール 6 bを閉弁方向に駆動する油圧駆動部 6 c と、 スプール 6 bを開弁方向に付勢するばね 6 dとを有し、 油圧駆動部 6 cに導 入されるパイロット圧 P Xとばね 6 dによる付勢力とが釣り合う位置で可変絞り 6 aの開口面積が設定される。
また、 油圧ポンプ 1及び油圧ポンプ 2の吐出圧を検出する圧力検出器 1 0 1 , 1 0 2と、 パイロットポンプ 5 0から吐出されたパイロットー次圧を減圧し再生 切換弁 6へのパイロット圧 P Xを生成する制御信号発生手段としての電磁比例弁 4 0と、 圧力検出器 1 0 1 , 1 0 2からの圧力信号 S 1、 S 2を入力し、 この圧 力信号に応じた駆動信号を生成し、 電磁比例弁 4 0に出力する制御手段 1 0 0と を備えている。
制御装置 1 0 0は、 図 2に示すように、 予め設定された油圧ポンプ 1の吐出圧 と再生切換弁 6の目標開口面積との関係に基づき、 入力された油圧ポンプ 1の圧 力信号 S 1に応じた目標開口面積を算出する第 1演算部 8 1と、 予め設定された 油圧ポンプ 2の吐出圧と再生切換弁 6の目標開口面積との関係に基づき、 入力さ れた油圧ポンプ 2の圧力信号 S 2に応じた目標開口面積を算出する第 2演算部 8 2と、 第 1演算部 8 1及び第 2演算部 8 2によって算出された再生切換弁 6の目 標開口面積のうち小さい方の値を選択する第 3演算部 8 6と、 この第 3演算部 8 6から出力された目標開口面積に対する電磁比例弁 4 0への駆動信号としての駆 動電流 iを出力する第 4演算部 8 9とを備えている。 第 1演算部 8 1及び第 2演 算部 8 2には、 油圧ポンプ 1及び油圧ポンプ 2の吐出圧が低圧の所定圧 P 0までは 目標開口面積が最小となるように設定し、 所定の高圧 P 1にかけ徐々に目標開口 面積を最大まで増加させるように設定している。 また、 第 4演算部 8 9には、 目 標開口面積が増加するにしたがい電磁比例弁 4 0への駆動電流 iが減少するよう に設定されている。
図 3は上記油圧回路を搭載した油圧ショベルの外観を示す図である。 油圧ショ ベルは下部走行体 2 0 0と、 上部旋回体 (明細書中では適宜、 「旋回体」 或いは 「旋回」 という) 2 0 1と、 フロント作業機 2 0 2とを有し、 フロント作業機 2 0 2はブーム 2 0 3と、 アーム 2 0 4と、 バケツト 2 0 5とから構成されている。 下部走行体 2 0 0は駆動手段として左右の走行モー夕 2 1 0, 2 1 1 (—方のみ 図示) を備え、 上部旋回体 2 0 1は図 1に示した旋回モー夕 5により下部走行体 2 0 0上を水平方向に旋回するよう駆動される。 ブーム 2 0 3は上部旋回体 2 0 1の前側中央部に上下方向に回動可能に支持され、 図 1に示したブームシリンダ 3により駆動される。 アーム 2 0 4はブーム 2 0 3の先端に前後方向に回動可能 に支持され、 図 1に示したアームシリンダ 4により駆動される。 パケット 2 0 5 はアーム 2 0 4の先端に前後方向に回動可能に支持され、 バケツトシリンダ 2 1 2により駆動される。 図 1に示した油圧回路では、 走行モータ 2 1 0, 2 1 1、 バケツトシリンダ 2 1 2は省略されている。
以上のように構成した本実施形態による作業機の油圧回路では、 例えば操作レ バー装置 2 2を操作し、 パイロット圧 P i 4を発生させ、 方向切換弁 1 3, 1 4 が切換えられたとき、 油圧ポンプ 1から吐出された圧油は、 吐出管路 1 0 A、 逆 止弁 8、 第 2ライン 1 0 Cを介しポンプポート 3 2を経てアームシリンダ 4のポ トム側へ流入する。 また、 油圧ポンプ 2から吐出された圧油も吐出管路 2 0 A、 セン夕バイパス管路 2 Aあるいはポンプライン 2 0 B、 方向切換弁 1 3、 管路 4 1を介し、 アームシリンダ 4のボトム側に供給される。
このようなァ一ムシリンダ 4の駆動に際し、 例えばアーム 2 0 4が鉛直下向き の姿勢でアーム 2 0 4を単独操作した場合には、 アームシリンダ 4に加わる負荷 がほぼ無負荷状態と同等となり、 アームシリンダ 4のポトム側圧力が極めて低く なるため、 油圧ポンプ 1及び油圧ポンプ 2の吐出圧も極めて低い圧力となる。 こ のため、 各圧力検出器 1 0 1, 1 0 2から制御装置 1 0 0に入力される圧力信号 S 1 , S 2はいずれも低圧信号となり、 第 3演算部 8 6から出力される目標開口 面積も最小値に近い値となる。 第 4演算部 8 9は、 入力した目標開口面積に対応 する電磁比例弁 4 0への駆動電流 iとして最大値に近い電流値を算出する。 電磁 比例弁 4 0は、 この駆動電流 iを入力すると、 弁位置を 4 0 aから 4 0 bに移行 させ、 ほぼ最大開口面積となりパイロッ卜一次圧と同等のパイロット圧 P xを再 生切換弁 6に導入する。 再生切換弁 6は、 このパイロット圧 P xによりスプール 6 bが絞り方向に移動し開口面積がほぼ最小となるため、 アームシリンダ 4の口 ッド側から排出された圧油が再生切換弁 6により絞られ、 第 1ライン 3 4内の圧 力が高くなる。 そして、 この第 1ライン 3 4内の圧力が第 2ライン 1 0 Cの圧力 よりも高くなつたときに、 タンクポート 3 1から第 1ライン 3 4に流出する戻り 油の一部が再生流量として第三ライン 3 5、 再生ポート 3 3、 逆止弁 7を介し油 圧ポンプ 1からの圧油に合流してアームシリンダ 4のボトム側に供給される。 こ れにより、 アームシリンダ 4の移動速度が速くなる。
このときの、 油圧ポンプ 1, 2の吐出圧力と再生流量との関係を図 4に示す。 同図 4に示すように、 アーム用の操作レバー装置 2 2を操作し方向切換弁 1 3, 1 4が開口するにつれ、 ァ一ムシリンダ 4の負荷により油圧ポンプ 1 , 2の圧力 が増加する。 上述したようにアームの姿勢がほぼ鉛直下向きの状態ではアームシ リンダ 4の負荷が小さく、 油圧ポンプ 1 , 2の吐出圧も低圧となる。 この間は、 再生切換弁 6の開口面積がほぼ最小となり、 アームシリンダ 4のロッド側から排 出される圧油が絞られ第 1ライン 3 4内の圧力が高くなり、 再生流量が増加する。 その後、 ァ一ムシリンダ 4のロッドが伸張し、 アーム 2 0 4の姿勢が変化するに つれアームシリンダ 4の負荷が大きくなり、 油圧ポンプ 1, 2の吐出圧が高くな ると、 制御装置 1 0 0から電磁比例弁 4 0へ出力される駆動電流 iが減じられ、 再生切換弁 6の開口面積が大きくなる。 このため、 第 1ライン 3 4内の圧力が低 下し、 再生流量が少なくなる。 ただし、 この状態では、 ァ一ムシリンダ 4のロッ ド側の圧力も低くなるため、 ァ一ムシリンダ 4の推力は確保されることになる。 一方、 アーム用の操作レバー装置 2 2を操作しパイロット圧 P i 4を発生させ ると同時に、 旋回用の操作レバー装置 2 3を操作したときには、 油圧ポンプ 1か ら吐出した圧油が吐出管路 1 0 A、 方向切換弁 1 5を介し旋回モータ 5に供給さ れ、 さらに、 油圧ポンプ 1から吐出した圧油はポンプライン 1 0 B、 逆止弁 1 9、 絞り 3 0、 第 2ライン 1 0 C、 ポンプポート 3 2を経て、 アームシリンダ 4のポ トム側に供給される。 その際、 特に旋回操作直後には旋回モー夕 5に大きな負荷 が作用し、 旋回モー夕 5の圧力がァ一ムシリンダ 4のボトム側の圧力に比べ高く なるが、 絞り 3 0の作用により両ァクチユエ一夕 4 , 5に油圧ポンプ 1からの圧 油が供給される。 また、 油圧ポンプ 2から吐出された圧油は、 上記同様方向切換 弁 1 3を介し、 アームシリンダ 4のボトム側に供給される。
ここで、 上述したように旋回モー夕 5には大きな負荷が作用するため、 油圧ポ ンプ 1の吐出圧は高圧となるが、 アームシリンダ 4の負荷が小さい場合には、 油 圧ポンプ 2の吐出圧が低圧となり、 圧力検出器 1 0 1からは高圧信号 S 1が、 圧 力検出器 1 0 2からは低圧信号 S 2が制御装置 1 0 0に入力される。 第 1演算部 8 1では、 高圧信号 S 1に応じ目標開口面積が大きな値となり、 第 2演算部 8 2 では、 低圧信号 S 2に応じ目標開口面積が小さい値となり、 第 3演算部 8 6によ り両信号のうち小さい方の信号が選択される。 第 4演算部 8 9では、 目標開口面 積として小さい値に対応する大きな駆動電流 iが算出される。 すなわち、 制御装 置 1 0 0からは、 低圧信号 S 2に応じた大きな駆動電流 iが電磁比例弁 4 0に対 し出力される。 このため、 上記同様再生切換弁 6の開口面積が小さくなり、 第 1 ライン 3 4からの再生流量が増加する。
このときの状況を、 図 5に示す。 上述したように旋回モー夕 5の負荷が大きい ため、 油圧ポンプ 1の吐出圧は高くなるが、 アームシリンダ 4の負荷が小さいた め油圧ポンプ 2の吐出圧は低圧となる。 このとき再生切換弁 6は、 低圧の油圧ポ ンプ 2の吐出圧に基づき実線 (ィ) で示すようにその開口面積が小さく制御され、 これに伴い実線 (Λ) で示すように再生流量が増加する。
なお、 上述した従来技術による制御の場合には、 破線 (口), (二)に示すように、 高圧の油圧ポンプ 1の吐出圧に応じて再生切換弁が制御されるため、 油圧ポンプ 1の吐出圧が高圧の状態を保持している間は、 再生流量がほぼ 0となる。
したがって、 本実施形態によれば、 旋回 2 0 1とアーム 2 0 4との複合操作を 行ってもァ一ムシリンダ 4の負荷が小さい場合には、 ァ一ムシリンダ 4のボトム 側に対し多量の再生流量を確保でき、 アームシリンダ 4の動作速度を速くするこ とができる。 これにより、 アーム単独操作時及び旋回との複合操作時のいずれの 場合にもアームシリンダ 4に対し再生を行うことができ、 良好な操作性を得るこ とができる。 これに伴い、 作業効率も向上する。 なお、 合流用の方向切換弁 1 2, 1 3の絞り量を予め調整しておくことにより、 アーム 2 0 4とブーム 2 0 3との 複合操作時においても同様の効果を得ることができる。
次に、 図 6〜図 9を用い本発明による第 2の実施形態について説明する。 この 第 2の実施形態は、 2つの油圧ポンプ 1 , 2からの圧油が合流してアームシリン ダ 4に供給されることから、 アーム単独操作時に油圧再生を行うと必要以上にァ ームの駆動速度が速くなりすぎることがあるため、 他のァクチユエ一夕との複合 操作時にアームの負荷圧が低いときだけ再生を実行させることを意図したもので ある。 図 6は、 この第 2の実施形態による全体油圧回路図、 図 7は制御装置のブ ロック図、 図 8及び図 9はポンプ吐出圧及び操作パイロット圧と再生切換弁の開 口面積及び再生流量との関係を示す図である。
この第 2の実施形態では、 図 6に示すように各ァクチユエ一夕 3, 4 , 5を操 作する操作レバー装置 2 1, 2 2 , 2 3から出力されるパイロット圧を検出する 操作量検出手段としてのパイロット圧検出器 1 0 3, 1 0 4 , 1 0 5を設け、 こ れらのパイロット圧検出器 1 0 3 , 1 0 4 , 1 0 5からのパイロット圧信号 S 3 , S 4 , S 5が制御装置 1 0 O Aに入力される。 そして、 制御装置 1 0 O Aは、 油 圧ポンプ 1 , 2の圧力信号 S l, S 2に加え、 パイロット圧信号 S 3 , S 4 , S 5に基づき後述する演算処理を実行する。 なお、 パイロット圧検出器 1 0 3は、 ブームシリンダ 3のボトム側への圧油の供給を指示するパイロット圧 P i 1を検 出するように、 パイロット圧検出器 1 0 4は、 ァ一ムシリンダ 4のボトム側への 圧油の供給を指示するパイロット圧 P i 4を検出するように、 パイロット圧検出 器 1 0 5は、 旋回モータ 5駆動用のパイロット圧 P i 5と P i 6のうち高圧側の パイロット圧をシャトル弁 6 0を介し検出するように設けられている。
また、 制御装置 1 0 O Aは、 図 7に示すように上述した第 1の実施形態に用い た第 1演算部 8 1、 第 2演算部 8 2、 第 3演算部 8 6、 第 4演算部 8 9に加え、 予め設定されたブ一ムシリンダ 3駆動用のパイロット圧 P i 1と再生切換弁 6の 目標開口面積との関係に基づき、 入力されたパイロット圧信号 S 3に応じた目標 開口面積を算出する第 5演算部 8 3と、 予め設定された旋回モータ 5駆動用のパ ィロット圧 P i 5又は P i 6と再生切換弁 6の目標開口面積との関係に基づき、 入力されたパイロット圧信号 S 5に応じた目標開口面積を算出する第 6演算部 8 4と、 第 5演算部 8 3と第 6演算部 8 4により算出された目標開口面積のうち小 さい方の開口面積を選択する第 7演算部 8 5と、 予め設定されたアームシリンダ 4駆動用のパイロット圧 P i 4と再生切換弁 6の目標開口面積との関係に基づき、 入力ざれたパイ口ット圧信号 S 4に応じた目標開口面積を算出する第 8演算部 8 7と、 第 3演算部 8 6と第 7演算部 8 5と第 8演算部 8 7によって算出された目 標開口面積のうち最大の開口面積を選択する第 9演算部 8 8とを備えている。 第 5演算部 8 3及び第 6演算部 8 4には、 ブームシリンダ 3駆動用のパイロッ ト圧 P i 1及び旋回モー夕 5駆動用のパイロット圧 P i 5又は P i 6が低圧の所 定圧 P 2までは目標開口面積が最大となるように設定し、 所定圧 P 2を超えると 目標開口面積が最小となるように設定している。 第 8演算部 8 7には、 アームシ リンダ 4駆動用のパイロット圧 P i 4が低圧の所定圧 P 4までは目標開口面積が 最大となるように設定し、 所定の高圧 P 5にかけ徐々に目標開口面積を最小まで 減少させるように設定している。
以上のように構成した第 2の実施形態では、 アームシリンダ 4のみを伸張方向 に、 すなわちアームシリンダ 4のボトム側に圧油を供給するように操作レバー装 置 2 2を図示右方向に操作すると、 パイロット圧 P i 4が方向切換弁 1 3, 1 4 に供給され、 このパイロット圧 P i 4がパイロット圧検出器 1 0 4により検出さ れる。 このパイロット圧信号 S 4が制御装置 1 0 O Aに入力されると第 8演算部 8 7では、 このパイロット圧信号 S 4に応じた再生切換弁 6の目標開口面積を算 出する。 また、 アームシリンダ 4の駆動に伴い、 油圧ポンプ 1 , 2の吐出圧が高 くなると、 第 1演算部 8 1及び第 2演算部 8 2ではポンプ吐出圧信号 S 1 , S 2 に基づき目標開口面積を算出し、 第 3演算部 8 6からは第 1演算部 8 1と第 2演 算部 8 2から出力される目標開口面積のうち小さい方の開口面積が出力される。 ここで、 アーム用の操作レバー装置 2 2のみが操作されている場合には、 ブー ム駆動用のパイロット圧 P i 1、 旋回駆動用のパイロット圧 P i 5又は P i 6は ほぼタンク圧となり、 第 5演算部 8 3、 第 6演算部 8 4では目標開口面積が最大 値となるため、 第 7演算部 8 5から出力される目標開口面積は最大値となる。 と ころで、 第 9演算部 8 8は、 第 3演算部 8 6、 第 7演算部 8 5、 第 8演算部 8 7 によって算出された目標開口面積のうち最も大きい値が選択されるようになって おり、 アーム単独操作の場合には、 パイロット圧信号 S 4及び油圧ポンプ 1 , 2 の吐出圧信号 S l, S 2に基づく目標開口面積の如何に関らず、 最大の目標開口 面積が選択され、 第 4演算部 8 9からは最大開口面積に応じた最小の駆動電流 i が出力される。 この最小の駆動電流 iが電磁比例弁 4 0に入力されると、 電磁比 例弁 4 0から出力されるパイロット圧 P Xはほぼタンク圧に等しい低圧となり、 再生切換弁 6が最大開口面積を保持する。 したがって、 第 1ライン 3 4がほぼ夕 ンク圧に等しくなり、 第 1ライン 3 4からアームシリンダ 4のボトム側への再生 流量はほぼ 0となる。
このときの油圧ポンプ 1, 2と再生流量との関係を図 8に示す。 同図 8に示す ように、 アーム用の操作レバー装置 2 2を操作し方向切換弁 1 3, 1 4が開口す るにつれ、 アームシリンダ 4の負荷により油圧ポンプ 1 , 2の圧力が増加する。 しかし、 第 9演算部 8 8から出力される目標開口面積はほぼ最大値となるため、 再生切換弁 6の開口面積は最大値となる。 したがって、 アームシリンダ 4から排 出された圧油のほとんどがタンク 9に流出し、 再生流量はほぼ 0となる。
このように、 この第 2の実施形態では、 アーム単独操作時にはアームシリンダ 4への圧油の再生が行われることがない。
一方、 アーム 2 0 4とブーム 2 0 3又は旋回 2 0 1とが同時に操作された場合 には、 第 5演算部 8 3又は第 6演算部 8 4のいずれかから出力される目標開口面 積が最小となり、 第 7演算部 8 5から出力される目標開口面積も最小値となる。 これに対し、 アーム用の操作レバー装置 2 2の操作によってパイロット圧信号 S 4が高圧となり、 第 8演算部 8 7からは小さい目標開口面積が出力される。 また、 第 3演算部 8 6からは油圧ポンプ 1又は油圧ポンプ 2の吐出圧のうち低い方の圧 力に応じた目標開口面積が出力されるため、 ァ一ムシリンダ 4の負荷圧が低い場 合には、 油圧ポンプ 1又は油圧ポンプ 2のいずれかの吐出圧が低くなり、 第 3演 算部 8 6から出力される目標開口面積は小さい値となる。 このため、 第 3演算部 8 6、 第 7演算部 8 5、 第 8演算部 8 7から出力される目標開口面積は小さい値 となり、 第 9演算部 8 8からは、 目標開口面積が小さい値として出力され、 第 4 演算部 8 9から大きな駆動電流 iが出力される。 電磁比例弁 4 0は、 この電流 i を入力すると、 高圧のパイロット圧 P xを再生切換弁 6に導出し、 再生切換弁 6 の開口面積が小さくなる。 このため、 ァ一ムシリンダ 4のロッド側から排出され る圧油が絞られ、 第 1ライン 3 4内の圧力が高くなり、 再生流量が増加する。 このときの油圧ポンプ 1 , 2と再生流量との関係を図 9に示す。 同図 9に示す ように、 アーム用の操作レバー装置 2 2及びブーム用の操作レバー装置 2 1を操 作すると、 ァ一ムシリンダ 4及びブームシリンダ 3の負荷により油圧ポンプ 1, 2の圧力が増加する。 ここで、 アームシリンダ 4の負荷圧が低い場合には、 少な くとも油圧ポンプ 1の吐出圧が低圧となり、 第 9演算部 8 8から出力される目標 開口面積はほぼ最小値となるため、 再生切換弁 6の開口面積が最小値となる。 こ のため、 アームシリンダ 4のロッド側から排出される圧油が絞られ、 第 1ライン 3 4内の圧力が高くなり、 再生流量が増加する。
したがって、 この第 2の実施形態によれば、 アームの単独操作時には油圧の再 生は行われることがなく、 ァ一ム 2 0 4の速度が過度に速くなりすぎることがな い。 これに対し、 旋回 2 0 1又はブーム 2 0 3との複合操作時に、 アームシリン ダ 4の負荷圧が低い場合には、 再生流量が増加するため、 アーム単独操作時とほ ぼ同等の速度を確保することができ、 従来に比べ操作性が向上し、 結果として作 業効率が向上する。
次に、 図 1 0を用い本発明による第 3の実施形態について説明する。 この第 3 の実施形態は、 制御装置を用いることなく純油圧的に上述した第 1の実施形態と ほぼ同様の作用 ·効果を得ることを意図したものである。
図 1 0は第 3の実施形態における全体油圧回路を示す図であり、 油圧ポンプ 1 , 2の吐出圧のうち低圧側の圧力を選択出力する低圧選択弁 2 0 0と、 この低圧選 択弁 2 0 0からの圧力に基づきパイロットー次圧を減圧する減圧弁 2 0 1を設け ている。 低圧選択弁 2 0 0と減圧弁 2 0 1を設けたこと、 制御装置 1 0 0及び圧 力検出器 1 0 1 , 1 0 2を排除したこと以外は、 上述した第 1の実施形態におけ る油圧回路構成と同じ構成となっている。
以上のように構成した第 3の実施形態では、 操作レバー装置 2 2を操作し、 ァ ーム 2 0 4を駆動したときに、 油圧ポンプ 1及び油圧ポンプ 2の吐出圧のうち低 圧側の圧力が低圧選択弁 2 0 0により減圧弁 2 0 1の油室 2 0 1 cに導かれる。 減圧弁 2 0 1は、 低圧選択弁 2 0 0により導かれた圧力信号 Pに応じてその弁位 置が制御され、 パイロットポンプ 5 0からのパイロットー次圧を減圧し再生切換 弁 6の油圧駆動部 6 cに導入する。 したがって、 低圧選択弁 2 0 0から導かれる 圧力 Pが低圧の場合には、 減圧弁 2 0 1からのパイロット圧 P xは比較的高圧と なり、 再生切換弁 6の開口面積が小さくなり、 上述した第 1の実施形態同様第 1 ライン 3 4からァ一ムシリンダ 4のボトム側への再生流量が多くなる。 逆に、 低 圧選択弁 2 0 0から導かれる圧力 Pが高圧の場合には、 減圧弁 2 0 1からのパイ ロット圧 P xは比較的低圧となり、 再生切換弁 6の開口面積が大きくなり、 再生 流量が少なくなる。
したがって、 この第 3の実施形態によっても、 第 1の実施形態同様に、 旋回 2 0 1とアーム 2 0 4との複合操作を行ってもァ一ムシリンダ 4の負荷が小さい場 合には、 アームシリンダ 4のボトム側に対し多量の再生流量を確保でき、 アーム シリンダ 4の動作速度を速くすることができる。 これにより、 アーム単独操作時 及び旋回との複合操作時のいずれの場合にもアームシリンダ 4に対し再生を行う ことができ、 良好な操作性を得ることができる。 これに伴い、 作業効率も向上す る。
なお、 この第 3の実施形態では、 低圧選択弁 2 0 0によって導かれた圧力に基 づき減圧弁 2 0 1によってパイロット一次圧を減圧し、 再生切換弁 6にパイロッ ト圧 P xを導くようにしたが、 直接低圧選択弁 2 0 0から出力された圧力により 再生切換弁 6を制御するようにしても良い。 産業上の利用可能性
以上説明したように、 本発明によれば、 特定のァクチユエ一夕と他のァクチュ ェ一夕との複合操作時に、 特定のァクチユエ一夕の負荷が小さい場合には特定の ァクチユエ一夕から排出された圧油が再び特定のァクチユエ一夕の駆動用の圧油 として用いられるため、 特定のァクチユエ一夕の単独操作時と他のァクチユエ一 夕との複合操作時とで、 ほぼ同等の速度を確保することができ、 従来に比べ操作 性が向上し、 結果として作業効率が向上する。

Claims

請求の範囲
1 . 特定のァクチユエ一タ(4)を含む複数のァクチユエ一夕(4, 5)に対し圧油の 供給を行う第 1の油圧ポンプ(1)と、 この第 1の油圧ポンプに対しそれぞれパラレ ルに接続され前記複数のァクチユエ一夕への圧油の流れを制御する特定の方向切 換弁(14)を含む複数の方向切換弁(14, 15)と、 前記複数のァクチユエ一夕とは別の ァクチユエ一夕(3)に対し圧油の供給を行う第 2の油圧ポンプ(2)と、 この第 2の 油圧ポンプから供給される圧油の流れを制御する別の方向切換弁(1 1)と、 前記特 定の方向切換弁のタンクポート(31)とタンク(9)とを結ぶ管路 (34)上に設けた絞り 手段(6)、 及び、 前記特定の方向切換弁のタンク側流路(35)とポンプ側流路(10C) とを連絡する流路上に設けられ、 前記タンク側流路の圧力が前記ポンプ側流路の 圧力よりも高いときにタンク側流路からポンプ側流路への圧油の流入を許容する 逆止弁(7)とから形成される油圧再生装置とを備えた作業機の油圧回路において、 前記特定の方向切換弁(14)を駆動したときに前記第 2の油圧ポンプ (2)から吐出 される圧油を前記特定のァクチユエ一夕(4)へと導くための合流手段(13)を設け、 前記油圧再生装置を形成する前記絞り手段(6)を制御信号に応じてその開口面積 を変化させる可変絞り手段とし、 この可変絞り手段への前記制御信号を生成する 制御信号発生手段 (40)と、 前記第 1の油圧ポンプ(1)の吐出圧を検出する第 1の圧 力検出手段(101)と、 前記第 2の油圧ポンプ (2)の吐出圧を検出する第 2の圧力検 出手段(102)と、 前記第 1及び第 2の圧力検出手段からの圧力信号を入力し、 所定 の演算処理を実行し前記制御信号発生手段に対し駆動信号を出力する制御手段(1 00; 100A)とを備えたことを特徴とする作業機の油圧回路。
2 . 前記複数の方向切換弁(14, 15)及び前記別の方向切換弁(1 1)にそれぞれ対応 して設けられ、 各方向切換弁を操作する操作手段(21- 23)の操作量を検出する操作 量検出手段 03- 105)を設け、 前記制御手段(100A)が前記操作量検出手段からの検 出信号を入力し、 前記第 1及び第 2のポンプ(1, 2)の吐出圧に加え前記操作手段の 操作量に応じて前記所定の演算処理を実行することを特徴とする請求項 1に記載 の作業機の油圧回路。
3 . 前記制御信号がパイロット油圧であり、 前記制御信号発生手段が前記制御 手段(100 ; 100A)からの駆動信号に応じてパイロットポンプ(50)から吐出されるパ イロットー次圧を減圧し前記制御信号としてのパイロットニ次圧を生成する減圧 弁 (40)であることを特徴とする請求項 1又は 2に記載の作業機の油圧回路。
4 . 特定のァクチユエ一夕(4)を含む複数のァクチユエ一夕(4, 5)に対し圧油の 供給を行う第 1の油圧ポンプ(1)と、 この第 1の油圧ポンプに対しそれぞれパラレ ルに接続され前記複数のァクチユエ一夕への圧油の流れを制御する特定の方向切 換弁(14)を含む複数の方向切換弁(14, 15)と、 前記複数のァクチユエ一夕とは別の ァクチユエ一夕(3)に対し圧油の供給を行う第 2の油圧ポンプ (2)と、 この第 2の 油圧ポンプから供給される圧油の流れを制御する別の方向切換弁 αι)と、 前記特 定の方向切換弁のタンクポ一ト(31)とタンク(9)とを結ぶ管路(34)上に設けた絞り 手段(6)、 及び、 前記特定の方向切換弁のタンク側流路(35)とポンプ側流路(10C) とを連絡する流路上に設けられ、 前記タンク側流路の圧力が前記ポンプ側流路の 圧力よりも高いときにタンク側流路からポンプ側流路への圧油の流入を許容する 逆止弁(7)とから形成される油圧再生装置とを備えた作業機の油圧回路において、 前記特定の方向切換弁( )を駆動したときに前記第 2の油圧ポンプ (2)から吐出 される圧油を前記特定のァクチユエ一夕(4)へと導くための合流手段(13)と、 前記第 1の油圧ポンプ(1)の吐出圧と前記第 2の油圧ポンプ (2)の吐出圧とのう ち低圧側の圧力を選択する低圧選択手段(100 ; 100A ; 200)とを設けるとともに、 前記油圧再生装置を形成する前記絞り手段 (6)を前記低圧選択手段から出力され る圧力信号に基づきその開口面積を変化させる可変絞り手段としたことを特徴と する作業機の油圧回路。
5 . 前記作業機が油圧ショベルであり、 前記特定のァクチユエ一夕がアーム(2 04)を駆動するアーム用油圧シリンダ (4)であり、 前記複数のァクチユエ一夕が旋 回用油圧モータ(5)を含むことを特徴とする請求項 1〜4のいずれかに記載の作業 機の油圧回路。
PCT/JP2004/003386 2003-03-17 2004-03-15 作業機の油圧回路 WO2004083646A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04720712.1A EP1605168B1 (en) 2003-03-17 2004-03-15 Oil pressure circuit for working machines
KR1020047021416A KR100657035B1 (ko) 2003-03-17 2004-03-15 작업기의 유압회로
US10/514,936 US7127887B2 (en) 2003-03-17 2004-03-15 Oil pressure circuit for working machines
CNB2004800002961A CN100378343C (zh) 2003-03-17 2004-03-15 工作机的液压回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003071332A JP4209705B2 (ja) 2003-03-17 2003-03-17 作業機の油圧回路
JP2003-71332 2003-03-17

Publications (1)

Publication Number Publication Date
WO2004083646A1 true WO2004083646A1 (ja) 2004-09-30

Family

ID=33027683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003386 WO2004083646A1 (ja) 2003-03-17 2004-03-15 作業機の油圧回路

Country Status (6)

Country Link
US (1) US7127887B2 (ja)
EP (1) EP1605168B1 (ja)
JP (1) JP4209705B2 (ja)
KR (1) KR100657035B1 (ja)
CN (1) CN100378343C (ja)
WO (1) WO2004083646A1 (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600612B2 (en) * 2005-04-14 2009-10-13 Nmhg Oregon, Llc Hydraulic system for an industrial vehicle
US7455494B2 (en) * 2005-12-02 2008-11-25 Clark Equipment Company Control circuit for an attachment mounting device
DE102008009722B4 (de) * 2008-02-19 2012-08-23 Marco Systemanalyse Und Entwicklung Gmbh Ventilanordnung
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8479505B2 (en) * 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
KR20110077061A (ko) * 2009-12-30 2011-07-07 볼보 컨스트럭션 이큅먼트 에이비 오픈센터 방식의 굴삭기용 유압시스템의 선회모터 제어방법
JP5079827B2 (ja) * 2010-02-10 2012-11-21 日立建機株式会社 油圧ショベルの油圧駆動装置
JP5350290B2 (ja) * 2010-02-18 2013-11-27 カヤバ工業株式会社 ハイブリッド建設機械の制御装置
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
CN102312451B (zh) * 2010-06-30 2014-02-19 北汽福田汽车股份有限公司 挖掘机合流控制系统及其挖掘机
EP2673422B1 (en) 2011-02-07 2015-03-25 Caterpillar, Inc. Hydrostatic system configured to be integrated in an excavator
JP5496135B2 (ja) 2011-03-25 2014-05-21 日立建機株式会社 油圧作業機の油圧システム
US9181070B2 (en) * 2011-05-13 2015-11-10 Kabushiki Kaisha Kobe Seiko Sho Hydraulic driving apparatus for working machine
JP2014522460A (ja) 2011-05-17 2014-09-04 サステインエックス, インコーポレイテッド 圧縮空気エネルギー貯蔵システムにおける効率的二相熱移送のためのシステムおよび方法
CN102296664B (zh) * 2011-06-23 2013-06-05 徐州徐工挖掘机械有限公司 一种挖掘机液压驱动装置
JP5759072B2 (ja) * 2011-07-26 2015-08-05 ボルボ コンストラクション イクイップメント アーベー 建設機械用油圧システム
WO2013022131A1 (ko) * 2011-08-09 2013-02-14 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 유압 제어시스템
US20130091834A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
JP5803587B2 (ja) * 2011-11-09 2015-11-04 コベルコ建機株式会社 建設機械の油圧回路
CN102518171B (zh) * 2011-12-31 2014-08-13 中外合资沃得重工(中国)有限公司 具有合流加速功能的挖掘机铲斗液压系统
EP2840261B1 (en) * 2012-04-17 2017-02-22 Volvo Construction Equipment AB Hydraulic system for construction equipment
US9765504B2 (en) * 2012-05-21 2017-09-19 Volvo Construction Equipment Ab Hydraulic system for construction machinery
CN103046594B (zh) * 2012-12-25 2015-03-18 三一重工股份有限公司 平地机及其铲刀升降控制系统
EP2955284B1 (en) * 2013-02-08 2019-05-08 Doosan Infracore Co., Ltd. Apparatus and method for controlling oil hydraulic pump for excavator
CN103244499B (zh) * 2013-05-24 2015-10-07 柳州柳工挖掘机有限公司 一种行走双泵合流系统
EP2811172B1 (en) * 2013-06-04 2019-02-27 Danfoss Power Solutions Aps A hydraulic valve arrangement
EP3032112B1 (en) 2013-08-05 2017-11-22 Sumitomo Heavy Industries, Ltd. Shovel
JP6479306B2 (ja) * 2013-08-05 2019-03-06 住友重機械工業株式会社 ショベル
JP6385654B2 (ja) * 2013-08-05 2018-09-05 住友重機械工業株式会社 ショベル
JP6338834B2 (ja) * 2013-08-05 2018-06-06 住友重機械工業株式会社 ショベル
JP6220228B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 建設機械の油圧駆動システム
JP6220227B2 (ja) * 2013-10-31 2017-10-25 川崎重工業株式会社 油圧ショベル駆動システム
CN103671317B (zh) * 2013-12-13 2015-11-25 中联重科股份有限公司 基础桩施工用起重机及其液压系统
EP3101506A4 (en) * 2014-01-27 2018-02-21 Volvo Construction Equipment AB Device for controlling regenerated flow rate for construction machine and method for controlling same
CN104179739B (zh) * 2014-08-13 2016-08-17 徐州重型机械有限公司 双泵双向合流控制系统及应用该系统的消防车
JP6463649B2 (ja) * 2015-03-13 2019-02-06 川崎重工業株式会社 建設機械の油圧駆動システム
CN107532407B (zh) * 2015-04-29 2021-03-05 沃尔沃建筑设备公司 建筑设备的流量控制装置及其控制方法
JP6453711B2 (ja) 2015-06-02 2019-01-16 日立建機株式会社 作業機械の圧油エネルギ再生装置
DE102015216737A1 (de) * 2015-09-02 2017-03-02 Robert Bosch Gmbh Hydraulische Steuervorrichtung für zwei Pumpen und mehrere Aktuatoren
US10358798B2 (en) * 2016-02-08 2019-07-23 Komatsu Ltd. Work vehicle and method of controlling operation
JP6467517B2 (ja) * 2016-03-10 2019-02-13 日立建機株式会社 建設機械
JP6487872B2 (ja) * 2016-03-30 2019-03-20 日立建機株式会社 作業機械の駆動制御装置
JP6495857B2 (ja) * 2016-03-31 2019-04-03 日立建機株式会社 建設機械
JP6682396B2 (ja) * 2016-07-29 2020-04-15 住友建機株式会社 ショベル
JP6378734B2 (ja) * 2016-10-27 2018-08-22 川崎重工業株式会社 油圧ショベル駆動システム
US11195507B2 (en) * 2018-10-04 2021-12-07 Rovi Guides, Inc. Translating between spoken languages with emotion in audio and video media streams
JP7208701B2 (ja) * 2018-12-13 2023-01-19 キャタピラー エス エー アール エル 建設機械の油圧制御回路
JP7165074B2 (ja) * 2019-02-22 2022-11-02 日立建機株式会社 作業機械
DE102019109773A1 (de) * 2019-04-12 2020-10-15 Wirtgen Gmbh Baumaschine und Verfahren zum Steuern einer Baumaschine
JPWO2021025170A1 (ja) * 2019-08-08 2021-02-11
CN113124018B (zh) * 2020-01-13 2022-02-15 中联重科股份有限公司 流量再生特性试验系统及试验方法
JP7324717B2 (ja) * 2020-01-14 2023-08-10 キャタピラー エス エー アール エル 油圧制御システム
JP7379226B2 (ja) * 2020-03-17 2023-11-14 株式会社小松製作所 油圧システム
JP7438082B2 (ja) * 2020-11-06 2024-02-26 川崎重工業株式会社 液圧駆動システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179504A (ja) * 1984-02-28 1985-09-13 Mitsubishi Heavy Ind Ltd エネルギ再生回路
EP0262098A1 (en) * 1986-09-24 1988-03-30 TRINOVA S.p.A. A flow recovery system for hydraulic circuits with pumps and pressure compensated distributor valves for working members of earth-moving machines
JPH06117411A (ja) * 1992-10-05 1994-04-26 Sumitomo Constr Mach Co Ltd 建設機械の制御回路
WO1994013959A1 (en) 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
JPH06264471A (ja) * 1993-03-11 1994-09-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH08219121A (ja) * 1995-02-15 1996-08-27 Hitachi Constr Mach Co Ltd 油圧再生装置
JPH09210006A (ja) * 1996-02-01 1997-08-12 Sumitomo Constr Mach Co Ltd 建設機械の再生回路
JP2001355603A (ja) * 2000-06-12 2001-12-26 Hitachi Constr Mach Co Ltd 作業機械の油圧駆動装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3868821A (en) * 1974-03-20 1975-03-04 Tyrone Hydraulics Automatic pump control system
DE2435602C3 (de) * 1974-07-24 1980-06-12 International Harvester Company Mbh, 4040 Neuss Selbsttätige Steuereinrichtung zur Verteilung des Druckmittels auf zwei Hydrauliksysteme
US4449365A (en) * 1979-11-19 1984-05-22 Allis-Chalmers Corporation Lift, tilt and steering control for a lift truck
US5481872A (en) * 1991-11-25 1996-01-09 Kabushiki Kaisha Komatsu Seisakusho Hydraulic circuit for operating plural actuators and its pressure compensating valve and maximum load pressure detector
KR100205568B1 (ko) * 1996-07-10 1999-07-01 토니헬샴 로우더의 유압장치
US6192681B1 (en) * 1996-11-21 2001-02-27 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
WO2002086331A1 (fr) * 2001-04-17 2002-10-31 Shin Caterpillar Mitsubishi Ltd. Circuit hydraulique

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179504A (ja) * 1984-02-28 1985-09-13 Mitsubishi Heavy Ind Ltd エネルギ再生回路
EP0262098A1 (en) * 1986-09-24 1988-03-30 TRINOVA S.p.A. A flow recovery system for hydraulic circuits with pumps and pressure compensated distributor valves for working members of earth-moving machines
JPH06117411A (ja) * 1992-10-05 1994-04-26 Sumitomo Constr Mach Co Ltd 建設機械の制御回路
WO1994013959A1 (en) 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
JPH06264471A (ja) * 1993-03-11 1994-09-20 Hitachi Constr Mach Co Ltd 建設機械の油圧駆動装置
JPH08219121A (ja) * 1995-02-15 1996-08-27 Hitachi Constr Mach Co Ltd 油圧再生装置
JPH09210006A (ja) * 1996-02-01 1997-08-12 Sumitomo Constr Mach Co Ltd 建設機械の再生回路
JP2001355603A (ja) * 2000-06-12 2001-12-26 Hitachi Constr Mach Co Ltd 作業機械の油圧駆動装置

Also Published As

Publication number Publication date
JP4209705B2 (ja) 2009-01-14
KR100657035B1 (ko) 2006-12-13
JP2004278678A (ja) 2004-10-07
EP1605168B1 (en) 2013-05-22
KR20050019804A (ko) 2005-03-03
EP1605168A4 (en) 2011-03-09
CN1697933A (zh) 2005-11-16
EP1605168A1 (en) 2005-12-14
CN100378343C (zh) 2008-04-02
US20060048508A1 (en) 2006-03-09
US7127887B2 (en) 2006-10-31

Similar Documents

Publication Publication Date Title
WO2004083646A1 (ja) 作業機の油圧回路
JP4338758B2 (ja) 建設機械の油圧制御装置
US8146355B2 (en) Traveling device for crawler type heavy equipment
JP4272207B2 (ja) 建設機械の油圧制御装置
WO2006077759A1 (ja) 建設機械の制御モード切換装置および建設機械
JP6200498B2 (ja) 建設機械の油圧駆動装置
JP6467515B2 (ja) 建設機械
JP2010013927A (ja) 掘削機用油圧駆動システム
WO2017110167A1 (ja) 作業機械
WO2016185682A1 (ja) 建設機械の油圧駆動システム
JPWO2014148449A1 (ja) 建設機械の油圧駆動装置
JP2004346485A (ja) 油圧駆動装置
JP2010101095A (ja) 作業機械の油圧制御装置
JP4240075B2 (ja) 油圧ショベルの油圧制御回路
JP2016061387A5 (ja)
JP6257879B2 (ja) ショベル
JP6738782B2 (ja) 建設機械の駆動装置
JP5604324B2 (ja) 作業機械の油圧駆動装置
JP2583148B2 (ja) 油圧式掘削機の油圧制御回路
JP6663539B2 (ja) 油圧駆動装置
JP6591370B2 (ja) 建設機械の油圧制御装置
WO2022054868A1 (ja) 液圧駆動システム
JP4002523B2 (ja) 油圧駆動装置
JP2019066018A (ja) 作業車両
WO2023176732A1 (ja) 液圧駆動装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006048508

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10514936

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004720712

Country of ref document: EP

Ref document number: 20048002961

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047021416

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047021416

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004720712

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10514936

Country of ref document: US