WO2004070473A1 - 感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法 - Google Patents

感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法 Download PDF

Info

Publication number
WO2004070473A1
WO2004070473A1 PCT/JP2004/001203 JP2004001203W WO2004070473A1 WO 2004070473 A1 WO2004070473 A1 WO 2004070473A1 JP 2004001203 W JP2004001203 W JP 2004001203W WO 2004070473 A1 WO2004070473 A1 WO 2004070473A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
molecular weight
radiation
resin composition
resin
Prior art date
Application number
PCT/JP2004/001203
Other languages
English (en)
French (fr)
Inventor
Kenichi Murakami
Suguru Sassa
Katsuhiro Yoshikawa
Masato Nishikawa
Ken Kimura
Yoshiaki Kinoshita
Original Assignee
Fasl Llc
Az Electronic Materials (Japan) K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fasl Llc, Az Electronic Materials (Japan) K.K. filed Critical Fasl Llc
Priority to US10/544,902 priority Critical patent/US20070160927A1/en
Priority to DE112004000257.5T priority patent/DE112004000257B4/de
Publication of WO2004070473A1 publication Critical patent/WO2004070473A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a chemically amplified radiation-sensitive resin composition and a chemically amplified radiation-sensitive resin composition that can be suitably used as a photoresist in microfabrication when manufacturing three-dimensional microstructures such as electronic components such as semiconductors and micromachines.
  • the present invention relates to a manufacturing method and a method for manufacturing a semiconductor device using the same. Background art
  • photolithography is generally used for microfabrication in the manufacture of electronic components such as semiconductors and three-dimensional microstructures.
  • a positive or negative radiation-sensitive resin composition is used to form a resist pattern.
  • these radiation-sensitive resin compositions as a positive photoresist, for example, a radiation-sensitive resin composition comprising a resin soluble in water and a quinonediazide compound as a photosensitive substance is widely used. I have.
  • the design rule of the fine electronic device manufacturing industry is required to be reduced to a quarter-mic or smaller.
  • conventional exposure light sources such as visible light or near-ultraviolet light (wavelength: 400 to 300 nm) are not sufficient.
  • a radiation-sensitive resin composition used as a photoresist in microfabrication is required to have higher resolution. Furthermore, radiation-sensitive resin compositions are also required to have improved performance such as sensitivity and image dimensional accuracy in addition to high resolution.
  • a “chemically amplified radiation-sensitive resin composition” has been proposed as a high-resolution radiation-sensitive resin composition that satisfies such requirements and has sensitivity to short-wavelength radiation.
  • the chemically amplified radiation-sensitive resin composition contains a photoacid generator that generates an acid upon irradiation with radiation, and an acid is generated from the photoacid generating compound upon irradiation with radiation, and the acid generated by the generated acid.
  • This chemically amplified radiation-sensitive resin composition is advantageous in that a high sensitivity can be obtained due to the catalytic action of an acid, and is therefore being used in place of the conventional radiation-sensitive resin composition. .
  • the chemically amplified radiation-sensitive resin composition is also available in a positive type and a negative type.
  • a three-component system comprising a two-component system consisting of an agent, a base resin, a photoacid generator, and a dissolution inhibitor having an acid-dissociable group is known.
  • these chemically amplified positive-type radiation-sensitive resin compositions many radiation-sensitive resin compositions comprising a base resin based on polyhydroxystyrene resin and the like have been reported.
  • Examples of the base resin based on the polyhydroxystyrene resin include, for example, a t-butoxycarbonyl group which is a protecting group that can be partially or entirely cleaved by an acid in a phenolic hydroxyl group of the resin (for example, US Pat. 4, 491, 628, U.S. Pat.No. 5,403,695), t_butyl group, Limethylsilyl group, tetrahydrobilanyl group (for example, US Pat. No. 5,
  • a polymer having an alicyclic ring is preferable as a polymer for a positive-type chemical amplification resist for exposure to an ArF excimer laser from the viewpoint of the permeability of the ArF excimer laser and the resistance to dry etching.
  • alicyclic rings include a bornane ring, a norbornane ring, a tricyclodecane ring, a tetracyclodecane ring, and an adamantane ring.
  • Specific polymers include those having a polymerized unit derived from an alicyclic ester of (meth) acrylic acid and those having a polymerized unit derived from a vinyl ester or an isopropenyl ester of an alicyclic carboxylic acid.
  • Polymers in which alicyclic groups have been introduced into groups that are dissociated by an acid eg, S. Isasa, et al., “Journal of Polymer Science and Technology”. Vol. 3, No. 3 (1996), 447-456, page 2), a polymer containing an alternating copolymer structure of 2-norporene and maleic anhydride (for example, T.I. SPIE 1996, 2724, 355-364, etc.).
  • a monomer (monomer 1) having an alicyclic structure such as a norbornene ring in the main chain, a polymer of maleic anhydride, and a vinyl monomer (monomer 2) having a carboxy group for example, see Or a copolymer of the above monomer and acrylate / methacrylate protected with a protecting group as a third monomer, acrylic acid having an adamantane skeleton in the ester portion
  • Ester polymers see, for example, JP-A-4-39665
  • Copolymers of an acrylate ester having an adamantane skeleton with methacrylic acid, meparonic ratatone / metatalylate for example, Japanese Patent Application Laid-Open Publication No.
  • polymers for the chemically amplified resist for F 2 excimer laser irradiation various polymers including a fluoropolymer are known as preferable ones.
  • a polymer compound containing a repeating unit having an alkyl group having at least one fluorine atom see, for example, Japanese Patent Application Laid-Open No.
  • a phenolic water by an acid labile group Part of the acid group is substituted, and the phenol nucleus is replaced with a fluorine atom or trifluoro
  • a phenolic resin substituted with a methyl group see, for example, JP-A-2001-163945, wherein at least one of the carbon atoms in the main chain is substituted with a fluorine atom or a trifluoromethyl group
  • Polyvinyl alcohols in which a part of hydroxyl groups may be substituted with an acid labile group see, for example, JP-A-2001-33979
  • fluorinated acrylics A polymer compound having, as a repeating unit, an ester of an acid with a silylated alkylene alcohol having a fluorinated alkyl group (see, for example, Japanese Patent Application Laid-Open No.
  • a base polymer A polymer in which an ester group having a fluorinated aromatic ring is introduced into an acid-dissociable unit see, for example, Japanese Patent Application Laid-Open No. 202022/250, protected with two different acid labile groups
  • Two fluorinated acrylyl derivatives and Polymer compounds made of vinyl fluoride containing a linear, branched or cyclic monovalent hydrocarbon group having 1 to 20 carbon atoms or a fluorinated monovalent hydrocarbon group as an ether unit for example, And Japanese Patent Application Laid-Open No.
  • a carboxyl group or a cyano group protected by an acid labile group has 3 to 20 carbon atoms and is divalent or (C + 1) -valent.
  • C is an integer of 1 to 4
  • polysiloxane linked by a cyclic hydrocarbon group see, for example, JP-A-2002-332353
  • a fluorine-containing resin having a structure in which a side chain is substituted with a fluorine atom, and having a group that is decomposed by the action of an acid and increases the solubility in an alkaline developer (for example, see JP-A-200203 No.
  • a fluorine-substituted aryl group is directly or a hydrocarbon having 1 to 10 carbon atoms.
  • a fluorine-substituted aryl group is directly or a hydrocarbon having 1 to 10 carbon atoms.
  • polysiloxanes e.g., JP-2 0 0 2 - see 3 3 8 6 9 0 JP
  • Examples of the chemically amplified resist polymer for electron beam irradiation include the following general formula (1): Si-
  • R 1 is a hydrogen atom, a fluorine o atom, a chlorine atom or an alkyl group or a silyl group
  • R 2 , R 3 , and R 4 are a fluorine atom, a chlorine atom or an alkyl group or an alkoxy group
  • n is 0 Or 1
  • JP-A-2001-22073 acetoxy, t-butyl group, tetrahydrobilanyl group
  • general formula (2) general formula (2) :
  • Ri and R 2 represent a hydrogen atom. Or an acid-labile protecting group.
  • R3 represents one or more hydrogen atoms, alkyl groups, or acid-eliminable protecting groups, and ⁇ represents an integer of 0 to 4.
  • These polymer for chemically amplified resist for electron beam irradiation are also suitably used as a resin for chemically amplified resist for deep ultraviolet irradiation.
  • a chemically amplified negative-type radiation-sensitive resin composition includes a base resin, a photoacid generator, and a cross-linking agent.
  • a cross-linking agent such as hexamethoxymethylmelamine and an alkali-soluble phenol-based resin are used.
  • Alkali-soluble resins suitable for negative-type chemically amplified resists include novolak-type phenolic resins, polyvinylphenolic resins with narrow molecular weight distribution, phenolic resins partially converted to a cyclic alcohol structure by hydrogenation, and polyphenols.
  • Various alkali-soluble resins which are cross-linked by a cross-linking agent, such as resins and resins having a carboxyl group, are known. It is used as a base resin for negative-type chemically amplified resists for electron beams or X-rays (see, for example, JP-A-2001-333752).
  • a base resin for a negative chemically amplified resist for electron beam or X-ray irradiation for example, p-hydroxystyrene having a hydroxyl group at the para-position and an alkoxyl group at the ortho-position may be used alone.
  • Resins contained as body units for example,
  • R represents a hydrogen atom or a methyl group.
  • Alkali-soluble resin containing a structural unit represented by for example, see JP-A-201-174949, a benzene ring, a biphenyl ring, a terphenyl ring, or a naphthalene ring or an anthracene ring in a side chain.
  • Alkali-soluble resins having a condensed ring and containing a repeating unit in which these rings are substituted with a phenolic hydroxyl group or an alkoxy group see, for example, JP-A-201-174949
  • phenol Alkali-soluble resins such as polyvinyl phenol or hydrogenated polybutyl phenol in which the hydroxyl group is partially alkylated, aryletherified, or alkenyletherified (for example, see JP-A-2001-242) (See Japanese Patent Application Laid-Open No. 62-5), general formula (5):
  • R 2 , R 3 , R 4 is a hydrogen atom, an alkyl group which may have a substituent, etc.
  • A is a single bond, alkylene, _ ⁇ _, —S 0 2— , one COOR—, one O COR—, one CONHR— (R is a single bond or a linking group), and n represents an integer of 1 to 3.
  • Alkali-soluble resins for example, see JP-A-2001-337374).
  • Photoacid generators used in chemically amplified positive and negative photoresists include ionic onium salts, particularly hexafluoroantimonate and trifluoromethane sulfonate (for example, see US Pat. No. 5,569,784, or an aliphatic Z aromatic sulfonate (see, for example, US Pat. No. 5,624,787).
  • Rhododium or sulfonium salts with strong non-nucleophilic anions see, for example, US Pat. No. 4,058,400, US Pat.
  • photoacid generators that generate certain types of hydrogen halides are effective for negative-working photoresists (see, for example, US Pat. No. 5,599,949). You. Furthermore, a combination of “a compound that generates a carboxylic acid with a boiling point of 150 ° C. or more upon irradiation” and “a compound that generates an acid other than a carboxylic acid” It has also been proposed to use a photoacid generator consisting of a mixture (see, for example, Japanese Patent Application Laid-Open No. 11-125907).
  • the chemically amplified radiation-sensitive resin composition has been put into practical use with many improvements from the viewpoints of a base resin, a photoacid generator, and a crosslinking agent.
  • the present invention provides a chemically amplified photoresist used in semiconductor manufacturing and the like, which has good sensitivity and resolution, has excellent pattern shape, and has excellent process margin and process stability.
  • MALS Multi Angle Laser Light Scattering; hereinafter sometimes referred to as “MALS”) Polystyrene obtained by gel permeation chromatography using a gel permeation chromatography (GPC) method using a detector, ie, a polygonal light scattering method (MALS method).
  • GPC gel permeation chromatography
  • MALS method polygonal light scattering method
  • the content of the ultrahigh molecular weight component having a reduced weight average molecular weight of 100,000 or more is not more than a predetermined amount in the composition, or (mouth) the base tree constituting the chemically amplified radiation-sensitive resin composition.
  • a resin having an ultrahigh molecular weight component having a polystyrene-equivalent weight average molecular weight of 100,000 or more determined by the method described above and a predetermined amount or less is used, and the chemically amplified radiation-sensitive resin composition of (a) is used.
  • the amount of the ultra-high molecular weight substance of the base resin or the raw material resin of the base resin is determined by gel permeation chromatography (GPC) by the MALS method. It has been found that the above object can be achieved by selecting and using, and the present invention has been accomplished.
  • the present invention provides, at least, (1) an alkali-soluble resin or a base resin that is an alkali-insoluble or alcohol-insoluble resin protected with an acid-dissociable protecting group, and (2) an acid by irradiation with radiation.
  • an alkali-soluble resin or a base resin that is an alkali-insoluble or alcohol-insoluble resin protected with an acid-dissociable protecting group
  • an acid by irradiation with radiation In the chemically amplified radiation-sensitive resin composition containing the photoacid generator to be generated and (3) a solvent, the chemically soluble radiation-sensitive resin or the above-described alcohol-soluble resin or the acid-insoluble or alcohol-protected acid-labile protecting group may be used.
  • Polystyrene equivalent of weight average molecular weight of poorly soluble resin A chemically amplified radiation-sensitive resin, characterized in that the composition has an ultra-high molecular weight component having a value of 1,000,000 or more in the composition determined by gel permeation chromatography using the MALS method and not more than 0.2 ppm. Composition.
  • the present invention also provides the chemically amplified radiation-sensitive resin composition, wherein the base resin or the resin soluble before acid protection with an acid-labile protecting group has a weight average molecular weight in terms of polystyrene of 100.
  • the present invention relates to a chemically amplified radiation-sensitive resin composition characterized in that at least 10,000 ultra-high molecular weight components are 1 ppm or less in a resin component as determined by a gel permeation chromatography method using a MALS method.
  • the present invention provides a method for producing a chemically amplified radiation-sensitive resin composition as described above, wherein the ultrahigh molecular weight component having a polystyrene equivalent weight average molecular weight of 100,000 or more is subjected to gel permeation chromatography by MALS method.
  • the present invention relates to a method for producing a chemically amplified radiation-sensitive resin composition including a step of obtaining and removing the same by a method.
  • the present invention provides a step of applying a chemically amplified radiation-sensitive resin composition on an object to be processed to form a photoresist film, and processing the photoresist film into a desired shape.
  • a chemically amplified radiation-sensitive resin composition containing (2) a photoacid generator that generates an acid upon irradiation with radiation, and (3) a solvent, the base resin being a hardly soluble resin.
  • Ultra-high molecular weight components whose weight-average molecular weight in terms of polystyrene as a polystyrene equivalent value is 100,000 or more are classified into MALS, which are insoluble or hardly soluble in water, or are protected by acid-labile protecting groups.
  • the present invention also provides the method for manufacturing a semiconductor device, wherein the base resin or the resin soluble in the chemically sensitized radiation-sensitive resin composition before being protected by the acid dissociable protecting group is polystyrene equivalent.
  • a semiconductor device characterized in that an ultra-high molecular weight component having a weight average molecular weight of 1,000,000 or more is contained in a resin component at 1 ppm or less as determined by gel permeation chromatography (GPC) by MALS.
  • GPC gel permeation chromatography
  • FIG. 1 is a schematic cross-sectional view showing an example of forming a concave pattern using the chemically amplified radiation-sensitive resin composition of the present invention.
  • FIG. 2 is a schematic sectional view showing an example of forming a convex pattern using the chemically amplified radiation-sensitive resin composition of the present invention.
  • FIG. 3 is a diagram showing a top-view SEM photograph of a pattern having no defect.
  • FIG. 4 is a diagram showing a Ti1t-1 SEM photograph of a pattern in which microbridges as pattern defects are formed.
  • 1 is a silicon semiconductor substrate
  • 2 is an object to be processed
  • 3 and 13 are photo resist films
  • 4 and 14 are resist masks
  • 4a is a groove pattern
  • 5 is a groove
  • 1 1 Is a gate insulating film
  • 12 is a polycrystalline silicon film
  • 5 is a gate electrode
  • 16 is a source / drain.
  • the base resin is an alkali-soluble resin or an alkali-insoluble or alkali-soluble resin protected with an acid-dissociable protecting group, A resin that becomes soluble when the acid dissociable protecting group is dissociated is used.
  • the fat include the chemically amplified radiation-sensitive resin composition already exemplified as a conventional technique in the present specification, and an alkali-soluble resin conventionally used as a base resin of the chemically amplified radiation-sensitive resin composition, Either an insoluble or an insoluble resin protected with an acid dissociable protecting group can be used.
  • examples of the alkali-insoluble or poorly soluble resin protected by an acid-dissociable protecting group used in a chemically amplified positive-type radiation-sensitive resin composition include, for example, an alkali-soluble acid-dissociable protecting group.
  • an alkali-soluble acid-dissociable protecting group One in which the resin is partially protected.
  • alkali-insoluble or poorly-soluble resins in which the acid-soluble protecting group is partially protected by the acid-labile protecting group typically, (i) (a) hydroxystyrene Reaction of a homopolymer of phenols, a copolymer of this with another monomer or a phenol resin, and (b) a vinyl ether compound or a dialkyl dicarbonate (the alkyl group has 1 to 5 carbon atoms).
  • hydroxystyrenes used for producing these polymers 4-hydroxystyrene, 3-hydroxystyrene and 2-hydroxystyrene are preferred. These 4-, 3-, or 2-hydroxystyrenes are prepared by homopolymerization of poly (4-hydroxystyrene), poly (3-hydroxystyrene) and poly (2-hydroxystyrene) as described above. Styrene) or 4-, 3-, or 2-hydroxystyrene is copolymerized with other monomers to form a binary or terpolymer.
  • An alkali-insoluble resin can be obtained by introducing a protecting group after copolymerization with another monomer or by copolymerizing these with another monomer. Further, the protective group of the thus-produced resin having a protective group may be produced by dissociating a part of the protective group with an acid.
  • styrene 4-, 3- or 2-acetoxystyrene, 4-, 3- or 2 —Alkoxy styrene, ⁇ -methyl styrene, 4-, 3- or 2-alkyl styrene, 3-vinyl phenol 4-hydroxy styrene, 3,5-dianol quinole 4-hydroxy styrene, 4-, 3- or 2- Chlorostyrene, 3-chloro mouth, 4-hydroxystyrene, 3,5-dichloro-4-hydroxystyrene, 3-promo 4-hydroxystyrene, 3,5-jib mouth, 4-hydroxystyrene, Vininolebenzinolechloride, 2-vinylinalephthalene, vinylanthracene, vinylaniline, vinylbenzoic acid, vinylbenzoic acid esters / esters, Norepyrrolidone, 1—
  • Preferred examples of other monomers include isopropylphenol, propylphenol, (4-hydroxyphenyl) acrylate or methacrylate, and (3-hydroxyphenyl) acrylate.
  • Examples of the soluble resin before being protected by the acid-dissociable protecting group include the above-mentioned homopolymers of hydroxystyrenes, copolymers of the same with other monomers, and funinol resins.
  • monomers listed as other monomers a homopolymer of a butyl monomer having a phenolic hydroxyl group or carbonyl group as a side chain or a side chain, or a phenolic hydroxyl group or a carboxyl group as a side chain.
  • a copolymer with a vinyl monomer having no vinyl monomer may be used.
  • dialkyl carbonate which is a compound forming a group, for example, di-tert-butyl dicarbonate is mentioned as a preferable compound.
  • Examples of the acid-dissociable protecting group include those exemplified above and include a group in which a tertiary carbon such as tert-butyl, tert-butoxycarbonyl, and tert-butoxycarbonylmethyl is bonded to an oxygen atom: tetrahydro.
  • the alkali-soluble resin used in the chemically amplified positive-type radiation-sensitive resin composition of the present invention is preferably the same as the alkali-soluble resin before being protected by the acid dissociable protecting group.
  • the alkali-soluble resin used as a raw material for the production of resin that is insoluble or hardly soluble in water has a weight-average molecular weight in terms of polystyrene of more than 100,000, which is detected by a multi-angle light scattering (MALS) detector.
  • MALS multi-angle light scattering
  • the high molecular weight component is 1 ppm or less in the resin component, but it is preferably 1 ppm or less, more preferably. Or less, preferably 0.1 ppm or less, more preferably 0.1 ppm or less.
  • Resins having such preferred properties are partially soluble in an acid-soluble resin and a protecting group capable of cleaving an acid-soluble group, which is conventionally used in chemically amplified positive-acting radiation-sensitive resin compositions.
  • ultra-high molecular weight components with a polystyrene-equivalent weight average molecular weight of 100,000 or more from among the protected alkali-insoluble or alkali-insoluble resins are analyzed by gel permeation chromatography (GPC) using a MALS detector.
  • GPC gel permeation chromatography
  • MALS detector a MALS detector
  • the ultra-high molecular weight component having a content of not more than the above-mentioned predetermined value in the resin may be obtained by screening by gel permeation chromatography (GPC) using the MALS method.
  • a photoacid generator is a compound that generates an acid by radiation.
  • the photoacid generator include ionic salts, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid compounds, and the like.
  • any of those used as a photoacid generator in a chemically amplified radiation-sensitive resin composition may be used.
  • Preferred of these photoacid generators are, for example, hondium salts, e.g., odonium salts, sulfonium salts, diazonium salts, ammonium salts, pyridinium salts with triflate or hexaflate, and halogen-containing compounds.
  • a haloalkyl group-containing hydrocarbon compound or a haloalkyl group-containing heterocyclic compound for example, phenyl-2-bis (trichloromethyl) -s-triazine, methoxyphenyl-bis (trichloromethinole) -S- Examples include (trichloromethyl) -S-triazine derivatives such as triazine, brominated compounds such as tribromoneopentyl alcohol and hexane-substituted hexane, and iodine compounds such as hexaneiodine hexane. .
  • diazometa For example, bis (trifluoromethylsulfonium) diazomethane, bis (cyclohexylsulfonium) diazomethane and the like can be mentioned.
  • photoacid generators can be used alone or in admixture of two or more.
  • the compounding amount is usually 0.1 to 10 parts by weight per 100 parts by weight of the alkali-insoluble or poorly soluble resin. Preferably, it is 0.5 to 5.0 parts by weight.
  • a dissolution inhibitor is also used.
  • a dissolution inhibitor is used if necessary.
  • the dissolution inhibitor include compounds in which a phenolic hydroxyl group of a phenolic compound is protected by a group that is cleaved by the action of an acid. The dissolution inhibitor is insoluble or sparingly soluble in the developing solution before the protective group is cleaved by the acid generated from the photoacid generator, but is insoluble in the developing solution after the protecting group is cleaved.
  • This dissolution inhibitor has the ability to inhibit the dissolution of alkali-soluble resins before the cleavage of the protecting group, but loses such ability after being cleaved by the action of an acid, and usually acts as a dissolution accelerator. I do.
  • the group that is cleaved by the action of an acid of the dissolution inhibitor include the tert-butoxycarbonyl group and the like mentioned above as the acid-dissociable protecting group.
  • dissolution inhibitor examples include, for example, 2,2-bis (4-tert-butoxycanoleboninoleoxypheninole) propane and bis ⁇ 4-tert- Butoxycanoleponinoleoxyphenyl) / lefon, 3,5-bis (4-tert-butoxycarbonyloxyphenyl) -11,1,3-trimethylindane and the like.
  • the chemically amplified positive-type radiation-sensitive resin composition of the present invention contains a basic compound as an additive.
  • This basic compound can control the diffusion phenomenon of the acid generated from the photoacid generator by exposure in the resist film, and can improve the resolution and the exposure latitude.
  • Examples of such basic compounds include primary, secondary or tertiary aliphatic amines, aromatic amines, heterocyclic amines, nitrogen having an alkyl group or aryl group, or the like. Examples include compounds, amide group or imido group-containing compounds, and the like.
  • the chemically amplified negative-type radiation-sensitive resin composition of the present invention comprises a resin which is itself alkali-soluble (alkali-soluble resin), a photoacid generator, and the alkali-soluble resin is not an acid-sensitive self-crosslinkable resin.
  • a crosslinking agent is included.
  • the self-crosslinkable resin is cross-linked by the acid generated from the photoacid generator, or the crosslinkable agent is cross-linked by the crosslinking agent, The radiation irradiator is made insoluble in the developer.
  • the alkali-soluble resin and photoacid generator used in the chemically amplified negative-type radiation-sensitive resin composition the same as those exemplified above in the chemically amplified positive-type radiation-sensitive resin composition are used.
  • the crosslinking agent is not particularly limited as long as it crosslinks and cures the alkali-soluble resin under the action of an acid generated in the irradiated area, and is not particularly limited.
  • meltamine, benzoguanamine, and urea resins Various cross-linking agents such as, for example, hexamethylol melamine, pentamethylol melamine, tetramethylol melamine, hexamethoxymethyl melamine Of methylolated melamine or its alkyl ethers, such as pentamethoxymethylmelamine and tetramethoxymethylmelamine, tetramethylolbenzoguanamine, tetramethoxymethylbenzoguanamine and trimethoxymethylbenzoguanamine.
  • cross-linking agents such as, for example, hexamethylol melamine, pentamethylol melamine, tetramethylol melamine, hexamethoxymethyl melamine Of methylolated melamine or its alkyl ethers, such as pentamethoxymethylmelamine and tetramethoxymethylmelamine, tetramethylol
  • alkoxyalkylated amino resins such as alkoxyalkylated melamine resins and alkoxyalkylated urea resins, for example, methoxymethylated melamine resins, ethoxymethylated melamine resins, propoxymethylated melamine resins, butoxymethylated melamine resins, methoxymethyl resins
  • methoxymethylated melamine resins methoxymethylated melamine resins
  • ethoxymethylated melamine resins propoxymethylated melamine resins
  • butoxymethylated melamine resins methoxymethyl resins
  • urea resin ethoxymethylated urea resin
  • propoxymethylated urea resin propoxymethylated urea resin
  • butoxymethylated urea resin methoxymethylated urea resin
  • crosslinking agents can be used alone or in admixture of two or more.
  • the compounding amount is usually 2 to 50 parts by weight, preferably 5 to 30 parts by weight, per 100 parts by weight of the alkali-soluble resin. is there.
  • an alkali-soluble resin, an alkali-insoluble resin or an acid-insoluble protecting group protected by an acid-dissociable protecting group constituting a chemically amplified radiation-sensitive resin composition.
  • the poorly soluble resin, photoacid generator, dissolution inhibitor, cross-linking agent, and optional additives described below are dissolved in a solvent and used as a chemically amplified radiation-sensitive resin composition.
  • solvent used in the present invention examples include ethylene glycol monoanolequinoleate ethers such as ethylene glycol monomethine oleate and ethylene glycol monooleate enoate, ethylene glycol monomethyl ether acetate, and the like.
  • Propylene glycol monoalkyl ether acetates such as ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether ether such as propylene glycol monomethyl ether ether, propylene glycol monoethyl ether ether, etc.
  • Propylene glycol monoalkyl ether acetates such as tenolates, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, methyl lactate, ethyl lactate Lactate esters, aromatic hydrocarbons such as toluene and xylene, ketones such as methylethyl ketone, 2-heptanone and cyclohexanone, and amides such as N, N-dimethylacetamide and N-methylpyrrolidone And ratatotones such as 7-butyrolactone are preferred. These solvents are used alone or in combination of two or more.
  • the radiation-sensitive resin composition of the present invention may optionally contain a dye, an adhesion aid, a surfactant and the like.
  • dyes include methyl violet, crystal violet, and malachite green.
  • adhesion aids include hexamethyldisilazane and chloromethylsilane.
  • surfactants include nonionic Surfactants, such as polyglycols and their derivatives, ie, polypropylene glycol or polyoxyethylene lauryl ether, fluorine-containing surfactants, such as Florad (trade name, manufactured by Sumitomo 3M), Megafac (trade name) Name, Dainippon Ink Chemical Industry Co., Ltd.), Sulfuron (trade name, manufactured by Asahi Glass Co., Ltd.), and organic siloxane surfactants such as KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the chemically amplified radiation-sensitive resin composition of the present invention has an ultra-high molecular weight-average molecular weight of 100,000 or more in terms of polystyrene as determined by gel permeation chromatography using the MALS method.
  • the content of the molecular weight component in the composition is at most 0.2 ppm, preferably at most 0.02 ppm, more preferably at most 0.02 ppm.
  • the base resin itself or the alcohol-insoluble or alcohol-soluble hardly protected with an acid-dissociable protecting group is used.
  • An ultra-high-molecular-weight resin whose weight-average molecular weight, determined by gel permeation chromatography (GPC) using the MAL S method, is 100,000 or more in terms of polystyrene, as a soluble resin used to produce the resin. It is preferable to use a component whose content in the resin is 1 ppm or less. In other words, when a resin having a content of the ultrahigh molecular weight component in the resin of 1 ppm or less is used, a radiation-sensitive resin in which the content of the ultrahigh molecular weight component in the composition is 0.2 ppm or less is used.
  • the radiation-sensitive resin composition is filtered.
  • the ultrahigh molecular weight component can be separated by a simple and short-time treatment, and the content of the ultrahigh molecular weight in the composition can be easily adjusted to 0.2 ppm or less.
  • the composition obtained in this way was confirmed by gel permeation chromatography (GPC) by the MAL S method that the ultra-high molecular weight component in the composition was 0.2 ppm or less. Selected and used as the radiation-sensitive resin composition of the present invention.
  • the content of the ultra-high molecular weight component is 1 ppm or more in the resin as the base resin, In many cases, it is necessary to adjust the content of the ultrahigh molecular weight component in the composition to 0.2 ppm or less, but the radiation-sensitive resin composition obtained at this time is also required to be prepared.
  • the ultrahigh molecular weight component may be separated using a filtration separation method or the like, and the content of the ultrahigh molecular weight component in the composition may be adjusted and selected so as to be within the predetermined range.
  • alkali-soluble resin alkali-insoluble or alkali-insoluble resin protected by an acid-dissociable protecting group, photoacid generator, dissolution inhibitor, cross-linking agent, optional additives, etc. are further required. If so, please refer to the documents exemplified as prior art.
  • an ultrahigh molecular weight component having a weight average molecular weight of 100,000 or more in terms of polystyrene of a base resin in a positive or negative chemically amplified radiation-sensitive resin composition is converted into a gel by a polygonal light scattering method. It is sufficient that the content in the composition is 0.2 ppm or less as determined by a permeation chromatography method. If this requirement is satisfied, an alkali-soluble resin conventionally known as a base resin. The resin is protected by an acid-dissociable protecting group. Any resin can be used as long as the resin is insoluble or hardly soluble in water, regardless of the type of resin.
  • r F excimer laser Any one for irradiation with far ultraviolet rays, X-rays, and electron beams such as an F 2 excimer laser may be used.
  • FIG. 1 shows a method of forming a concave groove-shaped resist pattern on a substrate on a substrate using the chemically amplified positive-type radiation-sensitive resin composition of the present invention.
  • a polycrystalline silicon is placed on a silicon semiconductor substrate 1 such as a silicon wafer.
  • a conductive film such as an insulating film and an insulating film such as a silicon oxide film
  • the chemically amplified positive-type radiation-sensitive resin composition of the present invention is spin-coated on the processed object to be processed.
  • Pre-beta for example, beta temperature: about 70 to 150 ° ⁇ for about 1 minute
  • a photoresist film 3 (FIG. 1 (a)).
  • pattern exposure is performed on the photo resist film 3 through an exposure mask such as a reticle using a KrF excimer laser as an exposure light source.
  • post-exposure bake p EB
  • beta temperature 50 to 150 ° C
  • beta was performed after development
  • a resist mask 4 having a groove pattern 4a is formed (FIG. 1 (b)).
  • the processing target 2 is dry-etched using the resist mask 4 to form a groove 5 having a width of 0.2 ⁇ or less, here 0.15 m, following the groove pattern 4 a (first example).
  • Figure (c) ).
  • FIG. 2 shows a method of forming a gut electrode as a convex pattern on a processing target.
  • a gate insulating film 11 made of a thin silicon oxide film is formed on a silicon semiconductor substrate 1, and then a polycrystalline silicon film 12 to be processed is formed.
  • the above-mentioned chemically amplified negative-type radiation-sensitive resin composition of the present invention is spin-coated on '2, and pre-baked as necessary to form a negative-type photoresist film 13 (second example).
  • Figure (a)) Next, exposure is performed through a mask, development is performed, and PEB is performed as necessary to form a resist mask 14 having an electrode shape (FIG. 2 (b)).
  • the polycrystalline silicon film 12 and the gate insulating film 11 are dry-etched using the resist mask 14, and the gate length following the shape of the resist mask 14 is 0.2 ⁇ or less.
  • a gate electrode 15 of 0.15 ⁇ m is formed (Fig. 2 (c)).
  • the resist mask is removed by an ashing process or the like, and then impurity ions are implanted.
  • a drain region 16 is formed (FIG. 2 (d)).
  • a wiring for applying a voltage to the gut electrode may be formed simultaneously with the gate electrode.
  • the spin-coating method was used as a method of applying the radiation-sensitive resin composition.
  • the application of the radiation-sensitive resin composition is not limited to the above-described spin-coating method.
  • a conventionally known coating method such as a casting coating method or a dip coating method may be used.
  • a silicon film and a silicon oxide film are exemplified.
  • a metal film such as an anolymium, molybdenum, and chromium
  • a metal oxide film such as ITO
  • a silicate glass (PSG) Other films used in a semiconductor device, such as an insulating film as described above, may be used as a film to be processed.
  • the silicon film is not limited to a polycrystalline silicon film, but may be an amorphous silicon film or a single-crystal silicon film, and these silicon films may further contain impurity ions.
  • the formation of the resist pattern is not limited to the above-described example, and any one of conventionally known photolithography methods may be used.
  • the exposure light source other K r F excimer laser, A r F excimer Mareza, far ultraviolet rays such as F 2 excimer laser light, ultraviolet light, X-rays, may be from an electron, the mask used, the exposure The method, developing method, developer, pre-bake conditions, PEB conditions, etc.
  • etching method wet etching may be employed instead of the above dry etching, and any conventionally known method may be employed for the semiconductor manufacturing process.
  • the chemically amplified radiation-sensitive resin composition of the present invention can be used as an etching resist, an ion implantation mask, or the like at any site where photolithography technology is used in the formation of a semiconductor device.
  • Semiconductor device manufacturing method Accordingly, for example, various portions of a semiconductor device such as a source / drain region of a semiconductor, a gate electrode, contact holes of a source / drain electrode, a trench, and a metal wiring can be formed.
  • the resist pattern to be formed may have any desired shape such as a concave or convex thin line shape, a concave or convex surface shape, a hole shape, or the like, and further form a metal wiring.
  • the wiring shape may be adopted.
  • PHS polyhydroxystyrene
  • DMF dimethylformamide
  • MALS method refers to a method of performing separation according to molecular weight by GPC, detecting ultra-high molecular weight components by a polygonal light scattering detector, and calculating the concentration. is there.
  • Phosphorus containing 50 ppm of ultrahigh molecular weight components was prepared as a raw material by reducing the ultrahigh molecular weight components to 1 ppm or less using a conventional filtration method.
  • triphenyls-no-refoninole refreate 0.5 g, biscyclohexinoles / refoninoresiazomethane 3.0 g, 0.1 g of 0.1 g Trifluoroenolenophore acetate (TPSA) in propylene glycol monomethyl ether acetate (PGMEA) solution 7.9 g, dicyclohexylmethylamine 0.04 g, N, N-diamine Tilacetamide 4.0 g, Megafac (trade name: film-forming agent for resist coating, affinity modifier for substrate) 0.06 g of propylene glycol monomethyl ether acetate (PGMEA) The solid content was adjusted to 12.0% to obtain a radiation-sensitive resin composition. This composition was prepared by filtration and separation until it was confirmed by the MAL S method that the amount of the ultrahigh molecular weight component became 0.2 ppm or less.
  • the measurement with the polygonal light scattering detector was carried out using D AWN EOS of WyattTechon1ogy as a detector.
  • the radiation-sensitive resin composition having an ultra-high molecular weight component of 0.2 ppm is spin-coated on a polysilicon wafer, which is a semiconductor substrate, and beta-coated with a direct hot plate at 90 ° C for 90 seconds.
  • a photo resist film having a thickness of 0.450 ⁇ m was formed.
  • a 44-nm-thick water-soluble organic film was applied as an anti-reflection film on the photoresist film.
  • the resist film is selectively exposed to light through a half-tone phase shift mask using a 248.4 nm KrF excimer laser beam, and is directly exposed at 120 ° C for 90 seconds using a direct hot plate.
  • the size of the obtained trench pattern was set to 160 nm by making it smaller than the mask size (by applying a bias) by selecting the amount of exposure.
  • a surface defect inspection meter for example, KLA—2115 or KLA—2135
  • KLA Tencor KLA Tencor
  • the amount of the ultrahigh molecular weight component of the radiation-sensitive resin composition B was measured with a polygonal light scattering detector in the same manner as in Example 1, and the value was 2 ppm.
  • the radiation-sensitive resin composition of 2 ppm of the ultra-high molecular weight component is spin-coated on a polysilicon wafer as a semiconductor substrate, and is heated at 90 ° C. for 90 seconds by a direct hot plate to obtain a 0.4.
  • a resist film having a thickness of 50 ⁇ m was formed.
  • a water-soluble organic film was applied to the resist film to a thickness of 44 nm as an antireflection film.
  • This resist film is selectively exposed to light through a halftone phase shift mask using a 248.4 nm KrF excimer laser beam, and is post-processed by a direct hot plate at 120 ° C for 90 seconds.
  • TMAH Te tetramethyl ammonium Niu Muhi Dorokishi de
  • the size of the obtained trench pattern was set to 160 nm by making it smaller than the mask size (by applying a bias) by selecting the amount of exposure.
  • the number of defects in a 160-nm trench on the substrate was measured by a surface defect inspection meter, 700 defects were observed on an 8-inch substrate. This defect was reduced to 100 when the trench size was set to 180 nm.
  • the radiation-sensitive resin composition was obtained in the same manner as in Example 1, except that the ultrahigh molecular weight component in the resin was 0.2 ppm as the raw material PHS. Got E.
  • the ultrahigh molecular weight component of the composition E was 0.01 ppm.
  • formation of a resist image and measurement of the number of defects in a 160 nm trench pattern were performed in the same manner as in Example 1. Table 1 shows the results.
  • the radiation-sensitive resin composition G of Comparative Example 1 was processed by a filtration separation method until the ultra-high molecular weight component was reduced to 1 ppm or less by MALS. Was prepared.
  • the amount of the ultrahigh molecular weight component in the composition of the composition G was 0.1 ppm.
  • formation of a resist image and measurement of the number of defects in a 160 nm French pattern were performed in the same manner as in Example 1. Table 1 shows the results. table 1
  • the chemically amplified radiation-sensitive resin composition of the present invention can significantly reduce defects such as microbridges in forming a pattern having a trench size of 180 nm, 160 nm or less. I understand.
  • the present invention can provide a chemically amplified radiation-sensitive resin composition having high sensitivity, high resolution, excellent pattern, and few defects, and a method for producing the same.
  • a chemically amplified radiation-sensitive resin composition having high sensitivity, high resolution, excellent pattern, and few defects, and a method for producing the same.
  • the chemically amplified radiation-sensitive resin composition of the present invention can be used in microfabrication when manufacturing electronic components such as semiconductors and three-dimensional microstructures such as micromachines. And can be suitably used as a photo resist.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 少なくとも(1)多角光散乱法によるゲル透過クロマトグラフィー法により求めた重量平均分子量のポリスチレン換算値が100万以上の超高分子量成分が1ppm以下である、アルカリ可溶性樹脂あるいは酸解離性保護基で保護されたアルカリ不溶性またはアルカリ難溶性樹脂からなるベース樹脂、(2)放射線の照射により酸を発生する光酸発生剤および(3)溶剤を含有する化学増幅型感放射線性樹脂組成物を用い、これを被加工対象2上に塗布してフォトレジスト膜3を形成した後、露光、現像することにより0.2μm以下の微細レジストパターン4を形成する。次いでドライエッチングを行い、半導体装置のゲート電極やホール形状、溝形状などのパターニングを行う。これにより、マイクロブリッジ等パターン欠陥の発生の極めて少ないパターニングが実現できる。

Description

明 細 書 感放射線性樹脂組成物、 その製造法並びにそれを用いた半導体装置の製 造方法 技術分野
本発明は、 半導体等の電子部品やマイクロマシンなどの三次元微細構 造物を製造する際の微細加工において、 フォ トレジス トとして好適に使 用することができる化学増幅型感放射線性樹脂組成物およびその製造法 並びにそれを用いた半導体装置の製造方法に関する。 背景技術
■ 従来、 半導体等の電子部品や三次元微細構造物などの製造における微 細加工においては、 フォ トリ ソグラフィ一法が一般に利用されている。 フォ トリ ソグラフィ一法においては、 レジス トパターンを形成するため ポジ型またはネガ型の感放射線性樹脂組成物が用いられている。 これら 感放射線性樹脂組成物のうち、ポジ型フォ トレジス トと しては、例えば、 アル力リ可溶性樹脂と感光性物質であるキノンジアジド化合物とからな る感放射線性樹脂組成物が広く利用されている。
ところで、 近年、 L S I の高集積化と高速度化に伴い、 微細電子デバ ィス製造業界においてはデザィンルールがクォーターミク口ンあるいは 更にそれ以下への微細化が求められている。 このようなデザィンルール の更なる微細化に対応するためには、 露光光源として可視光線あるいは 近紫外線 (波長 4 0 0〜 3 0 0 n m ) など従来使用されてきたものでは 充分でなく、 K r Fエキシマレーザー ( 2 4 8 n m )、 A r Fエキシマレ 一ザ一 ( 1 9 3 n m )、 F 2エキシマレーザー ( 1 5 7 n m ) 等の遠紫外 線や更には X線、 電子線等のようなより短波長の放射線を用いることが 必要とされ、 これら露光光源を用いるリソグラフィープロセスが提案さ れ、 実用化が図られつつある。 またこのデザインルールの微細化に対応 するため、 微細加工の際にフォトレジストとして用いられる感放射線性 樹脂組成物にも更なる高解像性が要求されている。 さらに、 感放射線性 樹脂組成物には、 高解像性に加え、 感度、 画像寸法の正確さなどの性能 向上も同時に求められている。 このような要求を満たす、 短波長の放射 線に感光性を有する高解像度の感放射線性樹脂組成物として、 「化学増 幅型感放射線性樹脂組成物」 が提案されている。 この化学増幅型感放射 線性樹脂組成物は、 放射線の照射により酸を発生する光酸発生剤を含ん でおり、 放射線の照射によりこの光酸発生化合物から酸が発生され、 発 生された酸による触媒的な働きにより画像形成がなされるものである。 この化学増幅型感放射線性樹脂組成物は、 酸の触媒的働きにより高い感 度が得られる点等で有利であるため、 従来の感放射線性樹脂組成物に取 つて代わって、 使用されつつある。
化学増幅型感放射線性樹脂組成物も、 従来の感放射線性樹脂組成物と 同様に、 ポジ型およびネガ型があり、 化学増幅型ポジ型感放射線性樹脂 組成物として、ベース樹脂、光酸発生剤からなる二成分系、ベース樹脂、 光酸発生剤、 酸解離性基を有する溶解阻止剤からなる三成分系が知られ ている。 そして、 これら化学増幅型ポジ型感放射線性樹脂組成物として は、 ポリ ヒ ドロキシスチレン樹脂を基本とするベース樹脂等からなる多 くの感放射線性樹脂組成物が報告されている。 このポリ ヒ ドロキシスチ レン樹脂を基本とするベース樹脂としては、 例えば、 樹脂のフヱノール 性水酸基が部分的にまたは全てにおいて酸により開裂しうる保護基であ る t—ブトキシカルボニル基 (例えば、 米国特許第 4 , 4 9 1 , 6 2 8号 明細書、 米国特許第 5 , 4 0 3 , 6 9 5号明細書参照)、 t _ブチル基、 ト リメチルシリル基、 テ トラヒ ドロビラニル基 (例えば、 米国特許第 5 ,
3 5 0, 6 6 0号明細書参照)、 2— (アルコキシェチル) 基 (例えば、 米国特許第 5, 4 6 8,5 8 9号明細書参照) またはそれらの組み合わせ によって保護されているものなどが報告されている。 また、 ヒ ドロキシ スチレンとァクリル酸またはメタクリル酸とからなる二元または三元共 重合樹脂であって、 そのカルボン酸が部分的にまたは全てにおいて酸に より開裂し得る保護基、 例えば t一ブチル基 (例えば、 米国特許第 4,
4 9 1 ,6 2 8号明細書、 米国特許第 5,4 8 2,8 1 6号明細書参照)、 ァ ミル基またはテ トラヒ ドロビラニル基により保護されたものなども有用 なものとして報告されている。 さらに、 特開平 1 1一 1 2 5 9 0 7号公 報には、 化学増幅型ポジ型レジス トの酸解離性基含有樹脂の酸解離性基 として、 t—ブチル基、 t一ブトキシカルボ二ルメチノレ基、 t—ブトキ シカルボニル基、 1—メ トキシェチル基、 1—エトキシェチル基等も報 告されている。
さらに、 A r Fエキシマレーザー露光用ポジ型化学増幅レジス ト用ポ リマーとしては、 A r Fエキシマレーザーの透過性および耐ドライエツ チング性の観点から、脂環式環を有するものがよいことが知られている。 このような脂環式環としては、 例えば、 ボルナン環、 ノルボルナン環、 トリシクロデカン環、 テトラシクロデカン環、 ァダマンタン環などが挙 げられる。 具体的なポリマーとしては、 (メタ) アク リル酸の脂環式エス テルから導かれる重合単位を有するもの、 脂環式カルボン酸のビニルェ ステルまたはィソプロぺニルエステルから導かれる重合単位を有するも のなど (例えば、 D. C. ホーファー (H o f e r )他, 「ジャーナル フ オ トポリ マ一 サイエンス アン ド テクノ ロジー ( J o u r n a l o r P h o t o p o l ym e r S c i e n c e a n d T e c h n o l o g y)」, 第 9卷. 第 3号( 1 9 9 6), 3 8 7— 3 9 8頁参照)、 酸によって解離する基に脂環式基を導入したポリマー (例えば、 S . ィ ヮサ ( I w a s a )他, 「ジャーナル フォ トポリマー サイエンス ァ ンド テクノ ロンー 、 J o u r n a l o f P h o t o p o l ym e r S c i e n c e a n d T e c h n o l o g y)」, 9卷. 第 3 号 ( 1 9 9 6 ), 4 4 7— 4 5 6頁 2参照)、 2—ノルポルネンと無水マ レイン酸の交互共重合体構造を含むポリマー (例えば、 T. I . ヮロー (Wa l l o w) 他, 「P r o c . S P I E 1 9 9 6」, 2 7 24, 3 5 5 - 3 6 4参照) などが挙げられる。
これらの他にも、 ノルボルネン環等の脂環式構造を主鎖に有するモノ マー (モノマー 1 ) や無水マレイン酸、 カルボキシノレ基を有するビニル モノマー (モノマー 2) の重合体 (例えば、 特開平 1 0— 1 0 7 3 9号 公報参照) 或いは前記モノマーと第三モノマーとして保護基で保護され たァク リ レートゃメタク リ レートとの共重合体、 エステル部にァダマン タン骨格を持つアク リル酸エステルの重合体 (例えば、 特開平 4一 3 9 6 6 5号公報参照) ゃァダマンタン骨格を持つアク リル酸エステルとメ タク リル酸、メパロニックラタ トン ·メタタリ レート等との共重合体(例 えば、 特開 2 0 0 0— 3 3 8 6 7 6号公報参照)、 さらに γ—プチ口ラ ク トンのような含酸素複素環基を側鎖に有するテレビ酸のポリ ビュルフ ヱノールエステル等を繰り返し単位として含むポリマー (例えば、 特開 平 7— 1 8 1 6 7 7号公報参照) 等がある。
さらに、 F2エキシマレーザー照射用化学増幅型レジス ト用ポリマー についても、 含フッ素ポリマーを初めとする種々のポリマーが好ましい ものとして知られている。 例えば、 フッ素原子を少なく とも 1個有する アルキル基を有する繰り返し単位を含む高分子化合物 (例えば、 特開 2 0 0 1 - 1 74 9 9 7号公報参照)、酸不安定基によりフ ノール性水酸 基の一部が置換され、 更にフエノール核がフッ素原子またはトリフルォ ロメチル基により置換されたフエノール樹脂 (例えば、 特開 2 0 0 1— 1 6 3 9 4 5号公報参照)、主鎖の炭素原子の少なく とも 1つがフッ素原 子またはトリフルォロメチル基で置換され、 水酸基の一部が酸不安定基 で置換されていてもよいポリ ビニルアルコール類 (例えば、 特開 2 0 0 1 - 1 3 3 9 7 9号公報参照)、フッ素化されたァク リル酸のフッ素化ァ ルキル基を有するシリル化アルキレンアルコールとのエステルを繰り返 し単位として有する高分子化合物 (例えば、 特開 2 0 0 1— 2 2 6 4 3 2号公報参照)、ベースポリマー中の酸解離性ュニッ トに含フッ素芳香環 を有するエステル基を導入させたポリマー (例えば、 特開 20 0 2— 2 4 9 5 2 0号公報参照)、 2種類の異なる酸不安定基で保護されたフッ素 化された 2種類のァクリル誘導体および炭素数 1〜 2 0の直鎖状、 分岐 状、 もしくは環状の一価の炭化水素基もしくはフッ素化された一価の炭 化水素基をエーテル単位として含むフッ化ビニルからなる高分子化合物 (例えば、特開 2 0 0 2— 2 9 3 8 4 0号公報参照)、酸不安定基で保護 されたカルボキシル基あるいはシァノ基が炭素数 3〜 2 0の 2価あるい は (C+ 1 ) 価 (Cは 1〜4の整数) の環状の炭化水素基で結合された ポリシロキサン (例えば、 特開 2 0 0 2 - 3 3 2 3 5 3号公報参照)、 ポ リマー骨格の主鎖及び/又は側鎖にフッ素原子置換した構造を有し、 且 つ酸の作用によって分解し、 アル力リ現像液に対する溶解度を増大する 基を有するフッ素基含有樹脂 (例えば、 特開 2 0 0 2— 3 3 3 7 1 5号 公報参照)、フッ素原子置換されたァリール基が直接あるいは炭素数 1〜 1 0の炭化水素基で結合されたポリシロキサン (例えば、 特開 2 0 0 2 - 3 3 8 6 9 0号公報参照) などが挙げられる。
また、電子線照射用化学増幅型レジス ト用ポリマーと しては、例えば、 —般式 ( 1 ) : Si -
Figure imgf000008_0001
(式中、 R1 は水素原子、 フッ素 o原子、 塩素原子あるいはアルキル基も しくはシリル基、 R2、 R3、 R4はフッ素原子、 塩素原子あるいはアルキ ル基もしくはアルコキシ基、 nは 0または 1を示す。) で表される単量体 単位を含む樹脂、 (例えば、 特開 2 0 0 1— 2 2 0 7 3号公報参照)、 ァ セ トキシ、 t一ブチル基、 テトラヒ ドロビラニル基、 メチルァダマンチ ル基等に'より、 p—ヒ ドロキシスチレンの水酸基あるいは共重合するモ ノマーのカルボキシル基を保護した p—ヒ ドロキシスチレンあるいはそ の誘導体の共重合樹脂(例えば、特開 2 0 0 1 - 2 7 8 0 6号公報参照)、 一般式 ( 2) :
Figure imgf000008_0002
(式中、 Riおよび R2は、 水素原子. 基、 あるいは酸脱離性の 保護基を示す。)
または、 一般式 ( 3) :
Figure imgf000009_0001
(式中、 R3 は 1または 2以上の、 水素原子、 アルキル基、 あるいは酸 脱離性の保護基を示し、 ηは 0から 4の整数を示す。)
から選ばれる少なく とも 1種の単量体単位が含まれている樹脂(例えば、 特開 2 0 0 1— 8 1 1 3 9号公報参照)、少なく とも約 1 2 5立方オング ス トロームの分子容を有する第三エステル脂環式基を含み、 フォ ト酸レ ィビルエステル基とフエノール性の繰り返し単位を含むポリマーを含む 樹脂 (例えば、 特開 2 0 0 1— 1 94 7 9 2号公報参照) などが挙げら れる。 これら電子線照射用化学増幅型レジス ト用ポリマーは遠紫外照射 用化学増幅型レジス ト用樹脂としても好適に用いられる。
一方、化学増幅型ネガ型感放射線性榭脂組成物としては、ベース樹脂、 光酸発生剤、 架橋剤からなり、 例えば、 へキサメ トキシメチルメラミン などの架橋剤とアル力リ可溶性フヱノール系樹脂との組み合わせからな るもの (例えば、 米国特許第 5,3 7 6 ,5 04号明細書、 米国特許第 5 , 3 8 9,4 9 1号明細書参照) などが報告されている。 また、 ネガ型化学 増幅型レジス トに適したアルカリ可溶性樹脂としては、 ノボラック型フ ェノール樹脂、 分子量分布を狭めたポリ ビニルフエノール樹脂、 水素添 加により一部環状アルコール構造に変換したフエノール樹脂、 ポリ ビニ ルフエノールの ΟΗ基の一部をアルキル基で保護した樹脂、 ァシル基等 の酸に不活性な保護基を有するポリ ビニルフエノール樹脂、 スチレンあ るいは (メタ) アタリ レートと共重合したポリ ビエルフエノール樹脂、 カルボキシル基を有する樹脂など架橋剤によって架橋される種々のアル カリ可溶性の樹脂が知られており、 これら樹脂は、 紫外線、 遠紫外線、 電子線または X線用ネガ型化学増幅型レジス ト用ベース樹脂として用い られている (例えば、 特開 200 1— 3 3 74 5 2号公報参照)。 また、 電子線または X線照射用ネガ型化学増幅型レジス ト用ベース樹脂として は、 例えば、 パラ位に水酸基を有し、 オルト位にアルコキシル基を有す る p—ヒ ドロキシスチレンを単量体単位として含む樹脂 (例えば、 特開
200 1— 1 1 48 2 5号公報参照)、 一般式 (4) :
Figure imgf000010_0001
(式中、 Rは水素原子またはメチル基を表す。)
で表される構造単位を含むアルカ リ可溶性樹脂 (例えば、 特開 20 0 1 — 1 749 94号公報参照)、 側鎖にベンゼン環、 ビフヱニル環、 ターフ ェニル環、あるいはナフタレン環、アンスラセン環などの縮合環を有し、 これらの環がフエノール性水酸基やアルコキシ基により置換されている 繰り返し単位を含むアルカ リ可溶性樹脂 (例えば、 特開 20 0 1— 1 7 4 9 9 5号公報参照)、 フヱノール性水酸基が部分的に、 アルキルエーテ ル化、 ァリールエーテル化、 アルケニルエーテル化されたポリ ビニルフ ェノールあるいは水素添加ポリ ビュルフエノールなどのアル力リ可溶性 樹脂 (例えば、 特開 2 0 0 1— 24 2 6 2 5号公報参照)、 一般式 ( 5 ) :
Figure imgf000011_0001
(式中、 は水素原子などを、 R2、 R3、 R 4は水素原子、 置換基を有 していても良いアルキル基などを、 Aは単結合、 アルキレン、 _〇_、 — S 02—、 一 COOR—、 一 O COR―、 一 CONHR— (Rは単結合 または連結基) などの結合を、 nは 1〜 3の整数を表す。) で表される繰 り返し単位を有するアルカリ可溶性樹脂 (例えば、 特開 2 0 0 1— 3 3 74 5 2号公報参照) が挙げられる。
また、 化学増幅型ポジ型およびネガ型フォトレジストに用いられる光 酸発生剤としては、 イオン性のォニゥム塩、 特にへキサフルォロアンチ モネー トおよびト リ フルォロメ タンスルフォネー ト (例えば、 米国特許 第 5 ,5 6 9,7 8 4号明細書参照)、 または脂肪族性 Z芳香族性スルフォ ネート (例えば、 米国特許第 5 , 6 2 4,7 8 7号明細書参照) などのよ うな強い非親核性陰イオンとのョードニゥム塩またはスルフォニゥム塩 (例えば、 米国特許第 4, 0 5 8,4 0 0号明細書、 米国特許第 4,9 3 3,
3 7 7号明細書参照) などが報告されている。 また、 ある種のハロゲン 化水素を発生する光酸発生剤がネガ型フォトレジス トに有効であること (例えば、 米国特許第 5 , 5 9 9 , 9 4 9号明細書参照) も提案されてい る。さらに、 「放射線照射により沸点が 1 5 0°C以上のカルボン酸を発生 する化合物」 と 「カルボン酸以外の酸を発生する化合物」 との組み合わ せからなる光酸発生剤を用いること (例えば、 特開平 1 1一 1 2 5 9 0 7号公報参照) も提案されている。
このよ うに、 化学増幅型感放射線性樹脂組成物は、 ベース樹脂、 光酸 発生剤、 更には架橋剤等の観点から数多くの改良が行われ、 実用化され てきた。
しかしながら、半導体素子の集積回路の集積度は、年々高まっており、 それに伴い高解像力が要求されるようになってくると、 特にクォーター ミクロン以下の微細パターンにおいて、 現像時にパターン間のレジス ト が除去されず残留することにより生じると考えられているマイクロプリ ッジの発生などを含めてのパターン欠陥が大きな問題となってきた。 こ のようなパターン欠陥が生ずると、 設計通りのパターンを得ることがで きないばかりでなく、 実用に供される優れたパターン形状を得ることが できなくなり、 半導体製造等の製造プロセスにおいて非常に低い歩留ま りを招くこととなり重要な解決課題となっている。
上記パターン欠陥の問題は、 最近の微細化、 特に 0 . 2 μ πι以下のパ ターン形成において顕在化してきた問題であり、 これまでこれらの課題 を解決する手段として具体的に挙げられたものがなかったのが実状であ る。
上記のような状況に鑑み、 本発明は、 半導体製造等に用いられる化学 増幅型フォトレジストで良好な感度および解像力を有すると共に、 パタ ーン形状が優れ、 プロセス裕度、 プロセス安定性に優れ、 特に微細パタ ーンにおけるマイクロプリ ッヂ等のパターン欠陥の少ない化学増幅型感 放射線性樹脂組成物およびその製造法並びにそれを用いた半導体装置の 製造方法を提供することを目的とする。 発明の開示 本発明者らは、 鋭意研究、 検討を行った結果、 半導体装置などの製造 の際にフォ トレジス トと して有用な化学増幅型感放射線性樹脂組成物に おいて、 (ィ) 多角光散乱 (Multi Angle Laser Light Scattering;以下 「M A L S」 ということがある) 検出器を用いたゲル透過クロマトダラ フィー (G P C ) 法、 すなわち多角光散乱法 (MA L S法) によるゲル 透過クロマトグラフィ一法により求めたポリスチレン換算重量平均分子 量が 1 0 0万以上である超高分子量成分の含有量を、 組成物中所定量以 下とするか、 (口)化学増幅型感放射線製樹脂組成物を構成するベース樹 脂として、 前記方法により求めたポリスチレン換算重量平均分子量が 1 0 0万以上の超高分子量成分が所定量以下である樹脂を用い、前記(ィ) の化学増幅型感放射線性樹脂組成物を形成するか、 (ハ)ベース樹脂の原 料となるアル力リ可溶性樹脂として、 前記方法で求めたポリスチレン換 算重量平均分子量が 1 0 0万以上の超高分子量成分が所定量以下の樹脂 を用い、 この樹脂から製造された酸解離性保護基で保護されたアル力リ 不溶性またはアルカリ難溶性樹脂をベース樹脂として用いて前記 (ィ) の化学増幅型感放射線性樹脂組成物を形成することによ り、 また (二) ベース樹脂あるいはベース樹脂の原料樹脂の超高分子量体量を M A L S 法によるゲル透過クロマトグラフィー (G P C ) 法により求めて、 前記 超高分子量体量が所定量以下のものを選別して使用することにより上記 目的を達成し得ることを見出し、 本発明に至ったものである。
すなわち、 本発明は、 少なく とも (1 ) アルカ リ可溶性樹脂あるいは 酸解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶性樹脂 であるベース樹脂、 (2 )放射線の照射により酸を発生する光酸発生剤お よび ( 3 ) 溶剤を含有する化学増幅型感放射線性樹脂組成物において、 前記アル力リ可溶性樹脂あるいは酸解離性保護基で保護されたアル力リ 不溶性またはアル力リ難溶性樹脂の重量平均分子量のポリスチレン換算 値が 1 0 0万以上の超高分子量成分が、 M A L S法によるゲル透過クロ マトグラフィ一法により求めて当該組成物中に 0 . 2 p p m以下である ことを特徴とする化学増幅型感放射線性樹脂組成物に関する。
また、 本発明は、 上記化学増幅型感放射線性樹脂組成物において、 前 記ベース樹脂あるいは酸解離性保護基で保護される前のアル力リ可溶性 樹脂は、 ポリスチレン換算重量平均分子量が 1 0 0万以上の超高分子量 成分が、 M A L S法によるゲル透過クロマトグラフィ一法により求めて 樹脂成分中に 1 p p m以下であることを特徴とする化学増幅型感放射線 性樹脂組成物に関する。
更に、 本発明は、 上記各化学増幅型感放射線性樹脂組成物の製造にお いて、 ポリスチレン換算重量平均分子量が 1 0 0万以上の超高分子量成 分を M A L S法によるゲル透過ク口マトグラフィ一法により求めて除去 する工程を含む化学増幅型感放射線性樹脂組成物の製造法に関する。 また、 本発明は、 被加工対象上に化学増幅型感放射線性樹脂組成物を 塗布してフォ トレジス ト膜を形成し、 前記フォ ト レジス ト膜を所望形状 に加工する工程と、前記により得られたレジス トパターンをマスクとし て前記被加工対象をエッチングする工程とを含み、前記レジストは、少な く とも (1 ) アルカ リ可溶性樹脂あるいは酸解離性保護基で保護された アル力リ不溶性またはアル力リ難溶性樹脂であるベース樹脂、 (2 )放射 線の照射により酸を発生する光酸発生剤および ( 3 ) 溶剤を含有する化 学増幅型感放射線性樹脂組成物であり、 前記アル力リ可溶性樹脂あるい は酸解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶性榭 脂の重量平均分子量のポリスチレン換算値が 1 0 0万以上の超高分子量 成分が、 M A L S法によるゲル透過クロマトグラフィー (G P C ) 法に より求めて当該組成物中に 0 . 2 p p m以下であることを特徴とする半 導体装置の製造方法に関する。 また、 本発明は、 上記半導体装置の製造方法において、 前記化学増 型感放射線性樹脂組成物の前記ベース樹脂あるいは酸解離性保護基で保 護される前のアル力リ可溶性樹脂が、 ポリスチレン換算重量平均分子量 が 1 0 0万以上の超高分子量成分が、 M A L S法によるゲル透過クロマ トグラフィー (G P C ) 法により求めて樹脂成分中に 1 p p m以下のも のからなることを特徴とする半導体装置の製造方法に関する。 図面の簡単な説明
第 1図は、 本発明の化学増幅型感放射線性樹脂組成物を用いて、 凹状 パターンを形成する例を示す概略断面図である。
第 2図は、 本発明の化学増幅型感放射線性樹脂組成物を用いて、 凸状 パターンを形成する例を示す概略断面図である。
第 3図は、欠陥のないパターンの上面観察 S E M写真を示す図である。 第 4図は、 パターン欠陥であるマイクロブリ ッジが形成されたパター ンの T i 1 t一 S E M写真を示す図である。
なお、 図中、 1はシリ コン半導体基板、 2は被加工対象、 3 , 1 3は フォ ト レジス ト膜、 4 , 1 4はレジス トマスク、 4 aは溝状パターン、 5は溝、 1 1はゲート絶縁膜、 1 2は多結晶シリコン膜、 5はゲート電 極、 1 6はソース/ ドレインである。 発明の詳細な説明
以下、 本発明を更に詳細に説明する。
本発明の化学増幅型感放射線性樹脂組成物においては、 ベース樹脂と して、 アルカ リ可溶性樹脂、 あるいは酸解離性保護基で保護されたアル カリ不溶性またはアル力リ難溶性樹脂であって、 該酸解離性保護基が解 離したときにアル力リ可溶性となる樹脂が用いられる。 これらベース樹 脂としては、 本明細書において従来技術として既に例示した化学増幅型 感放射線性樹脂組成物を含め、 従来化学増幅型感放射線性樹脂組成物の ベース樹脂として用いられているアル力リ可溶性樹脂、 酸解離性保護基 で保護されたアル力リ不溶性またはアル力リ難溶性樹脂のいずれのもの をも用いることができる。
これらベース樹脂のうち、 化学増幅型ポジ型感放射性樹脂組成物で用 いられる酸解離性保護基で保護されたアル力リ不溶性または難溶性樹脂 としては、 例えば、 酸解離性保護基でアルカリ可溶性樹脂が部分的に保 護されたものが挙げられる。 このよ うな酸解離性保護基でアル力リ可溶 性樹脂が部分的に保護されたアルカリ不溶性または難溶性樹脂の例とし ては、 代表的には、 ( i ) ( a ) ヒ ドロキシスチレン類の単独重合体また はこれと他のモノマーとの共重合体あるいはフエノール樹脂と、 (b )ビ ニルエーテル化合物あるいはジアルキルジカルボナート (アルキル基の 炭素数は 1〜 5である。) との反応生成物、 (ii ) ヒ ドロキシスチレン類 とビニルエーテル化合物あるいはジアルキルジカルボナート (アルキル 基の炭素数は 1〜 5である。)との反応生成物の単一重合体あるいはこれ と他のモノマーとの共重合体、 あるいは (iii ) これら保護基により保護 された基を有する単一重合体あるいは共重合体の保護基の一部を必要に 応じ酸により解離させたものが挙げられる。
これら重合体を製造するために用いられるヒ ドロキシスチレン類とし ては、 4 —ヒ ドロキシスチレン、 3 —ヒ ドロキシスチレンおょぴ 2 —ヒ ドロキシスチレンが好ましいものである。 これら 4—、 3—、 または 2 -ヒ ドロキシスチレンは、 上記のように単独重合によりポリ (4ーヒ ド ロキシスチレン)、 ポリ ( 3—ヒ ドロキシスチレン) およびポリ (2 —ヒ ドロキシスチレン) とされる力 、 または、 4—、 3—、 または 2 —ヒ ド ロキシスチレンが他のモノマーと共重合され、 二元あるいは三元共重合 体などとされた後保護基が導入されるか、 あるいはこれらと他のモノマ 一とを共重合することによりアルカリ不溶性の樹脂とされる。さらには、 このようにして製造された保護基を有するアル力リ不溶性樹脂の保護基 の一部を酸により解離させて製造してもよい。
上記共重合体を製造するために用いられるヒ ドロキシスチレン類と共 重合される他のモノマーとしては、 例えばスチレン、 4—、 3—または 2—ァセ トキシスチレン、 4—、 3—または 2—アルコキシスチレン、 α—メチルスチレン、 4一、 3—または 2—アルキルスチレン、 3—ァ ノレキノレー 4—ヒ ドロキシスチレン、 3, 5—ジァノレキノレー 4—ヒ ドロキ シスチレン、 4一、 3—または 2—クロロスチレン、 3—クロ口 _ 4一 ヒ ドロキシスチレン、 3, 5—ジクロロー 4—ヒ ドロキシスチレン、 3 —プロモー 4ーヒ ドロキシスチレン、 3 , 5—ジブ口モー 4ーヒ ドロキ シスチレン、 ビニノレべンジノレクロライ ド、 2—ビニノレナフタ レン、 ビニ ルアントラセン、 ビニルァニリ ン、 ビニル安息香酸、 ビュル安息香酸ェ ステ /レ類、 Ν—ビニノレピロ リ ドン、 1 —ビニノレイ ミダゾール、 4一また は 2—ビニノレピリ ジン、 1 —ビニノレ一 2—ピロ リ ドン、 Ν—ビニノレラタ タム、 9一ビエルカノレバゾール、 アク リル酸とアク リル酸エステルおよ びそれらの誘導体、 メタクリル酸とメタクリル酸エステルおよびそれら の誘導体、 例えばメチルメタタリ レートとその誘導体、 メタク リルアミ ドとその誘導体、 アク リ ロニ ト リル、 メ タタ リ ロニ ト リル、 4一ビニル フエノキシ酢酸とその誘導体、 例えば 4一ビニルフエノキシ酢酸エステ ル類、 マレイ ミ ドとその誘導体、 Ν—ヒ ドロキシマレイミ ドとその誘導 体、 無水マレイン酸、 マレイン酸またはフマル酸とその誘導体、 例えば マレイン酸またはフマル酸エステル、 ビニルト リ メチルシラン、 ビュル トリメ トキシシラン、 またはビニルノルボルネンとその誘導体等が挙げ られる。 さらに、 他のモノマーの好ましい例としては、 イソプロぺニルフエノ ール、 プロぺニルフエノール、 (4ーヒ ドロキシフエニル) ァク リ レー ト またはメタク リ レー ト、 ( 3—ヒ ドロキシフエニル)ァク リ レー トまたは メタク リ レート、 ( 2—ヒ ドロキシフエニル)ァクリ レートまたはメタク リ レート、 N— (4ーヒ ドロキシフエニル) アク リルアミ ドまたはメタ クリルァミ ド、 N— ( 3—ヒ ドロキシフエニル) アタ リルァミ ドまたは メタク リルァミ ド、 N— ( 2—ヒ ドロキシフエニル) アタ リルァミ ドま たはメタク リルアミ ド、 N— ( 4—ヒ ドロキシベンジル) アク リルアミ またはメタク リルアミ ド、 N— ( 3—ヒ ドロキシベンジル) アクリル アミ ドまたはメタクリルアミ ド、 N— ( 2—ヒ ドロキシベンジル) ァク リルァミ ドまたはメタク リルァミ ド、 3— ( 2—ヒ ドロキシ一へキサフ ルォ口プロ ピノレ一 2 ) —スチレン、 4 - ( 2—ヒ ドロキシ一へキサフノレ ォロプロピル一 2 ) —スチレンなどが挙げられる。
また、酸解離性保護基で保護される前のアル力リ可溶性樹脂としては、 上記ヒ ドロキシスチレン類の単独重合体またはこれと他のモノマーとの 共重合体あるいはフニノール樹脂以外にも、 上記他のモノマーとして挙 げられたモノマーの中で側鎖にあるいは側鎖としてフエノール性の水酸 基あるいは力ルポキシル基を有するビュルモノマーの単独重合体または これと側鎖にフエノール性の水酸基あるいはカルボキシル基を有しない ビニルモノマーとの共重合体が用いられてもよい。
アル力リ可溶性を与える基を変成して酸により解離し得る保護基を形 成するビュルエーテル化合物としては、 n一ブチルビュルエーテル、 t —ブチルビニルエーテル等が好ましいものとして挙げられる。 これらビ ニルエーテル化合物は、 単独であるいは 2種以上組み合わせて用いるこ とができる。
また、 アル力リ可溶性を与える基を変成して酸により解離し得る保護 基を形成する化合物であるジアルキルカルボナートとしては、 例えばジ 一 tーブチルジカルボナートが好ましい化合物として挙げられる。
なお、 酸解離性保護基としては、 上記例示された具体例を含め、 t e r tーブチル、 t e r t —ブトキシカルボニルおよび t e r tーブトキ シカルボニルメチルのような 3級炭素が酸素原子に結合する基 : テ トラ ヒ ドロ一 2—ビラニル、 テトラヒ ドロー 2—フリル、 1—メ トキシェチ ノレ、 1 一エトキシェチル、 1一 (2—メチルプロポキシ) ェチル、 1 一 ( 2—メ トキシェトキシ) ェチル、 1一 ( 2—ァセトキシェトキシ) ェ チル、 1 - C 2 - ( 1—ァダマンチルォキシ) エトキシ〕 ェチルおよび 1一 〔 2— ( 1ーァダマンタン力ルポ二/レオキシ) エトキシ〕 ェチルの ようなァセタール型の基 : 3—ォキソシクロへキシル、 4—メチルテト ラヒ ドロー 2—ピロン一 4ーィルおよび 2—メチル _ 2—ァダマンチル のような非芳香族環状化合物の残基など種々のものを挙げることができ る。これらは単に酸解離性保護基の具体例を例示したに過ぎないもので、 本発明において用いられる酸解離性保護基含有樹脂の酸解離性保護基が これら具体的に例示されたものに限定されるものではない。
また、 本発明の化学増幅型ポジ型感放射線性樹脂組成物において用い られるアルカリ可溶性樹脂としては、 前記酸解離性保護基で保護される 前のアル力リ可溶性樹脂と同様なものが好ましいものと して挙げられる c 上記ベース樹脂と して用いられるアルカリ可溶性樹脂、 酸解離性保護 基で保護されたアル力リ不溶性またはアル力リ難溶性の樹脂、 および酸 解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶性の樹脂 を製造するための原料となるアルカリ可溶性樹脂は、 多角度光散乱 (M A L S ) 検出器により検出されるポリスチレン換算重量平均分子量が 1 0 0万以上の超高分子量成分が樹脂成分中 1 p p m以下であることは必 ずしも必要ではないが、 1 ϋ p m以下であることが好ましく、 より好ま しくは 0 . 1 p p m以下、 さらに好ましくは 0 . O l p p m以下である。 このような好ましい特性を有する樹脂は、 従来化学増幅型ポジ型感放射 線性樹脂組成物で用いられている、 アル力リ可溶性樹脂およびアル力リ 可溶性を与える基が酸により開裂できる保護基により部分的に保護され ているアルカリ不溶性またはアルカリ難溶性の樹脂の中から、 例えば、 ポリスチレン換算重量平均分子量が 1 0 0万以上の超高分子量成分を、 M A L S検出器を用いたゲル透過クロマトグラフィー (G P C ) 法によ り求めて選別して取得してもよいし、 前記樹脂を溶剤抽出法、 濾過分離 法、 溶剤洗浄法など公知の方法を用いて調製し、 重量平均分子量が 1 0 0万以上の超高分子量成分の樹脂中の含有率が上記所定値以下となるよ うなものを M A L S法によるゲル透過クロマトグラフィー (G P C ) 法 により求めて選別して取得してもよい。
一方、 光酸発生剤は、 放射線により酸を発生する化合物であり、 光酸 発生剤の例としては、 ォニゥム塩、 ハロゲン含有化合物、 ジァゾメタン 化合物、 スルホン化合物、 スルホン酸化合物などをはじめとし、 従来例 えば化学増幅型感放射線性樹脂組成物における光酸発生剤として用いら れているもののいずれのものであってもよい。 これら光酸発生剤の好ま しいものとしては、 ォニゥム塩では、 例えばト リ フレー トあるいはへキ サフレートとのョードニゥム塩、 スルホニゥム塩、 ジァゾニゥム塩、 ァ ンモニゥム塩、 ピリ ジニゥム塩等が、 ハロゲン含有化合物では、 ハロア ルキル基含有炭化水素化合物あるいはハロアルキル基含有複素環式化合 物、 例えば、 フエ二ルービス ( ト リ クロロメチル) 一 s — ト リアジン、 メ トキシフエ二ノレ一ビス ( ト リ ク ロロメチノレ) 一 S — ト リアジンなどの ( ト リ ク ロロメチル) 一 S — ト リアジン誘導体や、 ト リ ブロモネオペン チルアルコール、 へキサブ口モへキサンなどの臭素化化合物、 へキサヨ 一ドへキサンなどのヨウ素化合物などが挙げられる。 また、 ジァゾメタ ン化合物では、 例えばビス (トリフルォロメチルスルホニゥム) ジァゾ メタン、 ビス (シクロへキシルスルホ-ゥム) ジァゾメタンなどが挙げ られる。 スルホン化合物では、 —ケ トスルホン、 —スルホニノレスル ホン等が、 スルホン酸化合物では、 アルキル (C ;i~ i2) スルホン酸エス テル、 ハロアルキル (C i~ i2) スルホン酸エステル、 ァリールスルホン 酸エステル、 イミノスルホナート等が挙げられる。
これらの光酸発生剤は、 単独でまたは 2種以上混合して使用すること ができ、 その配合量は、 アルカリ不溶あるいは難溶性樹脂 1 0 0重量部 当たり、 通常 0 . 1〜 1 0重量部、 好ましくは、 0 . 5〜 5 . 0重量部 である。
さらに、 本発明の化学増幅型ポジ型感放射線性樹脂組成物においてァ ルカリ可溶性樹脂が用いられる場合には、溶解抑止剤が共に用いられる。 また、 酸解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶 性の榭脂が用いられる場合においても、 必要であれば、 溶解抑止剤が用 いられる。 この溶解抑止剤としては、 例えばフエノール系化合物のフエ ノール性水酸基を酸の作用により解裂する基で保護した化合物が挙げら れる。 溶解抑止剤は、 光酸発生剤から生成された酸により保護基が解裂 される前にはアル力リ現像液に対し不溶性または難溶性であるが、 保護 基が解裂した後にはアル力リ現像液に可溶性、 すなわちアル力リ可溶性 となる化合物である。 この溶解抑止剤は、 保護基の解裂前にはアルカ リ 可溶性樹脂に対し溶解抑止能を有するが、 酸の作用により解裂した後は このよ うな能力を消失し、 通常溶解促進剤として作用する。 溶解抑止剤 の酸の作用により解裂する基としては、 例えば、 上記酸解離性保護基と して挙げられた、 t e r t 一ブトキシカルボニル基などが挙げられる。 溶解抑止剤の具体例としては、 例えば、 2 , 2—ビス (4一 t e r t — ブトキシカノレボニノレオキシフエ二ノレ) プロパン、 ビス ί 4 - t e r t - ブトキシカノレポニノレオキシフエ-ル) ス /レホン、 3, 5—ビス (4— t e r t —ブトキシカルボニルォキシフエニル) 一 1, 1 , 3— トリメチ ルインダン等が挙げられる。
また、 本発明の化学増幅型ポジ型感放射線性樹脂組成物には、 添加剤 として塩基性化合物を配合することが好ましい。 この塩基性化合物は、 露光により光酸発生剤から生じた酸のレジス ト膜中における拡散現象を 制御し、解像度を向上させたり、露光裕度等を向上させることができる。 このような塩基性化合物としては、 第 1級、 第 2級または第 3級の脂肪 族ァミ ン類、 芳香族ァミン類、 複素環ァミン類、 アルキル基またはァリ ール基などを有する窒素化合物、 アミ ド基またはイミ ド基含有化合物等 が挙げられる。
他方、 本発明の化学増幅型ネガ型感放射線性樹脂組成物は、 それ自体 アルカリ可溶性である樹脂 (アルカリ可溶性樹脂)、 光酸発生剤、 および 該ァルカリ可溶性樹脂が酸感応型自己架橋性樹脂でない場合においては 架橋剤を含む。 化学増幅型ネガ型感放射線性樹脂組成物においては、 光 酸発生剤から生じた酸によって、 前記自己架橋性樹脂が架橋されるか、 架橋剤によってアル力リ可溶性樹脂が架橋されることにより、 放射線照 射部がアル力リ現像液に対し不溶性とされる。
上記化学増幅型ネガ型感放射線性樹脂組成物で用いられるアル力リ可 溶性樹脂および光酸発生剤としては、 先に化学増幅型ポジ型感放射線性 樹脂組成物において例示したものと同様のものが好ましいものとして挙 げられる。 また架橋剤は、 放射線照射部で発生した酸の作用を受けてァ ルカリ可溶性樹脂を架橋させ、 硬化させるものであればよく、 特に限定 されるものではないが、 メラミン系、 ベンゾグアナミン系、 尿素系など の種々の架橋剤、 例えば、 へキサメチロールメラミン、 ペンタメチロー ルメラミン、 テ トラメチロールメラミン、 へキサメ トキシメチルメラミ ン、 ペンタメ トキシメチルメラミンおよぴテトラメ トキシメチルメラミ ンのようなメチロ一ル化メラミンまたはそのアルキルエーテル体、 テ ト ラメチロールベンゾグァナミン、 テ トラメ トキシメチルベンゾグァナミ ンおよびトリメ トキシメチルべンゾグアナミンのようなメチロ一ル化べ ンゾグアナミンまたはそのアルキルエーテ/レ体、 N , N—ジメチロール 尿素またはそのジアルキルエーテル体、 3 , 5 —ビス (ヒ ドロキシメチ ル) ペルヒ ドロー 1 , 3 , 5—ォキサジァジン一 4 _オン (ジメチロー ルゥロン) またはそのアルキルエーテル体、 テ トラメチロールグリオキ ザ一ルジゥレインまたはそのテトラメチルエーテル体、 2, 6—ビス (ヒ ドロキシメチル) 4ーメチルフエノールまたはそのアルキルエーテル体、 4一 t e r t—ブチノレ一 2 , 6 _ビス (ヒ ドロキシメチル) フエノーノレ またはそのアルキルエーテル体、 5—ェチル一 1 , 3 _ビス (ヒ ドロキ シメチル) ペルヒ ドロ一 1 , 3 , 5— トリアジンー 2—オン (N—ェチ ルジメチロールトリァゾン) またはそのアルキルエーテル体などが好ま しいものとして挙げられる。 また、 アルコキシアルキル化メラミン樹脂 やアルコキシアルキル化尿素樹脂などのアルコキシアルキル化ァミノ樹 脂、 例えばメ トキシメチル化メラミン樹脂、 エトキシメチル化メラミン 樹脂、 プロポキシメチル化メラミン樹脂、 ブトキシメチル化メラミン樹 脂、 メ トキシメチル化尿素樹脂、 エトキシメチル化尿素樹脂、 プロポキ シメチル化尿素樹脂、 ブトキシメチル化尿素樹脂なども好ましいもので める。
これら架橋剤は、 単独でまたは 2種以上混合して使用でき、 その配合 量は、 アルカリ可溶性樹脂 1 0 0重量部当たり、 通常 2〜 5 0重量部、 好ましくは、 5〜 3 0重量部である。 ■ 本発明においては、 化学増幅型感放射性樹脂組成物を構成する、 アル 力リ可溶性樹脂、 酸解離性保護基で保護されたアル力リ不溶性またはァ ルカリ難溶性の樹脂、 光酸発生剤、 溶解抑止剤、 架橋剤および以下に記 载する任意成分である添加剤等は、 溶剤に溶解されて、 化学増幅型感放 射線性樹脂組成物として用いられる。 本発明において用いられる溶剤と しては、 エチレングリ コーノレモノメチノレエーテノレ、 エチレングリ コーノレ モノェチルエーテノレ等のエチレングリ コールモノアノレキノレエーテノレ類、 エチレングリ コールモノメチルエーテルァセテ一ト、 エチレングリ コー ルモノェチルエーテノレアセテー ト等のエチレングリ コールモノアルキル エーテルアセテー ト類、 プロピレングリ コーノレモノメチルエーテル、 プ ロピレングリ コールモノェチノレエーテル等のプロピレングリ コーノレモノ ァノレキルエーテノレ類、 プロ ピレングリ コールモノメチルエーテノレァセテ ート、 プロピレングリ コールモノェチルエーテルァセテ一ト等のプロピ レングリ コールモノアルキルエーテルアセテー ト類、 乳酸メチル、 乳酸 ェチル等の乳酸エステル類、 トルエン、キシレン等の芳香族炭化水素類、 メチルェチルケトン、 2—へプタノン、シクロへキサノン等のケトン類、 N , N—ジメチルァセ トアミ ド、 N—メチルピロリ ドン等のアミ ド類、 7一プチロラク トン等のラタ トン類等を好ましいものと して挙げること ができる。 これらの溶剤は、 単独でまたは 2種以上を混合して使用され る。
さらに、 本発明の感放射線性榭脂組成物には、 必要に応じ染料、 接着 助剤および界面活性剤等を配合することができる。 染料の例としては、 メチルバイオレッ ト、 クリスタルバイオレッ ト、 マラカイ トグリーン等 力 接着助剤の例としては、 へキサメチルジシラザン、 クロロメチルシ ラン等が、 界面活性剤の例としては、 非イオン系界面活性剤、 例えばポ リグリ コール類とその誘導体、 すなわちポリプロピレングリコールまた はポリオキシエチレンラウリルエーテル、 フッ素含有界面活性剤、 例え ばフロラード (商品名、 住友 3 M社製)、 メガファ ック (商品名、 大日本 インキ化学工業社製)、 スルフロン (商品名、 旭硝子社製)、 および有機 シロキサン界面活性剤、 例えば KP 3 4 1 (商品名、 信越化学工業社製) などが挙げられる。
また、 本発明の化学増幅型感放射線性樹脂組成物は、 MAL S法によ るゲル透過ク口マトグラフィ一法により求めた重量平均分子量がポリス チレン換算値で 1 0 0万以上である超高分子量成分の組成物中での含有 量が、 0. 2 p p m以下であり、 好ましくは.0. 0 2 p p m、 より好ま しくは 0. 0 0 2 p p m以下である。 本発明の化学増幅型感放射線性樹 脂組成物を製造するためには、 上記したように、 ベース樹脂自身あるい は酸解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶性樹 脂を製造するために用いられるアル力リ可溶性樹脂として、 MAL S法 によるゲル透過クロマトグラフィー (G P C) 法により求めた重量平均 分子量がポリスチレン換算値で 1 0 0万以上の超高分子量である成分の 樹脂中の含有量が 1 p p m以下のものを用いることが好ましい。 すなわ ち、 前記超高分子量成分の樹脂中の含有量が 1 p p m以下のものを用い る場合、 組成物中での該超高分子量成分の含有率が 0. 2 p p m以下の 感放射線性樹脂組成物が直接得られるか、 若しくは得られた感放射線性 樹脂組成物の該超高分子量成分の含有率が 0. 2 p p m以上となった場 合においても、 感放射線性樹脂組成物を濾過するなどの方法で、 簡便か つ短時間の処理により超高分子量成分を分別でき、 組成物中での該超高 分子量の含有量を 0. 2 p p m以下に容易に調製可能となる。 このよ う にして得られた組成物について、 組成物中の超高分子量成分量が 0. 2 p p m以下になっていることを MAL S法によるゲル透過クロマトグラ フィー (G P C) 法により確認し、 本発明の感放射線性樹脂組成物とし て選別し、 使用される。 また、 ベース樹脂として前記超高分子量成分の 含有量が樹脂中 1 p p m以上のものを用いる場合には、 組成物とした段 階で組成物中の前記超高分子量成分の含有量を 0 . 2 p p m以下になる よう調製することが必要とされることが多いが、 この際にも得られた感 放射線性樹脂組成物を濾過分離法などを利用して前記超高分子量成分を 分離し、 組成物中の前記超高分子量成分の含有量を前記所定範囲となる よう調製、 選別してやればよい。
なお、 アルカリ可溶性樹脂、 酸解離性保護基で保護されたアルカリ不 溶性またはアルカリ難溶性樹脂、 光酸発生剤、 溶解抑止剤、 架橋剤、 任 意成分である添加剤等については、 更に必要であれば、 先行技術として 例示した文献などを参照されたい。
本発明においては、 ポジ型あるいはネガ型化学増幅型感放射線性樹脂 組成物中のベース樹脂のポリスチレン換算値が重量平均分子量で 1 0 0 万以上の超高分子量成分が、 多角光散乱法によるゲル透過クロマトグラ フィ一法により求めて当該組成物中に 0 . 2 p p m以下であればよく、 この要件を満たせばベース樹脂として従来知られたアル力リ可溶性樹脂. 酸解離性保護基で保護されたアル力リ不溶性またはアル力リ難溶性樹脂 であれば、 樹脂の種類を問わず、 何れのものであっても使用でき、 また 該糸且成物は、 紫外線、 K r Fエキシマレーザー、 A r Fエキシマレーザ 一、 F 2エキシマレーザーなどの遠紫外線、 X線、 電子線照射用の何れ のものであってもよい。
以下では、 上記本発明の化学増幅型感放射線性樹脂組成物を用い、 露 光光源として K r Fエキシマレーザーを用いての半導体装置の製造方法 を一例としてあげて、 半導体装置の製造方法を、 図を参照しつつ更に詳 細に説明する。
第 1図に、 本発明の化学増幅型ポジ型放射線性樹脂組成物を用いて基 板上の被加工対象上に凹状の溝状レジストパターンを形成する方法を示 す。 まず、 シリ コンウェハ等のシリ コン半導体基板 1上に多結晶シリ コ ン膜などの導電膜ゃシリコン酸化膜等の絶縁膜等の被加工対象 2を形成 し、 この被加工対象上に本発明の化学増幅型ポジ型感放射線性樹脂組成 物を回転塗布し、 必要に応じプリベータ (例えば、 ベータ温度 : 7 0〜 1 5 0°〇で 1分程度) を行ってフォ トレジス ト膜 3を形成する (第 1図 ( a ))。 次いで、 図示されていないが、 フォ ト レジス ト膜 3にレチクル などの露光用マスクを介し、 K r Fエキシマレーザーを露光光源として 用いてパターン露光を行う。 露光後、 必要に応じポス トェクスポージャ 一べーク (p E B) を行った (例えば、 ベータ温度 : 5 0〜 1 5 0°C) 後、 現像し、 必要であれば現像後ベータを行い (例えば、 ベータ温度 : 6 0〜 1 2 0°C)、溝状パターン 4 aを有するレジス トマスク 4を形成す る (第 1図 (b))。 そして、 レジス トマスク 4を用いて被加工対象 2を ドライエッチングし、 溝状パターン 4 aに倣った幅 0. 2 μ πι以下、 こ こでは 0. 1 5 mの溝 5を形成する (第 1図 ( c ))。
また、 第 2図に被加工対象に凸状パターンとしてグート電極を形成す る方法を示す。 まず、 シリ コン半導体基板 1上に薄いシリ コン酸化膜か らなるゲート絶縁膜 1 1を形成した後、 被加工対象である多結晶シリコ ン膜 1 2を形成し、 この多結晶シリ コン膜 1 '2上に上記した本発明の化 学増幅型ネガ型感放射線性樹脂組成物を回転塗布し、 必要に応じプリべ ークしてネガ型のフォ トレジス ト膜 1 3を形成する (第 2図 ( a ))。 次 いで、 マスクを通して露光した後現像し、 必要に応じ P E Bを行うこと により電極形状のレジス トマスク 1 4を形成する (第 2図 (b ))。 更に このレジス トマスク 1 4を用いて多結晶シリコン膜 1 2およびゲート絶 縁膜 1 1をドライエッチングし、 レジス トマスク 1 4の形状に倣ったゲ ー ト長が 0. 2 μ πι以下、 ここでは 0. 1 5 μ mのゲー ト電極 1 5を形 成する (第 2図 ( c ))。 MO S トランジスタであれば、 レジス トマスク を灰化処理等により除去した後、 不純物イオンの打ち込みを行い、 ソー ス · ドレイン領域 1 6を形成する (第 2図 ( d ) )。 このゲート電極を形 成する際には、 ゲート電極とともにグート電極に電圧を印加するための 配線が同時に形成されてもよい。
上記例では、 感放射線性樹脂組成物の塗布法としてスピンコート法が 用いられたが、 感放射線性樹脂組成物の塗布は前記スピンコート法に限 られるものでなく、 ロールコート法、 ランドコート法、 流延塗布法、 浸 漬塗布法など従来公知の塗布法が用いられてもよい。 また、 被加工対象 2としては、 シリ コン膜、 酸化シリ コン膜が例示されたが、 例えば、 ァ ノレミニゥム、 モリブデン、 クロムなどの金属膜、 I T Oなどの金属酸化 膜、 リ ンシリケートガラス (P S G ) のよ うな絶縁膜など、 半導体装置 において用いられる他の膜が被加工対象膜とされてもよい。 シリ コン膜 も多結晶シリ コン膜に限られず、 アモルファスシリ コン膜、 単結晶シリ コン膜であってもよく、 これらシリ コン膜がさらに不純物イオンを含む ものであってもよい。 更に、 本発明の半導体装置を製造する方法におい ては、 レジス トパターンの形成は上記例示されたものに限られず、 従来 公知のフォ トリ ソグラフィ一法のいずれのものが用いられてもよい。 例 えば、 露光光源としては、 K r Fエキシマレーザーの他、 A r Fエキシ マレーザー、 F 2 エキシマレーザー光などの遠紫外線、 紫外線、 X線、 電子線などによってもよいし、 使用するマスク、 露光法、 現像法、 現像 剤、 プリべーク条件、 P E B条件なども、 従来公知の方法あるいは材料 によってもよい。 また、 エッチング法も上記ドライエッチングに替えて ゥエツ トエッチングが採用されてもよいし、 半導体製造工程も従来公知 の方法のいずれが採用されてもよい。 本発明の化学増幅型感放射線性樹 脂組成物は、 半導体装置の形成においてフォ トリ ソグラフィー技術が用 いられる全ての部位におけるエッチングレジス ト、 イオン注入マスク等 として用いることができ、 したがって本発明の半導体装置の製造方法に より、 例えば、 半導体のソース · ドレイン領域、 ゲート電極、 ソース · ドレイン電極のコンタク トホール、 トレンチ、 メタル配線など、 半導体 装置の種々の部位の形成ができる。 したがって、 形成されるレジス トパ ターンも上記凹状あるいは凸状細線形状の他、 凹あるいは凸状の面状、 ホール状など任意所望の形状のパターンとされてもよいし、 さらにメタ ル配線を形成する際には配線形状とされてもよい。 発明を実施するための最良の態様
本発明を以下の実施例で説明するが、 本発明は、 いかなる意味におい てもこれら実施例に限定されるものではない。
実施例 1
多角光散乱検出器による樹脂の超高分子量成分量測定
ポリヒ ドロキシスチレン (以下 「P H S」 とレ、う) 5 . 0 0 gをジメ チルホルムアミ ド (以下 「D M F」 という) に溶解し 1 0 0 gとする。 この P H Sの D M F 5 w t %溶液を、 臭化リチウムを 5ミリモル Z L溶 解した D M Fを溶離液とする G P C (ゲル浸透クロマトグラフィー) に より分子量に応じた分離を行い、 多角光散乱検出器により超高分子量成 分を検出する。 ピーク面積を求め、 ポリスチレンスタンダード面積との 比較により濃度を算出する。
なお、 以下では、 G P Cにより分子量に応じた分離を行い、 多角光散 乱検出器により超高分子量成分を検出し、濃度を算出する方法を指して、 単に 「M A L S法」 とレ、うことがある。
原料樹脂の準備
超高分子量成分を 5 0 p p m含む P H Sを通常の濾過分離法を用い超 高分子量成分を 1 p p m以下にしたものを原料として用意した。
感放射線性樹脂組成物の調製 上記 PH Sを原料として用い、 触媒としてカンファースルホン酸を用 いてェチルビニルエーテルにより水酸基を保護し、 その後更にジメチル アミノビリジンを触媒としてジー t一プチルジカルボナートで水酸基を 保護したポリ [p— ( 1—エトキシエトキシ) スチレン一 p— t—ブト キシカルボ二ルー p—ヒ ドロキシスチレン] を MAL S法にて超高分子 量体成分が 3 p p m以下であることを確認して、 その固形分 1 0 0 gに 対して、 ト リ フエニルスノレフォニノレ ト リ フレ一 ト 0. 5 6 7 g、 ビスシ クロへキシノレス/レフォニノレジァゾメタン 3. 0 g、 0. 1 ミ リモノレ Zg のトリフエニノレスノレフォニゥムアセテート (T P SA) のプロピレング リ コールモノメチルエーテルアセテート (P GMEA) 溶液 7. 9 g、 ジシクロへキシルメチルァミン 0. 04 g、 N, N—ジメチルァセ トァ ミ ド 4. 0 g、 メガファック (商品名 : レジス トの塗布時の成膜、 基板 との親和性改良剤) 0. 0 6 gをプロピレングリ コールモノメチルエー テルアセテート (P GMEA) により、 固形分の比率を 1 2. 0 %に調 整して感放射線性樹脂組成物を得た。 この組成物は MAL S法にて超高 分子量体成分量が 0. 2 p p m以下になったことを確認できるまで濾過 分離を行うことにより調製を行った。
感放射線性樹脂組成物の超高分子量成分量の測定 (濃縮 MAL S法) 上記で得た感放射線性樹脂組成物 A 2 0 0 gを、 直径 4 7 mm, 孔 径 0. 0 5 μ mの超高分子量ポリエチレン製フィルタ一にて濾過した後、 このフィルターを DMF 5 gに浸してサンプル溶液とする。 これを上記 「多角光散乱検出器による樹脂の超髙分子量成分量測定」 と同様の方法 で測定し、感放射線性樹脂組成物中の超高分子量成分量を得た。この際、 フィルターによる超高分子量成分の回収効率は 1 0 %として算出した。 得られた超高分子量成分量は 0. 2 p p mであった。
なお、 上記において、 G P Cの測定は、 装置としてウォーターズ社の ミ レニアムシステム (9 9 9ポンプ、 4 1 O R I検出器、 7 0 0オート サンプラー、 解析ソフ ト (ソフ ト名 : ミ レニアム) 搭載コンピューター) を用い、 またカラムとして昭和電工社の S h 0 d e X KD - 8 0 6 M を 2本直列につないだものを用いて行った。
また、 多角光散乱検出器による測定は、 検出器として Wy a t t T e c h n o 1 o g y社の D AWN EO Sを用いて行った。
レジス ト面像の形成
上記超高分子量成分量が 0. 2 p p mの感放射線性樹脂組成物を半導 体基板であるポリシリコンウェハー上に回転塗布し、 9 0°Cで 9 0秒間 ダイレク トホッ トプレートによりベータして、 0. 4 5 0 ;u mの膜厚の フォ ト レジス ト膜を形成した。 さらにこのフォ ト レジス ト膜上に反射防 止膜として水溶性有機膜を 44 nmの膜厚に塗布形成した。 このレジス ト膜を 24 8. 4 n m K r Fエキシマレーザー光により、 ハーフ トー ンフェーズシフ トマスクを介し選択的に露光し、 1 2 0°Cで 9 0秒間ダ ィ レク トホッ トプレー トによ りポス トェクスポージャーべーク( P E B ) した後、 アルカリ現像液 (2. 3 8重量0 /0テトラメチルアンモニゥムヒ ドロキシド(TMAH)水溶液)で 6 0秒間パドル現像することにより、 ポリシリコンウェハー上にトレンチパターンを得た。
得られる トレンチパターンのサイズは、 露光量を選択することにより マスクサイズより小さく形成する (バイアスをかける) ことによって、 1 6 0 nmに形成した。 表面欠陥検査計 (たとえば、 KL Aテンコール 社製の KL A— 2 1 1 5もしくは、 KLA— 2 1 3 5) により、 基板上 の 1 6 0 n mトレンチ内の欠陥数を計測したところ、 8ィンチ基板上で 5 0 0個と良好な結果が得られた。 露光量を変化させて 1 8 0 nmの ト レンチを形成したところ欠陥は観測されなかった。 この時の欠陥のない 溝状パターンの S EM (走査型電子顕微鏡) 写真の図を第 3図に、 また パターン欠陥として認識されるマイクロプリ ッジの S EM写真の図を第 4図に示す。
比較例 1
感放射線性樹脂組成物の調製
超高分子量成分量が 5 0 p p mの PHSをそのまま使用し、 触媒とし てカンファースルホン酸を用いてェチルビニルエーテルにより水酸基を 保護し、 その後更にジメチルアミノビリジンを触媒としてジ一 t一プチ ルジカルボナートで水酸基を保護することによって、 ポリ [p— ( 1一 エ トキシエ トキシ) スチレン一 ρ— t—ブトキシカノレボニノレー p—ヒ ド ロキシスチレン] を得た。 これを組成材料として用い、 組成物の濾過分 離処理を行わなかったこと以外は実施例 1 と同様にして、 感放射線性樹 脂組成物 Bを調製した。
感放射線性樹脂組成物の超高分子量成分量測定
上記感放射線性樹脂組成物 Bの超高分子量成分量を実施例 1 と同様に して多角光散乱検出器により測定したところ、 その値は 2 p p mであつ た。
レジス ト画像の形成
上記超高分子量成分 2 p p mの感放射線性樹脂組成物を半導体基板で あるポリシリ コンウェハー上に回転塗布し、 9 0°Cで 9 0秒間ダイレク トホッ トプレー トによ りベータ して、 0. 4 5 0 μ mの膜厚のレジス ト 膜を形成した。 さらにレジス ト膜上に反射防止膜として水溶性有機膜を 44 n mの膜厚に塗布形成した。 このレジス ト膜を 24 8. 4 n m K r Fエキシマレーザー光によ り、 ハーフ トーンフェーズシフ トマスクを 介し選択的に露光し、 1 2 0°Cで 9 0秒間ダイレク トホッ トプレートに よりポス トェクスポージャーベータ (P E B) した後、 アルカリ現像液 ( 2. 3 8重量0 /0テ トラメチルアンモニゥムヒ ドロキシ ド (TMAH) 水溶液) で 6 0秒間パドル現像することにより、 ポリシリ コンウェハー 上に トレンチパターンを得た。
得られる トレンチパターンのサイズは、 露光量を選択することにより マスクサイズより小さく形成する (バイアスをかける) ことによって、 1 6 0 nmに形成した。 表面欠陥検查計により、 基板上の 1 6 0 nmト レンチ内の欠陥数を計測したところ、 8インチ基板上で 7 0 0 0個の欠 陥が観測された。 この欠陥はトレンチサイズを 1 8 0 nmにすると 1 0 0個に減少した。
実施例 2
ポリ [p _ ( 1—エ トキシエ トキシ) スチレン一 p— t _ブトキシカ ルポ二ルー p—ヒ ドロキシスチレン] の原料 P H Sの超高分子量成分量 が 9 p p mのものを使用すること以外は、 実施例 1 と同様にして、 感放 射線性樹脂組成物 Cを得た。 得られた組成物 Cの組成物中の超高分子成 分量は 0. l p p mであった。 この組成物 Cを用いて、 画像形成並びに 1 6 0 n mトレンチパターンの欠陥数測定を実施例 1 と同様に行った。 結果を表 1に示す。
比較例 2
ポリ [p— ( 1—エ トキシエ トキシ) スチレン一 p— t一ブトキシカ ルポ二ルー p—ヒ ドロキシスチレン] の原料 P H Sの超高分子量成分量 が 9 p p mのものを使用すること以外は、 比較例 1 と同様に行い、 感放 射線性樹脂組成物 Dを得た。 この組成物 Dの組成物中の超高分子量成分 量は l p p mであった。 組成物 Dを用いて、 画像の形成並びに 1 6 O n mトレンチパターンの欠陥数測定を実施例 1 と同様に行った。 結果を表 1に示す。
実施例 3
ポリ [p— ( 1—エ トキシエ トキシ) スチレン一 ϋ一 t—ブトキシカ ルボニルー pーヒ ドロキシスチレン] の原料 P H S と して、 樹脂中の超 高分子量成分量が 0 . 2 p p mのものを使用すること以外は実施例 1 と 同様に行い、 感放射線性樹脂組成物 Eを得た。 組成物 Eの超高分子量成 分量は 0 . 0 1 p p mであった。 組成物 Eを用いて、 レジス ト画像の形 成並びに 1 6 0 n mトレンチパターンの欠陥数測定を実施例 1と同様に 行った。 結果を表 1に示す。
実施例 4
超高分子量成分量が 0 . 2 p p mの P H Sを使用し、 それを原科とし て調製したポリ [ p— ( 1—エトキシエトキシ) スチレン一 p— t—ブ トキシカルボニル _ p—ヒ ドロキシスチレン] を使用すること、 得られ た組成物を濾過分離法により処理し、 組成物中の超高分子量成分量が M A L S法にて 0 . 0 2 p p mとなるよう調製したこと以外は実施例 1 と 同様に行い、 感放射線性樹脂組成物 Fを得た。 組成物 Fを用いて、 実施 例 1と同様にしてレジスト画像の形成並びに 1 6 0 n mトレンチパター ンの欠陥数測定を行った。 結果を表 1に示す。
実施例 5
比較例 1の感放射線性樹脂組成物 Bを M A L S法にて超高分子量体成 分量が 1 p p m以下になったことを確認できるまで濾過分離法により処 理することによって感放射線性樹脂組成物 Gを調製した。 この組成物 G の組成物中の超高分子量成分量は 0 . 1 p p mであった。 組成物 Gを用 いて、 レジス ト画像の形成並びに 1 6 0 n m ト レンチパターンの欠陥数 測定を実施例 1 と同様に行った。 結果を表 1に示す。 表 1
Figure imgf000035_0001
以上のことから、 本発明の化学増幅型感放射線性樹脂組成物は、 1 8 O n m、 1 6 0 n mもしくはそれ以下のトレンチサイズのパターン形成 において、マイクロブリ ツジ等の欠陥を大幅に削減できることが分かる。 発明の効果
以上詳述したように、 本発明により、 高感度、 高解像度を有し、 バタ ーン形状に優れ欠陥の少ない化学増幅型感放射線性樹脂組成物およびそ の製造法を提供することができる。 これにより、 半導体等の電子部品や 三次元微細構造物製造のための微細加工において、 設計通りのデザィン ルールに従ったパターン形成を高い精度並びに高いスループッ トで行う ことができる。 産業上の利用の可能性
本発明の化学増幅型感放射線性樹脂組成物は、 半導体等の電子部品や マイクロマシンなどの三次元微細構造物を製造する際の微細加工におい て、 フォ トレジス トと して好適に使用することができる

Claims

請 求 の 範 囲
1 . 少なく とも (1 ) アルカリ可溶性樹脂あるいは酸解離性保護基で保 護されたアルカ リ不溶性またはアルカ リ難溶性樹脂であるベース樹脂、 ( 2 ) 放射線の照射により酸を発生する光酸発生剤および (3 ) 溶剤を 含有する化学増幅型感放射線性樹脂組成物において、 前記アル力リ可溶 性樹脂あるいは酸解離性保護基で保護されたアルカ リ不溶性またはアル カリ難溶性樹脂の重量平均分子量のポリスチレン換算値が 1 0 0万以上 の超高分子量成分が、 多角光散乱法によるゲル透過ク口マトグラフィー 法により求めて当該組成物中に 0 . 2 p p m以下であることを特徴とす る化学増幅型感放射線性樹脂組成物。
2 . 請求の範囲第 1項に記载の化学増幅型感放射線性樹脂組成物におい て、 前記ベース樹脂あるいは酸解離性保護基で保護される前の原料アル 力リ可溶性樹脂は、 ポリスチレン換算重量平均分子量が 1 0 0万以上の 超高分子量成分が、 多角光散乱法によるゲル透過クロマトグラフィー法 により求めて樹脂成分中に 1 p p m以下のものであることを特徴とする 化学増幅型感放射線性樹脂組成物。
3 . 請求の範囲第 1項または第 2項に記載の化学増幅型感放射線性樹脂 組成物の製造において、 ポリスチレン換算重量平均分子量が 1 0 0万以 上の超高分子量成分を多角光散乱法によるゲル透過クロマトグラフィー 法により求めて除去する工程を含む化学増幅型感放射線性樹脂組成物の 製造法。
4 . 被加工対象上に化学増幅型感放射線性樹脂組成物を塗布してフォ ト レジス ト膜を形成し、 前記フォトレジス ト膜を所望形状に加工する工程 と、
前記により得られたレジス トパターンをマスクとして前記被加工対象 をエッチングする工程とを含み、
前記フォトレジスト膜を形成する化学増幅型感放射線性樹脂組成物は. 少なく とも (1 ) アルカリ可溶性樹脂あるいは酸解離性保護基で保護さ れたアル力リ不溶性またはアル力リ難溶性樹脂であるベース樹脂、 (2 ) 放射線の照射により酸を発生する光酸発生剤および( 3 )溶剤を含有し、 前記アル力リ可溶性樹脂あるいは酸解離性保護基で保護されたアル力リ 不溶性またはアルカリ難溶性樹脂の重量平均分子量のポリスチレン換算 値が 1 0 0万以上の超高分子量成分が、 多角光散乱法によるゲル透過ク ロマトグラフィ一法により求めて当該組成物中に 0 . 2 p p m以下であ ることを特徴とする半導体装置の製造方法。
5 . 請求の範囲第 4項記載の半導体装置の製造方法において、 前記化学 増幅型感放射線性樹脂組成物の前記ベース樹脂あるいは酸解離性保護基 で保護される前の原料アル力リ可溶性樹脂は、 ポリスチレン換算重量平 均分子量が 1 0 0万以上の超高分子量成分が、 多角光散乱法によるゲル 透過クロマトグラフィ一法により求めて樹脂成分中に 1 p p m以下のも のからなることを特徴とする半導体装置の製造方法。
PCT/JP2004/001203 2003-02-10 2004-02-05 感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法 WO2004070473A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/544,902 US20070160927A1 (en) 2003-02-10 2004-02-05 Radiation-sensitive resin composition, process for producing the same and process for producing semiconductor device therewith
DE112004000257.5T DE112004000257B4 (de) 2003-02-10 2004-02-05 Strahlungsempfindliche Harzzusammensetzung, Verfahren zur Herstellung derselben und Verfahren zur Herstellung einer Halbleiteranordnung mit derselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003032339A JP4222850B2 (ja) 2003-02-10 2003-02-10 感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法
JP2003-032339 2003-02-10

Publications (1)

Publication Number Publication Date
WO2004070473A1 true WO2004070473A1 (ja) 2004-08-19

Family

ID=32844335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001203 WO2004070473A1 (ja) 2003-02-10 2004-02-05 感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法

Country Status (7)

Country Link
US (1) US20070160927A1 (ja)
JP (1) JP4222850B2 (ja)
KR (1) KR20050109483A (ja)
CN (1) CN100568098C (ja)
DE (1) DE112004000257B4 (ja)
TW (1) TWI340294B (ja)
WO (1) WO2004070473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524604B2 (en) * 2003-04-30 2009-04-28 Tokyo Ohka Kogyo Co., Ltd Positive resist composition and method of formation of resist patterns
TWI504467B (zh) * 2010-03-02 2015-10-21 Disco Corp Laser processing device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761055B2 (ja) * 2005-06-10 2011-08-31 信越化学工業株式会社 パターン形成方法
KR101348607B1 (ko) * 2006-02-14 2014-01-07 주식회사 동진쎄미켐 포토레지스트 조성물 및 이를 이용한 박막 패터닝 방법과 이를 이용한 액정 표시 패널의 제조 방법
JP5051232B2 (ja) * 2007-08-09 2012-10-17 Jsr株式会社 感放射線性樹脂組成物及びパターン形成方法
KR101120177B1 (ko) * 2008-03-06 2012-02-27 주식회사 하이닉스반도체 반도체 소자 제조 방법
US8822347B2 (en) * 2009-04-27 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Wet soluble lithography
EP2363749B1 (en) * 2010-03-05 2015-08-19 Rohm and Haas Electronic Materials, L.L.C. Methods of forming photolithographic patterns
TW201144933A (en) * 2010-03-17 2011-12-16 Jsr Corp Radiation-sensitive resin composition and resist pattern formation method
KR101907705B1 (ko) * 2010-10-22 2018-10-12 제이에스알 가부시끼가이샤 패턴 형성 방법 및 감방사선성 조성물
JP5850873B2 (ja) * 2012-07-27 2016-02-03 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、それを用いたレジスト膜、パターン形成方法、及び電子デバイスの製造方法
CN109298600B (zh) * 2017-07-25 2022-03-29 台湾永光化学工业股份有限公司 增幅型I-line光阻组合物
US11675267B2 (en) * 2020-03-23 2023-06-13 Sumitomo Chemical Company, Limited Resist composition and method for producing resist pattern

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649136A (ja) * 1992-07-31 1994-02-22 Shin Etsu Chem Co Ltd tert−ブトキシカルボニル基で部分エステル化されたポリ(3−ヒドロキシスチレン)及びその製造方法
JPH06236037A (ja) * 1992-12-15 1994-08-23 Shin Etsu Chem Co Ltd レジスト材料
WO1999042489A2 (en) * 1998-02-20 1999-08-26 Waters Investments Limited System and method for determining molecular weight and intrinsic viscosity of a polymeric distribution using gel permeation chromatography
WO1999050362A1 (en) * 1998-03-31 1999-10-07 Avecia Limited Coloured polyurethanes
US5972559A (en) * 1996-06-28 1999-10-26 Shin-Etsu Chemical Co., Ltd. Chemically amplified positive resist compositions
JPH11352695A (ja) * 1998-06-11 1999-12-24 Sumitomo Chem Co Ltd 狭分散性重合体を用いたポジ型レジスト組成物
JP2000066399A (ja) * 1998-08-20 2000-03-03 Mitsubishi Chemicals Corp ポジ型感放射線性組成物
JP2000267283A (ja) * 1999-03-18 2000-09-29 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物
JP2002229190A (ja) * 2001-02-05 2002-08-14 Fuji Photo Film Co Ltd ポジ型化学増幅レジスト組成物
JP2003342434A (ja) * 2002-05-27 2003-12-03 Nippon Steel Chem Co Ltd ヒドロキシスチレン系重合体組成物及びその感光性材料

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058400A (en) 1974-05-02 1977-11-15 General Electric Company Cationically polymerizable compositions containing group VIa onium salts
US4491628A (en) 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
US4933377A (en) 1988-02-29 1990-06-12 Saeva Franklin D Novel sulfonium salts and the use thereof as photoinitiators
US4972024A (en) * 1988-07-29 1990-11-20 Mitsui Toatsu Chemicals, Inc. Anionically-polymerized-rubber-modified styrene copolymers
CA2019693A1 (en) * 1989-07-07 1991-01-07 Karen Ann Graziano Acid-hardening photoresists of improved sensitivity
EP0440374B1 (en) 1990-01-30 1997-04-16 Wako Pure Chemical Industries Ltd Chemical amplified resist material
JP2881969B2 (ja) 1990-06-05 1999-04-12 富士通株式会社 放射線感光レジストとパターン形成方法
US5403695A (en) * 1991-04-30 1995-04-04 Kabushiki Kaisha Toshiba Resist for forming patterns comprising an acid generating compound and a polymer having acid decomposable groups
JP3030672B2 (ja) * 1991-06-18 2000-04-10 和光純薬工業株式会社 新規なレジスト材料及びパタ−ン形成方法
US5332650A (en) 1991-09-06 1994-07-26 Japan Synthetic Rubber Co., Ltd. Radiation-sensitive composition
US5389491A (en) * 1992-07-15 1995-02-14 Matsushita Electric Industrial Co., Ltd. Negative working resist composition
JPH0665324A (ja) * 1992-08-21 1994-03-08 Shin Etsu Chem Co Ltd 単分散性共重合体及びその製造方法
JPH0761979A (ja) * 1993-08-23 1995-03-07 Shin Etsu Chem Co Ltd ビスフェノール誘導体及びその製造方法
JP3009320B2 (ja) 1993-12-24 2000-02-14 三菱電機株式会社 分解性樹脂および感光性樹脂組成物
KR100230971B1 (ko) * 1994-01-28 1999-11-15 가나가와 지히로 술포늄 염 및 레지스트 조성물 (Sulfonium Salt and Resist Composition)
JP2964874B2 (ja) * 1994-06-10 1999-10-18 信越化学工業株式会社 化学増幅ポジ型レジスト材料
JPH09132624A (ja) * 1995-11-08 1997-05-20 Sumitomo Durez Co Ltd フォトレジスト用クレゾールノボラック樹脂の製造方法
US5843624A (en) 1996-03-08 1998-12-01 Lucent Technologies Inc. Energy-sensitive resist material and a process for device fabrication using an energy-sensitive resist material
GB2341433B (en) * 1997-05-30 2002-05-01 Fmc Corp Pig delivery and transport system for subsea wells
JP3991462B2 (ja) 1997-08-18 2007-10-17 Jsr株式会社 感放射線性樹脂組成物
KR100252546B1 (ko) * 1997-11-01 2000-04-15 김영환 공중합체 수지와 포토레지스트 및 그 제조방법
JPH11255820A (ja) * 1998-03-12 1999-09-21 Mitsui Chem Inc 狭分散性のポリ(p−ヒドロキシスチレン)の製造方法
JP3890380B2 (ja) 1999-05-28 2007-03-07 富士フイルム株式会社 遠紫外線露光用ポジ型フォトレジスト組成物
JP4146972B2 (ja) 1999-07-12 2008-09-10 三菱レイヨン株式会社 レジスト用樹脂および化学増幅型レジスト組成物
JP3953712B2 (ja) 1999-07-12 2007-08-08 三菱レイヨン株式会社 レジスト用樹脂および化学増幅型レジスト組成物
JP4424632B2 (ja) 1999-07-13 2010-03-03 三菱レイヨン株式会社 化学増幅型レジスト組成物およびレジストパターン形成方法
JP3915870B2 (ja) 1999-08-25 2007-05-16 信越化学工業株式会社 高分子化合物、化学増幅レジスト材料及びパターン形成方法
JP4257480B2 (ja) 1999-09-29 2009-04-22 信越化学工業株式会社 高分子化合物、化学増幅レジスト材料及びパターン形成方法
US6492086B1 (en) 1999-10-08 2002-12-10 Shipley Company, L.L.C. Phenolic/alicyclic copolymers and photoresists
JP3956078B2 (ja) 1999-10-20 2007-08-08 信越化学工業株式会社 レジスト組成物用ベースポリマー並びにレジスト材料及びパターン形成方法
JP2001174994A (ja) 1999-12-16 2001-06-29 Fuji Photo Film Co Ltd ネガ型レジスト組成物
JP2001242625A (ja) 2000-02-25 2001-09-07 Fuji Photo Film Co Ltd 電子線またはx線用化学増幅系ネガ型レジスト組成物
JP3989149B2 (ja) 1999-12-16 2007-10-10 富士フイルム株式会社 電子線またはx線用化学増幅系ネガ型レジスト組成物
JP4132510B2 (ja) 1999-12-17 2008-08-13 信越化学工業株式会社 化学増幅型レジスト材料及びパターン形成方法
JP4208418B2 (ja) 2000-01-13 2009-01-14 富士フイルム株式会社 電子線又はx線用ネガ型レジスト組成物
JP3861966B2 (ja) 2000-02-16 2006-12-27 信越化学工業株式会社 高分子化合物、化学増幅レジスト材料及びパターン形成方法
US6406828B1 (en) * 2000-02-24 2002-06-18 Shipley Company, L.L.C. Polymer and photoresist compositions
JP3802732B2 (ja) * 2000-05-12 2006-07-26 信越化学工業株式会社 レジスト材料及びパターン形成方法
JP4006937B2 (ja) * 2000-09-22 2007-11-14 住友化学株式会社 微細粒子量の低減されたフォトレジスト組成物の製造法
JP4190167B2 (ja) 2000-09-26 2008-12-03 富士フイルム株式会社 ポジ型レジスト組成物
KR100795112B1 (ko) * 2001-02-05 2008-01-17 후지필름 가부시키가이샤 포지티브 레지스트 조성물
JP3832564B2 (ja) 2001-02-23 2006-10-11 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP3931951B2 (ja) 2001-03-13 2007-06-20 信越化学工業株式会社 高分子化合物、レジスト材料及びパターン形成方法
JP3912482B2 (ja) 2001-03-30 2007-05-09 信越化学工業株式会社 化学増幅ポジ型レジスト材料及びパターン形成方法
JP4088746B2 (ja) 2001-05-11 2008-05-21 信越化学工業株式会社 高分子化合物、化学増幅レジスト材料及びパターン形成方法
KR20020090489A (ko) 2001-05-28 2002-12-05 금호석유화학 주식회사 화학증폭형 레지스트용 중합체 및 이를 함유한 화학증폭형레지스트 조성물
EP2275463A1 (en) * 2002-07-29 2011-01-19 Life Technologies Corporation Support for electrophoresis containing a composition and method
JP4637476B2 (ja) * 2002-12-19 2011-02-23 東京応化工業株式会社 ホトレジスト組成物の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649136A (ja) * 1992-07-31 1994-02-22 Shin Etsu Chem Co Ltd tert−ブトキシカルボニル基で部分エステル化されたポリ(3−ヒドロキシスチレン)及びその製造方法
JPH06236037A (ja) * 1992-12-15 1994-08-23 Shin Etsu Chem Co Ltd レジスト材料
US5972559A (en) * 1996-06-28 1999-10-26 Shin-Etsu Chemical Co., Ltd. Chemically amplified positive resist compositions
WO1999042489A2 (en) * 1998-02-20 1999-08-26 Waters Investments Limited System and method for determining molecular weight and intrinsic viscosity of a polymeric distribution using gel permeation chromatography
WO1999050362A1 (en) * 1998-03-31 1999-10-07 Avecia Limited Coloured polyurethanes
JPH11352695A (ja) * 1998-06-11 1999-12-24 Sumitomo Chem Co Ltd 狭分散性重合体を用いたポジ型レジスト組成物
JP2000066399A (ja) * 1998-08-20 2000-03-03 Mitsubishi Chemicals Corp ポジ型感放射線性組成物
JP2000267283A (ja) * 1999-03-18 2000-09-29 Tokyo Ohka Kogyo Co Ltd ポジ型レジスト組成物
JP2002229190A (ja) * 2001-02-05 2002-08-14 Fuji Photo Film Co Ltd ポジ型化学増幅レジスト組成物
JP2003342434A (ja) * 2002-05-27 2003-12-03 Nippon Steel Chem Co Ltd ヒドロキシスチレン系重合体組成物及びその感光性材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7524604B2 (en) * 2003-04-30 2009-04-28 Tokyo Ohka Kogyo Co., Ltd Positive resist composition and method of formation of resist patterns
TWI504467B (zh) * 2010-03-02 2015-10-21 Disco Corp Laser processing device

Also Published As

Publication number Publication date
KR20050109483A (ko) 2005-11-21
JP2004264352A (ja) 2004-09-24
CN100568098C (zh) 2009-12-09
TWI340294B (en) 2011-04-11
CN1748181A (zh) 2006-03-15
JP4222850B2 (ja) 2009-02-12
TW200422777A (en) 2004-11-01
US20070160927A1 (en) 2007-07-12
DE112004000257T5 (de) 2006-02-23
DE112004000257B4 (de) 2022-08-11

Similar Documents

Publication Publication Date Title
KR102064809B1 (ko) 포토레지스트 조성물 및 포토리소그래픽 패턴 형성 방법
JP6525383B2 (ja) フォトレジスト上塗り組成物および電子デバイスを形成する方法
JP5884521B2 (ja) パターン形成方法
JP5788407B2 (ja) 塩基反応性成分を含む組成物およびフォトリソグラフィのための方法
US20060246373A1 (en) Compositions and processes for immersion lithography
TWI609243B (zh) 光微影方法
JP2009199058A (ja) 液浸リソグラフィーのための組成物および方法
JP6108662B2 (ja) 塩基反応性成分を含む組成物およびフォトリソグラフィのための方法
JP4222850B2 (ja) 感放射線性樹脂組成物、その製造法並びにそれを用いた半導体装置の製造方法
CN109725493B (zh) 与光致抗蚀剂一起使用的底层涂料组合物
TWI479260B (zh) 包含磺化醯胺之光微影組成物及方法
TWI298425B (en) Chemically amplified type positive-working radiation sensitive resin composition
JP2012113303A (ja) 糖成分を含む組成物およびフォトリソグラフィ方法
JP4852575B2 (ja) 感放射線性樹脂組成物およびそれを用いた半導体装置の製造方法
Kim et al. A novel platform for production-worthy ArF resist
JP2006154004A (ja) リソグラフィー用現像前処理剤、それを用いたパターン形成方法及びパターン形成材料
Wu Synthesis and characterization of radiation-sensitive polymers and their application in lithography
Kim et al. Improved lithographic performance for resists based on polymers having a vinyl ether-maleic anhydride (VEMA) backbone
JP2015021981A (ja) レジストパターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057014754

Country of ref document: KR

Ref document number: 20048039082

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057014754

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007160927

Country of ref document: US

Ref document number: 10544902

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10544902

Country of ref document: US