WO2004055371A1 - 冷媒圧縮機とそれを用いた冷凍機 - Google Patents

冷媒圧縮機とそれを用いた冷凍機 Download PDF

Info

Publication number
WO2004055371A1
WO2004055371A1 PCT/JP2003/016023 JP0316023W WO2004055371A1 WO 2004055371 A1 WO2004055371 A1 WO 2004055371A1 JP 0316023 W JP0316023 W JP 0316023W WO 2004055371 A1 WO2004055371 A1 WO 2004055371A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant compressor
contact
oil
refrigerant
piston
Prior art date
Application number
PCT/JP2003/016023
Other languages
English (en)
French (fr)
Inventor
Hirotaka Kawabata
Takahide Nagao
Akihiko Kubota
Hironari Akashi
Kosuke Tsuboi
Takashi Kakiuchi
Makoto Katayama
Takeshi Kojima
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to KR1020047011239A priority Critical patent/KR100559124B1/ko
Priority to US10/501,658 priority patent/US7422423B2/en
Priority to EP03780757A priority patent/EP1574712A4/en
Priority to JP2005502492A priority patent/JP4402043B2/ja
Priority to CNB2003801001321A priority patent/CN100378332C/zh
Priority to AU2003289340A priority patent/AU2003289340A1/en
Publication of WO2004055371A1 publication Critical patent/WO2004055371A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0856Sulfides
    • F05C2203/086Sulfides of molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/14Self lubricating materials; Solid lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Definitions

  • the present invention relates to a refrigerant compressor used for a refrigerator, an air conditioner, and the like, and a refrigerator using the same.
  • FIG. 58 is a cross-sectional view of a conventional hermetic electric refrigerant compressor.
  • FIG. 59 is a support structure diagram of the compressor.
  • the hermetically sealed container (hereinafter, container) 1 stores oil 2 at the bottom and also houses a motorized portion 5 including a stator 3 and a rotor 4 and a compression portion 6 driven by the motor.
  • a compressor body 7 composed of an electric section 5 and a compression section 6 is elastically supported by a compression coil spring (hereinafter, a spring) 8 in the closed casing 1.
  • the crankshaft 9 includes a main shaft portion 9A to which the rotor 4 is fixed, and an eccentric portion 9B formed eccentrically with respect to the main shaft portion 9A, and a refueling pump 10 is provided.
  • the main shaft 9A is supported by a bearing 23.
  • the cylinder block 11 has a compression chamber 13 composed of a substantially cylindrical pore 12.
  • the piston 14 loosely fitted in the pore 12 is connected to the eccentric part 9 B by a slide mechanism, and the end face of the pore 12 is sealed with a valve plate 15.
  • the head 16 forms a high-pressure chamber, and the discharge path 17 through which the refrigerant gas compressed from the head 16 to the outside of the container 1 is discharged.
  • the discharge path 17 is connected to the high-pressure side of the refrigeration cycle outside the container 1 through the pipe 18. (Not shown).
  • the tube 18 is made of a polymer material having heat resistance, refrigerant resistance, and oil resistance, and prevents the discharge path 17 from resonating.
  • the holding part 20 made of synthetic resin is attached to the head of the stator fastening port 19 of the electric part 5, and the protrusion 21 provided on the inner wall of the container 1 is made of synthetic resin.
  • a holding member 22 made of stainless steel is mounted.
  • a spring 8 is fitted to the holding members 20 and 22.
  • the oil 2 is supplied from the oil supply pump 10 to each of the moving parts as the crankshaft 9 rotates, lubricates the sliding parts, and is discharged into the container 1 from the eccentric part 9B. It acts as a seal between piston 14 and pore 12.
  • one of the sliding members constituting the sliding portion is formed of a material obtained by treating a manganese phosphate with a nitriding iron-based material, and the other of the sliding members is formed of anodized aluminum. It is formed by die casting.
  • Such a technique is disclosed in, for example, Japanese Patent Application Laid-Open No. 6-111713.
  • the metal manganese phosphate layer is worn away and disappears if metal contact occurs in a state where no oil film is formed on the sliding part at the time of starting or the like. This may increase the friction coefficient and increase sliding loss. If the gap between the sliding parts is reduced to reduce the coefficient of friction, metal contact will occur and the manganese phosphate layer will be worn away, which may lead to increased wear and abnormal wear. Further, between the piston 14 and the pore 1 2, the wear amount of the piston 14 is increased, so that the distance between the piston 14 and the pore 1 2 is increased. The gap increases. As a result, the compressed refrigerant gas may leak from the gap between the piston 14 and the pore 12 and the efficiency may be reduced.
  • molybdenum disulfide is a solid lubricant (M 0 S 2) is applied to the sliding surface.
  • M 0 S 2 a solid lubricant
  • M o S 2 contains a polyamide Doimi de by Sunda one resin (PAI) for application to the sliding surface.
  • PAI Sunda one resin
  • the friction coefficient in comparison to M o S 2 alone is high, as a result, the sliding loss increases.
  • the base material of the sliding part is made of a metal material such as iron or aluminum
  • the bonding strength with PAI used as a binder is weaker than that of ordinary metal bonding. For this reason, in the sliding part coated with Mo S 2 , delamination occurs at the interface between the base material and the binder, and as a result, the effect of improving the wear resistance of Mo S 2 is not obtained, and the amount of wear increases. There is.
  • the compression unit 6 when the compression unit 6 starts and stops, the compression unit 6 swings greatly, so that the discharge path 22 also swings greatly. For this reason, the discharge path 22 and the pipe 23 come into contact intermittently. Since the tube 23 is made of a polymer material, the rubbing noise at this time is absorbed, but it has heat resistance, refrigerant resistance, and oil resistance. It is expensive to implement.
  • valve for sucking and discharging the refrigerant gas between the compression chamber 13 and the container 1 is operated with the driving of the compression section 6. At that time, valve seats come in contact with valve seats (not shown), causing noise.
  • the refrigerant compressor of the present invention has a compression section, a drive section, and first and second contact sections.
  • the compression section is housed in a closed container and compresses the refrigerant gas.
  • the drive unit drives the compression unit.
  • the first and second contact portions come into contact and slide with each other by driving the compression unit.
  • MoS 2 molybdenum disulfide
  • FIG. 1 is a cross-sectional view of the refrigerant compressor according to the embodiment of the present invention.
  • FIG. 2 is an enlarged view of a sliding portion formed by the piston and the pore in FIG.
  • Fig. 3 is a diagram showing the flow of oil when the piston and the pore in Fig. 1 slide.
  • FIG. 4 is a refrigeration cycle diagram of a refrigerator including the refrigerant compressor of FIG. 1.
  • FIG. 5 is a diagram showing a seizure surface pressure in the embodiment of the present invention.
  • FIG. 6 is a friction diagram in the embodiment of the present invention.
  • FIG. 7 is a diagram showing the amount of wear in the embodiment of the present invention.
  • FIG. 8 is an enlarged view of a sliding portion formed by the main shaft portion and the bearing portion in FIG. Fig. 9 is an enlarged view around the piston in Fig. 1.
  • Fig. 10 is an enlarged view of the sliding part formed by the piston pin and the connector in Fig. 9.
  • FIG. 11 is an enlarged view of the vicinity of the thrust bearing portion in FIG. 1.
  • FIG. 12 is an enlarged view of the sliding portion formed by the thrust portion and the thrust pusher in FIG.
  • FIG. 13 is a characteristic diagram of a friction coefficient between the sliding surface and the manganese phosphate layer according to the embodiment of the present invention.
  • FIG. 14 is a characteristic diagram of the refrigerating capacity of the compressor according to the embodiment of the present invention.
  • FIG. 15 is a characteristic diagram of efficiency in the compressor according to the embodiment of the present invention.
  • FIG. 16 is a cross-sectional view of another refrigerant compressor according to the embodiment of the present invention.
  • FIG. 17 is a refrigeration cycle diagram of a refrigerator including the refrigerant compressor of FIG.
  • FIG. 18 is a sectional view taken along the line GG in FIG.
  • Fig. 19 is an enlarged view of the sliding part formed by the vane and the opening piston in Fig. 18.
  • Fig. 20 is an enlarged view of the sliding part formed by the rolling piston and the eccentric part in Fig. 18.
  • FIGS. 21A and 21B are enlarged views of the sliding portion formed by the piston and the pore in the embodiment of the present invention.
  • FIG. 22 is a diagram showing the flow of wheels during sliding in FIG. 21B.
  • FIG. 23 is a diagram showing a friction coefficient in the embodiment of the present invention.
  • FIG. 24 is a diagram showing a friction amount in the embodiment of the present invention.
  • FIGS. 25A and 25B are enlarged views of another sliding portion formed by the main shaft portion and the bearing portion in FIG.
  • FIG. 26 A and B show the piston pin and the connecting rod in Fig. 1.
  • FIG. 6 is an enlarged view of another sliding portion formed by
  • Fig. 27 A and B are enlarged views of another sliding part formed by the thrust part and thrust washer in Fig. 1.
  • FIG. 28 is a characteristic diagram of the coefficient of friction in the embodiment of the present invention.
  • FIG. 29 is a characteristic diagram of the refrigerating capacity of the compressor according to the embodiment of the present invention.
  • FIG. 30 is a characteristic diagram of the efficiency of the compressor according to the embodiment of the present invention.
  • FIGS. 31A and B are enlarged views of another sliding portion formed by the vane and the rolling piston in FIG.
  • Fig. 32 A and B are enlarged views of another sliding part formed by the wing biston and the eccentric part in Fig. 16.
  • FIG. 33 is a longitudinal sectional view of a suction valve device provided in the medium compressor according to the embodiment of the present invention.
  • FIG. 34 is a plan view showing the suction valve seat of the suction valve and g in FIG.
  • FIG. 35 is a plan view showing the movable suction valve of FIG.
  • FIG. 36 is a longitudinal sectional view of a discharge valve device provided in the medium compressor according to the embodiment of the present invention.
  • FIG. 37 is a plan view showing the discharge valve seat in FIG.
  • FIG. 38 is a plan view showing the mutual sealing surface side of the discharge movable valve disposed close to the discharge valve in FIG.
  • FIG. 39 is a plan view showing the striking portion side of the discharge movable valve of the discharge valve device in FIG.
  • FIG. 40 is a plan view showing the stopper of the discharge valve device in FIG.
  • FIG. 41 is a longitudinal sectional view of another discharge valve device provided in the refrigerant compressor according to the embodiment of the present invention.
  • FIG. 42 is a plan view showing an impact portion side of the back-up lead of the discharge valve device in FIG. 41 with the discharge movable valve.
  • FIG. 43 is a plan view of the back-up lead of the discharge valve device in FIG.
  • FIG. 44 is a plan view showing another suction valve seat of the suction valve device in FIG.
  • FIG. 45 is a plan view showing another suction movable valve of the suction valve device in FIG.
  • FIG. 46 is a plan view showing another discharge valve seat of the discharge valve device in FIG.
  • FIG. 47 is a plan view showing the mutual sealing surface side of another discharge movable valve of the discharge valve device in FIG.
  • FIG. 48 is a plan view showing the impact portion side of another discharge movable valve of the discharge valve device in FIG.
  • FIG. 49 is a plan view showing another stopper of the discharge valve device in FIG.
  • FIG. 50 is a plan view showing the side of the discharge valve device in FIG. 41 where the other back-upper hits the discharge movable valve.
  • FIG. 51 is a plan view showing the side of the discharge valve device shown in FIG. 41 on the side of the striking portion with the stopper of the other back-up supply.
  • FIG. 52 is a cross-sectional view of still another refrigerant compressor according to the embodiment of the present invention.
  • FIG. 53 is a refrigeration cycle diagram of a refrigerator including the refrigerant compressor of FIG. 52.
  • FIG. 54 is an enlarged view of a portion where the discharge path and the close contact coil spring in the refrigerant compressor of FIG. 52 are in contact.
  • FIGS. 55A and 55B are enlarged views of a portion of the refrigerant compressor of FIG. 52 where another discharge path and the close contact coil spring come into contact.
  • FIG. 56 is a cross-sectional view of still another refrigerant compressor according to the embodiment of the present invention.
  • FIGS. 57A, 57B, and 57C are enlarged views of a portion where a compression coil spring and a holding member are in contact with each other in the refrigerant compressor of FIG.
  • FIG. 58 is a cross-sectional view of a conventional hermetic electric refrigerant compressor.
  • FIG. 59 is a support structure diagram of the compressor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of a refrigerant compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of a driving portion formed by the piston and the pore in FIG. Fig. 3 shows the flow of oil when the piston and the pore in Fig. 1 slide.
  • FIG. 4 is a refrigeration cycle diagram of the refrigerator including the refrigerant compressor 100.
  • FIG. 5 is a characteristic diagram showing the seizure surface pressure with and without fine dents.
  • Fig. 6 is a characteristic diagram showing the friction coefficient depending on the shape and size of the fine depression.
  • Fig. 7 is a characteristic diagram showing the amount of wear at different ratios of the fine dents to the sliding surface area.
  • a closed container (hereinafter, container) 101 is filled with a refrigerant gas 102 made of isobutane.
  • the container 101 stores oil 103 at the bottom, and includes a stator 104 and a rotor 105, and a reciprocating compression unit 107 driven by this. And are accommodated.
  • the electric unit 106 is a driving unit, and may be provided outside the container 101 as long as the compression unit 107 can be sealed in the container 101.
  • the crankshaft 108 includes a main shaft portion 109 into which the rotor 105 is press-fitted and fixed, and an eccentric portion 110 formed eccentrically with respect to the main shaft portion 109.
  • the lower end of the crankshaft 108 is provided with an oil supply pump 111 communicating with the oil 103.
  • Cylinder block 1 1 2 made of iron has a substantially cylindrical pore 1 13 and a bearing portion 114 supporting the main shaft portion 109 are formed.
  • the piston 1 15 fitted loosely into the pore 1 13 is made of an iron-based material, and forms a compression chamber 1 16 together with the pore 1 1 3.
  • the piston 115 is connected to the eccentric part 110 via a piston pin 117 via a connecting rod 118 which is a connecting part.
  • the end face of the pore 113 is sealed with a valve plate 119.
  • the head 120 forms a high-pressure chamber, and is fixed to the valve plate 119 on the side opposite to the pore 113.
  • the suction tube 122 is fixed to the container 101 and connected to the heat exchanger 60 on the low pressure side of the refrigeration cycle, and guides the refrigerant gas 102 into the container 101.
  • the suction muffler 122 is sandwiched between the valve plate 119 and the head 120.
  • the compressed refrigerant 102 discharged from the head 120 is sent to the heat exchanger 70, radiates heat, returns to the heat exchanger 60 via the expansion valve 80, and absorbs heat.
  • the refrigerator is thus configured.
  • Main shaft part 109 and bearing part 114, piston 115 and pore 113, piston pin 117 and conrod 118, eccentric part 110 and conload 118 The sliding portion is formed in Each part forming a sliding part is a contact part which slides by driving the compression part 107.
  • a plurality of fine depressions (hereinafter referred to as depressions) 123 are formed substantially uniformly on the sliding surface 115 A of the piston 115. It is more preferable that the shape of the depression 123 is a spherical surface, and that the diameter is 20 m to 50 m and the depth is 1 m to 10 m. Further, the ratio of the area occupied by the depressions 123 to the surface area of the sliding surface 115 A is more preferably 40 to 80%. Further, in the case of iron-based materials, it is more preferable to make the structure of the sliding portion surface martensitic.
  • Such depressions 123 are formed by surface etching, press molding, and the like.
  • the depressions 123 are formed by a method of colliding a hard ball such as a steel ball or a ceramic ball at a certain speed or higher.
  • a hard ball such as a steel ball or a ceramic ball at a certain speed or higher.
  • the ceramic material with a diameter of about 2 to 50 m A small ball, such as a stainless steel ball, which is harder than the part to be processed, is accelerated by a projection device so as to have a velocity of 20 sec / min or more, and is injected.
  • the workpiece is made to collide at a high speed, residual compressive stress is applied to the surface, and the hardness can be increased to about 600 HV in Pickers hardness.
  • Electric power supplied from the commercial power supply is supplied to the motor unit 106 and the motor unit
  • the rotor 106 of the 106 rotates.
  • the rotor 105 rotates the crankshaft 108, and the eccentric movement of the eccentric part 110 is carried out by the piston of the connecting part through the piston pin 117 through the piston pin 117.
  • Driving 5 ⁇ ⁇ ) causes the piston 1 15 to reciprocate in the pore 1 13.
  • Refrigerant gas introduced into vessel 101 through suction tube 1 21
  • the oil 103 is supplied to the sliding parts from the oil supply pump 111 to lubricate the sliding parts, and the piston 14 and the pores 12 Between them functions as a seal.
  • the piston 1 15 provided with the recesses 1 2 3 has a significantly improved seizure surface pressure compared to the case without the recesses 1 2 3.
  • the supplied oil 103 is retained in the depressions 123.
  • the gap between the sliding members becomes narrow in the sliding direction
  • the viscosity of the oil 103 in the cavity 1 23 and the relative movement of the sliding part cause the oil to enter the narrow gap. 103 is pulled in.
  • a pressure supporting the load is generated in the oil 103, and a wedge-shaped oil film is formed. This wedge-shaped oil film prevents metal contact between the sliding parts. This suggests that the seizure load increases.
  • Fig. 6 shows the results of measuring the friction coefficient of the shape and size of the depressions 123 all at once.
  • the measurement was performed under the atmospheric pressure of CH 2 FCF 3 refrigerant of 0.4 MPa, using ester oil of VG8 to VG10, the sliding speed was 1.0 mZs, and the surface pressure was 0.5 MP. It is performed in a.
  • the piston 1 15 provided with the spherical recess 1 23 has a lower friction coefficient than that provided with the angular fine recess. This is thought to be due to the fact that by making the shape of the dent 1 2 3 a spherical surface, the volume increases compared to a polygonal pyramid with the same projected area, and the oil pressure of the formed wedge-shaped oil film increases.
  • the shape of the recess is spherical, the flow of oil that generates an oil film generated when the insertion portion slides easily forms a vortex in the recess. As a result, the generation of hydraulic pressure prevents metal contact.
  • the shape is spherical, the amount of change in the gap between the sliding parts due to the sliding becomes constant regardless of the sliding direction, and a uniform oil film is formed on the entire sliding part. And the gap between piston 1 1 5 and pore 1 1 3 It is considered that the deviation between them becomes smaller, and the amount of refrigerant gas 102 leaking from the side face of the piston 115 becomes smaller.
  • the size of the hollow 1 2 3 is 20 to 3 0 11 in diameter and 1 to
  • the coefficient of friction is at its minimum at 5 m.
  • the size of the depression 1 23 around this size is smaller than that of manganese phosphate treatment in the range of diameter 20; iim ⁇ 50 ⁇ m, depth 1 m ⁇ l0 m. It improves lubrication sliding conditions.
  • the amount of the refrigerant 102 dissolved into the oil 103 decreases as the atmospheric pressure decreases.
  • the diameter is 20 m to 50 m and the depth is 1 to 10 ⁇ m where the volume becomes smaller.
  • the decrease in the atmospheric pressure is small. For this reason, the pressure of the compressed refrigerant gas 102 is maintained at a high pressure, and a decrease in the amount of refrigerant that can be dissolved in the oil 103 is suppressed.
  • Fig. 7 shows the relationship between the ratio of the occupied area of the flat part other than the depressions 123 to the surface area of the sliding part and the wear volume. In other words, the smaller the plane ratio, the larger the proportion of the depressions 123.
  • the provision of the depressions 123 on the surface of the sliding portion reduces the amount of abrasion as compared with the case where manganese phosphate treatment is performed.
  • the wear amount is 0 mm 3 .
  • the plane ratio was 20% or more and 60% or less, that is, the ratio of the area of the fine dents to the surface area of the moving part was In the case of 4 0% to 80% or less, 0. And 0 5 mm 3 or less is the wear amount with no problem in practical use indicated by the dotted line in FIG.
  • a material such as a steel ball or a ceramic ball is made to collide with the surface at a certain speed or more as a method of forming a depression 123 on the surface of the sliding portion.
  • a material such as a steel ball or a ceramic ball is made to collide with the surface at a certain speed or more as a method of forming a depression 123 on the surface of the sliding portion.
  • the structure of the surface layer of the sliding portion becomes martensite, the surface strength of the sliding member increases, and the progress rate of wear decreases.
  • the depressions 123 the area between the sliding parts is reduced, and metal contact is reduced.
  • the recesses 123 are provided substantially uniformly on the sliding surface of the piston 115. A similar effect can be obtained even if the hollows 123 are provided in the pores 113 and both the pistons 115 and the pores 113 are provided.
  • FIG. 8 is an enlarged view of a sliding portion formed by the main shaft portion 109 and the bearing portion 114 in FIG.
  • a plurality of recesses 123 are formed substantially uniformly on a sliding surface 125 thereof.
  • the oil 103 containing the refrigerant is supplied from the oil supply pump 111 to the sliding portion between the bearing 114 and the crankshaft 108.
  • the clearance between the main shaft 109 and the bearing 111 corresponds to the depth of the recess 123. Change.
  • the oil 103 is drawn into the gap between the main shaft portion 109 and the bearing portion 114, and a wedge-shaped oil film is formed.
  • the cavity 123 is fine, the volume 103 in the cavity 123 is small even if the coolant 103 in which the refrigerant is melted is supplied into the cavity 123. Low pressure drop. For this reason, the pressure of the compressed refrigerant gas 102 is maintained at a high pressure, and a decrease in the amount of refrigerant that can be dissolved in the oil 103 is suppressed. As a result, the foaming phenomenon of the coolant in the oil 103 is reduced, and the occurrence of metal contact caused by the breakage of the oil film formed in the moving portion due to the foaming is prevented, and the increase in the friction coefficient is prevented.
  • the oil 103 is stored in the recesses 123, and the lubricant is not supplied to the sliding parts. There is always oil 103 in between. This increases seizure load and prevents abnormal wear.
  • the depressions 123 are provided substantially uniformly on the sliding surface 125 of the main shaft portion 109 of the crankshaft 108.
  • the area between the sliding parts is reduced, and the metal contact is reduced. The same operation and effect can be obtained even if the recesses 123 are provided in the bearing portion 114 or both the main shaft portion 109 and the bearing portion 114 are provided.
  • FIG. 9 is an enlarged view around the piston in Fig. 1.
  • FIG. 10 is an enlarged view of the sliding portion formed by the piston pin 117 and the connecting rod 118 in FIG.
  • a recess 123 is formed in the sliding surface 127 substantially uniformly. By forming the depressions 123, the area between the sliding parts is reduced, and metal contact is reduced.
  • the operation of the refrigerant compressor 100 configured as described above will be described below.
  • the piston pin 1 which is connected by the connecting rod 118 which is the connecting part by the rotation of the crankshaft 108
  • the piston 1 15 loosely fitted in the pore 1 13 via the 1 7 reciprocates.
  • the connecting rod 1 18 and the piston pin 1 1 7 oscillate, and when the piston 1 15 reaches the top dead center or the bottom dead center, the speed becomes O mZ s, and the oil film Cannot be formed.
  • the hole 103 is held in the recess 123 on the sliding surface 127 of the piston pin 117. For this reason, the oil 103 always exists in the sliding part, and the seizure load increases to prevent abnormal wear.
  • the depressions 123 are provided substantially uniformly on the sliding surface 127 of the piston pin 117. The same operation and effect can be obtained even if the recesses 123 are provided in the con- trol rod 118 or both the piston pin 117 and the con- trol rod 118 are provided.
  • FIG. 11 is an enlarged view of the vicinity of the thrust bearing portion 135 in FIG.
  • FIG. 12 is an enlarged view of a portion where the thrust part 130 and the thrust washer 134 in FIG. 11 are in contact with each other.
  • a depression 123 is formed substantially uniformly on the sliding surface 130A.
  • the rotor 105 is press-fitted and fixed to the crankshaft 108. Further, a flange surface 132 is formed on the rotor 105, and an upper end surface of the bearing portion 114 is formed as a thrust portion 130. A thrust washer 134 is inserted between the flange surface 132 and the thrust portion 130 of the bearing portion 114. Flange surface 13 2, thrust portion 130 and thrust torsion 13 4 constitute thrust bearing portion 135, supporting vertical loads such as crankshaft 108 and rotor 105. I have. Therefore, even when the operation of the refrigerant compressor 100 is stopped, a vertical load is applied to the thrust bearing portion 135.
  • the thrust bearing portion 135 is constituted by the flange surface 132, the thrust portion 130, and the thrust pusher 134. 3 Formed into OA.
  • a flange surface 1336 that serves as a thrust portion 1337 between the main shaft portion 109 and the eccentric portion 110 of the crankshaft h108.
  • a thrust bearing may be constituted by the flange surface 1336 and the thrust portion 1339 of the bearing portion 114 facing the flange surface. In that case, a hollow 1 2 3 is provided in the thrust 1 3 7. The same operation and effect can be obtained in the case of the following.
  • the recesses 123 are provided substantially uniformly on the sliding surface 130A of the thrust portion 130 of the bearing portion 114. In addition, even if the recesses 1 2 3 are provided in the thrust recesses 1 3 4, the thrust recesses 1 2 3
  • the thrust washer 13 4 has a small recess 1 in the surface in contact with the flange surface of the rotor 105. 23 may be provided. A minute recess 1 23 may be provided on the flange surface of the rotor 105. Furthermore, even if the recesses 123 are provided in the thrust portions 13 7 of the crankshaft 108, the thrust portions 13 7 of the crankshaft h 108 and the thrust portions 13 of the bearing portions 114 are provided. The same operation and effect can be obtained by providing both of them.
  • FIG. 13 shows the sliding surface and the ring with micro-dents formed almost uniformly. It is a characteristic view of the coefficient of friction with a manganese oxide layer.
  • Figure 14 shows the characteristics of the refrigerating capacity of the compressor when the fine dents are formed almost uniformly on the sliding surface and when the manganese phosphate layer is applied.
  • Fig. 15 shows the characteristics of the efficiency of the compressor in the case where the fine dents were formed almost uniformly on the sliding surface and in the case where the manganese phosphate layer was applied.
  • the inside of the container 101 is a refrigerant gas composed of isobutane.
  • the viscosity of oil 103 is less than V G10 between the above sliding parts V
  • the sliding parts n ⁇ q are liable to cause solid contact with each other.
  • the refrigerant is isobutane, mineral oil 10
  • the oil flow that generates an oil film when the sliding part slides easily forms a vortex in the spherical recess 1 23, and as a result, the hydraulic pressure This prevents solid contact and improves wear resistance. Also, by forming the recesses 123, the area between the sliding parts is reduced, and metal contact is reduced.
  • the depressions 123 are formed by colliding hard balls such as steel balls and ceramic balls at a certain speed or higher, the surface hardness increases due to work hardening and the like. Therefore, even when solid contact occurs, abnormal wear is prevented, and wear resistance is improved.
  • the sliding part is composed of piston 115 and bore 113 and piston pin 117 and connector 118, the mutual sliding speed is O m Z twice per compression process. s As a result, the oil pressure becomes zero, Therefore, this technology is extremely effective.
  • the oil viscosity was changed between the case where the fine dents 3 23 were formed almost uniformly on the sliding surface according to the present embodiment and the case where the manganese phosphate layer was applied. Will be described.
  • the measurement is performed under the atmospheric pressure of CH 2 FCF 3 refrigerant of 0.4 MPa, using VG 4 to VG 22 ester oil and VG 1 equivalent ethanol.
  • Figure 13 shows the results of abrasion tests under these conditions.
  • the size of the recess 1 2 3 provided almost uniformly on the sliding part is 40 um 50 m in diameter and 7 m in depth or 2 m in diameter. m and a depth of 0.5 m to 1 m, the dynamic pressure between the sliding parts is made uniform and the gap becomes constant. According to a more detailed study, a similar effect can be obtained by providing a hollow having an intermediate size between these. In addition, the volume fluctuation in the hollow 123 becomes small, and the pressure drop in the gap generated when the oil 103 containing the refrigerant 102 is supplied to the hollow 123 is small. Thereby, the foaming phenomenon in the oil 103 is suppressed, the breakage of the oil film is prevented, and the oil pressure of the formed oil film increases. It is considered that the reduction of the load applied to the solid contact portion in this way lowers the friction coefficient.
  • Figures 14 and 15 show the results obtained by measuring the oil viscosities and the changes in the refrigerating capacity of the reciprocating compressor and the coefficient of performance (COP) of the compressor.
  • the compressor 100 using the piston 1 15 provided with the depressions 123 is better than the compressor using the piston treated with manganese phosphate.
  • the coefficient of performance (COP), which indicates the efficiency of the project, is increasing. This is because, as shown in Fig. 14, the decrease in the refrigerating capacity of the refrigerant compressor is extremely small, and the volumetric efficiency is maintained.
  • the increase in friction coefficient in the moving part is extremely small as compared with the case where the manganese phosphate treatment is performed, which is also due to the fact that the input is reduced.
  • the reduction of the viscous resistance due to the reduction of the oil viscosity from VG10 to VG5 greatly contributes to the reduction of the input of the refrigerant compressor.
  • isobutane and mineral oil has been described as an example.However, when propane, which is the same hydrocarbon-based refrigerant, is used for refrigerant 102, alkylbenzene and es Even when ter, polyvinyl ether, polyalkylene glycol, or the like is used, the refrigerant 102 dissolves in the oil 103 and further lowers the viscosity. Therefore, a similar effect can be obtained by applying this configuration.
  • recesses 123 each having a diameter of 2 / m to 50 m and a depth of 0.5 m to 10 m are provided substantially uniformly on both sliding portions.
  • the depressions 123 may be provided on any one of the sliding portions, and the same operation and effect can be obtained.
  • micro-cavities 1 2 3 are formed in pistons 1 1 5
  • the viscosity of the oil 103 is preferably less than VG10 and not less than VG5. By doing so, the oil 103 accumulates in the depressions 123 on the surface of the sliding portion, and the oil is retained on the sliding surface. In addition, when the gap between the sliding parts changes minutely during sliding, a dynamic pressure is generated between the sliding parts, so that the oil film is easily held and the frequency of solid contact is reduced. In the seal portion, the sealing performance is improved, and the reliability and efficiency are improved.
  • FIG. 16 is a cross-sectional view of a refrigerant compressor 200 according to Embodiment 2 of the present invention.
  • FIG. 17 is a refrigeration cycle diagram of a refrigerator including a refrigerant compressor 200.
  • FIG. 18 is a sectional view taken along line GG in FIG. Fig. 19 is an enlarged view of the part where the vane 2 16 and the rolling piston (hereinafter referred to as "biston") 2 15 in Fig. 18 are in contact.
  • FIG. 20 is an enlarged view of a portion where the piston 2 15 and the eccentric portion 2 07 in FIG. 18 are in contact.
  • the closed container (hereinafter referred to as the container) 101 has a motorized section 106 composed of a stator 104 and a rotor 105, and a rolling piston type compression section driven by the motorized section 206. 5 is stored with oil 103.
  • the electric unit 106 is a driving unit.
  • the compression section 205 includes a shaft 210, a cylinder 212, a main bearing 211, an auxiliary bearing 211, a piston 210, and a plate vane 214.
  • the shaft 210 has an eccentric portion 207, a main shaft portion 208, and a sub shaft portion 2.09.
  • the cylinder 2 1 2 forms a compression chamber 2 1 1.
  • the main bearing 2 13 and the sub-bearing 2 14 seal both end surfaces of the cylinder 2 12 and support the main shaft portion 208 and the sub-shaft portion 209 respectively.
  • the piston 2 15 is loosely fitted in the eccentric portion 2 07 and rolls in the compression chamber 2 11.
  • the vanes 2 16 are compressed by the pistons 2 15 to partition the compression chamber 211 into a high pressure side and a low pressure side.
  • the rotor 105 is fixed to the main shaft part 208.
  • the oil pump 2 17 fixed to the secondary bearing 2 14 Communicating.
  • the oil pump 2 17 has a sliding portion formed by an eccentric portion 210 and a piston 2 15, a main shaft portion 208 and a main bearing 2 13, and a sub shaft portion 209 and a sub bearing 2 14.
  • Each part forming the sliding part is a contact part that slides by driving the compression part 205.
  • the sliding surface 2 18 of the piston 2 15 and the sliding surface 2 19 of the eccentric part 20 7 have fine recesses (hereinafter referred to as recesses). Are formed almost uniformly.
  • the recesses 123 are formed substantially uniformly on the sliding surfaces of the main shaft portion 208 and the sub shaft portion 209.
  • the shape of the depression 123 is more preferably spherical, and more preferably, the diameter is 20 m to 50 zm and the depth is 1 / m to 10 m. Further, the ratio of the area occupied by the depressions 123 to the surface area of each sliding surface is more preferably 40 to 80%. Further, in the case of iron-based materials, it is more preferable to make the structure of the sliding portion surface martensite.
  • the shaft 210 rotates with the rotation of the rotor 105, and the piston 215 loosely fitted in the eccentric portion 207 rolls in the compression chamber 211.
  • the volume of the high-pressure side and low-pressure side chambers of the compression chamber 211 divided by the vanes 216 changes continuously, and the refrigerant gas is continuously compressed accordingly.
  • the compressed refrigerant gas is discharged into the container 101, sent to the heat exchanger 70 through the discharge path 220, radiates heat to the outside, and is discharged through the expansion valve 80 to the heat exchanger 60. Return to and absorb heat from outside.
  • the refrigerator is thus configured.
  • the inside of the container 101 becomes a high-pressure atmosphere.
  • the atmospheric pressure in the container 101 acts on the vane 216 as back pressure, and the tip of the vane 216 is pressed against the outer peripheral surface of the piston 215.
  • metal contact frequently occurs because the arc comes into contact with the arc and is in the form of line contact.
  • the depressions 123 are formed almost uniformly on the outer peripheral surface of the piston 2 15. Therefore, the area between the sliding parts is reduced, and the metal contact is reduced.
  • the oil 103 is held in the recesses 123, and the oil 103 is always present in the sliding portion, so that the seizure load increases and abnormal wear is prevented.
  • the hollow 1 23 is provided on the outer peripheral surface of the piston 2 15, the hollow 1 2 3 may be provided in the vane 2 16. The same effect can be obtained by providing both the outer peripheral surface of the piston 215 and the vane 216.
  • the oil pump 217 continuously supplies oil 103 to each sliding portion.
  • the depressions 123 are formed substantially uniformly on the sliding surface 219 of the eccentric portion 2007 and the sliding surfaces of the main shaft portion 208 and the sub shaft portion 209.
  • the sliding portions formed by the eccentric portion 207 and the piston 215, the main shaft portion 208 and the main bearing 213, the subshaft portion 209 and the subshaft bearing 214 are respectively formed. Oil is drawn into the gap, forming a wedge-shaped oil film.
  • the piston 2 15 is rotatably loosely fitted to the eccentric portion 2007.
  • the relative speed between the piston 2 15 and the eccentric portion 2 07 is the relative speed between the main shaft portion 208 and the main bearing 2 13 and the relative speed between the sub shaft portion 2 09 and the sub bearing 2 214.
  • the Sommerfeld number S which indicates the characteristics of the journal bearing, determined by equation (1) becomes small. This is a disadvantageous condition for sliding lubrication.
  • the gap between the piston 2 15 and the eccentric part 2 07 changes in accordance with the depth of the depression 123. Even if the sliding speed is low, the oil is drawn into the gap between the piston 215 and the eccentric portion 207, and a wedge-shaped oil film is formed.
  • the inside of the vessel 101 is Due to the condensing pressure, the internal pressure is high, and the refrigerant of oil 103 is easily dissolved. As a result, the viscosity of the oil decreases, and the above-mentioned sonma-felt number S decreases, which is a disadvantageous condition for sliding lubrication.
  • the volume change at the depressions i23 is small and the atmospheric pressure decreases. Few. That is, the pressure of the compressed refrigerant gas is maintained at a high pressure. For this reason, the decrease in the amount of refrigerant that can be dissolved in the oil is suppressed, and the occurrence of foaming of the refrigerant in the oil is reduced. Then, the occurrence of metal contact caused by the breakage of the oil film formed on the sliding portion due to the foaming is prevented, and the increase in the friction coefficient is prevented.
  • the sliding surfaces of the eccentric part 2007, the main shaft part 208, and the countershaft part 209 are provided with recesses 123 almost uniformly.
  • the inner peripheral surface of the piston 2 15, the main bearing 2 13, the auxiliary bearing 2 14, both the eccentric part 2 07 and the inner peripheral surface of the piston 2 15, and the main shaft part 208 The same operation and effect can be obtained by providing the depressions 123 both in the main bearing 2 13 and in the counter shaft portion 2 09 of the sub bearing 2 14. ,
  • the oil 103 enclosed in the container 101 is made of mineral oil, has a viscosity of less than VG10 and is VG5 or more, and the refrigerant gas (not shown) is made of isobutane.
  • the eccentric part 207 and the piston 215, the main shaft part 208 and the main bearing 213, and the sub shaft part 209 and the sub bearing 221 It is formed.
  • the size of the recesses 123 formed almost uniformly on the surface of the iron-based material that is the base material of each sliding portion is as follows: a diameter of 2; 5 m to 10 m.
  • the depressions 123 are formed by a method in which a hard ball such as a steel ball or a ceramic ball collides with the sliding surface 211 of the eccentric portion 206 at a certain speed or higher.
  • the surface hardness of the sliding surface 219 is increased by work hardening or the like. This Therefore, wear resistance is improved and abnormal wear is prevented even if solid contact occurs.
  • the recesses 1 23 into such a size, as in Embodiment 1 even when the refrigerant easily dissolves in the oil 103, the occurrence of solid contact is reduced, and the friction coefficient is increased. Is prevented.
  • the basic configuration of the refrigerant compressor according to the present embodiment is the same as that of the first embodiment described with reference to FIG.
  • the difference from the first embodiment is that the main shaft part 109 and the bearing part 114, the piston 115 and the pore 113, the piston pin 117 and the connecting rod 118, the eccentric part 110 And the connecting rods 118 are sliding parts formed mutually.
  • Each part forming the sliding part is a contact part that comes into contact with the driving of the compression part 107.
  • FIGS. 21A and 21B are enlarged views of the sliding portion formed by the piston 1 15 and the pore 1 13.
  • mixed layer 3 2 with molybdenum disulfide (MoS 2 ) adhered to sliding surface 3 2 4 which is the surface of iron-based material which is the base material of piston 1 15 3 are formed.
  • MoS 2 molybdenum disulfide
  • the fine on the sliding surface 3 2 4 as in FIG. 2 1 B ⁇ Bomi substantially uniformly it is better and more favorable to form the 1 2 3 No.
  • the depression 123 preferably has a spherical surface shape, a diameter of 2111 to 20111, and a depth of 0.2 ⁇ to 1.O ⁇ m.
  • M o S the sliding surface of the metallic iron or aluminum-based or the like as the base material of the sliding part products in 2 grain certain speed or to collision.
  • a part of M 0 S 2 melts into the base material and is bonded to the metal by the thermal energy generated at the time of the collision.
  • the mixed layer 3 2 3 is fixed, and the depression 1 2 3 is formed by the impact force at the time of collision.
  • Electric power supplied from a commercial power supply is supplied to a motor unit 106 as a driving unit, and rotates a rotor 105 of the motor unit 106.
  • the rotor 105 rotates the crank shaft 108, and the eccentric movement of the eccentric part 110 drives the piston 115 from the connecting rod 118 of the connecting part via the piston pin 117. I do.
  • the piston 1 15 moves back and forth in the pore 1 13, and the refrigerant gas 102 guided into the vessel 101 through the suction tube 1 21 is sucked from the suction muffler 1 2 2. It is compressed in the compression chamber 1 16.
  • the depressions 123 are provided substantially uniformly in the mixed layer 32 3 of the sliding surface 32 4 of the piston 115.
  • the same effect as in the first embodiment can be obtained. That is, by forming the depressions 123, the area between the sliding parts is reduced, and metal contact is reduced. Also, when the leaked gas in the gap between the piston 1 15 and the pore 1 13 reaches the hollow 1 2 3 formed almost uniformly on the surface of the piston 1 15 The volume of the gap between the piston 1 15 and the pore 1 13 at the depression 1 2 3 increases. For this reason, the same effect as the labyrinth seal occurs, and the flow velocity of the leaked refrigerant gas rapidly decreases. As a result, the amount of refrigerant gas leakage decreases. As a result, the volume efficiency of the refrigerant compressor is improved, and the compression efficiency of the refrigerant compressor is improved.
  • FIG. 22 is a diagram showing the flow of oil during sliding in the present embodiment.
  • the shape of the depressions 123 is spherical, the flow of the oil 103, which generates an oil film generated when the sliding portion slides, easily forms a vortex in the depressions. As a result, the generation of hydraulic pressure prevents metal contact and improves wear resistance.
  • the shape is spherical, the amount of change in the gap between the sliding parts due to sliding is constant regardless of the sliding direction, and a uniform oil film is formed on the entire sliding part. This reduces the deviation of the gap between the biston 115 and the pore 113, and reduces the amount of refrigerant gas leaking from the side surface of the piston 115.
  • the friction coefficient of the mixed layer 32 3 in which Mo 2 is fixed to the iron-based material is lower than that of the manganese phosphate treatment.
  • the structure of Mo S 2 forming the mixed layer 3 2 3 is dense hexagonal, and the size of the molecule is as small as about 6 X 10 ⁇ m. From this, it is thought that when it comes into contact with a mating material such as an iron-based material or aluminum, cleavage occurs with a low coefficient of friction. It is considered that this reduces the friction coefficient of the sliding part where metal contact occurs.
  • the friction coefficient of the impurities such as polyamide Doimi de resin used as a binder (PAI) is higher as compared to M o S 2, it is desirable that the purity of M o S 2 to 9 over 8% .
  • the mixed layer 3 2 3 in which Mo S 2 is fixed to an iron-based material is spherical and has a diameter of 2 m to 20 m and a depth of 0.2 m to 1.0 m. The provision of the depressions 1 2 3 reduces the friction coefficient. This is considered to be because the pressure applied to the metal contact part was reduced due to the increase in the hydraulic pressure of the wedge-shaped oil film formed by the depressions 123, and the friction coefficient was reduced.
  • FIG. 24 is a characteristic diagram of the amount of wear between the case where the depressions 123 are formed almost uniformly on the surface of the mixed layer 323 and the case where the manganese phosphate treatment is performed without the mixed layer 323.
  • the provision of the depressions 123 in the mixed layer 32 23 reduces the amount of wear as compared with the case of the manganese phosphate treatment. This is because the area between the sliding parts is reduced by forming the depressions 123, and the metal contact is reduced. In addition, it is considered that the load applied to the metal contact portion is reduced by increasing the hydraulic pressure of the formed wedge-shaped oil film due to the depressions 123. Further, the mixed layer 3 2 3 and the depression 1 2 3 to which the Mo 2 is fixed are simultaneously formed by a method of causing the particles of Mo 2 to collide with the surface of the iron-based material at a certain speed or higher. Therefore, wear resistance is et by M o S 2 is part of the M o S 2 enters inside the base material to form a high intermetallic compound hardness is improved.
  • a mixed layer 3 23 on which Mo 2 is fixed is provided on the sliding surface 3 24 of the piston 1 15. Further, a depression 123 having a diameter of 2 m to 20 zm and a depth of 0.2 m to 1.0 m is provided almost uniformly on the surface of the mixed layer 3233. Also pore 1 1 3 May be provided with such a mixed layer 3 2 3. A similar effect can be obtained by providing both the piston 115 and the pore 113.
  • FIGS. 25A and 25B are enlarged views of a driving portion formed by the main shaft portion 109 and the bearing portion 114.
  • FIG. 25A and 25B are enlarged views of a driving portion formed by the main shaft portion 109 and the bearing portion 114.
  • the more preferred shading of the mixed layer 332 is the same as described above.
  • FIG. 25B shows a case where a depression 1 2 3 is formed on the sliding surface 3 2 8 which is the surface of the mixed layer 3 2 3.
  • the bearing section 114 and the crankshaft can be used at the start of operation of the muffle medium compressor where oil is not supplied to the sliding section.
  • a mixed layer 32 3 in which Mo 2 is adhered is provided on the sliding surface 3 28 of the main shaft portion 109. And further mixed layer 3 2
  • Figures 26A and ⁇ are enlarged views of the sliding part formed by the piston pin 117 and the connecting rod 118.
  • FIG. 26 ⁇ shows a state in which the depression 1 2 3 is formed almost uniformly on the surface of the mixed layer 3 2 3.
  • the mixed layer 3 23 in which Mo 2 is fixed is provided on the sliding surface 331 of the piston pin 1 17.
  • a depression 123 having a diameter of 2111 to 21011 and a depth of 0.2 m to 1.0 m is provided substantially uniformly on the surface of the mixed layer 3233.
  • such a mixed layer 3 23 may be provided in the condenser 118. A similar effect can be obtained by providing both the piston pin 117 and the connector 118.
  • Figures 27A and 27B are enlarged views of the part where the thrust part 130 and the thruster 134 are in contact.
  • Thrust DOO unit 1 3 0 sliding face 3 3 5 mixed layer 3 2 3 is fixed to M o S 2 to the are formed.
  • the more preferable form of the mixed layer 32 3 is the same as described above.
  • FIG. 27B shows a state in which the depressions 123 are formed almost uniformly on the surface of the mixed layer 32 23.
  • the more preferable form of the depressions 123 is the same as described above.
  • a mixed layer 32 3 in which Mo 2 is adhered is provided on the surface 3 35. Further, a depression 1 23 having a diameter of 2 m 20 zm and a depth of 0.2 ⁇ 1.0 m is provided substantially uniformly on the surface of the mixed layer 3 23. Further, such a mixed layer 32 3 may be provided in the thruster 13 4. The same operation and effect can be obtained by providing both the thrust portion 130 and the thruster 134.
  • the thrust bearing portion 135 is constituted by the flange surface 132 and the thrust portion 130 thrust washer 134.
  • the flange surface 1336 is also provided between the main shaft portion 109 and the eccentric portion 110 of the crankshaft 108.
  • the thrust h bearing may be constituted by the flange surface 1336 and the thrust portion 1339 of the bearing portion 114 facing the flange surface.
  • a mixed layer 3 23 is provided in the thrust section 1 37. Similar effects can be obtained when the thrust bearing is configured in this manner. It should be noted that the same effect can be obtained even if the mixed layer 3 23 is provided on the thruster 13 4 and the X-ray is applied to both the thruster 13 and the thruster 13. Is obtained.
  • thrusters 1 3 4 are rotors
  • a mixed layer 3 2 3 may be provided on the surface in contact with the flange surface of 105.
  • a mixed layer 3 2 3 may be provided on the flange surface of the rotor 105. Even if the mixed layer 3 2 3 is provided on the thrust portion 13 7 of the crankshaft 108, the thrust portion 13 7 of the crank shaft 108 and the thrust portion 13 14 of the bearing portion 1 3 9 The same operation and effect can be obtained by providing both.
  • isobutane-propane which is a hydrocarbon refrigerant
  • mineral oil, alkylbenzene, ester, polyvinyl ether, polyalkylene alcohol, etc. is used as the oil 103
  • the refrigerant 102 dissolves in the oil 103 and further lowers the viscosity. Therefore, a similar effect can be obtained by applying this configuration. This is described below.
  • FIG. 4 is a characteristic diagram of a friction coefficient of FIG.
  • FIG. 29 is a characteristic diagram of the refrigerating capacity of the compressor in the case where the above-described mixed layer 323 is formed in the piston and the pore and in the case where the manganese phosphate layer is formed.
  • FIG. 30 is a characteristic diagram of the efficiency in the two types of compressors.
  • a container 101 is filled with a refrigerant gas 102 made of isobutane.
  • the container 101 is made of mineral oil, stores oil 103 with a viscosity of less than VG 10 and more than VG 1 at the bottom, and an electric unit 106 consisting of a stator 104 and a rotor 105, and It accommodates a driven reciprocating compression unit 107.
  • Main shaft part 109 and bearing part 114, piston 115 and pore 113, piston pin 117 and conrod 118, eccentric part 110 and conload 118 Form a sliding part.
  • Each sliding portion is a contact portion that slides by driving the compression portion 107.
  • a mixed layer 323 in which Mo 2 is fixed on the surface of an iron-based material as a base material. Further, a depression 1 23 having a diameter of 2 m to 50 m and a depth of 0. to : ⁇ ⁇ ⁇ ⁇ is formed almost uniformly on the surface.
  • the sliding parts are liable to cause solid contact with each other. Furthermore, since the refrigerant gas 102 is isobutane, it is easily dissolved in the oil 103, and the viscosity of the oil 103 is reduced, so that solid contact is more likely to occur. Especially when the sliding part is piston 115 and pore 113, piston pin 117 and connector 118, the mutual sliding speed is 0 mZs twice per compression process. The oil pressure becomes zero and solid contact occurs.
  • the oil film generated when the sliding part slides is The flow of the generated oil 103 is easy to form a vortex in the hollow 123. As a result, the generation of hydraulic pressure prevents solid contact and improves wear resistance.
  • the results of measuring the refrigerating capacity of the reciprocating refrigerant compressor and the change in the coefficient of performance (COP) of the refrigerant compressor with the oil viscosity as a parameter will be described with reference to FIGS. 29 and 30.
  • the mixed layer 3 2 3 on which Mo S 2 is adhered has a diameter of 2 to 50 m and a depth of 0.5 ⁇ m Indentations 1 2 3 of l 0 m in size are provided uniformly.
  • the measurement was conducted using isobutane refrigerant and mineral oil of VG5 and VG10.
  • the coefficient of performance indicates the efficiency of the compressor in which the mixed layer 3 23 with the depression 1 2 3 is provided in the piston, compared to the compressor in which the manganese phosphate treatment is applied to the piston. (COP) is rising.
  • volumetric efficiency is maintained because the decrease in refrigeration capacity of the refrigerant compressor is extremely small.
  • the increase in friction coefficient in the sliding part is extremely small compared to the case of manganese phosphate treatment, which is also due to the reduced input.
  • the reduction in viscous resistance due to the decrease in oil viscosity from VG10 to VG5 contributes greatly to the reduction in the input of the refrigerant compressor.
  • the mixed layer 3 2 3 is provided on both of the sliding portions.
  • the mixed layer 32 3 may be applied to any one of the sliding portions, and the same operation and effect can be obtained.
  • the viscosity of the oil 103 should be less than ⁇ 01 and more than ⁇ 01, and even if the retention of the oil 103 in the sliding part is reduced, the mixed layer 3 coefficient of friction is reduced by the solid lubricity of M o S 2. Therefore, sliding loss is reduced. Furthermore, the use of low-viscosity oil 103 reduces sliding loss. (Embodiment 4)
  • the basic configuration of the refrigerant compressor according to the present embodiment is the same as that of the second embodiment described with reference to FIG.
  • the difference from the second embodiment is that the eccentric portion 207 and rolling piston (hereinafter, “piston”) 215, the main shaft portion 208 and the main bearing 213, the sub shaft portion 209 and the sub bearing Numerals 2 14 are sliding parts formed mutually.
  • Each part forming the sliding part is a compression part This is a contact portion that slides when driven by 205.
  • FIGS. 31A and 31B are enlarged views of the sliding portion formed by the piston 2 15 and the vane 2 16.
  • FIGS. 32A and 32B are enlarged views of the sliding portion formed by the piston 2 15 and the eccentric portion 2 07.
  • Indent 1 2 3 has a spherical surface and a diameter of 2 mm! Preferably, it is 20 m and the depth is 0.2 m ⁇ l.Om.
  • the refrigerant compressor 200 configured as described above will be described below with reference to FIGS. 16, 31A, 31B, and 32A, 32B.
  • the electric unit 106 serving as the driving unit is energized, the rotor 103 rotates. With this, the shaft 210 rotates, and the piston 215 loosely fitted to the eccentric portion 207 rolls in the compression chamber 211.
  • the capacity of the high-pressure side and low-pressure side chambers of the compression chamber 2 11 partitioned by the vanes 2 16 changes continuously. Accordingly, the refrigerant gas is continuously compressed. Further, the compressed refrigerant gas is discharged into a tightly closed container (hereinafter, container) 101, and the inside of the container 101 becomes a high-pressure atmosphere.
  • container tightly closed container
  • the atmospheric pressure in the vessel 101 acts as a back pressure against the vane 216, and the tip of the vane 216 is pressed against the outer peripheral surface of the piston 215.
  • the mixed layer 32 3 is Although it is provided on the outer peripheral surface of the vane 215, it may be provided on the vane 216. Even if it is provided on both the outer peripheral surface of the piston 215 and the vane 216, the same effect is obtained.
  • the oil pump 217 continuously supplies the oil 103 to each insertion portion.
  • a depression 123 is formed substantially uniformly. As a result, the same effect as in the second embodiment can be obtained.
  • the piston 215 is rotatably loosely fitted to the eccentric portion 2007.
  • the relative speed between the piston 215 and the eccentric portion 207 is the relative speed between the main shaft portion 208 and the main bearing 213, and the relative speed between the sub shaft portion 209 and the sub bearing 214. Is smaller than This is an unfavorable condition in which metal contact easily occurs in sliding lubrication.
  • a mixed layer 3 2 3 to which Mo 2 is fixed is provided on the sliding surface 4 19 of the eccentric portion 2 07. If the metallic contact occurs, M o S 2 organizations dense hexagonal, molecular size is cleaved with a low friction coefficient since small as about 6 XI 0 ⁇ 4 m. As a result, the friction coefficient of the sliding portion decreases, and the sliding loss decreases.
  • the rolling piston type refrigerant compressor since the inside of the container 101 is at a condensing pressure, the internal pressure is high and the refrigerant is easily dissolved in the oil 103. This reduces the viscosity of the oil. This is also a disadvantageous condition for sliding lubrication.
  • the depressions 123 on the surface of the mixed layer 32 the same effects as in the second embodiment can be obtained.
  • the sliding surface of the eccentric part 207, main shaft part 208, and countershaft part 209 has a diameter of 2 ⁇ ⁇ ⁇ 20 ⁇ and a depth of 0.22m ⁇ l. ⁇ ⁇ . It is provided the size of the M o mixed layer 3 2 3 obtained by fixing the S 2 provided substantially uniformly fine rather Bomi 2 1 9. Further, a mixed layer 3 23 may be provided on the inner peripheral surface of the piston 2 15, the main bearing 2 13, and the auxiliary bearing 2 14. Both the eccentric part 2007 and the inner peripheral surface of the piston 215, the main shaft part 208 and the main bearing 21 The same operation and effect can be obtained even if the mixed layer 3 23 is provided on both of the sub-shaft 3 and the sub-shaft 209 sub-bearing 2 14.
  • isobutane mouthpan which is a hydro-carbon type refrigerant
  • mineral oil, alkylbenzene, ester, polyvinyl ether, polyalkylene glycol, etc. are used as the oil 103
  • the refrigerant dissolves in the oil 103 and the viscosity further decreases. As a result, the wear resistance is reduced, so that the same effect can be obtained by applying this configuration. This is described below.
  • the oil 103 enclosed in the container 101 is made of mineral oil, has a viscosity of less than VG10 and is VG5 or more, and the refrigerant gas (not shown) is made of isobutane.
  • the eccentric part 207 and the piston 215, the main shaft part 208 and the main bearing 213, and the subshaft part 209 and the subbearing 221 form sliding parts with each other. ing.
  • M o mixed layer of S 2 was fixed 3 2 3 on the surface of the iron-based material as the base material is formed.
  • MoS 2 is cleaved with a low friction coefficient, the friction coefficient of the sliding portion is reduced, and the sliding loss is reduced.
  • a depression 123 having a diameter of 2 m to 50 m and a depth of 0.5 m to l is formed almost uniformly on the surface.
  • the combination of isobutane and mineral oil has been described as an example.However, even when propane, which is the same hydrodynamic refrigerant as the refrigerant, is used as the refrigerant, the alkylbenzene is also used as the oil 103. Even when oil, ester, polyvinyl ether, polyalkylene glycol, or the like is used, the refrigerant dissolves in the oil 103 and further lowers the viscosity. In this case, similar effects can be obtained by applying this configuration. As described above, the first to fourth embodiments have described the compressor having the constant speed.
  • a refrigerant compressor equipped with an induction synchronous motor that operates as an induction motor at start-up and then operates in synchronization with the power supply frequency also has a strong acceleration force when entering synchronous operation at start-up. Therefore, the problem of abnormal wear is great. If the configuration of the present invention is applied to such a compressor, the effect becomes remarkable.
  • the sliding portion is made of another material such as aluminum in addition to iron, similar effects can be obtained by considering the principle of oil film formation.
  • the basic configuration of the refrigerant compressor according to the present embodiment is the same as that of the first embodiment described with reference to FIG.
  • the difference from the first embodiment is a suction valve device 527 provided on the valve plate 1 19 and a discharge valve device 534.
  • FIG. 33 is a longitudinal sectional view of the suction valve device according to the present embodiment.
  • FIG. 34 is a plan view showing a suction valve seat (hereinafter, valve seat) 517 of the suction valve device 527.
  • FIG. 35 is a plan view showing a suction movable valve (hereinafter, a valve) 5 19 of the suction valve device 5 27.
  • the valve plate 1 19 has a valve seat 5 17, and together with the valve 5 19 forms a suction valve device 5 2 7.
  • fine recesses (hereinafter, recesses) 1 23 A are formed substantially uniformly on the mutual sealing surface.
  • the valve seat 5 17 and the seal portion 5 19 A of the valve 5 19 are contact portions that come into contact with each other by driving the compression portion 107.
  • fine recesses (hereinafter referred to as recesses) 123 B are formed almost uniformly in the arm portion 519 B of the valve 519.
  • the shape of the recesses 12A and 12B is preferably spherical, and the size is preferably 2 m to 20 m in diameter and 0.2 to 1.0 Om in depth. Further mutual The ratio of the area occupied by the recesses 123A and 123B to the sealing surface area is preferably 40 to 80%.
  • the method for forming the depressions 123 A in the valve seats 5 17 and the valve 5 19 is the same as the method for forming the depressions 123 in the first embodiment. The same applies to the case where a leaf spring material having a martensite surface texture is used as a member of the valve 519. +
  • Electric power supplied from a commercial power supply is supplied to a motor unit 106 as a driving unit, and rotates a rotor 105 of the motor unit 106.
  • the rotor 105 rotates the crankshaft 108, and the eccentric movement of the eccentric part 110 drives the piston 115 from the connecting rod 118 of the connecting part via the piston pin 117. I do.
  • the piston 1 15 moves back and forth in the pore 1 13.
  • Refrigerant gas 102 introduced into a closed vessel (hereinafter, “container”) 101 through the suction tube 122 is sucked from the suction muffler 122 through the suction valve device 522, and is compressed. It is compressed continuously within 16.
  • the refrigerant gas 102 sucked from the suction valve device 527 contains a small amount of mist-like oil 103, and the valve seat 517 and the valve 5 constituting the suction valve device 527 are contained.
  • the supplied oil 103 serves the function of sealing and lubricating the mutual sealing surfaces.
  • the depressions 123 A when forming the depressions 123 A, the structure of the surface layer of the valve seats 5 17 and 5 19 becomes martensite, and the surface strength is increased. Therefore, the wear resistance and the impact resistance are improved. Also, by forming the depressions 123 A, the area between the contact portions is reduced, and the metal contact is reduced.
  • a part of the compressed refrigerant gas 102 is sucked from the mutual sealing surface of the suction valve device 5 27. Leaks into the muffler 1 2 2. This leakage reduces the volumetric efficiency.
  • a recess 1 23 A is formed substantially uniformly in the valve seat 5 17 constituting the suction valve device 5 27 and the seal portion 5 19 A of the valve 5 19. Oil 103 stays there. The oil 103 resists leakage of the compressed refrigerant gas 102.
  • the volume increases compared to the polygonal pyramid with the projected area on the same surface, and the amount of the retained oil 103 increases. .
  • the amount of leakage of the refrigerant gas 102 is reduced, and the volume efficiency of the compressor is improved, so that the compression efficiency of the compressor is improved.
  • the oil 103 that has accumulated in the hollow 123A also contributes to the improvement of lubrication on the mutual sealing surface between the valve seat 517 and the valve 519, and the intake valve device 522 The wear resistance is improved.
  • the oil 103 that has accumulated in the hollow 123 A has the effect of a damper against the impact when the valve 519 is seated on the valve seat 517, so the suction valve device 527 seating impact To reduce compressor noise.
  • compressive residual stress when forming the recesses 1 23 B in the arms 5 19 B the surface becomes martensitic, increasing the hardness and improving the impact resistance, resulting in fatigue fracture. The soil strength is improved.
  • the recesses 12 23 A are provided in both the valve seat 5 17 and the seal portion 5 19 A of the valve 5 19, but may be provided in either one.
  • the recesses 123B are provided on both sides of the arm 519B of the valve 519, but they may be provided on any one side.
  • FIG. 36 is a longitudinal sectional view of the discharge valve device 534 in the present embodiment.
  • FIG. 37 is a plan view showing a discharge valve seat (hereinafter, a valve seat) 528 of the discharge valve device 534.
  • FIG. 38 is a plan view showing the mutual sealing surface side of a discharge movable valve (hereinafter, a valve) 525 of the discharge valve device 534.
  • FIG. 39 is a plan view showing the striking portion 541A side of the valve 525 of the discharge valve device 534.
  • FIG. 40 is a plan view showing the stopper 537 of the discharge valve device 534.
  • Valve plate 1 19 has valve seat 5 2 8, valve 5 2 5, stopper A discharge valve device 5 3 4 is constructed together with 5 3 7.
  • the valve seat 528 and the seal portion 525A of the valve 525 are contact portions that come into contact with each other by driving the compression portion 107.
  • a recess 123A is formed substantially uniformly on the mutual sealing surface.
  • a recess 1 23 B is formed almost uniformly in the arm 5 25 B of the valve 5 25.
  • the recesses 123A are formed substantially uniformly in the striking portion 541A of the valve 525 and the strut, and also in the striking portion 541B of ° 537.
  • the striking portions 541A and 541B are also contact portions that come into contact by the driving of the compression portion 107.
  • the more preferable shapes of the depressions 123A and 123B are the same as described above, and the forming method is also the same.
  • Electric power supplied from a commercial power supply is supplied to a motor unit 106 serving as a driving unit, and the rotor 105 of the motor unit 106 rotates.
  • the rotor 105 rotates the crankshaft 108, and the eccentric movement of the eccentric portion 110 is transferred from the connector 111, which is the connecting portion, to the piston 111 via the piston pin 117.
  • Drive This causes the piston 1 15 to reciprocate in the pore 1 13.
  • the refrigerant gas 102 introduced into the container 101 through the suction tube 122 is sucked from the suction muffler 122 through the suction valve device 522, and continuously flows in the compression chamber 116. Compressed.
  • the compressed refrigerant gas 102 is discharged from a discharge pipe (not shown) through a discharge valve device 534 and a head 120 to a heat exchanger 70 on the high pressure side of the refrigeration cycle. .
  • Refrigerant gas 102 continuously compressed in compression chamber 116 contains a small amount of misted oil 103. Refrigerant gas 102 is discharged.
  • the mutual sealing surface between the valve seat 528 constituting the valve device 534 and the sealing portion 525A of the valve 525, and the impact portion 504 of the valve 525 are formed.
  • the supplied oil 103 serves the function of sealing and lubricating the mutual sealing surfaces, and lubrication of the hitting portions 541A and 541B.
  • the depression 1 23 A when forming the depression 1 23 A, the structure of the surface layer with the valve seat 5 2 8, the valve 5 2 5, and the impact portion 5 4 1 A, 5 4 1 B becomes martensite, Surface strength is increasing. Therefore, the wear resistance and the impact resistance are improved. Also, by forming the depressions 123A, the area between the contact portions is reduced, and metal contact is reduced.
  • the leaked refrigerant gas 102 re-expands, lowering the volumetric efficiency.
  • the recess 1 is formed almost uniformly on the mutual sealing surface between the valve seat 528 forming the discharge valve device 534 and the sealing portion 525A of the valve 525.
  • Oil 103 stays at 23 A. The oil 103 resists the leakage of the refrigerant gas 102 once discharged to the head 120 into the compression chamber 116.
  • the volume is increased as compared with a polygonal pyramid having the same projected area on the same surface, and the amount of the retained oil 103 is increased.
  • the amount of leakage of the refrigerant gas 102 is reduced, and the volume efficiency of the compressor is improved, so that the compression efficiency of the compressor is improved.
  • the oil 103 that has accumulated in the recesses 123A also contributes to the improvement of the lubrication of the mutual sealing surface between the valve seat 528 and the sealing portion 525A of the valve 525.
  • the wear resistance of the discharge valve device 5 3 4 is improved.
  • the oil 103 that has accumulated in the recesses 123 A has the effect of the damper on the impact when the seal portion 525 A of the valve 525 is seated on the valve seat 528. is there. Therefore, the noise of the compressor caused by the seating impact of the discharge valve device 534 is reduced. Furthermore, by applying compressive residual stress when forming the recesses 1 23 B in the arms 5 25 B, the surface is made martensite, the hardness is increased, the impact resistance is improved, and the fatigue fracture Strength is improved.
  • the oil 103 stays in the recess 123A formed almost uniformly in the striking portion 541A of the valve 525 and the striking portion 541B of the stopper 537. This oil 103 improves the lubricity of the striking parts 541A and 541B. This also improves the wear resistance of the discharge valve device 534.
  • the oil 103 that has accumulated in the depression 123 A has an effect of a damper against an impact when the valve 525 is opened and collides with the stopper 533. Therefore, noise of the compressor caused by the opening impact of the discharge valve device 534 is reduced. Furthermore, by making the surface martensite, the hardness increases and the impact resistance improves.
  • the recesses 1 2 3 A are provided in all of the seal portion 5 25 A, the impact portion 5 41 A and the impact portion 5 4 1 B of the valve seat 5 2 8 and the valve 5 25, It may be provided in one of the combinations. Further, the recesses 1 2 3 B are provided on both sides of the arm portion 5 25 B of the valve 5 25, but may be provided on any one side.
  • FIG. 41 is a longitudinal sectional view of another discharge valve device 534A in the embodiment of the present invention.
  • FIG. 42 is a plan view showing a side of a knocking portion 541 C of a knock-up lead 5 35 of the discharge valve device 5 34 A with a discharge movable valve (hereinafter, a valve) 5 25.
  • FIG. 43 is a plan view showing the side of the backup lead 5 35 5 of the discharge valve device 5 34 A hitting the stopper 5 3 7 with the stopper 5 3 7.
  • the discharge valve device 534A shown in FIG. 41 has a backup lead 535 between the valve 525 and the stopper 537.
  • the 7 hitting portions 5 41 B are contact portions that come into contact with each other by driving the compression portions 107.
  • the depressions 123A are formed substantially uniformly in the hitting portions 541C and the hitting portions 541D of the backup lead 535.
  • the more preferable form of the depression 123A is the same as described above, and the method of forming the same is also the same.
  • the other configuration is the same as that of the discharge valve device 534 in FIG.
  • Electric power supplied from a commercial power supply is supplied to a motor unit 106 that is a driving unit, and rotates a rotor 105 of the motor unit 106.
  • the rotor 105 rotates the crankshaft 108 so that the
  • the eccentric movement of the core 110 drives the piston 115 through the piston pin 117 from the connector 118, which is the connecting part.
  • This causes the piston 1 15 to reciprocate in the pore 1 13.
  • the refrigerant gas 102 introduced into the container 101 through the suction tube 122 is sucked from the suction muffler 122 through the suction valve device 522, and continuously flows in the compression chamber 116. Compressed.
  • the compressed refrigerant gas 102 is discharged from a discharge pipe (not shown) via a discharge valve device 534 and a head 120 to a heat exchanger 70 on the high pressure side of the refrigeration cycle. .
  • Refrigerant gas 102 continuously compressed in compression chamber 116 contains a small amount of misted oil 103.
  • the compressed refrigerant gas 102 receives the impact portion 541A of the valve 525 that constitutes the discharge valve device 534A and the impact portion 541C of the backup lead 5354C, knock-up lead.
  • the oil 103 is supplied to the hitting portion 541D of 535 and the hitting portion 541B of the stopper 537.
  • the supplied oil 103 serves the function of lubricating the striking parts 541A, 541B, 541C and 541D.
  • the volume is increased as compared with a polygonal pyramid having the same projected area on the same surface, and the amount of retained oil 103 is increased.
  • the oil 103 that has accumulated in the recess 1 23 A is stored in the valve 5 25 and the knocking part 5 41 5 A of the knock-up lead 5 35 5, and the storage lead 5 3 5 C and the backup lead 5 35. It contributes to the improvement of lubricity of the hitting parts 5 4 1 D and 5 4 1 B. As a result, the wear resistance of the discharge valve device 534 is improved.
  • the oil 103 that has accumulated in the hollow 1 23 A causes the valve 5 25 to collide with the backup lead 5 35 and the knock-up lead 5 35 5 to collide with the stopper ⁇ ° 5 3 7
  • the noise of the compressor caused by the opening impact of the discharge valve device 534A is reduced.
  • the surface martensite the hardness increases, and the impact resistance of each contact part improves.
  • Indentation 1 2 3 A is sealed with valve seat 5 2 8 and valve 5 2 5 sealing part 5 25 A, hitting part 5 41 A and hitting part 5 1 C, hitting part 5 4 1 D Although it is provided in all of the hitting portions 541B, it may be provided in one of the respective combinations.
  • the abrasion resistance, impact resistance, and fatigue fracture strength of the suction valve device and the discharge valve device are improved, the compression efficiency of the compressor is improved, and the noise of the compressor is improved. Is reduced.
  • the basic configuration of the refrigerant compressor according to the present embodiment is the same as that of the fifth embodiment described with reference to FIG.
  • the difference from the fifth embodiment lies in the respective contact portions of the suction valve device 527 provided on the valve plate 1 19 and the discharge valve device 534.
  • FIG. 44 is a plan view showing a suction valve seat (hereinafter, a valve seat) 5 17 of another suction valve device 5 27 in FIG. 33.
  • FIG. 45 is a plan view showing a suction movable valve (hereinafter, a valve) 5 19 of the suction valve device 5 27.
  • the valve seat 5 17, which is a contact portion, and the seal portion 5 19 A of the valve 5 19 are provided with minute recesses 123 A, but in this embodiment, molybdenum disulfide is provided.
  • a mixed layer 3 2 3 to which (Mo 2 S 2 ) is fixed is formed.
  • Other configurations are the same as those of the suction valve device according to the fifth embodiment.
  • a method of forming a mixed layer 3 2 3 in the valve seat 5 1 7 and the valve 5 1 9 was fixed to M o S 2 is similar to the third embodiment.
  • a method in which fine particles of Mo S 2 collide with the surface at a certain speed or higher a part of Mo S 2 melts into the base metal due to the thermal energy generated at the time of collision and is bonded to the metal
  • the mixed layer 3 2 3 fixed is formed.
  • a fine depression is formed due to the impact force at the time of collision, as in the third embodiment. It is.
  • the structure of the surface layer becomes martensite, and the surface strength of the valve seat 5 17 and the valve 5 19 increases.
  • a leaf spring material having a surface texture of a martensite is used for the member of the valve 519.
  • the mixed layer 3 23 to which the Mo 2 is adhered is formed on the valve seat 5 17 constituting the suction valve device 5 27 and the sealing portion 5 19 A of the valve 5 19. ing.
  • the friction coefficient of the mutual sealing surface between the valve seat 5 17 and the sealing portion 5 19 A of the valve 5 19 is reduced due to the self-lubricating action of Mo 2 , and the wear resistance is improved.
  • by as much as possible obtain suppress the amount of M o as compared to the S 2 friction coefficient higher impurity purity of M o S 2 as 9 8% or more, a higher effect is obtained.
  • the oil 103 intervenes there, and the same effect as in the fifth embodiment can be obtained.
  • the preferred form of the fine recess is the same as in the fifth embodiment.
  • the suction valve device 5 2 7 Abrasion resistance is improved. Furthermore, if micro-cavities are uniformly provided on the surface of the mixed layer 3 23, the shock resistance of the suction valve device 5 27 is improved, the performance and efficiency of the compressor are improved, and the suction valve device 5 is improved. Noise due to 27 is reduced.
  • the mixed layer 3 23 provided with the fine recess is provided on both the valve seat 5 17 and the seal portion 5 19 A of the valve 5 19, but is provided on either one of them. May be. Further, similarly to the fifth embodiment, the minute recess may be provided on at least one surface of the arm portion 519B of the valve 519.
  • FIG. 46 is a plan view showing a discharge valve seat (hereinafter referred to as a valve seat) 528 of another discharge pulp device 534 in FIG.
  • FIG. 47 is a plan view showing the mutual sealing surface side of a discharge movable valve (hereinafter, a valve) 525 of the discharge valve device 534.
  • FIG. 48 is a plan view showing the striking portion 541A side of the valve 525 of the discharge valve device 534.
  • FIG. 49 is a plan view showing the stopper 537 of the discharge valve device 534.
  • the minute recesses 1 are formed in the sealing portions 525 A, the striking portions 541 A and the striking portions 541 B of the valve seats 528 and the valve 525 as the contact portions. 23 A is provided. Meanwhile, in this embodiment of molybdenum disulfide (M o S 2) it was fixed the mixed layer 3 2 3 is formed. Other configurations are the same as those of the discharge valve device according to the fifth embodiment.
  • Embodiment 3 describes a method of forming a mixed layer 3 2 3 in which Mo S 2 is adhered to the valve seat 5 2 8 and the valve 5 2 5, the impact portion 5 41 A and the impact portion 5 4 1 B. Same as. In particular, according to the method of colliding a fine particle of M o S 2 at a constant rate over the surface, part of M o S 2 by thermal energy generated during the collision by fixing by metal bonding melts into matrix Mixed layer
  • the valve seat 5 2 8 and the sealing portion 5 25 A of the valve 5 25, which constitute the discharge valve device 5 3 4, the striking portion 5 41 A and the striking portion 5 4 1 B have M o A mixed layer 3 23 to which S 2 is fixed is formed.
  • M o mutual sealing of a seal portion 5 2 5 A of S 2 of O connection valve seat a self-lubricating effect 5 2 8 and the valve 5 2 5, striking unit 5 4 1 A, striking unit 5 4
  • the friction coefficient of each of the IBs is reduced, and the wear resistance is improved.
  • the same effect as that of the fifth embodiment can be obtained by forming fine depressions almost uniformly on the surface of the mixed layer 32 3.
  • the preferred form of the fine recess is the same as in the fifth embodiment.
  • the mixed layer 3 2 3 is connected to the valve seat 5 2 8 And the sealing part 5 25 A of the valve 5 25 and the striking part 5 41 A and the striking part 5 41 B improve the wear resistance of the compressor discharge valve device 5 34 I do. Furthermore, if micro-dents are uniformly provided on the surface of the mixed layer 3 23, the impact resistance of the discharge valve device 5 34 is improved, and the performance and efficiency of the compressor are improved. The resulting noise is reduced.
  • the mixed layer 3 2 3 provided with minute recesses is applied to all of the sealing portion 5 25 A, impact portion 5 41 A and impact portion 5 41 B of the valve seat 5 2 8 and the valve 5 25. Although they are provided, they may be provided in one of the combinations. Further, similarly to the fifth embodiment, a minute recess may be provided on at least one surface of the arm portion 525B of the valve 525.
  • FIG. 50 is another discharge valve device in Fig. 41.
  • Knock-up lead 5 34 A of 5 34 A A flat surface showing the impact part 541 C side with discharge movable valve (hereinafter, valve) 5 25
  • FIG. FIG. 51 is a plan view showing the side of the backup lead 535 of the discharge valve device 534A hitting the stopper 5347 with the stopper 5341.
  • a mixed layer 323 to which molybdenum disulfide (Mo 2 S 2 ) is fixed is formed.
  • Other configurations are the same as those of the discharge valve device according to the fifth embodiment.
  • Mo S 2 is fixed to valve seat 5 2 8 and valve 5 2 5, impact section 5 41 A and impact section 5 4 1 C, impact section 5 4 1 D and impact section 5 4 1 B
  • the method of forming the mixed layer 3 2 3 is the same as in the third embodiment.
  • part of M o S 2 by thermal energy generated during the collision by fixing by metal bonding melts into matrix A mixed layer 3 2 3 is formed.
  • a fine dent is formed as in the third embodiment. It is formed.
  • the structure of the surface layer becomes martensite and the valve seat 5
  • the mixed layer 3 2 3 is formed by sealing the sealing portion 5 25 A of the valve seat 5 2 8 and the valve 5 25, the striking portion 5 4 1 A, and the striking portion 5 4.
  • the wear resistance of the discharge valve device 534 A of the compressor is improved.
  • the impact resistance of the discharge valve device 5 34 A is improved, the performance and efficiency of the compressor are improved, and the discharge valve device 5 is improved. Noise due to 34 A is reduced.
  • the mixed layer 3 2 3 with minute dents is formed by sealing the valve section 5 25 A, the impact section 5 41 A, the impact section 5 4 1 C, and the impact section 5 of the valve seat 5 2 8 and the valve 5 25. Although it is provided in all of 4 1 D and the hitting section 5 4 1 B, it may be provided in one of the respective combinations.
  • the abrasion resistance, impact resistance, and fatigue fracture strength of the suction valve device and the discharge valve device are improved, and the compressor pressure is improved.
  • the compression efficiency is improved and the noise of the compressor is reduced.
  • Embodiments 5 and 6 a reciprocating compressor incorporating oil 103 has been described.
  • other compression compressors such as a one-stop compressor, a scroll compressor, and a linear compressor. Is obtained.
  • an effect that oil is not involved is obtained for a compressor such as a linear compressor that does not use oil.
  • wear resistance, impact resistance, and fatigue fracture resistance provided by improvements in hardness and fatigue fracture strength are improved.
  • FIG. 52 is a cross-sectional view of a refrigerant compressor according to Embodiment 7 of the present invention.
  • FIG. 53 is a refrigeration cycle diagram of a refrigerator including the refrigerant compressor of FIG. 52.
  • FIG. 54 is an enlarged view of a portion of the refrigerant compressor in FIG. 52 where the discharge path and the close contact coil spring are in contact with each other.
  • the closed container (hereinafter referred to as the container) 101 stores oil 103 at the bottom, and is driven by an electric unit 106, which is a driving unit composed of a stator 104 and a rotor 105.
  • the compression section 107 to be accommodated.
  • a discharge path 717 is provided for leading the compressed refrigerant gas from the compression section 107 to the outside of the container 101.
  • the discharge path 711 made of a steel pipe is covered with a close contact coil spring (hereinafter, spring) 718 to prevent abnormal vibration due to resonance.
  • the spring 718 is a resonance preventing portion of the discharge path 717, and may be made of an elastic body such as rubber.
  • the crankshaft 108 is composed of a main shaft portion 109 to which the rotor 105 is fixed and an eccentric portion 110 formed eccentrically with respect to the main shaft portion 109.
  • the cylinder block 1 1 2 has a compression chamber 1 16 composed of a substantially cylindrical pore 1 13.
  • the piston 1 15 loosely fitted in the pore 1 13 is connected to the eccentric portion 110 by a connecting rod 7 19 which is a connecting portion, and the end face of the pore 113 is connected to the valve plate 1. Sealed with 19.
  • the head 120 forms a high-pressure chamber, and a discharge path 171 for leading the refrigerant gas compressed out of the container 110 out of the head 120 is passed through the container 101. And connected to a heat exchanger 70 on the high pressure side of the refrigeration cycle.
  • fine recesses (hereinafter, recesses) 123 are formed almost uniformly on the surface of the discharge path 171.
  • the recesses 1 2 3 are spherical and their size is 2 mm in diameter!
  • the depth is 0.2 to 1.0 m and the depth is 0.2 to 1.0 m.
  • the ratio of the area occupied by the depressions 123 to the surface area of the contact surface 171 A where the discharge path 717 contacts the spring 718 is 40 to 80%.
  • the refrigerant gas is a hydrocarbon-based refrigerant containing no chlorine, and the oil 103 is compatible with this refrigerant.
  • the refrigerant compressor configured as described above will be described below.
  • the piston 115 moves linearly with the rotation of the crankshaft 108, the volume of the compression chamber 116 changes.
  • the refrigerant gas (not shown) is compressed, led out of the vessel 101 through the discharge path 717, and sent to the heat exchanger 70.
  • the refrigerant gas radiates heat to the outside in the heat exchanger 70, returns to the heat exchanger 60 via the expansion valve 80, and absorbs heat from the outside.
  • the refrigerator is thus configured.
  • Oil 103 is supplied to each sliding part from the oil supply pump 111 along with the rotation of the crankshaft 108, lubricating the sliding parts, and the container 10 from the tip of the eccentric part 110. It is discharged into 1 and is also discharged to discharge path 7 1 7.
  • the compressor body 707 always generates a slight vibration while the compressor section 107 is being driven, and the compressor body 707 swings largely due to inertia force at the time of starting and stopping.
  • the discharge path 717 swings right and left and back and forth, so that the steel pipe constituting the discharge path 717 and the spring 718 intermittently come into contact with each other.
  • the discharge path 7 17 and the spring 7 18 are contact portions that come into contact with the driving of the compression unit 107.
  • the depressions 123 are formed almost uniformly on the contact surface 7177A of the discharge path 7117. Have been. This reduces the area between the contacts and reduces metal contact. Further, when forming the depressions 123, the structure of the surface layer of the discharge path 717 and the spring 718 becomes martensite, and the surface strength is increased. Therefore, the wear resistance and the impact resistance are improved. Also, the oil 103 is held in the depression 123. When the gap between the discharge path 7 1 7 and the spring 7 1 8 becomes narrow, the viscosity of the oil 1 in the hollow 1 2 3 and the relative movement of the contact part cause the oil 10 to enter the narrow gap. 3 is drawn. Then, a pressure supporting the load is generated in the oil 103 to form a wedge-shaped oil film. This wedge-shaped oil film prevents metal contact at the contact surface 7 17 A and effectively suppresses abnormal noise.
  • the size of the depression 1 23 is set to a diameter of 20 zm to 50 m, the depth is set to 1 ⁇ m to 1 ⁇ ⁇ , and the volume of the depression 1 23 is set small.
  • the volume fluctuation when the oil 103 containing the refrigerant is supplied to the depressions 123 is small.
  • there is not much pressure drop in the gap since the foaming phenomenon of the refrigerant dissolved in the oil 103 does not occur much, the oil film created by the dynamic pressure generated during sliding is less likely to be broken by the foaming of the refrigerant. Therefore, the action of preventing metal contact is maintained at a high level, so that the abrasion resistance is high and the action of preventing the occurrence of abnormal noise is enhanced.
  • the area ratio of the recesses 123 to the surface area of the sliding surface 7177 mm is 40 to 80%, the spherical shape of the recesses 123 is maintained.
  • the inclined surface formed by the recess 1 2 3 and the flat surface parallel to the sliding surface 7 17 ⁇ are uniformly provided. That is, the same effect as that of a general tapered land bearing can be obtained. This further increases the dynamic pressure generated during sliding, The effect of further preventing metal contact is obtained. ⁇
  • FIG. 55A and 55B are enlarged views of a portion where a discharge path and a close contact coil spring in a refrigerant compressor are in contact with each other according to Embodiment 8 of the present invention.
  • the basic structure of the refrigerant compressor according to the present embodiment is the same as that of the refrigerant compressor described in Embodiment 7 with reference to FIG.
  • fine recesses (hereinafter, recesses) 123 are formed substantially uniformly on the surface of the steel pipe constituting the discharge path 171.
  • a mixed layer containing molybdenum disulfide (MoS 2 ) 3 23 is formed on the surface of the steel pipe constituting the discharge path 7 17 .
  • MoS 2 molybdenum disulfide
  • the depressions 123 are formed almost uniformly on the surface of the mixed layer 323. Further, it is preferable that the depression 123 has a spherical shape and a size of 2 m to 20 ⁇ m in diameter and 0.2 to 1.0 m in depth. Further, it is preferable that the ratio of the area occupied by the recesses 123 to the surface area of the contact surface 171 A with which the discharge path 171 contacts the spring 718 is 40 to 80%. The method of forming such a mixed layer 3 23 or depression 1 2 3 is the same as in the third embodiment.
  • the refrigerant gas is a hydrocarbon-based refrigerant containing no chlorine, and the oil 103 is compatible with this refrigerant.
  • the compressor body 707 always generates micro-vibration while the compression section 107 is being driven, and the compressor body 707 swings largely due to inertial force when starting and stopping. As a result, the discharge path 717 swings right and left and back and forth, so that the steel pipe and the spring 718 constituting the discharge path 717 come into intermittent contact with each other. As described above, the discharge path 7 17 and the spring 7 18 are contact portions that come into contact with the driving of the compression unit 107.
  • a mixed layer 3 2 3 including M o S 2 is formed on the contact surface 7 1 7 A of the discharge passage 7 1 7. Since M o of S 2 tissue is dense hexagonal, it exhibits a solid lubricating action by even if solid contact is M o S 2 is cleaved at a low friction coefficient. As a result, the friction coefficient of the contact portion is reduced, and the occurrence of abnormal noise due to metal contact is effectively suppressed.
  • the purity of Mo S 2 is 98% or more. 1 ⁇ 0 3 by impurity having a high coefficient of friction than 2 becomes extremely small, the friction coefficient of the contact portion is further reduced, generation of abnormal sound due to metal contact is suppressed to further.
  • the preferred form of the depressions 123 is the same as in the seventh embodiment. Then, in order to form a depression 1 23 on the surface of the discharge path 7 17 made of a steel pipe, a sphere of Mo 2 is made to collide with the surface at a certain speed or more. For this reason, since the structure of the discharge path 7 17 surface layer is martensitic, the surface hardness is increased and the wear resistance is improved.
  • hydrocarbon-based refrigerant is used for the refrigerant gas, it dissolves into oil 103 despite its high compatibility with oil 103.
  • the foaming phenomenon of the flowing refrigerant does not occur much.
  • the oil film is less likely to be broken by the foaming of the refrigerant, so that the destruction of the ozone layer and global warming are suppressed, and the abrasion resistance is high and abnormal noise is prevented.
  • a refrigerant compressor with a reduced number of parts and a reduced production cost is realized.
  • the refrigerant compressor is described as a reciprocating compressor. Further, the same effect can be obtained even if the refrigerant compressor has a path for leading the refrigerant gas out of the container from a compression mechanism such as a one-way compressor or a linear compressor.
  • FIG. 56 is a cross-sectional view of the refrigerant compressor according to the present embodiment.
  • FIG. 57A is an enlarged view of a portion where the compression coil spring 900 and the holding member 922 are in contact with each other in the support portion 923 of the refrigerant compressor of FIG.
  • the stator fastening port 919 for fastening the stator 104 of the electric unit 106 has a holding member 92 formed integrally with the head.
  • a holding member 922 is fixed to the bottom of the inner wall of the container 101.
  • a compression coil spring (hereinafter referred to as a spring) 908 has upper and lower ends respectively inserted into the holding member 920 and the holding member 922, and the spring 908 and the holding members 922, 922 are respectively inserted into the holding member 922 and the holding member 922.
  • the support portion 923 is formed.
  • the spring 908 and the holding members 922 and 922 are formed of an iron-based metal material. At least one of the mutual contact surfaces of the spring 908 and the holding member 920 and the spring 908 and the holding member 922 has almost uniform dents (hereinafter referred to as dents) 123. Is formed.
  • FIG. 57A shows, as an example, a state in which a minute recess 1 23 is formed in the contact surface 924 of the holding member 922.
  • the shape of the depressions 123 is preferably spherical, and the size is preferably 2 nm to 20 m in diameter and 0.2 to 1.0 Om in depth. Further, the ratio of the area occupied by the depressions 123 to the mutual sealing surface area is preferably 40 to 80%.
  • the method for forming the depressions 123 in the springs 908 and the holding members 922 and 922 is the same as the method for forming the depressions 123 in the first embodiment.
  • the refrigerant gas is a hydrocarbon-based refrigerant containing no chlorine, and the oil 103 is compatible with this refrigerant.
  • the refrigerant compressor configured as described above will be described below.
  • the piston 115 moves linearly with the rotation of the crankshaft 108, the volume of the compression chamber 116 changes.
  • the refrigerant gas (not shown) is compressed and discharged to the outside of the container 101 through the discharge path 7 17.
  • the oil 103 is supplied to each sliding part from the oil supply pump 111 as the crankshaft 108 rotates, lubricating the sliding part, and the container 101 from the tip of the eccentric part 110 Released into
  • the compressor body 707 always generates a slight vibration while the compressor section 107 is being driven, and the compressor body 707 swings largely due to inertial force when starting and stopping.
  • the spring 908 swings right and left and back and forth, the spring 908 and the holding member 920 and the spring 908 and the holding member 922 intermittently come into contact with each other.
  • the spring 908 and the holding member 922 and the spring 908 and the holding member 922 are contact portions that come into contact with the driving of the compression portion 107.
  • the contact surface 924 of the holding member 922 has microdents 123 formed almost uniformly. This reduces the area between the contacts and reduces metal contact. Further, when forming the depressions 123, the structure of the surface layer of the holding member 922 becomes martensite, and the surface strength increases. Therefore, the wear resistance and impact resistance of the holding member 9222 are improved. To enable this effect For this purpose, it is desirable to form minute recesses 1 23 on all contact surfaces of the spring 9 08 and the holding members 9 20, 9 22.
  • the oil 103 is retained in the recesses 123.
  • the gap between the spring 9 08 and the holding members 9 2 0 and 9 2 2 becomes narrow, the oil 1 in the recess 1 2 3 and the relative motion of the contact part cause the oil 1 to enter the narrow gap. 0 3 is drawn.
  • a pressure supporting the load is generated in the oil 103 to form a wedge-shaped oil film.
  • This wedge-shaped oil film effectively prevents abnormal noise by preventing metal contact on the contact surfaces.
  • the shape of the depressions 123 is spherical, the flow of the oil 103 that generates an oil film generated upon contact makes it easy to form a vortex in the depressions 123. This situation is the same as that described in the first embodiment with reference to FIG. As a result, the generated oil pressure prevents metal contact, thereby preventing the occurrence of abnormal noise.
  • hydrocarbon-based refrigerant is used as the refrigerant gas
  • the foaming phenomenon of the refrigerant dissolved in the oil 103 as described above is not so high as described above, despite the refrigerant having high compatibility with the oil 103. Does not occur. Therefore, the oil film is less likely to be broken by the foaming of the refrigerant.
  • the use of hydrocarbon refrigerants that do not contain chlorine suppresses zoning of the ozone layer and global warming even when it is open to the atmosphere, and has high abrasion resistance and prevents the generation of abnormal noise. . As described above, a refrigerator having a reduced number of parts and a reduced production cost can be obtained.
  • FIG. 5 7 As shown in B, may be formed a contact surface 9 2 4 such mutual contact surfaces molybdenum disulfide (M o S 2) mixed layer 3 2 3 is fixed to.
  • Mo S 2 molybdenum disulfide
  • the method of forming Mo S 2 on the surface of the contact portion is the same as in the third embodiment.
  • M o S 2 is low friction even when solid contact Cleavage by number exerts a solid lubrication effect.
  • the description of the purity of Mo S 2 is the same as that of the third embodiment ′.
  • the depressions 123 may be formed substantially uniformly on the surface of the mixed layer 32 3 as shown in FIG. 57A.
  • the method of simultaneously forming the mixed layer 3 2 3 and the depression 1 2 3 in this way is the same as in the third embodiment.
  • the preferred form of the depressions 123 is the same as described above. In this way, the effects described with reference to FIGS. 57A and 57B can be combined.
  • the holding members 922 and 922 and the spring 908 arranged therebetween constitute the support portion 923, which is a so-called coil spring suspension system.
  • the support portion 923 may be configured by, for example, a leaf spring method or a torsion bar method. In these cases, the same effect can be obtained by providing the depressions 123 and the mixed layer 323 at the positions where the compression unit 107 slides by driving.
  • the refrigerator is a reciprocating compressor, but the refrigerator may be a rotary compressor, a scroll compressor, a linear compressor, a starring pump, etc., regardless of the type. A similar effect can be obtained.
  • the refrigerant compressor of the present invention has a compression section, a drive section, and first and second contact sections.
  • the compression section is housed in a closed container and compresses the refrigerant gas.
  • the drive unit drives the compression unit.
  • the first and second contact portions come into contact and slide with each other by driving the compression unit.
  • On its surface at least one of a plurality of evenly arranged depressions and a mixed layer to which molybdenum disulfide (MoS 2 ) is fixed is formed.
  • These contact parts include sliding parts such as pistons and pores, valve seats and movable valves for suction and discharge valves, steel pipes and tight coil springs that constitute the discharge path, and holding parts for holding compression parts.
  • There are support parts such as materials and springs. With this configuration, the wear resistance of the first and second contact portions is increased, and a highly reliable and highly efficient compressor can be obtained. Refrigerators using such compressors also have high reliability and high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

冷媒圧縮機は、圧縮部と、駆動部と、第1、第2接触部とを有する。圧縮部は密閉容器内に収容され、冷媒ガスを圧縮する。駆動部は圧縮部を駆動する。第1、第2接触部は、圧縮部の駆動により接触したり摺動したりする。その表面には均等に配置された複数のくぼみと、二硫化モリブデン(MoS2)を固着させた混合層との少なくともいずれかが形成されている。この構成により、第1、第2接触部の耐摩耗性が高まる。

Description

明細書
冷媒圧縮機とそれを用いた冷凍機 技術分野
本発明は、 冷蔵庫、 エアーコンディ ショナー等に使用される冷媒 圧縮機とそれを用いた冷凍機に関する。 背景技術
近年、 地球環境保護の観点から化石燃料の使用を少なくする高効 率の圧縮機の開発が進められている。
図 5 8は従来技術による密閉型電動冷媒圧縮機の断面図である。 図 5 9はその圧縮機の支持構造図である。 密閉容器 (以下、 容器) 1 は底部にオイル 2 を貯留するとともに、 固定子 3 と回転子 4から なる電動部 5 とこれによって駆動される圧縮部 6 を収容している。 電動部 5 と圧縮部 6からなる圧縮機本体 7は密閉容器 1 内に圧縮コ ィルばね (以下、 ばね) 8 によって弾性的に支持されている。
クランクシャフ ト 9は回転子 4を固定した主軸部 9 Aと主軸部 9 Aに対し偏心して形成された偏心部 9 Bからなり、 給油ポンプ 1 0 が設けられている。主軸部 9 Aは軸受部 2 3 により軸支されている。 シリ ンダーブロック 1 1 は略円筒形のポア 1 2からなる圧縮室 1 3 を有している。. ポア 1 2 に遊嵌されたピス トン 1 4は、 偏心部 9 B とスライ ド機構にて連結されており、 ポア 1 2の端面はバルブプレ ート 1 5で封止されている。
ヘッ ド 1 6は高圧室を形成し、 ヘッ ド 1 6から容器 1外に圧縮さ れた冷媒ガスを導出する吐出経路 1 7は管体 1 8 を介して容器 1外 の冷凍サイクルの高圧側 (図示せず) に接続されている。 管体 1 8 は、 耐熱性、 耐冷媒性、 耐油性を有する高分子材料からなり、 吐出 経路 1 7の共振を防止している。
電動部 5の固定子締結ポルト 1 9の頭部には合成樹脂製の保持部 材 2 0が装着され、 容器 1 の内壁に設けた突起部 2 1 には合成樹脂 製の保持部材 2 2が装着されている。 保持部材 2 0 、 2 2 にはばね 8が嵌装されている。
以上のように構成された冷媒圧縮機について、 以下その動作を説 明する。 商用電源から供給される電力は電動部 5 に供給され、 電動 部 5 の回転子 4を回転させる。 回転子 4はクランクシャフ ト 9 を回 転させ、 偏心部 9 Bの偏心運動がピス トン 1 4を駆動する。 これに より ピス トン 1 4はポア 1 2内を往復運動し、 容器 1 内に導かれた 冷媒ガスは吸入バルブ (図示せず) を介して圧縮室 1 3内に導入さ れる。 そして連続して圧縮され、 圧縮された冷媒ガスは、 吐出バル ブ (図示せず)、 吐出経路 1 7、 管体 1 8 を介して容器 1外へ送られ る。
オイル 2はクランクシャフ ト 9の回転に伴って給油ポンプ 1 0か ら各搢動部に給油され、 摺動部を潤滑するとともに、 偏芯部 9 B先 端より容器 1 内に放出される。 ピス トン 1 4 とポア 1 2 との間では シールとして機能する。
クランクシャフ ト 9の主軸部 9 Aと軸受部 2 3、 ピス トン 1 4と ポア 1 2等はそれぞれ相互に摺動部を形成している。 従来の圧縮機 では、 摺動部を構成する摺動部材の一方は、 窒化処理した鉄系材料 にリ ン酸マンガン処理した材料にて形成され、 摺動部材の他方は、 陽極酸化処理したアルミニウムダイキャス トにて形成されている。 このような技術は例えば特開平 6 _ 1 1 7 3 7 1号公報に開示され ている。
しかしながら、 摺動部に硬度が低いリ ン酸マンガン処理を用いて いる場合、 起動時等の摺動部に油膜が発生しない状態で金属接触が 生じるとリ ン酸マンガン層が摩耗して無くなる。 このため摩擦係数 が高くなり摺動損失が増加する可能性がある。 また摩擦係数を低減 するために、 摺動部間の隙間を小さぐすると、 金属接触が生じてリ ン酸マンガン層が摩耗して無くなり摩耗の増加や異常摩耗が発生す る可能性がある。 更に、 ピス トン 1 4 一ポア 1 2間では、 ピス トン 1 4の摩耗量が多くなることにより、 ピス トン 1 4 一ポア 1 2間の 隙間が大きくなる。 これにより、 圧縮した冷媒ガスがピス トン 1 4 とポア 1 2 との隙間から漏れて効率が低下する可能性がある。
加えて、 摺動部における粘性抵抗を下げるためにオイルの粘度を 低く した場合には、 上記課題がさらに顕著になる。
また、 別の従来の技術による圧縮機では、 摺動部表面に固体潤滑 剤である二硫化モリブデン ( M 0 S 2) が塗布されている。 このよう な圧縮機は例えば、 特開平 8 — 1 2 1 3 6 1号公報、 特開平 9 一 1 1 2 4 6 9号公報に開示されている。
M o S 2 は摺動面に塗布するためにポリアミ ドイミ ド樹脂 ( P A I ) のバイ ンダ一を含んでいる。 しかしながら P A I は、 M o S 2 単体に比較して摩擦係数が高く、 その結果、 摺動損失が増加する。 また、 摺動部の母材を鉄やアルミニウム等の金属材料で構成する場 合、 バインダーとして用いる P A I との結合力が通常の金属結合に 比較して弱い。 このため、 M o S 2 を塗布した摺動部において母材 とバインダーとの界面ではく離が生じ、 その結果 M o S 2 の耐摩耗 性向上の効果が得られず、 摩耗量が増加することがある。
また、 ピス トン 1 4の直線運動が圧縮部 6 を加振することで冷'媒 圧縮機 7 の回転中、 常にばね 8は微振動を発生するとともに、 起動、 停止時は慣性力によって圧縮部 6が大きく振れる。 その結果、 ばね 8 もゆれるため、 ばね 8 と保持部材 2 0 , 2 2 とが間欠的に接触し こすれる。 このとき、 保持部材 2 0 、 2 2は合成樹脂製である為に こすれ音を吸収する。 このような冷媒圧縮機に関する技術は特開平 6 - 8 1 7 6 6号公報に開示されている。
しかしながら、 この構成では、 保持部材 2 0 と保持部材 2 2が合 成樹脂製の別部品である為に部品点数が増加し、 製作コス トが増加 する。
また、 圧縮部 6 の起動、 停止時に、 圧縮部 6が大きく振れるため、 吐出経路 2 2 も大きく揺れる。 このため、 吐出経路 2 2 と管体 2 3 とが間欠的に接触しこすれる。管体 2 3は高分子材料からなるため、 この際のこすれ音は吸収されるが、 耐熱性、 耐冷媒性、 耐油性を有 するため高コス トである。
さらに圧縮機では圧縮部 6の駆動に伴い、 圧縮室 1 3 と容器 1 と の間で冷媒ガスを吸入、 吐出するためのバルブ (図示せず) が作動 する。 その際、 弁座とパルブシート等 (図示せず) が接触し、 騒 を発する。
このように、 圧縮部 6の駆動に伴い、 様様な部分が接触し足り摺 動する。 そのために磨耗による性能低下を生じたり 、 騒音を発した りする。 従来の技術でこれを解消するには 、 部品点数の増加や高価 な材料を適用する必要がある 発明の開示
本発明の冷媒圧縮機は、 圧縮部と、 駆動部と、 第 1、 第 2接触部 とを有する。 圧縮部は密閉容器内に収容され、 冷媒ガスを圧縮する。 駆動部は圧縮部を駆動する。 第 1、 第 2接触部は、 圧縮部の駆動に より接触したり摺動したりする。 その表面には均等に配置された複 数のくぼみと、 二硫化モリブデン (M o S 2) を固着させた混合層と の少なく ともいずれかが形成されている。 図面の簡単な説明
図 1 は本発明の実施の形態における冷媒圧縮機の断面図である 図 2は図 1 におけるピス 卜ンとポアとにより形成される摺動部の 拡大図である
図 3は図 1 におけるピス トンとポアとが摺動する時のオイルの流 れを示した図である。
図 4は図 1 の冷媒圧縮機を含む冷凍機の冷凍サイクル図である 図 5は本発明の実施の形態における焼付き面圧を示した図であ 図 6は本発明の実施の形態における摩擦係数を示した図である 図 7は本発明の実施の形態における摩耗量を示した図である 図 8は図 1 における主軸部と軸受部とにより形成される摺動部の 拡大図である 図 9は図 1 におけるピス 卜ン周辺の拡大図である。
図 1 0は図 9 におけるピス 卜ンピンとコンロッ ドとにより形成さ れる摺動部の拡大図である
図 1 1 は図 1 におけるスラス 卜軸受部周辺の拡大図である 図 1 2 は図 1 1 におけるスラス ト部とスラス トヮッシャとにより 形成される摺動部の拡大図であ
図 1 3は本発明の実施の形態における摺動面とリ ン酸マンガン層 との摩擦係数の特性図である。
図 1 4は本発明の実施の形態におけるコンプレッサーの冷凍能力 の特性図である。
図 1 5 は本発明の実施の形態によるコンプレッサーにおける効率 の特性図である。
図 1 6は本発明の実施の形態における他の冷媒圧縮機の断面図で ある。
図 1 7は図 1 6の冷媒圧縮機を含む冷凍機の冷凍サイクル図であ る。
図 1 8 は図 1 6 における G— G線断面図である。
図 1 9は図 1 8 におけるべ一ンと口一 ングピス トンとにより形 成される摺動部の拡大図である
図 2 0は図 1 8 におけるローリ ングピス トンと偏心部とにより形 成される摺動部の拡大図である
図 2 1 A , Bは、 本発明の実施の形態におけるピス 卜ンとポアと により形成される摺動部の拡大図である
図 2 2は、 図 2 1 Bにおける摺動時のォィルの流れを示した図で ある
図 2 3 は本発明の実施の形態における摩擦係数を示した図である 図 2 4は本発明の実施の形態における摩擦量を示した図である。 図 2 5 A, Bは、 図 1 における主軸部と軸受部とにより形成され る別の摺動部の拡大図である。
図 2 6 A , Bは、 図 1 におけるピス トンピンとコンロッ ドとによ り形成される別の摺動部の拡大図である
図 2 7 A , Bは、 図 1 におけるスラス 卜部とスラス トヮッシャと により形成される別の摺動部の拡大図でめる
図 2 8は本発明の実施の形態における摩擦係数の特性図である。 図 2 9 は本発明の実施の形態における ンプレッサ一の冷凍能力 の特性図である。
図 3 0は本発明の実施の形態における Πンプレッサーの効率の特 性図である。
図 3 1 A , Bは、 図 1 6におけるべ ンとローリ ングピス トンと により形成される別の摺動部の拡大図であ 0
図 3 2 A , Bは、 図 1 6における口 ングビス トンと偏心部と により形成される別の摺動部の拡大図でめ
図 3 3は本発明の実施の形態における 媒圧縮機に設けた吸入バ ルブ装置の縦断面図である。
図 3 4は図 3 3 における吸入バルブお gの吸入弁座を示す平面図 である。
図 3 5は図 3 3 における吸入バルブ壮置の吸入可動弁を示す平面 図である。
図 3 6は本発明の実施の形態における 媒圧縮機に設けた吐出バ ルブ装置の縦断面図である。
図 3 7は図 3 6 における吐出バルブ壮置の吐出弁座を示す平面図 である。
図 3 8は図 3 6 における吐出バルブ壮置の吐出可動弁の相互シー ル面側を示す平面図である。
図 3 9は図 3 6 における吐出バルブ装 の吐出可動弁の衝打部側 を示す平面図である。
図 4 0は図 3 6における吐出バルブ装置のス トッパを示す平面図 である。
図 4 1 は本発明の実施の形態における冷媒圧縮機に設けた他の吐 出バルブ装置の縦断面図である。 図 4 2は図 4 1 における吐出バルブ装置のバック.ァップリードの 吐出可動弁との衝打部側を示す平面図である。
図 4 3は図 4 1 における吐出バルブ装置のバックアツプリードの ス トツバとの衝打部側を示す平面図である。
図 4 4は図 3 3における吸入バルブ装置の他の吸入弁座を示す平 面図である。
図 4 5は図 3 3 における吸入バルブ装置の他の吸入可動弁を示す 平面図である。
図 4 6は図 3 6における吐出バルブ装置の他の吐出弁座を示す平 面図である。
図 4 7は図 3 6 における吐出バルブ装置の他の吐出可動弁の相互 シール面側を示す平面図である。
図 4 8は図 3 6 における吐出バルブ装置の他の吐出可動弁の衝打 部側を示す平面図である。
図 4 9は図 3 6 における吐出バルブ装置の他のス トツパを示す平 面図である。
図 5 0は図 4 1 における吐出バルブ装置の他のバックアツプリ― ドの吐出可動弁との衝打部側を示す平面図である。
図 5 1 は図 4 1 における吐出バルブ装置の他のバックアツプリ― ドのス トツパとの衝打部側を示す平面図である。
図 5 2は本発明の実施の形態によるさらに他の冷媒圧縮機の断面 図である。
図 5 3は図 5 2の冷媒圧縮機を含む冷凍機の冷凍サイクル図であ る。
図 5 4は図 5 2の冷媒圧縮機における吐出経路と密着コイルばね とが接触する部分の拡大図である。
図 5 5 A、 Bは図 5 2の冷媒圧縮機における他の吐出経路と密着 コイルばねとが接触する部分の拡大図である。
図 5 6は本発明の実施の形態によるさらに他の冷媒圧縮機の断面 図である。 図 5 7 A、 B、 Cは図 5 6の冷媒圧縮機における圧縮コイルばね と保持部材とが接触する部分の拡大図である。
図 5 8は従来技術による密閉型電動冷媒圧縮機の断面図である。 図 5 9は図 5 8の圧縮機の支持構造図である。 発明を実施するための最良の形態
以下、 図面を参照しながら本発明の実施の形態を説明する。 なお、 各実施の形態において、 先行する実施の形態と同様の構成をなすも のには同じ符号を付して説明し、 詳細な説明を省略する。
(実施の形態 1 )
図 1 は、 本発明の実施の形態 1 による冷媒圧縮機 1 0 0の断面図 である。 図 2は図 1 におけるピス トンとポアとにより形成される搢 動部の拡大図である。 図 3は図 1 におけるピス トンとポアとが摺動 する時のオイルの流れを示した図である。 図 4は、 冷媒圧縮機 1 0 0 を含む冷凍機の冷凍サイクル図である。 図 5は、 微細くぼみ有り 無しでの焼付き面圧を示した特性図である。 図 6は、 微細く ぼみの 形状、 大きさの違いでの摩擦係数を示した特性図である。 図 7は、 摺動部表面積に対する微細く ぼみの占める割合の違いでの摩耗量を 示した特性図である。
図 1〜図 3 において、 密閉容器 (以下、 容器) 1 0 1 内にはイソ ブタンからなる冷媒ガス 1 0 2が充填されている。 容器 1 0 1 は、 底部にオイル 1 0 3 を貯留し、 固定子 1 0 4 と回転子 1 0 5 とから なる 1 0 6 と、 これによつて駆動される往復式の圧縮部 1 0 7 とを 収容している。 電動部 1 0 6は駆動部であり、 圧縮部 1 0 7 を容器 1 0 1内に密閉できれば、 容器 1 0 1外に設けてもよい。
次に圧縮部 1 0 7 を詳細に説明する。 クランクシャフ ト 1 0 8 は 回転子 1 0 5 を圧入固定した主軸部 1 0 9 と、 主軸部 1 0 9 に対し 偏心して形成された偏心部 1 1 0からなる。 クランクシャフ ト 1 0 8は下端に、 オイル 1 0 3 に連通する給油ポンプ 1 1 1 を設けられ ている。 铸鉄からなるシリ ンダーブロック 1 1 2は略円筒形のポア 1 1 3 と主軸部 1 0 9 を軸支する軸受部 1 1 4 とを形成している。 ポア 1 1 3 に遊嵌されたピス トン 1 1 5は鉄系の材料からなり、 ポア 1 1 3 と共に圧縮室 1 1 6 を形成している。ピス トン 1 1 5は、 ピス トンピン 1 1 7を介して、 連結部であるコンロッ ド 1 1 8 によ つて偏心部 1 1 0 と連結されている。 ポア 1 1 3 の端面はバルブプ レート 1 1 9で封止されている。
へッ ド 1 2 0は高圧室を形成し、 バルブプレー 卜 1 1 9 の、 ポア 1 1 3 と反対側に固定されている。 サクシヨ ンチューブ 1 2 1 は容 器 1 0 1 に固定されるとともに冷凍サイクルの低圧側で熱交換器 6 0 に接続され、 冷媒ガス 1 0 2 を容器 1 0 1 内に導く。 サクシヨ ン マフラ一 1 2 2は、 バルブプレート 1 1 9 とヘッ ド 1 2 0 に挟持さ れている。 へッ ド 1 2 0から吐出される圧縮された冷媒 1 0 2は熱 交換器 7 0へ送られ、 放熱し、 膨張弁 8 0 を介して熱交換器 6 0へ 戻り、 吸熱する。 このようにして冷凍機が構成されている。
主軸部 1 0 9 と軸受部 1 1 4、 ピス トン 1 1 5 とポア 1 1 3、 ピ ス トンピン 1 1 7 とコンロッ ド 1 1 8、 偏心部 1 1 0 とコンロッ ド 1 1 8はそれぞれ相互に摺動部を形成している。 摺動部を形成する 各部は圧縮部 1 0 7の駆動により摺動し合う接触部である。
ピス トン 1 1 5の摺動面 1 1 5 Aには、 複数の微細くぼみ (以下、 く ぼみ) 1 2 3がほぼ均一に形成されている。 く ぼみ 1 2 3の形状 は球面であり、 さらに大きさが直径 2 0 m〜 5 0 m、 深さが 1 m〜 l 0 mであることがより好ましい。 さらに摺動面 1 1 5 A の表面積に対するくぼみ 1 2 3の占める面積の割合は 4 0〜 8 0 % であることがより好ましい。 さ らに鉄系材料においては摺動部表面 の組織をマルテンサイ ト化することがより好ましい。
このようなくぼみ 1 2 3は、 表面のエッチング、 プレス成型等に より形成される。 本実施の形態においては、 鋼球やセラミ ック球等 の硬度の硬い球をある速度以上で衝突させる方法でく ぼみ 1 2 3 を 形成している。 例えば铸鉄の表面を加工硬化によって硬度を高くす る場合には、 铸鉄材料の表面に直径 2〜 5 0 m程度のセラミック スゃ鋼球のような、 被加工部品より硬質の小球を 2 0 s e c / m i n以上の速度になるように投射装置により加速して噴射させる。 こ のように、 被加工部品に高速で衝突させると、 表面に残留圧縮応力 が付与され、 ピッカース硬度で 6 0 0 H V程度まで硬度を咼めるこ とができる。
以上のように構成された冷媒圧縮機 1 0 0 について、 以下その動 作を説明する
商用電源から供給される電力は電動部 1 0 6 に供給され 、 電動部
1 0 6の回転子 1 0 5が回転する。 回 子 1 0 5 はクランクシャフ 卜 1 0 8 を回転させ、 偏心部 1 1 0の偏心運動が連結部の ンロッ ド、 1 1 8からビス 卜ン 'ピン 1 1 7 を介してピス トン 1 1 5 を駆動す る ·<)しにより ピス 卜ン 1 1 5はポア 1 1 3内を往復運動する。 サ クショ ンチューブ 1 2 1 を通して容器 1 0 1 内に導かれた冷媒ガス
1 0 2はサクシヨ ンマフラ一 1 2 2から吸入され、 圧縮室 1 1 6内 で連続して圧縮される
オイル 1 0 3はクランクシャフ ト 1 0 8の回転に伴い、 給油ポン プ 1 1 1から各摺動部に給油され、 摺動部を潤滑するとともに、 ピ ス 卜ン 1 4とポア 1 2 との間ではシールとして機能する。
ビス 卜ン 1 1 5がポア 1 1 3内を往復運動して冷媒ガス 1 0 2 を 圧縮する際、 圧縮された冷媒ガス 1 0 2の一部はピス トン 1 1 5 と ポア 1 1 3 との隙間を経て容器 1 0 1 内に漏出し、 体積効率を下げ る。 しかしながら、 本実施の形態においてはピス トン 1 1 5 とポア 1 1 3 との隙間に漏出したガスはくぼみ 1 2 3に達する。 すると、 くぼみ 1 2 3 においてピス トン 1 1 5 とポア 1 1 3 の隙間の体積が 増加することからラビリ ンスシールと同様の作用が生じ、 漏出した 冷媒ガスの流速は急速に低下する。 この結果、 冷媒ガス 1 0 2の漏 れ量が減少する。 その結果、 冷媒圧縮機 1 0 0の体積効率が向上す るため、 冷媒圧縮機 1 0 0 の圧縮効率は向上する。
次に、 図 5 を用いて微細くぼみ有り無しでの焼付き面圧を測定し た結果について説明する。 測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 1 3〇粘度グレードが¥。 8から¥ 1 0の エステルオイルを使用し、 摺動速度を 1. O mZ s において行われ る。
図 5より明らかに、 くぼみ 1 2 3を設けたピス トン 1 1 5はく ぼ み 1 2 3が無いものに比べ、 焼きつき面圧の大幅な改善がされてい る。 摺動部表面にくぼみ 1 2 3 をほぼ均一に形成することにより、 供給されたオイル 1 0 3がくぼみ 1 2 3 に保持される。 摺動部材ど う しの隙間が摺動方向に対して狭くなつたとき、 く ぼみ 1 2 3内の オイル 1 0 3の粘性と摺動部の相対運動とにより、 狭くなつた隙間 にオイル 1 0 3が引き込まれる。 これにより、 負荷を支える圧力が オイル 1 0 3 に生じく さび形油膜が形成される。 このく さび形油膜 が、 摺動部間に発生する金属接触を防止する。 このことから焼付き 荷重が上昇すると考えられる。
次にくぼみ 1 2 3の形状と大きさをパラメ一夕一に摩擦係数を測 定した結果を図 6に示す。 測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 V G 8から V G 1 0のエステルオイルを使用 し、 摺動速度を 1. O mZ s 、 面圧 : 0. 5 M P aにおいて行われ る。
この結果から、 球面形状のく ぼみ 1 2 3 を設けたピス トン 1 1 5 は、 角状の微細くぼみを設けたものに比べ、 摩擦係数が低下してい ることがわかる。 これは、 くぼみ 1 2 3 の形状を球面とすることに より、 投影面積の同じ多角錐に'比べて体積が増加することにより、 形成されるく さび形油膜の油圧が増加することによると考えられる。 つまり、 図 3 に示すように、 く ぼみの形状が球面であれば、 插動部 が摺動する際に生じる油膜を発生させるオイルの流れがくぼみの中 でうず流を形成し易くなり、 その結果油圧が発生することで金属接 触が防止される。
また、 形状が球面であることから、 摺動方向に関わらず、 摺動に ともなう摺動部間の隙間の変化量が一定となり、 摺動部全体に均一 な油膜が形成される。 そして、 ピス トン 1 1 5 とポア 1 1 3 との隙 間の偏りが小さくなり、 ピス トン 1 1 5 の側面から冷媒ガス 1 0 2 の漏れる量が少なくなるためと考えられる。
さらに、 くぼみ 1 2 3の大きさが直径 2 0〜 3 0 11、 深さ 1〜
5 mの場合に摩擦係数が最小の値になる。 この大きさを中心にく ぼみ 1 2 3の大きさが直径 2 0 ;ii m〜 5 0 ^ m、 深さ 1 m〜 l 0 mの範囲でリ ン酸マンガン処理した場合より低い値となっており、 潤滑摺動条件が改善される。
オイル 1 0 3への冷媒 1 0 2の溶け込み量は雰囲気圧力が低いほ ど少なくなる。 く ぼみの大きさが直径 5 0 si m, 深さ 1 0 m以上 とした場合に比較して、体積が小さくなる直径 2 0 m〜 5 0 m, 深さを 1〜 1 0 ^ mのく ぼみにおいては、 雰囲気圧力の低下が少な い。 このため、 圧縮された冷媒ガス 1 0 2の圧力が高圧のまま保た れ、 オイル 1 0 3中に溶け込み可能な冷媒量の低下が抑えられる。 これによりオイル 1 0 3 中の冷媒の発泡現象が少なくなり、 発泡に より揹動部に形成された油膜の破断により生じる金属接触の発生が 防止される。 このようにして、 摩擦係数の上昇が防止されると考え られる。
図 7 に示す摩耗体積からも同様のことが言える。 なお、 測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 V G 8から V G 1 0のエステルオイルを使用し、摺動速度を 1. O m/ s 、面圧 : 0. 5 M P aにおいて行われる。 図 7 は、 摺動部表面積に対するく ぼみ 1 2 3以外の平面部分の占める割合と摩耗体積との関係を示し ている。 すなわち平面比が小さいほどく ぼみ 1 2 3の占める割合が 大きい。
この結果'からは、くぼみ 1 2 3 を摺動部表面に設けることにより、 リ ン酸マンガン処理した場合より摩耗量が少なくなることが判る。 平面比が 5 2 %では摩耗量が 0 mm3 となる。 しかし、 摺動部表面 積に対するくぼみ 1 2 3の占める割合を多くすることにより摩耗量 が増加する。 さらに詳細な検討の結果、平面比が 2 0 %以上、 6 0 % 以下、すなわち動部表面積に対する微細く ぼみの占める面積割合が、 4 0 %以上 8 0 %以下の場合に、 図中点線で示した実使用上問題の ない摩耗量である 0 . 0 5 m m 3以下となる。
このような範囲においては、 くぼみ 1 2 3 により滑り方向へのく さび膜が形成される傾斜表面部と、 摺動面に対して平行となる平面 部とが摺動部に設けられると考えられる。 これにより、 テ一パーラ ンド軸受と同様の形状、 効果が得られ、 発生する油圧により支えら れる限界荷重が上昇し、 金属接触が低下すると考えられる。
なお、 摺動部材に鉄系材料を用いる場合、 摺動部表面にくぼみ 1 2 3 を形成する手法として、 表面に鋼球、 セラミックス球等の物質 を一定速度以上で衝突させる。 この方法によると、 摺動部の表面層 の組織がマルテンサイ ト化し、 摺動部材の表面強度が上昇し、 摩耗 の進行速度が低下する。 またく ぼみ 1 2 3 を形成することにより摺 動部間の面積が低減され、 金属接触が低減される。
以上、 本実施の形態においては、 ピス トン 1 1 5の摺動面にほぼ 均一にく ぼみ 1 2 3 を設ける。 また、 ポア 1 1 3 にくぼみ 1 2 3 を 設けたり、 ピス トン 1 1 5 とポア 1 1 3 との双方に施しても、 同様 の作用効果が得られる。
次に、 主軸部 1 0 9 と軸受部 1 1 4 とにより形成される摺動部に ついて説明する。 図 8は図 1 における主軸部 1 0 9 と軸受部 1 1 4 とにより形成される摺動部の拡大図である。
クランクシャフ ト 1 0 8の主軸部 1 0 9 には、 その摺動面 1 2 5 に複数のく ぼみ 1 2 3がほぼ均一に形成されている。
以上のように構成された冷媒圧縮機 1 0 0 について、 以下その動 作を説明する。
摺動面 1 2 5 にく ぼみ 1 2 3 をほぼ均一に形成したクランクシャ フ ト 1 0 8の主軸部 1 0 9が軸受部 1 1 4内を回転運動する。 これ により、 給油ポンプ 1 1 1から冷媒を含んだオイル 1 0 3が軸受部 1 1 4とクランクシャフ ト 1 0 8 との間の摺動部に供給される。 一 方、 軸受部 1 1 4内をクランクシャフ ト 1 0 8がー回転する間に主 軸部 1 0 9 と軸受部 1 1 4 との隙間がくぼみ 1 2 3の深さに対応し て変化する。 その際、 主軸部 1 0 9 と軸受部 1 1 4 との隙間に、 ォ ィル 1 0 3が引き込まれ、 く さび形油膜が形成される。
また、 く ぼみ 1 2 3が微細であることから冷媒が溶け込んだォィ ル 1 0 3がく ぼみ 1 2 3内に供給されてもく ぼみ 1 2 3での体積変 化が小さく雰囲気圧力の低下が少ない。 このため、 圧縮された冷媒 ガス 1 0 2の圧力が高圧のまま保たれ、 オイル 1 0 3中に溶け込み 可能な冷媒量の低下が抑えられる。 これによりオイル 1 0 3中の冷 媒の発泡現象が少なくなり、 発泡により搢動部に形成された油膜の 破断により生じる金属接触の発生が防止され、 摩擦係数の上昇が防 止される。
さらに、 オイル 1 0 3がくぼみ 1 2 3 に溜められ、 摺動部への給 油が行われない冷媒圧縮機 1 0 0運転開始時においても軸受部 1 1 4 と主軸部 1 0 9 との間に常にオイル 1 0 3が存在する。 このため 焼付き荷重が上昇して異常摩耗が防止される。
以上、 本実施の形態においては、 クランクシャフ ト 1 0 8の主軸 部 1 0 9の摺動面 1 2 5 にくぼみ 1 2 3 をほぼ均一に設ける。 くぼ み 1 2 3 を形成することにより摺動部間の面積が低減され、 金属接 触が低減される。 また、 軸受部 1 1 4にくぼみ 1 2 3 を設けても、 主軸部 1 0 9 と軸受部 1 1 4 との双方に設けても、 同様の作用効果 が得られる。
次に、 コンロッ ド 1 1 8 とピス トンピン 1 1 7 とにより形成され る摺動部について説明する。 図 9は図 1 におけるピス トン周辺の拡 大図である。 図 1 0は図 9 におけるピス トンピン 1 1 7 とコンロッ ド 1 1 8 とにより形成される摺動部の拡大図である。
ピス トンピン 1 1 7は、 摺動面 1 2 7 にく ぼみ 1 2 3 をほぼ均一 に形成されている。 くぼみ 1 2 3を形成することにより摺動部間の 面積が低減され、 金属接触が低減される。
以上のように構成された冷媒圧縮機 1 0 0 について、 以下その動 作を説明する。 クランクシャフ ト 1 0 8が回転することにより連結 部であるコンロッ ド 1 1 8 によって連結されているピス トンピン 1 1 7を介してポア 1 1 3に遊嵌されたピス トン 1 1 5が往復運動す る。 この際、 コンロッ ド 1 1 8とピス トンピン 1 1 7 とは、 揺動運 動を行ない、 ピス トン 1 1 5が上死点または下死点に達したときに 速度が O mZ s となり、 油膜が形成できない状態になる。 この時に も、 ピス トンピン 1 1 7の摺動面 1 2 7におけるく ぼみ 1 2 3にォ ィル 1 0 3が保持されている。 このため、 摺動部分に常にオイル 1 0 3が存在し、 焼付き荷重が上昇して異常摩耗が防止される。
以上、 本実施の形態においては、 ピス トンピン 1 1 7の摺動面 1 2 7にく ぼみ 1 2 3をほぼ均一に設ける。 また、 コンロッ ド 1 1 8 にく ぼみ 1 2 3を設けても、 ピス トンピン 1 1 7 とコンロッ ド 1 1 8 との双方に設けても、 同様の作用効果が得られる。
次に、 スラス ト軸受部 1 3 5に形成される摺動部について説明す る。 図 1 1は図 1におけるスラス ト軸受部 1 3 5周辺の拡大図であ る。 図 1 2は図 1 1 におけるスラス ト部 1 3 0とスラス トヮッシャ 1 3 4とが接する部分の拡大図である。
スラス ト部 1 3 0は摺動面 1 3 0 Aにく ぼみ 1 2 3をほぼ均一に 形成されている。
以上のように構成された冷媒圧縮機 1 0 0について、 以下その動 作を説明する。
クランクシャフ ト 1 0 8には、 回転子 1 0 5が圧入固定されてい る。 また、 回転子 1 0 5にはフランジ面 1 3 2が形成され、 軸受部 1 1 4の上端面はスラス ト部 1 3 0になっている。 フランジ面 1 3 2と軸受部 1 1 4のスラス ト部 1 3 0 との間にはスラス トヮッシャ 1 3 4が挿入されている。 フランジ面 1 3 2 とスラス ト部 1 3 0と スラス トヮッシャ 1 3 4とがスラス ト軸受部 1 3 5を構成し、 クラ ンクシャフ ト 1 0 8、 回転子 1 0 5等の垂直荷重を支えている。 従 つて、 冷媒圧縮機 1 0 0が運転を停止しているときも、 スラス ト軸 受部 1 3 5には垂直荷重が負荷されている。
ここで、 スラス ト部 1 3 0の摺動面 1 3 O Aにくぼみ 1 2 3を形 成することにより、 摺動部への給油が行われない冷媒圧縮機 1 0 0 運転開始時においても摺動部表面のく ぼみ 1 2 3 にオイル 1 0 3が 保持される 。 このため、 スラス ト部 1 3 0 とスラス トヮッシャ 1 3
4の間に金属接触が発生する場合でも 、 摺動部の摩擦係数が低くな り、 摺動損失が低下する。 さらに、 く ぼみ 1 2 3 にオイル 1 0 3が 保持され、 摺動部分に常にオイル 1 0 3が存在することにより焼付 き荷重が上昇して異常摩耗が防止される ま/こ 、 <ぼみ 1 2 3 を形 成することにより摺動部間の面積が低減され、 接触が低減され 金
る。
以上 、 本実施の形態においては、 スラス ト軸受部 1 3 5 をフラン ジ面 1 3 2 、 スラス ト部 1 3 0、 スラス トヮッシャ 1 3 4にて構成 し、 くぼみ 1 2 3 を摺動面 1 3 O Aに形成している。 なお、 クラン クシャフ h 1 0 8の主軸部 1 0 9 と偏心部 1 1 0 との間にもスラス 卜部 1 3 7 となるフランジ面 1 3 6がある。 フランジ面 1 3 6 とそ れに対向する軸受部 1 1 4のスラス ト部 1 3 9 とでスラス ト軸受を 構成してもよい。 その場合、 スラス ト部 1 3 7 にくぼみ 1 2 3 を設 ける。 のようにしてする場合においても、 同様の作用効果が得ら れる。
なお本実施の形態においては軸受部 1 1 4のスラス ト部 1 3 0の 摺動面 1 3 0 Aにく ぼみ 1 2 3 をほぼ均一に設ける。 また、 スラス 卜ヮッシャ 1 3 4にくぼみ 1 2 3 を設けても、 スラス トヮッシャ 1
3 4 とスラス ト部 1 3 0 との双方に設けても、 同様の作用効果が得 られる また、 スラス 卜ヮッシャ 1 3 4が回転子 1 0 5のフランジ 面に接する面に微小く ぼみ 1 2 3を設けてもよい。 回転子 1 0 5の フランジ面に微小く ぼみ 1 2 3 を設けてもよい。 さらにクランクシ ャフ 卜 1 0 8 のスラス ト部 1 3 7 にくぼみ 1 2 3 を設けても、 クラ ンクシャフ h 1 0 8のスラス ト部 1 3 7 と軸受部 1 1 4のスラス ト 部 1 3 9 との双方に設けても、 同様の作用効果が得られる。
次に、 オイル 1 0 3 に冷媒 1 0 2が溶け込み易い組合せの場合に ついて、 く ぼみ 1 2 3の大きさとオイルの粘度との関係について説 明する。 図 1 3は、 微細くぼみをほぼ均一に形成した摺動面とリ ン 酸マンガン層との摩擦係数の特性図である。 図 1 4は、 摺動面に微 細く ぼみをほぼ均一に形成した場合とリ ン酸マンガン層を施した場 合でのコンプレッサ における冷凍能力の特性図である。図 1 5 は、 摺動面に微細くぼみをほぼ均一に形成した場合とリ ン酸マンガン層 をほどこした場合でのコンプレッサ一における効率の特性図である。 なお図 1 において 、 容器 1 0 1 内はイソブタンからなる冷媒ガス
1 0 2が充填されているととちに、 底部には鉱油からなり V G 1 0 未満 V G 5以上の粘度のオイル 1 0 3 を貯留している。 これ以外の 構成は上述と同様であ 0
ここで主軸部 1 0 9 と軸受部 1 1 4、 ピス 卜ン 1 1 5 とポア 1 1
3、 ピス 卜ンピン 1 1 7 と 3ンロッ ド 1 1 8、 偏心部 1 1 0 とコン ロッ ド 1 1 8の各摺動部材間に形成された各摺動部における動作に ついて説明する。 以下 、 ピス ン 1 1 5 を例に説明する。
上記各摺動部間においてはォィル 1 0 3の粘度が V G 1 0未満 V
G 5以上と低いため 、 摺動部 n αq同士が固体接触を起こしやすい。 さ らに、 冷媒がィソブタンであることから、 鉱油からなるオイル 1 0
3 に溶け込みやすく 、 オイル 1 0 3の粘度が低下することで、 さら に固体接触を起こしゃすくなる。
しかしながら、 図 3 に示すように、 摺動部が摺動する際に生じる 油膜を発生させるオイルの流れが球面状のく ぼみ 1 2 3の中でうず 流を形成し易くなり、 その結果油圧が発生することで固体接触が防 止され、 耐摩耗性が向上する。 また、 くぼみ 1 2 3 を形成すること により摺動部間の面積が低減され、 金属接触が低減される。
加えて、 鋼球やセラミック球等の硬度の硬い球をある速度以上で 衝突させる方法でく ぼみ 1 2 3 を形成していることから、 加工硬化 等により表面の硬度が上昇している。 このため固体接触が生じる楊 合にも、 異常摩耗が防がれ、 耐摩耗性が向上する。 特に摺動部がピ ス トン 1 1 5 とボア 1 1 3、 ピス トンピン 1 1 7 とコンロッ ド 1 1 8で構成されている場合、 1圧縮工程当たり 2回、 相互摺動速度が O m Z s となる。 このため、 油圧がゼロとなり、 固体接触が生じや すいので、 本技術が極めて有効である。
ここで、 図 1 3 を用いて本実施の形態による摺動面に微細く ぼみ 3 2 3をほぼ均一に形成した場合とリ ン酸マンガン層をほどこした 場合とにおけるオイル粘度を変えた際の摩擦係数について説明する。 測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 V G 4から V G 2 2のエステルオイル、 V G 1相当のエタノールを使 用して行う。 まず、
1 ) 直径が 2 m 1 5 X mで深さが、 0 . 5 m 1 mの大きさ のくぼみ 1 2 3
2 ) 直径が 4 0 m 5 0 mで深さが 7 m 1 0 mの大きさ のく ぼみ 1 2 3
3 ) 直径が 6 0 β m 7 0 a mで深さが 1 5 m 2 0 β mの大き さのく ぼみ 1 2 3
を形成した円盤を用意する。 このような円盤を、 摺動速度を 1. 0 m/ sで回転させ、 リ ング状に形成された相手材を 、 面圧 0 . 5 M
P aで押し付ける。 図 1 3はこのような条件で磨耗 式験を行った結 果を示している。
の結果から、 リ ン酸マンガン層を形成した場 αと、 直径が 6 0 m 7 0 i , 深さが 1 5 z m 2 0 /z mの大きさのくぼみ 1 2 3 をほぼ均一に形成した場合には、 オイル粘度を V G 1 0未満にす ると摩擦係数が上昇する。 一方、 直径が 4 0 x m 5 0 m、 深さ が 7 z m l 0 mの大きさのくぼみ 1 2 3 をほぼ均一に形成した 場合と、 直径が 2 ^ m 1 5 z mで深さが 0 . 5 m l i mの大 きさのく ぼみ 1 2 3をほぼ均一に形成した場合には、 V G 8 までォ ィル粘度を低下させても摩擦係数が上昇しない。 V G 4までオイル 粘度を低下させた場合でも、僅かに摩擦係数が上昇するのみである。 さらに、 リ ン酸マンガン処理に比べ摩擦係数が低下していることも わかる。
摺動部にほぼ均一に設けたく ぼみ 1 2 3の大きさが、 直径 4 0 u m 5 0 m、 深さ 7 Π Ι Ο ΠΙ もしくは直径 2 m 1 5 m、 深さ 0. 5 m〜 1 mであれば、 摺動部間の動圧が均一化 されることで隙間が一定となる。 さらに詳細な検討により、 これら の中間的な大きさのくぼみを設けても同様の効果が得られる。また、 くぼみ 1 2 3での体積変動が小さくなり、 冷媒 1 0 2 を含んだオイ ル 1 0 3がく ぼみ 1 2 3 に供給される際に発生する隙間部での圧力 低下が少ない。 これにより、 オイル 1 0 3 中での発泡現象が抑えら れ油膜の破断が防止され、 形成される油膜の油圧が増加する。 この ようにして固体接触部にかかる荷重が低減されることにより、 摩擦 係数が低下すると考えられる。
さらに、 オイル粘度をパラメ一夕に、 往復式冷媒圧縮機の冷凍能 力と、 冷媒圧縮機の成績係数 (C O P ) の変化を測定した結果を図 1 4、 1 5 に示す。
試験は、 ピス トン 1 1 5 の摺動部に直径が 2 π!〜 5 0 mで深 さが 0. 5 m〜 l 0 mの大きさのくぼみ 1 2 3 を均一に設け、 イソブタン冷媒と、 V G 5 と V G 1 0の鉱油を用い、 凝縮温度ノ蒸 発温度 : 5 4. 4 °C / - 2 3. 3 °C、 吸入ガス、 膨張弁前温度 : 3 2. 2 °Cの条件にて行う。 その時の冷媒圧縮機の冷凍能力と成績係 数 ( C O P ) を測定する。 図 1 4 , 1 5は、 その結果をリ ン酸マン ガン処理と比較して示している。
図 1 4では、 リ ン酸マンガン処理したピス トンを用いた圧縮機に おいてオイル 1 0 3の粘度を V G 1 0から V G 5 に低下させた際、 1 1 W程度まで大きく冷凍能力が低下している。 一方、 くぼみ 1 2 3 を設けたピス トンを用いた圧縮機 1 0 0 においては、 冷凍能力の 低下は 1 W程度であり、 極めて少ない。
ピス トン 1 1 5がポア 1 1 3内を往復運動して冷媒ガス 1 0 2 を 圧縮する際、 オイル 1 0 3の粘度が非常に低いため、 シール性が低 下する。 このため、 圧縮室 1 1 6で圧縮された冷媒ガス 1 0 2がピ ス トンとポア 1 1 3の隙間から容器 1 0 1 内に漏出し冷凍能力が低 下し易い。 しかし、 ピス トン 1 1 5 に設けたく ぼみ 1 2 3 により、 く さび形油膜が形成される。 このようにしてピス トン 1 1 5 とポア 1 1 3の隙間から漏出する冷媒ガスの量が低減されると推定される。 すなわち、 ピス トン 1 1 5 とポア 1 1 3 との隙間に漏出した冷媒 ガス 1 0 2がく ぼみ 1 2 3 に達すると、 くぼみ 1 2 3 においてピス トン 1 1 5 とポア 1 1 3 との隙間の体積が増加する。 このため、 ラ ビリ ンスシールと同様の作用が生じ、 漏出した冷媒ガス 1 0 2の流 速は急速に低下することで冷媒ガス 1 0 2の漏れ量が減少する。 そ の結果冷媒圧縮機の冷凍能力の低下が極めて小さく抑えられると考 えられる。
同様に図 1 5 においては、 リ ン酸マンガン処理したピス トンを用 いた圧縮機に較べてく ぼみ 1 2 3 を設けたピス トン 1 1 5 を用いた 圧縮機 1 0 0の方が圧縮機の効率を示す成績係数 ( C O P ) が上昇 している。 これは図 1 4に示したとおり、 冷媒圧縮機の冷凍能力の 低下が極めて小さく抑えられ、 体積効率が維持されることによる。 また、 図 1 3 に示したように撺動部における摩擦係数の上昇がリ ン 酸マンガン処理した場合に較べて極めて少ないことから入力が低減 されていることにもよる。 また V G 1 0から V G 5へのオイル粘度 の低下に伴う粘性抵抗の低減が冷媒圧縮機の入力の低減に大きく寄 与していると考えられる。
また、 イソブタンと鉱油との組合せを例に挙げて説明をしたが、 冷媒 1 0 2 に同じハイ ドロカーボン系冷媒であるプロパンを使用す る場合においても、 また、 オイル 1 0 3 にアルキルベンゼン、 エス テル、 ポリ ビニルエーテル、 ポリアルキレングリコール等を使用す る場合においてもオイル 1 0 3中に冷媒 1 0 2が溶け込み更に粘度 を低下させる。 このため、 本構成を適用することにより同様の効果 が得られる。
なお上記説明では、 摺動部の双方に直径が 2 / m〜 5 0 mで深 さが 0 . 5 m〜 1 0 mの大きさのく ぼみ 1 2 3 をほぼ均一に設 ける。 くぼみ 1 2 3は摺動部のいずれか一方に施してもよく、 同様 の作用効果が得られる。
また上記説明では、 微小くぼみ 1 2 3 をピス トン 1 1 5 に形成す る場合について説明したが、 他の摺動部についても同様である。
なお、 オイル 1 0 3 の粘度は V G 1 0未満 V G 5以上とすること が好ましい。 このようにすることで、 摺動部表面のくぼみ 1 2 3 に オイル 1 0 3が溜まり、 摺動面にオイルが保持される。 また摺動時 に摺動部間の隙間が微小に変化することにより摺動部間に動圧が発 生して油膜が保持されやすく、 固体接触の頻度が少なくなる。 また シ一ル部においてはシール性を向上させ、信頼性と効率とが高まる。
(実施の形態 2 )
図 1 6は、 本発明の実施の形態 2による冷媒圧縮機 2 0 0の断面 図である。 図 1 7は冷媒圧縮機 2 0 0 を含む冷凍機の冷凍サイクル 図である。 図 1 8は図 1 6 における G— G線断面図である。 図 1 9 は図 1 8 におけるベーン 2 1 6 とローリ ングピス トン (以下、 ビス トン) 2 1 5 とが接する部分の拡大図である。 図 2 0は図 1 8 にお けるピス トン 2 1 5 と偏心部 2 0 7 とが接する部分の拡大図である。 密閉容器 (以下、 容器) 1 0 1 には固定子 1 0 4と回転子 1 0 5 からなる電動部 1 0 6 と、 電動部 1 0 6 によって駆動されるローリ ングピス トン型の圧縮部 2 0 5がオイル 1 0 3 とともに収納されて いる。 電動部 1 0 6は駆動部である。
圧縮部 2 0 5は、 シャフ ト 2 1 0 と、 シリンダ一 2 1 2 と、 主軸 受 2 1 3 と副軸受 2 1 4 と、 ピス トン 2 1 5 と、 板状のベーン 2 1 6 とを有する。 シャフ ト 2 1 0は偏心部 2 0 7、 主軸部 2 0 8、 副 軸部 2.0 9 を有する。シリ ンダー 2 1 2は圧縮室 2 1 1 を形成する。 主軸受 2 1 3 と副軸受 2 1 4とは、 シリ ンダー 2 1 2の両端面を封 止するとともに各々主軸部 2 0 8 と副軸部 2 0 9 とを軸支する。 ピ ス トン 2 1 5 は偏心部 2 0 7に遊嵌され圧縮室 2 1 1 内を転動する。 ベ一ン 2 1 6 はピス トン 2 1 5 に揷圧され、 圧縮室 2 1 1 を高圧側 と低圧側とに仕切る。 .主軸部 2 0 8 には回転子 1 0 5が固定されて いる。
副軸受 2 1 4に固定されたオイルポンプ 2 1 7はオイル 1 0 3 に 連通している。 オイルポンプ 2 1 7は、 偏心部 2 0 7 とピス トン 2 1 5、 主軸部 2 0 8 と主軸受 2 1 3、 副軸部 2 0 9 と副軸受 2 1 4 が各々形成する摺動部へオイル 1 0 3 を供給する。 摺動部を形成す る各部は圧縮部 2 0 5 の駆動により摺動し合う接触部である。
図 1 9、 2 0 に示すように、 ピス トン 2 1 5の摺動面 2 1 8、 偏 心部 2 0 7 の摺動面 2 1 9 には、 微細くぼみ (以下、 くぼみ) 1 2 3がほぼ均一に形成されている。 また図示していないが、 主軸部 2 0 8、 副軸部 2 0 9の摺動面にもくぼみ 1 2 3がほぼ均一に形成さ れている。 実施の形態 1 と同様に、 くぼみ 1 2 3の形状は球面であ り、 さらに大きさが直径 2 0 m〜 5 0 z m、 深さが l/ m〜 l 0 mであることがより好ましい。 さらに各摺動面の表面積に対する くぼみ 1 2 3の占める面積の割合は 4 0〜 8 0 %であることがより 好ましい。 さ らに鉄系材料においては摺動部表面の組織をマルテン サイ ト化することがより好ましい。
以上のように構成された冷媒圧縮機 2 0 0 について、 以下その動 作を説明する。
回転子 1 0 5の回転に伴ってシャフ ト 2 1 0は回転し、 偏心部 2 0 7 に遊嵌されたピス トン 2 1 5が圧縮室 2 1 1 内を転動する。 こ れにより、 ベ一ン 2 1 6に仕切られた圧縮室 2 1 1 の高圧側と低圧 側との部屋の容積は連続的に変化し、 これに伴って冷媒ガスは連続 して圧縮される。 さらに圧縮された冷媒ガスは容器 1 0 1 内に吐出 され、 吐出経路 2 2 0 を介して熱交換器 7 0へ送られ、 外部へ放熱 し、 膨張弁 8 0 を介して熱交換器 6 0へ戻り、 外部から吸熱する。 このようにして冷凍機が構成されている。
上述のように、 容器 1 0 1 内が高圧雰囲気となる。 また、 容器 1 0 1 内が高圧であることからベーン 2 1 6 に容器 1 0 1 内の雰囲気 圧力は、 背圧として働きピス トン 2 1 5 の外周表面にベーン 2 1 6 の先端を押しつける。 ピス トン 2 1 5の外周表面にベーン 2 1 6 の 先端が接触する部分では、 円弧と円弧の接触となり線接触の形態で あることから金属接触が頻繁に生じる。 ここで、 ピス トン 2 1 5の外周表面にはく ぼみ 1 2 3がほぼ均一 に形成されている。 そのため、 摺動部間の面積が低減され、 金属接 触が低減される。 また、 くぼみ 1 2 3 にオイル 1 0 3が保持され、 摺動部分に常にオイル 1 0 3が存在することにより焼付き荷重が上 昇して異常摩耗が防止される。 なお、 ピス トン 2 1 5の外周表面に くぼみ 1 2 3 を設けているが、 ベ一ン 2 1 6 にくぼみ 1 2 3 を設け てもよい。 またピス トン 2 1 5の外周表面とベ一ン 2 1 6の双方に 設けても、 同等の効果を有する。
また、 シャフ ト 2 1 0の回転に伴ってオイルポンプ 2 1 7はオイ ル 1 0 3 を連続的に各摺動部へ給油する。 ここで、 偏心部 2 0 7 の 摺動面 2 1 9や主軸部 2 0 8、 副軸部 2 0 9の摺動面にはく ぼみ 1 2 3がほぼ均一に形成されている。 これにより、 偏心部 2 0 7 とピ ス 卜ン 2 1 5、 主軸部 2 0 8 と主軸受 2 1 3、 副軸部 2 0 9 と副軸 受 2 1 4が各々形成する摺動部の隙間に、 オイルが引き込まれ、 く さび形油膜が形成される。
口一リ ングピス トン型の冷媒圧縮機 2 0 0では、 ピス トン 2 1 5 が偏心部 2 0 7 に回転自在に遊嵌されている。 そして、 ピス トン 2 1 5 と偏心部 2 0 7 との間の相対速度は主軸部 2 0 8 _主軸受 2 1 3間、副軸部 2 0 9 —副軸受 2 1 4間の相対速度に比較して小さい。 このため、 数式 ( 1 ) により求められるジャーナル軸受の特性を示 すゾンマーフェルト数 Sが小さくなる。 これは、 摺動潤滑上不利な 条件である。
S = X N / P X ( R / C ) · 2... ( 1 ) 数式 ( 1 ) のように、 ゾンマーフェルト数 Sは、 軸受半径 Rと半径 すきま Cと速度 Nとオイル粘度 // と面圧 Pから求められる。
しかしながらピス トン 2 1 5 と偏心部 2 0 7 との隙間がく ぼみ 1 2 3の深さに対応して変化する。 この こめ、 摺動速度が遅くても、 ピス トン 2 1 5 と偏心部 2 0 7 との隙間にオイルが引き込まれて、 くさび形油膜が形成される。
さらに口一リ ングピス トン型の冷媒圧縮機では、 容器 1 0 1 内が 凝縮圧力となるため、 内圧が高く、 オイル 1 0 3の冷媒が溶け込み やすい。 これにより、 オイルの粘度は低下するので、 上述したゾン マ一フェルト数 Sが小さくなり、 摺動潤滑上不利な条件である。
しかしながら、 くぼみ 1 2 3が微細であることから冷媒が溶け込 んだオイル 1 0 3がくぼみ 1 2 3内に供給されてもく ぼみ i 2 3で の体積変化が小さく雰囲気圧力の低下が少ない。 すなわち、 圧縮さ れた冷媒ガスの圧力が高圧のまま保たれる。 このため、 オイル中に 溶け込み可能な冷媒量の低下が抑えられ、 オイル中の冷媒の発泡現 象が少なくなる。 そして、 発泡により摺動部に形成される油膜の破 断により生じる金属接触の発生が防止され、 摩擦係数の上昇が防止 される。
なお、 偏心部 2 0 7、 主軸部 2 0 8、 副軸部 2 0 9の摺動面に、 ほぼ均一にくぼみ 1 2 3 を設けている。 また、 ピス トン 2 1 5 の内 周表面、 主軸受 2 1 3、 副軸受 2 1 4ならびに、 偏心部 2 0 7 とピ ス トン 2 1 5の内周表面の双方、 主軸部 2 0 8 と主軸受 2 1 3の双 方、 副軸部 2 0 9副軸受 2 1 4の双方にく ぼみ 1 2 3 を設けても同 様の作用効果が得られる。 ,
次に、オイル 1 0 3 に冷媒が溶け込み易い組合せの場合について、 くぼみ 1 2 3の大きさについて説明する。
ここでは図 1 6 において、 容器 1 0 1 に封入されているオイル 1 0 3は鉱油からなり粘度 V G 1 0未満 V G 5以上で、 冷媒ガス (図 示せず) はイソブタンからなるとする。
既述のように偏心部 2 0 7 とピス トン 2 1 5、 主軸部 2 0 8 と主 軸受 2 1 3、 副軸部 2 0 9 と副軸受 2 1 4 とは、 相互に摺動部を形 成している。 ここで、 各摺動部の母材である鉄系材料の表面にほぼ 均一に形成されているく ぼみ 1 2 3の大きさは、 直径が 2 ; m〜 5 O mで深さが 0 . 5 m〜 1 0 mである。 また、 くぼみ 1 2 3 は、 偏心部 2 0 7の摺動面 2 1 9 に鋼球やセラミ ック球等の硬度の 硬い球をある速度以上で衝突させる方法で形成されている。 これに より摺動面 2 1 9は加工硬化等により表面硬度が上昇している。 こ のため耐摩耗性が向上し、 固体接触が生じても異常摩耗が防止され る。 またく ぼみ 1 2 3 をこのような大きさにすることで、 実施の形 態 1 と同様に、 冷媒がオイル 1 0 3 に溶け込みやすい場合でも固体 接触の発生が減少し、 摩擦係数の上昇が防止される。
また、 上記説明ではイソブタンと鉱油との組合せを例に挙げて説 明をしたが、 冷媒に同じハイ ド口カーボン系冷媒であるプロパンを 使用する場合にも、 また、 オイル 1 0 3 にアルキルベンゼン、 エス テル、 ポリ ビニルエーテル、 ポリアルキレングリコール等を使用す る場合にも、 オイル 1 0 3中に冷媒が溶け込み更に粘度を低下させ る。この場合も本構成を適用することにより同様の効果が得られる。
(実施の形態 3 )
本実施の形態による冷媒圧縮機の基本的な構成は図 1 を用いて説 明した実施の形態 1 と同様である。 実施の形態 1 との違いは、 主軸 部 1 0 9 と軸受部 1 1 4、 ピス トン 1 1 5 とポア 1 1 3、 ピス トン ピン 1 1 7 とコンロッ ド 1 1 8、 偏心部 1 1 0 とコンロッ ド 1 1 8 がそれぞれ相互に形成している摺動部である。 摺動部を形成する各 部は圧縮部 1 0 7の駆動により接触し合う接触部である。
図 2 1 A , Bはピス トン 1 1 5 とポア 1 1 3 とにより形成される 摺動部の拡大図である。 図 2 1 Aにおいて、 ピス トン 1 1 5の母材 である鉄系材料の表面部分である摺動面 3 2 4には二硫化モリブデ ン (M o S 2) を固着させた混合層 3 2 3が形成されている。 M o S 2 の純度を 9 8 %以上とし、 図 2 1 Bのように摺動面 3 2 4に微細 <ぼみ (以下、 くぼみ) 1 2 3 をほぼ均一に形成することがより好 ましい。 さらにくぼみ 1 2 3は表面形状が球形で、 かつ直径が 2 111〜 2 0 111で、 深さが 0. 2 ΠΊ〜 1. O ^ mであることが好ま しい。
図 2 1 Aのように M o S 2 を摺動面 3 2 4に形成する方法の例を 説明する。 イミ ド基等の熱硬化性樹脂をバインダーとして用い、 ジ メチルァセ トアミ ド等の溶剤に上記バインダー溶け込ませた溶液に M o S 2 の粒子をいれる。 このような溶液を摺動面 3 2 4に塗布し た後、 数百度で焼き付ける。
次に図 2 1 Bのように M o S 2 を固着させた混合層 3 2 3 を表面 に形成する方法を説明する。 M o S 2 の粒をある速度以上で摺動部 品の母材である鉄系あるいはアルミニウム系等の金属の摺動面に衝 突させる。 このようにすると、 衝突の際に生じる熱エネルギーによ り M 0 S 2 の一部が母材に溶け込み金属結合する。 これにより混合 層 3 2 3が固着すると共に、 衝突の際の衝撃力により く ぼみ 1 2 3 が形成される。
以上のように構成された冷媒圧縮機 1 0 0 について、 以下その動 作を図 1 、 図 2 1 A, Bを参照しながら説明する。
商用電源から供給される電力は駆動部である電動部 1 0 6 に供給 され、 電動部 1 0 6 の回転子 1 0 5 を回転させる。 回転子 1 0 5は クランクシャフ ト 1 0 8を回転させ、 偏心部 1 1 0の偏心運動が連 結部のコンロッ ド 1 1 8からピス トンピン 1 1 7 を介してピス トン 1 1 5 を駆動する。 これにより ピス トン 1 1 5はポア 1 1 3内を往 復運動し、 サクシヨ ンチューブ 1 2 1 を通して容器 1 0 1 内に導か れた冷媒ガス 1 0 2はサクシヨ ンマフラ一 1 2 2から吸入され、 圧 縮室 1 1 6内で圧縮される。
この際、 ピス トン 1 1 5が上死点、 下死点に達したときに速度が 0 m Z s となり金属接触が生じることが多い。 しかしながら、 ピス トン 1 1 5の表面層に M o S 2 を固着させた混合層 3 2 3 を形成す ることから M o S 2 の持つ自己潤滑作用により摩擦係数が低下して 摺動損失が低下する。
さらに図 2 1 Bの構成では、 ピス トン 1 1 5の摺動面 3 2 4の混 合層 3 2 3 にほぼ均一にくぼみ 1 2 3 を設けている。 これにより実 施の形態 1 と同様の効果が得られる。 すなわち、 くぼみ 1 2 3 を形 成することにより摺動部間の面積が低減され、 金属接触が低減され る。 また、 ピス トン 1 1 5 とポア 1 1 3の隙間の漏出ガスがピス ト ン 1 1 5 の表面にほぼ均一に形成したくぼみ 1 2 3 に達すると、 く ぼみ 1 2 3 においてピス トン 1 1 5 とポア 1 1 3の隙間の体積が増 加する。 このためラビリ ンスシールと同様の作用が生じ、 漏出した 冷媒ガスの流速は急速に低下する。 この結果、 冷媒ガスの漏れ量が 減少する。 その結果、 冷媒圧縮機の体積効率が向上するため、 冷媒 圧縮機の圧縮効率は向上する。
図 2 2は、 本実施の形態における摺動時のオイルの流れを示した 図である。 くぼみ 1 2 3 の形状が球面であれば、 摺動部が摺動する 際に生じる油膜を発生させるオイル 1 0 3の流れがく ぼみの中でう ず流を形成し易くなる。 その結果油圧が発生することで金属接触を 防止し、 耐摩耗性が向上する。 また、 形状が球面であることから、 摺動方向に関わらず、 摺動にともなう摺動部間の隙間の変化量が一 定となり、 摺動部全体に均一な油膜が形成される。 これにより ビス トン 1 1 5 とポア 1 1 3 との隙間の偏りが小さくなり、 ピス トン 1 1 5の側面から冷媒ガスの漏れる量が少なくなる。
次に、 図 2 3 に示す摩擦係数の特性図を用いて鉄系材料に M o S 2 を固着させた混合層 3 2 3の有り無しならびにくぼみ 1 2 3有り無 しでの摩擦係数を測定した結果について説明する。 この測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 V G 8から V G 1 0 のエステルオイルを使用し、 摺動速度を 1. 0 mZ s 、 面圧 : 0. 5 M P aにおいて行われる。
この結果から、 鉄系材料に M o S 2 を固着させた混合層 3 2 3 は リ ン酸マンガン処理に比べ摩擦係数が低下していることがわかる。 混合層 3 2 3 を形成している M o S 2 の組織は稠密六方晶で、 分子 の大きさは、 約 6 X 1 0 ^ mと小さい。 このことから、 鉄系材料、 アルミニウム等の相手材に接触した場合、 低い摩擦係数でへき開す ると考えられる。 これにより、 金属接触が生じている摺動部の摩擦 係数が低下すると考えられる。 また、 バインダーとして用いられる ポリアミ ドイミ ド樹脂 ( P A I ) 等の不純物の摩擦係数は、 M o S 2 に比較して高いので、 M o S 2 の純度を 9 8 %以上にすることが望 ましい。 さ らに鉄系材料に M o S 2 を固着させた混合層 3 2 3 に球形でか つ直径を 2 m〜 2 0 m、 深さを 0. 2 m〜 l . O mの大き さのく ぼみ 1 2 3を設けることにより摩擦係数は低下する。 これは くぼみ 1 2 3 により、 形成されるく さび形油膜の油圧が増加するこ とで、 金属接触部にかかる荷重が低減され摩擦係数が低下したこと によると考えられる。
次に、 鉄系材料に M 0 S 2 を固着させた混合層 3 2 3 に球形でか つ直径を 2 m〜 2 0 ^ m、 深さを 0 . 2 m〜 l . 0 mの大き さのく ぼみ 1 2 3 を設けた場合の摩耗量を測定した結果を説明する。 図 2 4は、 混合層 3 2 3の表面にくぼみ 1 2 3 をほぼ均一に形成し た場合と混合層 3 2 3無しでリ ン酸マンガン処理した場合との摩耗 量の特性図である。 試験は、 C H 2 F C F 3冷媒の雰囲気圧力 0 . 4 M P aのもと、 V G 8から V G 1 0のエステルオイリレを使用し、 摺 動速度を 1 . 0 mZ s 、 面圧 : 0 . 5 M P aの条件で 2 0時間行わ れる。
この結果から、混合層 3 2 3 にくぼみ 1 2 3 を設けることにより、 リ ン酸マンガン処理の場合より摩耗量が少なくなることがわかる。 これは、 くぼみ 1 2 3 を形成することにより摺動部間の面積が低減 され、 金属接触が低減されることによる。 また、 形成されるく さび 形油膜の油圧がくぼみ 1 2 3 により増加することで、 金属接触部に かかる荷重が低減されることによると考えられる。 さらに、 M o S 2 の粒をある速度以上で鉄系材料の表面に衝突させる方法で M o S 2 を固着させた混合層 3 2 3ならびにくぼみ 1 2 3 を同時に形成して いる。 このことから、 M o S 2が母材内部に入り込み M o S 2の一部 が硬度の高い金属間化合物を形成することによりさ らに耐摩耗性が 向上している。
本実施の形態においてはピス トン 1 1 5の摺動面 3 2 4に M o S 2 を固着させた混合層 3 2 3 を設けている。 またさ らに混合層 3 2 3表面に直径を 2 m〜 2 0 z m、 深さを 0 . 2 m〜 l . 0 m の大きさのく ぼみ 1 2 3 をほぼ均一に設けている。 またポア 1 1 3 にこのような混合層 3 2 3 を設けてもよい。 ピス トン 1 1 5 とポア 1 1 3 との双方に設けても、 同様の作用効果が得られる。
次に、 主軸部 1 0 9 と軸受部 1 1 4 とにより形成される摺動部に ついて説明する。 図 2 5 A , Bは主軸部 1 0 9 と軸受部 1 1 4とに より形成される搢動部の拡大図である。
クランクシャフ ト 1 0 8の主軸部 1 0 9の母材である鉄系材料の 表面に M o S 2を含有させることにより金属材料中に M o S 2を固着 させた混合層 3 2 3 を形成している。 混合層 3 2 3のより好ましい 形 匕は 、 前述と同様である。 図 2 5 Bは混合層 3 2 3 の表面である 摺動面 3 2 8 にくぼみ 1 2 3 を形成した場合を示している。
?比 層 3 2 3 を形成することにより、 摺動部への給油が行われな いンム媒圧縮機運転開始時において軸受け部 1 1 4 とクランクシャフ
1 0 8の間に金属接触が発生しても摺動部の摩擦係数が低くなり 摺動損失が低下する。
さ らに混合層 3 2 3 にく ぼみ 1 2 3 をほぼ均一に形成することに より 、 実施の形態 1 と同様の効果を奏する。
本実施の形態においては主軸部 1 0 9 の摺動面 3 2 8 に M o S 2 を固着させた混合層 3 2 3 を設けている。 そしてさらに混合層 3 2
3表面に直径を 2 m 〜 2 0 m、 深さを 0 . 2 m 〜 l . Ο ΠΙ の大ささのくぼみ 1 2 3 をほぼ均一に設けている。 また軸受部 1 1
4にこのような混合層 3 2 3 を設けてもよい。 主軸部 1 0 9 と軸受 部 1 1 4 との双方に設けても、 同様の作用効果が得られる。
次に、 コンロッ ド 1 1 8 とピス トンピン 1 1 7 とにより形成され る摺動部について説明する。 図 2 6 A , Βはピス トンピン 1 1 7 と コンロッ ド 1 1 8 とにより形成される摺動部の拡大図である。
ピス トンピン 1 1 7 の摺動面 3 3 1 には M o S 2 を固着させた混 合層 3 2 3が形成されている。 混合層 3 2 3のより好ましい形態は 上述と同様である。 図 2 6 Βは混合層 3 2 3の表面にくぼみ 1 2 3 をほぼ均一に形成した状態を示している。
コンロッ ド 1 1 8 とピス トンピン 1 1 7 とは、 ピス トン 1 1 5が 上死点、 下死点に達したときに速度が 0 m Z s となり、 油膜が形成 できず金属接触が発生する。 このような場合でも、 混合層 3 2 3 を 形成することにより、 摺動部の摩擦係数が低くなり、 摺動損失が低 下する。
さ らに混合層 3 2 3 にく ぼみ 1 2 3 をほぼ均一に形成することに より、 実施の形態 1 と同様の効果を奏する。
本実施の形態においてはピス トンピン 1 1 7 の摺動面 3 3 1 に M o S 2 を固着させた混合層 3 2 3 を設けている。 そしてさ らに混合 層 3 2 3表面に直径を 2 111〜 2 0 111、 深さを 0 . 2 m〜 l . 0 mの大きさのく ぼみ 1 2 3 をほぼ均一に設けている。 またコン ロッ ド 1 1 8 にこのような混合層 3 2 3 を設けてもよい。 ピス トン ピン 1 1 7 とコンロッ ド 1 1 8 との双方に設けても、 同様の作用効 果が得られる。
次に、 スラス ト軸受部 1 3 5 に形成される摺動部について説明す る。 図 2 7 A, Bはスラス ト部 1 3 0 とスラス トヮッシャ 1 3 4 と が接する部分の拡大図である。
スラス ト部 1 3 0の摺動面 3 3 5 には M o S 2 を固着させた混合 層 3 2 3が形成されている。 混合層 3 2 3のより好ましい形態は上 述と同様である。 図 2 7 Bは混合層 3 2 3の表面にく ぼみ 1 2 3 を ほぼ均一に形成した状態を示している。 くぼみ 1 2 3 のより好まし い形態も上述と同様である。
冷媒圧縮機が運転を停止しているときも、 スラス ト軸受部 1 3 5 には垂直荷重が負荷されている。 このように垂直荷重が負荷され、 さ らに、 摺動部への給油が行われない冷媒圧縮機運転開始時におい て、 スラス ト部 1 3 0 とスラス トヮッシャ 1 3 4 との間に金属接触 が発生する。 このような場合でも、 混合層 3 2 3 を形成することに より、 摺動部の摩擦係数が低くなり、 摺動損失が低下する。
さらに混合層 3 2 3 にくぼみ 1 2 3 をほぼ均一に形成することに より、 実施の形態 1 と同様の効果を奏する。
本実施の形態においては軸受部 1 1 4のスラス ト部 1 3 0の摺動 面 3 3 5 に M o S 2 を固着させた混合層 3 2 3 を設けている。 そし てさらに混合層 3 2 3表面に直径を 2 m 2 0 z m、 深さを 0 . 2 π 1 . 0 mの大きさのくぼみ 1 2 3 をほぼ均一に設けてい る。 またスラス トヮッシャ 1 3 4にこのような混合層 3 2 3 を設け てもよい。 スラス ト部 1 3 0 とスラス トヮッシャ 1 3 4との双方に 設けても、 同様の作用効果が得られる。
以上、 本実施の形態においては スラス ト軸受部 1 3 5 をフラン ジ面 1 3 2 、 スラス ト部 1 3 0 スラス 卜ヮッシャ 1 3 4にて構成 し、 も層 3 2 3 を摺動面 3 3 5に形成している なお 、 クランク シャフ 卜 1 0 8の主軸部 1 0 9 と偏心部 1 1 0 との間にもフランジ 面 1 3 6がある 。 フランジ面 1 3 6 とそれに対向する軸受部 1 1 4 のスラス 部 1 3 9 とでスラス h軸受を構成してもよい 。その場合、 スラス 卜部 1 3 7 に混合層 3 2 3を設ける。 このようにしてスラス ト軸受を構成する場合においても 同様の作用効果が得られる。 なお、 スラス 卜ヮッシャ 1 3 4とに混合層 3 2 3 を設けても、 ス ラス 卜ヮ Vシャ 1 3 4 とスラス h部 1 3 0 との双方に Xけても、 同 様の作用効果が得られる。 また スラス 卜ヮッシャ 1 3 4が回転子
1 0 5のフランジ面に接する面に混合層 3 2 3 を設けてもよい。 回 転子 1 0 5のフランジ面に混合層 3 2 3 を設けてもよい。 クランク シャフ ト 1 0 8のスラス ト部 1 3 7 に混合層 3 2 3 を設けても、 ク ランクシャフ 卜 1 0 8 のスラス ト部 1 3 7 と軸受部 1 1 4のスラス ト部 1 3 9 との双方に設けても、 同様の作用効果が得られる。
また、 冷媒 1 0 2 としてハイ ドロカーボン系冷媒であるイソブタ ンゃプロパンを使用する場合や、 オイル 1 0 3 として鉱油、 アルキ ルベンゼン、 エステル、 ポリ ビニルェ一テル、 ポリアルキレンダリ コール等を使用する場合においては、 オイル 1 0 3 中に冷媒 1 0 2 が溶け込み更に粘度を低下させる。 このため、 本構成を適用するこ とにより同様の効果が得られる。 これについて以下に述べる。
図 2 8 は、 M o S 2 を固着させて形成した混合層 3 2 3 に微小く ぼみ 1 2 3 を形成した場合と、 リン酸マンガン層を形成した場合と の摩擦係数の特性図である。 図 2 9は、 ピス トンとポアとに、 上記 のような混合層 3 2 3 を形成した場合とリ ン酸マンガン層を形成し た場合とのコンプレッサーにおける冷凍能力の特性図である。 図 3 0は、 上記 2種類のコンプレッサーにおける効率の特性図である。 図 1 において、 容器 1 0 1 内にはイソブタンからなる冷媒ガス 1 0 2が充填されている。 容器 1 0 1 は、 鉱油からなり V G 1 0未満 V G 1以上の粘度のオイル 1 0 3 を底部に貯留し、 固定子 1 0 4、 回転子 1 0 5からなる電動部 1 0 6 とこれによって駆動される往復 式の圧縮部 1 0 7 を収容している。
主軸部 1 0 9 と軸受部 1 1 4、 ピス トン 1 1 5 とポア 1 1 3、 ピ ス トンピン 1 1 7 とコンロッ ド 1 1 8、 偏心部 1 1 0 とコンロッ ド 1 1 8は相互に摺動部を形成する。 各摺動部は圧縮部 1 0 7の駆動 により摺動する接触部である。
そして上記摺動部表面には、母材である鉄系材料の表面に M o S 2 を固着させた混合層 3 2 3が形成されている。 そして更に、 表面に 直径 2 m〜 5 0 m、 深さを 0. 〜 : Ι Ο ΠΊの大きさのく ぼみ 1 2 3がほぼ均一に形成されている。
上記各摺動部間において、 オイル 1 0 3の粘度が V G 1 0未満 V G 1以上と低いため、 摺動部品同士が固体接触を起こしやすい。 さ らには冷媒ガス 1 0 2がイソブタンであることからオイル 1 0 3 に 溶け込みやすく、 オイル 1 0 3の粘度は低下することで、 さらに固 体接触を起こしやすくなる。 特に摺動部がピス トン 1 1 5 とポア 1 1 3、 ピス トンピン 1 1 7 とコンロッ ド 1 1 8である場合、 1圧縮 工程当たり 2回、 相互摺動速度が 0 m Z s となるため、 油圧がゼロ となり、 固体接触が生じる。
しかしながら、 ピス トン 1 1 5 の表面層に M o S 2 を固着させた 混合層 3 2 3が形成されていることから、 M o S 2 の持つ固体潤滑 作用により異常摩耗が防がれるとともに、 摩擦係数が低下して摺動 損失が低下する。
加えて図 2 2 に示すように、 摺動部が摺動する際に生じる油膜を 発生させるオイル 1 0 3の流れがくぼみ 1 2 3の中でうず流を形成 し易い。 その結果油圧が発生することで固体接触が防止され、 耐摩 耗性が向上する。
ここで、 図 2 8を用いてオイル 1 0 3の粘度を変えた際の摩擦係 数について説明する。 この測定は、 C H 2 F C F 3冷媒の雰囲気圧力 0. 4 M P aのもと、 V G 4から V G 2 2のエステルオイル、 V G 1相当のエタノールを使用し、 摺動速度を 1. O mZ s 面圧: 0. 5 M P aの条件にて行われる。
この結果から、 リ ン酸マンガン処理しただけの場合は、 オイル粘 度を V G 1 0未満にすると摩擦係数が上昇することがわかる。一方、 く ぼみ 1 2 3を設けた混合層 3 2 3 を設けた場合は、 V G 1 までォ ィル粘度を低下させても摩擦係数は上昇せず、 リ ン酸マンガン処理 した場合に比べ摩擦係数が低下していることがわかる。
さらにオイル粘度をパラメ一夕に、 往復式冷媒圧縮機の冷凍能力 と冷媒圧縮機の成績係数 ( C O P ) の変化とを測定した結果を図 2 9、 図 3 0 を用いて説明する。 鉄系材料のピス トン 1 1 5の摺動面 3 2 4には、 M o S 2 を固着させた混合層 3 2 3 に直径 2 ΓΓΙ〜 5 0 m, 深さを 0. 5 ^ m〜 l 0 mの大きさのく ぼみ 1 2 3が均 一に設けられている。 測定は、 イソブタン冷媒と V G 5 と V G 1 0 の鉱油を用い、 凝縮温度 Z蒸発温度 : 5 4. 4 °C / - 2 3. 3 °C , 吸入ガス、 膨張弁前温度 : 3 2. 2 °Cの条件にて行われる。
図 2 9 において、 リ ン酸マンガン処理をピス トンに施した圧縮機 では、 オイル 1 0 3の粘度を V G 1 0から V G 5 に低下させた際、 大きく冷凍能力が低下している。 一方、 混合層 3 2 3 をピス トンに 形成した圧縮機では、冷凍能力の低下が極めて少ないことが分かる。
このことは、 実施の形態 1 と同様のく ぼみ 1 2 3 による効果と、 混合層 3 2 3 による効果と推定される。
図 3 0においては、 リ ン酸マンガン処理をピス トンに施した圧縮 機に比べて、 く ぼみ 1 2 3を有する混合層 3 2 3をピス トンに設け た圧縮機の効率を示す成績係数 (C O P ) が上昇している。 これは 図 2 9 に示したとおり、 冷媒圧縮機の冷凍能力の低下が極めて小さ く抑えられていることにより体積効率が維持されることによる。 ま た、 図 2 8 に示したように摺動部における摩擦係数の上昇がリ ン酸 マンガン処理した場合に比べて極めて少ないことから入力が低減さ れていることにもよる。 また V G 1 0から V G 5へのオイル粘度の 低下に伴う粘性抵抗の低減が冷媒圧縮機の入力の低減に大きく寄与 していると考えられる。
なお、 イソブタンと鉱油の組合せを例に挙げて説明をしたが、 冷 媒ガス 1 0 2 に同じハイ ドロカーボン系冷媒であるプロパンを使用 する場合にも、 オイル 1 0 3 にアルキルベンゼン、 エステル、 ポリ ビニルエーテル、 ボリアルキレングリ コール等を使用する場合にも オイル 1 0 3中に冷媒が溶け込み更に粘度を低下させる。このため、 本構成を適用することにより同様の効果が得られる。
なお上記説明では、 摺動部の双方に混合層 3 2 3 を設ける。 混合 層 3 2 3は摺動部のいずれか一方に施してもよく、 同様の作用効果 が得られる。
また上記説明では、 混合層 3 2 3 をピス トン 1 1 5 に形成する場 合について説明したが、 他の摺動部についても同様である。
なお、 オイル 1 0 3の粘度は¥ 0 1 0未満¥ 0 1以上とし、 摺動 部でのオイル 1 0 3の保持性が低下しても、 摺動面に形成した混合 層 3 2 3 中の M o S 2の固体潤滑性により摩擦係数が低下する。 こ のため、 摺動損失が低減される。 さらに低粘度のオイル 1 0 3 を用 いることにより、 摺動損失が低減される。 (実施の形態 4 )
本実施の形態による冷媒圧縮機の基本的な構成は図 1 6 を用いて 説明した実施の形態 2 と同様である。 実施の形態 2 との違いは、 偏 心部 2 0 7 とローリ ングピス トン (以下、 ピス トン) 2 1 5、 主軸 部 2 0 8 と主軸受 2 1 3、 副軸部 2 0 9 と副軸受 2 1 4がそれぞれ 相互に形成している摺動部である。 摺動部を形成する各部は圧縮部 2 0 5の駆動により摺動し合う接触部である。
図 3 1 A, Bはピス トン 2 1 5 とべーン 2 1 6 とにより形成され る摺動部の拡大図である。 図 3 2 A, Bはピス トン 2 1 5 と偏心部 2 0 7 とにより形成される摺動部の拡大図であ 。
ピス トン 2 1 5の摺動面 4 1 9には、 母材の鉄系材料に二硫化モ リブデン (M 0 S'2) を固着させた混合層 3 2 3が形成されている。 偏心部 2 0 7 の摺動面 4 1 9や、 主軸部 2 0 8、 副軸部 2 0 9の摺 動部表面にも M o S 2 を含む混合層 3 2 3が形成されている。 M o S 2 の純度を 9 8 %以上とし、 図 3 1 B、 図 3 2 Bのように摺動面 に微細く ぼみ (以下、 くぼみ) 1 2 3 をほぼ均一に形成することが より好ましい。 さらにく ぼみ 1 2 3は表面形状が球形で、 かつ直径 が 2 Π!〜 2 0 mで、 深さが 0. 2 m〜 l . O mであること が好ましい。
以上のように構成された冷媒圧縮機 2 0 0 について、 図 1 6、 図 3 1 A, B、 図 3 2 A, Bを参照しながら以下その動作を説明する。 駆動部である電動部 1 0 6が通電されると回転子 1 0 3が回転す る。 これに伴ってシャフ ト 2 1 0は回転し、 偏心部 2 0 7 に遊嵌さ れたピス トン 2 1 5が圧縮室 2 1 1 内を転動する。 これにより、 ベ —ン 2 1 6で仕切られた圧縮室 2 1 1 の高圧側と低圧側の部屋の容 積は連続的に変化する。 これに伴って冷媒ガスは連続して圧縮され る。 さらに圧縮された冷媒ガスは密.閉容器 (以下、 容器) 1 0 1内 に吐出され、 容器 1 0 1 内が高圧雰囲気となる。 また、 容器 1 0 1 内が高圧であることからベーン 2 1 6 に容器 1 0 1 内の雰囲気圧力 が背圧として働き、 ピス トン 2 1 5の外周表面にベーン 2 1 6の先 端が押しつけられる。 ピス トン 2 1 5の外周表面とベーン 2 1 6の 先端との接触部分においては円弧と円弧の接触となり線接触の形態 であることから金属接触が頻繁に生じる。
その際、 ピス トン 2 1 5 の外周表面に M o S 2 を含む混合層 3 2 3 を形成することにより、 摺動部の摩擦係数が低くなり、 摺動損失 が低下する。 なお、 本実施の形態において、 混合層 3 2 3 をピス ト ン 2 1 5の外周表面に設けているが、ベーン 2 1 6 に設けてもよい。 ピス トン 2 1 5の外周表面とベーン 2 1 6の双方に設けても、 同等 の効果を有する。
また、 シャフ ト 2 1 0の回転に伴ってオイルポンプ 2 1 7はオイ ル 1 0 3 を連続的に各插動部へ給油する。
偏心部 2 0 7、 主軸部 2 0 8、 副軸部 2 0 9 の摺動部表面の混合 層 3 2 3 には、 くぼみ 1 2 3がほぼ均一に形成されている。 これに より、 実施の形態 2 と同様の効果を奏する。
実施の形態 2で述べたように口一リ ングピス トン型の冷媒圧縮機 では、ピス トン 2 1 5が偏心部 2 0 7 に回転自在に遊嵌されている。 そして、 ピス トン 2 1 5 と偏心部 2 0 7 との間の相対速度は主軸部 2 0 8 一主軸受 2 1 3間、 副軸部 2 0 9 —副軸受 2 1 4間の相対速 度に比較して小さくなる。 これは摺動潤滑上金属接触が発生しやす い不利な条件である。 しかしながら偏心部 2 0 7の摺動面 4 1 9 に は、 M o S 2 を固着させた混合層 3 2 3 を設けている。 金属接触が 発生した場合、 M o S 2 の組織が稠密六方晶で、 分子の大きさが約 6 X I 0 ·4 mと小さく ことから低い摩擦係数でへき開する。 これ により、 摺動部の摩擦係数が低くなり、 摺動損失が低下する。
さらにローリ ングピス トン型の冷媒圧縮機は容器 1 0 1 内が凝縮 圧力となるため、 内圧が高く、 オイル 1 0 3 に冷媒が溶け込みやす い。 このことによりオイルの粘度が低下する。 これも、 摺動潤滑上 不利な条件である。 しかしながら、 くぼみ 1 2 3が混合層 3 2 3の 表面に設けられていることにより、 実施の形態 2 と同様の効果を奏 する。
なお、 偏心部 2 0 7、 主軸部 2 0 8、 副軸部 2 0 9の摺動面に、 直径を 2 ^ ΙΏ〜 2 0 ΠΙ、 深さを 0 . 2 2 m〜 l . Ο ΓΠの大きさ の微細く ぼみ 2 1 9 をほぼ均一に設けた M o S 2 を固着させた混合 層 3 2 3 を設けている。 また、 ピス トン 2 1 5の内周表面、 主軸受 2 1 3、 副軸受 2 1 4に混合層 3 2 3 を設けてもよい。 偏心部 2 0 7 とピス トン 2 1 5の内周表面の双方、 主軸部 2 0 8 と主軸受 2 1 3の双方、 副軸部 2 0 9副軸受 2 1 4の双方に混合層 3 2 3 を設け ても、 同様の作用効果が得られる。
また、 冷媒としてハイ ドロ力一ボン系冷媒であるイソブタンゃプ 口パンを使用する場合や、 オイル 1 0 3 として鉱油、 アルキルベン ゼン、 エステル、 ポリ ビニルェ一テル、 ポリアルキレングリコール 等を使用する場合には、 オイル 1 0 3中に冷媒が溶け込み更に粘度 が低下する。 これにより耐摩耗性が低下することから本構成を適用 することにより同様の効果が得られる。これについて以下に述べる。
ここでは図 1 6 において、 容器 1 0 1 に封入されているオイル 1 0 3は鉱油からなり粘度 V G 1 0未満 V G 5以上で、 冷媒ガス (図 示せず) はイソブタンからなるとする。
既述のように偏心部 2 0 7 とピス トン 2 1 5、 主軸部 2 0 8 と主 軸受 2 1 3、 副軸部 2 0 9 と副軸受 2 1 4は相互に摺動部を形成し ている。 そして各摺動部の表面では、 母材である鉄系材料の表面に M o S 2 を固着させた混合層 3 2 3が形成されている。 この構成に より、 実施の形態 3 と同様に、 固体接触が発生しても M o S 2が低 い摩擦係数でへき開し、 摺動部の摩擦係数が低くなり、 摺動損失が 低下する。 さらにその表面には、 直径 2 m〜 5 0 m、 深さを 0 . 5 m〜 l の大きさのく ぼみ 1 2 3がほぼ均一に形成されて いる。 くぼみ 1 2 3 をこのような大きさにすることで、 実施の形態 2 と同様に、 冷媒がオイル 1 0 3 に溶け込みやすい場合でも固体接 触の発生が減少し、 摩擦係数の上昇が防止される。
また、 上記説明ではイソブタンと鉱油との組合せを例に挙げて説 明をしたが、 冷媒に同じハイ ドロ力一ボン系冷媒であるプロパンを 使用する場合にも、 また、 オイル 1 0 3 にアルキルベンゼン、 エス テル、 ポリ ビニルエーテル、 ポリアルキレングリコール等を使用す る場合にも、 オイル 1 0 3中に冷媒が溶け込み更に粘度を低下させ る。この場合も本構成を適用することにより同様の効果が得られる。 以上、 実施の形態 1 〜 4において、 一定速度の圧縮機について述 ベている。 なお、 インバーター化に伴い冷媒圧縮機の低速化が進む 中、 特に 2 O H z を切るような超低速運転や同様に低速で起動をか けた場合に於いてはさらに異常摩耗の課題が大きい。 このような圧 縮機に本発明の構成を適用すれば、 その効果が顕著になる。
一方、 起動時に誘導電動機として働き、 その後、 電源周波数に同 期して運転を行なう誘導同期モータ ¾搭載した冷媒圧縮機において も、 起動時同期運転に入り込む際の加速力が強い。 そのため、 異常 摩耗の課題が大きい。 このような圧縮機に本発明の構成を適用すれ ば、 その効果が顕著になる。
さらに、 摺動部材料を鉄以外にアルミ等の他の材料としても油膜 の形成原理から考え、 同様の作用効果が得られる。
(実施の形態 5 )
本実施の形態による冷媒圧縮機の基本的な構成は図 1 を用いて説 明した実施の形態 1 と同様である。 実施の形態 1 との違いは、 バル ブプレート 1 1 9 に設けられた吸入バルブ装置 5 2 7 と、 吐出バル ブ装置 5 3 4である。
まず吸入バルブ装置について説明する。 図 3 3は本実施の形態に おける吸入バルブ装置の縦断面図である。 図 3 4は吸入バルブ装置 5 2 7の吸入弁座 (以下、 弁座) 5 1 7 を示す平面図である。 図 3 5は吸入バルブ装置 5 2 7 の吸入可動弁 (以下、 弁) 5 1 9 を示す 平面図である。
バルブプレート 1 1 9は弁座 5 1 7 を有し、 弁 5 1 9 と共に吸入 バルブ装置 5 2 7 を構成する。 弁座 5 1 7 と、 弁 5 1 9 のシール部 5 1 9 Aとには、 相互シール面に微細くぼみ (以下、 くぼみ) 1 2 3 Aがほぼ均一に形成されている。 弁座 5 1 7 と、 弁 5 1 9のシ一 ル部 5 1 9 Aとは、 圧縮部 1 0 7の駆動により接触し合う接触部で ある。 また、 弁 5 1 9 の腕部 5 1 9 Bには微細く ぼみ (以下、 く ぼ み) 1 2 3 Bがほぼ均一に形成されている。 く ぼみ 1 2 3 A、 1 2 3 Bの形状は球面が好ましく、 さらに.大きさは直径 2 m〜 2 0 m、 深さを 0 . 2 〜 1 . O mとすることが好ましい。 さらに相互 シール表面積に対するくぼみ 1 2 3 A、 1 2 3 Bの占める面積割合 は 4 0 〜 8 0 %が好ましい。
なお、 弁座 5 1 7 と弁 5 1 9 とにくぼみ 1 2 3 Aを形成する方法 は実施の形態 1でく ぼみ 1 2 3 を形成する方法と同様である。 弁 5 1 9 の部材として表面組織がマルテンサイ 卜の板ばね材料を用いる 場合についても同様に形成することができる。 +
以上のように構成された圧縮機について、 図 1、 図 3 3 〜 3 5 を 参照しながらその動作を説明する。
商用電源から供給される電力は駆動部である電動部 1 0 6 に供給 され、 電動部 1 0 6 の回転子 1 0 5 を回転させる。 回転子 1 0 5は クランクシャフ ト 1 0 8 を回転させ、 偏心部 1 1 0 の偏心運動が連 結部のコンロッ ド 1 1 8からピス トンピン 1 1 7 を介してピス トン 1 1 5 を駆動する。 これにより ピス トン 1 1 5 はポア 1 1 3内を往 復運動する。 サクシヨ ンチューブ 1 2 1 を通して密閉容器 (以下、 容器) 1 0 1 内に導かれた冷媒ガス 1 0 2はサクシヨ ンマフラ一 1 2 2から吸入バルブ装置 5 2 7 を介して吸入され、 圧縮室 1 1 6内 で連続して圧縮される。
吸入バルブ装置 5 2 7から吸入される冷媒ガス 1 0 2はミス ト状 となったオイル 1 0 3 を微量に含んでおり、 吸入バルブ装置 5 2 7 を構成する弁座 5 1 7 と弁 5 1 9 との相互シール面にオイル 1 0 3 を供給する。 供給されたオイル 1 0 3は相互シール面のシールと潤 滑との機能を果す。
ここで、 く ぼみ 1 2 3 Aを形成する際に、 弁座 5 1 7 と弁 5 1 9 との表面層の組織がマルテンサイ ト化し、表面強度が上昇している。 このため、 これらの耐磨耗性と耐衝撃性とが向上する。 またくぼみ 1 2 3 Aを形成することにより接触部間の面積が低減され、 金属接 触が低減される。
ピス トン 1 1 5がポア 1 1 3内を往復運動して冷媒ガス 1 0 2 を 圧縮する際、 圧縮された冷媒ガス 1 0 2の一部は吸入バルブ装置 5 2 7の相互シール面からサクシヨ ンマフラー 1 2 2へと漏出する。 この漏出は体積効率を下げる。 しかしながら、 本実施の形態におい ては吸入バルブ装置 5 2 7 を構成する弁座 5 1 7 と弁 5 1 9 のシー ル部 5 1 9 Aとにほぼ均一にくぼみ 1 2 3 Aを形成し、 そこにオイ ル 1 0 3が滞留している。 オイル 1 0 3が圧縮された冷媒ガス 1 0 2の漏出に対して抵抗となる。 この際、 く ぼみ 1 2 3 Aの形状を球 面とすることにより、 同じ表面部への投影面積の多角錐に比べて体 積が増加し、 滞留するオイル 1 0 3の量が増加する。 この結果、 冷 媒ガス 1 0 2の漏れ量が減少し、圧縮機の体積効率が向上するため、 圧縮機の圧縮効率は向上する。 '
また、 く ぼみ 1 2 3 Aに滞留したオイル 1 0 3は、 弁座 5 1 7 と 弁 5 1 9 との相互シール面における潤滑性の向上にも寄与し、 吸入 バルブ装置 5 2 7の耐摩耗性が向上する。 また'、 くぼみ 1 2 3 Aに 滞留したオイル 1 0 3 は、 弁 5 1 9が弁座 5 1 7へと着座する際の 衝撃に対するダンパーの効果があることから吸入バルブ装置 5 2 7 着座衝撃に起因する圧縮機の騒音を低減する。 さらには、 腕部 5 1 9 Bにくぼみ 1 2 3 Bを形成する際に圧縮の残留応力を付与するこ とで表面をマルテンサイ ト化することにより硬度が上がり耐衝撃性 が向上し、 疲労破壌強度が向上する。
なお、 本実施の形態ではくぼみ 1 2 3 Aを弁座 5 1 7 と弁 5 1 9 のシール部 5 1 9 Aとの両方に設けているが、 いずれか一方に設け てもよい。 また、 く ぼみ 1 2 3 Bを弁 5 1 9 の腕部 5 1 9 Bの両面 に設けているが、 いずれか一面に設けてもよい。
次に吐出バルブ装置について説明する。 図 3 6は本実施の形態に おける吐出バルブ装置 5 3 4の縦断面図である。 図 3 7は吐出バル ブ装置 5 3 4の吐出弁座 (以下、 弁座) 5 2 8 を示す平面図である。 図 3 8は吐出バルブ装置 5 3 4の吐出可動弁 (以下、 弁) 5 2 5 の 相互シール面側を示す平面図である。 図 3 9 は吐出バルブ装置 5 3 4の弁 5 2 5 の衝打部 5 4 1 A側を示す平面図である。 図 4 0は吐 出バルブ装置 5 3 4のス トッパ 5 3 7 を示す平面図である。
バルブプレー卜 1 1 9は弁座 5 2 8 を有し、 弁 5 2 5、 ス トッパ 5 3 7 と共に吐出バルブ装置 5 3 4を構成する。 弁座 5 2 8 と、 弁 5 2 5のシール部 5 2 5 Aとは、 圧縮部 1 0 7の駆動により接触し 合う接触部である。 弁座 5 2 8 と、 弁 5 2 5のシール部 5 2 5 Aと には、相互シール面にく ぼみ 1 2 3 Aがほぼ均一に形成されている。 また、 弁 5 2 5の腕部 5 2 5 Bにはくぼみ 1 2 3 Bがほぼ均一に形 成されている。 そして弁 5 2 5の衝打部 5 4 1 Aとス トッノ、° 5 3 7 の衝打部 5 4 1 Bにもく ぼみ 1 2 3 Aがほぼ均一に形成されている。 衝打部 5 4 1 A、 5 4 1 Bもまた、 圧縮部 1 0 7の駆動により接触 し合う接触部である。 く ぼみ 1 2 3 A、 1 2 3 Bのより好ましい形 態は、 前述と同様であり、 その形成方法も同様である。
以下その動作を説明する。 商用電源から供給される電力は駆動部 である電動部 1 0 6 に供給され、 電動部 1 0 6 の回転子 1 0 5 を回 転させる。 回転子 1 0 5はクランクシャフ ト 1 0 8 を回転させ、 偏 心部 1 1 0の偏心運動が連結部であるコンロッ ド 1 1 8からピス ト ンピン 1 1 7 を介してピス トン 1 1 5 を駆動する。 これにより ピス トン 1 1 5はポア 1 1 3内を往復運動する。 サクシヨ ンチューブ 1 2 1 を通して容器 1 0 1 内に導かれた冷媒ガス 1 0 2はサクシヨ ン マフラー 1 2 2から吸入バルブ装置 5 2 7 を介して吸入され、 圧縮 室 1 1 6内で連続して圧縮される。 圧縮された冷媒ガス 1 0 2 は、 吐出バルブ装置 5 3 4、 ヘッ ド 1 2 0 を介して吐出管 (図示せず) から冷凍サイクルの高圧側である熱交換器 7 0へと排出される。
圧縮室 1 1 6内で連続して圧縮された冷媒ガス 1 0 2はミス ト状 となったオイル 1 0 3 を微量に含んでいる。 冷媒ガス 1 0 2は吐出 バルブ装置 5 3 4を構成する弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 Aとの相互シール面と、 弁 5 2 5の衝打部 5 4 1 Aとス トッノ、° 5 3 7 の衝打部 5 4 1 Bとにオイル 1 0 3 を供給する。 供給されたォ ィル 1 0 3は相互シール面のシールと潤滑、 衝打部 5 4 1 A、 5 4 1 Bの潤滑との機能を果す。
ここで、 くぼみ 1 2 3 Aを形成する際に、 弁座 5 2 8、 弁 5 2 5、 衝打部 5 4 1 A、 5 4 1 Bとの表面層の組織がマルテンサイ ト化し、 表面強度が上昇している。 このため、 これらの耐磨耗性と耐衝擊性 とが向上する。 またく ぼみ 1 2 3 Aを形成することにより接触部間 の面積が低減され、 金属接触が低減される。
ピス トン 1 1 5がポア 1 1 3内を往復運動して冷媒ガス 1 0 2 を 吸入、 圧縮する際、 吐出バルブ装置 5 3 4からヘッ ド 1 2 0へと吐 出された冷媒ガス 1 0 2の一部は吐出バルブ装置 5 3 4の相互シ一 ル面から圧縮室 1 1 6へと漏出する。 漏出した冷媒ガス 1 0 2は再 膨張を行う ことから体積効率を下げる。 しかしながら、 本実施の形 態においては吐出バルブ装置 5 3 4を構成する弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 Aとの相互シール面にほぼ均一に形成したくぼ み 1 2 3 Aにオイル 1 0 3が滞留している。 オイル 1 0 3が、 一度 ヘッ ド 1 2 0へと吐出された冷媒ガス 1 0 2の圧縮室 1 1 6への漏 出に対して抵抗となる。 この際、 くぼみ 1 2 3 Aの形状を球面とす ることにより、 同じ表面部への投影面積の多角錐に比べて体積が増 加し、 滞留するオイル 1 0 3の量が増加する。 この結果、 冷媒ガス 1 0 2の漏れ量が減少し、 圧縮機の体積効率が向上するため、 圧縮 機の圧縮効率は向上する。
また、 く ぼみ 1 2 3 Aに滞留したオイル 1 0 3は、 弁座 5 2 8 と 弁 5 2 5のシール部 5 2 5 Aとにおける相互シール面の潤滑性の向 上にも寄与し、 吐出バルブ装置 5 3 4の耐摩耗性が向上する。
また、 く ぼみ 1 2 3 Aに滞留したオイル 1 0 3は、 弁 5 2 5 のシ ール部 5 2 5 Aが弁座 5 2 8へと着座する際の衝撃に対するダンパ 一の効果がある。 このため吐出バルブ装置 5 3 4の着座衝撃に起因 する圧縮機の騒音が低減される。 さらには、 腕部 5 2 5 Bにくぼみ 1 2 3 Bを形成する際に圧縮の残留応力を付与することで表面がマ ルテンサイ ト化され硬度が上がり、 耐衝撃性が向上し、 疲労破壌強 度が向上する。
また、 弁 5 2 5の衝打部 5 4 1 Aとス トッパ 5 3 7の衝打部 5 4 1 Bに、 ほぼ均一に形成したくぼみ 1 2 3 Aにオイル 1 0 3が滞留 する。 このオイル 1 0 3が衝打部 5 4 1 A, 5 4 1 Bの潤滑性の向 上にも寄与し、 吐出バルブ装置 5 3 4の耐摩耗性が向上する。
また、 く ぼみ 1 2 3 Aに滞留したオイル 1 0 3は、 弁 5 2 5が開 放しス トッパ 5 3 7へと衝突する際の衝撃に対するダンパーの効果 がある。 このため吐出バルブ装置 5 3 4の開放衝撃に起因する圧縮 機の騒音が低減される。 さらには、 表面をマルテンサイ ト化するこ とにより硬度が上がり耐衝撃性が向上する。
なおく ぼみ 1 2 3 Aを弁座 5 2 8 と弁 5 2 5 のシール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 Bの全てに設けているが、 それぞれ の組合せの一方に設けてもよい。 またく ぼみ 1 2 3 Bを弁 5 2 5の 腕部 5 2 5 Bの両面に設けているが、いずれか一面に設けてもよい。
次にバックアップリード 5 3 5を有する吐出バルブ装置について 説明する。 図 4 1 は本発明の実施の形態における他の吐出バルブ装 置 5 3 4 Aの縦断面図である。 図 4 2 は吐出バルブ装置 5 3 4 Aの ノ ックアップリード 5 3 5の、 吐出可動弁 (以下、 弁) 5 2 5 との 衝打部 5 4 1 C側を示す平面図である。 図 4 3は吐出バルブ装置 5 3 4 Aのバックアップリード 5 3 5の、 ス トッパ 5 3 7 との衝打部 5 4 1 D側を示す平面図である。
図 4 1 に示す吐出バルブ装置 5 3 4 Aは、 弁 5 2 5 とス トッパ 5 3 7 との間にバックアップリード 5 3 5 を有する。 弁 5 2 5の衝打 部 5 4 1 Aとノ ックアツプリ一ド 5 3 5の衝打部 5 4 1 C、 ノ ック アップリード 5 3 5 の衝打部 5 4 1 Dとス トッパ 5 3 7 の衝打部 5 4 1 Bは、 それぞれ圧縮部 1 0 7 の駆動により接触し合う接触部で ある。 そしてバックアップリード 5 3 5 の衝打部 5 4 1 Cと衝打部 5 4 1 Dとには、 く ぼみ 1 2 3 Aがほぼ均一に形成されている。 く ぼみ 1 2 3 Aのより好ましい形態は前述と同様であり、 その形成方 法も同様である。 これ以外の構成は、 図 3 6 の吐出バルブ装置 5 3 4と同様である。
以下その動作を説明する。 商用電源から供給される電力は駆動部 である電動部 1 0 6 に供給され、 電動部 1 0 6の回転子 1 0 5 を回 転させる。 回転子 1 0 5はクランクシャフ ト 1 0 8 を回転させ、 偏 心部 1 1 0の偏心運動が連結部であるコンロッ ド 1 1 8からピス ト ンピン 1 1 7 を介してピス トン 1 1 5 を駆動する。 これにより ピス トン 1 1 5はポア 1 1 3内を往復運動する。 サクシヨ ンチューブ 1 2 1 を通して容器 1 0 1 内に導かれた冷媒ガス 1 0 2はサクシヨ ン マフラー 1 2 2から吸入バルブ装置 5 2 7 を介して吸入され、 圧縮 室 1 1 6内で連続して圧縮される。 圧縮された冷媒ガス 1 0 2は、 吐出バルブ装置 5 3 4、 ヘッ ド 1 2 0 を介して吐出管 (図示せず) から冷凍サイクルの高圧側である熱交換器 7 0へと排出される。 圧縮室 1 1 6内で連続して圧縮された冷媒ガス 1 0 2はミス ト状 となったオイル 1 0 3 を微量に含んでいる。 圧縮された冷媒ガス 1 0 2は、 吐出バルブ装置 5 3 4 Aを構成する弁 5 2 5の衝打部 5 4 1 Aとバックアップリード 5 3 5の衝打部 5 4 1 C、 ノ ックァップ リード 5 3 5 の衝打部 5 4 1 Dとス トッパ 5 3 7 の衝打部 5 4 1 B とにオイル 1 0 3 を供給する。 供給されたオイル 1 0 3は衝打部 5 4 1 A、 5 4 1 B、 5 4 1 C、 5 4 1 Dの潤滑の機能を果す。
くぼみ 1 2 3 Aを形成する際に、 弁 5 2 5 の衝打部 5 4 1 Aとバ ックアップリード 5 3 5の衝打部 5 4 1 C、 ノ ックァップリード 5 3 5 の衝打部 5 4 1 Dとス トッパ 5 3 7 の衝打部 5 4 1 Bの表面層 組織がマルテンサイ ト化し、 表面強度が上昇する。 このため、 これ らの耐磨耗性と耐衝撃性とが向上する。 またく ぼみ 1 2 3 Aを形成 することにより接触部間の面積が低減され、金属接触が低減される。
また、 く ぼみ 1 2 3 Aの形状を球面とすることにより、 同じ表面 部への投影面積の多角錐に比べて体積が増加し、 滞留するオイル 1 0 3 の量が増加する。 く ぼみ 1 2 3 Aに滞留したオイル 1 0 3は、 弁 5 2 5 とノ ックアップリード 5 3 5の衝打部 5 4 1 A , 5 4 1 C , およびバックアップリード 5 3 5 とス ト ッノ \° 5 3 7 の衝打部 5 4 1 D、 5 4 1 Bの潤滑性の向上に寄与する。 その結果、 吐出バルブ装 置 5 3 4の耐摩耗性が向上する。 また、 く ぼみ 1 2 3 Aに滞留した オイル 1 0 3は、 弁 5 2 5がバックアップリード 5 3 5へと衝突し たり、 ノ ックアップリード 5 3 5がス トッノ \° 5 3 7へと衝突する際 の衝撃に対するダンパーの効果がある。 このため吐出バルブ装置 5 3 4 Aの開放衝撃に起因する圧縮機の騒音を低減する。 さ らには、 表面をマルテンサイ ト化することにより硬度が上がり、 各接触部の 耐衝撃性が向上する。
なおく ぼみ 1 2 3 Aを弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 1 C、 衝打部 5 4 1 Dと衝打部 5 4 1 Bの全てに設けているが、それぞれの組合せの一方に設けてもよい。 以上のように本実施の形態によれば、 吸入バルブ装置、 吐出バル ブ装置の耐摩耗性、 耐衝撃性、 疲労破壊強度が向上し、 圧縮機の圧 縮効率が向上し、 圧縮機の騒音が低減される。
(実施の形態 6 )
本実施の形態による冷媒圧縮機の基本的な構成は図 1 を用いて説 明した実施の形態 5 と同様である。 実施の形態 5 との違いは、 バル ブプレート 1 1 9に設けられた吸入バルブ装置 5 2 7 と、 吐出バル ブ装置 5 3 4における各接触部である。
まず吸入バルブ装置について説明する。 図 4 4は図 3 3 における 他の吸入バルブ装置 5 2 7の吸入弁座 (以下、 弁座) 5 1 7 を示す 平面図である。 図 4 5は吸入バルブ装置 5 2 7の吸入可動弁 (以下、 弁) 5 1 9 を示す平面図である。 実施の形態 5では、 接触部である 弁座 5 1 7 と、 弁 5 1 9のシール部 5 1 9 Aとに微小くぼみ 1 2 3 Aを設けているが、 本実施の形態では二硫化モリブデン (M o S 2) を固着させた混合層 3 2 3が形成されている。 これ以外の構成は実 施の形態 5 における吸入バルブ装置と同様である。
弁座 5 1 7 と弁 5 1 9 とに M o S 2 を固着させた混合層 3 2 3 を 形成する方法は実施の形態 3 と同様である。 特に、 表面に M o S 2 の微細粒を一定速度以上で衝突させる方法によれば、 衝突の際に生 じる熱エネルギーによ り M o S 2 の一部が母材に溶け込み金属結合 することにより固着させた混合層 3 2 3が形成される。また同時に、 衝突の際の衝撃力により実施の形態 3 と同様に微細くぼみが形成さ れる。 その際、 表面層の組織がマルテンサイ ト化し、 弁座 5 1 7 と 弁 5 1 9 との表面強度が上昇する。 弁 5 1 9の部材に表面組織がマ ルテンサイ 卜の板ばね材料を用いる場合についても同様に形成する ことができる。
このように、 吸入バルブ装置 5 2 7 を構成する弁座 5 1 7 と弁 5 1 9 のシール部 5 1 9 Aとには、 M o S 2 を固着させた混合層 3 2 3が形成されている。 これより、 M o S 2 の自己潤滑作用によって 弁座 5 1 7 と弁 5 1 9のシール部 5 1 9 Aとの相互シール面の摩擦 係数が低くなり耐摩耗性が向上する。 なお、 M o S 2の純度を 9 8 % 以上として M o S 2 と比較して摩擦係数が高い不純物の量を極力抑 えることにより、 より高い効果が得られる。 また、 混合層 3 2 3 の 表面にほぼ均一に微細く ぼみを形成すれば、 そこにオイル 1 0 3が 介在し、 実施の形態 5 と同様の効果が得られる。 この場合、 微細く ぼみの好ましい形態は実施の形態 5 と同様である。
以上のように本実施の形態によれば、 混合層 3 2 3 を弁座 5 1 7 と、 弁 5 1 9のシール部 5 1 9 Aとに設けることによって、 圧縮機 の吸入バルブ装置 5 2 7の耐摩耗性が向上する。 さらに、 混合層 3 2 3の表面に微小く ぼみを均一に設ければ、 吸入バルブ装置 5 2 7 の耐衝撃性が向上し、 圧縮機の性能と効率が向上し、 吸入バルブ装 置 5 2 7 に起因する騒音が低減される。
なお、 本実施の形態では微小くぼみを設けた混合層 3 2 3 を弁座 5 1 7 と弁 5 1 9のシール部 5 1 9 Aとの両方に設けているが、 い ずれか一方に設けてもよい。 また、 実施の形態 5 と同様に、 微小く ぼみを弁 5 1 9の腕部 5 1 9 Bの少なく ともいずれか一面に設けて もよい。
次に吐出バルブ装置について説明する。 図 4 6は図 3 6 における 他の吐出パルプ装置 5 3 4の吐出弁座 (以下、 弁座) 5 2 8 を示す 平面図である。 図 4 7は吐出バルブ装置 5 3 4の吐出可動弁 (以下、 弁) 5 2 5 の相互シール面側を示す平面図である。 図 4 8は吐出バ ルブ装置 5 3 4の弁 5 2 5の衝打部 5 4 1 A側を示す平面図である。 図 4 9は吐出バルブ装置 5 3 4のス トッパ 5 3 7 を示す平面図であ る。
実施の形態 5では、 接触部である弁座 5 2 8 と弁 5 2 5 のシール 部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 B とに微小く ぼみ 1 2 3 Aを設けている。 一方、 本実施の形態では二硫化モリブデン (M o S 2) を固着させた混合層 3 2 3が形成されている。 これ以外の構 成は実施の形態 5における吐出バルブ装置と同様である。
弁座 5 2 8 と弁 5 2 5、 衝打部 5 4 1 Aと衝打部 5 4 1 B とに M o S 2 を固着させた混合層 3 2 3 を形成する方法は実施の形態 3 と 同様である。 特に、 表面に M o S 2 の微細粒を一定速度以上で衝突 させる方法によれば、衝突の際に生じる熱エネルギーにより M o S 2 の一部が母材に溶け込み金属結合することにより固着させた混合層
3 2 3が形成される。 また同時に、 衝突の際の衝撃力により実施の 形態 3 と同様に微細く ぼみが形成される。 その際、 表面層の組織が マルテンサイ ト化し、 弁座 5 2 8 と弁 5 2 5、 衝打部 5 4 1 Aと衝 打部 5 4 1 Bとのそれぞれの表面強度が上昇する。 弁 5 2 5の部材 に表面組織がマルテンサイ トの板ばね材料を用いる場合についても 同様に形成することができる。
このように、 吐出バルブ装置 5 3 4を構成する弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 Bとに、 M o S 2 を固着させた混合層 3 2 3が形成されている。 これより、 M o S 2 の自己潤滑作用によつて弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 Aとの相互シール面、 衝打部 5 4 1 A、 衝打部 5 4 I Bのそ れぞれの摩擦係数が低くなり耐摩耗性が向上する。 なお、 M o S 2 の純度を 9 8 %以上として M o S 2 と比較して摩擦係数が高い不純 物の量を極力抑えることにより、 より高い効果が得られる。 また、 混合層 3 2 3の表面にほぼ均一に微細くぼみを形成すれば、 実施の 形態 5 と同様の効果が得られる。 この場合、 微細く ぼみの好ましい 形態は実施の形態 5 と同様である。
以上のように本実施の形態によれば、 混合層 3 2 3 を弁座 5 2 8 と弁 5 2 5 のシール部 5 2 5 Aと、 衝打部 5 4 1 Aと衝打部 5 4 1 Bとに設けることによって、 圧縮機の吐出バルブ装置 5 3 4の耐摩 耗性が向上する。 さらに、 混合層 3 2 3 の表面に微小くぼみを均一 に設ければ、 吐出バルブ装置 5 3 4の耐衝擊性が向上し、 圧縮機の 性能と効率が向上し、 吐出バルブ装置 5 3 4に起因する騒音が低減 される。
なお微小く ぼみを設けた混合層 3 2 3 を弁座 5 2 8 と弁 5 2 5 の シール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 Bの全てに設け ているが、 それぞれの組合せの一方に設けてもよい。 また実施の形 態 5 と同様に、 微小く ぼみを弁 5 2 5 の腕部 5 2 5 Bの少なく とも いずれか一面に設けてもよい。
次にバックアップリード 5 3 5 を有する吐出バルブ装置について 説明する。 図 5 0は図 4 1 における他の吐出バルブ装置.5 3 4 Aの ノ ックアップリード 5 3 5の、 吐出可動弁 (以下、 弁) 5 2 5 との 衝打部 5 4 1 C側を示す平面図である。 図 5 1 は吐出バルブ装置 5 3 4 Aのバックアップリー ド 5 3 5 の、 ス トッパ 5 3 7 との衝打部 5 4 1 D側を示す平面図である。
実施の形態 5では、 接触部である弁座 5 2 8 と弁 5 2 5のシール 部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 C、 衝打部 5 4 1 Dと 衝打部 5 4 1 Bとにそれぞれ微小くぼみ 1 2 3 Aを設けている。 一 方、 本実施の形態では二硫化モリブデン (M o S 2) を固着させた混 合層 3 2 3が形成されている。 これ以外の構成は実施の形態 5 にお ける吐出バルブ装置と同様である。
弁座 5 2 8 と弁 5 2 5、 衝打部 5 4 1 Aと衝打部 5 4 1 C、 衝打 部 5 4 1 Dと衝打部 5 4 1 B とに M o S 2 を固着させた混合層 3 2 3を形成する方法は実施の形態 3 と同様である。 特に、 表面に M o S 2 の微細粒を一定速度以上で衝突させる方法によれば、 衝突の際 に生じる熱エネルギーにより M o S 2 の一部が母材に溶け込み金属 結合することにより固着させた混合層 3 2 3が形成される。 また同 時に、 衝突の際の衝撃力により実施の形態 3 と同様に微細く ぼみが 形成される。 その際、 表面層の組織がマルテンサイ ト化し、 弁座 5
2 8 と弁 5 2 5、 衝打部 5 4 1 Aと衝打部 5 4 1 C、 衝打部 5 4 1 Dと衝打部 5 4 1 Bとのそれぞれの表面強度が上昇する。 弁 5 2 5 やバックアップリード 5 3 5の部材に表面組織がマルテンサイ トの 板ばね材料を用いる場合についても同様に形成することができる。
このよう に、 吐出バルブ装置 5 3 4 Aを構成する弁座 5 2 8 と弁 5 2 5 のシール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 C、 衝 打部 5 4 1 Dと衝打部 5 4 1 B とに、 M o S 2 を固着させた混合層
3 2 3が形成されている。 これより、 M o S 2 の自己潤滑作用によ つて弁座 5 2 8 と弁 5 2 5 のシール部 5 2 5 Aとの相互シール面、 衝打部 5 4 1 A、 衝打部 5 4 1 C、 衝打部 5 4 1 D、 衝打部 5 4 1 Bのそれぞれの摩擦係数が低くなり耐摩耗性が向上する。 なお、 M o S 2の純度を 9 8 %以上として M o S 2と比較して摩擦係数が高い 不純物の量を極力抑えることにより、 より高い効果が得られる。 ま た、 混合層 3 2 3の表面にほぼ均一に微細くぼみを形成すれば、 実 施の形態 5 と同様の効果が得られる。 この場合、' 微細くぼみの好ま しい形態は実施の形態 5 と同様である。
以上のように本実施の形態によれば、 混合層 3 2 3 を弁座 5 2 8 と弁 5 2 5のシール部 5 2 5 Aと、 衝打部 5 4 1 Aと衝打部 5 4 1 Cと、 衝打部 5 4 1 Dと衝打部 5 4 1 Bとに設けることによって、 圧縮機の吐出バルブ装置 5 3 4 Aの耐摩耗性が向上する。 さらに、 混合層 3 2 3の表面に微小くぼみを均一に設ければ、 吐出バルブ装 置 5 3 4 Aの耐衝撃性が向上し、 圧縮機の性能と効率が向上し、 吐 出バルブ装置 5 3 4 Aに起因する騒音が低減される。
なお微小くぼみ有する混合層 3 2 3 を弁座 5 2 8 と弁 5 2 5 のシ ール部 5 2 5 A、 衝打部 5 4 1 Aと衝打部 5 4 1 C、 衝打部 5 4 1 Dと衝打部 5 4 1 Bの全てに設けているが、 それぞれの組合せの一 方に設けてもよい。
以上のように本実施の形態によれば、 吸入バルブ装置、 吐出バル ブ装置の耐摩耗性、 耐衝撃性、 疲労破壊強度が向上し、 圧縮機の圧 縮効率が向上し、 圧縮機の騒音が低減される。
なお、 実施の形態 5 , 6ではオイル 1 0 3 を内包したレシプロ式 圧縮機について説明したが、 他の口一タリ一式、 スクロール式、 リ ニァ式等の圧縮方式の圧縮機についても同様の効果が得られる。 ま た、 オイルを用いないリニア式圧縮機等の圧縮機についてもオイル が関与しない効果が得られる。 たとえば硬度や疲労破壊強度の改善 により もたらされる耐摩耗性ゃ耐衝撃性ゃ耐疲労破壊性が向上する。
(実施の形態 7 )
図 5 2は、 本発明の実施の形態 7 による、 冷媒圧縮機の断面図で ある。 図 5 3は図 5 2の冷媒圧縮機を含む冷凍機の冷凍サイクル図 である。 図 5 4は、 図 5 2の冷媒圧縮機における吐出経路と密着コ ィルばねとが接触する部分の拡大図である。
密閉容器 (以下、 容器) 1 0 1 は底部にオイル 1 0 3 を貯留する とともに、 固定子 1 0 4 と回転子 1 0 5 とからなる駆動部である電 動部 1 0 6 とこれによって駆動される圧縮部 1 0 7 を収容している。 また、 圧縮部 1 0 7から容器 1 0 1外に圧縮された冷媒ガスを導出 する吐出経路 7 1 7が設けられている。 なお、 鋼管からなる吐出経 路 7 1 7 には、 共振による異常振動を防止する為に密着コイルばね (以下、 ばね) 7 1 8が被覆されている。 ばね 7 1 8は吐出経路 7 1 7の共振防止部であり、 ゴム等の弾性体で構成してもよい。
クランクシャフ ト 1 0 8は回転子 1 0 5 を固定した主軸部 1 0 9 と、主軸部 1 0 9に対し偏心して形成された偏心部 1 1 0からなり、 給油ポンプ 1 1 1 を設けている。 シリ ンダ一ブロック 1 1 2は略円 筒形のポア 1 1 3からなる圧縮室 1 1 6 を有している。 ポア 1 1 3 に遊嵌されたピス トン 1 1 5は、 偏心部 1 1 0 と連結部であるコネ クティ ングロッ ド 7 1 9 にて連結されており、 ポア 1 1 3の端面は バルブプレート 1 1 9で封止されている。
ヘッ ド 1 2 0は高圧室を形成し、 ヘッ ド 1 2 0から容器 1 0 1外 に圧縮された冷媒ガスを導出する吐出経路 7 1 7は容器 1 0 1 を介 して冷凍サイクルの高圧側である熱交換器 7 0 に接続されている。 また、 吐出経路 7 1 7の表面には、 微細くぼみ (以下、 くぼみ) 1 2 3がほぼ均一に形成されている。 く ぼみ 1 2 3 は球形でその大 きさは直径 2 Π!〜 2 0 m、 深さが 0 . 2〜 1 . 0 mであるこ とが好ましい。 さらにばね 7 1 8 に吐出経路 7 1 7が接触する接触 面 7 1 7 Aの表面積に対するく ぼみ 1 2 3の占める面積割合が 4 0 〜 8 0 %であることが好ましい。
このようなくぼみ 1 2 3 を形成する方法は、 実施の形態 1 と同様 である。
なお、 冷媒ガスは塩素を含まない炭化水素系冷媒であり、 オイル 1 0 3はこの冷媒と相溶性を有する。
以上のように構成された冷媒圧縮機について、 以下その動作を説 明する。 クランクシャフ ト 1 0 8の回転に伴ってピス トン 1 1 5が 直線運動することにより、 圧縮室 1 1 6が体積変化する。 これによ り冷媒ガス (図示せず) が圧縮され、 吐出経路 7 1 7 を通って容器 1 0 1外に導出され、 熱交換器 7 0 に送られる。 冷媒ガスは熱交換 器 7 0で外部へ放熱し、 膨張弁 8 0を介して熱交換器 6 0へ戻り、 外部から吸熱する。 このようにして冷凍機が構成されている。
オイル 1 0 3はクランクシャフ ト 1 0 8の回転に伴って給油ボン プ 1 1 1から各摺動部に給油され、 摺動部を潤滑するとともに、 偏 芯部 1 1 0先端より容器 1 0 1 内に放出され、 吐出.経路 7 1 7 にも 放出される。
また、 圧縮機本体 7 0 7は圧縮部 1 0 7の駆動中、 常に微振動を 発生するとともに、 起動、 停止時は慣性力によって圧縮機本体 7 0 7が大きく振れる。 その結果、 吐出経路 7 1 7が左右、 前後にゆれ るため、 吐出経路 7 1 7 を構成する鋼管とばね 7 1 8 とが間欠的に 接触しこすれる。 このように、 吐出経路 7 1 7 とばね 7 1 8 とは圧 縮部 1 0 7の駆動に伴い接触し合う接触部である。
しかしながら、 本実施の形態においては図 5 4に示すように、 吐 出経路 7 1 7の接触面 7 1 7 Aにくぼみ 1 2 3がほぼ均一に形成さ れている。 これにより、 接触部間の面積が低減され、 金属接触が低 減される。 また、 くぼみ 1 2 3 を形成する際に、 吐出経路 7 1 7 と ばね 7 1 8 との表面層の組織がマルテンサイ ト化し、 表面強度が上 昇している。 このため、 これらの耐磨耗性と耐衝撃性とが向上する。 また、 オイル 1 0 3がく ぼみ 1 2 3 に保持される。 吐出経路 7 1 7 とばね 7 1 8 との隙間が狭くなつたとき、 くぼみ 1 2 3内のオイル 1 0 3の粘性と接触部との相対運動により,、 狭くなつた隙間にオイ ル 1 0 3が引き込まれる。 そして、 負荷を支える圧力がオイル 1 0 3 に生じく さび形油膜を形成する。 このくさび形油膜により、 接触 面 7 1 7 Aに発生する金属接触が防止され、 異常音の発生を効果的 に抑えられる。
またく ぼみ 1 2 3の形状を球面とすれば、 実施の形態 1 における 図 3 と同様のオイル 1 0 3の流れが生じ、 その結果油圧が発生する ことで金属接触が防止される。 これにより、 異常音の発生が防止さ れる。
くぼみ 1 2 3 の大きさは直径 2 0 z m〜 5 0 m、 深さを 1 β m 〜 1 Ο ΠΙとくぼみ 1 2 3 の体積を小さく設定している。 これによ り、 冷媒を含んだオイル 1 0 3がく ぼみ 1 2 3 に供給される際の体 積変動が小さい。 その結果、 隙間での圧力低下があまり生じない。 このため、 オイル 1 0 3 中へ溶け込んでいる冷媒の発泡現象があま り生じないため、 摺動時に発生する動圧により作り出される油膜が 冷媒の発泡により破断されることが少ない。 従って金属接触を防止 する作用が高く維持されるため、 耐磨耗性が高く、 また異常音の発 生を防止する作用が高まる。
また、 摺動面 7 1 7 Αの表面積に対するく ぼみ 1 2 3 の占める面 積割合が 4 0〜 8 0 %とすれば、 くぼみ 1 2 3 の球面形状が維持さ れる。 その結果、 吐出経路 7 1 7 とばね 7 1 8 どの間にくぼみ 1 2 3 による傾斜表面部と摺動面 7 1 7 Αに対して平行な平面部が一様 に設けられる。 すなわち、 一般的なテーパーランド軸受と同様の効 果が得られる。これにより摺動時に発生する動圧が更に大きくなり、 金属接触をさらに防止する効果が得られる。 ·
そして、 吐出経路 7 1 7 を構成する鋼管の表面にく ぼみ 1 2 3 を 形成する為に、 鋼球、 セラミ ックス球等の物質を表面に一定速度以 上で衝突させている。 このため、 吐出経路 7 1 7表面層の組織がマ ルテンサイ ト化しているので表面硬度が上昇し、 耐摩耗性が向上し ている。
また冷媒ガスには炭化水素系冷媒を使用しているが、 オイル 1 0 3 との相溶性の高い冷媒にもかかわらず、 上述したようにオイル 1 0 3 中へ溶け込んでいる冷媒の発泡現象があまり生じない。 このた め、 油膜が冷媒の発泡により破断されることが少ないので、 オゾン 層の破壊や地球温暖化を抑えた上でなおかつ耐磨耗性が高く異常音 の発生が防止される。 これらにより、 部品点数を低減して製作コス トを低減した冷媒圧縮機が得られる。 (実施の形態 8 )
図 5 5 A , Bは本発明の実施の形態 8 による、 冷媒圧縮機におけ る吐出経路と密着コイルばねとが接触する部分の拡大図である。 本 実施の形態による冷媒圧縮機は、 実施の形態 7で図 5 2 を用いて説 明した冷媒圧縮機と基本的な構造は同様である。実施の形態 7では、 吐出経路 7 1 7 を構成する鋼管の表面に、 微細く ぼみ (以下、 く ぼ み) 1 2 3がほぼ均一に形成されている。 これに対し本実施の形態 では図 5 5 Aに示すように、 吐出経路 7 1 7 を構成する鋼管の表面 に二硫化モリブデン (M o S 2 ) を含む混合層 3 2 3が形成されて いる。 これ以外は、 実施の形態 7 と同様である。
また、 図 5 5 Bに示すように、 混合層 3 2 3の表面にくぼみ 1 2 3 をほぼ均一に形成することが好ましい。 また、 くぼみ 1 2 3は球 形でその大きさは直径 2 m〜 2 0 β m、 深さが 0 . 2〜 1 . 0 mであることが好ましい。 さ らにばね 7 1 8 に吐出経路 7 1 7が接 触する接触面 7 1 7 Aの表面積に対するくぼみ 1 2 3の占める面積 割合が 4 0〜 8 0 %であることが好ましい。 このような混合層 3 2 3やく ぼみ 1 2 3 を形成する方法は、 実施 の形態 3 と同様である。
なお、 冷媒ガスは塩素を含まない炭化水素系冷媒であり、 オイル 1 0 3はこの冷媒と相溶性を有する。
圧縮機本体 7 0 7は圧縮部 1 0 7の駆動中、 常に微振動を発生す るとともに、 起動、 停止時は慣性力によって圧縮機本体 7 0 7が大 きく振れる。 その結果、 吐出経路 7 1 7が左右、 前後にゆれるため、 吐出経路 7 1 7 を構成する鋼管とばね 7 1 8 とが間欠的に接触しこ すれる。 このように、 吐出経路 7 1 7 とばね 7 1 8 とは圧縮部 1 0 7 の駆動に伴い接触し合う接触部である。
しかしながら、 本実施の形態においては、 吐出経路 7 1 7の接触 面 7 1 7 Aに M o S 2を含む混合層 3 2 3が形成されている。 M o S 2の組織が稠密六方晶であることから、 固体接触が生じても M o S 2が低い摩擦係数でへき開することで固体潤滑作用を発揮する。 これにより、 接触部の摩擦係数が低くなり、 金属接触による異常音 の発生が効果的に抑えられる。
なお M o S 2の純度を 9 8 %以上とすることが好ましぃ。 1^ 0 3 2 より高い摩擦係数を持つ不純物が極めて微量となることで、 接触部 の摩擦係数がさらに低くなり、 金属接触による異常音の発生がさら に抑えられる。
また図 5 5 Bに示すように、 混合層 3 2 3の接触面 7 2 5 にく ぼ み 1 2 3 をほぼ均一に形成することにより、 実施の形態 7 と同様の 効果が得られる。
くぼみ 1 2 3の好ましい形態は実施の形態 7 と同様である。 そし て、 鋼管からなる吐出経路 7 1 7の表面にくぼみ 1 2 3 を形成する 為に、 M o S 2の球を表面に一定速度以上で衝突させている。 この ため、 吐出経路 7 1 7表面層の組織がマルテンサイ ト化しているの で表面硬度が上昇し、 耐摩耗性が向上している。
また冷媒ガスには炭化水素系冷媒を使用しているが、 オイル 1 0 3 との相溶性の高い冷媒にもかかわらず、 オイル 1 0 3中へ溶け込 んでいる冷媒の発泡現象があまり生じない。 このため、 油膜が冷媒 の発泡により破断されることが少ないので、 オゾン層の破壊や地球 温暖化を抑えた上でなおかつ耐磨耗性が高く異常音の発生が防止さ れる。 これらにより、 部品点数を低減して製作コス トを低減した冷 媒圧縮機が実現される。
なお、 実施の形態 7 , 8 において冷媒圧縮機はレシプロ式圧縮機 として説明している。 また、 冷媒圧縮機は口一タリ式圧縮機、 リニ ァ式圧縮機等の圧縮機構から冷媒ガスを容器外へ導出する経路を有 するものでも同様の効果が得られる。
(実施の形態 9 )
本実施の形態による冷媒圧縮機は、 実施の形態 7で図 5 2 を用い て説明した冷媒圧縮機と基本的な構造は同様である。 実施の形態 7 との違いは、 固定子 1 0 4を介して圧縮部 1 0 7 を密閉容器 (以下、 容器) 1 0 1 内に弾性的に支持する支持部 9 2 3の構成である。 図 5 6 は本実施の形態による冷媒圧縮機の断面図である。 図 5 7 Aは 図 5 6の冷媒圧縮機における支持部 9 2 3 において圧縮コイルばね 9 0 8 と保持部材 9 2 2 とが接触する部分の拡大図である。
電動部 1 0 6 の固定子 1 0 4を締結する固定子締結ポルト 9 1 9 には、 頭部に一体に保持部材 9 2 0が形成されている。 容器 1 0 1 の内壁底部には保持部材 9 2 2が固着されている。 圧縮コイルばね (以下、 ばね) 9 0 8 は、保持部材 9 2 0 と保持部材 9 2 2 とに各々 上端、 下端を揷入され、 ばね 9 0 8 と保持部材 9 2 0 , 9 2 2 によ り支持部 9 2 3が構成されている。
また、 ばね 9 0 8、 保持部材 9 2 0、 9 2 2は鉄系の金属材料か ら形成されている。 そしてばね 9 0 8 と保持部材 9 2 0、 ばね 9 0 8 と保持部材 9 2 2の相互接触面の少なく ともいずれか一方には微 小く ぼみ (以下、 くぼみ) 1 2 3がほぼ均一に形成されている。 図 5 7 Aではその一例として、 保持部材 9 2 2の接触面 9 2 4に微小 く ぼみ 1 2 3 を形成した状態を示している。 くぼみ 1 2 3の形状は球面が好ましく、 さらに大きさは直径 2 n m〜 2 0 m、 深さを 0 . 2 〜 1 . O mとすることが好ましい。 さらに相互シール表面積に対するくぼみ 1 2 3の占める面積割合は 4 0 〜 8 0 %が好ましい。
なお、 ばね 9 0 8 と保持部材 9 2 0 、 9 2 2 とにく ぼみ 1 2 3 を 形成する方法は実施の形態 1でくぼみ 1 2 3 を形成する方法ど同様 である。
なお、 冷媒ガスは塩素を含まない炭化水素系冷媒であり、 オイル 1 0 3はこの冷媒と相溶性を有する。
以上のように構成された冷媒圧縮機について、 以下その動作を説 明する。 クランクシャフ ト 1 0 8の回転に伴ってピス トン 1 1 5が 直線運動することにより、 圧縮室 1 1 6が体積変化する。 これによ り冷媒ガス (図示せず) が圧縮され、 吐出経路 7 1 7 を通って容器 1 0 1外に導出される。 オイル 1 0 3はクランクシャフ ト 1 0 8 の 回転に伴って給油ポンプ 1 1 1から各摺動部に給油され、 摺動部を 潤滑するとともに、 偏芯部 1 1 0先端より容器 1 0 1 内に放出され る。
また、 圧縮機本体 7 0 7 は圧縮部 1 0 7の駆動中、 常に微振動を 発生するとともに、 起動、 停止時は慣性力によって圧縮機本体 7 0 7が大きく振れる。 その結果、 ばね 9 0 8が左右、 前後にゆれるた め、 ばね 9 0 8 と保持部材 9 2 0、 ばね 9 0 8 と保持部材 9 2 2 と が間欠的に接触しこすれる。 このように、 ばね 9 0 8 と保持部材 9 2 0、 ばね 9 0 8 と保持部材 9 2 2 とは圧縮部 1 0 7の駆動に伴い 接触し合う接触部である。
しかしながら図 5 7 Aに示すように、 保持部材 9 2 2の接触面 9 2 4には、 ほぼ均等に微小く ぼみ 1 2 3が形成されている。 これに より接触部間の面積が低減され、 金属接触が低減される。 また、 く ぼみ 1 2 3 を形成する際に、 保持部材 9 2 2の表面層の組織がマル テンサイ ト化し、 表面強度が上昇している。 このため、 保持部材 9 2 2の耐磨耗性と耐衝撃性とが向上する。 この効果を有効にするた めには、 ばね 9 0 8 と保持部材 9 2 0 、 9 2 2の全ての接触面に微 小くぼみ 1 2 3 を形成することが望ましい。
また、 接触面 9 2 4等の相互接触面にくぼみ 1 2 3 をほぼ均一に 形成することにより、 オイル 1 0 3がく ぼみ 1 2 3 に保持される。 ばね 9 0 8 と保持部材 9 2 0 、 9 2 2 との隙間が狭くなつたとき、 くぼみ 1 2 3内のオイル 1 0 3の粘性と接触部の相対運動により、 狭くなつた隙間にオイル 1 0 3が引き込まれる。 これにより、 負荷 を支える圧力がオイル 1 0 3 に生じく さび形油膜を形成する。 この く さび形油膜が、 相互接触面に発生する金属接触を防止することで 異常音の発生が効果的に抑えられる。
さらに、 くぼみ 1 2 3の形状が球面であるため、 接触する際に生 じる油膜を発生させるオイル 1 0 3 の流れがく ぼみ 1 2 3 の中でう ず流を形成し易くなる。 この様子は、 実施の形態 1で図 3 を用いて 説明したのと同様である。 その結果、 発生する油圧が金属接触を防 止することから、 異常音の発生が防止される。
くぼみ 1 2 3の大きさや、 接触部表面積に対するく ぼみ 1 2 3の 占める割合の好ましい形態についての説明は、 他の実施の形態を同 様なので省略する。
冷媒ガスには炭化水素系冷媒を使用しているが、 オイル 1 0 3 と の相溶性の高い冷媒にもかかわらず、 上述したようにオイル 1 0 3 中へ溶け込んでいる冷媒の発泡現象があまり生じない。 このため、 油膜が冷媒の発泡により破断されることが少ない。 また塩素を含ま ない炭化水素系冷媒を使用することで、 大気開放時においてもォゾ ン層の破壌や地球温暖化を抑えた上でなおかつ耐摩耗性が高く異常 音の発生が防止される。 以上より、 部品点数が低減され製作コス ト が低減された冷凍機が得られる。
なお、 図 5 7 Bに示すように、 接触面 9 2 4等の相互接触面に二 硫化モリブデン (M o S 2) を固着させた混合層 3 2 3 を形成しても よい。 M o S 2 を接触部表面に形成する方法は実施の形態 3 と同様 である。 この構成では、 固体接触が生じても M o S 2 が低い摩擦係 数でへき開することで固体潤滑作用を発揮する。 これにより、 接触 部の摩擦係数が低くなり、 金属接触による異常音の発生が効果的に 抑えられる。 なお、 M o S 2 の純度についての説明は、 実施の形態 3 と同様である'。
さ らに、 図 5 7 Cに示すように、 混合層 3 2 3 の表面に、 図 5 7 Aに示したようにくぼみ 1 2 3 をほぼ均等に形成してもよい。 この ように混合層 3 2 3 とく ぼみ 1 2 3 とを同時に形成する方法は実施 の形態 3 と同様である。 また、 くぼみ 1 2 3 の好ましい形態は上述 と同様である。 このようにすることで、 図 5 7 A、 図 5 7 Bを用い て説明した効果が複合的に発揮される。
なお本実施の形態では、 保持部材 9 2 0 、 9 2 2 とその間に配置 されたばね 9 0 8が支持部 9 2 3 を構成しており、 いわゆるコイル スプリ ング懸架方式である。 これ以外に、 例えばリーフスプリ ング 方式やト一シヨ ンバー方式で支持部 9 2 3 を構成してもよい。 それ らの場合にも、 圧縮部 1 0 7の駆動により摺動する箇所にくぼみ 1 2 3や混合層 3 2 3 を設けることにより、 同様の効果が得られる。 なお、本実施の形態において冷凍機はレシプロ式圧縮機としたが、 冷凍機はロータリ式圧縮機、 スクロール圧縮機、 リニア式圧縮機、 スターリ ング式ポンプ等、 種類に関わらず内部懸架式であれば同様 の効果が得られる。 産業上の利用可能性
本発明の冷媒圧縮機は、 圧縮部と、 駆動部と、 第 1、 第 2接触部 とを有する。 圧縮部は密閉容器内に収容され、 冷媒ガスを圧縮する。 駆動部は圧縮部を駆動する。 第 1、 第 2接触部は、 圧縮部の駆動に より接触したり摺動したりする。 その表面に.は均等に配置された複 数のくぼみと、 二硫化モリブデン (M o S 2) を固着させた混合層と の少なく ともいずれかが形成されている。これらの接触部としては、 ピス トンとポアなどの摺動部、 吸入弁、 吐出弁の弁座と可動弁、 吐 出経路を構成する鋼管と密着コイルばね、 圧縮部を保持する保持部 材とばね等の支持部などがある。 この構成により、 第 1、 第 2接触 部の耐摩耗性が高くなり、 信頼性が高く、 高効率な圧縮機が得られ る。 またこのような圧縮機を用いた冷凍機も信頼性が高く、 高効率 である。

Claims

請求の範囲
1 . 密閉容器と、
前記密閉容器内に収容され、 冷媒を圧縮する圧縮部と、 前記圧縮部を駆動する駆動部と、
前記圧縮部の駆動により接触と摺動とのいずれかを行う第 1 接触部と第 2接触部と、 を備え、
前記第 1接触部と前記第 2接触部との少なく ともいずれかの 表面に、 均一に配置された複数のくぼみと、 二硫化モリブデンを固 着させた混合層との少なく ともいずれかを形成した、
冷媒圧縮機。
2 . 前記第 1接触部と前記第 2接触部が前記圧縮部を構成する摺 動部品である、
請求項 1記載の冷媒圧縮機。
3 . 前記圧縮部が、
ピス 卜ンと、
前記ピス トンを遊嵌したポアと を有し、 前記第 1接触部が前記ピス トンであり 前記第 2接触部が前 記ポアである、
請求項 1記載の冷媒圧縮機。
4 . 前記圧縮部が、
主軸部と偏心部とを有するクランクシャフ トと、 前記主軸部を軸支した軸受部と、 を有し、 前記第 1接触部が前記主軸部であり、 前記第 2接触部が前記 軸受部である、
請求項 1記載の冷媒圧縮機。
5 . 前記圧縮部が、
主軸部と偏心部とを有するクランクシャフ ト と、 ピス 卜ンと、
前記ピス トンに設けられたピス トンピンと、
前記偏心部と前記ピス トンピンとを連結したコンロッ ドと、 を有し、
前記第 1接触部が前記ピス トンピンであり、 前記第 2接触部 が前記コンロッ ドである、
請求項 1記載の冷媒圧縮機。
6 . 前記駆動部が回転子を有し、
前記圧縮部が、
主軸部と偏心部とを有するクランクシャフ トと、 前記主軸部を軸支した軸受部と、 を有し、 前記冷媒圧縮機は、 前記回転子と前記軸受部との間に、 スラ ス トヮッシャをさらに備え、
前記回転子は、 前記スラス トヮッシャ と接するフランジ面を 有し、
前記軸受部は、 前記スラス トヮッシャと接するスラス ト部を 有し、
前記第 1接触部が、 前記スラス トヮッシャであり、 前記第 2 接触部が、 前記フランジ面と前記スラス ト面との少なく ともいずれ かである、
請求項 1記載の冷媒圧縮機。 .
7 . 前記圧縮部が、
主軸部と、 偏心部と、 前記主軸部と前記偏心部との間 に設けられたフランジ部とを有するクランクシャフ トと、 前記主軸部を軸支し、 前記フランジ部と接するスラス ト部を設けた軸受部と、 を有し、 前記第 1接触部が、 前記フランジ部であり、 前記第 2接触部 が、 前記スラス 卜部である、
請求項 1記載の冷媒圧縮機。
8 . 前記圧縮部が、
圧縮室と、
前記圧縮室内を転動するローリ ングピス トンと、 前記口一リ ングピス ト ンに揷圧され、 前記圧縮室を仕 切るベーンと、 を有し、
前記第 1接触部が、 前記ローリ ングピス トンであり、 前記第 2接触部が、 前記べーンである、 .
請求項 1記載の冷媒圧縮機。
9 . 前記圧縮部が、
主軸部と、 副軸部と、 偏心部とを有するシャフ トと、 前記偏心部に遊嵌されたローリ ングピス トンと、 前記主軸部を軸支する主軸受と、
前記副軸部を軸支する副軸受と、 を有し、 前記第 1接触部と前記第 2接触部との組が、'前記偏心 部と前記口一リ ングピス トン、 前記主軸部と前記主軸受、 前 記副軸部と前記副軸受の少なく ともいずれかである、 請求項 1記載の冷媒圧縮機。
1 0 . 前記圧縮部は、
吸入弁座と、
吸入可動弁と、 を有し、 吸入工程で前記吸入可 動弁が開く吸入バルブ装置と、
吐出弁座と、
吐出可動弁と、 を有し吐出工程で前記吐出可動 弁が開く吐出バルブ装置と、 の少なく とも一方を含み、 前記第 1接触部と前記第 2接触部の組が、 前記吸入弁 座と前記吸入可動弁、 前記吐出弁座と前記吐出可動弁の少な く ともいずれかの組である、
請求項 1記載の冷媒圧縮機。
1 1 .前記吸入可動弁と前記吐出可動弁との少なく ともいずれかが、 表面組織がマルテンサイ トの板ばね材で形成された、
請求項 1 0記載の冷媒圧縮機。
1 2 . 前記吸入可動弁と前記吐出可動弁との少なく ともいずれかが 腕部を有し、
前記腕部の少なく とも一方の面に複数のく ぼみを均一に形成 した、
請求項 1 0記載の冷媒圧縮機。
1 3 . 前記吐出可動弁は第 1衝打部を有し、
前記吐出バルブ装置は、 前記吐出可動弁の動きを規制し、 前 記吐出可動弁の開動作により前記第 1衝打部と接する第 2衝打部を 有するス トツバと、 をさらに有し、
前記第 1接触部が前記第 1衝打部であり、 前記第 2接触部が 前記第 2衝打部である、
請求項 1 0記載の冷媒圧縮機。
1 4 . 前記吐出バルブ装置は、 前記ス トツバと前記吐出可動弁との 間に、 第 3衝打部と第 4衝打部とを有するパックァップリードと、 をさらに有し、
前記第 1接触部と前記第 2接触部の組が、 前記第 1衝打部と 前記第 3衝打部、 前記第 2衝打部と前記第 4衝打部の少なく ともいずれかの組である、
請求項 1 3記載の冷媒圧縮機。
1 5 . 前記圧縮部から前記密閉容器外に、 圧縮された冷媒を導出す る吐出経路と、
前記吐出経路に被覆させた共振防止部と、 をさ らに備え、 前記第 1接触部が前記吐出経路であり、 前記第 2接触部が前 記共振防止部である、
請求項 1記載の冷媒圧縮機。
1 6 . 前記圧縮部を前記密閉容器に弾接的に支持し、 前記第 1接触 部と前記第 2接触部とを有する支持部と、 をさ らに備えた、
請求項 1記載の冷媒圧縮機。
1 7 . 前記支持部は、
前記圧縮部を保持する第 1保持部材と、 前記密閉容器内面に設けられた第 2保持部材と、 前記第 1 保持部材と前記第 2保持部材との間に設けら れたばねと、 を有し、
前記第 1接触部が前記ばねであり、 前記第 2接触部が前記第 1保持部材と前記第 2保持部材の少なく ともいずれかである、
請求項 1 6記載の冷媒圧縮機。
1 8 . オイルをさらに備え、
前記オイルは、 前記くぼみに滞留した状態と前記混合層の表 面に介在した状態との少なく ともいずれかの状態にある、
請求項 1記載の冷媒圧縮機。
1 9 . 前記くぼみの表面形状が球面である、
請求項 1 8記載の冷媒圧縮機。
2 0 . 前記くぼみの直径が 以上 5 0 z m以下であり、 かつ前 記く ぼみの深さが 0. 5 以上 1 0 m以下である、 請求項 1 8記載の冷媒圧縮機。
2 1 . 前記く ぼみを設けた前記第 1接触部と前記第 2接触部との少 なく ともいずれかの表面積に対する前記く ぼみの占める面積割合が 4 0 %以上 8 0 %以下である、
請求項 1 8記載の冷媒圧縮機。
2 2. 前記オイルの粘度は V G 5以上 V G 1 0未満である、
請求項 1 8記載の冷媒圧縮機。
2 3. 前記冷媒は、 塩素フリーな炭化水素であり、 前記オイルは前 記冷媒と相溶性がある、
請求項 1 8記載の冷媒圧縮機。
2 4. 前記冷媒は、 イソブタンとプロパンとの少なく ともいずれか を含み、
前記オイルは、 アルキルベンゼン、 鉱油、 エステル、 ポリ ビ ニルエーテル、 ポリアク リ レングリコールのうち少なく ともいずれ かを含む、
請求項 1 8記載の冷媒圧縮機。
2 5.前記第 1接触部と前記第 2接触部の母材が鉄系の材料であり、 前記第 1接触部と前記第 2接触部との少なく ともいずれかの表面組 織がマルテンサイ トである、
請求項 1記載の冷媒圧縮機。
2 6. 前記混合層の二硫化モリブデンの純度が 9 8 %以上である、 請求項 1記載の冷媒圧縮機。
2 7 . 前記くぼみの表面に前記混合層を形成した、
請求項 1記載の冷媒圧縮機。
2 8 . 密閉容器と、
前記密閉容器内に収容され、 冷媒を圧縮する圧縮部と、 前記圧縮部を駆動する駆動部と、
前記圧縮部の駆動により接離と摺動のいずれかを行う 第 1接触部と第 2接触部と、 を備え、
前記第 1接触部と前記第 2接触部との少なく ともいず れかの表面に、 均一に配置された複数のくぼみと、 二硫化モ リ ブデンを固着させた混合層との少なく ともいずれかを形成 した冷媒圧縮機と、
前記冷媒圧縮機の高圧側に接続された第 1熱交換器と、 前記冷媒圧縮機の低圧側に接続された第 2熱交換器と、 前記第 1熱交換器と前記第 2熱交換器との間に接続された膨 張弁と、 を備えた、
冷凍機。
PCT/JP2003/016023 2002-12-16 2003-12-15 冷媒圧縮機とそれを用いた冷凍機 WO2004055371A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020047011239A KR100559124B1 (ko) 2002-12-16 2003-12-15 냉매 압축기와 그것을 이용한 냉동기
US10/501,658 US7422423B2 (en) 2002-12-16 2003-12-15 Refrigerant compressor, and refrigerating machine using the same
EP03780757A EP1574712A4 (en) 2002-12-16 2003-12-15 REFRIGERANT COMPRESSOR AND THIS USING COOLING MACHINE
JP2005502492A JP4402043B2 (ja) 2002-12-16 2003-12-15 冷媒圧縮機
CNB2003801001321A CN100378332C (zh) 2002-12-16 2003-12-15 冷媒压缩机和使用该冷媒压缩机的冷冻机
AU2003289340A AU2003289340A1 (en) 2002-12-16 2003-12-15 Refrigerant compressor, and refrigerating machine using the same

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2002363466 2002-12-16
JP2002-363466 2002-12-16
JP2002-367995 2002-12-19
JP2002367995 2002-12-19
JP2003-184186 2003-06-27
JP2003-184187 2003-06-27
JP2003184187 2003-06-27
JP2003184186 2003-06-27
JP2003-191963 2003-07-04
JP2003191963 2003-07-04
JP2003-354863 2003-10-15
JP2003354863 2003-10-15
JP2003361720 2003-10-22
JP2003361719 2003-10-22
JP2003-361720 2003-10-22
JP2003-361719 2003-10-22
JP2003-378286 2003-11-07
JP2003378286 2003-11-07

Publications (1)

Publication Number Publication Date
WO2004055371A1 true WO2004055371A1 (ja) 2004-07-01

Family

ID=32601262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016023 WO2004055371A1 (ja) 2002-12-16 2003-12-15 冷媒圧縮機とそれを用いた冷凍機

Country Status (7)

Country Link
US (1) US7422423B2 (ja)
EP (1) EP1574712A4 (ja)
JP (2) JP4402043B2 (ja)
KR (1) KR100559124B1 (ja)
CN (1) CN100378332C (ja)
AU (1) AU2003289340A1 (ja)
WO (1) WO2004055371A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051072A (ja) * 2006-08-28 2008-03-06 Hitachi Constr Mach Co Ltd 液圧回転機
WO2008047931A1 (en) 2006-10-16 2008-04-24 Panasonic Corporation Sliding face modification material, method for producing sliding face modification material, method for using sliding face modification material, sliding members having sliding face modification material, and compressor comprising sliding members
JP2009508029A (ja) * 2005-09-08 2009-02-26 パナソニック株式会社 冷媒圧縮機、冷却装置および冷蔵庫
JP2011021597A (ja) * 2009-06-16 2011-02-03 Panasonic Corp 摺動部材と摺動部材を備える機器および摺動部材の表面処理方法
WO2015194181A1 (ja) * 2014-06-19 2015-12-23 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0613759A2 (pt) * 2005-07-22 2011-02-08 Fisher & Paykel Appliances Ltd compressor de refrigeração com conduto de descarga flexìvel
JP4996867B2 (ja) 2006-03-20 2012-08-08 日立アプライアンス株式会社 密閉形圧縮機及び冷凍装置並びに冷蔵庫
CN101542121A (zh) * 2007-04-25 2009-09-23 松下电器产业株式会社 具有推力球轴承的封闭往复式压缩机
BRPI0903956A2 (pt) * 2009-01-09 2010-11-23 Aurelio Mayorca processo e equipamento para melhorar eficiência de compressores e refrigeradores
US20110033326A1 (en) * 2009-08-06 2011-02-10 Emerson Electric Co. Scroll compressor with radially configured motor winding
US20110194950A1 (en) * 2010-02-10 2011-08-11 Shenoi Ramesh B Efficiency improvements for liquid ring pumps
CN101865111B (zh) * 2010-05-06 2011-10-19 大连理工大学 一种共振压缩机
BRPI1005091A2 (pt) * 2010-12-03 2013-03-26 Whirlpool Sa par tribolàgico e processo de tratamento superficial em pares tribolàgicos
CN103492738B (zh) * 2011-04-26 2014-11-05 千住金属工业株式会社 滑动构件
JP6004199B2 (ja) * 2011-07-01 2016-10-05 パナソニックIpマネジメント株式会社 摺動部材
BR102012022690A2 (pt) 2012-09-06 2014-06-10 Whirlpool Sa Mancal hidrodinâmico aplicado em interface de contato de compressor de fluidos baseado em mecanismo tipo espiral
US20140123687A1 (en) * 2012-11-07 2014-05-08 Whirlpool Corporation Refrigerator having ice maker with flexible ice mold and method for harvesting ice
JP2014218912A (ja) * 2013-05-07 2014-11-20 カヤバ工業株式会社 摺動部材及びピストンポンプモータ
CN104895926B (zh) * 2014-03-03 2020-10-09 保来得株式会社 烧结轴承
CN104533962A (zh) * 2015-01-08 2015-04-22 湖南崇德工业科技有限公司 一种表面微处理滑动轴承
KR20190020092A (ko) * 2016-08-30 2019-02-27 미쓰비시덴키 가부시키가이샤 압축기 및 냉동 사이클 장치
CN107101409B (zh) * 2017-05-17 2018-01-23 宁利平 双作用α型斯特林制冷机
JP6988932B2 (ja) * 2020-01-29 2022-01-05 株式会社富士通ゼネラル ロータリ圧縮機

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335275U (ja) * 1989-08-09 1991-04-05
JPH0932730A (ja) * 1995-07-24 1997-02-04 Sanden Corp 弁板装置
WO1997028379A2 (de) * 1996-01-30 1997-08-07 Glyco-Metall-Werke Glyco B.V. & Co. Kg Gleitlagerelement mit schmieröltaschen
JPH11201166A (ja) * 1998-01-13 1999-07-27 Daido Metal Co Ltd コネクティングロッドのピストンピン用軸受ブシュ
JP2000097153A (ja) * 1998-09-21 2000-04-04 Matsushita Refrig Co Ltd 密閉形圧縮機
JP2000110719A (ja) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd 密閉形コンプレッサと開放形コンプレッサ
JP2000161228A (ja) * 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd 容積型圧縮機の弁装置
JP2000227083A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2000257560A (ja) * 1999-03-05 2000-09-19 Mitsubishi Heavy Ind Ltd 薄板状弁体及びその製造方法
JP2000291549A (ja) * 1999-04-06 2000-10-17 Matsushita Refrig Co Ltd 圧縮機
JP2002021727A (ja) * 2000-06-13 2002-01-23 Samsung Kwangju Electronics Co Ltd 圧縮機の高圧吐出パイプの吸振構造
JP2002106981A (ja) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd 空気調和装置
JP2002195160A (ja) * 2000-12-25 2002-07-10 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2002213612A (ja) * 2000-11-20 2002-07-31 Nissan Motor Co Ltd 内燃機関用摺動部品及びそれを用いた内燃機関
JP2002310157A (ja) * 2001-04-09 2002-10-23 Ricoh Opt Ind Co Ltd 摺動部材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7817118U1 (de) * 1978-06-07 1978-09-21 Sankyo Selbstschmierendes Lager
JP2707338B2 (ja) 1989-09-27 1998-01-28 日本発条株式会社 表皮一体成形シート及びその製造方法
JPH04287876A (ja) * 1991-03-15 1992-10-13 Hitachi Ltd 密閉形圧縮機
JPH0681766A (ja) 1992-09-04 1994-03-22 Hitachi Ltd 密閉形電動圧縮機
JPH06117371A (ja) 1992-10-06 1994-04-26 Toshiba Corp 圧縮機
JP3740178B2 (ja) 1994-10-31 2006-02-01 株式会社日立製作所 スクリュウロータ及びスクリュウ式圧縮機並びにその製法
JPH09112469A (ja) 1995-10-16 1997-05-02 Daikin Ind Ltd スイング圧縮機
US6203292B1 (en) * 1997-04-20 2001-03-20 Matsushita Refrigeration Company Oscillation-type compressor
JP2001003882A (ja) * 1999-06-18 2001-01-09 Fujitsu General Ltd スクロール圧縮機
JP3259777B2 (ja) * 1999-11-26 2002-02-25 大豊工業株式会社 半球状シュー
MXPA02006983A (es) 2000-11-16 2002-12-13 Honda Motor Co Ltd Miembro metalico deslizable, piston para un motor de combustion interna, metodo para tratamiento de superficie de este, y aparato para esto.
US6439857B1 (en) * 2001-03-12 2002-08-27 Haldex Brake Corporation Axial piston compressor
JP2002317757A (ja) * 2001-04-20 2002-10-31 Toyota Industries Corp 容量可変型斜板式圧縮機における斜板

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335275U (ja) * 1989-08-09 1991-04-05
JPH0932730A (ja) * 1995-07-24 1997-02-04 Sanden Corp 弁板装置
WO1997028379A2 (de) * 1996-01-30 1997-08-07 Glyco-Metall-Werke Glyco B.V. & Co. Kg Gleitlagerelement mit schmieröltaschen
JPH11201166A (ja) * 1998-01-13 1999-07-27 Daido Metal Co Ltd コネクティングロッドのピストンピン用軸受ブシュ
JP2000097153A (ja) * 1998-09-21 2000-04-04 Matsushita Refrig Co Ltd 密閉形圧縮機
JP2000110719A (ja) * 1998-10-05 2000-04-18 Matsushita Electric Ind Co Ltd 密閉形コンプレッサと開放形コンプレッサ
JP2000161228A (ja) * 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd 容積型圧縮機の弁装置
JP2000227083A (ja) * 1999-02-04 2000-08-15 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JP2000257560A (ja) * 1999-03-05 2000-09-19 Mitsubishi Heavy Ind Ltd 薄板状弁体及びその製造方法
JP2000291549A (ja) * 1999-04-06 2000-10-17 Matsushita Refrig Co Ltd 圧縮機
JP2002021727A (ja) * 2000-06-13 2002-01-23 Samsung Kwangju Electronics Co Ltd 圧縮機の高圧吐出パイプの吸振構造
JP2002106981A (ja) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd 空気調和装置
JP2002213612A (ja) * 2000-11-20 2002-07-31 Nissan Motor Co Ltd 内燃機関用摺動部品及びそれを用いた内燃機関
JP2002195160A (ja) * 2000-12-25 2002-07-10 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2002310157A (ja) * 2001-04-09 2002-10-23 Ricoh Opt Ind Co Ltd 摺動部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1574712A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508029A (ja) * 2005-09-08 2009-02-26 パナソニック株式会社 冷媒圧縮機、冷却装置および冷蔵庫
JP2008051072A (ja) * 2006-08-28 2008-03-06 Hitachi Constr Mach Co Ltd 液圧回転機
WO2008026501A1 (fr) * 2006-08-28 2008-03-06 Hitachi Construction Machinery Co., Ltd. Machine à rotation hydraulique
WO2008047931A1 (en) 2006-10-16 2008-04-24 Panasonic Corporation Sliding face modification material, method for producing sliding face modification material, method for using sliding face modification material, sliding members having sliding face modification material, and compressor comprising sliding members
JP2011021597A (ja) * 2009-06-16 2011-02-03 Panasonic Corp 摺動部材と摺動部材を備える機器および摺動部材の表面処理方法
WO2015194181A1 (ja) * 2014-06-19 2015-12-23 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JPWO2015194181A1 (ja) * 2014-06-19 2017-04-20 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置

Also Published As

Publication number Publication date
EP1574712A1 (en) 2005-09-14
KR100559124B1 (ko) 2006-03-15
EP1574712A4 (en) 2011-03-16
JP4402043B2 (ja) 2010-01-20
JP5012847B2 (ja) 2012-08-29
AU2003289340A1 (en) 2004-07-09
KR20040085159A (ko) 2004-10-07
CN1685154A (zh) 2005-10-19
JPWO2004055371A1 (ja) 2006-04-20
US7422423B2 (en) 2008-09-09
CN100378332C (zh) 2008-04-02
JP2009185824A (ja) 2009-08-20
US20050172646A1 (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP5012847B2 (ja) 冷媒圧縮機とそれを用いた冷凍機
JP6361900B2 (ja) 摺動部材およびこれを用いた冷媒圧縮機、並びに、冷蔵庫およびエアーコンディショナー
JP3941815B2 (ja) 摺動部材用組成物、摺動部材及び流体機械
WO2006109511A1 (ja) 摺動部材用組成物、摺動部材及び流体機械
JP3205122B2 (ja) 密閉形電動圧縮機
JP2009508029A (ja) 冷媒圧縮機、冷却装置および冷蔵庫
US11959670B2 (en) Refrigerant compressor and freezer including same
WO2012127806A1 (ja) 密閉型圧縮機
CN109996901B (zh) 氧化覆膜、形成有其的滑动构件和具有该滑动构件的设备
JP2005113865A (ja) 冷媒圧縮機
JP2007120342A (ja) 摺動部材及び圧縮機及び冷凍サイクル装置
JP4967513B2 (ja) 圧縮機の摺動部材用組成物、圧縮機の摺動部材及び圧縮機
JP7308437B2 (ja) スクロール圧縮機
JP2005133634A (ja) 冷媒圧縮機
JP5579676B2 (ja) 密閉型圧縮機及びこれを用いた冷蔵庫
JP5067181B2 (ja) 摺動部材及び流体機械
JP2009138585A (ja) 摺動部材および圧縮機
JP2008095589A (ja) 全密閉型往復動式圧縮機
JP2015001214A (ja) 冷媒圧縮機
JP2010185344A (ja) 摺動部材および圧縮機
JP2009120917A (ja) 摺動部材及び流体機械
JPH0544662A (ja) スクロール圧縮機
JP2008190399A (ja) 全密閉型往復動式圧縮機
EP2064305A1 (en) Refrigerant compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005502492

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2003780757

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10501658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A01321

Country of ref document: CN

Ref document number: 1020047011239

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003780757

Country of ref document: EP