WO2004031660A1 - 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法 - Google Patents

空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法 Download PDF

Info

Publication number
WO2004031660A1
WO2004031660A1 PCT/JP2003/010741 JP0310741W WO2004031660A1 WO 2004031660 A1 WO2004031660 A1 WO 2004031660A1 JP 0310741 W JP0310741 W JP 0310741W WO 2004031660 A1 WO2004031660 A1 WO 2004031660A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
air
small holes
pressure pulsation
air passage
Prior art date
Application number
PCT/JP2003/010741
Other languages
English (en)
French (fr)
Inventor
Kouji Yamashita
Tsuyoshi Uchida
Tatsuya Ishii
Katsumi Takeda
Hideshi Oinuma
Kenichiro Nagai
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Japan Aerospace Exploration Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha, Japan Aerospace Exploration Agency filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP03799088.4A priority Critical patent/EP1553360B1/en
Priority to JP2004541215A priority patent/JP4325867B2/ja
Priority to ES03799088T priority patent/ES2732068T3/es
Priority to US10/529,870 priority patent/US7856837B2/en
Publication of WO2004031660A1 publication Critical patent/WO2004031660A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • the present invention relates to a noise reduction of an air conditioner that harmonizes a room or the like, a noise reduction of a blower that blows air indoors or outdoors, a noise reduction method of general equipment, a pressure pulsation reduction device of a refrigeration cycle device, a pump device Pressure pulsation reduction device
  • the suction air is conveyed into the air duct by the suction action of the air blower.
  • the noise generated in the air fan is also radiated into the air duct.
  • Noise is a collection of sound waves of various frequencies, and sound waves travel while being reflected inside the air duct by the duct wall.
  • the sound absorbing material has a structure with many bubbles inside, and as the sound wave travels through the air duct, it also enters the sound absorbing material, and the sound wave causes diffuse reflection by the action of bubbles inside the sound absorbing material, The energy of the sound wave changes to heat energy, and the energy level decreases, that is, the noise level decreases. This is the mechanism of noise reduction by the sound absorbing material. 2003/010741
  • a Helmholtz resonator which is an example of a method using resonance, is a typical noise reduction method.
  • Helmholtz resonators have an opening in the air duct and a space inside. With such a structure, the sound wave that has propagated through the air duct enters the Helmholtz resonator and resonates there. By causing resonance, the energy of the sound wave changes to thermal energy, and the noise level decreases.
  • Helmholtz resonators have the principle of resonance, the wavelength of the sound wave to be resonated is determined by the size of the entrance and inside, and only sound waves having frequencies near the resonance frequency and high frequencies can reduce the noise level. Can not.
  • a noise reduction method using a perforated sound absorbing plate having a porous plate exposed on the inner surface of the duct and a back layer behind it is a method of reducing noise by resonating sound waves with a resonator composed of a perforated plate and a back layer, and has the same principle and effect as the Helmholtz resonator.
  • the frequency of the sound to be absorbed is determined by the diameter of the perforated plate, the thickness of the back layer, the aperture ratio, and the thickness of the plate.
  • a back layer having a corresponding size is required, and a large amount of installation space is required.
  • an expansion type muffler in which energy is lost due to irregular reflection at an expansion section is known.
  • the pressure pulsation reduction effect of the expansion type muffler extends over a relatively wide band, but in order to increase the pressure pulsation reduction amount, it is necessary to increase the ratio of the diameters before and after the expansion part, and a large pressure pulsation reduction amount is obtained. In order to Need a pace.
  • Japanese Patent Application Laid-Open No. 7-246.905 discloses a mode in which air is supplied to an air passage through a perforated plate. In this way, the sound wave is resonated between the perforated plate and the back layer to reduce noise, which is completely different from the present invention in principle, action, and effect.
  • the gazette shows a form in which a porous ventilation resistance member is attached to the exhaust hole and exhausted through the porous ventilation resistance member. However, this expands the area where the fluid is ejected, thereby reducing the speed of the fluid. It is intended to reduce the fluid ejection noise, which is also completely different in principle, operation and effect from the present invention.
  • the conventional air conditioner noise reduction method is configured as described above, it can reduce only the noise level mainly in the high frequency range, and several hundred Hz that should be reduced most in the air conditioner. There was a problem that the noise reduction effect could not be expected in the following low frequency range.
  • the noise level in the low frequency range can be reduced by using resonance
  • the frequency band with the effect of reducing noise is narrow, and the frequency of the blower changes due to the inverter or applied voltage.
  • noise reduction effect can only be expected in the rotation speed range of the part.
  • the structure is complicated and the installation space increases.
  • the refrigerant generated in the refrigeration cycle device also has a problem that a large amount of space is required to significantly reduce the pressure pulsation and the pressure pulsation of water and brine generated in the pump device. .
  • the present invention has been made to solve the above-described problems, and is an air conditioner, an air blower, and a device noise reduction method capable of obtaining a sufficient noise reduction effect in a low frequency range of several hundred Hz or less. It is another object of the present invention to provide an air conditioner, a blower, and a noise reduction method that can reduce low frequency sound over a wide frequency range.
  • Another object of the present invention is to obtain an air conditioner, a blower, and a noise reduction method that do not require a large space.
  • the air conditioner, blower and noise reduction method with a simple structure and a small installation space are provided. The purpose is to obtain.
  • the differential pressure across the blower blade or blower as the drive source, when the rotation speed of the blower blade or blower changes, the frequency range or sound that has a noise reduction effect according to the rotation speed
  • the purpose is to obtain an inexpensive system by configuring the pressure level to change automatically.
  • Another object of the present invention is to obtain a pressure pulsation reduction method that does not require a very large space. Disclosure of the invention
  • An air conditioner according to the present invention includes a heat exchanger that exchanges heat between air and a refrigerant in a refrigeration cycle, a blower that blows air to the heat exchanger, A blower is installed, and an air path through which sound waves propagate and a plurality of small holes for blowing a jet into the air path or sucking a jet from the air path due to a pressure difference between the blow-out side and the suction side of the blower It is characterized by having.
  • the air conditioner according to the present invention is characterized in that a suction side and a blow-out side of the blower are partitioned by a solid wall, and the plurality of small holes are provided in the solid wall.
  • the air conditioner according to the present invention is a ceiling cassette type air conditioner, characterized in that the plurality of small holes are provided in the decorative panel.
  • the air conditioner according to the present invention is a ceiling cassette type air conditioner, wherein the plurality of small holes are provided in a guide portion of the blower.
  • the air conditioner according to the present invention includes a first air passage provided with a blower and a heat exchanger,
  • a plurality of small holes provided in at least one of a wall surface at any position on the outlet side of the blower and a wall surface at any position on the suction side of the blower;
  • the air conditioner according to the present invention includes a blower and a heat exchanger.
  • the air conditioner according to the present invention is characterized in that a plurality of perforated small ducts having a large number of small holes are provided on the outlet side of the blower.
  • the air conditioner according to the present invention is characterized in that the plurality of small holes or the plurality of small holes are provided in a position close to the blower.
  • the air conditioner according to the present invention is characterized in that the second air passage is provided outside the first air passage.
  • the air conditioner according to the present invention is characterized in that the second air passage is provided inside the first air passage.
  • An air conditioner according to the present invention is an air conditioner outdoor unit, characterized in that a compressor is also built in the casing, and sound waves from the compressor propagate in the air path.
  • the small hole has a diameter of 10 mm or less.
  • the air conditioner according to the present invention is characterized in that an aperture ratio, which is a ratio of a total cross-sectional area of the small holes to a cross-sectional area of the air passage wall surface of the small holes, is 10% or less.
  • the blower according to the present invention includes a blower blade that blows air,
  • This air wing is installed, the wind path through which the sound wave propagates,
  • the air blower according to the present invention includes a first air passage provided with air blowing blades, a wall surface at any position on the blowing side of the air blowing blades, and a wall surface at any position on the suction side of the air blowing blades.
  • a plurality of small holes provided in at least one of the plurality of small holes, or the plurality of small holes and the side opposite to the suction side or the discharge side of the air blowing blade provided with the small holes.
  • a second air passage to be communicated.
  • the air blower according to the present invention includes a first air passage provided with air blowing blades, a wall surface at any position on the blowing side of the air blowing blades, and a wall surface at any position on the suction side of the air blowing blades.
  • the air blower according to the present invention is characterized in that the plurality of small holes or a large number of small holes are provided at positions close to the air blowing blades.
  • the air blower according to the present invention is characterized in that the second air passage is provided outside the first air passage.
  • the air blower according to the present invention is characterized in that the second air passage is provided inside the first air passage.
  • the air blower according to the present invention includes a blower blade that blows air,
  • the air passage is provided with a sufficiently long distance from the air outlet side to the air passage outlet,
  • the air blower according to the present invention includes a blower blade that blows air
  • the air passage is provided with a sufficiently long distance from the air inlet to the air passage inlet,
  • the air blower according to the present invention includes a blower blade that blows air, This air wing is installed, the wind path through which the sound wave propagates,
  • a flow path partition having a plurality of small holes, provided on at least one of the blowing side and the suction side of the blower blade, the upstream side being in close contact with the air path, and the downstream side being squeezed and blown off.
  • the air blower according to the present invention includes a blower blade that blows air
  • This air wing is installed, the wind path through which the sound wave propagates,
  • a flow path partition provided on at least one of the blowing side and the suction side of the blower blade, the downstream side closely contacting the air passage, the upstream side being opened, and a plurality of small holes;
  • the blower according to the present invention is characterized in that the diameter of the small hole is 1 O mm or less.
  • the blower according to the present invention is characterized in that an opening ratio, which is a ratio of a total cross-sectional area of the small holes to a cross-sectional area of the air passage wall surface of the small holes, is 10% or less.
  • the apparatus noise reduction method includes: a device provided with a blower that blows air in an air passage; a pressure difference between a blowing side and a suction side of the blower, or a blowing side or a suction side of the blower A jet is blown into the air passage from a plurality of small holes or a jet is sucked from the air passage by a pressure difference between the air passage and the outside of the air passage.
  • a pressure pulsation reducing device for a refrigeration cycle apparatus includes a refrigeration cycle constituted by a compressor,
  • a pressure pulsation reducing device provided on at least one of the high-pressure side and the low-pressure side of the refrigeration cycle, provided with a flow passage partition having a plurality of small holes, one end of which is open and the other end is in close contact with the flow wall surface;
  • the pressure pulsation reducing device for a refrigeration cycle apparatus is provided on at least one of the discharge side and the suction side of the compressor, and one end is opened in the refrigerant flow path and the other end is formed on the flow path wall surface.
  • a pressure pulsation reducing device provided with a flow path partition having a plurality of small holes Further, the pressure pulsation reducing device for a refrigeration cycle apparatus according to the present invention includes a plurality of small holes, one end of which is open and the other end of which is in close contact with the oil separator, in an oil separator provided integrally with the compressor.
  • a pressure pulsation reducing device provided with a flow path partition having A pressure pulsation reducing device for a refrigeration cycle apparatus according to the present invention includes a refrigeration cycle including a compressor and the like,
  • a pressure pulsation reducing device in which a plurality of small holes provided in piping walls on the discharge side and suction side of the compressor are connected by a connection pipe;
  • the diameter of the small hole is 1 O mm or less. Further, the pressure pulsation reducing device for a refrigeration cycle apparatus according to the present invention has an opening ratio that is a ratio of a total cross-sectional area of the small holes to a cross-sectional area of the channel wall surface of the small holes.
  • the pressure pulsation reducing device for a pump device according to the present invention is provided on at least one of the discharge side and the suction side of the pump device, and one end is opened in the medium flow path and the other end is in close contact with the flow path wall surface.
  • a pressure pulsation reducing device provided with a flow path partition having a plurality of small holes is provided.
  • the pressure pulsation reducing device for a pump device according to the present invention is characterized by comprising a pressure pulsation reducing device in which a plurality of small holes provided in the discharge-side and suction-side piping walls of the pump device are connected by a connection pipe. To do.
  • the diameter of the small hole is 10 mm or less.
  • the pressure pulsation reducing device for a pump device according to the present invention is characterized in that an opening ratio, which is a ratio of a total cross-sectional area of the small holes to a cross-sectional area of the channel wall surface of the small holes, is 10% or less. .
  • the method for reducing pressure pulsation of a device according to the present invention is a device in which a compressor or a pump device that discharges a medium into a medium flow path is installed, and the pressure between the discharge side and the suction side of the compressor or pump device According to the difference or the pressure difference generated in the medium flow path of the compressor or the pump device, the jet flow is blown into the medium flow path from a plurality of small holes, or the jet flow is sucked from the medium flow path.
  • FIG. 1 is a diagram showing the first embodiment, and is a configuration diagram showing a noise reduction method of the air conditioner.
  • FIG. 2 is a diagram showing the first embodiment and is a diagram for explaining the principle of noise reduction by the small holes.
  • FIG. 3 is a diagram showing the first embodiment, and is another diagram for explaining the principle of noise reduction by the small holes.
  • FIG. 4 is a diagram showing the first embodiment, and is another diagram for explaining the principle of noise reduction by the small holes.
  • FIG. 5 is a diagram showing the first embodiment and is an experimental result showing the noise reduction effect by the noise reduction method of the air conditioner.
  • FIG. 6 is a diagram showing the first embodiment, and is another configuration diagram showing the noise reduction method of the air conditioner.
  • FIG. 7 is a diagram showing the second embodiment and is a configuration diagram showing a noise reduction method of the air conditioner.
  • FIG. 8 is a diagram showing the second embodiment, and is another configuration diagram showing the noise reduction method of the air conditioner.
  • FIG. 9 is a diagram showing the second embodiment, and is another configuration diagram showing the noise reduction method of the air conditioner.
  • FIG. 10 is a diagram showing the second embodiment, and is another configuration diagram showing a noise reduction method of the air conditioner.
  • FIG. 11 is a diagram showing the third embodiment, and is a configuration diagram showing a noise reduction method of the air conditioner.
  • FIG. 12 is a diagram showing the fourth embodiment and is a configuration diagram showing a noise reduction method of the air conditioner.
  • FIG. 13 is a diagram showing the fifth embodiment, and is a configuration diagram showing a noise reduction method of the blower.
  • FIG. 14 is a diagram showing the fifth embodiment, and is another configuration diagram showing the noise reduction method of the blower.
  • FIG. 15 is a diagram showing the fifth embodiment, and is another configuration diagram showing a noise reduction method of the blower.
  • FIG. 16 is a diagram showing the fifth embodiment, and is another configuration diagram showing the noise reduction method of the blower.
  • FIG. 17 is a diagram showing the eighth embodiment, and is a configuration diagram showing a noise reduction method of the blower.
  • FIG. 18 is a diagram showing the eighth embodiment, and is another configuration diagram showing the noise reduction method of the blower.
  • FIG. 19 is a diagram showing the ninth embodiment, and is a configuration diagram showing a noise reduction method for the blower.
  • FIG. 20 is a diagram showing the ninth embodiment, and is another configuration diagram showing the noise reduction method of the blower.
  • FIG. 21 is a diagram showing the embodiment 10, and is a configuration diagram showing a noise reduction method of the blower.
  • FIG. 22 is a diagram showing the embodiment 10, and is another configuration diagram showing the noise reduction method of the blower.
  • FIG. 23 is a diagram showing the embodiment 11 and is a configuration diagram showing a pressure pulsation reducing method of the refrigeration cycle apparatus.
  • FIG. 24 is a diagram showing the embodiment 11 and is a diagram for explaining the principle of pressure pulsation reduction by a small hole.
  • FIG. 25 is a diagram showing the embodiment 11 and is another diagram for explaining the principle of pressure pulsation reduction by the small holes.
  • FIG. 26 shows the embodiment 11 and is another diagram for explaining the principle of pressure pulsation reduction by the small holes.
  • FIG. 27 is a diagram showing the embodiment 11 and is an experimental result showing the pressure pulsation reduction effect by the pressure pulsation reduction method of the refrigeration cycle apparatus.
  • FIG. 28 is a diagram showing the embodiment 11 and is another configuration diagram showing the pressure pulsation reducing method of the refrigeration cycle apparatus.
  • FIG. 29 is a diagram showing the embodiment 11 and is another configuration diagram showing a pressure pulsation reducing method of the refrigeration cycle apparatus.
  • FIG. 30 is a diagram showing the embodiment 11 and is another configuration diagram showing a method for reducing pressure pulsation of the refrigeration cycle apparatus.
  • FIG. 31 is a diagram showing the embodiment 11 and is another configuration diagram showing the pressure pulsation reducing method of the pump device.
  • FIG. 3 is a diagram showing the embodiment 11 and is another configuration diagram showing a pressure pulsation reducing method of the pump device.
  • FIG. 3 is a diagram showing the embodiment 11 and is another configuration diagram showing a pressure pulsation reducing method of the pump device.
  • FIG. 34 is a diagram showing the embodiment 11 and is another configuration diagram showing the pressure pulsation reducing method of the pump device.
  • FIG. 35 is a diagram showing the embodiment 12 and showing the internal structure of the single screw compressor. Best Mode for Carrying Out the Invention ''
  • FIG. 1 is a diagram showing the first embodiment, in which FIG. 1 (a) is a configuration diagram of a noise reduction method for an air conditioner, and FIG. 1 (b) is an enlarged view of the vicinity of a small hole.
  • the air conditioner is a ceiling cassette type indoor unit. The inside of case 3 PT / JP2003 / 010741
  • Fan 1 and heat exchanger 2 are installed.
  • the suction air 5 sucked from the suction port passes through the filter 8 and the guide part 4 and is guided to the suction side of the blower 1.
  • the blowing air 6 blown out from the blower 1 is changed in blowing direction by the louver 7.
  • a small hole 9 is provided in the decorative panel so as to communicate from the air outlet to the air inlet.
  • the intake air 5 sucked into the housing 3 from the suction port by the attracting action of the blower 1 is passed through the filter 8 to the heat exchanger 2. After being heated and heated during cooling operation, it is cooled during cooling operation, and then blown out from the housing 3 into the room as blown air 6.
  • the blower 1 functions to send out the air on the suction side to the blowout side, the air is compressed on the blowout side of the blower 1, and the pressure is higher than that on the suction side. That is, there is a pressure difference between the air on the suction side and the air on the outlet side of the blower. This pressure difference increases as the rotational speed of the blower increases, and decreases as the rotational speed decreases.
  • the motor sound generated from the motor that drives the blower 1 the wind noise that the rotor blades of the blower 1 cut off the air, the interference sound that occurs when another wing interferes with the wake behind the blade,
  • the air generated by passing through the heat exchanger 2 The rubbing sound is generated by various cylinders, such as the sound generated by the cylinders, the edge tone generated by the protrusions, and the jet generated by the air blowing from the outlet. Noise with a different force is generated. These noises vary in center frequency and sound type (continuous sound, intermittent sound, sound over a wide frequency band, sound in a narrow frequency band, etc.) depending on the generation mechanism.
  • noise reduction is generally attempted by reviewing the design of each part of the air path of the air conditioner. In other words, eliminate protrusions that generate edge tones in the air passage, or review the fan blade structure to reduce wind noise and interference noise. And so on.
  • a sound-absorbing material or a resonator is used to further reduce noise.
  • the method using the sound absorbing material can mainly be expected to have a large sound absorbing effect only in the high frequency range, and the method using the resonance can only be expected to have a silencing effect only in a narrow frequency range, and the resonance frequency is set to the desired frequency. Requires a lot of space (back layer).
  • Noise is a collection of sound waves of various frequencies, and sound waves are dense waves with a pressure distribution (dense state) in a medium such as air. Therefore, in the field where sound waves propagate, the pressure of the medium fluctuates periodically on the positive and negative sides with respect to the steady pressure. This pressure fluctuation range is called sound pressure and represents the loudness of the sound.
  • the spatial mechanical energy ⁇ ⁇ near the hole is obtained by integrating the product of pressure fluctuation ⁇ and velocity fluctuation ⁇ for one period according to Newton's second law.
  • Negative mechanical energy means that sound energy is dissipated and acoustic energy is reduced, that is, noise is reduced.
  • the noise reduction effect based on this principle is based on the premise that the pressure fluctuation period is sufficiently slower than the vortex generation speed due to the contraction flow, and the effect is particularly great in the low frequency range.
  • FIG. 5 is a result of an experiment confirming the effect of the noise reduction method according to the present invention.
  • a perforated plate is installed in a flow path through which noise propagates, and a jet is caused to flow into the flow path through a perforated portion of the perforated plate.
  • the noise reduction amount was measured when there was no jet flow by changing the noise frequency and jet flow velocity.
  • the horizontal axis shows the frequency of noise
  • the vertical axis shows the amount of noise reduction.
  • Fig. 5 (1) blows a jet against the field where sound waves propagate
  • Fig. 5 (2) shows the jet. This is the experimental result when inhaled.
  • the flow velocity of the jet shown in the figure is as follows: velocity 1 ⁇ velocity 2> velocity 3> velocity 4
  • the position where the small hole 9 is opened may be anywhere as long as it is a wall that partitions any position of the blower air path of the blower 1 and any position of the suction air path.
  • the same effect can be obtained by using another solid wall that partitions the blower side and the suction side of the blower 1 in the air conditioner.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, it is desirable that the aperture ratio is small. Further, when the aperture ratio of the small hole is increased, the air volume bypassed is increased, and the loss is increased. In that sense, it is desirable that the aperture ratio is small. For these reasons, small aperture ratios of 1% and 2% are most desirable for small holes. PT / JP2003 / 010741
  • any number of small holes may be used.
  • the pressure that can be achieved by the blower is limited, for the reasons described above, it is desirable to keep the opening area of the small holes the same for practical reasons, but when the diameter of the small holes is large, In order to make the aperture ratio the same, the number of small holes must be reduced.
  • the vortex is generated at the edge of the small hole, and the spread angle after the jet is ejected is constant, so if the diameter of the small hole is large, the range of influence of the jet becomes small as a result, and the noise reduction effect Will become smaller. Therefore, it is most desirable for the small hole diameters to be small, such as l mm or 2 mm, but in practice, it is considered that the small hole diameter is acceptable up to about 10 mm or less.
  • FIG. 7 is a diagram showing the second embodiment and is a configuration diagram of a noise reduction method for the air conditioner.
  • the air conditioner is a ceiling built-in indoor unit.
  • a blower 1 and a heat exchanger 2 are arranged inside the casing 3 serving as a first air path. Suction air 5 is sucked from the suction port, and blown air 6 is blown from the blower outlet.
  • a connecting duct 11 serving as a second air passage is installed outside the housing 3, and small holes 9 are provided on the suction side and the outlet side of the blower 1 of the connecting duct 11.
  • the suction air 5 sucked into the housing 3 from the suction port by the attracting action of the blower 1 is sent to the heat exchanger 2, After heating during the heating operation and cooling during the cooling operation, the air is blown out from the housing 3 into the room as blown air 6.
  • the relationship between the pressure level on the blow-out side and suction side of the blower 1, the rotation speed of the blower The relationship between pressure and pressure, the type of noise generated in the housing, the relationship between sound waves and dense waves, the nature of the jet, etc. have already been described in Embodiment 1, and will not be described.
  • FIG. 7 unlike FIG. 1 shown in the first embodiment, a structure in which any position on the blowing side of the blower 1 and any position on the suction side are adjacent via a solid wall. It is not. Therefore, as shown in Fig. 7, a plate with small holes 9 is installed on the wall surface at any position on the outlet side of the blower 1 and the wall surface at any position on the suction side. Connecting.
  • the position where the small hole 9 is opened and the position where the connection duct 11 is installed may be anywhere on the side of the blower air duct side and the suction air duct side of the blower 1, as shown in FIG. It may be installed outside the body 3 or may be installed inside the existing casing 3 as shown in FIGS. In this case, the effect of reducing noise is large because the pressure difference close to the blower is large (the configuration shown in FIG. 9 is most effective). Also, the small hole 9 and the connection duct 11 are inserted into the housing 3. Since it can be manufactured, it is easy to manufacture and has the effect of reducing the cost.
  • the casing is a ceiling built-in type air conditioner indoor unit
  • the present invention is not limited to this.
  • a compressor that compresses the refrigerant is also built-in, and it is a noise source.
  • the noise reduction method of the present invention if the frequency of the sound wave is the same, the sound type of the sound source It is clear from the noise reduction mechanism described in Embodiment 1 that the same noise reduction effect can be achieved.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, it is desirable that the aperture ratio is small. Further, when the aperture ratio of the small hole is increased, the air volume bypassed is increased, and the loss is increased. In that sense, it is desirable that the aperture ratio is small. For these reasons, small aperture ratios of 1% and 2% are most desirable, but practically, the aperture ratio of small holes is acceptable up to about 10% or less. It is done.
  • any number of small holes may be used.
  • the pressure that can be achieved by the blower is limited, for the reasons described above, it is desirable to keep the opening area of the small holes the same for practical reasons, but when the diameter of the small holes is large, In order to make the aperture ratio the same, the number of small holes must be reduced. The vortex is generated at the edge of the small hole, and the spreading accuracy after the jet is ejected is constant. Will become smaller. Therefore, the small hole diameter is most preferably a small diameter of 1 mm or 2 mm, but in practice, the small hole diameter is considered to be acceptable up to about 10 mm or less.
  • the small holes 9 are provided at both ends of the connection duct 11, but the small holes 9 may be provided only in one of them.
  • air is circulated by the blower 1 is described as an example here, but the same can be said for other media.
  • water may be circulated using a pump.
  • you may comprise so that a refrigerant
  • coolant may be distribute
  • the small holes 9 are provided at both ends of the connection duct 11. However, a large number of small holes 9 are provided on one side, and a small number of large-diameter holes are provided on the other side. May be.
  • FIG. 11 is a diagram showing the third embodiment, and is a configuration diagram showing a noise reduction method of the air conditioner.
  • the suction air 5 sucked into the housing 3 from the suction port by the attraction of the blower is heated or cooled through the heat exchanger, and then blown out air 6 Is blown out from the housing 3 as follows.
  • a perforated duct with a large number of small holes is attached to the air outlet, and a connecting duct ⁇ ⁇ is provided around the perforated duct to connect the top plate of the housing 3 with the surroundings.
  • the top plate of the housing 3 is provided with a small number of large-diameter holes, and the large-diameter hole communicates with the suction side of the blower.
  • the blowout air 6 flows through the connection duct 11 from the blower blow side to the blower suction side in accordance with the pressure difference created by the blower, that is, on the side where the small holes 9 are provided, that is, the blowout side. Noise is reduced. Although the noise reduction effect on the side where the large-diameter hole 12 is provided cannot be expected, it can be constructed at a lower cost than when small holes are provided on both sides.
  • a perforated duct with a large number of small holes is installed at the outlet. Although shown here, it may be configured to provide a plurality of small pore ducts on the outlet side.
  • FIG. 12 is a diagram showing the fourth embodiment, and is a configuration diagram showing a noise reduction method of the air conditioner.
  • a plurality of small hollow ducts 13 are provided on the outlet side.
  • the silencing effect can be further increased than in the second embodiment.
  • the smaller the inner diameter of the duct the more effective the noise reduction effect is in a higher frequency range, and the noise reduction effect in overall is even greater.
  • the amount of air bypassed to the intake side also increases, it is necessary to determine the duct diameter according to the applied system. Embodiment 5.
  • FIG. 13 is a diagram showing the fifth embodiment, and is a configuration diagram of the noise reduction method of the blower.
  • the blower blade 1a is arranged in the blower duct 10 serving as the first air passage, the suction air 5 is sucked into the blower blade 1a, and the blown air 6 is blown out from the blower blade 1a.
  • Small holes 9 are provided in the suction side and outlet side wall surfaces of the blower blades 1a of the blower duct 10 and are connected by a connection duct 11 serving as a second air passage.
  • the suction air 5 is sucked from one of the air ducts by the attracting action of the air blowing blade 1a, and the air duct 10 is It is blown out.
  • the relationship between the pressure on the blower side and the suction side of the blower blade 1a, the relationship between the rotation speed of the blower blade and the pressure, the type of noise generated in the housing, the relationship between sound waves and dense waves, the nature of the jet, etc. Is already described in Embodiment 1, and the description is omitted.
  • FIG. 8 shown in Embodiment 2 is Since there is only a difference between the presence or absence of a heat exchanger and whether the air passage is formed by a housing or a blower duct, small holes 9 are installed on the front and back walls of the blower blade 1a as shown in the figure. If the connection duct 11 is connected between them, air flows in the connection duct, and the same noise reduction effect is achieved.
  • connection duct 11 may be installed outside the air duct 10 as shown in FIG. 13 or inside the air duct 10 as shown in FIG.
  • connection duct 1 1 outside the blower duct 1 it is suitable for renewal because it can be installed simply by processing a part of the existing blower duct ⁇ .
  • connection duct 1 1 When installed inside the air duct 10, it can be manufactured with the small holes 9 and the connecting duct 11 as the air blower unit, so the installation space is compact and the cost is low. There is.
  • blower blade 1 a is illustrated as if it is a propeller fan in FIGS. 13 and 14, but is not limited to this, and is not limited to the turbo fan shown in FIG.
  • the sirocco fan shown may be used, and as long as the small hole 9 and the connecting duct 11 can be installed, the same effect can be obtained.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, it is desirable that the aperture ratio is small. Further, when the aperture ratio of the small hole is increased, the air volume bypassed is increased, and the loss is increased. In that sense, it is desirable that the aperture ratio is small. For these reasons, small aperture ratios of 1% and 2% are most desirable, but practically, the aperture ratio of small holes is acceptable up to about 10% or less. It is done. In this noise reduction method, any number of small holes may be used.
  • the small holes 9 are provided at both ends of the connection duct 11.
  • a large number of small holes 9 are provided in one of them, and a small number of large-diameter holes are provided in the other. It may be configured. Even in this case, ventilation through the duct 11 is performed by the pressure difference of the blower, so that noise on the side where the small holes 9 are provided is reduced.
  • no silencing effect can be expected on the side where the large-diameter hole is provided, for example, duct air conditioning that transports air into the room can prevent the propagation of noise to the indoor side, and a sufficient effect can be obtained. With this configuration, it can be configured at a lower cost than when small holes are provided on both sides.
  • Embodiment 7 PT / JP2003 / 010741
  • the blower blades 1a are arranged in the blower duct 10 serving as the first air passage.
  • the first air passage is limited to the air passage constituted by the solid wall. It is not a thing, but the flow of fluid is generated in the vicinity of some solid, and if it is a system in which the noise propagates there, the sound can be silenced by the same principle. For example, there is no clear air path in Fig. 15; the wind blows out between the blades, and only a small hole is installed in the vicinity. Even if there is a hole, the same effect can be achieved by creating a flow through the small hole.
  • FIG. 17 and FIG. 18 are diagrams showing the eighth embodiment, and are configuration diagrams of the noise reduction method of the blower.
  • the blower 1 is disposed in the blower duct 10, the intake air 5 is sucked into the blower 1, and the blown air 6 is blown out from the blower 1.
  • a small hole 9 is provided in the wall surface of the air duct 10.
  • Fig. 17 shows the case where the blower 1 is located on the inlet side of the blower duct 10 and the length from the blower 1 to the blown air 6 is sufficiently long
  • Fig. 18 shows the blower 1 at the outlet of the blower duct 10 This shows the case where the length from the intake air 5 to the blower 1 is long enough.
  • blower 1 the length from blower 1 to blown air 6 03 010741
  • the length of the duct is long enough to mean that the pressure difference between the inside and outside of the duct is so large that a flow through a small hole can be formed.
  • the blower speed is high and the wind speed is high. In some cases, even if the length is about 5 cm, it can be said that the length is sufficiently long if a pressure difference occurs.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, it is desirable that the aperture ratio is small. Further, when the aperture ratio of the small hole is increased, the air volume bypassed is increased, and the loss is increased. In that sense, it is desirable that the aperture ratio is small. For these reasons, small aperture ratios of 1% and 2% are most desirable for small holes. Practically, however, it is considered that the aperture ratio of small holes is acceptable up to about 10%.
  • any number of small holes may be used.
  • the pressure that can be achieved by the blower is limited, for the reasons described above, it is desirable to keep the opening area of the small holes the same for practical reasons, but when the diameter of the small holes is large, In order to make the aperture ratio the same, the number of small holes must be reduced.
  • the vortex is generated at the edge of the small hole, and the spreading accuracy after the jet is ejected is constant, so if the diameter of the small hole is large, the range of influence of the jet becomes small as a result, and the noise reduction effect Will become smaller. Therefore, it is most desirable for the small hole diameters to be small, such as l mm or 2 mm.
  • the small hole diameter is acceptable up to about 10 mm or less.
  • air is circulated in Fig. 1 was explained as an example, but the same can be said for other media.
  • water may be circulated using a pump.
  • you may comprise so that a refrigerant
  • coolant may be distribute
  • FIG. 19 is a diagram showing the ninth embodiment, and is a configuration diagram of a noise reduction method for the blower.
  • the blower 1 and the flow path partition 14 are inserted into the blower duct 10.
  • the flow path partition 14 is in close contact with the blower duct 10 on the upstream side, and has a nozzle shape on the downstream side, and is configured to blow out the air that has left the blower 1 slightly.
  • a large number of small holes 9 are provided in the wall surface of the air passage in front of the nozzle portion of the flow path partition 14.
  • the cross-sectional shape of the air duct 10 may be any shape such as a circle or a rectangular parallelepiped, and the cross-sectional shape of the flow path partition 14 may be the same as the cross-sectional shape of the air duct 10.
  • the suction air 5 is sucked from one of the air ducts by the attracting action of the air blower 1 and is boosted by the air blower.
  • the pressure is reduced at the nozzle of partition 14 and blown out.
  • a pressure difference is generated before and after the nozzle part of the flow path partition 14, and therefore, a pressure difference is created at both ends of the small hole 9 provided in the wall surface of the nozzle part of the flow path partition 14.
  • a flow passing through the nozzle is formed, merged with the air blown from the nozzle, and blown out of the air duct 10 as blown air 6. Therefore, on the same principle as described in the first embodiment, the sound propagated from the inflow side of the flow path finishing 14 (including the sound generated in the blower 1) is muted at the installation portion of the small hole 9.
  • the channel partition 14 and the small hole 9 can be installed on the suction side of the blower 1, and in this case, the sound propagated to the suction side of the blower can be silenced.
  • Fig. 19 and Fig. 20 can be combined to provide flow path partitions 14 and small holes 9 on the suction side and outlet side of the blower. In this case, sound propagated to the suction side and blowout side of the blower Can be muted.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased in order to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, the opening rate of the small hole is 1%. An aperture ratio as small as 2% is most desirable, but practically, the aperture ratio of small holes is considered acceptable up to about 10%.
  • any number of small holes may be used. However, there is a limit to the pressure that can be achieved by the blower. 41
  • the opening area of the small holes it is desirable to keep the opening area of the small holes the same, but if the diameter of the small holes is large, the number of small holes must be reduced in order to make the opening ratio of the small holes the same. Don't be.
  • the vortex is generated at the edge of the small hole, and the spread angle after the jet is ejected is constant, so if the diameter of the small hole is large, the range of influence of the jet becomes small as a result, and the noise reduction effect Will become smaller. Therefore, a small hole diameter of 1 mm or 2 mm is most desirable.
  • a small hole diameter of about 10 mm or less is acceptable.
  • the partition 14 was explained by taking the air passage from the throttle nozzle as an example. However, the present invention is not limited to this, and it may be an orifice shape that narrows the flow path suddenly. It may have a structure with a protrusion or the like that promotes it, or any shape.
  • FIG. 21 is a diagram showing the embodiment 10, and is a configuration diagram of a noise reduction method for the blower.
  • a blower 1 and a flow path cut 14 are inserted in a blower duct 10.
  • the channel partition 14 has a shape for narrowing the channel, the upstream side is in an open state, and the downstream side is in close contact with the air duct 10.
  • a number of small holes 9 are provided on the peripheral wall surface of the throttle part of the flow path partition 14. PT / JP2003 / 010741
  • the suction air 5 is sucked from one of the air ducts by the attracting action of the air blower 1 and is boosted by the air blower.
  • the flow velocity of the fluid increases through the throttle part of the partition 14. From the Bernoulli theorem of hydrodynamics, the sum of the static and dynamic pressures of fluid is equal in each part of the flow, and the dynamic pressure is proportional to the square of the flow velocity. Therefore, although dynamic pressure corresponding to the flow velocity is generated in the throttle portion, no dynamic pressure is generated because there is no flow outside the throttle portion, and the static pressure outside the throttle portion is larger than that in the throttle portion.
  • the static pressure at both ends of the small hole 9 attached around the throttle portion is higher on the outer side than on the inner side, and a flow through the small hole 9 is formed. Then, the air blown into the throttle part through the small hole 9 merges with the air passing through the throttle part, and is blown out of the air duct 10 as the blown air 6. Therefore, on the same principle as described in the first embodiment, the sound propagated from the inflow side of the channel partition 14 (including the sound generated in the blower 1) is muted at the installation portion of the small hole 9.
  • the channel partition 14 and the small hole 9 can be installed on the suction side of the blower 1, and in this case, the sound propagated to the suction side of the blower can be silenced.
  • Fig. 21 and Fig. 22 can be combined to provide flow path partitions 14 and small holes 9 on the suction side and outlet side of the blower. It is possible to mute the propagation sound.
  • the aperture ratio of the small holes (defined by the total opening area of the small holes with respect to the constant air passage wall area) can exhibit any number of noise reduction effects. If the rate increases, the wind speed that passes through the hole must be increased in order to obtain the same noise reduction effect. Considering the pressure difference that can be realized as an actual machine, the opening rate of the small hole is 1%. 2% etc. A small aperture ratio is most desirable, but practically, the aperture ratio of small holes is considered acceptable up to about 10%.
  • any number of small holes may be used.
  • the pressure that can be achieved by the blower is limited, for the reasons described above, it is desirable to keep the opening area of the small holes the same for practical reasons, but when the diameter of the small holes is large.
  • the number of small holes must be reduced. The vortex is generated at the edge of the small hole, and the spread angle after the jet is ejected is constant, so if the diameter of the small hole is large, the range of influence of the jet becomes small as a result, and the noise reduction effect Will become smaller. Therefore, small diameters such as l mm and 2 mm are most desirable, but in practice, it is considered that the small hole diameter is acceptable up to about 10 mm or less.
  • the upstream side of the channel partition 14 is illustrated as having a bell mouth shape. If the bell mouth shape is used, an excessive pressure loss is more desirable because no impact noise is generated, but in order to obtain a silencing effect, a flow through the small hole 9 should be formed. Any shape is acceptable. For example, a tapered shape or a pipe having the same diameter as the small hole 9 installation portion may be used.
  • downstream side of the flow path partition 14 may have any shape as long as it is in close contact with the air duct 10. For example, if a bell mouth or a diffuser is also attached to the downstream side, the pressure on the downstream side of the flow path Since it recovers, the overall pressure loss is reduced.
  • water may be circulated using a pump.
  • you may comprise so that a refrigerant
  • coolant may be distribute
  • Embodiment 1 1.
  • FIG. 23 shows the embodiment 11 and is a configuration diagram of the pressure pulsation reducing method of the refrigeration cycle apparatus.
  • the high-temperature and high-pressure gas refrigerant compressed by the compressor 20 condenses into a liquid refrigerant in the condenser 21, is decompressed by the throttle means 2 3, and then is evaporated by the evaporator 24. It evaporates to become a low-temperature and low-pressure gas refrigerant and is sucked into the compressor 20.
  • the compressor 20 has an electrically driven motor inside, and the rotor volume is rotated by the rotation of the motor, so that the clearance volume in the compression chamber is varied, and the fluid sucked into the compression chamber is compressed. Then, after reaching the specified pressure or specified rotation angle, the fluid is discharged from the compressor at once. Accordingly, the pressure of the fluid discharged from the compressor 20 has a pulsation component including a harmonic component with the rotation speed of the compressor as a fundamental frequency. Naturally, the pressure on the suction side of the compressor also has a pulsation component including the harmonic component with the rotation speed of the compressor as a fundamental frequency.
  • the fluid pressure will be It fluctuates periodically on the lath side and the negative side.
  • the pulsating component is released into the surrounding fluid, and finally it is dissipated.
  • the generation and dissipation of this vortex are continuously repeated, and the vacant space is a pulsating space including the contracted flow and the vortex.
  • the size of the vortex formed by the contraction flow in the hole depends on the hole diameter d, and the frequency f of pressure pulsation generated by the vortex is f oc U / d
  • the wavelength ⁇ is sufficiently larger than the diameter of the hole in the vicinity of the contracted flow (A >> d)
  • the spatial mechanical energy ⁇ ⁇ near the hole is obtained by integrating the product of pressure fluctuation ⁇ and velocity fluctuation ⁇ for one period according to Newton's second law.
  • the pressure pulsation reduction effect based on this principle is based on the premise that the pressure fluctuation period is sufficiently slower than the vortex generation rate due to the contraction, and the effect is particularly great in the low frequency range.
  • Fig. 27 shows the experimental results confirming the effect of the pressure pulsation reduction method according to the present invention.
  • the amount of pressure pulsation reduction when no jet is present is measured by changing the frequency of the pressure pulsation and the flow velocity of the jet.
  • the horizontal axis shows the frequency of pressure pulsation
  • the vertical axis shows the amount of pressure pulsation reduction.
  • the pressure pulsation reducing means 30 applying the above mechanism is installed on the discharge side of the compressor 20 in the refrigeration cycle.
  • a flow path partition 14 is inserted into the pressure pulsation reducing means 30.
  • the channel partition 14 is shaped to restrict the channel, with the upstream side open and the downstream side in close contact with the surrounding wall.
  • a large number of small holes 9 are provided on the peripheral wall surface of the throttle portion of the flow path partition 14, and a diffuser 15 is installed on the downstream side thereof.
  • the flow rate of the fluid flowing into the pressure pulsation reducing means 30 passes through the throttle portion of the flow path partition 14 and increases. From the Berne 1 ⁇ theorem of hydrodynamics, the sum of the static and dynamic pressures of the fluid is equal in each part of the flow, and the dynamic pressure is proportional to the square of the flow velocity. Therefore, although dynamic pressure corresponding to the flow velocity is generated in the throttle portion, no dynamic pressure is generated because there is no flow outside the throttle portion, and the static pressure outside the throttle portion is larger than that of the throttle portion.
  • the static pressure at both ends of the small hole 9 attached around the throttle portion is higher on the outer side than on the inner side, and a flow through the small hole 9 is formed. Then, the fluid blown into the throttle portion through the small hole 9 merges with the fluid passing through the throttle portion, and flows out from the pressure pulsation reducing means 30.
  • the pressure pulsation reducing effect is generated by the mechanism described above. Accordingly, the pressure pulsation of the refrigerant that has flowed into the pressure pulsation reducing means 30 is reduced at the portion where the small hole 9 is installed. When the pressure pulsation of the refrigerant is reduced, the generation of noise due to pipe vibration can be prevented. Further, as described above, since the pressure pulsation generated in the compressor 20 is also propagated to the suction side, the pressure pulsation reducing means 30 is connected to the suction side of the compressor 20 as shown in FIG. In this case, the pressure pulsation transmitted to the suction side of the compressor can be reduced. Further, as shown in FIG.
  • pressure pulsation reducing means 30 can be provided on the suction side and the discharge side of the compressor. In this case, the pressure pulsation transmitted to both the suction side and the discharge side of the compressor is reduced. Can be reduced. Further, as shown in FIG. 30, the pressure pulsation reducing means 30 is connected to the compressor discharge. T JP2003 / 010741
  • a small hole 9 installed in the pipe wall on the 39 side and the suction side may be connected by a connection pipe 31.There is a flow from the small hole on the discharge side of the compressor to the small hole on the suction side. Pressure pulsations on both the discharge side and the suction side are reduced.
  • the aperture ratio of small holes (defined by the total aperture area of the small holes for a certain flow path area) produces any number of pressure pulsation reduction effects.
  • the flow velocity through the hole must be increased.
  • Small aperture ratios of 1% and 2% are most desirable, but it is considered practically acceptable that the aperture ratio of small holes is about 10% or less.
  • any number of small holes may be used. However, in practice, it is desirable to keep the opening area of the small holes the same. When the diameter of the small holes is large, the number of small holes must be reduced in order to make the opening ratio of the small holes the same. Since the vortex is generated at the edge of the small hole and the spread angle after the jet is ejected is constant, if the diameter of the small hole is large, the range of influence of the jet becomes small as a result, reducing pressure pulsation Will become smaller. Therefore, small diameters such as l mm and 2 mm are most desirable, but in practice, it is considered that the small hole diameter is acceptable up to about 10 mm or less.
  • the upstream side of the channel partition 14 is shown as having a diffuser shape, but in order to obtain a silencing effect, a flow through the small hole 9 is not formed.
  • a pipe having the same diameter as the small hole 9 installation portion may be used.
  • a diffuser is installed on the downstream side of the channel partition 14 to restore pressure, but this is not a limitation. Any part of the downstream side that is in close contact with the surrounding wall can be used. It may be in shape.
  • a structure in which a plurality of small perforated small ducts are installed in the flow path may be used, and the effect of reducing pressure pulsation is further increased.
  • any refrigerant flowing inside the refrigeration cycle apparatus may be used.
  • a single-component refrigerant such as R 2 2 2 a mixed refrigerant consisting of three components such as R 4 0 7 C, R 4 1 OA
  • a mixed refrigerant consisting of two components an HC refrigerant such as a propylene, or a natural refrigerant such as CO 2 can be used.
  • the pressure pulsation reducing device 30 can also be applied to a pump device as shown in FIGS. 31 to 34, and can reduce pressure pulsation of a medium such as water or brine flowing in the flow path. it can. Since the detailed operation is the same as that of the refrigeration cycle apparatus, description thereof is omitted. Embodiment 1 2.
  • the pressure pulsation reducing means may be disposed on the upstream side or the downstream side of the compression unit that compresses the fluid, and may be built in the compressor 20 in terms of structure.
  • FIG. 35 is a diagram showing the embodiment 12 and showing the internal structure of the single screw compressor.
  • the pressure pulsation reducing means 30 is connected to the oil separator 4 3 on the downstream side of the compression chamber 42. Has been placed.
  • the flow path partition 14 in the pressure pulsation reducing means 30 is closely attached to the peripheral wall surface of the oil separator 43 and the downstream side has a nozzle shape so that the fluid is squeezed and blown out.
  • a large number of small holes 9 are provided in the wall surface of the air passage in front of the nozzle portion of the flow path partition 14.
  • the flow channel partition 14 in the upstream side is open on the upstream side, and the downstream side extends from the oil separator 43. For example, it is in close contact with the cylindrical member surrounding the flow channel partition 14 and has many small holes. 9 may be used. Industrial applicability
  • An air conditioner includes a heat exchanger that exchanges heat between air and a refrigerant in a refrigeration cycle, a blower that blows air to the heat exchanger, and the blower that is installed to propagate sound waves.
  • a heat exchanger that exchanges heat between air and a refrigerant in a refrigeration cycle
  • a blower that blows air to the heat exchanger
  • the blower that is installed to propagate sound waves.
  • Several hundreds of holes by providing a plurality of small holes for blowing a jet into the air path or sucking a jet from the air path due to a pressure difference between the blower side and the suction side of the blower Sufficient noise reduction effect can be obtained in the following low frequency range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Duct Arrangements (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

 数百Hz以下の低周波数域において十分な騒音低減効果が得られる空気調和装置を得るために、この発明に係る空気調和装置は、空気と冷凍サイクルの冷媒との間で熱交換を行う熱交換器と、この熱交換器に送風を行う送風装置と、この送風装置が設置され、音波が伝搬する風路と、送風装置の吹出側と吸込側との圧力差により、風路に噴流を吹き出す、又は風路から噴流を吸い込む複数の小孔と、を備えたことを特徴とする。

Description

明 細 書 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装 置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧 力脈動低減方法 技術分野 '
この発明は、 室内等を空気調和する空気調和装置の騒音低減、 室内や 室外等に送風する送風装置の騒音低減、 一般的な機器の騒音低減方法、 冷凍サイクル装置の圧力脈動低減装置、 ポンプ装置の圧力脈動低減装置
、 及び一般的な機器の圧力脈動低減方法に関するものである。 機器の代 表的な例として、 空気調和装置、 送風装置、 冷凍サイクル装置及びボン プ装置を例に挙げて説明する。 背景技術
従来の空気調和装置の騒音低減方法においては、 送風ダクト内に吸音 材を貼る方法、 共鳴を利用する方法等が知られている。
送風ダクト内に吸音材を貼る方法では、 送風機の吸引作用によって、 送風ダクト内に吸込空気が搬送されるが、 その際、 送風機にて発生した 騒音も送風ダクト内に放射される。 騒音は、 様々な周波数の音波の集ま りであり、 音波は送風ダクト内をダクト壁にて反射しながら進んでいく 。 吸音材はその内部に多くの気泡を持つ構造になっており、 音波が送風 ダクト内を進むうちに吸音材の中にも入り込み、 音波は吸音材の内部の 気泡の作用により乱反射を起こして、 音波の持つエネルギーが熱ェネル ギ一に変わり、 エネルギーレベルが低下、 即ち騒音レベルが低下する。 これが吸音材による騒音低減のメカニズムである。 2003/010741
しかし、 吸音材の内部で乱反射を起こすのは波長の短い音波であるた め、 一般的に高周波数において主に、 高い吸音効果を発揮する。
また、 共鳴を利用する方法の一例であるヘルムホルツの共鳴器も代表 的な騒音低減方法である。 ヘルムホルツの共鳴器は送風ダクト内に開口 部を持ち、 内部に空間を持つ構造となっている。 このような構造にする と、 送風ダク卜内を伝播されてきた音波がヘルムホルツの共鳴器の中に 入り込み、 そこで共鳴を起こす。 共鳴を起こさせることで、 音波のエネ ルギ一が熱エネルギーに変化し、 騒音レベルが低下する。
ヘルムホルツの共鳴器は、 共鳴という原理の性質上、 その入口や内部 の寸法によって共鳴させる音波の波長が決まってしまい、 また共鳴周波 数近辺の周波数及び高周波を持った音波しか騒音レベルを減らすことが できない。
また、 共鳴を利用する方法の他の例として、 ダクト内面に多孔板を露 出させその背後に背後層を持った孔空吸音板による騒音低減方法がある 。 この方法は、 孔空板と背後層で構成された共鳴器にて音波を共鳴させ て騒音を低減させる方法で、 上記ヘルムホルツの共鳴器と原理及び効果 は同じである。
孔空吸音板による方法は、 孔空板の径、 背後層厚さ、 開口率、 板厚に よって吸音すべき音の周波数が決まるため、 その設計の仕方によっては 低周波数の音も低減できるが、 そのためには相応の大きさを持った背後 層が必要となり、 多大な設置スペースを必要とする。
また、 従来の冷凍サイクル装置又はポンプ装置の圧力脈動低減方法と しては、 膨張部での乱反射によりエネルギーを損失させる膨張型マフラ 一が知られている。 膨張型マフラーでの圧力脈動低減効果は比較的広帯 域に及ぶが、 圧力脈動低減量を増加させるためには膨張部前後での径の 比を増やす必要があり、 大きな圧力脈動低減量を得るためには多大なス ペースを必要とする。
また、 特開平 7 _ 2 4 7 9 0 5号公報には、 多孔板を通じて風路に空 気を供給する形態が示されているが、 これは供給空気によって風路内の 空気の温度を下げて多孔板と背後層にて音波を共鳴させて騒音を低減さ せるものであり、 本発明とは全く原理、 作用、 効果が異なるものである また、 特開平 8— 1 4 3 1 4 9号公報には、 排気孔に多孔質の通気抵 抗部材を付けその多孔質通気抵抗部材を通して排気する形態が示されて いるが、 これは流体の噴出する面積を広げて流体の速度を落としその分 流体の噴出音を低減しょうとするもので、 これも本発明とは全く原理、 作用、 効果が異なるものである。
従来の空気調和装置の騒音低減方法は、 以上のように構成されている ため、 主に高周波数域での騒音レベルしか低減することができず、 空気 調和装置において最も低減すべき数百 H z以下の低周波数域において騒 音低減効果が期待できないという問題点があつた。
また、 共鳴を利用する方法で低周波数域の騒音レベルを低下できるも のでも、 騒音低減効果のある周波数帯が狭く、 インバ一タや印加電圧等 によって送風機の回転数が変化した場合に、 一部の回転数域でしか騒音 低減効果が期待できないという問題点があつた。
また、 低周波数域での騒音レベルを低下させるためには、 多くのスぺ —スを必要とするため、 大きさの限られた空気調和装置には使用できな いという問題点があった。
また、 送風翼もしくは送風装置から発生する音は、 吹出側と吸込側の 両方向に伝播するため、 この両方向の騒音を低減するためには、 それぞ れに別々の騒音低減機構を設けなければならず、 構造が複雑になりしか も設置スペースも大きくなつてしまうという問題点があった。 また、 冷凍サイクル装置で発生する冷媒も圧力脈動やポンプ装置で発 生する水やブラインの圧力脈動を大幅に低減させるためには、 多大なス ぺ一スを必要としていたという問題点があった。
この発明は、 以上のような問題点を解決するためになされたもので、 数百 H z以下の低周波数域において十分な騒音低減効果が得られる空気 調和装置及び送風装置及び機器の騒音低減方法を得ることを目的とする また、 この発明は、 広い周波数域に渡って低周波数音を低減できる空 気調和装置及び送風装置及び騒音低減方法を得ることを目的としている 。
また、 あまり大きなスペースを必要としない空気調和装置及び送風装 置及び騒音低減方法を得ることを目的としている。
また、 一つの騒音低減方法で、 送風翼もしくは送風装置の吹出側と吸 込側の両方向の騒音を低減させることで、 構造が簡単でかつ小さな設置 スペースの空気調和装置及び送風装置及び騒音低減方法を得ることを目 的としている。
また、 送風翼や送風装置の前後差圧を駆動源にすることで、 送風翼も しくは送風装置の回転数が変化した時に、 その回転数に合わせて騒音低 減効果のある周波数域や音圧レベルが自動的に変化するように構成し、 安価なシステムを得ることを目的としている。
また、 あまり大きなスペースを必要としない圧力脈動低減方法を得る ことを目的としている。 発明の開示
この発明に係る空気調和装置は、 空気と冷凍サイクルの冷媒との間で 熱交換を行う熱交換器と、 この熱交換器に送風を行う送風装置と、 この 送風装置が設置され、 音波が伝搬する風路と、 送風装置の吹出側と吸込 側との圧力差により、 風路に噴流を吹き出す、 又は風路から噴流を吸い 込む複数の小孔と、 を備えたことを特徴とする。 また、 この発明に係る空気調和装置は、 前記送風装置の吸込側と吹出 側とが固体壁により区画され、 前記複数の小孔を前記固体壁に設けたこ とを特徴とする。 また、 この発明に係る空気調和装置は、 天井カセット形の空気調和装 置であって、 前記複数の小孔を化粧パネル'に設けたことを特徴とする。 また、 この発明に係る空気調和装置は、 天井カセット形の空気調和装 置であって、 前記複数の小孔を前記送風装置のガイド部に設けたことを 特徴とする。 また、 この発明に係る空気調和装置は、 送風装置と熱交換器を設けた 第一の風路と、
前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の少なくとも何れか一方に設けられた複数の小 孔と、
前記複数の小孔同士、 又は前記複数の小孔とこの小孔が設けられた前 記送風装置の吸込側もしくは吹出側とは反対側とを連通させる第二の風 路と、
を備えたことを特徴とする。 また、 この発明に係る空気調和装置は、 送風装置と熱交換器を設けた 第一の風路と、
前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の何れか一方に設けられた多数の小孔と、 前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の何れか他方に設けられた少数の大口径孔と、 前記多数の小孔と、 前記少数の大口径孔とを連通させる第二の風路と を備えたことを特徴とする。 また、 この発明に係る空気調和装置は、 前記送風装置の吹出側に、 前 記多数の小孔が空けられた孔空小ダク卜を複数設けたことを特徴とする
また、 この発明に係る空気調和装置は、 前記複数の小孔又は前記多数 の小孔を前記送風装置に近接した位置に設けたことを特徴とする。 また、 この発明に係る空気調和装置は、 前記第二の風路を前記第一の 風路の外側に設けたことを特徴とする。 また、 この発明に係る空気調和装置は、 前記第二の風路を前記第一の 風路の内側に設けたことを特徴とする。 また、 この発明に係る空気調和装置は、 空調室外機であって、 筐体内 に圧縮機も内蔵し、 圧縮機からの音波も風路内を伝搬することを特徴と する。 また、 この発明に係る空気調和装置は、 前記小孔の直径を 1 0 mm以 下としたことを特徴とする。 また、 この発明に係る空気調和装置は、 前記小孔の風路壁面の断面積 に対する小孔の合計断面積の比である開口率を 1 0 %以下としたことを 特徴とする。 この発明に係る送風装置は、 送風を行う送風翼と、
この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側との圧力差により、 前記風路に噴流を吹 き出す、 又は前記風路から噴流を吸い込む複数の小孔と、
を備えたことを特徴とする。 また、 この発明に係る送風装置は、 送風翼を設けた第一の風路と、 前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の少なくとも何れか一方に設けられた複数の小孔と 前記複数の小孔同士、 又は前記複数の小孔とこの小孔が設けられた前 記送風翼の吸込側又は吹出側とは反対側とを連通させる第二の風路と、 を備えたことを特徴とする。 また、 この発明に係る送風装置は、 送風翼を設けた第一の風路と、 前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の何れか一方に設けられた多数の小孔と、
前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の何れか他方に設けられた少数の大口径孔と、 前記多数の小孔と、 前記少数の大口径孔とを連通させる第二の風路と を備えたことを特徴とする。 また、 この発明に係る送風装置は、 前記複数の小孔又は多数の小孔を 前記送風翼に近接した位置に設けたことを特徴とする。 また、 この発明に係る送風装置は、 前記第二の風路を前記第一の風路 の外側に設けたことを特徴とする。 また、 この発明に係る送風装置は、 前記第二の風路を前記第一の風路 の内側に設けたことを特徴とする。 また、 この発明に係る送風装置は、 送風を行う送風翼と、
この送風翼が設けられ、 送風翼の吹出側から風路出口までの距離が十 分長い風路と、
前記送風翼の吹出側の近傍の壁面に設けられた複数の小孔と、 を備えたことを特徴とする送風装置。 また、 この発明に係る送風装置は、 送風を行う送風翼と、
この送風翼が設けられ、 送風翼の吸込口から風路入口までの距離が十 分長い風路と、
前記送風翼の吸込側の近傍の壁面に設けられた複数の小孔と、 を備えたことを特徴とする。 また、 この発明に係る送風装置は、 送風を行う送風翼と、 この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側の少なくとも何れか一方に設けられ、 上 流側が前記風路に密着し、 下流側が風を絞って吹き出すように構成され 、 複数の小孔を有する流路仕切と、
を備えたことを特徴とする。 また、 この発明に係る送風装置は、 送風を行う送風翼と、
この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側の少なくとも何れか一方に設けられ、 下 流側が前記風路に密着し、 上流側が開放され、 複数の小孔を有する流路 仕切と、
を備えたことを特徴とする。 また、 この発明に係る送風装置は、 前記小孔の直径を 1 O mm以下と したことを特徴とする。 また、 この発明に係る送風装置は、 前記小孔の風路壁面の断面積に対 する小孔の合計断面積の比である開口率を 1 0 %以下としたことを特徴 とする。 この発明に係る機器の騒音低減方法は、 風路に送風を行う送風装置が 設置された機器において、 前記送風装置の吹出側と吸込側との圧力差、 又は前記送風装置の吹出側もしくは吸込側と風路外との圧力差により、 複数の小孔から前記風路に噴流を吹き出す、 又は前記風路から噴流を吸 い込むことを特徴とする。 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 圧縮機等に より構成される冷凍サイクルと、
前記冷凍サイクルの高圧側及び低圧側の少なくとも何れか一方に設け られ、 一端が開放し他端が流路壁面に密着した、 複数の小孔を有する流 路仕切を設けた圧力脈動低減装置と、
を備えたことを特徴とする。 また、 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 前記 圧縮機の吐出側及び吸入側の少なくとも何れか一方に設けられ、 冷媒流 路内に、 一端が開放し他端が流路壁面に密着した、 複数の小孔を有する 流路仕切を設けた圧力脈動低減装置を備えたことを特徴とする。 また、 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 前記 圧縮機に一体に設けられた油分離器内に、 一端が開放し他端が前記油分 離器に密着した、 複数の小孔を有する流路仕切を設けた圧力脈動低減装 置を備えたことを特徴とする。 また、 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 圧縮 機等により構成される冷凍サイクルと、
前記圧縮機の吐出側と吸入側の配管壁に設けた複数の小孔を接続パイ プで接続した圧力脈動低減装置と、
を備えたことを特徴とする。 . また、 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 前記 小孔の直径を 1 O mm以下としたことを特徴とする。 また、 この発明に係る冷凍サイクル装置の圧力脈動低減装置は、 前記 小孔の流路壁面の断面積に対する小孔の合計断面積の比である開口率を
1 0 %以下としたことを特徴とする。 この発明に係るポンプ装置の圧力脈動低減装置は、 ポンプ装置の吐出 側及び吸入側の少なくとも何れか一方に設けられ、 媒体流路内に、 一端 が開放し他端が流路壁面に密着した、 複数の小孔を有する流路仕切を設 けた圧力脈動低減装置を備えたことを特徴とする。 また、 この発明に係るポンプ装置の圧力脈動低減装置は、 ポンプ装置 の吐出側と吸入側の配管壁に設けた複数の小孔を接続パイプで接続した 圧力脈動低減装置を備えたことを特徴とする。 また、 この発明に係るポンプ装置の圧力脈動低減装置は、 前記小孔の 直径を 1 0 mm以下としたことを特徴とする。 また、 この発明に係るポンプ装置の圧力脈動低減装置は、 前記小孔の 流路壁面の断面積に対する小孔の合計断面積の比である開口率を 1 0 % 以下としたことを特徴とする。 この発明に係る機器の圧力脈動低減方法は、 媒体流路に媒体を吐出す る圧縮機又はポンプ装置が設置された機器において、 前記圧縮機もしく はポンプ装置の吐出側と吸込側との圧力差、 又は前記圧縮機もしくはポ ンプ装置の媒体流路で発生する圧力差により、 複数の小孔から前記媒体 流路に噴流を吹き出す、 又は前記媒体流路から噴流を吸い込むことを特 徴とする。 図面の簡単な説明
図 1は実施の形態 1を示す図で、 空気調和装置の騒音低減方法を示す 構成図である。
図 2は実施の形態 1を示す図で、 小孔による騒音低減の原理を説明す る図である。
図 3は実施の形態 1を示す図で、 小孔による騒音低減の原理を説明す る別の図である。
図 4は実施の形態 1を示す図で、 小孔による騒音低減の原理を説明す る別の図である。
図 5は実施の形態 1を示す図で、 空気調和装置の騒音低減方法による 騒音低減効果を示す実験結果である。
図 6は実施の形態 1を示す図で、 空気調和装置の騒音低減方法を示す 別の構成図である。
図 7は実施の形態 2を示す図で、 空気調和装置の騒音低減方法を示す 構成図である。
図 8は実施の形態 2を示す図で、 空気調和装置の騒音低減方法を示す 別の構成図である。
図 9は実施の形態 2を示す図で、 空気調和装置の騒音低減方法を示す 別の構成図である。
図 1 0は実施の形態 2を示す図で、 空気調和装置の騒音低減方法を示 す別の構成図である。
図 1 1は実施の形態 3を示す図で、 空気調和装置の騒音低減方法を示 す構成図である。
'図 1 2は実施の形態 4を示す図で、 空気調和装置の騒音低減方法を示 す構成図である。 P T/JP2003/010741
13 図 1 3は実施の形態 5を示す図で、 送風装置の騒音低減方法を示す構 成図である。
図 1 4は実施の形態 5を示す図で、 送風装置の騒音低減方法を示す別 の構成図である。
図 1 5は実施の形態 5を示す図で、 送風装置の騒音低減方法を示す別 の構成図である。
図 1 6は実施の形態 5を示す図で、 送風装置の騒音低減方法を示す別 の構成図である。
図 1 7は実施の形態 8を示す図で、 送風装置の騒音低減方法を示す構 成図である。
図 1 8は実施の形態 8を示す図で、 送風装置の騒音低減方法を示す別 の構成図である。
図 1 9は実施の形態 9を示す図で、 送風装置の騒音低減方法を示す構 成図である。
図 2 0は実施の形態 9を示す図で、 送風装置の騒音低減方法を示す別 の構成図である。
図 2 1は実施の形態 1 0を示す図で、 送風装置の騒音低減方法を示す 構成図である。
図 2 2は実施の形態 1 0を示す図で、 送風装置の騒音低減方法を示す 別の構成図である。
図 2 3は実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低 減方法を示す構成図である。
図 2 4は実施の形態 1 1を示す図で、 小孔による圧力脈動低減の原理 を説明する図である。
図 2 5は実施の形態 1 1を示す図で、 小孔による圧力脈動低減の原理 を説明する別の図である。 図 2 6は実施の形態 1 1を示す図で、 小孔による圧力脈動低減の原理 を説明する別の図である。
図 2 7は実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低 減方法による圧力脈動低減効果を示す実験結果である。
図 2 8は実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低 減方法を示す別の構成図である。
図 2 9は実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低 減方法を示す別の構成図である。
図 3 0実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低減 方法を示す別の構成図である。
図 3 1は実施の形態 1 1を示す図で、 ポンプ装置の圧力脈動低減方法 を示す別の構成図である。
図 3 2実施の形態 1 1を示す図で、 ポンプ装置の圧力脈動低減方法を 示す別の構成図である。
図 3 3実施の形態 1 1を示す図で、 ポンプ装置の圧力脈動低減方法を 示す別の構成図である。
図 3 4は実施の形態 1 1を示す図で、 ポンプ装置の圧力脈動低減方法 を示す別の構成図である。
図 3 5は実施の形態 1 2を示す図で、 シングルスクリュー圧縮機の内 部構造を示す図である。 発明を実施するための最良の形態 '
実施の形態 1 .
図 1は実施の形態 1を示す図で、 図 1 ( a ) は空気調和装置の騒音低 減方法の構成図、 図 1 ( b ) は小孔付近の拡大図である。 図において、 空気調和装置は天井カセット形の室内機である。 筐体 3の内部には、 送 P T/JP2003/010741
15 風機 1、 熱交換器 2が配置されている。 吸込口から吸い込まれる吸込空 気 5は、 フィルター 8、 ガイド部 4を通過し送風機 1の吸込側へ導かれ る。 送風機 1から吹出される吹出空気 6は、 ルーバー 7により吹出方向 が変えられる。 小孔 9が吹出口から吸込口に連通するように化粧パネル に設けられている。
上記のように構成された空気調和装置において、 装置の運転動作を開 始すると、 送風機 1の誘引作用により吸込口から筐体 3内に吸い込まれ た吸込空気 5はフィルタ一 8を通じて熱交換器 2へ送り込まれ、 暖房運 転時は加熱、 冷房運転時は冷却された後、 吹出空気 6として筐体 3より 室内に吹き出される。
この時、 送風機 1はその吸込側の空気を吹出側に送出する働きをして いるため、 送風機 1の吹出側においては空気が圧縮され、 吸込側に対し て圧力が高くなつている。 即ち、 送風機の吸込側の空気と吹出側の空気 との間には圧力差がついている。 そして、 この圧力差は送風機の回転数 が大きくなると増加し、 回転数が小さくなると減少する。
また、 一方、 この際、 送風機 1を駆動するモータから発生するモータ 音、 送風機 1の回転翼が空気を切る風切り音や翼の後流と別の翼が干渉 して起こる干渉音、 空気が風路ゃ熱交換器 2を通過することによる気流 擦過音ゃ管路群から発生する円柱群発生音や突起物から発生するエッジ トーン、 吹出口から空気が吹き出すことによる噴流音等の様々な発生メ 力二ズムの異なる騒音が発生する。 そして、 それら騒音は、 その発生メ 力ニズムにより中心周波数や音の種類 (連続音、 断続音、 広い周波数帯 域に渡る音、 狭い周波数帯域の音等) が異なる。
そこで、 一般的に、 空気調和装置の風路の各部位の設計を見直すこと で騒音低減を図る。 すなわち、 風路にエッジトーンを発生するような突 起部をなくす、 あるいは送風機の翼構造を見直し風切り音や干渉音を低 減させる等である。
そして、 実際に発生する音を無限に小さくすることはできないため、 更なる低騒音化を図る場合は、 吸音材を用いたり、 共鳴器を用いたりす る。 しかし、 吸音材による方法は主に高周波数域しか大きな吸音効果が 期待できないし、 また共鳴による方法は狭い周波数域においてしか消音 効果を期待できず、 かつ共鳴周波数を希望通りの周波数に設定するため には多大なスペース (背後層) を必要とする。
なお、 騒音とは、 様々な周波数の音波の集まりであり、 音波は空気等 の媒体の圧力分布 (疎密状態) を持った疎密波である。 従って、 音波が 伝播する場では、 媒体の圧力は定常圧力に対してプラス側及びマイナス 側に周期的に変動している。 この圧力変動幅は音圧と呼ばれ音の大きさ を表している。
一方、 小孔からある程度の風速を持った空気を吹き出すと、 その噴流 が騒音を低減させる効果を持つことが最近の研究によって明らかになつ てきた。 その騒音低減メカニズムには諸説があり、 完全には解明されて いないが、 1 9 7 9年に発行された; i ournal o f F l ui d Mechan i csの 2 0 9頁から 2 2 9頁に M. S. HOWEが記載した 「At t enuat i on o f sound in a l ow Mach number nozz l e f l owj には、 噴流のエネルギーの一部が渦の 生成エネルギーに使われることについて記されている。 次に、 この現象 を基に、 渦による騒音低減のメカニズムについて図 2〜図 4によって説 明する。
孔空板の両端に圧力差をつけると、 圧力差に応じて孔内部を通る縮流 が形成される (図 2 ) 。 この時、 H0WEの論文によれば、 縮流の下流側で は周囲空気とのせん断作用によって縮流の持つエネルギーの一部が渦の エネルギーに変換され、 渦が生成される。 このせん断作用は縮流の速度 と周囲空気の速度との差が大きいほど大きくなる。 生成された渦は、 縮 T JP2003/010741
流によって押し流されて孔空部から離れてゆき、 その移動過程において 、 周囲空気とのせん断や摩擦により、 熱エネルギー、 すなわち周囲空気 の温度上昇、 と圧力のエネルギー、 すなわち周囲空気への音の放出、 に 変換されて最後は散逸する。 すなわち、 縮流近傍においては、 この渦の 生成と散逸が連続的に繰り返されており、 孔空部周囲は縮流と渦を含む 脈動する空間となっている。 孔空部での縮流によって形成される渦の寸 法は孔直径 dに依存し、 渦によって発生する音の周波数 f は、 縮流の速 度を Uと置くと、 f oc U / d
となり、 渦が生成される周期は 1 Z f となる。
ここで、 縮流近傍に波長 λが孔の直径よりも十分大きい (A〉> d ) 音波が入射することを考える。 先に述べた通り、 音波が伝播する楊では 媒体の圧力は定常圧力に対して音圧分プラス側及びマイナス側に周期的 に変動している。 そこで、 縮流近傍にこの音波の高圧成分或いは低圧成 分が入射したとすると、 図 3に示すように渦が生成される瞬間に孔の上 流側及び下流側の定常圧力は上昇あるいは下降する。
音波の高圧成分が入射し定常音圧が上昇する場合 (図 3 ( 1 ) ) 、 孔 空部の両側の圧力変化量は同じであり孔空部前後の圧力差は不変である が、 圧力が上昇した分定常密度 pが上昇する。 縮流の定常速度 Uは、 孔 空部の両側の圧力を P l、 P 2とすると、 ベルヌ一ィの定理より、
Figure imgf000019_0001
で表され、 定常密度 ί>が上昇すると縮流の定常速度 Uは低下する。 従つ て、 定常音圧が上昇すなわち圧力変動 Δ Ρ > 0の時、 定常速度が低下す なわち速度変動 A Uく 0となる。 反対に、 音圧の低圧成分が入射し定常音圧が下降する場合 (図 3 (2 ) ) 、 同様に、 圧力差が不変で定常密度が低下するため、 縮流の速度が 増す。 従って、 定常音圧が下降すなわち圧力変動 ΔΡ<0の時、 定常速 度が増加すなわち速度変動 ΔΙΙ>0となる。
孔空部近傍の空間内力学的エネルギー Εは、 ニュートンの第二法則よ り、 圧力変動 ΔΡと速度変動 ΔΙΙの積を一周期積分したもの、 すなわち
Figure imgf000020_0001
で与えられる。 従って、 先に述べた通り、 ΔΡ>0の時 Δυ<0、 Δ Ρ く 0の時 AU>0であり、 力学的エネルギー Εは常に負となる (図 4) 。 力学的エネルギーが負になるということは、 音のエネルギーが散逸し 、 音響エネルギーが減少すなわち騒音が低減することを意味する。 そして、 この原理に基づく騒音低減効果は、 圧力の変動周期が縮流に よる渦の生成速度よりも十分に遅いことが前提となり、 特に低周波数域 においてより効果が大きくなる。
図 5は、 本発明による騒音低減方法の効果を確認した実験結果であり 、 騒音の伝播する流路に孔空板を設置し、 孔空板の孔空部を通して流路 内に噴流を流入させ、 騒音の周波数、 噴流の流速を変化させて、 噴流が ない場合に対する騒音低減量を測定したものである。 図 5において、 横 軸は騒音の周波数、 縦軸は騒音低減量を示しており、 図 5 (1) が音波 の伝播する場に対して噴流を吹出した場合、 図 5 (2) が噴流を吸込ん だ場合の実験結果である。 また、 図中に示している噴流の流速は、 流速 1 <流速 2ぐ流速 3ぐ流速 4、 という関係になっている。
これより、 1 kHz以下の低周波数域において十分な騒音低減効果が 得られており、 かつ噴流の流速が大きい方が騒音低減効果が大きいこと が分かる。 また、 音波が伝播する流体に対して噴流を吹出させても、 音 波が伝播する流体から流体を外部に吸引させても、 同様の消音効果があ ることが分かる。
また、 孔空部の孔径はより小さい方が望ましいことも、 別の実験より 明らかになつている。
そこで、 図 1に示す空気調和装置のように、 送風機 1の吹出側のいず れかの位置と吸込側のいずれかの位置とが固体壁を介して隣接する構造 となっている場合、 その固体壁の一部に小孔 9を空けることで、 先に述 ベたベルヌーィの定理により、 送風機 1の吹出側から吸込側に小孔 9を 通って圧力差に応じた流れが自然と形成される。 この時、 送風機 1の吹 出側は小孔 9への空気の吸込側、 送風機 1の吸込側は小孔 9からの空気 の吹出側になるため、 先に述べた通り、 この双方において空気内を伝播 している騒音の低減効果を得ることができる。
なお、 この騒音低減方法において、 小孔 9を空ける位置は、 送風機 1 の吹出風路のいずれかの位置と吸込風路のいずれかの位置とを仕切って いる壁面であればどこでもよく、 図 6のように空気調和機内の送風機 1 の吹出側と吸込側を仕切っている別の固体壁、 例えばガイド部 4に小孔 9を空けた構造としても同様の効果を奏する。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 開口率は小さい方が望ましい。 また 、 小孔の開口率が大きくなるとバイパスされる風量が大きくなり、 損失 が大きくなる。 その意味からも、 開口率は小さい方が望ましい。 これら のことから、 小孔の開口率は 1 %、 2 %といった小さい開口率が最も望 P T/JP2003/010741
20 ましいが、 実用的には、 小孔の開口率は 1 0 %以下程度までは許容でき ると考えられる。
また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ ればならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり角度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる
実施の形態 2 .
図 7は実施の形態 2を示す図で、 空気調和装置の騒音低減方法の構成 図である。 図において、 空気調和装置は天井ビルトイン形の室内機であ る。 第一の風路となる筐体 3の内部には、 送風機 1、 熱交換器 2が配置 されている。 吸込口から吸込空気 5が吸い込まれ、 吹出口から吹出空気 6が吹出される。 第二の風路となる接続ダクト 1 1が筐体 3の外側に設 置され、 接続ダクト 1 1の送風機 1の吸込側、 及び吹出側に小孔 9が設 けられている。
上記のように構成された空気調和装置において、 装置の運転動作を開 始すると、 送風機 1の誘引作用により吸込口から筐体 3内に吸い込まれ た吸込空気 5は熱交換器 2へ送り込まれ、 暖房運転時は加熱、 冷房運転 時は冷却された後、 吹出空気 6として筐体 3より室内に吹き出される。 なお、 送風機 1の吹出側と吸込側での圧力の高低関係、 送風機回転数 と圧力の関係、 筐体内での発生騒音の種類、 音波と疎密波の関係、 噴流 の性質等については、 実施の形態 1にて説明済みであり、 説明を省略す る。
図 7に示す空気調和装置においては、 実施の形態 1で示した図 1とは 異なり送風機 1の吹出側のいずれかの位置と吸込側のいずれかの位置と が固体壁を介して隣接する構造とはなっていない。 そこで、 図 7に示す 様に、 送風機 1の吹出側のいずれかの位置の壁面及び吸込側のいずれか の位置の壁面に小孔 9を空けた板を設置し、 その間を接続ダクト 1 1で 接続する。
このようにすることで、 送風機 1が作り出す圧力差に応じて、 接続ダ クト 1 1内を、 送風機 1の吹出側から送風機 1の吸込側に向かって空気 が流れるようになる。 すると、 実施の形態 1において述べたメカニズム によって、 小孔 9への空気の吸込側及び小孔 9からの空気の吹出側、 即 ち送風機 1の吹出側及び吸込側、 の双方において空気内を伝播している 騒音の低減効果を得ることができる。
なお、 この騒音低減方法において、 小孔 9を空ける位置及び接続ダク ト 1 1を設置する位置は、 送風機 1の吹出風路側及び吸込風路側であれ ばどこでもよく、 図 7のように既存の筐体 3の外側に設置しても良いし 、 図 8や図 9のように既存の筐体 3の内部に設置してもよい。 この場合 は、 送風機により近い分圧力差が大きいため騒音低減効果が大きく (図 9の構成が最も効果が大きい) 、 また、 小孔 9及び接続ダクト 1 1を筐 体 3の内部に入れこんで製造ができるため、 製造がし易くかつコストも 安価になる効果がある。
また、 ここでは、 筐体が天井ビルトイン形の空調室内機である場合を 例に説明を行ったが、 これに限るわけではなく、 図 1 0のように空調室 外機に取り付けても同様の効果を奏する。 なお、 この場合は、 筐体 3内 に送風機の他に冷媒を圧縮する圧縮機も内蔵されており、 騒音源となつ ているが、 本発明の騒音低減方法においては、 音波の周波数が同じであ れば、 音源の音の種類によらず同様の騒音低減効果を奏するのは、 実施 の形態 1にて説明した騒音低減メカニズムから明らかである。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 開口率は小さい方が望ましい。 また 、 小孔の開口率が大きくなるとバイパスされる風量が大きくなり、 損失 が大きくなる。 その意味からも、 開口率は小さい方が望ましい。 これら のことから、 小孔の開口率は 1 %、 2 %といった小さい開口率が最も望 ましいが、 実用的には、 小孔の開口率は 1 0 %以下程度までは許容でき ると考えられる。
また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ ればならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり確度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる 上述の実施の形態では、 接続ダクト 1 1の両端部に小孔 9を設けたこ とを示したが、 何れか一方のみに小孔 9を設けてもよい。 また、 ここでは送風機 1により空気を流通させる場合を例に説明を行 つたが、 その他の媒体においても同様のことが言える。 例えば、 ポンプ を用いて水を流通させるように構成しても良い。 また、 圧縮機を用いて 冷媒を流通させるように構成しても良い。 実施の形態 3 .
実施の形態 1では、 接続ダクト 1 1の両端部に小孔 9を設けたことを 示したが、 何れか一方に多数の小孔 9を設け、 他方には小数の大口径孔 を設けるようにしてもよい。
図 1 1は実施の形態 3を示す図で、 空気調和装置の騒音低減方法を示 す構成図である。
図において、 空調室外機の運転動作を開始すると、 送風機の誘引作用 により吸込口から筐体 3内に吸い込まれた吸込空気 5は熱交換器を通つ て加熱もしくは冷却された後、 吹出空気 6として筐体 3より吹き出され る。 吹出口には多数の小孔を空けた孔空ダクトが取り付けられ、 孔空ダ クトの周囲には筐体 3の天板との間を周囲と密閉して接続する接続ダク 卜が設けられている。 筐体 3の天板には、 小数の大口径孔が設けられて おり、 この大口径孔は送風機の吸入側に通じている。 そのため、 吹出空 気 6は送風機が作り出す圧力差に応じて、 接続ダクト 1 1内を送風機の 吹出側から送風機の吸込側に向かって空気が流れ、 小孔 9を設けた側す なわち吹出側での騒音が低減される。 大口径孔 1 2を設けた側での消音 効果は期待できないが、 両側に小孔を設ける場合よりも安価に構成する ことができる。 実施の形態 4 .
実施の形態 3では、 吹出口には多数の小孔を空けた孔空ダクトを取り 付けたものを示したが、 吹出側に複数の孔空小ダクトを設けるように構 成してもよい。
図 1 2は実施の形態 4を示す図で、 空気調和装置の騒音低減方法を示 す構成図である。 図に示すように、 吹出側に複数の孔空小ダクト 1 3を 設けている。 吹出ダクトの内周長をダクト断面積で除した値が大きい程 、 消音効果が大きくなるため、 このように構成すると実施の形態 2の形 態よりも更に消音効果を大きくすることができる。 また、 ダクト内径が 小さい程、 消音効果がより高い周波数域に広がる効果もあり、 オーバ一 オールでの消音効果は更に大きくなる。 しかし、 吸入側へバイパスされ る空気の量も増加するため、 適用する系によりダクト径を決める必要が ある。 実施の形態 5 .
図 1 3は実施の形態 5を示す図で、 送風装置.の騒音低減方法の構成図 である。 第一の風路となる送風ダクト 1 0内に送風翼 1 aが配置され、 吸込空気 5が送風翼 1 aへ吸い込まれ、 送風翼 1 aから吹出空気 6が吹 出される。 送風ダクト 1 0の送風翼 1 aの吸込側と吹出側の壁面に小孔 9が設けられ、 その間を第二の風路となる接続ダクト 1 1で連結する。 上記のように構成された送風装置において、 装置の運転動作を開始す ると、 送風翼 1 aの誘引作用により送風ダクトの一方から吸込空気 5が 吸い込まれ、 吹出空気 6として送風ダクト 1 0の外へ吹き出される。 なお、 送風翼 1 aの吹出側と吸込側での圧力の高低関係、 送風翼回転 数と圧力の関係、 筐体内での発生騒音の種類、 音波と疎密波の関係、 噴 流の性質等については、 実施の形態 1にて説明済みであり、 説明を省略 する。
図 1 3に示す送風装置においては、 実施の形態 2で示した図 8とは、 熱交換器の有無と、 風路を筐体により形成しているか送風ダクトにより 形成しているかの違いのみであるため、 図のように送風翼 1 aの前後の 壁面に小孔 9を設置し、 その間を接続ダクト 1 1で連結すれば、 接続ダ クト内を空気が流れ、 同様の騒音低減効果を奏することになる。
なお、 接続ダクト 1 1は図 1 3のように送風ダクト 1 0の外部に設置 しても、 図 1 4のように送風ダクト 1 0の内部に設置してもよい。 接続 ダクト 1 1を送風ダクト 1 0の外部に設置する場合は、 既存の送風ダク 卜の一部を加工するだけで設置することができるためリニュ一アルに適 しており、 接続ダクト 1 1を送風ダクト 1 0の内部に設置する場合は、 送風機ュニットとして小孔 9及び接続ダクト 1 1を元々組み込んだ形で 製造することができるため、 設置スペースもコンパクトになり、 コスト も安価になるというメリットがある。
また、 送風翼 1 aは図 1 3及び図 1 4においてはプロペラファンであ るかのように図示してあるが、 これに限るものではなく、 図 1 5に示す ターボファンや図 1 6に示すシロッコファンであっても良く、 小孔 9と 接続ダクト 1 1を設置できさえすれば、 同様の効果を奏する。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 開口率は小さい方が望ましい。 また 、 小孔の開口率が大きくなるとバイパスされる風量が大きくなり、 損失 が大きくなる。 その意味からも、 開口率は小さい方が望ましい。 これら のことから、 小孔の開口率は 1 %、 2 %といった小さい開口率が最も望 ましいが、 実用的には、 小孔の開口率は 1 0 %以下程度までは許容でき ると考えられる。 また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ れぱならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり確度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる 。
また、 ここでは送風機 1により空気を流通させる場合を例に説明を行 つたが、 その他の媒体においても同様のことが言える。 例えば、 ポンプ を用いて水を流通させるように構成しても良い。 また、 圧縮機を用いて 冷媒を流通させるように構成しても良い。 実施の形態 6 .
実施の形態 5では、 接続ダクト 1 1の両端部に小孔 9を設けたことを 示したが、 何れか一方に多数の小孔 9を設け、 他方には小数の大口径孔 を設けるように構成してもよい。 この場合でも、 送風機の差圧によりダ クト 1 1内を通した通風がなされるため、 小孔 9を設けた側での騒音が 低減される。 大口径孔を設けた側での消音効果は期待できないが、 例え ば室内に空気を搬送するダクト空調においては室内側への騒音の伝播を 防止することができ十分な効果が得られる。 このように構成すると両側 に小孔を設ける場合よりも安価に構成することができる。 実施の形態 7 P T/JP2003/010741
実施の形態 5では、 第一の風路となる送風ダクト 1 0内に送風翼 1 a が配置されている場合について説明したが、 第一の風路は固体壁で構成 された風路に限るものではなく、 何らかの固体の近辺に流体の流れが生 じており、 そこを騒音が伝搬している系であれば同様の原理で消音が可 能である。 例えば、 図 1 5も明確な風路が存在するわけではなく送風翼 の間を風が吹き出しており、 その近辺に小孔が設置されているだけであ り、 極端には送風翼そのものに小孔が空いていても小孔を通した流れを つくれれば同様の効果を奏する。 実施の形態 8 .
図 1 7及び図 1 8は実施の形態 8を示す図で、 送風装置の騒音低減方 法の構成図である。 図に示すように、 送風ダクト 1 0内に送風機 1が配 置され、 吸込空気 5が送風機 1へ吸い込まれ、 送風機 1から吹出空気 6 が吹出される。 送風ダクト 1 0の壁面に小孔 9が設けられている。
上記のように構成された送風装置において、 装置の運転動作を開始す ると、 送風機 1の誘引作用により送風ダク卜の一方から吸込空気 5が吸 い込まれ、 吹出空気 6として送風ダクト 1 0の外へ吹き出される。 なお 、 図 1 7は送風機 1が送風ダクト 1 0の入口側に位置しており送風機 1 から吹出空気 6までの長さが十分長い場合を、 図 1 8は送風機 1が送風 ダクト 1 0の出口側に位置しており吸込空気 5から送風機 1までの長さ が十分長い場合を示している。
また、 送風機 1の吹出側と吸込側での圧力の高低関係、 送風機回転数 と圧力の関係、 筐体内での発生騒音の種類、 音波と疎密波の関係、 噴流 の性質等については、 実施の形態 1にて説明済みであり、 説明を省略す る。
図 1 7に示す送風装置においては、 送風機 1から吹出空気 6までの長 03 010741
28 さが十分に長いため、 送風ダクト 1 0内の送風機 1吹出口近傍の空気圧 力と送風ダクト 1 0の外部空間の圧力 (吸込空気の圧力と同程度) との 間にはある程度の圧力差が確保されており、 送風ダクト 1 0の送風機 1 吹出口近傍の壁面に小孔 9を空けるだけで、 送風ダクト内から外部空間 への小孔 9を通した流れが形成され、 送風機 1の吹出口方向の騒音が低 減される。 騒音低減のメカニズムは実施の形態 1にて説明済みである。 また、 図 1 8に示す送風装置においては、 吸込空気 5から送風機 1ま での長さが十分に長いため、 送風ダクト 1 0内の送風機 1吸込口近傍の 空気圧力と送風ダクト 1 0の外部空間の圧力 (吹出空気の圧力と同程度 ) との間にはある程度の圧力差が確保されており、 送風ダクト 1 0の送 風機 1吸込口近傍の壁面に小孔 9を空けるだけで、 外部空間から送風ダ クト内への小孔を通した流れが形成され、 送風機 1の吸込口方向の騒音 が低減される。 騒音低減のメカニズムは実施の形態 1にて説明済みであ る。
なお、 ダクトの長さが十分に長い、 とは、 ダクトの内外である程度の 圧力差が生じ小孔を通した流れが形成できる程度の長さという意味で、 送風機の回転数が多く風速が速い場合等は、 例え 5 c m程度の長さであ つても圧力差が生じれば十分長い長さということができる。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 開口率は小さい方が望ましい。 また 、 小孔の開口率が大きくなるとバイパスされる風量が大きくなり、 損失 が大きくなる。 その意味からも、 開口率は小さい方が望ましい。 これら のことから、 小孔の開口率は 1 %、 2 %といった小さい開口率が最も望 ましいが、 実用的には、 小孔の開口率は 1 0 %以下程度までは許容でき ると考えられる。
また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ ればならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり確度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる また、 ここでは送風機 1により空気を流通させる場合を例に説明を行 つたが、 その他の媒体においても同様のことが言える。 例えば、 ポンプ を用いて水を流通させるように構成しても良い。 また、 圧縮機を用いて 冷媒を流通させるように構成しても良い。 実施の形態 9 .
図 1 9は実施の形態 9を示す図で、 送風装置の騒音低減方法の構成図 である。 図に示すように、 送風ダクト 1 0内に送風機 1および流路仕切 1 4が挿入されている。 流路仕切 1 4は上流側が送風ダクト 1 0に密着 しており、 下流側がノズル形状になっていて、 送風機 1を出た風を若干 絞って吹き出すように構成されている。 そして、 流路仕切 1 4のノズル 部前風路の壁面に多数の小孔 9が設けられている。
送風ダクト 1 0の断面形状は、 円、 直方体等どのような形状でもよく 、 流路仕切 1 4の断面形状は、 送風ダクト 1 0の断面形状と同じでもよ PC漏 003/010741
30 いし、 異なる形状でもよい。
上記のように構成された送風装置において、 装置の運転動作を開始す ると、 送風機 1の誘引作用により送風ダクトの一方から吸込空気 5が吸 い込まれ、 送風機によって昇圧された後、 流路仕切 1 4のノズル部で減 圧され吹き出される。 この時、 流路仕切 1 4のノズル部の前後で圧力差 が生じるため、 流路仕切 1 4のノズル部前風路壁面に設けられた小孔 9 の両端で圧力差ができ、 小孔 9を通る流れが形成され、 ノズルから吹き 出された空気と合流して、 吹出空気 6として送風ダクト 1 0の外へ吹き 出される。 従って、 実施の形態 1における説明と同様の原理で、 流路仕 切 1 4の流入側から伝播してきた音 (送風機 1において発生音含む) は 小孔 9の設置部において消音される。
また、 図 2 0に示すように流路仕切 1 4および小孔 9を送風機 1の吸 込側に設置することもでき、 この場合は送風機の吸入側への伝播音を消 音することができる。 また、 図 1 9と図 2 0とを組み合わせ、 送風機の 吸入側および出口側に流路仕切 1 4および小孔 9を設けることもでき、 この場合は送風機の吸入側および吹出側への伝播音を消音することがで きる。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 小孔の開口率は 1 %、 2 %といった 小さい開口率が最も望ましいが、 実用的には、 小孔の開口率は 1 0 %以 下程度までは許容できると考えられる。
また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 41
31 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ ればならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり角度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる また、 ここでは流路仕切 1 4は風路を徐々に絞りノズルから吹き出す ことを例に説明を行ったが、 これに限るものではなく、 流路を急に絞る オリフィス形状でもよいし、 ノズル先端に流れの拡散を促進する突起等 を取り付けた構造にしても良く、 どのような形状でもよい。
また、 ここではノズルが 1つであることを例に説明を行ったが、 図 1 2に示したように流路に複数の孔空き小ダクトを設置してもよく、 消音 効果が大きくなる効果がある。
また、 ここでは送風機 1により空気を流通させる場合を例に説明を行 つたが、 その他の媒体においても同様のことが言える。 例えば、 ポンプ を用いて水を流通させるように構成しても良い。 また、 圧縮機を用いて 冷媒を流通させるように構成しても良い。 実施の形態 1 0 .
図 2 1は実施の形態 1 0を示す図で、 送風装置の騒音低減方法の構成 図である。 図に示すように、 送風ダクト 1 0内に送風機 1および流路仕 切 1 4が揷入されている。 流路仕切 1 4は流路を絞る形状になっており 、 上流側が開放状態になっており、 下流側が送風ダクト 1 0に密着して いる。 そして、 流路仕切 1 4の絞り部の周囲壁面に多数の小孔 9が設け P T/JP2003/010741
32 られている。
上記のように構成された送風装置において、 装置の運転動作を開始す ると、 送風機 1の誘引作用により送風ダクトの一方から吸込空気 5が吸 い込まれ、 送風機によって昇圧された後、 流路仕切 1 4の絞り部を通り 、 流体の流速が増加する。 流体力学のべルヌーィの定理より、 流れの各 部において流体の静圧と動圧の和は等しく、 動圧は流速の 2乗に比例す る。 従って、 絞り部においては流速に応じた動圧が発生するが、 絞り部 の外側は流れがないため動圧が発生せず、 絞り部外側の静圧は絞り部よ りも大きくなる。 従って、 絞り部の周囲に取り付けられている小孔 9の 両端での静圧は内側よりも外側の方が高くなり、 小孔 9を通る流れが形 成される。 そして、 小孔 9を通って絞り部内部に吹き出された空気は、 絞り部内部を通る空気と合流して、 吹出空気 6として送風ダクト 1 0の 外へ吹き出される。 従って、 実施の形態 1における説明と同様の原理で 、 流路仕切 1 4の流入側から伝播してきた音 (送風機 1において発生音 含む) は小孔 9の設置部において消音される。
また、 図 2 2に示すように流路仕切 1 4および小孔 9を送風機 1の吸 込側に設置することもでき、 この場合は送風機の吸入側への伝播音を消 音することができる。 また、 図 2 1と図 2 2を組み.合わせ、 送風機の吸 入側および出口側に流路仕切 1 4および小孔 9を設けることもでき、 こ の場合は送風機の吸入側および吹出側への伝播音を消音することができ る。
なお、 この騒音低減方法において、 小孔の開口率 (一定風路壁面積に 対する小孔の総開口面積で定義) はいくつでも騒音低減効果を発揮する が、 理論的には、 小孔の開口率が大きくなると、 同一騒音低減効果を得 るためには、 孔を通過させる風速を大きくしなければならず、 実機とし て実現可能な圧力差から考えると、 小孔の開口率は 1 %、 2 %といった 小さい開口率が最も望ましいが、 実用的には、 小孔の開口率は 1 0 %以 下程度までは許容できると考えられる。
また、 この騒音低減方法において、 小孔の径はいくつでもよい。 しか し、 送風機が実現できる圧力には限界があるため、 前述の理由から、 実 用上は小孔の開口面積を同一に保つことが望ましいが、 小孔の径が大き い場合、 小孔の開口率を同一にするためには、 小孔の数を少なくしなけ ればならない。 渦は小孔のエッジで発生し、 また噴流が噴出した後の広 がり角度は一定であるため、 小孔の径が大きいと、 結果として噴流の影 響の及ぶ範囲が小さくなり、 騒音低減効果が小さくなつてしまう。 従つ て、 小孔の径は l mm、 2 mmといった小さい径が最も望ましいが、 実 用的には、 小孔の径は 1 0 mm以下程度までは許容できると考えられる また、 図 2 1および図 2 2では、 流路仕切 1 4の上流側がベルマウス 形状であるように図示した。 ベルマウス形状にすると、 余計な圧損ゃ衝 突音が発生しないためより望ましいが、 消音効果を得るためには小孔 9 を通る流れが形成されれば良く、 流路仕切 1 4の上流側はどんな形状で も良い。 例えば、 先細形状でも良いし、 小孔 9設置部と同一径のパイプ でも良い。
また、 流路仕切 1 4の下流側は、 送風ダクト 1 0に密着していればど んな形でも良く、 例えば、 下流側にもベルマウスあるいはディフューザ をつけると、 流路の下流側の圧力回復するため、 全体として圧損が小さ くなる効果がある。
また、 ノズルが 1つであることを例に説明を行ったが、 図 1 2に示し たように流路に複数の孔空き小ダクトを設置してもよく、 消音効果が大 きくなる効果がある。
また、 ここでは送風機 1により空気を流通させる場合を例に説明を行 P T/JP2003/010741
34 つたが、 その他の媒体においても同様のことが言える。 例えば、 ポンプ を用いて水を流通させるように構成しても良い。 また、 圧縮機を用いて 冷媒を流通させるように構成しても良い。
上述の実施の形態では、 空気調和装置及び送風装置に本発明を適用し て、 騒音低減を図ることを説明したが、 送風装置を用いた他の機器、 例 えば掃除機等にも適用できることは、 云うまでもない。 実施の形態 1 1 .
図 2 3は実施の形態 1 1を示す図で、 冷凍サイクル装置の圧力脈動低 減方法の構成図である。 図に示すように、 圧縮機 2 0で圧縮された高温 高圧のガス冷媒は、 凝縮器 2 1にて凝縮して液冷媒になり、 絞り手段 2 3にて減圧後、 蒸発器 2 4にて蒸発し、 低温低圧のガス冷媒になり、 圧 縮機 2 0へ吸い込まれる。
圧縮機 2 0は、 内部に電気駆動式のモ一タを持ち、 モータの回転によ りロータが回転することで、 圧縮室内のすきま容積が可変され、 圧縮室 に吸い込まれた流体が圧縮されて、 規定圧力もしくは規定回転角度にな つた後、 流体が圧縮機から一気に吐出される構造となっている。 従って 、 圧縮機 2 0から吐出される流体の圧力は圧縮機の回転数を基本周波数 とし高調波成分も含んだ脈動成分を持ったものとなる。 また、 当然、 圧 縮機の吸入側の圧力も圧縮機の回転数を基本周波数とし高調波成分も含 んだ脈動成分を持つたものとなる。
この圧力脈動が伝播すると、 凝縮器 2 1もしくは膨張手段 2 3もしく は蒸発器 2 4もしくはこれらを接続する配管を振動させ、 周囲への騒音 発生の原因になるため、 圧縮機 2 0の近辺の流路に圧力脈動低減手段を 設置し、 圧力脈動を減らす必要がある。
なお、 流体に圧力脈動がある場合、 流体の圧力は定常圧力に対してプ ラス側及びマイナス側に周期的に変動している。
ところで、 小孔からある程度の流速を持った流体を吹き出すと、 その 噴流が圧力脈動を低減させる効果を持つことが最近の研究によって明ら かになつてきた。 その圧力脈動低減メカニズムには諸説があり、 完全に は解明されていないが、 1 97 9年に発行された; iourn of Fluid Mec hanicsの 20 9頁から 229頁に M. S.HOWEが記載した 「AUenuation of sound in a low Mach number nozzle flow」 には、 噴流のェ不リレ^ "一 の一部が渦の生成エネルギーに使われることについて記されている。 次 に、 この現象を基に、 渦による圧力脈動低減のメカニズムについて図 2 4〜図 2 6によって説明する。
孔空板の両端に圧力差をつけると、 圧力差に応じて孔内部を通る縮流 が形成される (図 24) 。 この時、 H0WEの論文によれば、 縮流の下流側 では周囲流体とのせん断作用によって縮流の持つエネルギーの一部が渦 のエネルギーに変換され、 渦が生成される。 このせん断作用は縮流の速 度と周囲流体の速度との差が大きいほど大きくなる。 生成された渦は、 縮流によって押し流されて孔空部から離れてゆき、 その移動過程におい て、 周囲流体とのせん断や摩擦により、 熱エネルギー、 すなわち周囲流 体の温度上昇、 と圧力のエネルギー、 すなわち周囲流体への脈動成分の 放出、 に変換されて最後は散逸する。 すなわち、 縮流近傍においては、 この渦の生成と散逸が連続的に繰り返されており、 孔空部周囲は縮流と 渦を含む脈動する空間となっている。 孔空部での縮流によって形成され る渦の寸法は孔直径 dに依存し、 渦によって発生する圧力脈動の周波数 f は、 縮流の速度を Uと置くと、 f oc U/d
となり、 渦が生成される周期は lZf となる。
ここで、 縮流近傍に波長 λが孔の直径よりも十分大きい (A>>d) 圧力脈動が入射することを考える。 先に述べた通り、 圧力脈動は定常圧 力に対してプラス側及びマイナス側に周期的に変動している。 そこで、 縮流近傍にこの圧力脈動の高圧成分或いは低圧成分が入射したとすると
、 図 25に示すように渦が生成される瞬間に孔の上流側及び下流側の定 常圧力は上昇あるいは下降する。
圧力脈動の高圧成分が入射し定常圧力が上昇する場合 (図 23 ( 1) ) 、 孔空部の両側の圧力変化量は同じであり孔空部前後の圧力差は不変 であるが、 圧力が上昇した分定常密度 ioが上昇する。 縮流の定常速度 U は、 孔空部の両側の圧力を P 1、 P 2とすると、 ベルヌ一^ Γの定理より
Figure imgf000038_0001
で表され、 定常密度 /0が上昇すると縮流の定常速度 Uは低下する。 従つ て、 定常圧力が上昇すなわち圧力変動 ΔΡ>0の時、 定常速度が低下す なわち速度変動 AU<0となる。
反対に、 圧力脈動の低圧成分が入射し定常圧力が下降する場合 (図 2 5 (2) ) 、 同様に、 圧力差が不変で定常密度が低下するため、 縮流の 速度が増す。 従って、 定常圧力が下降すなわち圧力変動 ΔΡ<0の時、 定常速度が増加すなわち速度変動 AU>0となる。
孔空部近傍の空間内力学的エネルギー Εは、 ニュートンの第二法則よ り、 圧力変動 ΔΡと速度変動 ΔΙΙの積を一周期積分したもの、 すなわち
Figure imgf000038_0002
で与えられる。 従って、 先に述べた通り、 ΔΡ>0の時 Δυ<0、 ΔΡ < 0の時 A U> 0であり、 力学的エネルギー Εは常に負となる (図 2 6 ) 。 力学的エネルギーが負になるということは、 圧力脈動のエネルギー が散逸し、 脈動エネルギーが減少すなわち圧力脈動が低減することを意 味する。
そして、 この原理に基づく圧力脈動低減効果は、 圧力の変動周期が縮 流による渦の生成速度よりも十分に遅いことが前提となり、 特に低周波 数域においてより効果が大きくなる。
図 2 7は、 本発明による圧力脈動低減方法の効果を確認した実験結果 であり、 圧力脈動の伝播する流路に孔空板を設置し、 孔空板の孔空部を 通して流路内に噴流を流入させ、 圧力脈動の周波数、 噴流の流速を変化 させて、 噴流がない場合に対する圧力脈動低減量を測定したものである 。 図 2 7において、 横軸は圧力脈動の周波数、 縦軸は圧力脈動低減量を 示しており、 図 2 7 ( 1 ) が音波の伝播する場に対して噴流を吹出した 場合、 図 2 7 ( 2 ) が噴流を吸込んだ場合の実験結果である。 また、 図 中に示している噴流の流速は、 流速 1 <流速 2 <流速 3く流速 4、 とい う関係になっている。
これより、 1 k H z以下の低周波数域において十分な圧力脈動低減効 果が得られており、 かつ噴流の流速が大きい方が圧力脈動低減効果が大 きいことが分かる。 また、 圧力脈動が伝播する流体に対して噴流を吹出 させても、 圧力脈動が伝播する流体から流体を外部に吸引させても、 同 様の消音効果があることが分かる。
また、 孔空部の孔径はより小さい方が望ましいことも、 別の実験より 明らかになつている。
さて、 先に示した図 2 3において、 冷凍サイクル中の圧縮機 2 0の吐 出側に、 以上のメカニズムを応用した圧力脈動低減手段 3 0が設置され ている。 圧力脈動低減手段 3 0内には流路仕切 1 4が挿入されており、 流路仕切 1 4は流路を絞る形状になっており、 上流側が開放、 下流側が 周囲壁に密着している。 そして、 流路仕切 1 4の絞り部の周囲壁面に多 数の小孔 9が設けられており、 その下流側にディフューザ 1 5が設置さ れている。
上記のように構成された冷凍サイクル装置において、 装置の運転動作 を開始すると、 圧力脈動低減手段 3 0に流入した流体は、 流路仕切 1 4 の絞り部を通って流体の流速が増加する。 流体力学のベルヌ一^ Γの定理 より、 流れの各部において流体の静圧と動圧の和は等しく、 動圧は流速 の 2乗に比例する。 従って、 絞り部においては流速に応じた動圧が発生 するが、 絞り部の外側は流れがないため動圧が発生せず、 絞り部外側の 静圧は絞り部よりも大きくなる。 従って、 絞り部の周囲に取り付けられ ている小孔 9の両端での静圧は内側よりも外側の方が高くなり、 小孔 9 を通る流れが形成される。 そして、 小孔 9を通って絞り部内部に吹き出 された流体は、 絞り部内部を通る流体と合流して、 圧力脈動低減手段 3 0から流出する。
小孔 9を通る流れが形成されると、 先に説明したメカニズムにより、 圧力脈動低減効果が生じる。 従って、 圧力脈動低減手段 3 0に流入した 冷媒の圧力脈動は小孔 9の設置部において脈動が低減される。 冷媒の圧 力脈動が低減すると、 配管振動に起因する騒音の発生が防止できる。 また、 先にも述べたように、 圧縮機 2 0で発生した圧力脈動は吸入側 にも伝播するため、 図 2 8に示すように、 圧力脈動低減手段 3 0を圧縮 機 2 0の吸込側に設置してもよく、 この場合は圧縮機の吸入側に伝わる 圧力脈動を低減できる。 また、 図 2 9に示すように圧縮機の吸入側およ び吐出側に圧力脈動低減手段 3 0を設けることもでき、 この場合は圧縮 機の吸入側および吐出側の双方へ伝わる圧力脈動を低減することができ る。 また、 図 3 0に示すように、 圧力脈動低減手段 3 0を圧縮機の吐出 T JP2003/010741
39 側と吸入側の配管壁に設置した小孔 9を接続パイプ 3 1で接続する構造 にしてもよく、 圧縮機の吐出側の小孔から吸入側の小孔へ至る流れが発 生し、 吐出側および吸入側双方の圧力脈動が低減される。
なお、 この圧力脈動低減方法において、 小孔の開口率 (一定流路面積 に対する小孔の総開口面積で定義) はいくつでも圧力脈動低減効果を発 揮するが、 理論的には、 小孔の開口率が大きくなると、 同一圧力脈動低 減低減効果を得るためには、 孔を通過させる流速を大きくしなければな らず、 実機として実現可能な圧力差から考えると、 小孔の開口率は 1 % 、 2 %といった小さい開口率が最も望ましいが、 実用的には、 小孔の開 口率は 1 0 %以下程度までは許容できると考えられる。
また、 この圧力脈動低減方法において、 小孔の径はいくつでもよい。 しかし、 実用上は小孔の開口面積を同一に保つことが望ましく、 小孔の 径が大きい場合、 小孔の開口率を同一にするためには、 小孔の数を少な くしなければならない。 渦は小孔のエッジで発生し、 また噴流が噴出し た後の広がり角度は一定であるため、 小孔の径が大きいと、 結果として 噴流の影響の及ぶ範囲が小さくなり、 圧力脈動低減効果が小さくなつて しまう。 従って、 小孔の径は l mm、 2 mmといった小さい径が最も望 ましいが、 実用的には、 小孔の径は 1 0 mm以下程度までは許容できる と考えられる。
また、 図 2 3および図 2 8、 2 9では、 流路仕切 1 4の上流側がディ フューザ形状であるように図示したが、 消音効果を得るためには小孔 9 を通る流れが形成されれば良く、 例えば小孔 9設置部と同一径のパイプ でも良い。
また、 流路仕切 1 4の下流側にディフューザをつけ圧力回復させるこ とを例に説明を行ったが、 これに限るものではなく、 下流側の一部が周 囲壁に密着していればどんな形でも良い。 また、 ノズルが 1つであることを例に説明を行ったが、 流路に複数の 孔空き小ダクトを設置するような構造としてもよく、 圧力脈動低減効果 がより大きくなる効果がある。
また、 冷凍サイクル装置の内部を流れる冷媒はどんなものでも良く、 例えば、 R 2 2等の単一成分の冷媒、 R 4 0 7 Cのように 3成分系から なる混合冷媒、 R 4 1 O Aのように 2成分系からなる混合冷媒、 プロパ ン等の H C冷媒ゃ C O 2等の自然冷媒等が使用できる。
また、 圧力脈動低減装置 3 0は、 図 3 1〜図 3 4に示すようにポンプ 装置にも適用することができ、 流路内を流れる水やブライン等の媒体の 圧力脈動を低減させることができる。 詳細の動作は、 冷凍サイクル装置 と同様であるため説明を省略する。 実施の形態 1 2 .
圧力脈動低減手段は、 流体を圧縮する圧縮部の上流側もしくは下流側 に配置されていればよく、 構造的には圧縮機 2 0内に内蔵されていても よい。
図 3 5は実施の形態 1 2を示す図で、 シングルスクリユー圧縮機の内 部構造を示す図であり、 圧力脈動低減手段 3 0は圧縮室 4 2の下流側の 油分離器 4 3に配置されている。
図において、 圧力脈動低減手段 3 0内の流路仕切 1 4は上流側が油分 離器 4 3の周囲壁面に密着し、 下流側がノズル形状になっていて流体を 絞って吹き出すように構成されており、 流路仕切 1 4のノズル部前風路 の壁面に多数の小孔 9が設けられている。 このように構成すると、 圧力 脈動低減手段 3 0に流入した流体は、 流路仕切 1 4のノズル部で減圧さ れて吹き出される。 この時、 流路仕切 1 4のノズル部の前後で圧力差が 生じるため、 流路仕切 1 4のノズル部前流路壁面に設けられた小孔 9の 3 010741
41 両端で圧力差ができ、 小孔 9を通る流れが形成される。 従って、 先の説 明と同様の原理で、 流路仕切 1 4の流入側から伝播してきた圧力脈動は 小孔 9の設置部において低減される。
圧力脈動低減手段 3 0内の流路仕切 1 4は上流側が開放し、 下流側が 油分離器 4 3から延出した、 例えば流路仕切 1 4を囲む筒状部材に密着 し、 多数の小孔 9を有する構成でもよい。 産業上の利用可能性
この発明に係る空気調和装置は、 空気と冷凍サイクルの冷媒との間で 熱交換を行う熱交換器と、 この熱交換器に送風を行う送風装置と、 この 送風装置が設置され、 音波が伝搬する風路と、 送風装置の吹出側と吸込 側との圧力差により、 風路に噴流を吹き出す、 又は風路から噴流を吸い 込む複数の小孔と、 を備えたことにより、 数百 H z以下の低周波数域に おいて十分な騒音低減効果が得られる。

Claims

請求の範囲
1 . 空気と冷凍サイクルの冷媒との間で熱交換を行う熱交換 器と、
この熱交換器に送風を行う送風装置と、
この送風装置が設置され、 音波が伝搬する風路と、
前記送風装置の吹出側と吸込側との圧力差により、 前記風路に噴流を 吹き出す、 又は前記風路から噴流を吸い込む複数の小孔と、
を備えたことを特徴とする空気調和装置。
2 . 前記送風装置の吸込側と吹出側とが固体壁により区画さ れ、 前記複数の小孔を前記固体壁に設けたことを特徴とする請求項 1に 記載の空気調和装置。
3 . 天井カセット形の空気調和装置であって、 前記複数の小 孔を化粧パネルに設けたことを特徴とする請求項 2に記載の空気調和装 置。
4 . 天井カセット形の空気調和装置であって、 前記複数の小 孔を前記送風装置のガイド部に設けたことを特徴とする請求項 2に記載 の空気調和装置。
5 . 送風装置と熱交換器を設けた第一の風路と、 前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の少なくとも何れか一方に設けられた複数の小 孔と、
前記複数の小孔同士、 又は前記複数の小孔とこの小孔が設けられた前 記送風装置の吸込側もしくは吹出側とは反対側とを連通させる第二の風 路と、
を備えたことを特徴とする請求項 1に記載の空気調和装置。
6 . 送風装置と熱交換器を設けた第一の風路と、
前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の何れか一方に設けられた多数の小孔と、 前記送風装置の吹出側の何れかの位置の壁面及び前記送風装置の吸込 側の何れかの位置の壁面の何れか他方に設けられた少数の大口径孔と、 前記多数の小孔と、 前記少数の大口径孔とを連通させる第二の風路と を備えたことを特徴とする請求項 1に記載の空気調和装置。
7 . 前記送風装置の吹出側に、 前記多数の小孔が空けられた 孔空小ダクトを複数設けたことを特徴とする請求項 6に記載の空気調和 装置。
8 . 前記複数の小孔又は前記多数の小孔を前記送風装置に近 接した位置に設けたことを特徴とする請求項 5に記載の空気調和装置。
9 . 前記第二の風路を前記第一の風路の外側に設けたことを 特徴とする請求項 5又は請求項 6に記載の空気調和装置。
1 0 . 前記第二の風路を前記第一の風路の内側に設けたことを 特徴とする請求項 5に記載の空気調和装置。
1 1 . 空調室外機であって、 筐体内に圧縮機も内蔵し、 圧縮機 からの音波も風路内を伝搬することを特徴とする請求項 5又は請求項 6 に記載の空気調和装置。
1 2 . 前記小孔の直径を 1 0 mm以下としたことを特徴とする 請求項 1又は請求項 2又は請求項 5又は請求項 6に記載の空気調和装置
1 3 . 前記小孔の風路壁面の断面積に対する小孔の合計断面積 の比である開口率を 1 0 %以下としたことを特徴とする請求項 1又は請 求項 2又は請求項 5又は請求項 6に記載の空気調和装置。
1 4 . 送風を行う送風翼と、
この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側との圧力差により、 前記風路に噴流を吹 き出す、 又は前記風路から噴流を吸い込む複数の小孔と、
を備えたことを特徴とする送風装置。
1 5 . 送風翼を設けた第一の風路と、
前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の少なくとも何れか一方に設けられた複数の小孔と 前記複数の小孔同士、 又は前記複数の小孔とこの小孔が設けられた前 記送風翼の吸込側又は吹出側とは反対側とを連通させる第二の風路と、 を備えたことを特徴とする請求項 1 4に記載の送風装置。
1 6 . 送風翼を設けた第一の風路と、
前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の何れか一方に設けられた多数の小孔と、
前記送風翼の吹出側の何れかの位置の壁面及び前記送風翼の吸込側の 何れかの位置の壁面の何れか他方に設けられた少数の大口径孔と、 前記多数の小孔と、 前記少数の大口径孔とを連通させる第二の風路と を備えたことを特徴とする請求項 1 4に記載の送風装置。
1 7 . 前記複数の小孔を前記送風翼に近接した位置に設けたこ とを特徴とする請求項 1 5又は請求項 1 6に記載の送風装置。
1 8 . 前記第二の風路を前記第一の風路の外側に設けたことを 特徴とする請求項 1 5又は請求項 1 6に記載の送風装置。
1 9 . 前記第二の風路を前記第一の風路の内側に設けたことを 特徴とする請求項 1 5又は請求項 1 6に記載の送風装置。
2 0 . 送風を行う送風翼と、
この送風翼が設けられ、 送風翼の吹出側から風路出口までの距離が十 分長い風路と、
前記送風翼の吹出側の近傍の壁面に設けられた複数の小孔と、 を備えたことを特徴とする送風装置。
2 1 . 送風を行う送風翼と、
この送風翼が設けられ、 送風翼の吸込口から風路入口までの距離が十 分長い風路と、
前記送風翼の吸込側の近傍の壁面に設けられた複数の小孔と、 を備えたことを特徴とする送風装置。
2 2 . 送風を行う送風翼と、
この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側の少なくとも何れか一方に設けられ、 上 流側が前記風路に密着し、 下流側が風を絞って吹き出すように構成され 、 複数の小孔を有する流路仕切と、
を備えたことを特徴とする送風装置。
2 3 . 送風を行う送風翼と、
この送風翼が設置され、 音波が伝搬する風路と、
前記送風翼の吹出側と吸込側の少なくとも何れか一方に設けられ、 下 流側が前記風路に密着し、 上流側が開放され、 複数の小孔を有する流路 仕切と、
を備えたことを特徴とする送風装置。
2 4 . 前記小孔の直径を 1 0 mm以下としたことを特徴とする 請求項 1 5又は請求項 1 6又は請求項 2 0又は請求項 2 1又は請求項 2 2又は請求項 2 3に記載の送風装置。
2 5 . 前記小孔の風路壁面の断面積に対する小孔の合計断面積 の比である開口率を 1 0 %以下としたこどを特徴とする請求項 1 5又は 請求項 1 6又は請求項 2 0又は請求項 2 1又は請求項 2 2又は請求項 2 3に記載の送風装置。 '
2 6 . 風路に送風を行う送風装置が設置された機器において、 前記送風装置の吹出側と吸込側との圧力差、 又は前記送風装置の吹出側 もしくは吸込側と風路外との圧力差により、 複数の小孔から前記風路に 噴流を吹き出す、 又は前記風路から噴流を吸い込むことを特徴とする機 器の騒音低減方法。
2 7 . 圧縮機等により構成される冷凍サイクルと、
前記冷凍サイクルの高圧側及び低圧側の少なくとも何れか一方に設け られ、 一端が開放し他端が流路壁面に密着した、 複数の小孔を有する流 路仕切を設けた圧力脈動低減装置と、
を備えたことを特徴とする冷凍サイクル装置の圧力脈動低減装置。
2 8 . 前記圧縮機の吐出側及び吸入側の少なくとも何れか一方 に設けられ、 冷媒流路内に、 一端が開放し他端が流路壁面に密着した、 複数の小孔を有する流路仕切を設けた圧力脈動低減装置を備えたことを 特徴とする請求項 2 7に記載の冷凍サイクル装置の圧力脈動低減装置。
2 9 . 前記圧縮機に一体に設けられた油分離器内に、 一端が開 放し他端が前記油分離器に密着した、 複数の小孔を有する流路仕切を設 けた圧力脈動低減装置を備えたことを特徴とする請求項 2 7に記載の冷 凍サイクル装置の圧力脈動低減装置。
3 0 . 圧縮機等により構成される冷凍サイクルと、 前記圧縮機の吐出側と吸入側の配管壁に設けた複数の小孔を接続パイ プで接続した圧力脈動低減装置と、
を備えたことを特徴とする冷凍サイクル装置の圧力脈動低減装置。
3 1 . 前記小孔の直径を 1 0 mm以下としたことを特徴とする 請求項 2 7又は請求項 2 8又は請求項 2 9又は請求項 3 0に記載の冷凍 サイクル装置の圧力脈動低減装置。
3 2 . 前記小孔の流路壁面の断面積に対する小孔の合計断面積 の比である開口率を 1 0 %以下としたことを特徴とする請求項 2 7又は 請求項 2 8又は請求項 2 9又は請求項 3 0に記載の冷凍サイクル装置の 圧力脈動低減装置。
3 3 . ポンプ装置の吐出側及び吸入側の少なくとも何れか一方 に設けられ、 媒体流路内に、 一端が開放し他端が流路壁面に密着した、 複数の小孔を有する流路仕切を設けた圧力脈動低減装置を備えたことを 特徵とするポンプ装置の圧力脈動低減装置。
3 4 . ポンプ装置の吐出側と吸入側の配管壁に設けた複数の小 孔を接続パイプで接続した圧力脈動低減装置を備えたことを特徴とする ポンプ装置の圧力脈動低減装置。
3 5 . 前記小孔の直径を 1 0 mm以下としたことを特徴とする 請求項 3 3又は請求項 3 4に記載のポンプ装置の圧力脈動低減装置。
3 6 . 前記小孔の流路壁面の断面積に対する小孔の合計断面積 の比である開口率を 1 0 %以下としたことを特徴とする請求項 3 3又は 請求項 3 4に記載のポンプ装置の圧力脈動低減装置。
3 7 . 媒体流路に媒体を吐出する圧縮機又はポンプ装置が設置 された機器において、 前記圧縮機もしくはポンプ装置の吐出側と吸込側 との圧力差、 又は前記圧縮機もしくはポンプ装置の媒体流路で発生する 圧力差により、 複数の小孔から前記媒体流路に噴流を吹き出す、 又は前 記媒体流路から噴流を吸い込むことを特徴とする機器の圧力脈動低減方 法。
PCT/JP2003/010741 2002-02-10 2003-08-26 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法 WO2004031660A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03799088.4A EP1553360B1 (en) 2002-10-02 2003-08-26 Air conditioning equipment
JP2004541215A JP4325867B2 (ja) 2002-10-02 2003-08-26 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法
ES03799088T ES2732068T3 (es) 2002-10-02 2003-08-26 Equipo de aire acondicionado
US10/529,870 US7856837B2 (en) 2002-02-10 2003-08-26 Air conditioning equipment, fan equipment, method of reducing noise of equipment, pressure pulsation reducer for refrigeration cycle equipment, pressure pulsation reducer for pump equipment and method of reducing pressure pulsation of equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002289663 2002-10-02
JP2002/289663 2002-10-02

Publications (1)

Publication Number Publication Date
WO2004031660A1 true WO2004031660A1 (ja) 2004-04-15

Family

ID=32063749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010741 WO2004031660A1 (ja) 2002-02-10 2003-08-26 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法

Country Status (6)

Country Link
US (1) US7856837B2 (ja)
EP (2) EP1553360B1 (ja)
JP (1) JP4325867B2 (ja)
ES (2) ES2732068T3 (ja)
HK (1) HK1141074A1 (ja)
WO (1) WO2004031660A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120722A (zh) * 2016-02-25 2017-09-01 霍尔顿公司 用于空间调节的装置
CN107166538A (zh) * 2017-06-22 2017-09-15 珠海格力电器股份有限公司 空调器
WO2021254747A1 (de) * 2020-06-16 2021-12-23 BSH Hausgeräte GmbH Kältegerät und verdichterbaugruppe dafür
CN114608789A (zh) * 2022-04-07 2022-06-10 中国空气动力研究与发展中心低速空气动力研究所 一种研究喷流噪声及声传播的试验方法
WO2024070823A1 (ja) * 2022-09-30 2024-04-04 ダイキン工業株式会社 空調装置及び空気清浄機

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005025418D1 (de) * 2005-05-31 2011-01-27 Carrier Corp Verfahren und vorrichtung zur verringerung des von einem ölabscheider abgegebenen lärmpegels
JP4301227B2 (ja) * 2005-09-15 2009-07-22 セイコーエプソン株式会社 電気光学装置及びその製造方法、電子機器並びにコンデンサー
DE102005046728A1 (de) * 2005-09-29 2007-04-12 Airbus Deutschland Gmbh Geräuscharme Durchflussdrosselung fluidführender Rohre
DE102006050339A1 (de) * 2006-10-25 2008-04-30 Valeo Klimasysteme Gmbh Belüftungsanlage mit Schallbarriere
JP4610626B2 (ja) * 2008-02-20 2011-01-12 三菱電機株式会社 天井埋め込み型空気調和機に配置される熱交換器及び天井埋め込み型空気調和機
US11828678B2 (en) * 2010-03-15 2023-11-28 Klatu Networks, Inc. Managing the effectiveness of repairs in refrigeration assets
US10456686B2 (en) 2012-09-05 2019-10-29 Zynga Inc. Methods and systems for adaptive tuning of game events
US10087954B2 (en) 2013-02-08 2018-10-02 Trane International Inc. HVAC system with noise reducing tube
JP6139189B2 (ja) * 2013-03-13 2017-05-31 東プレ株式会社 送風ユニット
US9835176B2 (en) 2013-04-05 2017-12-05 Acoustiflo Llc Fan inlet air handling apparatus and methods
US10561944B2 (en) 2014-09-10 2020-02-18 Zynga Inc. Adjusting object adaptive modification or game level difficulty and physical gestures through level definition files
US9675889B2 (en) 2014-09-10 2017-06-13 Zynga Inc. Systems and methods for determining game level attributes based on player skill level prior to game play in the level
DE202017006578U1 (de) * 2017-12-22 2019-03-25 Thomas Roggenkamp Klimaschrank
CN110906594A (zh) 2018-09-14 2020-03-24 开利公司 油分离器以及具有该油分离器的空调系统
CN111256281B (zh) * 2018-11-30 2021-10-22 广东美的制冷设备有限公司 运行控制方法及系统、压缩机和空调器
TWI710706B (zh) * 2019-05-24 2020-11-21 宏碁股份有限公司 離心式散熱風扇
TWI790737B (zh) * 2021-09-06 2023-01-21 宏碁股份有限公司 具散熱和前饋式主動噪音控制功能之電子系統
CN114001420B (zh) * 2021-10-27 2023-07-04 上海民航新时代机场设计研究院有限公司 一种低噪音全热净效新风机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173686A (en) * 1981-04-20 1982-10-26 Hitachi Plant Eng & Constr Co Muffler for blowing duct
JPS58195908A (ja) 1982-05-11 1983-11-15 Shinkichi Doi 道路の速度規制に対する自動車速度の順応方法
JPS58194908U (ja) * 1982-06-21 1983-12-24 マツダ株式会社 自動車の空調装置
JPS613943A (ja) * 1984-06-18 1986-01-09 Toupure Kk 空気調和設備
JPH04369342A (ja) * 1991-06-17 1992-12-22 Hitachi Ltd 空気調和機
JP2002250535A (ja) 2001-02-23 2002-09-06 Mitsubishi Heavy Ind Ltd 空調用室内ユニットおよびその空調用室内ユニットを備えた空気調和機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2875787A (en) * 1956-03-27 1959-03-03 Westinghouse Air Brake Co Pulsation dampener device
US3070977A (en) * 1961-03-31 1963-01-01 Heat X Inc Refrigeration system, including oil separator and muffler unit and oil return arrangement
JPS5722492A (en) * 1980-07-17 1982-02-05 Nippon Denso Co Silencer
EP0089770B1 (en) 1982-03-18 1987-03-11 British Telecommunications Piezoelectric and pyroelectric film
JPS5921951A (ja) * 1982-07-23 1984-02-04 三洋電機株式会社 ヒ−トポンプ式分離型空気調和機
JPS5927164U (ja) * 1982-08-12 1984-02-20 株式会社ボッシュオートモーティブ システム 複動式圧縮機
JP3332057B2 (ja) 1994-03-11 2002-10-07 石川島播磨重工業株式会社 超音速航空機用排気ノズルのライナ構造
JP2741840B2 (ja) 1994-06-24 1998-04-22 株式会社ゴーセン 釣糸の巻き換え用具及びこれを取り付けた釣糸の巻き糸体
JP3400108B2 (ja) * 1994-06-27 2003-04-28 アイシン精機株式会社 配管装置及び配管装置を備えた空調機
DE69509206T2 (de) * 1994-07-23 1999-08-19 Aoyama Zufuhrsteuervorrichtung für unterteile für vibrationsförderer
JP2864099B2 (ja) 1994-11-26 1999-03-03 好高 青山 部品供給管路の消音装置
JPH09112488A (ja) * 1995-10-17 1997-05-02 Mitsubishi Heavy Ind Ltd 遠心フアン
CA2164370A1 (en) * 1995-12-04 1997-06-05 Donald L. Allen Reactive acoustic silencer
AU708393B2 (en) * 1997-06-17 1999-08-05 Daikin Industries, Ltd. Air conditioner
JPH11107959A (ja) * 1997-09-30 1999-04-20 Sanyo Electric Co Ltd 密閉型圧縮機の吐出管
JP2000292077A (ja) 1999-02-03 2000-10-20 Nippon Soken Inc 熱交換器
JP2002350003A (ja) 2001-05-22 2002-12-04 Hitachi Ltd 空気調和機
JP3809520B2 (ja) * 2001-07-04 2006-08-16 独立行政法人 宇宙航空研究開発機構 微細噴流制御式吸音システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57173686A (en) * 1981-04-20 1982-10-26 Hitachi Plant Eng & Constr Co Muffler for blowing duct
JPS58195908A (ja) 1982-05-11 1983-11-15 Shinkichi Doi 道路の速度規制に対する自動車速度の順応方法
JPS58194908U (ja) * 1982-06-21 1983-12-24 マツダ株式会社 自動車の空調装置
JPS613943A (ja) * 1984-06-18 1986-01-09 Toupure Kk 空気調和設備
JPH04369342A (ja) * 1991-06-17 1992-12-22 Hitachi Ltd 空気調和機
JP2002250535A (ja) 2001-02-23 2002-09-06 Mitsubishi Heavy Ind Ltd 空調用室内ユニットおよびその空調用室内ユニットを備えた空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553360A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107120722A (zh) * 2016-02-25 2017-09-01 霍尔顿公司 用于空间调节的装置
CN107166538A (zh) * 2017-06-22 2017-09-15 珠海格力电器股份有限公司 空调器
WO2021254747A1 (de) * 2020-06-16 2021-12-23 BSH Hausgeräte GmbH Kältegerät und verdichterbaugruppe dafür
CN114608789A (zh) * 2022-04-07 2022-06-10 中国空气动力研究与发展中心低速空气动力研究所 一种研究喷流噪声及声传播的试验方法
WO2024070823A1 (ja) * 2022-09-30 2024-04-04 ダイキン工業株式会社 空調装置及び空気清浄機

Also Published As

Publication number Publication date
EP1553360A4 (en) 2008-03-12
JPWO2004031660A1 (ja) 2006-02-02
EP2154451B1 (en) 2013-11-06
US20070060038A1 (en) 2007-03-15
ES2732068T3 (es) 2019-11-20
JP4325867B2 (ja) 2009-09-02
ES2443492T3 (es) 2014-02-19
EP1553360B1 (en) 2019-05-22
EP1553360A1 (en) 2005-07-13
EP2154451A1 (en) 2010-02-17
US7856837B2 (en) 2010-12-28
HK1141074A1 (en) 2010-10-29

Similar Documents

Publication Publication Date Title
JP4325867B2 (ja) 空気調和装置及び送風装置及び機器の騒音低減方法及び冷凍サイクル装置の圧力脈動低減装置及びポンプ装置の圧力脈動低減装置及び機器の圧力脈動低減方法
US4279325A (en) Acoustic treatment for fans
US20220357075A1 (en) Silencing device and air supply system
JP4153457B2 (ja) 流路装置、冷凍サイクル装置
JP5135967B2 (ja) 遠心送風機
KR100358237B1 (ko) 흠음장치
JPH06281194A (ja) 送風装置
WO2008053867A1 (fr) Ventilateur centrifuge
JP4659066B2 (ja) 流路装置
JP5521648B2 (ja) 消音ボックス付送風機
Gu et al. Theoretical and experimental studies on the noise control of centrifugal fans combining absorbing liner and inclined tongue
JP3264553B2 (ja) 送風装置
CN2364375Y (zh) 吊装式空调机组消音器
JP2003074499A (ja) 送風機及びこれを使用した空気調和機
CN216131149U (zh) 风机和家用电器
KR102429698B1 (ko) 터보 블로워 장치
EP1321725A1 (en) Device particularly for reducing the noise emitted by air conditioners
JP2000120599A (ja) 電動送風機及びそれを搭載した電気掃除機
WO2024062743A1 (ja) 消音器付き風路
JP7249474B1 (ja) 消音器付き風路
WO2023181520A1 (ja) 消音器付き風路
WO2022113279A1 (ja) 空気調和装置
CN110573808B (zh) 制冷循环装置和具有该制冷循环装置的电气设备
WO2023181519A1 (ja) 消音器付き風路
WO2024038683A1 (ja) 構造物、及び触覚提示デバイス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004541215

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003799088

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003799088

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007060038

Country of ref document: US

Ref document number: 10529870

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10529870

Country of ref document: US