WO2004028945A1 - エレベータのブレーキ制御装置 - Google Patents

エレベータのブレーキ制御装置 Download PDF

Info

Publication number
WO2004028945A1
WO2004028945A1 PCT/JP2003/001385 JP0301385W WO2004028945A1 WO 2004028945 A1 WO2004028945 A1 WO 2004028945A1 JP 0301385 W JP0301385 W JP 0301385W WO 2004028945 A1 WO2004028945 A1 WO 2004028945A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
electromotive force
electromagnet
brake
current detector
Prior art date
Application number
PCT/JP2003/001385
Other languages
English (en)
French (fr)
Inventor
Takaharu Ueda
Alexandru Forrai
Yoshitaka Kariya
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to KR1020047007954A priority Critical patent/KR100572787B1/ko
Priority to EP03703305A priority patent/EP1544148B1/en
Priority to JP2004525638A priority patent/JP4102362B2/ja
Publication of WO2004028945A1 publication Critical patent/WO2004028945A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/32Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes

Definitions

  • the present invention relates to a brake control device for an elevator, and more particularly to a reduction in brake operation noise generated when a brake strikes a brake drum.
  • the exciting current command for the brake coil (electromagnet) for driving the brake is gradually increased until the specified value is reached, and then the exciting current command is rapidly decreased.
  • the generated brake operation noise has been reduced (for example, see Japanese Patent Application Laid-Open No. 9-267982).
  • the present invention has been made to solve the above-described problems, and provides a brake control apparatus for an elevator that can easily perform brake adjustment work and reduce the sound of brake drop without being affected by disturbance.
  • the purpose is to do. Disclosure of the invention
  • the present invention has been made in view of the above-described object, and is directed to an electromotive force estimation for estimating an electromotive force of an electromagnet caused by a moving speed of an armature attracted to a brake coil of an electromagnet that drives a brake shoe of an elevator. And the electromotive force and the electromotive force And a compensator that supplies a voltage command to the electromagnet compensated by adjusting any one of the integral values to the target value.After the armature movement starts during braking, the brakes suppress the armature movement speed. Elevator characterized by controlling the coil voltage. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing the entire configuration of an elevator brake system including a brake control device according to the present invention
  • FIG. 2 is a configuration diagram showing an example of a brake control device according to Embodiment 1 of the present invention
  • FIG. 3 is an explanatory diagram of the operation of the brake control device according to the present invention
  • FIG. 4 is an explanatory diagram of the operation of the brake control device of the present invention
  • FIG. 5 is an example of the brake control device according to the second embodiment of the present invention. Configuration diagram shown,
  • FIG. 6 is a configuration diagram showing an example of a rake control device according to Embodiment 3 of the present invention.
  • FIG. 7 is a configuration diagram showing an example of a brake control device according to Embodiment 4 of the present invention.
  • FIG. 8 is a configuration diagram showing an example of a brake control device according to Embodiment 5 of the present invention.
  • FIG. 9 is a block diagram showing an example of the compensating means according to the fifth embodiment of the present invention
  • FIG. 10 is an explanatory diagram of the operation of the brake control device according to the present invention
  • FIG. FIG. 12 is a configuration diagram illustrating an example of a compensating unit according to the present invention.
  • FIG. 12 is a configuration diagram illustrating an example of a brake control device according to a seventh embodiment of the present invention.
  • FIG. 13 is a block diagram showing an example of a compensating means according to the eighth embodiment of the present invention.o Best mode for carrying out the invention Embodiment 1
  • FIG. 1 shows the configuration of the entire brake system of the present invention including the brake control device according to the present invention, which is the same in each embodiment described below.
  • the elevator drum 1 is suspended by a main rope 3 wound around a sheave 2 of a hoisting machine and a counterweight 4. 6 is generally mounted on an axis connecting the winding motor 5 and the sieve 2, and is shaken by the force of the panel 7.
  • the control device 9 applies a current to the brake coil, that is, the electromagnet 10 (hereinafter, the brake coil 10 is assumed to be the same as the electromagnet) to energize the brake coil. Absorbs the armature 11 attached to the armature 1 by overcoming the force of the spring 7. At this time, the brake contact 12 is turned on, and the output 12a detects that the suction is completed. At the time of braking, the control device 9 also deenergizes the brake coil 10.
  • the electromagnet 10 hereinafter, the brake coil 10 is assumed to be the same as the electromagnet
  • the current value of the brake coil 10 decreases according to a time constant determined by the coil resistance and the reactance value, and the attraction force also decreases due to the decrease in the brake current.
  • the suction force becomes smaller than the force of the spring 7, the brake coil 10 and the armature 11 separate, and fall by the force of the panel.
  • FIG. 2 is a configuration diagram showing a brake control device including portions 9, 10, and 13 of the diagram according to the first embodiment of the present invention.
  • the electromotive force of the brake coil of the electromagnet indicates the armature speed
  • the electromotive force of this coil is estimated from the current detector signal, and based on this, the voltage applied to the brake coil of the electromagnet is determined.
  • the armature speed is controlled and adjusted by controlling the command.
  • the current detector the current detector
  • Electromotive force estimation means 3 detects the current flowing through the brake coil (electromagnet) 10. Electromotive force estimation means 3
  • Target value setting means (setting value means) 22 gives a target value of the electromotive force.
  • the difference means 23a obtains a difference (calculates a difference) between the target value of the electromotive force and the estimated electromotive force signal 31.
  • the compensating means 24 shapes the gain and phase of the output of the difference means 23 a and outputs it as a voltage command signal 20 to the electromagnet.
  • the non-linear compensation means 3 2 is a current flowing through the electromagnet 10, for example, the output 2 of the current detector 13.
  • the inductance adjusting means 29 adjusts the inductance value 26 of the electromagnet in the electromotive force estimation means 30 according to the current detector signal 21.
  • the differentiating means 27 differentiates the current detector signal
  • the brake coil inductance value 26 is actually multiplication means for multiplying the differential signal by the inductance of the brake coil, and the brake coil resistance.
  • the value 28 is actually multiplication means for multiplying the current detector signal by the resistance value of the brake coil, and the addition means 25b adds these two multiplication signals.
  • the difference means 23 b subtracts the output of the addition means 25 b from the voltage command signal 20 to the brake coil, and uses the result as the estimated electromotive force signal 31.
  • FIG. 3 is an explanatory diagram of an operation relating to the brake control device according to the first embodiment of the present invention.
  • 3 (a) shows the voltage applied to the brake coil 10
  • FIG. 3 (b) shows the displacement of the armature 11
  • FIG. 3 (c) shows the speed change of the armature 11. ing.
  • the electromagnet provided with the brake coil 10 overcomes the panel 7 and sucks the armature 11 by applying an attraction voltage to the brake coil 10.
  • a holding voltage is applied to the brake coil 10.
  • the holding voltage is set to a value lower than the attraction voltage, and the attraction force of the electromagnet in the attraction state is set to be slightly larger than the panel force, thereby suppressing the heat generation of the brake coil 10 during the attraction.
  • the control device 9 outputs the output value from the set value means 22 and the output from the electromotive force estimation means 30 by the difference means 23a.
  • the difference between the estimated electromotive force signal 31 and the difference signal is amplified by the compensation means 24.
  • a compensation voltage is added by the adding means 25a by the nonlinear compensating means 32 so that the current flowing through the brake coil 10 and the voltage command to the brake coil 10 have a proportional relationship.
  • a compensator 32 that feeds back a voltage proportional to the coil current of the brake coil 10 (current detector signal) detected by the current detector 13.
  • a control voltage command is given until a predetermined time T6, after which the armature 11 finishes dropping.
  • the amplification factor of the compensating means 24 is set to a value that does not pull the armature 11 back to the electromagnet.
  • the relationship between the voltage command E to the electromagnet, that is, the voltage command E to the brake coil 10, and the coil current i flowing through the brake coil 10 is expressed as follows: R is the resistance of the coil, and L is the inductance of the coil.
  • Equation (1) is expressed as follows: x is the displacement of the armature, and V is the velocity of the armature.
  • the differentiating means 27, the coil resistance value 28, and the inductance value 29 are provided so as to estimate the estimated electromotive force signal 31 from the relational expression of equation (3), and the operation is performed so as to perform the calculation of equation (3).
  • the operation of the inductance adjusting means 29 will be described.
  • the relationship between the brake coil current i and the inductance L is determined in advance by obtaining the brake coil current i and the inductance L, and the controller 9 controls the signal of the current detector 13 Then, the operation is performed so as to change the inductance L in the electromotive force estimating means 30 by calling the inductance L from this table.
  • the brake coil voltage is controlled so as to suppress the brake drop speed after the brake starts falling, so the brake drop speed is indicated by the dashed line in Fig. 3 (c).
  • the brake that occurs when the brake 18 collides with the brake drum 6 becomes slower than a predetermined value compared to the conventional speed change. The operation sound is reduced.
  • FIG. 5 is a configuration diagram showing a brake control device according to Embodiment 2 of the present invention.
  • the electromotive force estimating means 30 includes a filter means 33 b for applying a predetermined filter having a zero point calculated from the inductance and resistance of the electromagnet to the current detector signal, and an electromagnet.
  • a difference means 23b for calculating the difference between the output signals of the two filter means. The time constants of the two filter means are the same.
  • the electromotive force estimating means 30 operates so as to perform the filtering process on the relationship of the equation (3). Specifically, if the Laplace transform of the electromotive force signal is Ev (s), and the Laplace transforms of the coil voltage command E and the coil current are E (s) and i (s), respectively, equation (3) For example, if you add a time constant filter to both sides of
  • the electromotive force estimation means 30 operates according to the equation (4) to estimate the estimated electromotive force 31.
  • FIG. 6 is a configuration diagram showing a brake control device according to Embodiment 3 of the present invention.
  • FIG. 6 is different from the second embodiment shown in FIG.
  • Integrating means 3 4 for integrating the electromotive force estimated in 0, amplification means 3 5b for the integrating means 3 4, setting value means 2 for giving the integrated value of the electromotive force, that is, the target value of the armature displacement position 2 2
  • a difference means 23 c for obtaining a difference between the output signal of the set value means 22 and the output signal from the amplifying means 35 b, and an amplifier for amplifying the output signal of the electromotive force estimating means 30.
  • a width means 35a and a difference means 23d for obtaining a difference between an output signal of the amplification means 35a and an output signal of the difference means 23c and for setting a voltage command to the electromagnet are provided. No compensation means 24 is provided.
  • the estimated electromotive force is integrated by the integrating means 34, further amplified by the amplifying means 35b, and the difference from the output signal of the set value means 22 is obtained by the difference means 23c. Further, the difference between the output signal of the difference means 23c and the estimated electromotive force amplified by the amplification means 35a is obtained by the difference means 23d, and the output signal of the difference means 23d is used as the coil voltage command. Work to be.
  • the output signal of the difference means 23 c is obtained by integrating the integral value signal of the electromotive force which increases as the armature starts to move and the constant value signal of the target value setting means, that is, the setting value means 22. Since this is a differential signal, it becomes a signal that decreases with the movement of the armature. Therefore, in the difference means 23d, the output signal of the difference means 23c, which decreases with the movement of the armature, is set as a new target value, and the estimated electromotive force signal amplified by the amplification means 35a is set. And the difference is made.
  • the electromotive force signal represented by the equation (2) is proportional to the product of the armature velocity V and the coil current i.
  • the armature velocity V immediately before the collision is reduced as the coil current decreases.
  • the target value setting means 22 of the first and second embodiments is not set to the target of a constant value signal, but as shown in the present embodiment, it is reduced with the movement of the armature. It is more convenient to use a configuration that targets a variable signal to go in. With these configurations, the brake noise generated when the brake shoe 18 collides with the brake drum 6 is further reduced. Obviously, a similar operation can be obtained even if the configuration of the second embodiment is used.
  • FIG. 7 is a configuration diagram illustrating a brake control device according to Embodiment 4 of the present invention.
  • a compensator adjusting means 36 is further provided.
  • the compensator adjusting means 36 includes a latch circuit 37, a comparator 38, and a gain table 39, as shown in FIG. 7 (b).
  • Comparator 3 8 is electromotive force A comparator that operates to determine the timing of the occurrence of the electromotive force from the estimating means 30 (a reference voltage that determines whether or not an electromotive force is generated from the estimated electromotive force signal is connected to the lower side) Yes, the latch circuit 37 operates to store the output signal of the current detector 13 at that timing.
  • the gain table 39 is a table that associates the current value generated by the electromotive force with the amplification factor in the compensating means 24.
  • the compensator adjusting means 36 operates to adjust the amplification factor in the compensating means 24 by the gain table 39 each time according to the coil current value (current detector output) stored in the latch circuit 37. I do. This is because, considering that the coil current value at which the armature starts to move is proportional to the pressing force of the panel 7, if the pressing force increases, the amplification factor of the compensation means 24 increases, and the pressing force decreases. If it decreases, the amplification factor of the compensating means 24 is reduced, and there is an effect of increasing the stable operation of the control system.
  • FIG. 8 is a configuration diagram showing a brake control device according to Embodiment 5 of the present invention.
  • control is performed based on the integral value of the electromotive force, that is, a variable target value relating to the displacement position of the armature.
  • the armature operating current detecting means 18 is a means for detecting the armature of the electromagnet 10 based on the current detector signal 21.
  • Target value setting means 2 2 is amplification means 3
  • the target value of the integrated signal 3 10 of the estimated electromotive force signal 3 lb amplified in 5 is given.
  • the difference means 23c makes a difference between the target value and the integrated signal 310 of the estimated electromotive force signal. Compensation measures 2
  • the 4 is based on the output signal of the difference means 23 c, the current detector signal 21, the estimated electromotive force signal 31 a of the electromotive force estimation means, and the output signal 32 of the armature operation current detection means.
  • the inductance adjusting means 29 adjusts the inductance value 26 of the electromagnet in the electromotive force estimation means 30 according to the current detector signal 21.
  • the difference means 23 b subtracts the output of the adding means 25 b from the coil applied voltage command signal 20 to the brake coil, and further subtracts this output through the filter means 33. Assume that the estimated electromotive force signal is 3 1 a, 3 lb.
  • FIG. 9 is a configuration diagram showing an example of the configuration of the compensation means 24.
  • the output signal 31 a of the electromotive force estimating means 30 is input to the electromotive force compensating means 40.
  • the output signal 320 of the armature current detecting means 18 is input to the panel force compensating means 41 and the electromagnetic force compensating means 42.
  • the current detector signal 21 is input to the electromagnetic force compensating means 42, the differentiating means 27a, and the balancing voltage compensating means 47, respectively.
  • the output signal of the electromotive force compensating means 40, the output signal of the panel force compensating means 41, and the output signal of the electromagnetic force compensating means 42 are respectively input to the multiplying means 44.
  • the output signal of the multiplication means 44 is subtracted from the output signal 17 of the difference means 23 c shown in FIG. 8 by the difference means 23 d, and is inputted to the switching means 45.
  • the output signal of the zero signal source 48 is input to the switching means 45.
  • the output signal of the differentiating means 27 a is also input to the switching means 45.
  • the output signal of the switching means 45 and the output signal of the balancing voltage compensating means 47 are added by the adding means 25c, and this is used as a coil applied voltage command signal 20.
  • the control device 9 When the electromotive force estimating means 30 detects that the armature 11 starts to move, the control device 9 outputs the output value from the set value means 22 and the output from the electromotive force estimating means 30 by the difference means 23 c. After integrating the estimated electromotive force signal 3 lb by the integrating means 34, the difference between the estimated electromotive force signal and the signal amplified by the amplifying means 35 is obtained.
  • the compensating means 24 is an output signal 17 of the difference means 23 c, a current detector signal 21, an output signal 31 a of the electromotive force estimating means, and an output signal 3 2 of the armature operating current detecting means 18. Based on 0, the coil application voltage command signal 20 to the brake coil (electromagnet) 10 is output.
  • the basic operations of the electromotive force estimating means 30 and the inductance adjusting means 29 are the same as those in the above-described embodiment.
  • the electromotive force compensating means 40 calculates the gain ⁇ phase of the electromotive force estimation signal 31a by, for example,
  • the output signal is input to the multiplying means 44.
  • C (s) represents a transfer function between an input signal and an output signal
  • s represents a Laplace operator
  • Kp is a constant representing the proportional gain
  • Kd is a constant representing the differential gain.
  • the panel force compensating means 41 adds the output signal 3 20 from the armature operating current detecting means 18 to, for example,
  • equation (6) is a linear equation. However, it is needless to say that a polynomial equation or a non-linear equation that changes an arithmetic equation by dividing the magnitude of the signal u may be used.
  • the electromagnetic force compensating means 42 is, for example, based on the output signal 3 20 from the armature operating current detecting means 18 and the output signal 21 of the current detector,
  • equation (8) is a linear equation. However, it is needless to say that a polynomial equation or a non-linear equation that changes an arithmetic equation by dividing the magnitude of the signal i may be used.
  • the multiplying means 44 operates to multiply output signals of the electromotive force compensating means 40, the panel force compensating means 41, and the electromagnetic force compensating means 42.
  • the output signal of the multiplication means 44 is subtracted from the output signal 17 from the difference means 23 c by the difference means 23 d and input to the switching means 45.
  • the switching means 45 switches the output signal of the difference means 23 d and the output signal of the zero signal source 48 by the sign of a signal obtained by time-differentiating the coil current detector signal 21 by the differentiating means 27 a. It works to change. For example,
  • q represents the signal obtained by differentiating the coil current detector signal 21 with time by the differentiating means 27a
  • w represents the output signal of the differentiating means 23d
  • z represents the output signal of the switching means 45.
  • the output signal of the switching means 45 is added to the output signal obtained by applying the balanced voltage compensating means 47 to the coil current detector signal 21 by the adding means 25c, and the coil applied voltage command signal 20 It becomes.
  • the balancing voltage compensating means 47 is, for example,
  • the signal i represents the coil current detector signal 21.
  • the signal e represents the output signal of the balancing voltage compensating means 47.
  • R is, for example, the DC resistance value of the brake coil 10.
  • the control operation of the brake control system is such that an output signal obtained by applying the balancing voltage compensating means 47 to the coil current detector signal 21 is always output as a coil applied voltage command signal, and the current detector signal 21 is cut off with time. Only when it increases, it operates so as to add the output signal (negative feedback signal) of the difference means 23 d to the coil applied voltage command signal 20.
  • Fig. 10 (a) shows an example of operation of the coil voltage command signal 20 of the control unit (solid line) without control (broken line) and (b) without control (broken line) during brake braking operation.
  • An operation example of the armature displacement of the control device (solid line) is shown in (c)
  • an operation example of the armature speed operation example of the control device (solid line) without control (broken line) is shown. Comparing the armature speeds shown in (c) of Fig. 10, the time at which the brakes are expected to contact the drum In the graph, the maximum value of the speed is smaller for the control device (solid line) than for the case without control (dashed line).
  • the falling speed of the brake is slowed down to a predetermined value or less with respect to the conventional speed change indicated by the one-dot chain line in FIG. 3 (c), and the brake occurs when the brake 18 collides with the brake drum 6.
  • Brake operation noise is reduced.
  • the operation of the armature is started when the balance between the electromagnetic force and the panel force changes.
  • the magnitude of the current value at this time is substantially proportional to the panel force. Therefore, the operation of compensating the coil applied voltage command signal 20 by the output value of the armature operating current detecting means 18 has the effect of operating stably even if there is a variation in the panel force. Also, as the armature moves, the electromagnetic force diminishes according to its distance, so the voltage applied to the coil and the electromagnetic force are not proportional. For this reason, it is easier to control the armature speed by increasing the applied voltage of the coil according to the moving distance.
  • the electromagnetic force compensating means 42 outputs a value proportional to the difference between the output value of the operating current detecting means 18 and the coil current detector signal 21. By multiplying this by the output value of each of the electromotive force compensating means 40 and the panel force compensating means 41, the controllability of the armature speed is improved. Thereby, the brake operation noise generated when the brake shoe 18 collides with the brake drum 6 can be further stably reduced.
  • FIG. 11 is a configuration diagram showing compensation means of a brake control device according to Embodiment 6 of the present invention.
  • a compensating means 24 is provided with a timer means 43 and a gain changing means 50a.
  • the timer means 43 is a means for counting the time from the time when the brake is released to the time when the brake operation is started.
  • the counted time is defined as T hold.
  • Kp Kpini ⁇ 1 + (Kprate / Thmax) (Thold- Thmin) ⁇
  • Kpini represents the initial value of Kp
  • Kprate represents the gain change rate
  • Thmax represents the maximum brake release time
  • Thmin represents the minimum brake release time. In this example, it operates so as to change the gain by a linear expression according to the counted time.
  • the armature is magnetized by the time when the brake is released, that is, the time when the armature is attached to the electromagnet, and the coil current is reduced during the braking operation. Also, it is difficult for the armature to separate from the electromagnet. Since the gain of the electromotive force compensating means is changed according to the brake release time, the brake operation sound generated when the brake shoe 8 collides with the brake drum 6 is not affected by the brake release time. Become smaller.
  • FIG. 12 is a configuration diagram showing a brake control device according to Embodiment 7 of the present invention.
  • a resistance value estimating means 51 is provided. Next, the operation will be described. The operation other than the operation of the resistance value estimating means 51 is the same as that of the fifth embodiment.
  • the resistance value estimating means 51 operates to estimate the resistance value of the coil from the coil applied voltage command signal 20 and the coil current detector signal 21. For example, the moving average processing result of the coil applied voltage command signal 20 within a certain period of time when the brake is released (determining the average during a predetermined period) is calculated by the corresponding moving average processing result of the coil current detector signal 21. It works to estimate the resistance.
  • This estimated resistance value is set to the coil resistance value 28 of the electromotive force estimation means 30.
  • the electromotive force estimation accuracy of the electromotive force estimation means 30 is increased, and the brake operation sound generated when the brake shoe 18 collides with the brake drum 6 is reduced.
  • FIG. 13 is a configuration diagram showing the configuration of the compensation means of the brake control device according to Embodiment 8 of the present invention.
  • the compensation means 24 has a second gain changing means.
  • Second gain changing means 5 Ob The initial value gain Kp of the first gain changing means 50a is changed according to the coil resistance value estimated from the setting means 51 (for example, the one shown in FIG. 12) (see the dashed arrow in FIG. 12). Works as follows. For example, if R * is an estimated resistance value estimated from the resistance value estimation means 51,
  • the initial value gain Kpini is changed according to the estimated resistance value.
  • the gain of the electromotive force compensating means 40 can be changed in accordance with the environmental temperature of the brake. Therefore, even if the environmental temperature fluctuates, stable control can be realized, and the brake operation noise generated when the brake 18 collides with the brake drum 6 is also reduced.
  • a means for estimating an electromotive force of an electromagnet caused by a moving speed (brake force), an electromotive force target value setting means, and a compensator means After the brake starts to fall, the brake coil voltage is controlled so as to suppress the brake fall speed, so the brake fall speed becomes slower than the conventional speed change, and the brakes generated when the brake hits the brake drum. -Key operation sound is reduced.
  • the brake drop speed is slower than the conventional speed change, and the brake operation sound generated when the rake strikes the brake drum is reduced, so that the brake can be moved even where noise is a problem. Full night can be used, and more nights can be used in more places.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Braking Arrangements (AREA)
  • Elevator Control (AREA)

Abstract

 エレベータブレーキのブレーキシューを駆動させる電磁石のブレーキコイルに吸引されるアーマチュアの移動速度に起因する電磁石の起電力を推定する起電力推定部と、この起電力および起電力の積分値のいずれかを目標値に合わせるようにして補償された電磁石への電圧指令を供給する補償部とを備え、制動時のアーマチュア移動開始後、アーマチュア移動速度を抑えるようにブレーキコイル電圧を制御してブレーキシューがブレーキドラムに衝突する時に発生するブレーキ動作音を低減させるエレベータのブレーキ制御装置。

Description

明 細 書 エレべ一夕のブレーキ制御装置
技術分野 この発明はエレべ一夕のブレーキ制御装置、 特にプレーキシュ一がブレーキド ラムに衝突する時に発生するブレーキ動作音の低減に関する。 背景技術
従来のエレべ一夕のブレーキ制御装置においては、 プレーキシュ一を駆動させ るブレーキコイル (電磁石)に対する励磁電流指令を規定値に達するまで漸増させ、 しかる後に励磁電流指令を急激に減少させるようにして、 発生するブレーキ動作 音を低減していた (例えば、 特開平 9— 2 6 7 9 8 2号公報参照)。
しかしながらこのような従来のエレべ一夕のプレ一キ制御装置においては、 ブ レーキ落下のタイミングゃ電流値が不明であり、 ギャップ設定やブレーキ個体差 によりその値は大きく変動し、 また、 電流値を漸増させる時間や電流値が理想状 態から外れると、 ドラムとの衝突速度が下がらない場合や、 逆に吸引力が大きく なり過ぎてマグネットに引き戻されて、 ブレーキ制動を阻害される場合が生じる そしてこのように衝突音を下げるためには、 ブレーキ調整と制御パラメ一夕の調 整に多大な労力を要するとともに、 温度変化や経年変化などの不確定外乱が発生 する場合の衝突音の低減効果は、 ほとんど期待できないという問題があつた。 この発明は上記のような問題点を解消するためになされたもので、 ブレーキ調 整作業が容易で、 外乱に作用されずにブレーキの落下音を下げるエレべ一夕のブ レーキ制御装置を提供することを目的とする。 発明の開示
本発明は、 上記の目的に鑑み、 この発明は、 エレべ一夕ブレーキのブレーキシ ユーを駆動させる電磁石のブレーキコイルに吸引されるァーマチュアの移動速度 に起因する電磁石の起電力を推定する起電力推定部と、 この起電力および起電力 の積分値のいずれかを目標値に合わせるようにして補償された電磁石への電圧指 令を供給する補償部とを備え、 制動時のァ一マチュア移動開始後、 ァーマチュア 移動速度を抑えるようにブレーキコイル電圧を制御することを特徴とするエレべ 一夕のブレーキ制御装置にある。 図面の簡単な説明
図 1はこの発明によるブレーキ制御装置を含むエレべ一夕のブレーキシステム の全体の構成を示す図、
図 2はこの発明の実施の形態 1にかかわるブレーキ制御装置の一例を示す構成 図、
図 3はこの発明にかかわるブレーキ制御装置に関する動作の説明図、 図 4はこの発明にかかわるブレーキ制御装置に関する動作の説明図、 図 5はこの発明の実施の形態 2にかかわるブレーキ制御装置の一例を示す構成 図、
図 6はこの発明の実施の形態 3にかかわるプレーキ制御装置の一例を示す構成 図、
図 7はこの発明の実施の形態 4にかかわるブレーキ制御装置の一例を示す構成 図、
図 8はこの発明の実施の形態 5にかかわるブレーキ制御装置の一例を示す構成 図、
図 9はこの発明の実施の形態 5にかかわる補償手段の一例を示す構成図、 図 1 0はこの発明にかかわるブレーキ制御装置に関する動作の説明図、 図 1 1はこの発明の実施の形態 6にかかわる補償手段の一例を示す構成図、 図 1 2はこの発明の実施の形態 7にかかわるブレーキ制御装置の一例を示す構 成図、
図 1 3はこの発明の実施の形態 8にかかわる補償手段の一例を示す構成図であ る o 発明を実施するための最良の形態 実施の形態 1 .
以下、 この発明の実施の形態 1によるブレーキ制御装置の一例を説明する。 図 1にこの発明によるブレーキ制御装置を含むェレぺ一夕のプレーキシステム全体 の構成を示し、 これは以下に説明する各実施の形態で同様である。 エレべ一夕の かご 1は卷上機のシ一ブ 2に卷き掛けられた主索 3によって釣合おもり 4とつる ベ式に吊持され、 卷上モー夕 5によって駆動されるブレーキドラム 6は一般的に は卷上モー夕 5とシ一ブ 2を結合する軸上に設置され、 パネ 7の力によってブレ
—キシュ一 8をブレーキドラム 6に押付け、 摩擦力により制動力を得る。 エレべ 一夕の起動時には制御装置 9によりブレーキコイルすなわち電磁石 1 0 (以降の 説明ではブレーキコイル 1 0は電磁石と同一のものとして説明する)に電流を流 して付勢し、 ブレーキシュ一 8に取付けられたァ一マチュア 1 1をバネ 7の力に 打ち勝って吸引する。 この時ブレーキ接点 1 2が入り、 その出力 1 2 aにより吸 引が完了したことを検出する。 また、 制動時には同じく制御装置 9に りブレー キコイル 1 0を消勢する。 消勢の際、 ブレーキコイル 1 0の電流値はコイルの抵 抗とリアクタンス値によって定まる時定数に応じて減少し、 ブレーキ電流の減少 によって吸引力も減少する。 この吸引力がバネ 7の力よりも小さくなるとプレー キコイル 1 0とァーマチュア 1 1が離れ、 パネ力に引かれ落下する。
図 2は、 この発明の実施の形態 1による図の 9, 1 0 , 1 3の部分を含むブレ ーキ制御装置を示す構成図である。 本願発明では基本的に、 電磁石のブレーキコ ィルの起電力がァーマチュア速度を示すことに着目し、 このコイルの起電力を電 流検出器信号から推定し、 これに基づき電磁石のブレーキコイルへの電圧指令を 制御することでァーマチュア速度を制御、 調整する。 図 2において、 電流検出器
1 3はブレーキコイル (電磁石) 1 0に流れる電流を検出する。 起電力推定手段 3
0は電磁石 1 0へのコィル印加電圧指令信号 2 0と電流検出器 1 3からの電流検 出器信号 2 1から電磁石に発生する起電力を推定する。 目標値設定手段 (設定値 手段) 2 2は起電力の目標値を与える。 差分手段 2 3 aは起電力の目標値と推定 起電力信号 3 1との差分 (差を求める)を求める。 補償手段 2 4は差分手段 2 3 a の出力のゲ ンと位相を整形して電磁石への電圧指令信号 2 0として出力する。 非線形補償手段 3 2は電磁石 1 0に流れる電流、 例えば電流検出器 1 3の出力 2 1 aと電磁石への電圧指令信号 2 0が比例関係になるように加算手段 2 5 aを介 して補償を行う。 インダク夕ンス調整手段 2 9は起電力推定手段 3 0における電 磁石のインダク夕ンス値 2 6を電流検出器信号 2 1に従って調整する。
また起電力推定手段 3 0において、 微分手段 2 7は電流検出器信号を微分し、 ブレーキコイルインダク夕ンス値 2 6は実際にはその微分信号にブレーキコイル のインダクタンスを乗じる乗算手段、 ブレーキコイル抵抗値 2 8は実際には電流 検出器信号にブレーキコイルの抵抗値を乗じる乗算手段、 加算手段 2 5 bはこれ らの両乗算信号を加算する。 そして差分手段 2 3 bはブレーキコイルへの電圧指 令信号 2 0から前記加算手段 2 5 bの出力を差し引きこれを推定起電力信号 3 1 とする。
次に、 この発明の実施の形態 1にかかわるブレーキ制御装置の動作を説明する。 図 3はこの発明の実施の形態 1にかかわるブレーキ制御装置に関する動作の説明 図である。 図 3の(a)はブレーキコイル 1 0に与える電圧を示し、 図 3の(b)は ァーマチュア 1 1の変位を示し、 図 3の(c)はァ一マチュア 1 1の速度変化を示 している。 図 3において、 ブレーキ解除時は、 ブレーキコイル 1 0に吸引電圧を 印加することにより、 ブレーキコイル 1 0を備えた電磁石がパネ 7に打ち勝って ァ一マチュア 1 1を吸引する。 時刻 T 2において、 ブレーキ接点 1 2がァ一マチ ユア 1 1の吸引を検出すると、 ブレーキコイル 1 0に保持電圧を印加する。 保持 電圧は吸引電圧より低い値とし、 吸引状態での電磁石の吸引力がパネ力より僅か に大きくなるように設定され、 吸引時のブレーキコイル 1 0の発熱を抑制するよ うにしている。
次に、 保持電圧がブレーキコイル 1 0に印加された状態で、 ブレーキを制動さ せる場合は、 時刻 T 4において、 図 3の(a)に示すように、 ブレーキコイル 1 0 の印加電圧を保持電圧から零にする。 これにより、 ブレーキ電流は低下を始め、 ブレーキ電流による吸引力がパネ力より小さくなるとァ一マチュア 1 1は落下を 始め、 ァーマチュア 1 1の速度は図 3の(c)に示すように加速を始める。 ァーマ チユア 1 1が動き始めるのを起電力推定手段 3 0で検出すると、 制御装置 9は、 差分手段 2 3 aにより設定値手段 2 2からの出力値と起電力推定手段 3 0から出 力される推定起電力信号 3 1を差分し、 差分信号を補償手段 2 4により増幅倍率 と位相を整形し制御電圧指令としてブレーキコイル 10に与える。 また、 非線形 補償手段 32により、 ブレーキコイル 10に流れる電流とブレーキコイル 10へ の電圧指令が比例関係になるように補償電圧を加算手段 25 aにより付加する。 例えば、 電流検出器 13で検出されるブレーキコイル 10のコイル電流 (電流検 出器信号)に比例する電圧をフィードバックする補償手段 32がある。 なお、 図 3の(a)に示すように、 ァーマチュア 1 1が落下動作を終了する時間を過ぎる所 定 間 T 6まで、 制御電圧指令を与える。 また、 補償手段 24の増幅倍率は、 ァ —マチュア 1 1を電磁石に引き戻さないだけの値に設定している。
次に、 起電力推定手段 30の動作について説明する。 電磁石すなわちブレーキ コイル 10への電圧指令 Eとブレーキコイル 10に流れるコイル電流 iの関係は、 コイルの抵抗値を R、 コイルのインダク夕ンスを Lと表すと、 電磁気学より
E = R i + L(d i/d t)+(d L/d t)i (1)
の関係がある。 さらに、 式(1)の右辺第 3項は、 ァ一マチュアの変位を x、 その 速度を Vとすると ·
(d L/d t)i -(a L/ax)(dx/d t)i =(a L/ax)v i (2) の関係があり、 ァーマチュア速度 Vに比例する電圧であり、 速度に起因する起電 力である。 起電力推定手段 30は、 上記の関係式より
(a L/9x)v i=E-R i -L(d i/d t) (3)
の関係式から推定起電力信号 3 1を推定するように、 微分手段 27、 コイル抵抗 値 28、 インダク夕ンス値 29を設け、 式(3)の演算を行うように動作する。 次に、 インダク夕ンス調整手段 29の動作について説明する。 例えば、 図 4に 示すように、 予めブレーキコイル電流 iとインダク夕ンス Lを求めて、 ブレーキ コイル電流 iとインダク夕ンス Lの関係をテープル化し、 制御装置 9においては、 電流検出器 13の信号からこのテーブルによりインダク夕ンス Lを呼び出して、 起電力推定手段 30内のインダク夕ンス Lを変更するように動作する。
上述のようにブレーキ制御装置を構成すると、 ブレーキの落下開始後、 ブレー キ落下速度を抑えるようにブレーキコイル電圧を制御するので、 ブレーキの落下 速度が、 図 3の(c)の一点鎖線で示す従来の速度変化に対し、 所定の値以下に遅 くなり、 ブレ一キシュ一 8がブレーキドラム 6に衝突する時に発生するブレーキ 動作音が小さくなる。
実施の形態 2 .
図 5は、 この発明の実施の形態 2によるブレーキ制御装置を示す構成図である。 上記実施の形態と同一もしくは相当部分は同一符号で示す (以下同様)。 図 5にお いて、 起電力推定手段 3 0は、 電流検出器信号に電磁石のインダク夕ンスと抵抗 から算出される零点を備えた所定のフィル夕をかけるフィル夕手段 3 3 bと、 電 磁石への電圧指令にフィル夕をかけるフィル夕手段 3 3 aと、 両フィル夕手段の 出力信号の差分を求める差分手段 2 3 bを含み、 両フィル夕手段の時定数は同じ にされている。
次に、 この発明の実施の形態 2にかかわるブレーキ制御装置の動作を説明する。 起電力推定手段 3 0の動作を除いて、 他の動作は実施の形態 1と同じである。 起 電力推定手段 3 0は、 式(3 )の関係にフィル夕処理を行うように動作する。 具体 的には、 起電力信号のラプラス変換を Ev(s)とし、 さらにコイル電圧指令 Eおよ びコイル電流のラプラス変換をそれそれ E (s)、 i (s)とすると、 式(3 )の両辺に例 えば時定数てのフィル夕を付加して整理すると
{ l /(rs+ 1 )}E v( s)={ l /(rs+ l )}E ( s )— {(Ls + R)/ (て s+ l )} i ( s )
(4)
との関係が成り立つ。 従って、 起電力推定手段 3 0は式 (4)に従って動作して推 定起電力 3 1を推定する。 上述のようにブレーキ制御装置を構成すると、 電流検 出器信号の微分動作を施さないためにノィズ外乱に対して堅牢となり、 ブレーキ シユー 8がブレーキドラム 6に衝突する時に発生するブレーキ音が更に小さくな る。
実施の形態 3 .
図 6は、 この発明の実施の形態 3によるブレーキ制御装置を示す構成図である。 図 6において図 2に示す実施の形態 2のものと異なるところは、 起電力推定手段
3 0で推定された起電力を積分する積分手段 3 4、 積分手段 3 4のための増幅手 段 3 5 b、 起電力の積分値すなわちァーマチュアの変位位置の目標値を与える設 定値手段 2 2、 この設定値手段 2 2の出力信号と増幅手段 3 5 bからの出力信号 との差分を求める差分手段 2 3 c、 起電力推定手段 3 0の出力信号を増幅する増 幅手段 3 5 a、 および増幅手段 3 5 aの出力信号と差分手段 2 3 cの出力信号の 差分を求め電磁石への電圧指令とする差分手段 2 3 dを備える。 また補償手段 2 4は設けられていない。
動作について説明すると、 推定起電力は、 積分手段 3 4で積分を行い、 さらに 増幅手段 3 5 bで増幅され、 設定値手段 2 2の出力信号との差分を差分手段 2 3 cでとる。 さらに、 差分手段 2 3 cの出力信号と、 増幅手段 3 5 aによって増幅 された推定起電力との差分を差分手段 2 3 dでとり、 差分手段 2 3 dの出力信号 がコィルの電圧指令になるように動作する。
上述のようにブレーキ制御装置を構成すると、 差分手段 2 3 cの出力信号は、 ァーマチュアが動き始めると共に増大する起電力の積分値信号と目標値設定手段 すなわち設定値手段 2 2の一定値信号との差分信号であるので、 ァ一マチュアの 動きと共に斬減して行く信号となる。 したがって、 差分手段 2 3 dでは、 ァ一マ チユアの動きと共に斬減して行く差分手段 2 3 cの出力信号を新たな目標値とし て、 増幅手段 3 5 aで増幅された推定起電力信号との差分が行われる。
一方、 式(2 )で表せる起電力信号は、 ァ "^マチュア速度 Vとコイル電流 iの積 に比例する。 コイル電流が斬減して行く、 衝突直前のァーマチュア速度 Vを安定 (一定値)に制御するためには、 実施の形態 1および 2の目標値設定手段 2 2の一 定値信号を目標にするよりは、 本実施の形態に示すように、 ァ一マチュアの動き と共に斬減して行く可変信号を目標にする構成の方が好都合である。 これらの構 成により、 ブレーキシュ一 8がブレーキドラム 6に衝突する時に発生するブレー キ音が更に小さくなる。 なお、 起電力推定手段 3 0に、 実施の形態 2の構成を用 いても同様な動作が得られることは、 明らかである。
実施の形態 4 .
図 7の(a)は、 この発明の実施の形態 4によるブレーキ制御装置を示す構成図 である。 この実施の形態では補償器調整手段 3 6をさらに設けた。 この補償器調 整手段 3 6は図 7の (b)に示すように、 ラヅチ回路 3 7、 比較器 3 8、 ゲインテ 一ブル 3 9を備える。
次に、 動作を説明する。 補償器調整手段 3 6の動作以外は実施の形態 1と同じ 動作である。 補償器調整手段 3 6の動作について説明する。 比較器 3 8は起電力 推定手段 3 0からの起電力が発生する夕ィミングを判断するように動作するコン パレー夕 (下側に推定起電力信号から起電力発生の有無を判断する基準電圧が接 続されている)であり、 ラッチ回路 3 7は、 そのタイミングにおける電流検出器 1 3の出力信号を記憶するように動作する。 ゲインテーブル 3 9は、 起電力が発 生する電流値と補償手段 2 4における増幅率を関係つけているテーブルである。 補償器調整手段 3 6は、 ラッチ回路 3 7で記憶されたコイル電流値 (電流検出器 出力)に応じてその都度、 補償手段 2 4における増幅率をゲインテーブル 3 9に よって調整するように動作する。 これは、 ァ一マチュアの動き始めるコイル電流 値は、 パネ 7の押し付け力に比例することを考慮して、 押し付け力が増大すれば、 補償手段 2 4の増幅率を増大させ、 また押し付け力が減少すれば、 補償手段 2 4 の増幅率を減少させ、 制御系の安定動作を高める効果がある。
上述のようにブレーキ制御装置を構成すると、 ブレーキを構成しているパネ 7 の押し付け力が経年変化に応じて変化しても、 ブレーキシュ一 8がブレーキドラ ム 6に衝突する時に発生するブレーキ動作音が小さくなる。 なお、 起電力推定手 段 3 0に実施の形態 2の構成を用いても同様な動作が得られることは、 明らかで ある。
実施の形態 5 .
図 8は、 この発明の実施の形態 5によるブレーキ制御装置を示す構成図である。 この実施の形態は実施の形態 3と同様、 起電力の積分値すなわちァ一マチュアの 変位位置に関する可変の目標値に基づき制御を行うものである。 ァ一マチュア動 作電流検知手段 1 8は、 電流検出器信号 2 1に基づき電磁石 1 0のァーマチュア
1 1が動作開始するコイル電流値を検知する。 目標値設定手段 2 2は増幅手段 3
5で増幅された推定起電力信号 3 l bの積分信号 3 1 0の目標値を与える。 差分 手段 2 3 cは目標値と推定起電力信号の積分信号 3 1 0を差分する。 補償手段 2
4は差分手段 2 3 cの出力信号と、 電流検出器信号 2 1と、 起電力推定手段の推 定起電力信号 3 1 aと、 ァーマチュア動作電流検知手段の出力信号 3 2とに基づ き、 ブレーキコイル (電磁石) 1 0へのコイル印加電圧指令信号 2 0を出力する。 インダク夕ンス調整手段 2 9は起電力推定手段 3 0における電磁石のインダク夕 ンス値 2 6を電流検出器信号 2 1に従って調整する。 また起電力推定手段 3 0において、 差分手段 2 3 bはブレーキコイルへのコィ ル印加電圧指令信号 2 0から前記加算手段 2 5 bの出力を差し引き、 さらにフィ ル夕手段 3 3を通して、 これを推定起電力信号 3 1 a、 3 l bとする。
図 9は補償手段 2 4の構成の一例を示す構成図である。 補償手段 2 4において、 起電力推定手段 3 0の出力信号 3 1 aは起電力補償手段 4 0に入力される。 ァ一 マチュア動作電流検知手段 1 8の出力信号 3 2 0は、 パネ力補償手段 4 1と電磁 力補償手段 4 2に入力される。 電流検出器信号 2 1は電磁力補償手段 4 2と微分 手段 2 7 a、 および釣合電圧補償手段 4 7にそれそれ入力される。 起電力補償手 段 4 0の出力信号、 パネ力補償手段 4 1の出力信号および電磁力補償手段 4 2の 出力信号はそれそれ乗算手段 4 4に入力される。 乗算手段 4 4の出力信号は差分 手段 2 3 dによって、 図 8に示す差分手段 2 3 cの出力信号 1 7と差分され、 切 替手段 4 5に入力される。 零信号源 4 8の出力信号は切替手段 4 5に入力される。 微分手段 2 7 aの出力信号も切替手段 4 5に入力される。 切替手段 4 5の出力信 号と釣合電圧補償手段 4 7の出力信号は、 加算手段 2 5 cで加算され、 これをコ ィル印加電圧指令信号 2 0とする。
次に、 この発明の実施の形態 5にかかわるブレーキ制御装置の動作を説明する。 基本的な動作は上述の実施の形態と同じであり、 保持電圧がブレーキコイル 1 0 に印加された状態で、 ブレーキ制動をかける場合は、 時刻 T 4において図 3の (a)に示すように、 ブレーキコイル 1 0の印加電圧を保持電圧から零にする。 こ れにより、 ブレーキ電流 (ブレーキコイル 1 0の電流)は低下を始め、 ブレーキ電 流による吸引力がバネ力より小さくなるとァ一マチュア 1 1は落下を始め、 ァー マチュア 1 1の速度は図 3の(c)に示すように加速を始める。 ァ一マチュア 1 1 が動き始めるのを起電力推定手段 3 0で検出すると、 制御装置 9は、 差分手段 2 3 cにより設定値手段 2 2からの出力値と、 起電力推定手段 3 0から出力される 推定起電力信号 3 l bを積分手段 3 4で積分した後、 増幅手段 3 5で増幅した信 号とを差分する。 補償手段 2 4は差分手段 2 3 cの出力信号 1 7と、 電流検出器 信号 2 1と、 起電力推定手段の出力信号 3 1 aと、 ァーマチュア動作電流検知手 段 1 8の出力信号 3 2 0に基づいて、 ブレーキコイル (電磁石) 1 0へのコイル印 加電圧指令信号 2 0を出力する。 起電力推定手段 30およびィンダク夕ンス調整手段 29等の基本動作は上述の 実施の形態と同じである。
次に、 補償手段 24の動作について説明する。 まず、 起電力補償手段 40は、 起電力推定信号 31 aのゲインゃ位相を例えば、
C(s)=250(Kds+Kp)/(s + 250) (5)
のような伝達関数を持つコントローラによって変更するように動作し、 その出力 信号は乗算手段 44に入力される。 ここで、 C(s)は入力信号と出力信号の伝達 関数を表し、 sはラプラス演算子を表す。 Kpは比例ゲインを、 Kdは微分ゲイ ンを表す定数である。
パネ力補償手段 41は、 ァ一マチュア動作電流検知手段 18からの出力信号 3 20に、 例えば、
y = asu + bs (6)
cs≤y≤ds (7)
のような一次関数を施した演算値を出力する。 ここで、 信号 uはァ一マチュア動 作電流検知手段 18からの出力信号 32を表す。 信号 yはパネ力補償手段 41の 出力信号を表す。 また csおよび dsは、 パネ力補償手段の出力信号 yの下限値 と上限値をそれそれ表す。 また、 本例では(6)式を、 一次方程式としたが、 多次 方程式さらには、 信号 uの大きさで区分して、 演算式を変える非線形方程式でも 良いことは言うまでもない。
電磁力補償手段 42は、 ァ一マチュア動作電流検知手段 18からの出力信号 3 20と、 電流検出器の出力信号 21より、 例えば、
r = am — u)+bm (8)
cm≤r≤dm (9)
のような一次関数を施した演算値を出力する。 ここで、 信号 uはァーマチュア動 作電流検知手段 18からの出力信号 320を表す。 信号 iは電流検出器の出力信 号 21を表す。 信号 rは電磁力補償手段 42の出力信号を表す。 また cmおよび dmは、 電磁力補償手段 42の出力信号 rの下限値と上限値をそれそれ表す。 本 例では(8)式を、 一次方程式としたが、 多次方程式さらには、 信号 iの大きさで 区分して、 演算式を変える非線形方程式でも良いことは言うまでもない。 乗算手段 4 4は、 起電力補償手段 4 0、 パネ力補償手段 4 1、 および電磁力補 償手段 4 2の各々の出力信号を乗算するように動作する。 乗算手段 4 4の出力信 号は差分手段 2 3 dによって差分手段 2 3 cからの出力信号 1 7から差分され、 切替手段 4 5に入力される。
切替手段 4 5は、 差分手段 2 3 dの出力信号と零信号源 4 8の出力信号を、 コ ィル電流検出器信号 2 1を微分手段 2 7 aで時間微分した信号の符号によって切 り替えるように動作する。 例えば、
z =w 、q≤ 0 )
z = 0 (q < 0 ) ( 1 0 )
のような演算を行う。 ここで、 qはコイル電流検出器信号 2 1を微分手段 2 7 a で時間微分した信号を、 wは差分手段 2 3 dの出力信号を、 zは切替手段 4 5の 出力信号をそれそれ表す。
さらに、 切替手段 4 5の出力信号は、 加算手段 2 5 cによって、 コイル電流検 出器信号 2 1に釣合電圧補償手段 4 7を施した出力信号と加算され、 コイル印加 電圧指令信号 2 0となる。 釣合電圧補償手段 4 7は、 例えば、
e = R i ( 1 1 )
のような一次関数を施した演算値を出力する。 ここで、 信号 iは、 コイル電流検 出器信号 2 1を表す。 信号 eは釣合電圧補償手段 4 7の出力信号を表す。 Rは例 えばブレーキコイル 1 0の直流抵抗値である。
ブレーキ制御系の制御動作は、 コイル電流検出器信号 2 1に釣合電圧補償手段 4 7を施した出力信号を常時コイル印加電圧指令信号に出力し、 さらに電流検出 器信号 2 1が時間と共に斬増するときのみ、 差分手段 2 3 dの出力信号 (ネガテ イブフィードバック信号)をコィル印加電圧指令信号 2 0に加算するように動作 する。
図 1 0の(a)にブレーキ制動時動作における、 制御無 (破線)と本制御装置 (実 線)のコイル電圧指令信号 2 0の動作例を、 (b)に制御無 (破線)と本制御装置 (実 線)のァ一マチュア変位の動作例を、 さらに(c)に制御無 (破線)と本制御装置 (実 線)のァーマチュア速度の動作例の動作例それそれ示す。 図 1 0の(c)のァ一マ チユア速度を比較すると、 ブレーキシュ一とドラムが接触したと予想される時刻 において、 速度の最大値が制御無 (破線)に比べて、 本制御装置 (実線)のものが小 さくなつている。 これにより、 ブレーキの落下速度が、 図 3の(c )の一点鎖線で 示す従来の速度変化に対し、 所定の値以下に遅くなり、 ブレーキシュ一 8がブレ —キドラム 6に衝突する時に発生するブレーキ動作音が小さくなる。
ァ一マチュアの動作は、 電磁気力とパネ力の力のバランスが変わった場合に閧 始される。 このときの電流値の大きさはパネ力にほぼ比例する。 従って、 ァ一マ チユア動作電流検知手段 1 8の出力値によってコイル印加電圧指令信号 2 0を補 償する動作により、 パネ力のバラツキがあっても安定に動作する効果がある。 また、 ァーマチュアの移動に伴い電磁気力はその距離に応じて斬減して行くた め、 コイルの印加電圧と電磁気力は比例しない。 このため、 移動距離に応じてコ ィルの印加電圧を斬増させる方が、 ァ一マチュア速度の制御が容易となる。 電磁 力補償手段 4 2は、 ァ一マチュア移動に伴い、 コイル電流が増えることに着目し、 動作電流検知手段 1 8の出力値とコイル電流検出器信号 2 1の差に比例した数値 を出力し、 これを起電力補償手段 4 0およびパネ力補償手段 4 1の各々の出力値 に乗じることにより、 ァ一マチュア速度の制御性を高めている。 これによりさら に、 ブレーキシュ一 8がブレーキドラム 6に衝突する時に発生するブレーキ動作 音を安定的に小さくできる。
実施の形態 6 .
図 1 1はこの発明の実施の形態 6によるブレーキ制御装置の補償手段を示す構 成図である。 この実施の形態では補償手段 2 4内に、 夕イマ一手段 4 3とゲイン 変更手段 5 0 aを備える。
次に、 動作を説明する。 補償調整動作以外は上記実施の形態 5と同じ動作であ る。 タイマー手段 4 3は、 ブレーキ開放された時刻からブレーキ動作を開始した 時刻までの時間をカウントする手段である。 ここで、 カウントされた時間を T holdとする。 次に、 ゲイン変更手段 5 0 aの動作について説明する。 例えば、
Thold≤Thmaxなら
Kp = Kpini{ 1 +(Kprate/ Thmax)(Thold- Thmin)}
Thold> Thmaxなら
Kp = Kpini*1.3 ( 1 2 )
のような演算を行う。 ここで、 Kpiniは Kpの初期値を、 Kprateはゲイン変化 率を、 Thmaxは最大ブレーキ開放時間を、 さらに Thminは最小ブレーキ開放 時間、 をそれそれ表す。 この例では、 カウントされた時間によって一次式でゲイ ンを変更するように動作する。
上述のようにブレーキ制御装置を構成すると、 ブレーキが開放されている時間、 すなわちァ一マチュアが電磁石に付着している時間によってァ一マチュアが磁化 され、 ブレーキ動作時に、 コイル電流が斬減しても、 ァ一マチュアが電磁石から 離れ難くなる。 ブレーキ開放時間に応じて、 起電力補償手段のゲインを変更する ため、 ブレーキが開放されている時間に左右されることなく、 ブレーキシュ一 8 がブレーキドラム 6に衝突する時に発生するブレーキ動作音が小さくなる。
実施の形態 7 .
図 1 2はこの発明の実施の形態 7によるブレーキ制御装置を示す構成図である。 この実施の形態では、 抵抗値推定手段 5 1を備える。 次に、 動作を説明する。 抵 抗値推定手段 5 1の動作以外は実施の形態 5と同じ動作である。 抵抗値推定手段 5 1は、 コィル印加電圧指令信号 2 0とコィル電流検出器信号 2 1からコイルの 抵抗値を推定するように動作する。 例えばブレーキ開放時のある一定時間内のコ ィル印加電圧指令信号 2 0の移動平均処理結果 (所定期間における平均を求める) を、 それに対応するコイル電流検出器信号 2 1の移動平均処理結果で除して、 抵 抗を推定するように動作する。 この推定抵抗値を起電力推定手段 3 0のコイル抵 抗値 2 8に設定する。
上述のようにブレーキ制御装置を構成すると、 起電力推定手段 3 0の起電力推 定精度が上がり、 ブレーキシュ一 8がブレーキドラム 6に衝突する時に発生する ブレーキ動作音が小さくなる。
実施の形態 8 .
図 1 3はこの発明の実施の形態 8によるブレーキ制御装置の補償手段の構成を 示す構成図である。 この実施の形態では、 補償手段 2 4に第 2のゲイン変更手段
5 O bを備える。 次に、 動作を説明する。 第 2のゲイン変更手段 5 O bの動作以 外は上記実施の形態と同じ動作である。 第 2のゲイン変更手段 5 O bは抵抗値推 定手段 5 1 (例えば図 1 2のもの)から推定されるコイルの抵抗値に応じて (図 1 2の波線矢印参照)、 第 1のゲイン変更手段 5 0 aの初期値ゲイン Kpを変更す るように動作する。 例えば、 R*を抵抗値推定手段 5 1から推定された推定抵抗 値とすると、
Figure imgf000016_0001
R 1≤R*≤R 2 Kpini= K 2
R 2≤R* Kpini= K 3
( 1 3)
のように、 推定抵抗値の大きさで区分して初期値ゲイン Kpiniを変更する。 上述のようにブレーキ制御装置を構成すると、 コイルの温度は抵抗値に比例す るため、 ブレーキの環境温度に応じて、 起電力補償手段 4 0のゲインを変えるこ とができる。 このため環境温度に変動があっても、 安定な制御が実現でき、 ブレ 一キシュ一 8がブレーキドラム 6に衝突する時に発生するブレーキ動作音も小さ くなる効果がある。
以上のようにこの発明によれば、 ァ一マチヤァ (ブレーキシュ一)移動速度に起 因する電磁石の起電力を推定する手段と、 起電力目標値設定手段と、 補償器手段 を具備することにより、 ブレーキの落下開始後、 ブレーキ落下速度を抑えるよう にブレーキコイル電圧を制御するので、 ブレーキの落下速度が、 従来の速度変化 に対し遅くなり、 ブレーキシュ一がブレーキドラムに衝突する時に発生するブレ —キ動作音が小さくなる。
産業上の利用の可能性
この発明によれば、 ブレーキの落下速度が、 従来の速度変化に対し遅くなり、 プレーキシュ一がブレーキドラムに衝突する時に発生するブレーキ動作音が小さ くなるので、 騒音が問題になる場所においてもエレべ一夕を使用でき、 より多く の場所でエレべ一夕が利用できる。

Claims

請 求 の 範 囲
1 . エレべ一夕ブレーキのプレーキシュ一を駆動させる電磁石のブレーキコィ ルに吸引されるァ一マチュアの移動速度に起因する電磁石の起電力を推定する起 電力推定手段と、 この起電力および起電力の積分値のいずれかを目標値に合わせ るようにして補償された電磁石への電圧指令を供給する補償部とを備え、 制動時 のァ一マチュア移動開始後、 ァーマチュア移動速度を抑えるようにプレーキコィ ル電圧を制御することを特徴とするエレべ一夕のブレーキ制御装置。
2 . ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、 電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する 前記起電力推定手段と、
起電力の目標値を与える目標値設定手段と、
起電力の目標値と推定された起電力との差分を求める差分手段と、
この差分手段の出力のゲインと位相を整形して電磁石への電圧指令とする補償 手段と、 ί ' 電流検出器出力と電磁石への電圧指令が比例関係になるように補償する非線形 補償手段と、
前記起電力推定手段における電磁石のィンダク夕ンス値を電流検出器出力に従 つて調整する手段と、
を備えたことを特徴とする請求の範囲第 1項に記載のエレべ一夕のブレーキ制 御装置。
3 . ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、 電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する 前記起電力推定手段と、
前記起電力推定手段で推定された起電力を積分する手段と、
起電力の積分値に目標値を与える目標値設定手段と、
この目標値設定手段の出力と起電力積分手段からの出力との差分を求める第 1 の差分手段と、
前記起電力推定手段の出力と前記第 1の差分手段の出力の差分を求め電磁石へ の電圧指令とする第 2の差分手段と、
電流検出器出力と電磁石への電圧指令が比例関係になるように補償する非線形 補償手段と、 ,
前記起電力推定手段における電磁石のィンダク夕ンス値を電流検出器出力に従 つて調整する手段と、
を備えたことを特徴とする請求の範囲第 1項に記載のエレべ一夕のブレーキ制
4 . 前記起電力推定手段の出力と電流検出器出力とに基づき起電力が発生する 際の電流検出器出力の値に従って補償手段のゲインを変更する補償器調整手段を さらに備えたことを特徴とする請求項 2に記載のェレべ一夕のプレーキ制御装置 c
5 . ブレーキコイルを含む前記電磁石に流れる電流を検出する電流検出器と、 電磁石への電圧指令と電流検出器出力から電磁石に発生する起電力を推定する 前記起電力推定手段と、
前記起電力推定手段で推定された起電力を積分する手段と、
起電力の積分値に目標値を与える目標値設定手段と、
この目標値設定手段の出力と起電力積分手段からの出力との差分を求める差分 手段と、
電流検出器出力に基づき電磁石のァ一マチュアが動作開始する際のコイル竃流 値を検知するァーマチュァ動作電流検知手段と、
前記電流検出器、 起電力推定手段、 差分手段およびァーマチュア動作電流検知 手段の出力から電磁石への電圧指令を供給する補償手段と、
前記起電力推定手段における電磁石のィンダク夕ンス値を電流検出器出力に従 つて調整する手段と、
を備えたことを特徴とする請求の範囲第 1項に記載のエレべ一夕のブレーキ制
6 . 前記起電力推定手段が、 電流検出器出力を微分する手段と、 その微分され た信号に電磁石のィンダクタンスを乗じる手段と、 電流検出器出力に電磁石の抵 抗値を乗じる手段と、 両乗算信号を加算する推定手段内の加算手段と、 電磁石へ の電圧指令から前記加算手段の出力を差し引く推定手段内の差分手段と、 を含む ことを特徴とする請求の範囲第 2項、 第 3項、 第 5項のいずれか 1項に記載のェ レべ一夕のブレーキ制御装置。
7 . 前記起電力推定手段が、 電流検出器出力に電磁石のインダク夕ンスと抵抗 から算出される零点を備えた所定のフィル夕をかける第 1のフィル夕手段と、 電 磁石への電圧指令にフィル夕をかける第 2のフィル夕手段と、 前記両フィル夕手 段の出力の差分を求める推定手段内の差分手段と、 を含み、 前記両フィル夕手段 の時定数を同じにしたことを特徴とする請求の範囲第 2項、 第 3項、 第 5項のい ずれか 1項に記載のエレべ一夕のブレーキ制御装置。
8 . 前記補償手段が、
起電力推定手段の出力のゲインと位相を補償する起電力補償手段と、 ァーマチュア動作電流検知手段の出力に応じて出力値を変更するパネ力補償手 段と、
ァ一マチュア動作電流検知手段の出力と電流検出器出力から出力値を変更する 電磁力補償手段と、
前記起電力補償手段、 パネ力補償手段および電磁力補償手段の各出力を各々乗 算する補償手段内の乗算手段と、
前記差分手段の出力と補償手段内の乗算手段の出力の差分を求める補償手段内 の差分手段と、
電流検出器出力を微分する補償手段内の微分手段と、
補償手段内の前記差分手段の出力と零信号を補償手段内の微分手段の出力によ り切り替える切替手段と、
電流検出器出力に応じてパネ力と電磁力が釣り合う電圧信号を出力する釣合電 圧補償手段と、
前記切替手段の出力と前記釣合電圧補償手段の出力を加算する補償手段内の加 算手段と、
を含むことを特徴とする請求の範囲第 5項に記載のエレべ一夕のブレーキ制御
9 . 電磁石がァーマチュアを吸引しブレーキを開放している時間をカウントす るタイマ—手段と、 タイマー手段の出力から起電力補償手段のゲインを変更する 手段を備えたことを特徴とする請求の範囲第 8項に記載のエレべ一夕のブレーキ 制御装置。
1 0 . 電磁石がァーマチュアを吸引しブレーキを開放している際に電磁石への 電圧指令と電流検出器出力からブレーキコイルの抵抗値を演算して推定し前記起 電力推定手段における抵抗値をこの推定値に変更する抵抗値推定手段を備えたこ とを特徴とする請求の範囲第 8項に記載のエレべ一夕のブレーキ制御装置。
1 1 . 前記抵抗値推定手段の出力に従って前記補償手段におけるゲインを変更 する手段を備えたことを特徴とする請求の範囲第 1 0項に記載のエレべ一夕のブ レーキ制御装置。
PCT/JP2003/001385 2002-09-27 2003-02-10 エレベータのブレーキ制御装置 WO2004028945A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047007954A KR100572787B1 (ko) 2002-09-27 2003-02-10 엘리베이터의 브레이크 제어 장치
EP03703305A EP1544148B1 (en) 2002-09-27 2003-02-10 Brake controller of elevator
JP2004525638A JP4102362B2 (ja) 2002-09-27 2003-02-10 エレベータのブレーキ制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002283672 2002-09-27
JP2002-283672 2002-09-27

Publications (1)

Publication Number Publication Date
WO2004028945A1 true WO2004028945A1 (ja) 2004-04-08

Family

ID=32040565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001385 WO2004028945A1 (ja) 2002-09-27 2003-02-10 エレベータのブレーキ制御装置

Country Status (5)

Country Link
EP (1) EP1544148B1 (ja)
JP (1) JP4102362B2 (ja)
KR (1) KR100572787B1 (ja)
CN (1) CN1325361C (ja)
WO (1) WO2004028945A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075417A1 (ja) * 2006-12-20 2008-06-26 Mitsubishi Electric Corporation 電磁ブレーキ制御装置
WO2012140945A1 (ja) * 2011-04-15 2012-10-18 三菱電機株式会社 エレベータ用ブレーキ装置およびエレベータのブレーキ制動方法
JP2013063813A (ja) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp エレベータのブレーキ制御装置
JP5236186B2 (ja) * 2005-09-30 2013-07-17 三菱電機株式会社 エレベータ装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY192706A (en) * 2004-12-17 2022-09-02 Inventio Ag Lift installation with a braking device, and method for braking and holding a lift installation
JP4925105B2 (ja) * 2005-09-06 2012-04-25 三菱電機株式会社 エレベータのブレーキ装置
KR20100036371A (ko) * 2006-03-14 2010-04-07 미쓰비시덴키 가부시키가이샤 전자 브레이크 제어 장치
KR200424453Y1 (ko) * 2006-06-07 2006-08-22 현대엘리베이터주식회사 드럼방식의 직접형 전자 브레이크를 구비한 권양기
JP5335903B2 (ja) 2008-06-17 2013-11-06 オーチス エレベータ カンパニー 制御回路およびブレーキ制御回路
IT1392823B1 (it) * 2009-02-04 2012-03-23 Rossi Motoriduttori S P A Dispositivo di segnalazione di condizione del freno in un freno elettromagnetico particolarmente per motori elettrici
JP5474040B2 (ja) * 2009-02-20 2014-04-16 三菱電機株式会社 エレベータのブレーキ装置
WO2011101978A1 (ja) * 2010-02-19 2011-08-25 三菱電機株式会社 エレベーター装置
JP5578901B2 (ja) * 2010-03-19 2014-08-27 東芝エレベータ株式会社 エレベータのブレーキ制御装置
US9371873B2 (en) 2011-06-16 2016-06-21 Otis Elevator Company Permanent magnet centering system for brake
US8860352B2 (en) * 2012-05-10 2014-10-14 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling actuators
FI126171B (fi) 2014-06-19 2016-07-29 Kone Corp Järjestelmä, koneistojarru ja menetelmä koneistojarrun ohjaamiseksi
DE102018205633A1 (de) * 2018-04-13 2019-10-17 Thyssenkrupp Ag Aufzugsanlage
WO2021186680A1 (ja) * 2020-03-19 2021-09-23 三菱電機株式会社 エレベーターの制御装置
CN114988247A (zh) * 2022-04-27 2022-09-02 宁波欣达电梯配件厂 一种基于电流检测的失电制动控制方法与系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267982A (ja) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp リニアモータ駆動移動体装置
JP2000509357A (ja) * 1996-05-08 2000-07-25 インベンテイオ・アクテイエンゲゼルシヤフト エレベータブレーキを制御する方法と装置
JP2003083372A (ja) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp 制動システム及びその制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1315589A (en) * 1970-01-21 1973-05-02 Hitachi Ltd Control apparatus for an elevator car
JPH02110090A (ja) * 1988-10-18 1990-04-23 Mitsubishi Electric Corp エレベータ制御装置
JPH0764493B2 (ja) * 1988-06-27 1995-07-12 三菱電機株式会社 エレベータの制御装置
JPH07102949B2 (ja) * 1989-09-28 1995-11-08 三菱電機株式会社 エレベータの制動装置
CN1128091C (zh) * 1999-01-25 2003-11-19 三菱电机株式会社 电梯制动控制装置
JP2001158575A (ja) * 1999-12-03 2001-06-12 Mitsubishi Electric Corp エレベータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267982A (ja) * 1996-03-29 1997-10-14 Mitsubishi Electric Corp リニアモータ駆動移動体装置
JP2000509357A (ja) * 1996-05-08 2000-07-25 インベンテイオ・アクテイエンゲゼルシヤフト エレベータブレーキを制御する方法と装置
JP2003083372A (ja) * 2001-09-11 2003-03-19 Mitsubishi Electric Corp 制動システム及びその制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1544148A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5236186B2 (ja) * 2005-09-30 2013-07-17 三菱電機株式会社 エレベータ装置
WO2008075417A1 (ja) * 2006-12-20 2008-06-26 Mitsubishi Electric Corporation 電磁ブレーキ制御装置
JP5073678B2 (ja) * 2006-12-20 2012-11-14 三菱電機株式会社 電磁ブレーキ制御装置
WO2012140945A1 (ja) * 2011-04-15 2012-10-18 三菱電機株式会社 エレベータ用ブレーキ装置およびエレベータのブレーキ制動方法
JPWO2012140945A1 (ja) * 2011-04-15 2014-07-28 三菱電機株式会社 エレベータ用ブレーキ装置およびエレベータのブレーキ制動方法
JP2013063813A (ja) * 2011-09-16 2013-04-11 Mitsubishi Electric Corp エレベータのブレーキ制御装置

Also Published As

Publication number Publication date
EP1544148A4 (en) 2008-03-26
CN1325361C (zh) 2007-07-11
JP4102362B2 (ja) 2008-06-18
JPWO2004028945A1 (ja) 2006-01-19
KR20040054806A (ko) 2004-06-25
CN1556770A (zh) 2004-12-22
EP1544148A1 (en) 2005-06-22
KR100572787B1 (ko) 2006-04-24
EP1544148B1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2004028945A1 (ja) エレベータのブレーキ制御装置
JP4830257B2 (ja) エレベータのブレーキ制御装置
JP3189865B2 (ja) 機械振動検出装置および制振制御装置
KR930703199A (ko) 크레인의 로프 흔들림 방지 제어방법 및 장치
KR101202267B1 (ko) 반송 장치
EP0477867A2 (en) Elevator start control technique for reduced start jerk and acceleration overshoot
JP4275377B2 (ja) エレベーター用ブレーキ制御装置
EP0584790A1 (en) Zero-power control type vibration eliminating apparatus
KR20150038503A (ko) 엘리베이터의 제어 장치 및 엘리베이터의 제어 방법
WO2006011203A1 (ja) 位置制御装置及びその制御方法
FI71537B (fi) Startregleranordning saerskilt foer hissar
JP2008259271A (ja) サーボ制御装置と定数自動調整方法
JP5920054B2 (ja) エレベータ用ブレーキ装置及びエレベータ
KR900001791B1 (ko) 제어시스템
JP2011105484A (ja) 電磁ブレーキの故障検出装置
WO2021186680A1 (ja) エレベーターの制御装置
JP3388424B2 (ja) スタッカークレーンの速度・位置制御装置
JP5073678B2 (ja) 電磁ブレーキ制御装置
JP4082629B2 (ja) 自励共振型振動装置
KR100807943B1 (ko) 엘리베이터 브레이크의 접극자 동작 검출 장치 및 접극자위치 추정 장치
JP2003040547A (ja) エレベーターのブレーキ調整方法及びブレーキシステム
JP4147512B2 (ja) クレーンの振れ止め制御装置
JP2994132B2 (ja) コータの制御装置
JPH04286586A (ja) 昇降機駆動制御系におけるロープ張力振動抑制制御方法
JPH089672A (ja) モータの速度制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004525638

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038011212

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003703305

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047007954

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003703305

Country of ref document: EP