WO2008075417A1 - 電磁ブレーキ制御装置 - Google Patents
電磁ブレーキ制御装置 Download PDFInfo
- Publication number
- WO2008075417A1 WO2008075417A1 PCT/JP2006/325355 JP2006325355W WO2008075417A1 WO 2008075417 A1 WO2008075417 A1 WO 2008075417A1 JP 2006325355 W JP2006325355 W JP 2006325355W WO 2008075417 A1 WO2008075417 A1 WO 2008075417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- armature
- release operation
- brake
- speed
- control device
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
- B66B1/32—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical effective on braking devices, e.g. acting on electrically controlled brakes
Definitions
- the present invention relates to an electromagnetic brake control device that controls an excitation state of a brake coil in an electromagnetic brake device such as an elevator brake device.
- the armature collides with the electromagnetic field when the brake is released by using an excitation current command means that gradually increases the excitation current command of the brake coil until it reaches a preset value.
- the generated collision noise is reduced (for example, see Patent Document 1).
- Patent Document 1 Japanese Patent Laid-Open No. 9 267982
- the present invention has been made to solve the above-described problems, and it is possible to stably reduce the collision sound at the time of brake release while suppressing a prolonged brake release operation.
- an object of the present invention is to obtain an electromagnetic brake control device that can perform a brake releasing operation more reliably.
- An electromagnetic brake control device is an electromagnetic brake control device including a control device main body that releases an electromagnetic brake device by exciting a brake coil and attracting the armature to the brake coil.
- the main body of the control device can detect the start of the armature release operation due to the suction of the brake coil, and the key during the release operation can be detected. When the start of the release operation is detected, the suction force generated in the brake coil is reduced while the armature speed follows the preset target speed.
- the electromagnetic brake control device it is possible to detect the start of the release operation of the armature due to the suction of the brake coil, and to obtain the speed of the armature during the release operation.
- the armature speed is detected, the attraction force generated in the brake coil is reduced while the armature speed follows the preset target speed. Therefore, it is possible to stably reduce the collision noise when the brake is released.
- the brake release operation can be performed more reliably by making the armature speed follow the target speed.
- FIG. 1 is a schematic configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a configuration of the control device main body of FIG.
- FIG. 3 is a flowchart showing the operation of the control device body of FIG. 1 when the brake is released.
- FIG. 4 is a block diagram showing a control device body of an elevator apparatus according to Embodiment 2 of the present invention.
- FIG. 5 is a flowchart showing the operation of the control device body of FIG. 4 when the brake is released.
- FIG. 1 is a schematic configuration diagram showing an elevator apparatus according to Embodiment 1 of the present invention.
- the force 1 and the counterweight 2 are suspended in the hoistway by the main rope 3 and are raised and lowered in the hoistway by the driving force of the lifting machine 4.
- the hoisting machine 4 includes a driving sheave 5 around which the main rope 3 is wound, a motor 6 that rotates the driving sheave 5, and a brake rotating body that rotates integrally with the driving sheave 5 as the car 1 travels. As a brake drum 7, and an electromagnetic brake device 8 that brakes the rotation of the drive sheave 5 Yes.
- the electromagnetic brake device 8 is opposed to the brake shoe 9 that contacts and separates from the brake drum 7, the armature 10 connected to the brake shoe 9, the brake spring 11 that presses the brake shoe 9 against the brake drum 7, and the armature 10 Release detection that detects that the electromagnet 12 that generates an electromagnetic attraction force that separates the brake shoe 9 from the brake drum 7 against the brake spring 11 and the armature 10 are displaced to the full release position. It has switch 13.
- the electromagnet 12 is provided with a brake coil 14.
- the excitation state of the brake coil 14 is controlled by the control device body 15.
- a detection signal from a current detector 16 for detecting a current value (actual current value) supplied to the brake coil 14 is input to the control device body 15.
- FIG. 2 is a block diagram showing a configuration of the control device main body 15 of FIG.
- a current command generator 17 generates a current command for causing a current to flow through the brake coil 14 as an initial command in response to a brake release command.
- the current command from the current command generator 17 and the detection signal from the current detector 16 are input to the current controller 18.
- the current control unit 18 generates a voltage command for applying a voltage to the brake coil 14 so that the actual current value of the brake coil 14 matches the value of the current command.
- a voltage command from the current control unit 18 is input to the brake coil 14 via the limiter 19.
- the value of the voltage command from the current control unit 18 is differentiated by the differentiation unit 20 and input to the release operation detection unit 21. Further, the voltage command from the current control unit 18 and the detection signal from the current detector 16 are input to the armature speed calculation unit 22.
- the release operation detection unit 21 detects the start of the release operation (displacement) of the armature 10 by comparing the output of the differentiation unit 20 with a preset threshold value. That is, the release operation detection unit 21 detects the release operation of the armature 10 based on the time change of the voltage command value.
- the information is input from the release operation detection unit 21 to the armature speed calculation unit 22, the command value adjustment unit 23, and the control time detection unit 24.
- the armature speed calculation unit 22 is based on the information of each force of the release operation detection unit 21, the current control unit 18, and the current detector 16, and the armature speed calculation unit 22 performs the operation of the armature 10 after the release operation.
- the speed value is calculated and sent to the speed compensation unit 25.
- the armature speed calculation unit 22 determines the speed value of the armature 10 based on the voltage command value and the actual current value of the brake coil 14 when the release operation detection unit 21 detects the start of the release operation. calculate.
- the speed compensator 25 sends a signal corresponding to the difference between the output from the armature speed calculator 22 and a preset target speed to the command value adjuster 23.
- the target speed is set to decrease immediately before the armature 10 contacts the electromagnet 12!
- the command value adjustment unit 23 changes the value of the current command (initial command) generated by the current command generation unit 17 based on the information from each of the release operation detection unit 21 and the speed compensation unit 25, and Send to current control unit 18. Specifically, the command value adjustment unit 23 sets the value of the current command (initial command) so that the output of the speed compensation unit 25 is reduced when the release operation detection unit 21 detects the start of the release operation. To change. That is, when the start of the release operation is detected, the command value adjusting unit 23 changes the suction force generated in the brake coil 14 while causing the speed of the armature 10 to follow the target speed. In this example, when the start of the release operation is detected, the attractive force generated in the brake coil 14 is reduced more than before the start of the release operation.
- the control time detection unit 24 counts the time (control time) from the start of the release operation of the armature 10.
- the timer 26 counts the time from the start of the excitation of the brake coil 14 in response to the brake release command.
- the control device body 15 has a predetermined time T for the excitation start force of the brake coil 14.
- the control device main body 15 starts the cending at the command value adjusting unit 23 after the preset time T has elapsed.
- the control device main body 15 is provided in an elevator control device that controls the operation of the car 1.
- the elevator control apparatus may include a control panel (not shown) having an arithmetic processing unit (CPU), a storage unit (ROM, RAM, hard disk, etc.) and a signal input / output unit.
- the function of the control device main body 15 is realized by this control panel. For this reason, the storage section of the control panel A program for realizing the above functions is stored.
- FIG. 3 is a flowchart showing the operation of the control device body 15 of FIG. 1 when the brake is released.
- step Sl Directly output from the command value adjustment unit 23 (step Sl).
- step S2 the timer 26 is reset, and the counting of the time T from the start of excitation is started (step S2).
- the current control unit 18 changes the actual current value I of the brake coil 14 to the value I of the current command.
- a voltage command is generated to match (step S3).
- the proportional gain is K and the product
- the voltage command value u can be obtained from the following equation, for example.
- the voltage command input to the brake coil 14 is limited to less than the upper limit value u in the limiter 19 for circuit protection (0 ⁇ u ⁇ u;).
- the differential value obtained by the differentiating unit 20 is obtained by a release threshold value a (
- step S4 When the differential value exceeds the threshold a, a release operation start detection signal is output from the release operation detector 21. As a result, the control time detection unit 24 force S is reset, and the counting of the time T from the start of the release operation of the armature 10 is started (step S5). At this time, the time T from the start of excitation is T + ⁇ .
- the armature speed calculation unit 22 When the armature speed calculation unit 22 receives the start detection signal of the release operation, the armature speed calculation unit 22 sets the voltage command value u and the actual current value I of the brake coil 14 to Based on this, the velocity V of the armature 10 is calculated (step S6). At this time, inductor est
- the speed V of armature 10 can be obtained from the following equation, for example.
- V K ⁇ u-R-I-L-dl / dt ⁇ ⁇ ⁇ ⁇ (2)
- the output from the armature speed calculator 22 is sent to the speed compensator 25.
- a signal corresponding to the difference between the velocity V of armature 10 and the preset target velocity value V is est 0
- a certain correction current ⁇ is output from the speed compensation unit 25 (step S7).
- the correction current ⁇ can be obtained, for example, by the following equation.
- ⁇ ⁇ (V-V) ⁇ ⁇ ⁇ ⁇ (3)
- the corrected current command value I is obtained, for example, by the following formula force.
- the current control unit 18 converts the value u of the voltage command into the current command.
- Step S9 This opens the armature 10 release motion.
- the current value is lowered. Therefore, the impact force and the collision sound when the armature 10 collides with the electromagnet 12 are reduced.
- the current up to the performance limit of the power source and the brake coil 14 is supplied to minimize the time until the release operation starts.
- the voltage command input to the brake coil 14 is limited to less than the upper limit value u in the limiter 19 for circuit protection (0 ⁇ u ⁇ u) max max
- step S10 Whether or not the time T has reached T (step S10), and the time T from the start of the release operation is end c
- step SI 1 Whether T is reached (step SI 1) is monitored. When either of the conditions of cend end c cena of ⁇ > ⁇ and ⁇ > ⁇ is satisfied, the current command value I is initialized regardless of the release operation status.
- release detection switch 13 is turned ON.
- H13 When H13 is turned ON, the armature 10 is displaced to the release position and it is determined that the release operation is completed, and the current command value I is switched to the holding current command value.
- the start of the release operation of the armature 10 due to the suction of the brake coil 14 can be detected, and the speed of the armature 10 during the release operation can be acquired, and the release operation
- the attraction force generated in the brake coil 14 is changed while the speed of the armature 10 follows the preset target speed.
- the brake release operation can be performed more reliably by making the speed of the armature 10 follow the target speed.
- the control device main body 15 includes a armature speed calculating unit 22 that calculates the speed of the armature 10 based on the actual current value of the brake coil 14 and the value of the voltage command from the current control unit 18, and the armature Since the speed compensation unit 25 that generates the correction current according to the difference between the 10 speed and the preset target speed is provided, the speed of the armature 10 can be easily obtained. Also, by controlling the voltage command value so that the correction current becomes smaller, the armature 10 speed can easily follow the target speed.
- control device body 15 includes a current command generator 17 that generates a current command in response to the brake release command, and a voltage command so that the actual current value of the brake coil 14 matches the value of the current command.
- Current control unit 18 for generating the armature 10 and a release operation detecting unit 21 for detecting the release operation of the armature 10 based on a change in the value of the voltage command, so that it is easy to start the release operation of the armature 10 and It can be detected more reliably.
- the value of the voltage command from the current control unit 18 is differentiated by the differentiating unit 20, and the release operation detecting unit 21 releases the output by comparing the output of the differentiating unit 20 with a preset threshold value. Since the start of the operation is detected, the start of the release operation can be detected easily and more reliably.
- the detection of the release operation of the armature 10 may be performed by a sensor that can continuously detect the operation (displacement) of the armature 10. Also, the velocity of the armature 10 may be obtained by differentiating the displacement of the armature 10.
- the brake releasing operation can be performed more reliably, and the reliability can be further improved.
- control device main body 15 causes the brake coil 14 to generate a suction force before the armature 10 is released after a preset time T has elapsed.
- FIG. 4 is a block diagram showing a control device main body of an elevator apparatus according to Embodiment 2 of the present invention.
- a current command is generated to control the attractive force of the brake coil 14.
- a voltage command is generated to control the attractive force of the brake coil 14.
- a voltage command generator 31 generates a voltage command for applying a voltage to the brake coil 14 as an initial command in response to a brake release command.
- the voltage command is input to the brake coil 14 via the command value adjusting unit 36 and the limiter 19.
- the actual coil current value detected by the current detector 16 is differentiated by the differentiation unit 32 and input to the release operation detection unit 33.
- the armature speed calculation unit 34 receives the voltage command from the command value adjustment unit 36 and the coil actual current value from the current detector 16.
- the release operation detection unit 33 detects the start of the release operation of the armature 10 by comparing the output of the differentiation unit 32 with a preset threshold value. That is, the release operation detector 33 detects the release operation of the armature 10 based on the time change of the coil actual current value.
- the information is input from the release operation detection unit 33 to the armature speed calculation unit 34, the command value adjustment unit 36, and the control time detection unit 24.
- the armature speed calculation unit 34 calculates the speed value of the armature 10 after the release operation based on the force information of the release operation detection unit 33, the command value adjustment unit 36, and the current detector 16, respectively. Send to part 35. That is, the armature speed calculation unit 34 When the release operation detection unit 33 detects the start of the release operation, the speed value of the armature 10 is calculated based on the voltage command value and the actual current value of the brake coil 14. The speed compensation unit 35 sends a signal according to the difference between the output from the armature speed calculation unit 34 and a preset target speed to the command value adjustment unit 36.
- the command value adjustment unit 36 changes the value of the voltage command (initial command) generated by the voltage command generation unit 31 based on the information from each of the release operation detection unit 33 and the speed compensation unit 35, and Send to limiter 19. Specifically, the command value adjustment unit 36 sets the value of the voltage command (initial command) so that the output of the speed compensation unit 35 decreases when the release operation detection unit 33 detects the start of the release operation. Change. That is, when the start of the release operation is detected, the command value adjustment unit 36 changes the suction force generated in the brake coil 14 while causing the speed of the armature 10 to follow the target speed. In this example, when the start of the release operation is detected, the attractive force generated in the brake coil 14 is reduced more than before the start of the release operation.
- the control time detector 24 counts the time (control time) from the start of the release operation of the armature 10.
- the timer 26 counts the time from the start of the excitation of the brake coil 14 in response to the brake release command.
- the control device body 15 stops adjusting the voltage command in the command value adjusting unit 36, and brakes the attraction force before it is reduced. Generate in coil 14. In addition, the control device main body 15 starts the cending at the command value adjusting unit 36 after the preset time T has elapsed.
- the adjustment of the current command is stopped, and the attraction force before the reduction is generated in the brake coil 14.
- the configuration of the entire elevator apparatus is the same as that of the first embodiment (FIG. 1).
- FIG. 5 is a flowchart showing the operation of the control device body 15 of FIG. 4 when the brake is released.
- a brake release command is input to the control device body 15.
- the initial command u becomes
- a voltage command is sent from the voltage command generator 31 to the command value adjuster 36. After this, when the initial command u is input to the command value adjustment unit 36, the value of the initial command u becomes the voltage command value u.
- step S31 It is output as it is from the command value adjustment unit 36 (step S31).
- step S32 the timer 26 is reset, and counting of time T from the start of excitation is started (step S32).
- the voltage command input to the brake coil 14 is limited to be less than the upper limit value umax in the limiter 19 for circuit protection (0 ⁇ u ⁇ u) (step S33). Voltage command is brake coil max
- the release operation of the armature 10 is started.
- an induced electromotive force is generated in a direction that prevents the magnetic flux change (in this case, the direction in which the current value decreases). Therefore, at the start of the release operation of the armature 10, the differential value output from the differential unit 32 changes from positive to negative.
- the differential value obtained by the differentiation unit 32 is compared with a preset threshold value a (a 0) by the release operation detection unit 33 (step S34).
- a release operation start detection signal is output from the release operation detection unit 33.
- the control time detection unit 24 is reset, and the time T from the start of the release operation of the armature 10 is started (step S35).
- the armature speed calculator 34 determines the speed of the armature 10 based on the voltage command value u and the actual current value I of the brake coil 14. V is calculated (step S36). At this time, induct est
- the speed V of armature 10 can be obtained from the following equation, for example.
- V K (u-R-I-L-dl / dt) ⁇ ⁇ ⁇ ⁇ (5)
- the output from the armature speed calculator 34 is sent to the speed compensator 35.
- a signal corresponding to the difference between the velocity V of armature 10 and the preset target velocity value V is est 0
- a certain correction voltage ⁇ is output from the speed compensation unit 35 (step S37).
- the correction voltage ⁇ can be obtained from the following equation, for example.
- ⁇ ⁇ (V -V) ⁇ ⁇ ⁇ ⁇ (6)
- Step S40 and whether the force T has reached T since the start of the release operation (Step S41 c cend
- the voltage command value u is returned to the initial command value u (step S42).
- the release detection switch 13 is turned ON.
- the armature 10 is displaced to the release position and it is determined that the release operation is completed, and the voltage command value u is switched to the holding voltage command value.
- the start of the release operation of the armature 10 due to the suction of the brake coil 14 can be detected, and the speed of the armature 10 during the release operation can be acquired, and the release operation Is detected, the suction force generated in the brake coil 14 is reduced while the armature speed follows the preset target speed. It is possible to stably reduce the collision noise when releasing the brake for any electromagnetic brake device. In addition, the brake release operation can be performed more reliably by making the speed of the armature 10 follow the target speed.
- control device main body 15 includes an armature speed calculating unit 34 that calculates the speed of the armature 10 based on the actual current value of the brake coil 14 and the value of the voltage command from the command value adjusting unit 36.
- the speed compensation unit 35 that generates a correction voltage corresponding to the difference between the speed of the armature 10 and the target speed is provided. A speed of 0 can be easily obtained. Also, by controlling the value of the voltage command so that the correction voltage becomes small, the armature 10 speed can easily follow the target speed.
- the control device body 15 includes a voltage command generation unit 31 that generates a voltage command in response to a brake release command, and a release operation that detects the release operation of the armature 10 based on a change in the actual current value of the brake coil 14. Since the detector 33 is included, the start of the release operation of the armature 10 can be detected easily and more reliably by voltage control.
- the value of the voltage command from the command value adjusting unit 36 is differentiated by the differentiating unit 32, and the release operation detecting unit 33 compares the output of the differentiating unit 32 with a preset threshold value, thereby releasing the operation. Therefore, the start of the release operation can be detected easily and more reliably.
- the electromagnetic brake control device of the elevator apparatus has been described.
- the present invention can also be applied to an electromagnetic brake control device provided in another device.
- FIG. 1 an electromagnetic brake device in which the brake shoe 9 is pressed against the outer peripheral surface of the brake drum 7 is shown.
- the force brake drum may be pressed against the inner peripheral surface of the brake drum.
- the brake rotating body may be a brake disk. That is, the present invention can also be applied to a distor brake.
- the brake rotator may be integral with the drive sheave.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Elevator Control (AREA)
- Braking Arrangements (AREA)
Abstract
電磁ブレーキ制御装置において、制御装置本体は、ブレーキコイルを励磁してブレーキコイルにアーマチュアを吸引させることにより、電磁ブレーキ装置を解放させる。また、制御装置本体は、ブレーキコイルの吸引によるアーマチュアの解放動作の開始を検出可能で、かつ解放動作時の上記アーマチュアの速度を取得可能になっており、解放動作の開始が検出されると、予め設定された目標速度に上記アーマチュアの速度を追従させながら、ブレーキコイルに発生する吸引力を変化させる。
Description
明 細 書
電磁ブレーキ制御装置
技術分野
[0001] この発明は、例えばエレベータのブレーキ装置などの電磁ブレーキ装置における ブレーキコイルの励磁状態を制御する電磁ブレーキ制御装置に関するものである。 背景技術
[0002] 従来の電磁ブレーキ装置においては、ブレーキコイルの励磁電流指令を、予め設 定された値に達するまで漸増させる励磁電流指令手段を用いることにより、ブレーキ 解放時にァーマチュアが電磁石フィールドに衝突して発生する衝突音の低減が図ら れている(例えば、特許文献 1参照)。
[0003] 特許文献 1 :特開平 9 267982号公報
発明の開示
発明が解決しょうとする課題
[0004] しかし、上記のような従来の電磁ブレーキ装置では、ブレーキコイルの励磁電流を 単に漸増させるため、時定数の大きい電磁石を用いる場合、解放動作時間が力なり 長くなつてしまう。また、電磁石とァーマチュアとの間のギャップのばらつき、制動ばね のばね力のばらつき、電磁石特性のばらつき、及びそれらの経年変動等を考慮して V、な 、ため、衝突音の低減効果を安定的に得ることができな力 た。
[0005] この発明は、上記のような課題を解決するためになされたものであり、ブレーキ解放 動作の長時間化を抑えつつ、ブレーキ解放時の衝突音を安定的に低減することがで き、かつブレーキ解放動作をより確実に行うことができる電磁ブレーキ制御装置を得 ることを目的とする。
課題を解決するための手段
[0006] この発明による電磁ブレーキ制御装置は、ブレーキコイルを励磁して上記ブレーキ コイルにァーマチュアを吸引させることにより、電磁ブレーキ装置を解放させる制御装 置本体を備えた電磁ブレーキ制御装置であって、制御装置本体は、ブレーキコイル の吸引によるァーマチュアの解放動作の開始を検出可能で、かつ解放動作時のァ
一マチュアの速度を取得可能になっており、解放動作の開始が検出されると、予め 設定された目標速度にァーマチュアの速度を追従させながら、ブレーキコイルに発 生する吸引力を低減させる。
発明の効果
[0007] この発明による電磁ブレーキ制御装置では、ブレーキコイルの吸引によるァーマチ ユアの解放動作の開始を検出可能で、かつ解放動作時のァーマチュアの速度を取 得可能になっており、解放動作の開始が検出されると、ァーマチュアの速度が予め 設定された目標速度に追従されながら、ブレーキコイルに発生する吸引力が低減さ れるので、ブレーキ解放動作の長時間化を抑えつつ、あらゆる電磁ブレーキ装置に ついてブレーキ解放時の衝突音を安定的に低減することができる。また、ァーマチュ ァの速度を目標速度に追従させることにより、ブレーキ解放動作をより確実に行うこと ができる。
図面の簡単な説明
[0008] [図 1]この発明の実施の形態 1によるエレベータ装置を示す概略の構成図である。
[図 2]図 1の制御装置本体の構成を示すブロック図である。
[図 3]図 1の制御装置本体のブレーキ解放時の動作を示すフローチャートである。
[図 4]この発明の実施の形態 2によるエレベータ装置の制御装置本体を示すブロック 図である。
[図 5]図 4の制御装置本体のブレーキ解放時の動作を示すフローチャートである。 発明を実施するための最良の形態
[0009] 以下、この発明の好適な実施の形態について図面を参照して説明する。
実施の形態 1.
図 1はこの発明の実施の形態 1によるエレベータ装置を示す概略の構成図である。 図において、力ご 1及び釣合おもり 2は、主索 3により昇降路内に吊り下げられており 、卷上機 4の駆動力により昇降路内を昇降される。
[0010] 卷上機 4は、主索 3が巻き掛けられた駆動シーブ 5、駆動シーブ 5を回転させるモー タ 6、かご 1の走行に伴って駆動シーブ 5と一体に回転されるブレーキ回転体としての ブレーキドラム 7、及び駆動シーブ 5の回転を制動する電磁ブレーキ装置 8を有して
いる。
[0011] 電磁ブレーキ装置 8は、ブレーキドラム 7に接離されるブレーキシュ一 9、ブレーキシ ユー 9に接続されたァーマチュア 10、ブレーキシュ一 9をブレーキドラム 7に押し付け る制動ばね 11、ァーマチュア 10に対向して配置され制動ばね 11に抗してブレーキ シユー 9をブレーキドラム 7から開離させる電磁吸引力を発生する電磁石 12、及びァ 一マチュア 10が全解放位置まで変位されたことを検出する解放検出スィッチ 13を有 している。電磁石 12には、ブレーキコイル 14が設けられている。
[0012] ブレーキコイル 14の励磁状態は、制御装置本体 15により制御される。制御装置本 体 15には、ブレーキコイル 14に通電される電流値 (実電流値)を検出するための電 流検出器 16からの検出信号が入力される。
[0013] 図 2は図 1の制御装置本体 15の構成を示すブロック図である。図において、電流指 令発生部 17は、ブレーキ解放指令に応じてブレーキコイル 14に電流を流すための 電流指令を初期指令として発生する。電流指令発生部 17からの電流指令及び電流 検出器 16からの検出信号は、電流制御部 18に入力される。電流制御部 18は、ブレ ーキコイル 14の実電流値が電流指令の値に一致するように、ブレーキコイル 14に電 圧を印加するための電圧指令を発生する。
[0014] 電流制御部 18からの電圧指令は、リミッタ 19を介してブレーキコイル 14に入力され る。また、電流制御部 18からの電圧指令の値は、微分部 20で微分され、解放動作検 出部 21に入力される。さらに、電流制御部 18からの電圧指令及び電流検出器 16か らの検出信号は、ァーマチュア速度算出部 22に入力される。
[0015] 解放動作検出部 21は、微分部 20の出力を予め設定された閾値と比較することによ り、ァーマチュア 10の解放動作 (変位)の開始を検出する。即ち、解放動作検出部 2 1は、電圧指令の値の時間変化に基づいてァーマチュア 10の解放動作を検出する。
[0016] ァーマチュア 10の解放動作が検出されると、その情報が解放動作検出部 21から、 ァーマチュア速度算出部 22、指令値調整部 23及び制御時間検出部 24に入力され る。
[0017] ァーマチュア速度算出部 22は、解放動作検出部 21、電流制御部 18及び電流検 出器 16のそれぞれ力もの情報に基づいて、解放動作後におけるァーマチュア 10の
速度の値を算出し速度補償部 25に送る。即ち、ァーマチュア速度算出部 22は、解 放動作検出部 21によって解放動作の開始が検出されると、電圧指令の値及びブレ ーキコイル 14の実電流値のそれぞれに基づいてァーマチュア 10の速度の値を算出 する。
[0018] 速度補償部 25は、ァーマチュア速度算出部 22からの出力と予め設定された目標 速度との差に応じた信号を指令値調整部 23へ送る。目標速度は、ァーマチュア 10 が電磁石 12に接触する直前に低減するように設定されて!ヽる。
[0019] 指令値調整部 23は、解放動作検出部 21及び速度補償部 25のそれぞれからの情 報に基づいて、電流指令発生部 17が発生した電流指令 (初期指令)の値を変化させ 、電流制御部 18に送る。具体的には、指令値調整部 23は、解放動作検出部 21によ つて解放動作の開始が検出されると、速度補償部 25の出力が小さくなるように、電流 指令 (初期指令)の値を変化させる。即ち、指令値調整部 23は、解放動作の開始が 検出されると、ァーマチュア 10の速度を目標速度に追従させながら、ブレーキコイル 14に発生する吸引力を変化させる。この例では、解放動作の開始が検出されると、 ブレーキコイル 14に発生する吸引力が解放動作の開始前よりも低減される。
[0020] 制御時間検出部 24は、ァーマチュア 10の解放動作開始からの時間(制御時間)を カウントする。また、タイマ 26は、ブレーキ解放指令に応じてブレーキコイル 14の励 磁を開始してからの時間をカウントする。
[0021] 制御装置本体 15は、ブレーキコイル 14の励磁開始力も予め設定された時間 T が
end 経過すると、指令値調整部 23での電流指令の調整を中止し、低減させる前の吸引 力をブレーキコイル 14に発生させる。また、制御装置本体 15は、ァーマチュア 10の 解放動作の開始力 予め設定された時間 T が経過すると、指令値調整部 23での cend
電流指令の調整を中止し、低減させる前の吸引力をブレーキコイル 14に発生させる
[0022] 制御装置本体 15は、かご 1の運転を制御するエレベータ制御装置に設けられてい る。エレベータ制御装置は、演算処理部(CPU)、記憶部 (ROM、 RAM及びハード ディスク等)及び信号入出力部を持った制御盤 (図示せず)を有して ヽる。制御装置 本体 15の機能は、この制御盤により実現される。このため、制御盤の記憶部には、上
記の機能を実現するためのプログラムが格納されている。
[0023] 次に、動作について説明する。図 3は図 1の制御装置本体 15のブレーキ解放時の 動作を示すフローチャートである。力ご 1のドアが閉じられ昇降開始の準備が終了す ると、ブレーキ解放指令が制御装置本体 15に入力される。これにより、初期指令 Iが
0 電流指令として電流指令発生部 17から指令値調整部 23へ送られる。この後、初期 指令 Iが指令値調整部 23に入力されると、初期指令 Iの値が電流指令の値 Iとして
0 O p 指令値調整部 23からそのまま出力される (ステップ Sl)。また、これと同時に、タイマ 2 6がリセットされ、励磁開始からの時間 Tのカウントが開始される (ステップ S2)。
[0024] 続いて、電流制御部 18により、ブレーキコイル 14の実電流値 Iが電流指令の値 Iに
P
一致するように、電圧指令が発生される (ステップ S3)。このとき、比例ゲインを K、積
P
分ゲインを Kとすると、電圧指令の値 uは例えば次式から得られる。
[0025] u=K - (1 -D +K - J (I -I) dt · · · (1)
P P l p
[0026] 但し、ブレーキコイル 14に入力される電圧指令は、回路保護のため、リミッタ 19で の上限値 u 未満に制限される(0<u<u ;)。
max max
電圧指令がブレーキコイル 14に入力されると、ある時定数でコイル実電流 Iが増加 していき、電圧指令の値 uは式(1)に従って徐々に減少していく。
[0027] この後、コイル実電流が増加してブレーキコイル 14に発生する吸引力が制動ばね 11のばね力(付勢力)に打ち勝つと、ァーマチュア 10の解放動作が開始される。この とき、磁束変化を妨げる方向(この場合、電圧指令が上がる方向)に誘導起電力が発 生する。従って、ァーマチュア 10の解放動作開始時には、微分部 20から出力される 微分値が負から正に転ずる。
[0028] 微分部 20で求めた微分値は、解放動作検出部 21により、予め設定された閾値 a (
>0)と比較される (ステップ S4)。そして、微分値が閾値 aを超えると、解放動作の開 始検出信号が解放動作検出部 21から出力される。これにより、制御時間検出部 24 力 Sリセットされ、ァーマチュア 10の解放動作開始からの時間 Tのカウントが開始され る (ステップ S5)。なお、このとき、励磁開始からの時間 Tは、 T+ δ Τとなっている。
[0029] また、ァーマチュア速度算出部 22が解放動作の開始検出信号を受けると、ァーマ チユア速度算出部 22により、電圧指令の値 u及びブレーキコイル 14の実電流値 Iに
基づいてァーマチュア 10の速度 V が算出される(ステップ S6)。このとき、インダクタ est
ンスモデル値を L、コイル抵抗値を R、補正係数を Kとすると、ァーマチュア 10の速 度 V は例えば次式カゝら得られる。
est
[0030] V =K {u-R-I-L-dl/dt} · · · (2)
est n
[0031] ァーマチュア速度算出部 22からの出力は、速度補償部 25へ送られる。これにより、 ァーマチュア 10の速度 V と予め設定された目標速度の値 Vとの差に応じた信号で est 0
ある補正電流 δが速度補償部 25から出力される (ステップ S7)。このとき、フィードバ ック係数を Kとすると、補正電流 δは例えば次式力 得られる。
1 i
[0032] δ =Κ (V - V ) · · · (3)
i 1 0 est
[0033] この後、指令値調整部 23が補正電流 δ iを受けると、指令値調整部 23により、補正 電流 δが小さくなるように電流指令の値 Iが初期指令値 I力も修正される (ステップ S i P 0
8)。このとき、修正後の電流指令の値 Iは例えば次式力 得られる。
P
[0034] I =1 - δ (4)
ρ 0 i …
[0035] 電流指令の値 Iが修正されると、電流制御部 18により、電圧指令の値 uが電流指令
P
の値 Iに応じて修正される (ステップ S9)。これにより、ァーマチュア 10の解放動作開
P
始後は、ァーマチュア 10の速度 V が予め設定された目標速度 Vに追従するように est 0
電流値が下げられる。従って、ァーマチュア 10が電磁石 12に衝突する際の衝撃力 及び衝突音を低減される。これに対して、ァーマチュア 10が解放動作を開始するま では、電源及びブレーキコイル 14の性能限界の電流を流すことにより、解放動作開 始までの時間が最小にされる。なお、ここでも、ブレーキコイル 14に入力される電圧 指令は、回路保護のため、リミッタ 19での上限値 u 未満に制限される(0<u<u ) max max
[0036] また、電流指令の値 Iの低減に応じて電圧指令の値 uを修正した後、励磁開始から
P
の時間 Tが T に達した力どうか (ステップ S 10)、及び解放動作開始からの時間 Tが end c
T に達したかどうか (ステップ SI 1)が監視される。そして、 τ>τ 及び τ >τ の cend end c cena いずれかの条件が成立すると、解放動作の状況に拘わらず、電流指令の値 Iが初期
P
指令値 Iに戻される (ステップ S 12)
0 。
[0037] この後、解放検出スィッチ 13が ONにされるかどうかが監視される。解放検出スイツ
チ 13が ONにされると、ァーマチュア 10が解放位置まで変位し解放動作が完了した と判断し、電流指令の値 Iが保持電流指令値に切り換えられる。
P
[0038] このような電磁ブレーキ制御装置では、ブレーキコイル 14の吸引によるァーマチュ ァ 10の解放動作の開始を検出可能で、かつ解放動作時のァーマチュア 10の速度を 取得可能になっており、解放動作の開始が検出されると、ァーマチュア 10の速度が 予め設定された目標速度に追従されながら、ブレーキコイル 14に発生する吸引力が 変化されるので、ブレーキ解放動作の長時間化を抑えつつ、あらゆる電磁ブレーキ 装置についてブレーキ解放時の衝突音を安定的に低減することができる。また、ァー マチュア 10の速度を目標速度に追従させることにより、ブレーキ解放動作をより確実 に行うことができる。
[0039] また、制御装置本体 15は、ブレーキコイル 14の実電流値及び電流制御部 18から の電圧指令の値のそれぞれに基づいてァーマチュア 10の速度を算出するァーマチ ユア速度算出部 22と、ァーマチュア 10の速度と予め設定された目標速度との差に応 じた補正電流を発生する速度補償部 25とを有しているので、ァーマチュア 10の速度 を容易に取得することができる。また、補正電流が小さくなるように電圧指令の値を制 御することにより、ァーマチュア 10の速度を目標速度に容易に追従させることができ る。
[0040] また、制御装置本体 15は、ブレーキ解放指令に応じて電流指令を発生する電流指 令発生部 17と、ブレーキコイル 14の実電流値が電流指令の値に一致するように電 圧指令を発生する電流制御部 18と、電圧指令の値の変化に基づいてァーマチュア 10の解放動作を検出する解放動作検出部 21とを有しているので、ァーマチュア 10 の解放動作の開始を容易にかつより確実に検出することができる。
[0041] また、電流制御部 18からの電圧指令の値が微分部 20により微分され、解放動作検 出部 21において、微分部 20の出力が予め設定された閾値と比較されることにより解 放動作の開始が検出されるので、解放動作の開始を容易にかつより確実に検出する ことができる。なお、ァーマチュア 10の解放動作の検出は、ァーマチュア 10の動作( 変位)を連続的に検知できるセンサによってもよい。また、ァーマチュア 10の速度は、 ァーマチュア 10の変位を微分することによって取得されてもよい。
[0042] また、制御装置本体 15は、ブレーキコイル 14の励磁開始から予め設定された時間 T が経過すると、低減させる前の吸引力をブレーキコイル 14に発生させるので、吸 end
引力を低減させる制御に異常が生じても、ブレーキ解放動作をさらに確実に行わせ ることができ、信頼性をさらに向上させることができる。
[0043] また、制御装置本体 15は、ァーマチュア 10の解放動作の開始力も予め設定された 時間 T が経過すると、低減させる前の吸引力をブレーキコイル 14に発生させるの cend
で、これによつても、解放動作をさらに確実に行わせることができ、信頼性をさらに向 上させることができる。
[0044] 実施の形態 2.
次に、図 4はこの発明の実施の形態 2によるエレベータ装置の制御装置本体を示 すブロック図である。実施の形態 1では、電流指令を発生してブレーキコイル 14の吸 引力を制御した力 実施の形態 2では、電圧指令を発生してブレーキコイル 14の吸 引力を制御する。
[0045] 図において、電圧指令発生部 31は、ブレーキ解放指令に応じてブレーキコイル 14 に電圧を印加するための電圧指令を初期指令として発生する。電圧指令は、指令値 調整部 36及びリミッタ 19を介してブレーキコイル 14に入力される。電流検出器 16で 検出されたコイル実電流値は、微分部 32で微分され、解放動作検出部 33に入力さ れる。ァーマチュア速度算出部 34には、指令値調整部 36からの電圧指令と電流検 出器 16からのコイル実電流値とが入力される。
[0046] 解放動作検出部 33は、微分部 32の出力を予め設定された閾値と比較することによ り、ァーマチュア 10の解放動作の開始を検出する。即ち、解放動作検出部 33は、コ ィル実電流値の時間変化に基づ!、てァ一マチュア 10の解放動作を検出する。
[0047] ァーマチュア 10の解放動作が検出されると、その情報が解放動作検出部 33から、 ァーマチュア速度算出部 34、指令値調整部 36及び制御時間検出部 24に入力され る。
[0048] ァーマチュア速度算出部 34は、解放動作検出部 33、指令値調整部 36及び電流 検出器 16のそれぞれ力もの情報に基づいて、解放動作後におけるァーマチュア 10 の速度の値を算出し速度補償部 35へ送る。即ち、ァーマチュア速度算出部 34は、
解放動作検出部 33によって解放動作の開始が検出されると、電圧指令の値及びブ レーキコイル 14の実電流値のそれぞれに基づいてァーマチュア 10の速度の値を算 出する。速度補償部 35は、ァーマチュア速度算出部 34からの出力と予め設定され た目標速度との差に応じた信号を指令値調整部 36へ送る。
[0049] 指令値調整部 36は、解放動作検出部 33及び速度補償部 35のそれぞれからの情 報に基づいて、電圧指令発生部 31が発生した電圧指令 (初期指令)の値を変化させ 、リミッタ 19に送る。具体的には、指令値調整部 36は、解放動作検出部 33によって 解放動作の開始が検出されると、速度補償部 35の出力が小さくなるように、電圧指 令 (初期指令)の値を変化させる。即ち、指令値調整部 36は、解放動作の開始が検 出されると、ァーマチュア 10の速度を目標速度に追従させながら、ブレーキコイル 14 に発生する吸引力を変化させる。この例では、解放動作の開始が検出されると、ブレ ーキコイル 14に発生する吸引力が解放動作の開始前よりも低減される。
[0050] 制御時間検出部 24は、ァーマチュア 10の解放動作開始からの時間(制御時間)を カウントする。また、タイマ 26は、ブレーキ解放指令に応じてブレーキコイル 14の励 磁を開始してからの時間をカウントする。
[0051] 制御装置本体 15は、ブレーキコイル 14の励磁開始力も予め設定された時間 T が end 経過すると、指令値調整部 36での電圧指令の調整を中止し、低減させる前の吸引 力をブレーキコイル 14に発生させる。また、制御装置本体 15は、ァーマチュア 10の 解放動作の開始力 予め設定された時間 T が経過すると、指令値調整部 36での cend
電流指令の調整を中止し、低減させる前の吸引力をブレーキコイル 14に発生させる なお、エレベータ装置全体の構成は、実施の形態 1 (図 1)と同様である。
[0052] 次に、動作について説明する。図 5は図 4の制御装置本体 15のブレーキ解放時の 動作を示すフローチャートである。力ご 1のドアが閉じられ昇降開始の準備が終了す ると、ブレーキ解放指令が制御装置本体 15に入力される。これにより、初期指令 uが
0 電圧指令として電圧指令発生部 31から指令値調整部 36へ送られる。この後、初期 指令 uが指令値調整部 36に入力されると、初期指令 uの値が電圧指令の値 uとして
0 0
指令値調整部 36からそのまま出力される (ステップ S31)。また、これと同時に、タイマ
26がリセットされ、励磁開始からの時間 Tのカウントが開始される (ステップ S32)。
[0053] ブレーキコイル 14に入力される電圧指令は、回路保護のため、リミッタ 19での上限 値 umax未満に制限される(0<u<u ) (ステップ S33)。電圧指令がブレーキコィ max
ル 14に入力されると、ある時定数でコイル実電流 Iが増加する。
[0054] この後、ブレーキコイル 14に発生する吸引力が制動ばね 11のばね力(付勢力)に 打ち勝つと、ァーマチュア 10の解放動作が開始される。このとき、磁束変化を妨げる 方向(この場合、電流値が下がる方向)に誘導起電力が発生する。従って、ァーマチ ユア 10の解放動作開始時には、微分部 32から出力される微分値が正から負に転ず る。
[0055] 微分部 32で求めた微分値は、解放動作検出部 33により、予め設定された閾値 a ( く 0)と比較される (ステップ S34)。そして、微分値が閾値 a未満になると、解放動作 の開始検出信号が解放動作検出部 33から出力される。これにより、制御時間検出部 24がリセットされ、ァーマチュア 10の解放動作開始からの時間 Tのカウントが開始さ れる(ステップ S35)。
[0056] また、ァーマチュア速度算出部 34が解放動作の開始検出信号を受けると、ァーマ チユア速度算出部 34により、電圧指令の値 u及びブレーキコイル 14の実電流値 Iに 基づいてァーマチュア 10の速度 V が算出される(ステップ S36)。このとき、インダク est
タンスモデル値を L、コイル抵抗値を R、補正係数を Kとすると、ァーマチュア 10の速 度 V は例えば次式カゝら得られる。
est
[0057] V =K (u-R-I-L-dl/dt) · · · (5)
est n
[0058] ァーマチュア速度算出部 34からの出力は、速度補償部 35へ送られる。これにより、 ァーマチュア 10の速度 V と予め設定された目標速度の値 Vとの差に応じた信号で est 0
ある補正電圧 δ が速度補償部 35から出力される (ステップ S37)。このとき、フィード バック係数を Kとすると、補正電圧 δ は例えば次式から得られる。
1 u
[0059] δ =Κ (V -V ) · · · (6)
u 1 0 est
[0060] この後、指令値調整部 36が補正電圧 δ uを受けると、指令値調整部 36により、補正 電圧 δ 力 S小さくなるように電圧指令の値 uが初期指令値 uから修正される (ステップ S u 0
38)。このとき、修正後の電圧指令の値 uは例えば次式力も得られる。
[0061] u=u - δ · · · (7)
0 u
[0062] 即ち、ァーマチュア 10の解放動作開始後は、ァーマチュア 10の速度 V が予め設 est 定された目標速度 Vに追従するように電流値が下げられるので、ァーマチュア 10が
0
電磁石 12に衝突する際の衝撃力及び衝突音が低減される。これに対して、ァーマチ ユア 10が解放動作を開始するまでは、電源及びブレーキコイル 14の性能限界の電 圧を印加することにより、解放動作開始までの時間が最小にされる。なお、ここでも、 ブレーキコイル 14に入力される電圧指令は、回路保護のため、リミッタ 19での上限値 u 未満に制限される(0<u<u ) (ステップ S39)。
max max
[0063] 電圧指令の値 uが修正された後、励磁開始からの時間 Tが T に達したかどうか (ス end
テツプ S40)、及び解放動作開始からの時間 Tが T に達した力どうか (ステップ S41 c cend
)が監視される。そして、 τ>τ 及び τ >τ のいずれかの条件が成立すると、解放 end c cend
動作の状況に拘わらず、電圧指令の値 uが初期指令値 uに戻される (ステップ S42)
0
[0064] この後、解放検出スィッチ 13が ONにされるかどうかが監視される。解放検出スイツ チ 13が ONにされると、ァーマチュア 10が解放位置まで変位し解放動作が完了した と判断し、電圧指令の値 uが保持電圧指令値に切り換えられる。
[0065] このような電磁ブレーキ制御装置では、ブレーキコイル 14の吸引によるァーマチュ ァ 10の解放動作の開始を検出可能で、かつ解放動作時のァーマチュア 10の速度を 取得可能になっており、解放動作の開始が検出されると、ァーマチュアの速度が予 め設定された目標速度に追従されながら、ブレーキコイル 14に発生する吸引力が低 減されるので、ブレーキ解放動作の長時間化を抑えつつ、あらゆる電磁ブレーキ装 置についてブレーキ解放時の衝突音を安定的に低減することができる。また、ァーマ チユア 10の速度を目標速度に追従させることにより、ブレーキ解放動作をより確実に 行うことができる。
[0066] また、制御装置本体 15は、ブレーキコイル 14の実電流値及び指令値調整部 36か らの電圧指令の値のそれぞれに基づいてァーマチュア 10の速度を算出するァーマ チユア速度算出部 34と、ァーマチュア 10の速度と目標速度との差に応じた補正電圧 を発生する速度補償部 35とを有しているので、電圧制御によっても、ァーマチュア 1
0の速度を容易に取得することができる。また、補正電圧が小さくなるように電圧指令 の値を制御することにより、ァーマチュア 10の速度を目標速度に容易に追従させるこ とがでさる。
[0067] 制御装置本体 15は、ブレーキ解放指令に応じて電圧指令を発生する電圧指令発 生部 31と、ブレーキコイル 14の実電流値の変化に基づいてァーマチュア 10の解放 動作を検出する解放動作検出部 33とを有しているので、電圧制御によっても、ァー マチュア 10の解放動作の開始を容易にかつより確実に検出することができる。
[0068] また、指令値調整部 36からの電圧指令の値が微分部 32により微分され、解放動作 検出部 33において、微分部 32の出力が予め設定された閾値と比較されることにより 解放動作の開始が検出されるので、解放動作の開始を容易にかつより確実に検出 することができる。
[0069] なお、各上記実施の形態では、エレベータ装置の電磁ブレーキ制御装置について 説明したが、他の機器に設けられた電磁ブレーキ制御装置にもこの発明は適用でき る。
また、図 1ではブレーキドラム 7の外周面にブレーキシュ一 9を押し付けるタイプの電 磁ブレーキ装置を示した力 ブレーキドラムの内周面にブレーキシュ一を押し付ける タイプであってもよい。
さらに、ブレーキ回転体はブレーキディスクであってもよい。即ち、この発明は、ディ スタブレーキにも適用できる。
さらにまた、ブレーキ回転体は駆動シーブと一体であってもよい。
Claims
[1] ブレーキコイルを励磁して上記ブレーキコイルにァーマチュアを吸引させることによ り、電磁ブレーキ装置を解放させる制御装置本体を備えた電磁ブレーキ制御装置で あって、
上記制御装置本体は、上記ブレーキコイルの吸引による上記ァーマチュアの解放 動作の開始を検出可能で、かつ解放動作時の上記ァーマチュアの速度を取得可能 になっており、解放動作の開始が検出されると、予め設定された目標速度に上記ァ 一マチュアの速度を追従させながら、上記ブレーキコイルに発生する吸引力を変化 させることを特徴とする電磁ブレーキ制御装置。
[2] 上記制御装置本体は、
ブレーキ解放指令に応じて上記ブレーキコイルに電流を流すための電流指令を発 生する電流指令発生部と、
上記ブレーキコイルの実電流値が上記電流指令の値に一致するように、上記ブレ ーキコイルに電圧を印加するための電圧指令を発生する電流制御部と、
上記電圧指令の値の変化に基づいて上記ァーマチュアの解放動作を検出する解 放動作検出部と、
上記ブレーキコイルの実電流値及び上記電圧指令の値のそれぞれに基づいて上 記ァーマチュアの速度を算出するァーマチュア速度算出部と、
上記ァーマチュア速度算出部によって算出された上記ァーマチュアの速度と上記 目標速度との差に応じた信号を発生する速度補償部と、
上記解放動作検出部及び上記速度補償部のそれぞれ力 の情報に基づいて上記 電流指令の値を変化させる指令値調整部と
を有して 、ることを特徴とする請求項 1に記載の電磁ブレーキ制御装置。
[3] 上記制御装置本体は、上記電圧指令の値を微分する微分部をさらに有し、
上記解放動作検出部は、上記微分部の出力を予め設定された閾値と比較すること により解放動作の開始を検出することを特徴とする請求項 2に記載の電磁ブレーキ制 御装置。
[4] 上記制御装置本体は、
ブレーキ解放指令に応じて上記ブレーキコイルに電圧を印加するための電圧指令 を発生する電圧指令発生部と、
上記ブレーキコイルの実電流値の変化に基づいて上記ァーマチュアの解放動作を 検出する解放動作検出部と、
上記ブレーキコイルの実電流値及び上記電圧指令の値のそれぞれに基づいて上 記ァーマチュアの速度を算出するァーマチュア速度算出部と、
上記ァーマチュア速度算出部によって算出された上記ァーマチュアの速度と上記 目標速度との差に応じた信号を発生する速度補償部と、
上記解放動作検出部及び上記速度補償部のそれぞれ力 の情報に基づいて上記 電圧指令の値を変化させる指令値調整部と
を有して 、ることを特徴とする請求項 1に記載の電磁ブレーキ制御装置。
[5] 上記制御装置本体は、上記ブレーキコイルの実電流値を微分する微分部をさらに 有し、
上記解放動作検出部は、上記微分部の出力を予め設定された閾値と比較すること により解放動作の開始を検出することを特徴とする請求項 4に記載の電磁ブレーキ制 御装置。
[6] 上記制御装置本体は、上記ブレーキコイルの励磁開始から予め設定された時間が 経過すると、低減させる前の吸引力を上記ブレーキコイルに発生させることを特徴と する請求項 1に記載の電磁ブレーキ制御装置。
[7] 上記制御装置本体は、上記ァーマチュアの解放動作の開始から予め設定された 時間が経過すると、低減させる前の吸引力を上記ブレーキコイルに発生させることを 特徴とする請求項 1に記載の電磁ブレーキ制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06842909.1A EP2096071B1 (en) | 2006-12-20 | 2006-12-20 | Solenoid brake control device |
JP2008550011A JP5073678B2 (ja) | 2006-12-20 | 2006-12-20 | 電磁ブレーキ制御装置 |
PCT/JP2006/325355 WO2008075417A1 (ja) | 2006-12-20 | 2006-12-20 | 電磁ブレーキ制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/325355 WO2008075417A1 (ja) | 2006-12-20 | 2006-12-20 | 電磁ブレーキ制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008075417A1 true WO2008075417A1 (ja) | 2008-06-26 |
Family
ID=39536056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325355 WO2008075417A1 (ja) | 2006-12-20 | 2006-12-20 | 電磁ブレーキ制御装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2096071B1 (ja) |
JP (1) | JP5073678B2 (ja) |
WO (1) | WO2008075417A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010018359A (ja) * | 2008-07-08 | 2010-01-28 | Toshiba Elevator Co Ltd | エレベータ用ブレーキ点検システム |
JP2013063813A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Electric Corp | エレベータのブレーキ制御装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09267982A (ja) | 1996-03-29 | 1997-10-14 | Mitsubishi Electric Corp | リニアモータ駆動移動体装置 |
WO2004028945A1 (ja) * | 2002-09-27 | 2004-04-08 | Mitsubishi Denki Kabushiki Kaisha | エレベータのブレーキ制御装置 |
JP7080650B2 (ja) * | 2017-01-25 | 2022-06-06 | バイオセンス・ウエブスター・(イスラエル)・リミテッド | ブルガダ症候群を排除するためのecg信号の解析及びマッピング並びにアブレーション点の決定 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0780650B2 (ja) * | 1990-08-13 | 1995-08-30 | 日本オーチス・エレベータ株式会社 | エレベータ制御装置のブレーキ制御方式 |
EP1225150A1 (de) * | 2001-01-09 | 2002-07-24 | Inventio Ag | Einrichtung zur Geräuscharmen Betrieb einer Aufzugsbremse |
JP4620912B2 (ja) * | 2001-09-11 | 2011-01-26 | 三菱電機株式会社 | 制動システム及びその制御装置 |
-
2006
- 2006-12-20 WO PCT/JP2006/325355 patent/WO2008075417A1/ja active Application Filing
- 2006-12-20 JP JP2008550011A patent/JP5073678B2/ja active Active
- 2006-12-20 EP EP06842909.1A patent/EP2096071B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09267982A (ja) | 1996-03-29 | 1997-10-14 | Mitsubishi Electric Corp | リニアモータ駆動移動体装置 |
WO2004028945A1 (ja) * | 2002-09-27 | 2004-04-08 | Mitsubishi Denki Kabushiki Kaisha | エレベータのブレーキ制御装置 |
JP7080650B2 (ja) * | 2017-01-25 | 2022-06-06 | バイオセンス・ウエブスター・(イスラエル)・リミテッド | ブルガダ症候群を排除するためのecg信号の解析及びマッピング並びにアブレーション点の決定 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010018359A (ja) * | 2008-07-08 | 2010-01-28 | Toshiba Elevator Co Ltd | エレベータ用ブレーキ点検システム |
JP2013063813A (ja) * | 2011-09-16 | 2013-04-11 | Mitsubishi Electric Corp | エレベータのブレーキ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2096071A1 (en) | 2009-09-02 |
EP2096071A4 (en) | 2013-07-31 |
JP5073678B2 (ja) | 2012-11-14 |
EP2096071B1 (en) | 2015-02-11 |
JPWO2008075417A1 (ja) | 2010-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4830257B2 (ja) | エレベータのブレーキ制御装置 | |
EP1997765B1 (en) | Elevator device | |
JP4607631B2 (ja) | エレベーター用ブレーキ制御装置 | |
US4987977A (en) | Control apparatus for A.C. elevator | |
JPH028175A (ja) | エレベータの制御装置 | |
EP2321211B1 (en) | Elevator system, and method in conjunction with an elevator system | |
CN101132980A (zh) | 电磁制动器控制装置 | |
JP4102362B2 (ja) | エレベータのブレーキ制御装置 | |
JP4275377B2 (ja) | エレベーター用ブレーキ制御装置 | |
JP2008068965A (ja) | エレベータ装置 | |
WO2008075417A1 (ja) | 電磁ブレーキ制御装置 | |
JP2003083372A (ja) | 制動システム及びその制御装置 | |
JP2011105484A (ja) | 電磁ブレーキの故障検出装置 | |
JP5160094B2 (ja) | 電磁ブレーキ制御装置 | |
JP2767692B2 (ja) | 自動ドアの開閉制御方法 | |
CN103922238A (zh) | 电磁制动器控制装置 | |
WO2012140945A1 (ja) | エレベータ用ブレーキ装置およびエレベータのブレーキ制動方法 | |
JP6449806B2 (ja) | エレベータ装置及びその動作制御方法 | |
JP2002060147A (ja) | エレベーターの制御装置 | |
KR20080003767A (ko) | 전자 브레이크 제어 장치 | |
JP2003026375A (ja) | 昇降機械駆動用電動機の制御装置 | |
JP2004256189A (ja) | エレベーターのブレーキ制御装置 | |
JP2001294372A (ja) | エレベータのブレーキ制御装置 | |
JPS6153984B2 (ja) | ||
JPH06171848A (ja) | 油圧エレベータの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06842909 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008550011 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006842909 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |