WO2004016404A1 - 断熱材のリサイクル処理方法、リサイクル物品および冷蔵庫 - Google Patents

断熱材のリサイクル処理方法、リサイクル物品および冷蔵庫 Download PDF

Info

Publication number
WO2004016404A1
WO2004016404A1 PCT/JP2003/009990 JP0309990W WO2004016404A1 WO 2004016404 A1 WO2004016404 A1 WO 2004016404A1 JP 0309990 W JP0309990 W JP 0309990W WO 2004016404 A1 WO2004016404 A1 WO 2004016404A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic material
urethane foam
refrigerator
recycling
waste
Prior art date
Application number
PCT/JP2003/009990
Other languages
English (en)
French (fr)
Inventor
Akiko Yuasa
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to EP20030788046 priority Critical patent/EP1527863B1/en
Priority to AU2003252416A priority patent/AU2003252416A1/en
Priority to US10/521,105 priority patent/US20060163395A1/en
Publication of WO2004016404A1 publication Critical patent/WO2004016404A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0404Disintegrating plastics, e.g. by milling to powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0224Screens, sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • B29B2017/0241Mechanical separating techniques; devices therefor using density difference in gas, e.g. air flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2711/00Use of natural products or their composites, not provided for in groups B29K2601/00 - B29K2709/00, for preformed parts, e.g. for inserts
    • B29K2711/14Wood, e.g. woodboard or fibreboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/762Household appliances
    • B29L2031/7622Refrigerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for recycling a heat insulating material including a rigid urethane foam and a vacuum heat insulating material using an inorganic material as a core, a recycled article, and a refrigerator.
  • Japanese Unexamined Patent Publication No. 2001-183504 describes a method of reusing foamed urethane used as a heat insulating material for waste refrigerators, in which part of a recycled polyol is used in a raw material liquid of urethane.
  • Japanese Patent Application Laid-Open No. H10-310663 discloses a method for decomposing and recovering a polyurethane resin by chemically decomposing the polyurethane resin using water in a supercritical or subcritical state, It is proposed to recover the available raw material derivatives.
  • the present invention has been made in view of the above problems, and has as its object to contribute to the recycling of heat insulating materials including rigid urethane foam and vacuum heat insulating material. It is intended to provide a method of recycling a heat insulating material for utilization and a recycled product. In order to contribute to the recycling of heat insulating materials including rigid urethane foam and vacuum heat insulating materials, and to improve the recycling rate of refrigerators, to stabilize the quality of mixed waste materials and to reuse them with high quality Refrigerators are provided.
  • a method of recycling a heat insulating material is a method of recycling a heat insulating material including a rigid urethane foam and a vacuum heat insulating material using an inorganic material as a core material. It is provided with an inorganic material content adjusting step of adjusting the inorganic material content in the mixed material containing the rigid urethane foam and the inorganic material, and has an effect of stabilizing the quality of the mixed material. And high-quality waste heat insulation materials, including vacuum heat insulation materials using inorganic materials as core materials.
  • the heat-insulated recycled article of the present invention comprises a rigid urethane foam and a core material.
  • the refrigerator of the present invention is a refrigerator provided with a vacuum heat insulating material using an inorganic material as a core material and a hard urethane foam, characterized by comprising means capable of distinguishing the presence of the vacuum heat insulating material.
  • FIG. 1 is a process diagram of Embodiment 1 of a recycling method according to the present invention.
  • FIG. 2 is a process chart of Embodiment 2 of the recycling method of the present invention.
  • FIG. 3 is a process diagram of a third embodiment of the recycling method according to the present invention.
  • FIG. 4 is a process diagram of Embodiment 4 of the recycling method of the present invention.
  • FIG. 5 is a process chart of Embodiment 5 of the recycling method of the present invention.
  • FIG. 6 is a process chart of Embodiment 6 of the recycling method of the present invention.
  • FIG. 7 is a cross-sectional view of a particle pod according to a seventh embodiment of the recycled product of the present invention.
  • FIG. 8 is a diagram of a vacuum heat insulating material according to Embodiment 8 of the recycled product of the present invention.
  • FIG. 9 is a sectional view of a particle board according to a ninth embodiment of the recycled product of the present invention.
  • FIG. 10 is a sectional view of a vacuum heat insulating material according to Embodiment 10 of the recycled product of the present invention.
  • FIG. 11 is a schematic view of a refrigerator according to Embodiment 11 of the present invention.
  • the present invention relates to a heat insulating material recycling process including a hard urethane foam and a vacuum heat insulating material using an inorganic material as a core material, wherein at least the inorganic material content in the mixed waste material containing the hard urethane foam and the inorganic material is reduced.
  • the method includes a step of adjusting the inorganic material content to be adjusted.
  • the quality of mixed waste materials containing rigid urethane foam and inorganic materials is kept constant, and a method of recycling thermal insulation for high-quality reuse, and its resources It provides vehicle articles and refrigerators.
  • ADVANTAGE OF THE INVENTION According to this invention, it is possible to make the quality of the mixed waste material containing a hard urethane foam and an inorganic material constant, and to easily reuse it with high quality.
  • FIG. 1 is a process chart showing a method of recycling a refrigerator and a method of manufacturing a particle port as a recycled article according to the first embodiment.
  • the waste refrigerator transported to the waste treatment facility first goes through the discrimination process 1 and, according to the indication on the outer box, is equipped with a vacuum insulation material using an inorganic material for the core and a rigid urethane foam.
  • Refrigerators hereinafter referred to as “combined insulation refrigerators”
  • refrigerators that use rigid urethane foam but do not have vacuum insulation hereinafter referred to as single insulation refrigerators.
  • the composite insulation type refrigerator and the single insulation type refrigerator are subjected to a sorting process 4 through a crushing process 3 after a process 2 for removing valuables such as a compressor and a refrigerant in a refrigerator.
  • Sorting process 4 sorts the crushed waste by magnetic force or wind power, This is a process of separating and collecting each predetermined material.
  • the foaming gas contained in the rigid urethane foam is recovered in the next foaming gas recovery step 5.
  • the same insulation type refrigerator, single insulation type refrigerator, and the same crushing step 3, sorting processing step 4, and foaming gas recovery step 5 can be used alternately.
  • the heat-insulated waste materials discharged from the combined-insulated refrigerator and the single-insulated refrigerator from which the foamed gas has been recovered are stored in different heat-insulated material recovery towers 61 and 62, respectively.
  • the recovery tower 61 containing waste heat insulation material from the composite insulation type refrigerator the inorganic material content in the waste material was measured, and in the next inorganic material content adjustment step 7, the content from the single heat insulation type refrigerator was measured. Use that information when mixing with insulation waste.
  • the inorganic material content adjustment step 7 an appropriate amount is supplied from the respective recovery towers 61 and 62 into the mixer 8 based on the result of the inorganic material content measurement, and the inorganic material content is adjusted. Is a properly adjusted mixed waste material.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted in accordance with the required physical properties of the recycled article.
  • a suitable inorganic material content is 0.01% or more and 10% or less, and more preferably 0.01% or more and 2% or less. When high bending strength is required for the particle board, the lower the inorganic material content, the better.
  • the mixed waste material whose inorganic material content has been adjusted is subjected to appropriate particle size adjustment in a particle size adjustment step 10. Further, through a mixing step 11 with a wood chip or a binder and a pressure molding step 12, a particle port 13 is obtained.
  • the mixing with the wood chips and the binder here is optional, and the amount of addition is not limited.
  • the particle pod manufactured in this way is made by press-molding a mixed waste material containing inorganic materials and rigid urethane foam whose inorganic material content is appropriately adjusted. It can maintain the strength as a pod material, and can reuse high-quality heat insulating materials including hard urethane foam and vacuum heat insulating materials using inorganic materials as core materials.
  • FIG. 2 is a process chart showing a method of recycling a refrigerator and a method of manufacturing a vacuum heat insulating material that is a recycled article according to the first embodiment.
  • the waste refrigerator transported to the waste treatment facility first goes through the discrimination process 1 and, according to the indication on the outer box, a composite insulation type refrigerator using a glass fiber aggregate as the core material, and a single heat insulation refrigerator Refrigerators are divided into two types.
  • the composite insulation type refrigerator and the single insulation type refrigerator are further sorted after removing valuables such as a compressor, a refrigerant in a refrigerator, etc., and are separated and recovered for each predetermined material.
  • foaming gas contained in the rigid polyurethane foam is recovered from the selected heat insulating material in a foaming gas recovery step 5.
  • the heat-insulated waste materials discharged from the composite-insulated refrigerator and the single-insulated refrigerator from which the foamed gas has been recovered are stored in different heat-insulated material recovery towers 61 and 62, respectively.
  • the recovery tower 61 containing waste heat insulation material from the composite insulation type refrigerator the inorganic material content in the waste material was measured, and in the next inorganic material content adjustment step, the recovery from the single heat insulation type refrigerator was performed. Use that information for mixing with insulation waste.
  • the inorganic material content adjusting step 7 an appropriate amount is supplied from the respective recovery towers 61 and 62 into the mixer 8 based on the result of the inorganic material content measurement, and the inorganic material content is adjusted. It becomes a properly adjusted mixed waste material.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted in accordance with the required physical properties of the recycled article.
  • the appropriate inorganic material content is 0.1% or more and 60% or less, and more preferably 0.5% or more and 40% or less.
  • the inorganic material acts as a filler for improving the hard urethane foam waste material. The optimum amount is determined by the size of the product.
  • the mixed waste material whose inorganic material content has been adjusted is subjected to appropriate pulverization processing in the subsequent step 14 and furthermore, in the sealing step 15 the coating material is reduced under reduced pressure Then, the vacuum heat insulating material 16 is produced.
  • the mixed waste material containing the rigid urethane foam and the glass fiber aggregate is appropriately adjusted in the content ratio of the glass fiber aggregate and is pulverized.
  • the filling properties are improved.
  • the voids formed by the rigid urethane foam powder have the same void ratio as the conventional one, the void diameter is minimized and the insulating material has high heat insulating properties, so that the rigid urethane foam has a high thermal insulation.
  • Insulation materials consisting of vacuum insulation materials using inorganic materials as the core material can be reused with high quality.
  • FIG. 3 shows a method of recycling a refrigerator (composite insulation material type refrigerator) including a rigid urethane foam and a vacuum heat insulating material using an inorganic material as a core material, and a recycled article according to the third embodiment.
  • FIG. 4 is a process chart showing a method for manufacturing a particle board.
  • the waste refrigerator transported to the waste treatment facility first goes through the discrimination process 1 and is divided into a composite insulation refrigerator and a single insulation refrigerator according to the indication on the outer box.
  • a single-insulated refrigerator is a refrigerator that uses only rigid urethane foam as a heat insulating material.
  • a separating step 17 an integral member of the rigid urethane foam and the vacuum heat insulating material is cut out.
  • the separation process 17 does not cause any crushing together with other members, so that there is no need for a sorting process or only a very simple sorting process.
  • foaming gas contained in the heat insulator is recovered in a recovery step 5.
  • the method for recovering the foaming gas is not particularly limited to the grinding treatment.
  • the mixed waste containing inorganic foam and inorganic material discharged from the composite insulation refrigerator after the foaming gas has been collected is stored in the heat insulation waste collection tower 61.
  • the inorganic material content in the waste material measured here is used in the next inorganic material content adjusting step.
  • the inorganic material is sorted by the wind separation device 19 using the specific gravity difference between the rigid urethane foam and the inorganic material.
  • the operating conditions of the wind separator 19 are determined based on the results of the inorganic material content measurement performed in the preceding step 7.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted according to the required physical properties of the recycled article.
  • the appropriate inorganic material content is at least 0.01% and at most 10%, more preferably at least 0.01% and at most 2%.
  • the mixed waste material whose inorganic material content has been adjusted is adjusted to an appropriate particle size according to the application (particle size adjustment processing 10), and further mixed with wood chips and a binder.
  • particle size adjustment processing 10 particle size adjustment processing 10
  • a pressure molding step 12 is performed to form a particle port 13.
  • the particle board manufactured in this way is obtained by press-molding a hard urethane foam with an appropriately adjusted inorganic material content and a mixed waste material containing an inorganic material, and can maintain the strength as a pod material. ⁇ ⁇ High-quality thermal insulation, including resin foam and vacuum insulation using inorganic materials as the core material, can be reused with high quality.
  • the inorganic material content adjustment method removes the inorganic material, it is of course possible to reduce the inorganic material content, and furthermore, by adding the removed inorganic material arbitrarily, the inorganic material content can be reduced. It is also possible to increase the content. Also, By selecting the removal method and the removal conditions, it is possible to divide one of them into waste material with a reduced inorganic material content and the other into waste material with an improved inorganic material content. In addition, since it has the separation step 3, it is possible to produce the particle port 13 which is not crushed together with other members and has very few impurities.
  • FIG. 4 shows a method of recycling a refrigerator (composite insulation type refrigerator) including a rigid urethane foam and a vacuum insulation material using a glass fiber aggregate as a core material, and a recycled article according to the fourth embodiment.
  • FIG. 4 is a process chart showing a method for manufacturing a vacuum heat insulating material.
  • the waste refrigerator transported to the waste treatment facility first goes through the discrimination step 1 and is divided into a composite insulation refrigerator and a single insulation refrigerator based on the information recorded in the electronic medium. Further, here, the weight of the inorganic material and the weight of the rigid urethane foam can be read. These information are used in the inorganic material content adjustment step 7. This information can also be used for recycling process management.
  • a composite heat insulator type refrigerator using a glass fiber aggregate as a core material is a process that removes valuable materials such as compressors and refrigerant in a refrigerator. An integral member with the heat insulating material is cut out. The separation process does not cause crushing together with other members, so that a sorting process is not required, or a very simple sorting process is sufficient.
  • a process 5 for recovering foamed gas contained in the rigid urethane foam is provided.
  • the hard urethane foam and the glass fiber aggregate are both crushed finely, but the glass fiber aggregate is fragile, so that it is further crushed.
  • the mixed waste material containing the rigid urethane foam and the glass fiber aggregate from which the foaming gas has been collected is stored in the heat insulating material waste material collection tower 61.
  • the discriminating step 1 Since the information on the weight of the inorganic material and the weight of the rigid urethane foam is obtained, it is not necessary for the recovery tower 61 to measure the content of the inorganic material in the waste heat from the insulated waste material from the composite insulated refrigerator.
  • the glass fiber aggregate is sorted by the classifier 20 using the difference in particle size between the hard urethane foam and the glass fiber aggregate.
  • the operating conditions of the classifier are determined based on the result of the information in the discrimination process.
  • it becomes a mixed waste material in which the inorganic material content in the rigid urethane foam is appropriately adjusted.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted in accordance with the required physical properties of the recycled article.
  • a suitable inorganic material content is 0.1% or more and 60% or less, and more preferably 0.5% or more and 40% or less.
  • the inorganic material acts as a filler for the hard urethane foam waste material. Therefore, the optimum amount of the inorganic material to be added is determined by the surface area of the rigid urethane foam powder.
  • the mixed waste material whose inorganic material content has been adjusted is subjected to an appropriate pulverization treatment 14, and further, through a sealing step 15 to the coating material under reduced pressure, vacuum insulation Material 16
  • the content of the inorganic material in the mixed waste material containing the rigid urethane foam and the inorganic material is adjusted appropriately and is pulverized to thereby improve the filling property of the rigid urethane foam fine powder.
  • the vacuum heat insulating material manufactured by using the manufacturing method of the fourth embodiment is a vacuum heat insulating material having high heat insulating property by minimizing the pore diameter formed by the hard urethane foam powder. Insulation materials including urethane foam and vacuum insulation materials using an inorganic material as a core material can be reused with high quality.
  • FIG. 5 shows a method of recycling a refrigerator (composite insulation type refrigerator) including a rigid urethane foam and a vacuum insulation material using dry silica fine powder as a core material, and a recycled article according to the fifth embodiment.
  • FIG. 3 is a process chart showing a method for manufacturing a vacuum heat insulating material.
  • the waste refrigerator transported to the waste treatment facility first goes through the discrimination process 1 and is divided into a composite insulation refrigerator and a single insulation refrigerator based on the information recorded on the electronic medium. Further, here, the weight of the inorganic material and the weight of the rigid urethane foam can be read. These information are used in the inorganic material content adjustment step 7. This information can also be used for recycling process management.
  • the composite insulation type refrigerator using fumed silica as the core material has a hard urethane foam and a vacuum insulation material in a separation step 17 after the removal step 2 for removing valuables such as compressors and refrigerant in the refrigerator. Is cut out. Since the material is not crushed together with other members by undergoing the separation process, there is no need for a sorting process, or a very simple sorting process may be used.
  • the foamed gas contained in the rigid urethane foam is recovered 5 by grinding the integral heat insulating waste material 18.
  • the hard urethane foam is pulverized into fine powder, but the dry silica fine powder originally has a finer particle size.
  • the mixed waste material including the rigid polyurethane foam from which the foaming gas has been collected and the fine dry powder is stored in the heat insulating material waste collection tower 61. Since information on the weight of the inorganic material and the weight of the rigid urethane foam is obtained in the determination step, it is not necessary to measure the content of the inorganic material in the heat insulation waste material from the composite heat insulator refrigerator. Further, in the inorganic material content adjustment step 7, the dry silica fine powder is selected by the classifier 20 using the difference in particle size between the hard urethane foam and the dry silica fine powder. The operating conditions of the classifier 20 are determined based on the result of the information in the discrimination process. I do.
  • the content of the inorganic material in the rigid urethane foam is appropriately adjusted.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted according to the required physical properties of the recycled article.
  • a suitable inorganic material content is 0.1% or more and 60% or less, and more preferably 0.5% or more and 40% or less.
  • the mixed waste material whose inorganic material content has been adjusted is subjected to appropriate pulverization treatment 14 and further sealed under reduced pressure into a covering material 15 to provide vacuum insulation material 1 Get 6.
  • the filling property of rigid polyurethane foam fine powder can be improved.
  • the vacuum heat insulating material manufactured by using the manufacturing method of the fifth embodiment has high heat insulating properties because the void diameter formed by the rigid urethane foam powder is minimized.
  • FIG. 6 shows a method for recycling a heat insulator (hereinafter referred to as a composite heat insulator) including a rigid urethane foam and a vacuum heat insulator using a glass fiber aggregate as a core material according to the sixth embodiment, and a recycled article.
  • FIG. 4 is a process chart showing a method for producing a glass fiber assembly as described above.
  • the waste heat insulator transported to the waste treatment facility is first hardened in the separation process 17.
  • the mixed waste material containing the rigid urethane foam and the inorganic material discharged from the composite heat insulator is stored in the heat insulating material waste material collection tower 61.
  • the glass content in the waste material is measured, and the information is used in the next inorganic material content adjustment step 7.
  • the glass fibers are sorted by the wind sorter 19 using the specific gravity difference between the rigid urethane foam and the inorganic material.
  • the operating conditions of the wind separator 19 are determined based on the results of the inorganic material content measurement.
  • the content of the inorganic material is not less than 0.01% and not more than 99.99%, and is appropriately adjusted in accordance with the required physical properties of the recycled article.
  • the appropriate inorganic material content is 95% or more and 99.99% or less, and more preferably 98% or more and 99.99% or less.
  • the glass fiber content is reduced to a maximum of 99.9%.
  • the mixed waste material mainly composed of glass fiber is subjected to an appropriate high-temperature melting treatment 21, and is again formed into a glass fiber aggregate 23 by a centrifugal method 22.
  • FIG. 7 shows a cross-sectional view of a particle port 13 as a recycled product manufactured through the steps of Embodiment 1 as an example of Embodiment 7. And have your 7, particle board 1 3, as a main constituent material, a rigid urethane foam waste material 2 4, and an inorganic material waste 2 5 as core material of the vacuum heat insulating material, wood chips 2 6, binder - 2 7 Is included. In addition, since the waste crushed in the crushing step 3 is sorted by magnetic force or wind force, it contains some impurities 28. You.
  • Particle board refers to a granular or powdery organic material or an inorganic material made into a board using pressure, heat, binder, etc., and the waste heat insulation material It is sufficient if at least a part is included as a material. (Embodiment 8)
  • FIG. 8 shows a cross-sectional view of a vacuum heat insulating material 16 which is a recycled product manufactured through the steps of Embodiment 2 as an example of Embodiment 8.
  • the vacuum insulation material 16 is made of a coating material 29 having a metal foil layer and a thermoplastic polymer layer 29, a hard urethane foam waste material 24, and a glass fiber aggregate waste material 30 which is a core material of the vacuum insulation material is finely powdered.
  • the filled core material is filled. After drying the core material at 1401 for 1 hour, it was inserted into the covering material 29, and the inside thereof was reduced to a pressure of 13.3 Pa. 16 were produced.
  • the thermal conductivity of the vacuum insulation material was measured at an average temperature of 24 ° C using an Auto- ⁇ manufactured by Eiko Seiki Co., Ltd. and found to be 0.0600 K ca 1 / m ⁇ h ⁇ °. C, indicating good heat insulation performance.
  • the finely ground urethane foam waste material adheres to the surface of the finely ground urethane foam waste material, and promotes the filling of the finely ground urethane foam waste material.
  • the pore size is minimized, indicating excellent heat insulation performance.
  • FIG. 9 shows a cross-sectional view of a particle port 13 which is a recycled product manufactured through the steps of Embodiment 3 as an example of Embodiment 9.
  • the particle pod 13 contains, as main constituent materials, waste hard urethane foam 24, waste inorganic material 25 which is a core material of vacuum insulation material, wood chips 26, and binder 27.
  • waste heat insulation material cut out as an integral member of the rigid plastic foam and vacuum insulation material is used, so impurities are not mixed. Very little.
  • FIG. 10 shows a cross-sectional view of a vacuum heat insulating material 16 which is a recycled product manufactured through the steps of Embodiment 4 as an example of Embodiment 10.
  • the vacuum heat insulating material 16 is made of a coating material 29 having a metal foil layer and a thermoplastic polymer layer, a hard urethane foam waste material 24, and a core obtained by pulverizing a glass fiber aggregate waste material 30 which is a core material of the vacuum heat insulating material. Material is filled. After drying the core material at 140 ° C. for 1 hour, the core material was introduced into the covering material 29, and the inside thereof was reduced to a pressure of 13.3 Pa. Produced.
  • the thermal conductivity of the produced vacuum insulation material was measured at an average temperature of 24 ° C with Au-to- ⁇ manufactured by Eiko Seiki Co., Ltd. and found to be 0.0055 Kcal / m-h. Performance was shown.
  • the finely divided waste of the urethane foam adheres to the surface of the finely divided urethane foam waste, which promotes the filling of the finely divided waste urethane foam. It shows excellent heat insulation performance.
  • the use of waste heat insulation material cut out as an integral member of rigid polyurethane foam and vacuum heat insulation material minimizes contamination with impurities. Therefore, it is considered that the thermal insulation performance is superior to that of the eighth embodiment.
  • FIG. 11 shows a refrigerator 31 according to an embodiment of the eleventh embodiment.
  • the refrigerator 31 is a composite heat-insulated refrigerator including a rigid urethane foam and a vacuum heat-insulating material using an inorganic material as a core material.
  • the display management board 32 is stuck on the outer box of the refrigerator, and specifies that vacuum insulation is used.
  • the vacuum heat insulating material of the present invention comprises a core material and a coating material, and the core material is sealed in the coating material under reduced pressure.
  • adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, and hydrated talcite, and oxides of alkali metals and alkaline earth metals
  • a moisture adsorbent or a gas adsorbent, such as a chemical adsorbent such as water and a hydroxide, may be mixed in the coating material.
  • a core material drying step may be added before vacuum sealing.
  • a material that can block the core material from the outside air can be used.
  • metal sheets such as stainless steel, aluminum, and iron, and laminates of such metal sheets and plastic films.
  • the laminate material preferably has a surface protective layer, a gas barrier layer, and a heat welding layer.
  • a surface protective layer a stretched product of a polyethylene terephthalate film or a polypropylene film can be used, and if a nylon film or the like is provided on the outside, the flexibility is improved, and the bending resistance and the like are improved.
  • a metal foil film such as aluminum or a metal vapor-deposited film can be used, but a metal vapor-deposited film is preferable in order to further suppress heat leakage and exhibit an excellent heat insulating effect.
  • a metal on the surface of a film such as a polyethylene terephthalate film, an ethylene-bier alcohol copolymer resin film, or a polyethylene naphthalate film.
  • a film such as a polyethylene terephthalate film, an ethylene-bier alcohol copolymer resin film, or a polyethylene naphthalate film.
  • a low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, a non-oriented polyethylene terephthalate film, or the like can be used.
  • the inorganic material of the present invention can be used in various forms such as fibers, powders, porous bodies, foams and the like.
  • a fiberized inorganic material such as glass wool, ceramic fiber, and rock wool can be used.
  • Organic binder is used to aggregate inorganic fibers. May be.
  • inorganic powders such as aggregated silica powder, expanded perlite powder, diatomaceous earth powder, calcium silicate powder, calcium carbonate powder, calcium carbonate powder, clay, and talc can be used.
  • an inorganic oxide air port gel such as a silicon air port gel or an alumina air port gel can be used. Also, a mixture of two or more of these may be used.
  • the inorganic material content of the present invention is determined by calculating the weight of the inorganic material in the mixed waste material containing the hard urethane foam and the inorganic material as a numerator, and calculating the total amount of the hard urethane foam and the weight of the inorganic material as a denominator. It is the weight percentage of the material. Depending on the properties required for recycled products manufactured from waste heat insulating materials, the content should be adjusted to 0.11% or more and 99.99% or less. The appropriate inorganic material content varies depending on the physical properties required for the recycled product to be applied. However, when recycled as a core material of a vacuum heat insulating material, the appropriate content is 0.1% or more and 20% or less.
  • the method of adjusting the mixing ratio of the inorganic material is such that a rigid urethane foam and an inorganic material made of a composite heat insulator and a hard urethane foam made of a single heat insulator are mixed at a fixed inorganic material content.
  • the present invention is not limited to these methods.
  • a heat insulator including a rigid urethane foam and a vacuum heat insulator using a glass fiber aggregate as a core is referred to as a composite heat insulator, and a heat insulator not including a vacuum heat insulator is referred to as a single heat insulator.
  • a separation method as a classification technique, dry classification, wet classification, sieving classification, etc. can be used, and specific gravity separation method can be used. Depending on the characteristics of the inorganic material used and the properties of the mixed waste after the crushing and separation steps, an appropriate separation method can be used. It is desirable to choose a law.
  • a general-purpose crusher such as a pre-shredder, a single axial force and a shredder can be used.
  • after coarse crushing by a combination of two or more crushers it is possible to further finely crush.
  • the particle board according to the present invention refers to a material obtained by forming a granular or powdery organic material and an inorganic material into a board using a pressure treatment, a heat treatment, a binder, or the like. It is sufficient that at least a part of the material is included.
  • a binder it is possible to use an organic material capable of binding particles including composite waste material and an inorganic material binder. As long as it is an organic material, a commonly used thermoplastic resin or thermosetting resin can be used.
  • thermoplastic resin polypropylene, polyethylene, polystyrene, styrene-butadiene-acrylonitrile copolymer, polyamide, polycarbonate, polyacetal, polyethylene terephthalate and the like can be used.
  • thermosetting resin phenol, urea, melamine, urethane and the like can be applied. These can be used alone or as a mixture of two or more.
  • the inorganic binder can be used as long as it is an inorganic material such as water glass, colloidal silica, silica sol, and alumina sol and acts as a binder.
  • the refrigerator of the present invention includes not only refrigerators used at a normal operating temperature range of 130 ° C.
  • a refrigerator is provided with a vacuum heat insulating material.
  • a method of attaching a display management board, a method of (2) providing a vacuum heat insulating material, a method of automatically attaching a par code indicating a core material weight and a rigid urethane foam weight, and the like can be used. It is not limited to only.
  • the discriminating means is preferably displayed or recorded on the outer box of the refrigerator, and more preferably on the back.
  • the glass fiber aggregate of the present invention is a fibrous formed body composed of a glass composition such as A-glass, C-glass, or E-glass irrespective of short fibers or long fibers. Used or not used. It can be used in the form of raw cotton or in the form of a mat. In particular, short fibers produced by the centrifugal method are desirable because they have a proven track record of using recycled materials and are inexpensive.
  • a material molded with a binder is preferable because it has advantages such as easy introduction into a coating material and excellent dimensional stability. Industrial applicability
  • the quality of the mixed waste material is kept constant, and the heat insulating material is recycled for high quality reuse.
  • a processing method and a recycled product can be provided.
  • a refrigerator for maintaining the quality of mixed waste materials and reusing them with high quality is also required. Refrigeration that is environmentally friendly and can increase the recycling rate of used refrigerators, contribute to recycling, and save resources.
  • a warehouse can be provided. Therefore, its industrial value is great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Refrigerator Housings (AREA)
  • Thermal Insulation (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processing Of Solid Wastes (AREA)

Description

断熱材のリサイクル処理方法、 リサイクル物品およぴ冷蔵庫 技術分野
本発明は、 硬質ウレタンフォームと、 芯材として無機材料を用いた真空断熱材 とを含む断熱材のリサイクル処理方法、 およびリサイクル物品、 冷蔵庫に関する ものである。 背景技術
近年、 環境保護の観点から、 冷蔵庫やテレビなどの廃家電製品のリサイクルが 極めて重要なテーマとなっており、 様々な取組みがなされている。
また、 地球環境問題である温暖化を防止することの重要性から、 省エネルギー 化が望まれており、 民生用機器に対しても省エネルギーの推進が行われている。 そして、 冷蔵庫、 冷凍庫、 ショーケース等に用いられている硬質ウレタンフォー ムなどの発泡断熱材に関しては特に高性能化が顕著であり、 真空断熱材の開発や、 それらを利用した高性能断熱箱体の開発が盛んに行われている。 また、 そのリサ イタル処理方法に関しても様々な取組みがなされているのが現状である。
例えば、 特開 2 0 0 1— 1 8 3 0 5 4号公報には、 廃冷蔵庫の断熱材として用 いられる発泡ウレタンの再利用法として、 ウレタンの原料液に再生ポリオールを 一部使用することを提案している。 また、 特開平 1 0— 3 1 0 6 6 3号公報には、 ポリウレタン樹脂の分解回収方法として、 超臨界状態や亜臨界状態の水を用いて ポリウレタン樹脂を化学分解し、 ポリウレタン樹脂の原料化合物や利用可能な原 料誘導体を回収することが提案されている。
し力 しながら、 硬質ウレタンフォームと真空断熱材の両者を含む再生利用につ いてはこれまで考えられておらず、 おそらくは混合廃材として、 再利用されるこ となく埋め立て処理されていると考える。 高断熱化のために真空断熱材の適用が 今後ますます拡大していくことを予測すると、 有効な再生利用を考えることは非 常に重要である。
冷蔵庫のような断熱箱体に真空断熱材を適用するとき、 硬質ゥレ夕ンフォーム との併用が一般的であるが、 真空断熱材は接着性の高いウレタンフォームと密着 するため、 真空断熱材のみを単独で分離することは非常に困難である。 よって、 両者は分別されずに廃材化されるが、 このような異種材料が混在した混合廃材は、 品質が一定にならないため、 そのまま再生品へ適用しても、 再生品の品質が一定 にならず、 工業製品として不適である。
従って、 工業的な再資源化を目的とする場合、 混合廃材の品質を一定とするこ とが何よりも重要である。 発明の開示
本発明は、 上記課題に鑑み、 硬質ウレタンフォームと真空断熱材とを含む断熱材 の再資源化に貢献することを目的とするものであり、 そのため混合廃材の品質を 一定とし、 高品位で再利用化するための断熱材のリサイクル処理方法、 および、 リサイクル物品を提供するものである。 硬質ウレタンフォームと真空断熱材とを 含む断熱材の再資源化に貢献するため、 また、 冷蔵庫のリサイクル率向上に寄与 するために、 混合廃材の品質を一定し、 高品位で再利用化するための冷蔵庫を提 供するものである。
上記目的を達成するため、 本発明の断熱材のリサイクル処理方法は、 硬質ウレ タンフォームと、 芯材として無機材料を用いた真空断熱材とを含む断熱材のリサ ィクル方法であって、 少なくとも、 硬質ウレタンフォームと無機材料を含む混合 材中における無機材料含有率を調整する無機材料含有率調整工程を備えたもので あり、 これにより混合材の品質を一定とする作用を有するため、 硬質ウレタンフ オームと、 芯材として無機材料を用いた真空断熱材とを含む断熱材の廃材を高品 位で再利用化することができる。
本発明の断熱材のリサイクル物品は、 硬質ウレタンフォームと、 芯材とし て無機材料を用いた真空断熱材とを含む断熱材をリサイクルして製造した物品に おいて、 少なくとも、 硬質ウレタンフォームと無機材料を含む混合材中における 無機材料含有率を調整する無機材料含有率調整工程を経て製造されたことを特徴 とするものであり、 これにより混合廃材の品質を一定とする作用を有する工程を 経て製造された物品であるため、 硬質ウレタンフォームと、 芯材として無機材料 を用いた真空断熱材とを含む断熱材の廃材を高品位で再利用化することができる。 本発明の冷蔵庫は、 芯材に無機材料を用いた真空断熱材と、 硬質ウレタンフォ ームとを備えた冷蔵庫であつて、 前記真空断熱材を備えることを判別可能な手段 を備えることを特徴とするものであり、 これにより冷蔵庫のリサイクル工程にお いて、 真空断熱材を備えた冷蔵庫専用の適切なリサイクルエ程を経たリサイクル が可能となり、 芯材として無機材料を用いた真空断熱材を含む断熱材の廃材を高 品位で再利用化することができる。 図面の簡単な説明
図 1は、 本発明のリサイクル処理方法の実施の形態 1の工程図。
図 2は、 本発明のリサイクル処理方法の実施の形態 2の工程図。
図 3は、 本発明のリサイクル処理方法の実施の形態 3の工程図。
図 4は、 本発明のリサイクル処理方法の実施の形態 4の工程図。
図 5は、 本発明のリサイクル処理方法の実施の形態 5の工程図。
図 6は、 本発明のリサイクル処理方法の実施の形態 6の工程図。
図 7は、 本発明のリサイクル物品の実施の形態 7のパ一ティクルポ一ドの断面 図。
図 8は、 本発明のリサイクル物品の実施の形態 8の真空断熱材の図。
図 9は、 本発明のリサイクル物品の実施の形態 9のパーティクルボードの断面 図。
図 1 0は、 本発明のリサイクル物品の実施の形態 1 0の真空断熱材の断面図。 図 1 1は、 本発明の冷蔵庫の実施の形態 1 1における模式図。 発明を実施するための最良の形態
本発明は、 硬質ウレタンフォームと、 芯材として無機材料を用いた真空断熱 材とを含む断熱材のリサイクル工程において、 少なくとも、 硬質ウレタンフォー ムと無機材料を含む混合廃材中における無機材料含有率を調整する無機材料含有 率調整工程を備えることを特徴とするものである。 使用済みの上記断熱材を再資 源化するため、 硬質ウレタンフォームと無機材料を含む混合廃材の品質を一定と し、 高品位で再利用するための断熱材のリサイクル処理方法、 および、 そのリサ ィクル物品、 冷蔵庫を提供するものである。 本発明によれば、 硬質ウレタンフォ ームと無機材料を含む混合廃材の品質を一定とし、 高品位での再利用を容易に行 うことが可能である。
以下、 本発明による実施の形態について、 図 1から図 1 0を用いて詳細に説明 する。 しかし、 本実施の形態は、 これらに限定されるものではない。
(実施の形態 1 )
図 1は、 実施の形態 1における冷蔵庫のリサイクル処理方法、 および、 リサイ クル物品であるパーティクルポードの製造方法を示した工程図である。
図 1を参照しながら、 処理手順を説明する。 図 1において、 廃棄物処理施設に 運搬されてきた廃棄冷蔵庫は、 最初に判別工程 1を通り、 外箱の表示に従って、 芯材に無機材料を用いた真空断熱材と、 硬質ウレタンフォームとを備えた冷蔵庫 (以下、 複合断熱体型冷蔵庫と称する) と、 硬質ウレタンフォームは使用するが 真空断熱材を備えていない冷蔵庫 (以下、 単一断熱体型冷蔵庫と称する) とに分 けられる。
次に、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫は、 コンプレッサー等の有 価物や冷凍機内の冷媒などの除去工程 2の後、 破碎工程 3を通り、 選別処理 4が 施される。 選別処理 4は、 破砕された廃棄物を、 磁力や風力などにより選別し、 それぞれ所定の材料毎に分離回収する処理である。 ここで選別された断熱材は、 次の発泡ガス回収工程 5で、 硬質ウレタンフォームに含まれる発泡ガスを回収さ れる。
複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫とは、 同一の破碎工程 3、 および、 選別処理工程 4、 発泡ガス回収工程 5を交代で使用できる。 また、 複合断熱体型 冷蔵庫を処理後、 単一断熱体型冷蔵庫を処理する場合には、 工程内に残留する無 機材料を除去するために、 工程内の洗浄を行うことが好ましい。
次に、 発泡ガスを回収された複合断熱体型冷蔵庫と単一断熱体型冷蔵庫から排 出された断熱材廃材は、 それぞれ異なる断熱材廃材回収塔 6 1, 6 2に貯蔵され る。 ここで、 複合断熱体型冷蔵庫からの断熱廃材を収めた回収塔 6 1では、 廃材 中の無機材料含有率を測定され、 次の無機材料含有率調整工程 7にて、 単一断熱 体型冷蔵庫からの断熱廃材との混合の際にその情報を利用する。
さらに、 無機材料含有率調整工程 7において、 それぞれの回収塔 6 1 , 6 2か ら、 無機材料含有率測定の結果を基に、 適切な量が混合機 8中へ供給され、 無機 材料含有率が適切に調整された混合廃材となる。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リサイクル物品の求められる物性に合わ せて、 適宜調整するものである。 実施の形態 1の場合、 適切な無機材料含有率は、 0 . 0 1 %以上、 1 0 %以下であり、 より好ましくは 0 . 0 1 %以上、 2 %以下 である。 パーティクルボードに高い曲げ強度を求める場合は、 無機材料含有率は 低い方が望ましい。
次の廃材加工工程 9において、 無機材料含有率が調整された混合廃材は、 粒度 調整工程 1 0で適切な粒度調整を施される。 さらに、 木材チップやバインダーと の混合工程 1 1と、 加圧成型工程 1 2を経て、 パーティクルポ一ド 1 3となる。 ここでの、 木材チップやバインダーとの混合は、 任意であり、 その添加量も限定 するものではない。
このように製造されたパーテイクルポ一ドは、 無機材料含有率を適切に調整し た硬質ウレタンフォームと無機材料を含む混合廃材を加圧成形されているため、 ポード材としての強度を保持でき、 硬質ウレタンフォームと芯材として無機材料 を用いた真空断熱材とを含む断熱材を高品位で再利用化することができる。
(実施の形態 2 )
図 2は、 実施の形態 1における冷蔵庫のリサイクル処理方法、 および、 リサイ クル物品である真空断熱材の製造方法を示した工程図である。
図 2を参照しながら、 処理手順を説明する。 図 2において、 廃棄物処理施設に 運搬されてきた廃棄冷蔵庫は、 最初に判別工程 1を通り、 外箱の表示に従って、 芯材にガラス繊維集合体を用いた複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫と に分けられる。
次に、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫とは、 コンプレッサー等の 有価物や冷凍機内の冷媒などを除去したのち更に選別され、 それぞれ所定の材料 毎に分離回収する。 次に選別された断熱材から、 発泡ガス回収工程 5で、 硬質ゥ レタンフォームに含まれる発泡ガスが回収される。
次に、 発泡ガスを回収された、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫と からそれぞれ排出された断熱材廃材は、 異なる断熱材廃材回収塔 6 1、 6 2に貯 蔵される。 ここで、 複合断熱体型冷蔵庫からの断熱廃材を収めた回収塔 6 1では、 廃材中の無機材料含有率を測定され、 次の無機材料含有率調整工程にて、 単一断 熱体型冷蔵庫からの断熱廃材との混合にその情報を利用する。
さらに、 無機材料含有率調整工程 7において、 無機材料含有率測定の結果を基 に、 それぞれの回収塔 6 1 , 6 2から適切な量が混合機 8中へ供給され、 無機材 料含有率が適切に調整された混合廃材となる。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リサイクル物品の求められる物性に合わ せて、 適宜調整するものである。 実施の形態 2の場合、 適切な無機材料含有率は、 0 . 1 %以上、 6 0 %以下であり、 より好ましくは 0 . 5 %以上、 4 0 %以下で ある。 真空断熱材の芯材として再利用する場合、 無機材料は、 硬質ウレタンフォ ーム廃材の充填性改良材として作用するため、 硬質ゥレタンフォーム粉体の表面 積の大きさにより、 最適添加量が決定される。
次の廃材加工工程 9において、 無機材料含有率が調整された混合廃材は、 その 後の工程 1 4で適切な微粉化処理を施され、 さらに、 封止工程 1 5では、 減圧下 で被覆材へ封止されることにより、 真空断熱材 1 6が作製される。
実施の形態 2で、 硬質ウレタンフォームとガラス繊維集合体を含む混合廃材は、 ガラス繊維集合体の含有率が適切に調整され、 かつ、 微粉化されるため、 硬質ゥ レ夕ンフォーム微粉体の充填性が改良される。 その結果、 製造された真空断熱材 は、 硬質ウレタンフォーム粉体が形成する空隙は、 従来と同じ空隙比率であって も、 空隙径が最小化され、 高断熱性を有するため、 硬質ウレタンフォームと芯材 として無機材料を用いた真空断熱材とからなる断熱材を高品位で再利用化するこ とができる。
(実施の形態 3 )
図 3は、 実施の形態 3における、 硬質ウレタンフォームと、 芯材として無機材 料を用いた真空断熱材とを含む冷蔵庫 (複合断熱材型冷蔵庫) のリサイクル処 理方法、 および、 リサイクル物品であるパ一ティクルボードの製造方法を示した 工程図である。
図 3を参照しながら、 処理手順を説明する。
廃棄物処理施設に運搬されてきた廃棄冷蔵庫は、 最初に判別工程 1を通り、 外箱 の表示に従って、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫とに分けられる。 なお、 単一断熱体型冷蔵庫とは硬質ウレタンフォームのみを断熱材として使用す る冷蔵庫である。
次に、 複合断熱体型冷蔵庫は、 コンプレッサー等の有価物や冷凍機内の冷媒な どの除去工程 2の後、 分離工程 1 7にて硬質ウレタンフォームと真空断熱材との 一体部材が切り出される。 分離工程 1 7を経ることにより、 他の部材とともに破 砕されることがないため、 選別処理の必要がないか、 あるいは非常に簡易な選別 処理のみでよい。 次に、 断熱廃材の一体部材を磨碎処理 1 8後に、 回収工程 5で断熱体に含まれ る発泡ガスを回収する。 発泡ガスの回収方法は、 特に磨砕処理に限定するもので はない。
次に、 発泡ガスを回収された後の、 複合断熱体型冷蔵庫から排出された硬質ゥ レ夕ンフォームと無機材料を含む混合廃材は、 断熱材廃材回収塔 6 1に貯蔵され る。 ここで測定される廃材中の無機材料含有率は、 次の無機材料含有率調整工程 にて利用される。
さらに、 無機材料含有率調整工程 7において、 硬質ウレタンフォームと、 無機 材料との比重差を利用して、 風力選別装置 1 9により無機材料の選別が行われる。 風力選別装置 1 9の運転条件は、 前工程 7で行った無機材料含有率の測定結果を 基に決定する。 本処理により、 無機材料含有率が適切に調整された混合廃材とな る。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リ サイクル物品の求められる物性に合わせて、 適宜調整するものである。 実施の形 態 3の場合、 適切な無機材料含有率は、 0 . 0 1 %以上、 1 0 %以下であり、 よ り好ましくは 0 . 0 1 %以上、 2 %以下である。 パーテイクルポ一ドに高い曲げ 強度を求める場合は、 無機材料含有率は低い方が望ましい。
次の廃材加工工程 9において、 無機材料含有率が調整された混合廃材は、 用途 に応じて適切な粒度に調整され (粒度調整処理 1 0 ) 、 さらに、 木材チップゃバ ィンダ一との混合工程 1 1の後、 加圧成型工程 1 2を経て、 パーティクルポード 1 3となる。
このように製造されたパーティクルボードは、 無機材料含有率を適切に調整し た硬質ウレタンフォームと無機材料を含む混合廃材とを加圧成形したものであり、 ポード材としての強度を保持でき、 硬質ゥレ夕ンフォームと芯材として無機材料 を用いた真空断熱材とを含む断熱材を高品位で再利用することができる。
また、 無機材料含有率調整方法が、 無機材料を除去するものであるため、 無機 材料含有率を低減することはもちろん可能であり、 さらに、 除去した無機材料を 任意に添加することにより、 無機材料含有率を増加することも可能である。 また、 除去方法、 および、 除去条件を選択することにより、 一方を無機材料含有率が低 減された廃材に、 もう一方を無機材料含有率が向上した廃材に、 二分することも 可能である。 また、 分離工程 3を有するため、 他の部材とともに破碎されるこ とがなく不純物の混入が非常に少ないパーティクルポード 1 3を製造できる。
(実施の形態 4 )
図 4は、 実施の形態 4における、 硬質ウレタンフォームと、 芯材としてガラス 繊維集合体を用いた真空断熱材とを含む冷蔵庫 (複合断熱体型冷蔵庫) のリサイ クル処理方法、 および、 リサイクル物品である真空断熱材の製造方法を示したェ 程図である。
図 4を参照しながら、 処理手順を説明する。
廃棄物処理施設に運搬されてきた廃棄冷蔵庫は、 最初に判別工程 1を通り、 電子 媒体に記録された情報をもとに、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫と に分けられる。 さらに、 ここでは、 無機材料重量と、 硬質ウレタンフォーム重量 をも読みとられる。 これらの情報は、 無機材料含有率調整工程 7において利用さ れる。 また、 この情報をリサイクル工程管理のために利用することもできる。 次に、 芯材にガラス繊維集合体を用いた複合断熱体型冷蔵庫は、 コンプレッサ —等の有価物や冷凍機内の冷媒などを除去工程 2の後、 分離工程 1 7にて硬質ゥ レタンフォームと真空断熱材との一体部材が切り出される。 分離工程を経ること により、 他の部材とともに破砕されることがないため、 選別処理が必要ないか、 あるいは非常に簡易な選別処理でよい。
次に、 断熱廃材の一体部材の磨砕処理 1 8後、 硬質ウレタンフォームに含まれ る発泡ガスの回収工程 5を有する。 この磨砕処理 1 8により、 硬質ウレタンフォ —ムと、 ガラス繊維集合体は、 共に細かく砕かれるが、 ガラス繊維集合体はもろ いため、 より細かく砕かれる。
次に、 発泡ガスを回収された硬質ウレタンフォームとガラス繊維集合体を含む 混合廃材は、 断熱材廃材回収塔 6 1に貯蔵される。 なお、 判別工程 1において、 無機材料重量と硬質ウレタンフォーム重量の情報を得ているため、 回収塔 6 1で は、 複合断熱体型冷蔵庫からの断熱廃材について、 廃材中の無機材料含有率を測 定する必要はない。
さらに、 無機材料含有率調整工程 7において、 硬質ウレタンフォームと、 ガラ ス繊維集合体との粒度の差異を利用して、 分級装置 2 0によりガラス繊維集合体 の選別が行われる。 分級装置の運転条件は、 判別工程における情報の結果を基に 決定する。 本処理により、 硬質ウレタンフォーム中の無機材料含有率が適切に調 整された混合廃材となる。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リサイクル物品の求められる物性に合わせて、 適宜調整する ものである。 実施の形態 4の場合、 適切な無機材料含有率は、 0 . 1 %以上、 6 0 %以下であり、 より好ましくは 0 . 5 %以上、 4 0 %以下である。 混合廃材を 真空断熱材の芯材として再利用する場合、 無機材料は、 硬質ウレタンフォーム廃 材の充填性改良材として作用する。 従って、 硬質ウレタンフォーム粉体の表面積 の大きさにより、 無機材料の最適添加量が決定される。
次の廃材加工工程 9において、 無機材料含有率が調整された混合廃材は、 適切 な微粉化処理 1 4を施され、 さらに、 減圧下で被覆材へ封止工程 1 5を経て、 真 空断熱材 1 6となる。
硬質ウレタンフォームと無機材料を含む混合廃材中の無機材料は、 含有率を適 切に調整され、 かつ、 微粉化されることにより、 硬質ウレタンフォーム微粉体の 充填性を改良する作用を有する。
実施の形態 4の製造方法を用いて製造された真空断熱材は、 硬質ウレタンフォ —ム粉体が形成する空隙径が最小化されることで高断熱性を有する真空断熱材が 得られ、 硬質ウレタンフォームと芯材として無機材料を用いた真空断熱材とを含 む断熱材を高品位で再利用化することができる。
また、 分離工程 3を有するため、 他の部材とともに破碎されることがなく不純 物の混入が非常に少ない真空断熱材 1 6を製造できる。 (実施の形態 5 )
図 5は、 実施の形態 5における、 硬質ウレタンフォームと、 芯材として乾式シ リカ微粉を用いた真空断熱材とを含む冷蔵庫 (複合断熱体型冷蔵庫) のリサイク ル処理方法、 および、 リサイクル物品である真空断熱材の製造方法を示した工程 図である。
図 5を参照しながら、 処理手順を説明する。
廃棄物処理施設に運搬されてきた廃棄冷蔵庫は、 最初に判別工程 1を通り、 電 子媒体に記録された情報をもとに、 複合断熱体型冷蔵庫と、 単一断熱体型冷蔵庫 とに分けられる。 さらに、 ここでは、 無機材料重量と、 硬質ウレタンフォーム重 量をも読みとられる。 これらの情報は、 無機材料含有率調整工程 7において利用 される。 また、 この情報をリサイクル工程管理のために利用することもできる。 次に、 芯材に乾式シリカを用いた複合断熱体型冷蔵庫は、 コンプレッサー等の 有価物や冷凍機内の冷媒などを除去する除去工程 2の後、 分離工程 1 7にて硬質 ウレタンフォームと真空断熱材との一体部材が切り出される。 分離工程を経るこ とにより、 他の部材とともに破碎されることがないため、 選別処理の必要がない か、 あるいは非常に簡易な選別処理でよい。
次に、 断熱廃材の一体部材を磨碎処理 1 8することにより、 硬質ウレタンフォ ームに含まれる発泡ガスを回収 5する。 この磨枠処理により、 硬質ウレタンフォ ームは粉砕されて微粉となるが、 乾式シリカ微粉は元々それより細かい粒径を有 するものである。
次に、 発泡ガスを回収された硬質ゥレタンフォームと乾式シリ力微粉を含む 混合廃材は、 断熱材廃材回収塔 6 1に貯蔵される。 なお、 判別工程において、 無 機材料重量と硬質ウレタンフォーム重量に関する情報を得ているため、 ここで、 複合断熱体型冷蔵庫からの断熱廃材中の無機材料含有率を測定する必要はない。 さらに、 無機材料含有率調整工程 7において、 硬質ウレタンフォームと、 乾式 シリカ微粉との粒度の差異を利用して、 分級装置 2 0により乾式シリカ微粉の選 別を行う。 分級装置 2 0の運転条件は、 判別工程における情報の結果を基に決定 する。 本処理により、 硬質ウレタンフォーム中の無機材料含有率が適切に調整さ れた混合廃材となる。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リサイクル物品の求められる物性に合わせて、 適宜調整するも のである。 実施の形態 5の場合、 適切な無機材料含有率は、 0 . 1 %以上、 6 0 %以下であり、 より好ましくは 0 . 5 %以上、 4 0 %以下である。 真空断熱材 の芯材として再利用する場合、 無機材料は、 硬質ウレタンフォーム廃材の充填性 改良材として作用するため、 硬質ゥレタンフォーム粉体の表面積の大きさにより、 最適添加量が決定されるものである。 充填性が改良されるとは、 粉体を充填し易 いこと、 または密に充填できることを指す。
次の廃材加工工程 9において、 無機材料含有率が調整された混合廃材に、 適切 な微粉化処理 1 4を施し、 さらに、 減圧下で被覆材へ封止 1 5することにより、 真空断熱材 1 6を得る。
硬質ゥレ夕ンフォームと乾式シリ力を含む混合廃材中の乾式シリ力の含有率を 適切に調整することにより、 硬質ゥレタンフォーム微粉体の充填性を改良出来る。 その結果、 実施の形態 5の製造方法を用いて製造された真空断熱材は、 硬質ウレ タンフォーム粉体が形成する空隙径が最小化されているため高断熱性を有する。 以上の方法により、 硬質ウレタンフォームと芯材として無機材料を用いた真空断 熱材とを含む断熱材を高品位で再利用化することができる。 (実施の形態 6 ) ·
図 6は、 実施の形態 6における、 硬質ウレタンフォームと、 芯材としてガラス 繊維集合体を用いた真空断熱材とを含む断熱体 (以下、 複合断熱体) のリサイク ル処理方法、 および、 リサイクル物品であるガラス繊維集合体の製造方法を示し た工程図である。
図 6を参照しながら、 処理手順を説明する。
廃棄物処理施設に運搬されてきた廃棄断熱体は、 まず、 分離工程 1 7にて硬質ゥ
-ムと真空断熱材との一体部材が切り出される。 分離工程 1 7を経る ことにより、 他の部材とともに破碎されることがないため、 選別処理の必要がな いか、 あるいは非常に簡易な選別処理でよい。
断熱廃材の一体部材を磨砕処理 1 8後に、 断熱体に含まれる発泡ガスの回収ェ 程 5を有する。
発泡ガスを回収後、 複合断熱体から排出された硬質ウレタンフォームと無機材 料を含む混合廃材は、 断熱材廃材回収塔 6 1に貯蔵される。 ここで、 複合断熱体 からの断熱廃材は、 廃材中のガラス含有率を測定され、 次の無機材料含有率調整 工程 7にて、 その情報を利用する。
さらに、 無機材料含有率調整工程 7において、 硬質ウレタンフォームと、 無機 材料との比重差を利用して、 風力選別装置 1 9によりガラス繊維の選別が行われ る。 風力選別装置 1 9の運転条件は、 無機材料含有率測定の結果を基に決定する。 ここでの無機材料含有率は、 0 . 0 1 %以上、 9 9 . 9 9 %以下であり、 リサイ クル物品の求められる物性に合わせて、 適宜調整する。 実施の形態 6の場合、 適 切な無機材料含有率は、 9 5 %以上、 9 9 . 9 9 %以下であり、 より好ましくは 9 8 %以上、 9 9 . 9 9 %以下である。 風力選別処理 1 9により、 ガラス繊維の 含有率が最高 9 9 . 9 9 %まで選別処理された、 ガラス繊維が主成分の混合廃材 となる。
次の廃材加工工程 9において、 ガラス繊維が主成分の混合廃材は、 適切な高温 溶融処理 2 1を施され、 遠心法 2 2により、 再びガラス繊維集合体 2 3となる。
(実施の形態 7 )
実施の形態 1の工程を経て製造されたリサイクル物品であるパ一ティクルポー ド 1 3の断面図を、 実施の形態 7における一実施例として図 7に示す。 図 7にお いて、 パーティクルボード 1 3は、 主構成材料として、 硬質ウレタンフォーム廃 材 2 4、 および、 真空断熱材の芯材である無機材料廃材 2 5、 木材チップ 2 6、 バインダ— 2 7を含むものである。 また、 破碎工程 3で破碎された廃棄物を、 磁 力や風力などにより選別したものであるため、 若干の不純物 2 8を含むものであ る。 パ一ティクルボードとは、 粒体状、 または粉体状の有機材料、 および、 無 機材料を、 加圧、 加熱、 バインダーなどを用いてボード化したものを指し、 断熱 材廃材は、 その構成材料として、 一部でも含まれていればよい。 (実施の形態 8 )
実施の形態 2の工程を経て製造されたリサイクル物品である真空断熱材 1 6の 断面図を、 実施の形態 8における一実施例として図 8に示す。 真空断熱材 1 6は、 金属箔層と熱可塑性ポリマ一層とを有する被覆材 2 9に、 硬質ウレタンフォーム 廃材 2 4、 および、 真空断熱材の芯材であるガラス繊維集合体廃材 3 0を微粉ィ匕 した芯材が充填されている。 前記芯材を 1 4 01で 1時間乾燥後、 被覆材 2 9に 挿入し、 その内部を圧力 1 3 . 3 P aまで減圧した ¾:、 開口部をヒートシールに より接着して真空断熱材 1 6を作製した。 作製した真空断熱材の熱伝導率を英弘 精機 (株) 製の A u t o— λにて、 平均温度 2 4 °Cで測定したところ、 0 . 0 0 6 0 K c a 1 /m · h · °C であり、 良好な断熱性能を示した。
このように構成された真空断熱材は、 微粉ィヒされたウレタンフォーム廃材表面 に微粉化されたガラス繊維集合体の廃材が付着し、 微粉ィヒされたウレタンフォー ム廃材の充填を促すため、 空隙径が最小化し、 優れた断熱性能を示すものである。
(実施の形態 9 )
実施の形態 3の工程を経て製造されたリサイクル物品であるパーティクルポー ド 1 3の断面図を、 実施の形態 9における一実施例として図 9に示す。 パーティ クルポ一ド 1 3は、 主構成材料として、 硬質ウレタンフォーム廃材 2 4、 および、 真空断熱材の芯材である無機材料廃材 2 5、 木材チップ 2 6、 バインダ一 2 7を 含むものである。 また、 他の部材とともに破砕されることのない分離工程 3にて、 硬質ゥレ夕ンフォームと真空断熱材との一体部材として切り出された断熱材廃材 を使用しているため、 不純物の混入が非常に少ない。 (実施の形態 1 o)
実施の形態 4の工程を経て製造されたリサイクル物品である真空断熱材 16の 断面図を、 実施の形態 10における一実施例として図 10に示す。 真空断熱材 1 6は、 金属箔層と熱可塑性ポリマ一層とを有する被覆材 29に、 硬質ウレタンフ オーム廃材 24、 および、 真空断熱材の芯材であるガラス繊維集合体廃材 30を 微粉化した芯材が充填されている。 前記芯材を 140°Cで 1時間乾燥後、 被覆材 29に揷入し、 その内部を圧力 13. 3Paまで減圧した後、 開口部をヒ一トシ ールにより接着して真空断熱材 16を作製した。 作製した真空断熱材の熱伝導率 を英弘精機 (株) 製の Au t o— λにて、 平均温度 24°Cで測定したところ、 0. 0055Kc a l/m- h であり、 さらに優れたな断熱性能を示した。 この ように構成された真空断熱材は、 微粉化されたウレタンフォーム廃材表面に微粉 化された無機材料廃材が付着し、 微粉化されたウレタンフォーム廃材の充填を促 すため、 空隙径が最小化し、 優れた断熱性能を示すものである。
また、 他の部材とともに破碎されることのない分離工程 3にて、 硬質ウレタン フォームと真空断熱材との一体部材として切り出された断熱材廃材を使用してい るため、 不純物の混入が非常に少なく、 そのため、 実施の形態 8よりも優れた断 熱性能を示すものと考える。
(実施の形態 11 )
実施の形態 11における一実施例の冷蔵庫 31を図 11示す。 冷蔵庫 31は、 硬質ウレタンフォームと、 芯材として無機材料を用いた真空断熱材を備えた複合 断熱体型冷蔵庫である。 冷蔵庫の外箱には、 表示管理板 32が貼り付けられてお り、 真空断熱材を用いていることを明記している。
表示管理板 32として、 情報の記録されたスマートメディアを添付して用いる か、 バーコード等の記録されたプレートなどを用いると、 判別工程にて記録され た情報を電子的に読みとつて、 冷蔵庫の処理方法を効率的に変更することができ る。 本発明の真空断熱材は、 芯材と被覆材とからなり、 減圧下で芯材を被覆材に封 入したものである。 なお、 長期間にわたって真空断熱材の真空度を維持するため、 合成ゼォライト、 活性炭、 活性アルミナ、 シリカゲル、 ドーソナイト、 ハイド口 タルサイトなどの物理吸着剤、 および、 アルカリ金属やアルカリ土類金属の酸化 物および水酸化物などの化学吸着剤などの、 水分吸着剤やガス吸着剤を被覆材内 部に混在させてもよい。 また、 真空封止前に、 芯材の乾燥工程を加えても良い。 本発明の被覆材には、 芯材と外気とを遮断することが可能な材料が利用できる。 例えば、 ステンレススチール、 アルミニウム、 鉄などの金属薄板や、 それらの金 属薄板とプラスチックフィルムとのラミネート材などである。 ラミネート材は、 表面保護層、 ガスバリア層、 および熱溶着層を有することが好ましい。 表面保護 層としては、 ポリエチレンテレフタレ一トフイルム、 ポリプロピレンフィルムの 延伸加工品などが利用でき、 さらに、 外側にナイロンフィルムなどを設けると可 とう性が向上し、 耐折り曲げ性などが向上する。 ガスバリア層としては、 アルミ などの金属箔フィルムや金属蒸着フィルムが利用可能であるが、 よりヒ一トリー クを抑制し、 優れた断熱効果を発揮するには金属蒸着フィルムが好ましい。 ポリ エチレンテレフ夕レートフィルム、 エチレン ·ビエルアルコール共重合体樹脂フ イルム、 ポリエチレンナフ夕レートフィルムなどのフィルムの表面に金属を蒸着 したものが好ましい。 また、 熱溶着層としては、 低密度ポリエチレンフィルム、 高密度ポリエチレンフィルム、 ポリプロピレンフィルム、 ポリアクリロニトリル フィルム、 無延伸ポリエチレンテレフタレ一トフィルムなどが使用可能である。 本発明の無機材料は、 繊維、 粉体、 多孔体、 発泡体などの多様な形態で使用で きる。 例えば、 繊維としては、 グラスウール、 セラミックファイバ一、 ロックゥ ールなど、 無機材料を繊維化したものが利用できる。 不織布状、 織物状、 綿状な ど形状は問わないまた、 無機繊維を集合体とするために、 有機バインダーを用い ても良い。 粉体としては、 凝集シリカ粉末、 発泡パーライト粉碎粉末、 珪藻土粉 末、 ケィ酸カルシウム粉末、 炭酸カルシウム粉末、 炭酸カルシウム粉末、 クレー、 タルクなど、 無機材料が粉末化されたものが利用できる。 また、 多孔体としては、 シリ力エア口ゲル、 アルミナエア口ゲルなどの無機酸化物エア口ゲルなどが適用 できる。 また、 これらの 2種以上の混合物であっても良い。 本発明の無機材料含有率は、 硬質ウレタンフォームと無機材料を含む混合廃材 中における無機材料の重量を分子とし、 硬質ウレタンフォーム重量と無機材料重 量の総和を分母とする断熱材廃材中の無機材料の重量割合である。 断熱材廃材か ら製造するリサイクル物品に求める性状により、 0 . 0 1 %以上、 9 9 . 9 9 % 以下に調整する。 なお、 適切な無機材料含有率は、 適用する再生品に求められる 物性により異なるが、 真空断熱材の芯材として再生する場合には、 0 . 1 %以上、 2 0 %以下が適当である。
また、 工業的に 0 . 0 1 %以下、 9 9 . 9 9 %以上の無機材料含有率とすること は困難である。 実施の形態では、 無機材料混合率の調整方法は、 複合断熱体から作製した硬質 ウレタンフォームおよび無機材料と、 単一断熱体から作製した硬質ウレ夕ンフォ —ムとを、 一定の無機材料含有率になるよう混合する方法、 または、 複合断熱材 から作製した硬質ウレタンフォームと無機材料とを含む混合廃材から、 一定の無 機材料含有率になるよう無機材料を分離する方法などを説明したが、 本発明はれ これらの方法に限定するものではない。 なお、 硬質ウレタンフォームと、 芯材と してガラス繊維集合体を用いた真空断熱材とを含む断熱体を複合断熱体と称し、 真空断熱材を含まない断熱体を単一断熱体と称する。
分離する方法としては、 分級技術としては、 乾式分級、 湿式分級、 ふるい分け 分級などが利用でき、 また、 比重分離法などが利用できる。 使用する無機材料の 特性、 および、 破砕工程や分離工程の後の混合廃材の性状により、 適切な分離方 法を選択することが望ましい。 また、 本発明の破砕工程における破砕方法としては、 プレシュレッダ一や、 1 軸力一シュレッダ一など、 汎用の破碎機が利用できる。 また、 2種以上の破砕機 の組み合わせにより、 粗破碎された後は、 さらに細かく破碎することも可能であ る。 本発明のパーティクルボードとは、 粒体状、 または粉体状の有機材料、 および、 無機材料を、 加圧処理、 加熱処理、 バインダーなどを用いてボード化したものを 指し、 断熱材廃材は、 その構成材料として、 一部でも含まれていればよい。 バイ ンダ一としては、 複合廃材を含む粒子を結着可能な有機材料、 および無機材料の バインダーを利用することか可能である。 有機材料であれば、 一般に用いられて いる熱可塑性樹脂や熱硬化性樹脂を用いることができる。 熱可塑性樹脂としては、 ポリプロピレン、 ポリエチレン、 ポリスチレン、 スチレン一ブタジエン一ァクリ ロニトリル共重合体、 ポリアミド、 ポリカーボネート、 ポリアセタール、 ポリエ チレンテレフ夕レートなどが使用可能である。 また、 熱硬化性樹脂としては、 フ エノ一ル、 ユリア、 メラミン、 ウレタンなどの適用が可能である。 これらは単独 でも、 または、 2種類以上の混合物としても用いることができる。 また、 無機系 バインダーは、 水ガラス、 コロイダルシリカ、 シリカゾル、 アルミナゾルなど無 機質材料であって、 結合材として作用するものであれば、 使用可能である。 本発明の冷蔵庫は、 通常の動作温度帯である一 3 0 °Cから常温で使用する冷蔵 庫だけでなく、 また自動販売機などの、 より高温までの範囲で温冷熱を利用した 機器も含む。 また、 電気機器に限ったものではなく、 ガス機器なども含むもので ある。 本発明の判別手段として、 (1 ) 冷蔵庫に真空断熱材を具備することを明記し た表示管理板を取り付ける方法や、 (2 ) 真空断熱材を備えることや、 芯材重量 および硬質ウレタンフォーム重量を表示したパーコードを取り付け自動判別する 方法などが使用できるが、 本発明は、 これらのみに限定されるものではない。 図 1 1に示すように、 判別手段は、 冷蔵庫の外箱に表示又は記録されていること が好ましく、 より好ましくは背面である。 側面や天面の手前は一般家庭での使用 時にシールやワッペンなどが貼付されるため、 判別するためのセンサー機能が阻 害される可能性があり、 また、 冷蔵庫の内部に判別手段を設けた場合は、 内部探 索センサ一が必要となり判別が煩雑となるからである。 一方、 冷蔵庫の背面は通 常壁の近傍にあり、 購入時の状態で保持されることが多く、 センサー機能が阻害 される危険性が少ない。 本発明のガラス繊維集合体は、 短繊維、 長繊維によらず、 A—ガラス、 Cーガ ラス、 E—ガラスなどのガラス組成により構成される繊維質の成形体であり、 バ インダ一の使用、 不使用を問わない。 原綿状であっても、 またマット状に成型さ れていても使用可能である。 特に、 遠心法によって製造される短繊維は、 リサイ クル原料使用の実績があり、 コスト的にも安価なため、 望ましい。 真空断熱材の 製造にあたっては、 バインダーにより成型されているものの方が、 被覆材への揷 入が容易である、 寸法安定性に優れる等の利点があるため、 好ましい。 産業上の利用可能性
本発明によれば、 硬質ウレタンフォームと真空断熱材とを含む断熱材の再資源 化への貢献を図るため、 混合廃材の品質を一定とし、 高品位で再利用化するため の断熱材のリサイクル処理方法、 および、 リサイクル物品を提供することができ る。 また、 硬質ウレタンフォームと真空断熱材とを含む断熱材の再資源ィ匕への貢 献を図るため、 また、 混合廃材の品質を一定し、 高品位で再利用化するための冷 蔵庫を提供することができ、 使用済み冷蔵庫のリサイクル率を向上し、 再資源化 に貢献することができるとともに、 省資源ィヒを可能とする地球環境に優しい冷蔵 庫を提供することができる。 よって、 その工業的価値は大である。

Claims

請求の範囲
1 . 無機材料を芯材として用いる真空断熱材と硬質ウレタンフォームとからなる 断熱体のリサイクル方法であって、
前記断熱体を粉碎する工程と、
前記粉砕された断熱体からなる混合材中の無機材料含有率を調整する無機 材料含有率調整工程を有することを特徴とする。
2 . 請求項 1記載の断熱体のリサイクル方法であって、 さらに、 硬質ウレタンフ オームからなる第二の断熱体を粉砕する工程を有し、
前記無機材料含有率調整工程が、 粉枠した前記真空断熱材を含む断熱体と 粉砕した前記第二の断熱体を混合することにより、 所定の値の無機材料含有率を 有する前記混合材を得る工程である。
3 . 請求項 1記載の断熱体のリサイクル方法であって、 前記無機材料含有率調整 工程が、 粉砕した前記断熱体中の前記無機材料と前記硬質ウレタンフォームとを 選別する操作を有し、 所定の値の無機材料含有率を有する前記混合材を得る工程 である。
4 . 請求項 3記載の断熱体のリサイクル方法であって、 前記選別操作が、 前記無 機材料と前記硬質ウレタンフォームとの比重差を利用した風力選別である。
5 . 請求項 3記載の断熱体のリサイクル方法であって、 前記選別操作が、 粉碎さ れた前記無機材料と粉砕された前記硬質ゥレタンフォームとの粒度の差を利用し た分級処理である。
6 . 請求項 1記載の断熱体のリサイクル方法であって、 さらに、 分離工程を有し、 前記分離工程は、 冷蔵庫本体から、 前記真空断熱材と前記硬質ウレタンフ オームとを一体部材として切り出す工程である。
7 . 請求項 1記載の断熱体のリサイクル方法であって、 さらに廃材加工工程を有 し、
前記廃材加工工程は、 前記無機材料調整工程で得られた混合材を再利用可 能な形態に加工する工程である。
8 . 請求項 7記載の断熱体のリサイクル方法であって、 前記廃材加工工程が、 パーティクルボードを成型する工程であって、 前記混合材を加圧する処理 を含む。
9 . 請求項 7記載の断熱体のリサイクル方法であって、 前記廃材加工工程が、 真 空断熱材を製造する工程であって、
前記混合材を微粉化する処理と、
得られた微粉を減圧下で被覆材中に封止する工程とを含む。
1 0 . 請求項 1記載の断熱体のリサイクル方法であって、 さらに、 冷蔵庫が有す る判別手段から、 無機材料重量値と、 硬質ウレタンフォーム重量値を読みとる判 別工程を有し、
前記無機材料含有率調整工程が、 前記無機材料重量値と前記硬質ゥレ夕ン フォーム重量値を前記混合材中における無機材料含有率の調整に利用することを 特徴とする。
1 1 . 請求項 1記載の断熱体のリサイクル方法であって、 前記無機材料がガラス 繊維集合体である。
12. 無機材料を芯材として用いる真空断熱材と硬質ウレタンフォームとからな る断熱体をリサイクルして作製される物品であって、 前記真空断熱材と前記硬質 ウレタンフォームからなる混合材中の無機材料含有率が、 0. 01%以上、 99. 99%以下に調整されていることを特徴とする。
13. 請求項 12記載のリサイクル物品であって、 前記物品が前記混合材を加圧 して成形されてなるパーティクルポ一ドである。
14. 請求項 12記載のリサイクル物品であって、 前記物品が前記混合材からな る粉体を減圧下で被覆材中に封止して作製される真空断熱材である。
15. 請求項 14記載のリサイクル物品であって、 前記粉体が、 0. 1%以上、 20 %以下の無機材料を含有する。
16. 芯材に無機材料を用いた真空断熱材と、 硬質ウレタンフォームとからなる 断熱体を備えた冷蔵庫であって、 判別手段を有し、
前記判別手段は、 前記断熱体が、 前記真空断熱材を含むことを記録する。
17. 請求項 16記載の冷蔵庫であって、 前記判別手段は前記無機材料の重量値 と、 前記硬質ウレタンフォームの重量値を記録する。
18. 請求項 16記載の冷蔵庫であって、 前記判別手段を冷蔵庫の外箱の表面に 有する。
19. 請求項 16記載の冷蔵庫であって、 前記判別手段が電子的に読み取り可能 な媒体であることを特 ί敷とする。
20. 請求項 16記載の冷蔵庫であって、 前記無機材料がガラス繊維集合体であ る。
PCT/JP2003/009990 2002-08-06 2003-08-06 断熱材のリサイクル処理方法、リサイクル物品および冷蔵庫 WO2004016404A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20030788046 EP1527863B1 (en) 2002-08-06 2003-08-06 Method for recycling treatment of thermal insulating material and recycled article
AU2003252416A AU2003252416A1 (en) 2002-08-06 2003-08-06 Method for recycling treatment of thermal insulating material, recycled article and refrigerator
US10/521,105 US20060163395A1 (en) 2002-08-06 2003-08-06 Method for recycling thermal insulation material, recycled article and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-228901 2002-08-06
JP2002228901A JP2004066628A (ja) 2002-08-06 2002-08-06 断熱材のリサイクル処理方法、リサイクル物品、および、冷蔵庫

Publications (1)

Publication Number Publication Date
WO2004016404A1 true WO2004016404A1 (ja) 2004-02-26

Family

ID=31884331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009990 WO2004016404A1 (ja) 2002-08-06 2003-08-06 断熱材のリサイクル処理方法、リサイクル物品および冷蔵庫

Country Status (7)

Country Link
US (1) US20060163395A1 (ja)
EP (1) EP1527863B1 (ja)
JP (1) JP2004066628A (ja)
KR (1) KR20050025971A (ja)
CN (1) CN100579757C (ja)
AU (1) AU2003252416A1 (ja)
WO (1) WO2004016404A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440171B (zh) * 2008-10-22 2011-07-13 无锡吉兴汽车部件有限公司 汽车顶衬的聚氨酯复合废料类材料的回收工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL212679B1 (pl) * 2008-01-16 2012-11-30 Os Bad Rozwojowy Przem Poligr Sposób wytwarzania plyt termoizolacyjnych
CN103548036B (zh) 2011-05-17 2014-10-22 松下电器产业株式会社 字符串提取方法和字符串提取装置
KR101139422B1 (ko) * 2011-07-12 2012-04-27 마루기건 주식회사 무기질 단열재를 포함하는 단열커버 제조방법
JP6139474B2 (ja) * 2014-06-20 2017-05-31 株式会社日立製作所 リサイクル方法およびリサイクルシステム
CN106239772B (zh) * 2016-08-03 2018-05-15 界首市钰泽塑业有限公司 一种挤压式分离混纺衣物成分的方法
DE102018112749A1 (de) * 2018-05-28 2019-11-28 Dieffenbacher GmbH Maschinen- und Anlagenbau Verfahren und Anlage zur Aufbereitung von Verbundwerkstoffen und eine Werkstoffplatte aus zerkleinerten Verbundwerkstoffen

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190372A (en) 1975-02-06 1976-08-07 Paateikuruboodono seizoho
JPH02144183A (ja) 1988-11-25 1990-06-01 Nichias Corp 保温保冷廃材類の減容処理法およびその装置
EP0442113A2 (de) 1990-02-13 1991-08-21 APU GmbH, GESELLSCHAFT FÜR ANALYTIK UND PLANUNG VON UMWELTTECHNOLOGIE Verfahren und Vorrichtung zur Beseitigung von Kühlgeräten
WO1996035524A1 (de) 1994-04-08 1996-11-14 Bresch Entsorgung Gmbh Verfahren zum recyclen von kühlgeräten
US5769333A (en) 1991-12-02 1998-06-23 Hitachi, Ltd. Method of and apparatus for recovering foaming gas of the foamed material
JPH10310663A (ja) 1997-05-09 1998-11-24 Takeda Chem Ind Ltd ポリウレタン樹脂の分解回収方法
JPH11201375A (ja) 1998-01-09 1999-07-30 Hitachi Ltd 真空断熱パネル挿入型箱体の冷蔵庫および冷凍庫
JP2000291882A (ja) 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd 真空断熱体の製造方法
JP2000291880A (ja) 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd 真空断熱材および真空断熱材の製造方法
US6164030A (en) 1996-07-29 2000-12-26 Bayer Aktiengesellschaft Fixed vacuum insulation panel
US6217804B1 (en) 1993-08-09 2001-04-17 American Commodities, Inc. Painted plastic material recycling process
JP2001183054A (ja) 1999-12-24 2001-07-06 Mitsubishi Electric Corp 冷蔵庫及び冷蔵庫の製造方法
EP1149862A1 (en) 2000-04-28 2001-10-31 Matsushita Refrigeration Company Method of recycling rigid polyurethane foam
JP2001349664A (ja) 2000-06-05 2001-12-21 Sanyo Electric Co Ltd 廃棄物等を利用した真空断熱に用いる真空断熱材およびそれに用いるコア材の製造方法
JP2002079595A (ja) 2000-09-08 2002-03-19 Matsushita Refrig Co Ltd 複合圧着板及び複合圧着板の製造方法
JP2002167446A (ja) 2000-12-01 2002-06-11 Nippon Steel Chem Co Ltd リサイクルボード
JP2002188791A (ja) 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
EP1400770A1 (en) 2001-06-04 2004-03-24 Matsushita Refrigeration Company INSULATED BOX BODY, REFRIGERATOR HAVING THE BOX BODY, AND METHOD OF RECYCLING MATERIALS FOR INSULATED BOX BODY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779066A (en) * 1952-05-23 1957-01-29 Gen Motors Corp Insulated refrigerator wall
US2863179A (en) * 1955-06-23 1958-12-09 Gen Motors Corp Refrigerating apparatus
EP0188806B1 (en) * 1984-12-27 1991-11-13 Matsushita Refrigeration Company Rigid polyurethane foam containing heat insulating body
US4726974A (en) * 1986-10-08 1988-02-23 Union Carbide Corporation Vacuum insulation panel
JPH05342224A (ja) * 1992-06-09 1993-12-24 Hitachi Ltd 廃棄物情報管理装置及び廃棄物リサイクル計画支援装置
US5992742A (en) * 1994-08-05 1999-11-30 Sullivan; Scott L. Pill printing and identification
JP3876491B2 (ja) * 1997-02-27 2007-01-31 三菱電機株式会社 真空断熱パネル及びその製造方法並びにそれを用いた冷蔵庫
US6112502A (en) * 1998-02-10 2000-09-05 Diebold, Incorporated Restocking method for medical item dispensing system

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190372A (en) 1975-02-06 1976-08-07 Paateikuruboodono seizoho
JPH02144183A (ja) 1988-11-25 1990-06-01 Nichias Corp 保温保冷廃材類の減容処理法およびその装置
EP0442113A2 (de) 1990-02-13 1991-08-21 APU GmbH, GESELLSCHAFT FÜR ANALYTIK UND PLANUNG VON UMWELTTECHNOLOGIE Verfahren und Vorrichtung zur Beseitigung von Kühlgeräten
US5769333A (en) 1991-12-02 1998-06-23 Hitachi, Ltd. Method of and apparatus for recovering foaming gas of the foamed material
US6217804B1 (en) 1993-08-09 2001-04-17 American Commodities, Inc. Painted plastic material recycling process
WO1996035524A1 (de) 1994-04-08 1996-11-14 Bresch Entsorgung Gmbh Verfahren zum recyclen von kühlgeräten
US6164030A (en) 1996-07-29 2000-12-26 Bayer Aktiengesellschaft Fixed vacuum insulation panel
JPH10310663A (ja) 1997-05-09 1998-11-24 Takeda Chem Ind Ltd ポリウレタン樹脂の分解回収方法
JPH11201375A (ja) 1998-01-09 1999-07-30 Hitachi Ltd 真空断熱パネル挿入型箱体の冷蔵庫および冷凍庫
JP2000291880A (ja) 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd 真空断熱材および真空断熱材の製造方法
JP2000291882A (ja) 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd 真空断熱体の製造方法
JP2001183054A (ja) 1999-12-24 2001-07-06 Mitsubishi Electric Corp 冷蔵庫及び冷蔵庫の製造方法
EP1149862A1 (en) 2000-04-28 2001-10-31 Matsushita Refrigeration Company Method of recycling rigid polyurethane foam
JP2001349664A (ja) 2000-06-05 2001-12-21 Sanyo Electric Co Ltd 廃棄物等を利用した真空断熱に用いる真空断熱材およびそれに用いるコア材の製造方法
JP2002079595A (ja) 2000-09-08 2002-03-19 Matsushita Refrig Co Ltd 複合圧着板及び複合圧着板の製造方法
JP2002167446A (ja) 2000-12-01 2002-06-11 Nippon Steel Chem Co Ltd リサイクルボード
JP2002188791A (ja) 2000-12-21 2002-07-05 Matsushita Refrig Co Ltd 真空断熱材、真空断熱体、断熱箱体の処理方法、真空断熱材および真空断熱体の製造方法、および冷蔵庫
EP1400770A1 (en) 2001-06-04 2004-03-24 Matsushita Refrigeration Company INSULATED BOX BODY, REFRIGERATOR HAVING THE BOX BODY, AND METHOD OF RECYCLING MATERIALS FOR INSULATED BOX BODY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1527863A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440171B (zh) * 2008-10-22 2011-07-13 无锡吉兴汽车部件有限公司 汽车顶衬的聚氨酯复合废料类材料的回收工艺

Also Published As

Publication number Publication date
CN100579757C (zh) 2010-01-13
EP1527863B1 (en) 2013-03-20
AU2003252416A1 (en) 2004-03-03
EP1527863A1 (en) 2005-05-04
EP1527863A4 (en) 2007-02-14
CN1675042A (zh) 2005-09-28
US20060163395A1 (en) 2006-07-27
KR20050025971A (ko) 2005-03-14
JP2004066628A (ja) 2004-03-04

Similar Documents

Publication Publication Date Title
KR100574807B1 (ko) 단열 상자체와 이것을 갖는 냉장고 및 단열 상자체용재료의 재활용 방법
JP3876491B2 (ja) 真空断熱パネル及びその製造方法並びにそれを用いた冷蔵庫
JPH05147040A (ja) 廃棄物の処理装置
JP2002188791A5 (ja)
JP2002277156A (ja) 断熱箱体、原料製造方法、および冷蔵庫
WO2004016404A1 (ja) 断熱材のリサイクル処理方法、リサイクル物品および冷蔵庫
JP5193713B2 (ja) 冷凍冷蔵庫
JP3752519B2 (ja) 真空断熱体およびその真空断熱体を用いた断熱箱体
US5251824A (en) Process for the removal of foaming agents from foamed plastics
US6013684A (en) Method for recycling a cured phenolic resin into a molded article and a vacuum thermal insulator of the molded article
JP2005344870A (ja) 真空断熱材、及び真空断熱材を具備する冷蔵庫
JPH0847927A (ja) 廃棄物の処理方法及び装置
JP2000291881A (ja) 減圧断熱体とその製造方法
JP2001349664A (ja) 廃棄物等を利用した真空断熱に用いる真空断熱材およびそれに用いるコア材の製造方法
JP4239948B2 (ja) 冷蔵庫
JP3647300B2 (ja) フェノール樹脂硬化物の再生利用方法および真空断熱体
JP2004058364A (ja) 複合圧着板及び複合圧着板の製造方法
JP2003227594A (ja) 真空断熱パネル及びこれを用いた冷蔵庫
JP3527727B2 (ja) 真空断熱材及びその真空断熱材を用いた機器
JP2735040B2 (ja) 断熱材中の発泡剤の回収方法及び装置
JP3144007B2 (ja) 発泡断熱材の発泡ガスの回収方法
EP1015209A1 (en) Method of benefiting from waste polyurethane foam material as an input material in production of a composite material and composite material produced with this method
JP2003011122A (ja) 圧縮ウレタン粉末及びそれを用いたポリウレタン原料の製造方法、ならびに該ポリウレタン原料を用いた硬質ウレタンフォーム及び冷蔵庫の製造方法
JP2002079595A (ja) 複合圧着板及び複合圧着板の製造方法
JP2941600B2 (ja) 発泡断熱材の発泡ガスの回収方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006163395

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057001170

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003788046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003818673X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057001170

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003788046

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10521105

Country of ref document: US