WO2004001819A1 - 半導体素子の製造方法およびリング状補強部材 - Google Patents

半導体素子の製造方法およびリング状補強部材 Download PDF

Info

Publication number
WO2004001819A1
WO2004001819A1 PCT/JP2003/007975 JP0307975W WO2004001819A1 WO 2004001819 A1 WO2004001819 A1 WO 2004001819A1 JP 0307975 W JP0307975 W JP 0307975W WO 2004001819 A1 WO2004001819 A1 WO 2004001819A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor substrate
reinforcing member
ring
shaped reinforcing
semiconductor
Prior art date
Application number
PCT/JP2003/007975
Other languages
English (en)
French (fr)
Inventor
Humiaki Mita
Original Assignee
Sanken Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co., Ltd. filed Critical Sanken Electric Co., Ltd.
Priority to JP2004530924A priority Critical patent/JP4239974B2/ja
Priority to US10/518,131 priority patent/US7148126B2/en
Publication of WO2004001819A1 publication Critical patent/WO2004001819A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device having a relatively thin semiconductor substrate and a ring-shaped reinforcing member used for the method.
  • a power semiconductor element such as a power transistor includes a semiconductor substrate in which a plurality of semiconductor regions are formed, and electrodes formed on both surfaces of the semiconductor substrate.
  • This type of power semiconductor device usually includes a semiconductor substrate having a relatively small thickness.
  • a power semiconductor element having a thin semiconductor substrate has been manufactured, for example, by the procedure described below.
  • a semiconductor substrate 100 is prepared.
  • a plurality of semiconductor regions are formed in one surface region of the semiconductor substrate 100 by impurity diffusion or the like.
  • a plurality of semiconductor elements are formed by the plurality of semiconductor regions.
  • electrodes such as an emitter electrode and a source electrode are formed.
  • the first reinforcing member 1 1 is fixed to one surface of the semiconductor substrate 100 with an organic adhesive (for example, an ultraviolet curable resin).
  • an organic adhesive for example, an ultraviolet curable resin
  • the other surface of the semiconductor substrate 100 is cut or etched to make the semiconductor substrate 100 thinner as shown in FIG. 4B.
  • the first reinforcing member 101 is for preventing the semiconductor substrate 100 from being cracked or chipped.
  • the first reinforcing member 101 is fixed to the semiconductor substrate 100 so that the semiconductor substrate 100 The strength is supplemented.
  • a metal film 102 is formed on the other surface of the semiconductor substrate 100 by sputtering, vacuum evaporation, or the like, as shown in FIG. 4C.
  • the metal film 102 is patterned to form electrodes such as a collector electrode and a drain electrode.
  • a second reinforcing member 103 to which the ring-shaped frame 104 is fixed is attached to the other surface of the semiconductor substrate 100.
  • the second reinforcing member 103 is for fixing each semiconductor element chip when dicing the semiconductor substrate 1 • 0 into individual semiconductor element chips, for example.
  • the semiconductor substrate 100 is divided into a plurality of semiconductor element chips 106 by a dicing blade 105 as shown in FIG. 4E.
  • the second reinforcing member 103 is removed from each semiconductor element chip 106.
  • the semiconductor element chips 106 are individually separated and sent to the next step such as a bonding step.
  • the first material member 101 is fixed to one surface of the semiconductor substrate 100 with an organic adhesive.
  • a vacuum degree of about and 1 0 0 ° Celsius to 2 0 0 ° C a temperature of about the first reinforcing member 1 0 1, sputtering Ya in the semiconductor substrate 1 0 0 secured
  • the organic adhesive decomposes and generates gas. Due to this gas, the film quality of the metal film 102 deteriorates.
  • the present invention has been made in view of the above circumstances, and provides a method of manufacturing a semiconductor element capable of easily preventing a semiconductor substrate from being cracked or chipped, and a ring-shaped reinforcing member used for the method.
  • the purpose is to:
  • Another object of the present invention is to provide a method for manufacturing a semiconductor element capable of forming a highly reliable electrode and a ring-shaped reinforcing member used for the method.
  • Still another object of the present invention is to provide a method for manufacturing a semiconductor element capable of preventing a semiconductor substrate from being cracked or chipped without increasing a manufacturing cost, and a ring-shaped reinforcing member used for the method. I do. Disclosure of the invention
  • a semiconductor substrate (11) on which a plurality of semiconductor devices are formed is prepared, and the semiconductor substrate (11) is thinned.
  • the ring-shaped reinforcing member is fixed to the semiconductor substrate whose strength has been reduced by thinning, thereby preventing the semiconductor substrate from being cracked. I have.
  • a ring-shaped reinforcing member whose outer diameter is the same as that of the semiconductor substrate, it can be used as a special jig, for example, when using a special jig to supplement the strength of a thinly processed semiconductor substrate. There is no need to change the transport unit and cassette.
  • the adhesive member for fixing the ring-shaped reinforcing member to the semiconductor substrate. Therefore, under the conditions for forming the metal film, the adhesive member does not generate a gas that adversely affects the formation of the metal film by melting. This makes it possible to form a highly reliable electrode.
  • the reinforcing member (13) has an opening at the center and has a ring shape having an outer diameter equal to the outer diameter of the semiconductor substrate (11).
  • the semiconductor substrate (13) The reinforcing member (13) is fixed to one surface of the semiconductor substrate (11) with the adhesive member together with the outer peripheral edge of the ring-shaped reinforcing member (13) along with the outer peripheral edge of the third reinforcing member.
  • the metal film (15) may be formed on one surface of the semiconductor substrate (11) exposed through the opening of the ring-shaped reinforcing member (13).
  • the bonding member is made of a metal or an alloy having a melting point higher than the processing temperature in the third step, or a heat-resistant resin having a melting point or softening point higher than the processing temperature in the third step. May be done.
  • the heat resistant resin may be a polyimide resin.
  • a layer (14, 25) of the adhesive member is formed on one surface of the ring-shaped reinforcing member (13), and one surface of the ring-shaped reinforcing member (13) is formed on the semiconductor substrate ( 11), the layers (14, 25) of the adhesive member interposed between the ring-shaped reinforcing member (13) and the semiconductor substrate (11) are melted by heating, and the adhesive member is cooled.
  • the ring-shaped reinforcing member (13) may be fixed to the semiconductor substrate (11).
  • a first tape-shaped reinforcing member (12) is attached to the other surface of the prepared semiconductor substrate (11) with an organic adhesive, and the first tape-shaped reinforcing member is provided.
  • the semiconductor substrate (11) is thinned to a predetermined thickness by processing the one surface of the semiconductor substrate (11) in a state where the (12) is attached, and in the second step, In a state where the first tape-shaped reinforcing member (12) is attached to the other surface of the semiconductor substrate (11), the ring-shaped reinforcing member (13) is attached to one surface of the semiconductor substrate by a bonding material layer (
  • the ring-shaped reinforcing member (13) is fixed to the semiconductor substrate (11) while the ring-shaped reinforcing member (13) is fixed to the semiconductor substrate (11).
  • the metal film (15) is attached to the semiconductor substrate through the opening of the ring-shaped reinforcing member (13). To form formed on one side of (11), may be.
  • the layer (14) of the adhesive member may have a melting point lower than the heat resistance temperature of the first tape-shaped reinforcing member (12).
  • a second tape-shaped reinforcing member (18) is attached to the other surface of the semiconductor substrate (11), and the ring-shaped reinforcing member (18) is attached from one surface of the semiconductor substrate (11). 13) may be removed, and the semiconductor substrate (11) may be diced into chips (22) constituting each semiconductor element.
  • the layer (14) of the adhesive member has a melting point lower than the heat resistant temperature of the second tape-shaped reinforcing member (18), and is lower than the heat resistant temperature of the second tape-shaped reinforcing member (18). By melting the layer (14) of the adhesive member by heating at a temperature, the ring-shaped reinforcing member (13) is removed from the semiconductor substrate (11).
  • a first tape member (11) is attached to the other surface of the prepared semiconductor substrate (11) with an organic adhesive, and a thin tape is applied to one surface of the semiconductor substrate (11).
  • the semiconductor substrate (11) is fixed on a stage (24) having a heater, and the semiconductor substrate (11) is fixed to a predetermined thickness.
  • the linear expansion coefficient of the first tape-shaped reinforcing member (12) and the semiconductor substrate (11) are increased. ))
  • the warpage generated in the semiconductor substrate (11) due to the difference from the linear expansion coefficient of the semiconductor substrate (11) may be reduced.
  • a ring reinforcing member is used in a manufacturing process of a semiconductor element including a semiconductor substrate (11) thinly processed to a predetermined thickness.
  • the semiconductor substrate (11) has a ring-like shape having an outer diameter equal to the outer diameter of the semiconductor substrate (11), and is fixed to one surface of the semiconductor substrate (11) by an adhesive member.
  • the semiconductor substrate (11), which has been lowered in thickness by processing it thinly, is less likely to have a reduced temperature.
  • the ring-shaped reinforcing member is fixed to the semiconductor substrate by an adhesive member made of, for example, an inorganic adhesive or a polyimide resin, thereby compensating for the reduced strength of the semiconductor substrate due to the thin processing. Further, since the ring-shaped reinforcing member is fixed to the semiconductor substrate with, for example, an inorganic adhesive or a polyimide resin, no gas is generated under the processing conditions for forming an electrode on one surface or the other surface of the semiconductor substrate. In addition, since the ring-shaped reinforcing member has the same outer diameter as the semiconductor substrate, it is necessary to change the existing transport unit according to the special jig, such as when holding the semiconductor substrate with a special jig There is no. Therefore, it is not necessary to significantly change the manufacturing unit, and it is possible to prevent cracks and chips from occurring in the thinly processed semiconductor substrate without increasing the manufacturing cost.
  • an adhesive member made of, for example, an inorganic adhesive or a polyimide resin
  • the ring-shaped reinforcing member may have a thickness larger than a predetermined thickness of the thinly processed semiconductor element.
  • the ring-shaped reinforcing member may be made of the same material as the semiconductor substrate (11) and have a coefficient of linear expansion equal to that of the semiconductor substrate (11).
  • FIG. 1A to 1J are side views for explaining the method for manufacturing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state where a reinforcing ring is fixed to a semiconductor substrate.
  • 3A to 3G are side views for explaining the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • 4A to 4E are side views for explaining a conventional method for manufacturing a semiconductor device.
  • a semiconductor substrate (semiconductor wafer) 11 is prepared.
  • the semiconductor substrate 11 is made of, for example, single-crystal silicon and has a substantially circular shape with a thickness of, for example, 500 ⁇ m and a diameter of 15 mm (6 inches).
  • a plurality of semiconductor regions (not shown) for forming a plurality of semiconductor elements are formed by impurity diffusion or the like.
  • a metal film (not shown) is formed by sputtering, vacuum deposition, or the like. This metal film forms one end of an electrode of a semiconductor element, for example, an emitter electrode or a base electrode of a power transistor.
  • the first tape member 12 is coated with an ultraviolet curable adhesive, a low tack adhesive, It is fixed to one surface of the semiconductor substrate 11 with an organic adhesive such as an inverse resin.
  • the first tape member 12 is made of a resin having high heat resistance, for example, a polyethylene terephthalate resin, a vinyl chloride resin, or a polyolefin resin.
  • the first tape member 12 protects one surface of the semiconductor substrate 11 and also prevents the semiconductor substrate 11 from being cracked or chipped when the semiconductor substrate 11 is thinned in the next step. It is for.
  • a portion near the other surface of the semiconductor substrate 11 is removed by back grinding (cutting) or chemical etching to make the semiconductor substrate 11 thinner.
  • a semiconductor substrate having a thickness of 500 ⁇ m is thinned to a thickness of 100 ⁇ m. Since the semiconductor substrate 11 is reinforced by the first tape member 12 attached to one surface thereof, the occurrence of cracks and chips due to mechanical stress generated when processing the thin substrate is suppressed. Or have been prevented.
  • the reinforcing ring 13 is fixed to the other surface of the semiconductor substrate 11 as shown in FIG. 1C.
  • the reinforcing ring 13 is made of, for example, the same material as the semiconductor substrate 11 (for example, single crystal silicon), and is formed by cutting a central portion of a disk-shaped silicon substrate into a circle.
  • FIG. 2 shows a state in which the reinforcing ring 13 is fixed to the semiconductor substrate 11.
  • the outer diameter of the reinforcing ring 13 is set to be substantially the same as the outer diameter of the semiconductor substrate 11.
  • the reinforcing ring 13 is attached along the outer peripheral edge of the semiconductor substrate 11.
  • the other surface of the semiconductor substrate 11 is exposed through a central portion (a portion cut into a circle) of the reinforcing ring 13 as a region where an electrode is to be formed.
  • the reinforcing ring 13 has, for example, a width of about 5 to 7 mm and a thickness of about 400 to 900 ⁇ m, and the strength of the semiconductor substrate 11 when attached to the semiconductor substrate 11 is reduced.
  • the thickness of the reinforcing ring 13 is preferably set to a value larger than the thickness of the thinly processed semiconductor substrate 11 among the semiconductor substrates 11. More preferably, The strong ring 13 is formed so that the combined thickness of the thinly processed semiconductor substrate 11 and the reinforcing ring 13 is substantially the same as the combined thickness of the semiconductor substrate 11 and the tape member 12 before thinning. Good to be.
  • semiconductor substrate 11 is cut by 400 m, and reinforcing ring 13 has a thickness of about 600 m.
  • the reinforcing ring 13 is fixed to the semiconductor substrate 11 by an inorganic adhesive layer 14.
  • the inorganic adhesive layer 14 is made of, for example, a material constituting the semiconductor substrate 11, that is, an inorganic material having good adhesion to silicon. Further, the inorganic material 14 has a melting point lower than the heat resistant temperature of the first tape member 12 and higher than a temperature (for example, 100 ° C. to 200 ° C.) at which a later-described sputtering or vacuum deposition step is performed.
  • Examples of the inorganic material satisfying such conditions include metals such as indium (melting point 156.6 ° C), tin (melting point 232 ° C), bismuth (melting point 271.4 ° C), and alloys thereof.
  • metals such as indium (melting point 156.6 ° C), tin (melting point 232 ° C), bismuth (melting point 271.4 ° C), and alloys thereof.
  • Can be The inorganic material to be used is selected according to the temperature at which the sputtering / vacuum deposition process is performed and the heat-resistant temperature of the first tape member 12.
  • the melting point (liquidus temperature) of an alloy composed of 42% tin and 58% bismuth is 138.5 ° C
  • Phase temperature) is 124 ° C
  • the melting point (liquidus temperature) of the alloy composed of 60% tin and 40% bismuth is 170 ° C
  • Temperature) is 117 ° C
  • the melting point of an alloy composed of 50% indium and 50% tin is 127 ° C.
  • the fixing of the reinforcing ring 13 to the semiconductor substrate 11 using the inorganic adhesive layer 14 as described above can be specifically performed as follows.
  • the inorganic adhesive layer 14 is formed on one surface of the reinforcing ring 13 by, for example, plating.
  • the inorganic adhesive layer 14 is provided on the entire surface of the reinforcing ring 13 or in a dotted manner so that the semiconductor substrate 11 and the reinforcing ring 13 are sufficiently fixed.
  • one surface of the reinforcing ring 13 on which the inorganic adhesive layer 14 is formed is overlapped with the other surface of the semiconductor substrate 11. Subsequently, these are heated at a temperature at which the inorganic adhesive layer 14 melts (a temperature equal to or higher than the melting point of the metal or alloy constituting the inorganic adhesive layer 14). Then, by cooling these, the inorganic adhesive layer 14 is hardened, and the reinforcing ring 13 is fixed to the semiconductor substrate 11.
  • the melting point of the metal or alloy constituting the inorganic adhesive layer 14 is lower than the heat resistant temperature of the first tape member 12. Therefore, when the inorganic adhesive layer 14 is heated and melted, the first tape member 12 is prevented from being deteriorated by heat.
  • the first tape member 12 is peeled off from one surface of the semiconductor substrate 11 and removed as shown in FIG. 1D.
  • the adhesive is irradiated with ultraviolet rays. As a result, a polymerization reaction occurs and the adhesive force of the adhesive decreases, so that the first tape member 12 can be easily separated from the semiconductor substrate 11.
  • the semiconductor substrate 11 is transported to a metal film forming unit in order to form a metal film (electrode) on the other surface of the semiconductor substrate 11.
  • a metal film forming unit in order to form a metal film (electrode) on the other surface of the semiconductor substrate 11.
  • the total thickness of the semiconductor substrate 11 (for example, ⁇ ⁇ ⁇ ) and the reinforcing ring 13 (for example, 60 ⁇ ⁇ ⁇ ) is It is almost the same as the thickness of the substrate 11. Therefore, the semiconductor substrate 11 and the reinforcing ring 13 can be transported by using an existing transport device for transporting the conventional semiconductor substrate 11 that is not thinned.
  • a metal film 15 is formed on the other surface of the semiconductor substrate 11 by sputtering, vacuum evaporation, or the like, as shown in FIG.
  • the metal film 15 is made of, for example, titanium, nickel, gold, platinum, or the like, and is formed with a thickness of, for example, 0.5 m. ing.
  • This metal film 15 constitutes, for example, a collector electrode of a power transistor.
  • the metal film 15 is formed not only on the other surface of the semiconductor substrate 11 but also on the upper surface of the reinforcing ring 13.
  • the inorganic adhesive layer 14 is made of a metal or an alloy having a melting point higher than the processing temperature of sputtering or vacuum deposition. For this reason, unlike the organic adhesive, the inorganic adhesive layer 14 is formed under the conditions for forming the metal film 15, for example, at a processing temperature of 100 ° C. to 200 ° C. and a vacuum density of about 100 ° C. 1 0- 5 P a (1 0 one 7 T orr) in not undergo a state change, it does not generate gas.
  • the inorganic adhesive layer 14 Since the inorganic adhesive layer 14 is not melted by heat when the film is formed, the semiconductor substrate 11 can be maintained in a state of being securely held by the reinforcing ring 13. In this way, by fixing the reinforcing ring 13 to the semiconductor substrate 11 with an adhesive made of an inorganic material, a highly reliable metal film 15 can be formed without adverse effects. .
  • the semiconductor substrate 11 is transferred to another processing unit. During this transfer, the semiconductor substrate 11 is reinforced by the reinforcing ring 13 and a sufficient thickness is given by the reinforcing ring 13 so that the conventional semiconductor substrate which is not thinned is processed.
  • a convex stage (susceptor) 16 for mounting the semiconductor substrate 11 is arranged.
  • the upper surface of the convex portion of the stage 16 is formed as a flat surface having a diameter smaller than the inner diameter of the reinforcing ring 13.
  • a semiconductor substrate 11 is placed on this flat surface with the surface (the other surface) to which the reinforcing ring 13 is fixed facing downward.
  • the metal film 15 formed on the other surface of the semiconductor substrate 11 and the flat surface are in contact with each other. At least a portion of the projection of the stage 16 that is in contact with the metal film 15 is made of metal and is connected to the inspection circuit 30.
  • the inspection circuit 30 is connected to a probe 17 provided in the processing unit. Probe 17 is a semiconductor substrate
  • a second tape member 18 is attached to one surface of the semiconductor substrate 11 using an organic adhesive (not shown).
  • the second tape member 18 is made of a resin material having a heat-resistant temperature higher than the melting point of the inorganic adhesive layer 14, similarly to the first tape member 12.
  • the semiconductor substrate 11 is heated at a temperature equal to or higher than the melting point of the inorganic adhesive layer 14 with the second tape member 18 fixed on one surface and the reinforcing ring 13 fixed on the other surface. I do.
  • the inorganic adhesive layer 14 is melted, and the reinforcing ring 13 is removed from the semiconductor substrate 11 as shown in FIG. 1H. Since the heat resistant temperature of the second tape member 18 is higher than the melting point of the inorganic adhesive layer 14, it does not deteriorate due to heat when removing the reinforcing ring 13.
  • the strength of the semiconductor substrate 11 is sufficiently maintained even after the reinforcing ring 13 is removed. . In this state, the inorganic material remains on the other surface of the semiconductor substrate 11.
  • a dicing tape 19 is attached to the other surface of the semiconductor substrate 11.
  • the dicing tape 19 is made of, for example, Shiridani vinyl / polyester.
  • the dicing tape 19 is held by a ring-shaped carrier member 20 arranged on the outer peripheral edge thereof.
  • the second tape member 18 is removed from the semiconductor substrate 11.
  • the second tape member 18 is attached to one surface of the semiconductor substrate 11 with an ultraviolet curable adhesive, the second tape member 18 can be removed by irradiating ultraviolet rays.
  • the semiconductor substrate 11 is placed on the dicing stage 23 so that the dicing tape 19 is in contact with the upper surface of the dicing stage 23.
  • the dicing stage 23 is made of, for example, a porous material.
  • the semiconductor substrate 11 placed on the dicing stage 23 is fixed to the dicing stage 23 by sucking air from below 5 of the dicing stage 23.
  • the semiconductor substrate 11 is diced with a dicing blade 21.
  • individual semiconductor elements (die) 22 are separated from the semiconductor substrate 11. Since the dicing tape 19 is adhered to the semiconductor substrate 11 with, for example, an ultraviolet-curable adhesive, the semiconductor substrate 11 is irradiated with ultraviolet rays 10 to peel off the dicing tape 19 from each die 22. Then, each die 22 is picked up by a suction jig called a collet and transported to a cut for executing the next step such as die bonding.
  • the inorganic adhesive layer 14 made of a metal or an alloy is used to The metal ring 15 15 is formed by fixing the capturing ring 13 to the semiconductor substrate 11.
  • the tape member is not fixed to the semiconductor substrate 11 with an organic adhesive for reinforcement, and sputtering or vacuum
  • An electrode can be formed by vapor deposition or the like. This makes it possible to form the electrode (metal film 15) 20 in a state where no gas is generated from the organic adhesive or the like, so that a highly reliable semiconductor element can be manufactured.
  • the inorganic adhesive layer 14 is made of a metal or an alloy having a melting point 25 lower than the heat resistant temperature of the first tape member 12. Therefore, the first tape member 12 is attached to the semiconductor substrate 11 without deteriorating the first tape member 12, and the inorganic adhesive layer
  • the reinforcing ring 13 can be fixed to the semiconductor substrate 11 by melting 14. Further, the total thickness of the thinly processed semiconductor substrate 11 and the reinforcing ring 13 is substantially equal to the thickness of the original semiconductor element before being thinly processed. Therefore, existing manufacturing units can be used as they are. Therefore, by using the capturing ring 13 of the present embodiment, it is possible to prevent the thin semiconductor substrate 11 from being cracked or chipped without significantly increasing the manufacturing cost.
  • a semiconductor substrate 11 is prepared.
  • the semiconductor substrate 11 has a plurality of semiconductor elements formed thereon as in the first embodiment.
  • An electrode is formed on one surface of the semiconductor substrate 11.
  • the first tape member 12 is attached to one surface of the semiconductor substrate 11 via, for example, an ultraviolet-curable adhesive, and the semiconductor substrate 11 is thinned.
  • the semiconductor substrate 11 having a thickness of 500 m initially is reduced to a thickness of 100 ⁇ .
  • the semiconductor substrate 11 is placed on the suction stage 24 with the other surface to which the first tape member 12 is attached facing up, as shown in FIG.
  • the suction stage 24 is made of, for example, a porous material.
  • the semiconductor substrate 11 is fixed on the suction stage 24 by suction from below the suction stage 24.
  • the suction stage 24 includes a heater 31 and heats the semiconductor substrate 11 by setting the suction surface (the surface on which the semiconductor substrate 11 is mounted) to a temperature approximately 5 to 70 ° C. higher than room temperature. .
  • the suction stage 24 puts the mounted semiconductor substrate 11 several tens of degrees below room temperature. C Heat to a high temperature (eg, 40-70 ° C).
  • the semiconductor substrate 11 to which the first tape member 1 2 is attached has a semiconductor substrate 1 1
  • warping is caused by a difference in linear expansion coefficient between the first tape member 12 and the first tape member 12. This warpage is reduced by heating by the suction stage 24.
  • the first tape member 12 is attached to one surface of the semiconductor substrate 11 while the semiconductor substrate 11 is heated to a predetermined temperature. For this reason, when the temperature of the semiconductor substrate 11 decreases, the semiconductor substrate 11 may be warped due to a difference in linear expansion coefficient. Therefore, the semiconductor substrate 11 to which the first tape member 12 is adhered is heated again on the suction stage 24 to reduce the warpage caused by the difference in linear expansion coefficient. This makes it possible to execute the processing in the subsequent various steps with high accuracy.
  • the first tape member 12 is removed from the semiconductor substrate 11 fixed to the suction stage 24.
  • a forcing ring 13 similar to that of the first embodiment is prepared, and is fixed to the semiconductor substrate 11 via a heat-resistant adhesive layer 25 as shown in FIG. 3C.
  • the heat-resistant adhesive layer 25 is made of, for example, a polyimide resin.
  • the heat-resistant adhesive layer 25 has a melting point or a softer point higher than a temperature (for example, 100 to 200 ° C.) at which a later-described sputtering or vacuum deposition step is performed.
  • the fixing of the reinforcing ring 13 to the semiconductor substrate 11 using the heat-resistant adhesive layer 25 can be specifically performed as follows.
  • the heat-resistant adhesive layer 25 is formed on one surface of the reinforcing ring 13 by applying, for example, a melted or softened heat-resistant adhesive.
  • the reinforcing ring 13 is placed on the semiconductor substrate 11 such that one surface of the reinforcing ring 13 faces one surface of the semiconductor substrate 11.
  • the semiconductor substrate 11, the reinforcing ring 13, the heat-resistant adhesive layer 25, etc. are heated at a temperature higher than the temperature at which a sputtering / vacuum deposition step described later is performed, and the heat-resistant adhesive layer 25 is melted or softened again. Let me go.
  • the reinforcing ring 13 is fixed to the semiconductor substrate 11.
  • the fixing of the reinforcing ring 13 is performed after the first tape member 12 is separated from the semiconductor substrate 11.
  • the semiconductor substrate 11 is fixed to the suction stage 24, the strength of the semiconductor substrate 11 is sufficiently ensured. This suppresses or prevents the semiconductor substrate 11 from being cracked or chipped when the reinforcing ring 13 is fixed.
  • the semiconductor substrate 11 is transported to a metal film forming unit for forming a metal film.
  • the reinforcing ring 13 is fixed to the semiconductor substrate 11, so that the strength of the semiconductor substrate 11 is sufficiently ensured, and the occurrence of cracks and chips is suppressed or prevented.
  • the total thickness of the semiconductor substrate 11 and the reinforcing ring 13 is substantially the same as the thickness of the unprocessed semiconductor substrate 11. For this reason, the semiconductor substrate 11 and the reinforcing ring 13 can be transported by the existing transport device for transporting the conventional semiconductor substrate 11 that has not been thinned.
  • a metal film 15 is formed on the other surface of the semiconductor substrate 11 by sputtering and vacuum evaporation as shown in FIG. 3D.
  • the metal film 15 is made of, for example, titanium, nickel, gold, platinum, or the like, and is formed with a thickness of, for example, 0.5 ⁇ m.
  • a reinforcing ring 13 is fixed to the semiconductor substrate 11 by a heat-resistant adhesive layer 25 made of a polyimide resin.
  • the heat-resistant adhesive layer 25 has a melting point or softening point higher than the temperature at which the sputtering or vacuum deposition process is performed. At 0 ° C and a degree of vacuum of about 10 to 5 Pa (10 to 7 Torr), no gas is generated due to decomposition or the like.
  • the metal film 15 can be formed without adverse effects.
  • the metal film 15 is patterned if necessary, for example, to form a collector electrode of a power transistor.
  • the semiconductor substrate 11 is transferred to another processing unit. Also in this transfer, the semiconductor substrate 11 stably held by the reinforcing ring 13 can be transferred by the existing heat transfer device.
  • a stage 26 having a flat plane is arranged in the processing unit.
  • the transferred semiconductor substrate 11 is placed on the flat surface of the stage 26.
  • the semiconductor substrate 11 is placed on the stage 26 with the surface on which the reinforcing ring 13 is attached facing upward, so that the stage 26 is the same as the stage 16 of the first embodiment. It does not need to be convex.
  • At least a portion of the stage 26 in contact with the semiconductor substrate 11 is made of metal and connected to the detection circuit 30.
  • This inspection circuit 30 is also connected to a probe 27 provided in the processing unit. Inspection is performed by the probe 27 in the same manner as in the first embodiment.
  • a dicing tape 19 is attached to the other surface of the semiconductor substrate 11 as shown in FIG. 3F in the same manner as in the first embodiment.
  • the dicing tape 19 is made of bicarbonate chloride, polyester, or the like, and is held by a ring-shaped carrier member 20 arranged along the outer peripheral edge thereof.
  • the semiconductor substrate 11 is mounted on the dicing stage 23. More specifically, semiconductor substrate 11 is placed on dicing stage 23 so that dicing tape 19 attached to the other surface of semiconductor substrate 11 is in contact with the upper surface of dicing stage 23.
  • the semiconductor substrate 11 placed on the dicing stage 23 is fixed to the upper surface of the dicing stage 23 by, for example, suction from below the dicing stage 23 as in the first embodiment.
  • the semiconductor substrate 11 is diced with the dicing blade 21 while being fixed to the dicing stage 23.
  • the dicing tape 19 is peeled off from the individual semiconductor elements (dies) 22 separated by dicing in the same manner as in the first embodiment.
  • each die 22 is picked up by a suction jig called a collet and transported to a unit for performing the next processing (for example, die bonding).
  • the semiconductor substrate 11 at the portion where the reinforcing ring 13 is fixed is not used as the die 22, the semiconductor substrate 11 is removed while the reinforcing ring 13 remains fixed.
  • the reinforcing ring 13 is fixed to the semiconductor substrate 11 after the first tape member 12 is separated from the semiconductor substrate 11. Therefore, when fixing the reinforcing ring 13, it is not necessary to consider the heat resistance of the first tape member 12. As a result, the degree of freedom of the material that can be used as the first tape member 12 is greater than in the first embodiment, so that cost reduction and the like can be achieved.
  • the semiconductor substrate 11 processed thin is heated, the warpage caused by the difference in linear expansion coefficient between the semiconductor substrate 11 and the first tape member 12 is reduced. be able to.
  • the number of tape member replacement steps is smaller than in the manufacturing method of the first embodiment, and higher productivity can be realized.
  • the manufacturing methods of the first and second embodiments can be executed by a computer controlling a transport unit, a semiconductor processing unit, and the like based on a program.
  • the present invention is not limited to the above embodiment.
  • the manufacturing methods of the first and second embodiments may be appropriately combined.
  • the heat-resistant adhesive layer 25 may be used in place of the inorganic adhesive layer 14 in the first embodiment, and may be used instead of the heat-resistant adhesive layer 25 in the second embodiment.
  • An inorganic adhesive layer 14 may be used.
  • the case where the reinforcing ring 13 is made of the same material as the semiconductor substrate 11 has been described as an example.
  • the coefficient of linear expansion of the semiconductor substrate 11 and the reinforcing ring 13 can be made the same, and the occurrence of distortion or the like due to the difference in the coefficient of linear expansion can be reduced or prevented.
  • the reinforcing ring 13 may be made of another material.
  • the semiconductor substrate 11 is formed of a silicon single crystal substrate.
  • the semiconductor substrate 11 may be made of a compound semiconductor such as indium-monosilicon carbide.
  • the case where a power semiconductor element is manufactured has been described as an example.
  • the invention is not limited to this, and another type of semiconductor element using a relatively thin semiconductor substrate may be manufactured.
  • This invention can be utilized for the manufacturing method of the semiconductor element provided with the comparatively thin semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

薄く加工された半導体基板(11)の一面に、例えばシリコンから構成されるリング状の補強リング(13)を固着させる。補強リング(13)は、比較的融点の低い金属、合金または比較的融点あるいは軟化点が低いポリイミド系樹脂から構成される無機接着材層(14)によって固着される。半導体基板(11)に補強リング(13)を固着させた状態で、金属膜(15)の形成処理を行う。補強リング(13)は、半導体基板11と同一の外径を有する。また、薄く加工された半導体基板(11)の厚さと補強リング(13)の厚さとを合わせた厚さは、薄く加工されていない半導体基板(1l)の厚さとほぼ等しいので、補強リング(13)が固着された状態の半導体基板(11)を既存の搬送ユニット等で搬送することができる。

Description

明細書
半導体素子の製造方法おょぴリング状補強部材 技術分野
本発明は、 比較的薄い半導体基板を備える半導体素子の製造方法及びこれに用 いるリング状補強部材に関する。 背景技術
例えばパワートランジスタ等のパワー系半導体素子は、 複数の半導体領域が形 成されている半導体基板と、 半導体基板の両面に形成された電極とを備える。 電子機器の小型化に伴い、 パワー系半導体素子のなかには小型化、 薄型化され たものがある。 この種のパワー系半導体素子は、 通常、 厚みが比較的薄い半導体 基板を備えている。
従来、'薄い半導体基板を備えたパワー系半導体素子は、 例えば以下に説明する 手順で製造されていた。
まず、 図 4 Aに示すように、 半導体基板 1 0 0を用意する。 この半導体基板 1 0 0の一面の表面領域には、 複数の半導体領域が不純物拡散等に って形成され ている。これらの複数の半導体領域によつて複数の半導体素子が形成されている。 また、 半導体基板 1 0 0の一面には、 ェミッタ電極やソース電極等の図示しない 電極が形成されている。
次に、 半導体基板 1 0 0の一面に、 第 1の補強部材 1◦ 1を有機系接着剤 (例 えば、 紫外線硬化性樹脂) で固着する。
続いて、 半導体基板 1 0 0の他面を切削またはエッチングして、 半導体基板 1 0 0を、 図 4 Bに示すように薄くする。
半導体基板 1 0 0を薄くすると、 半導体基板 1 0 0の強度が低下する。 このた め、 半導体基板 1 0 0単独では、 後続する種々の工程でのハンドリングや搬送の 際に、 半導体基板 1 0 0に割れや欠けが生じやすい。 第 1の補強部材 1 0 1は、 半導体基板 1 0 0に割れや欠けが生じることを防止するためのものであり、 半導 体基板 1 0 0に固着された状態で、 半導体基板 1 0 0の強度を補っている。
続いて、 半導体基板 1 0 0の他面にスパッタリングや真空蒸着等により、 図 4 Cに示すよ'うに金属膜 1 0 2を形成する。 金属膜 1 0 2をパターニングして、 コ レクタ電極やドレイン電極等の電極を構成する。
次に、 図 4 Dに示すように、 リング状のフレーム 1 0 4が固着された第 2の補 強部材 1 0 3を半導体基板 1 0 0の他面に貼りつける。第 2の補強部材 1 0 3は、 例えば、 半導体基板 1◦ 0を個々の半導体素子チップにダイシングする際に、 該 各半導体素子チップを固定するためのものである。 続いて、 第 1の捕強部材 1 0
1を半導体基板 1 0 0から除去する。
続いて、 半導体基板 1 0 0は、 図 4 Eに示すように、 ダイシング刃 1 0 5によ つて複数の半導体素子チップ 1 0 6に分割される。
そして、 第 2の補強部材 1 0 3を各半導体素子チップ 1 0 6から除去する。 こ' れによって、 半導体素子チップ 1 0 6は、 個々に分離され、 ボンディング工程等 の次の工程に送られる。
上述した従来の製造工程では、 半導体基板 1 0 0の一面に有機系接着剤で第 1 のネ唐強部材 1 0 1を固着している。
しかしながら、 この手法では、 半導体基板 1 0 0の他面に金属膜 1 0 2を形成 する際に、 有機系接着剤の成分が揮発して、 金属膜 1 0 2の形成に悪影響を与え る場合がある。
例えば、 1 0— 5 P a程度の真空度かつ 1 0 0 °C〜 2 0 0 °C程度の温度で、 第 1 の補強部材 1 0 1が,固着された半導体基板 1 0 0にスパッタリングや真空蒸着等 を施すと、 有機系接着剤が分解してガスが発生する。 このガスのために、 金属膜 1 0 2の膜質が低下してしまう。
半導体基板 1 0 0の強度を補うとともに、 金属膜 1 0 2の膜質の低下を防止す るため、 専用の治具によって半導体基板 100を保持した状態で半導体基板 10 0の搬送等をすることも考えられる。 しかし、 専用治具を使用する場合、 既存の 搬送ユニット、 カセット、 ステージ等を使用することができず、 専用治具に対応 させて製造プロセスのュ-ットを変更しなくてはならない。
このように、 半導体基板に割れや欠けが生じることを防止することは、 様々な 問題があり、 従来は困難であった。
本発明は上記実状に鑑みてなされたもので、 半導体基板に割れや欠けが発生す ることを容易に防止することができる半導体素子の製造方法及ぴこれに用いるリ ング状補強部材を提供することを目的とする。
また、 本発明は、 信頼性の高い電極を形成することができる半導体素子の製造 方法及ぴこれに用いるリング状補強部材を提供することを目的とする。
さらに、 本発明は、 製造コストの増大を招くことなく半導体基板に割れや欠け が発生することを防止することができる半導体素子の製造方法及びこれに用いる リング状補強部材を提供することを目的とする。 発明の開示
上記目的を達成するため、本発明の第 1の観点に係る半導体素子の製造方法は、 複数の半導体素子が形成された半導体基板 (11) を用意し、 該半導体基板 (1 1) を薄くする第 1の工程と、 前記半導体基板 (11) の一面に、 該一面の一部 を露出する補強部材 (13) を接着部材によって固着させる第 2の工程と、 前記半導体基板 (11) の一面の露出部分または該半導体基板 (1 1) の他面 に、 前記半導体素子が備える電極を構成するための金属膜 (15) を形成する第 3の工程と、 前記補強部材 (13) を前記半導体基板 (1 1) から除去し、 該半 導体基板 (11) をダイシングする第 4の工程と、 を含んでおり、 前記接着部材 (13、 25) は、 状態が前記第 3の工程における処理温度よりも高い温度で変 化する材料から構成されている、 ことを特徴とする。 このように、 この製造方法では、 薄く加工することによって強度が低下した半 導体基板に、 リング状の補強部材を固着することによって、 この半導体基板に割 れゃ欠けが発生することを防止している。 外径が半導体基板と等しいリング状の 補強部材を使用することにより、 例えば、 薄く加工された半導体基板の強度を補 うための専用の治具等 使用する場合のように、 専用の治具にあわせて搬送ュニ ットゃカセットを変更する必要がない。 さらに、 この製造方法では、 半導体基板 にリング状の補強部材を固着するための接着部材に、 金属膜を形成する際に加わ る温度では状態変化を起こさない材料を用いている。 このため、 金属膜形成条件 下で、 接着部材が金属膜の形成に悪影響をもたらすガスを溶融によって生じさせ ない。 これにより、 信頼性の高い電極を形成することが可能となる。
前記補強部材 (13) は、 中心に開口を有し、 前記半導体基板 (11) の外径 と等しい外径を有するリング状の形状を有し、 前記第 2の工程では、 該半導体基 板 (11) の外周縁と該リング状の補強部材 (13) の外周縁とを合わせて該半 導体基板 (11) の一面に該補強部材 (13) を前記接着部材によって固着し、 前記第 3の工程は、 前記リング状の補強部材 (13) の開口を介して露出した 前記半導体基板 (11) の一面に、 前記金属膜 (15) を形成する、 ようにして もよい。 ,
前記接着部材は、 前記第' 3の工程における処理温度よりも高い融点を有する金 属あるいは合金、 または前記第 3の工程における処理温度よりも高い融点あるい は軟化点を有する耐熱性樹脂から構成されてもよい。
前記耐熱性樹脂は、 ポリイミド系榭脂であってもよい。
前記第 2の工程では、 前記リング状の補強部材 (13) の一面に前記接着部材 の層 (14、 25) を形成し、 前記リング状の補強部材 (13) の一面を前記半 導体基板 (11) の一面に重ね、 加熱によって前記リング状の補強部材 (13) と前記半導体基板 (11) との間に介在する前記接着部材の層 (14、 25) を 溶融させ、 冷却によって前記接着部材の層 (14、 25) を固化させることによ り、 前記リング状の補強部材 (13) を前記半導体基板 (11) に固着させる、 ようにしてもよレヽ。
前記第 1の工程では、 用意した前記半導体基板 (1 1) の他面に、 第 1のテー プ状補強部材 (12) を有機系接着剤によって貼り付け、 前記第 1のテープ状補 強部材 (12) を貼り付けた状態で、 該半導体基板 (11) の一面に薄く加工す ることにより、 該半導体基板 (11) を所定の厚さにまで薄くし、 前記第 2のェ 程では、 前記第 1のテープ状補強部材 (12) が前記半導体基板 (11) の他面 に貼り付けられた状態で、該半導体基板の一面に前記リング状の補強部材(13) を接着部材の層 (14) によつで固着させ、 前記第 3の工程では、 該リング状の 補強部材.(13) が該半導体基板(11) に固着された状態で、該半導体基板(1 1) から第 1のテープ状補強部材 (12) を除去した後に、 前記金属膜 (15) を該リング状補強部材 (13) の開口を介して該半導体基板 (11) の一面に形 成する、 ようにしてもよい。
' 前記接着部材の層 (14) は、 前記第 1のテープ状補強部材 (12) が備える 耐熱温度よりも低い融点を有するものであってもよい。
さらに、 前記第 4の工程では、 前記半導体基板 (1 1) の他面に第 2のテープ 状補強部材 (18) を貼り付け、 該半導体基板 (11) の一面から前記リング状 の補強部材 (13) を除去し、 該半導体基板 (11) を各半導体素子を構成する チップ (22) にダイシングする、 ようにしてもよい。
前記接着部材の層 (14) は、 前記第 2のテープ状補強部材 (18) の耐熱温 度よりも低い融点を有し、 前記第 2のテープ状補強部材 (18) の耐熱温度より も低い温度の加熱によって前記接着部材の層 (14) を溶融することにより、 前 記リング状の捕強部材 (13) を前記半導体基板 (1 1) から除去する、 ように してもよレ、。
前記第 1の工程では、 用意した半導体基板 (11) の他面に、 第 1のテープ部 材 (11) を有機系接着剤で貼り付け、 該半導体基板 (11) の一面に、 薄く加 ェすることにより、 該半導体基板 (1 1 ) を所定の厚さにまで くし、 前記第 2 の工程では、 前記半導体基板 (1 1 ) を、 ヒータを備えるステージ (2 4 ) 上に 固定し、 該ステージ (2 4 ) 上に固定された前記半導体基板 (1 1 ) を加熱する ことにより、 前記第 1のテープ状補強部材 (1 2 ) が有する線膨張係数と該半導 体基板 (1 1 ) が有する線膨張係数との差によって該半導体基板 (1 1 ) に生じ た反りを緩和する、 ようにしてもよい。
また、 前記の課題を解決するため、 本発明の第 2の観点に係るリング補強部材 は、 所定の厚みに薄く加工された半導体基板 (1 1 ) を備える半導体素子の製造 工程に用いられ、 中心に開口を有し、 前記半導体基板 (1 1 ) の外径と等しい外 径を有するリング状の形状を有し、 該半導体基板 (1 1 ) の一面に接着部材によ つて固着されることにより、薄く加工することによつて低下した該半導体基板( 1 1 ) の虽度をネ甫う、 ことを特徴とする。
このリング状補強部材は、 例えば無機接着剤やポリイミド系樹脂から構成され る接着部材によって半導体基板に固着されることにより、 薄く加工することによ つて低下した半導体基板の強度を補う。 また、 リング状補強部材が例えば無機接 着剤やポリイミド系樹脂によって半導体基板に固着されているので、 半導体基板 の一面または他面に電極を形成する処理条件下でガスが発生することがない。 さ らに、 リング状補強部材が半導体基板と同一の外径を有するので、 専用治具で半 導体基板を保持する場合のように、 専用治具に合わせて既存の搬送ュニット等を 変更する必要がない。 従って、 製造ユニットを大幅に変更する必要がなく、 製造 コストの増大を招くことなく、 薄く加工された半導体基板に割れや欠けが発生す ることを防止することが可能となる。
前記リング状補強部材は、 薄く加工された前記半導体素子の所定の厚みよりも大 きな厚みを有するものであってもよい。
前記リング状補強部材は、前記半導体基板(1 1 ) と同一の材料から構成され、 該半導体基板 (1 1 ) と等しい線膨張係数を有するものであってもよい。 図面の簡単な説明
図 1 A〜図 1 Jは、 本発明の第 1の実施の形態に係る半導体素子の製造方法を 説明するための側面図である。
図 2は、 半導体基板に補強リングが固着された状態を示す斜視図である。 図 3 A〜図 3 Gは、 本発明の第 2の実施の形態に係る半導体素子の製造方法を 説明するための側面図である。
図 4 A〜図 4 Eは、 従来の半導体素子の製造方法を説明するための側面図であ る。 発明を実施するための最良の形態
以下、 本発明の実施の形態に係る半導体素子の製造方法及びこれに用いるリン グ状補強部材について、 図面を参照して詳細に説明する。 以下では、 パワートラ ンジスタを製造する場合を例にして説明する。
(第 1の実施の形態)
この実施の形態の、 半導体素子の製造方法及ぴこれに用いるリング状補強部材 について、 図 1 A〜図 1 Gと図 2を参照して説明する。
まず、 図 1 Aに示すように、 半導体基板 (半導体ウェハ) 1 1を用意する。 半 導体基板 1 1は、例えば、単結晶シリコンから構成され、例えば厚さ 5 0 0 μ m、 直径 1 5 mm ( 6インチ) のサイズのほぼ円形の形状を有する。 半導体基板 1 1 の一面の表面領域には、複数の半導体素子を形成するための複数の半導体領域(図 示せず) が不純物拡散等によって形成されている。 また、 半導体 ¾板 1 1の一面 には、 スパッタリングや真空蒸着等によって金属膜 (図示せず) が形成されてい る。 この金属膜は、 半導体素子の電極の一端、 例えばパワートランジスタのエミ ッタ電極やべ一ス電極を構成する。
次に、 第 1のテープ部材 1 2を、 紫外線硬化型接着剤、 低粘着性接着剤、 熱可 逆性樹脂等の有機系接着剤により半導体基板 1 1の一面に固着させる。 第 1のテ 一プ部材 1 2は、耐熱性の高い樹脂、例えば、ポリエチレンテレフタレート樹脂、 塩化ビエル樹脂、ポリオレフィン樹脂から構成される。第 1のテープ部材 1 2は、 半導体基板 1 1の一面を保護するとともに、 次の工程で半導体基板 1 1を薄くす る際に、 半導体基板 1 1に割れや欠けが発生することを防止するためのものであ る。
次に、 バックグラインド (切削加工) やケミカルエッチングにより、 図 1 Bに 示すように、 半導体基板 1 1の他面近傍部分 (図の破線部分) を除去し、 半導体 基板 1 1を薄くする。 例えば、 当所厚さ 5 0 0 μ mの半導体基板を、 1 0 0 μ m の厚さにまで薄くする。 半導体基板 1 1は、 その一面に貼り付けられた第 1のテ 一プ部材 1 2によって補強されているので、 薄く加工する時に発生する機械的ス トレスによつて割れや欠けが生じることが抑制または防止されている。
続いて、 補強リング 1 3'を、 図 1 Cに示すように該半導体基板 1 1の他面に固 着させる。 補強リング 1 3は、 例えば半導体基板 1 1と同じ材料 (例えば単結晶 シリコン) から構成され、 円板状のシリコン基板の中央部を円形に切削すること によって形成されている。
図 2に補強リング 1 3が半導体基板 1 1に固着している状態を示す。 図示する ように、 補強リング 1 3の外径は、 半導体基板 1 1の外径とほぼ同じに設定され ている。 補強リング 1 3は、 半導体基板 1 1の外周縁に沿って貼り付けられてい る。 この状態で、 半導体基板 1 1の他面が電極形成予定領域として補強リング 1 3の中央部 (円形に切削された部分) を介して露出する。 補強リング 1 3は、 例 えば、 幅 5〜 7 mm、 厚さ 4 0 0〜9 0 0 μ m程度であって、 半導体基板 1 1に 貼り付けられた状態で該半導体基板 1 1の強度が十分に得られるとともに電極形 成予定領域が十分に露出できるサイズ及び形状に構成されている。 なお、 望まし くは、 補強リング 1 3の厚さは、 半導体基板 1 1のうち、 薄く加工された半導体 基板 1 1の厚さよりも大きい値に設定されているとよい。 さらに好ましくは、 補 強リング 13は、 薄く加工された半導体基板 11と補強リング 13とを合わせた 厚さが、 薄くする前の半導体基板 1 1とテープ部材 12とを合わせた厚さとほぼ 同じとなるように形成されているとよい。 本実施の形態においては、 半導体基板 1 1は 400 m切削されており、 補強リング 13は 600 m程度の厚さを有 する。
補強リング 13は、 無機接着材層 14によって半導体基板 11 固着されてい る。 無機接着材層 14は、 例えば、 半導体基板 11を構成する材料、 すなわちシ リコンと良好な接着性を有する無機材料から構成されている。 また、 無機材料 1 4は、 第 1のテープ部材 12の耐熱温度よりも低く、 後述するスパッタリングや 真空蒸着工程を実行する温度 (例えば 100°C〜200°C) よりも高い融点を有 する。
このような条件を満たす無機材料としては、例えば、インジウム(融点 156. 6°C)、 スズ (融点 232°C)、 ビスマス (融点 271. 4°C) 等の金属あるいは これらの合金等が挙げられる。 スパッタリングゃ真空蒸着工程を実行する温度や 第 1のテープ部材 12の耐熱温度に応じて使用する無機材料を選択する。
例えば、 スズ 42%、 ビスマス 58%から構成される合金の融点 (液相温度) は 138. 5°Cであり、 鉛 44. 5%、 ビスマス 45. 5%から構成される合金 の融点 (液相温度) は 124°C、 スズ 60%、 ビスマス 40%から構成される合 金の融点 (液相温度) は 170°C、 インジウム 52%、 スズ 48%から構成され る合金の融点 (液相温度) は 117°C、 インジウム 50%、 スズ 50%から構成 される合金の融点は 127°Cである。
以上のような無機接着材層 14を用いた、 補強リング 13の半導体基板 1 1へ の固着は、 具体的には以下のようにして行うことができる。
まず、 補強リング 13の一面に、 例えばメツキによって無機接着材層 14を形 成する。 無機接着材層 14は、 半導体基板, 11と補強リング 13とが十分に固着 されるように、補強リング 13の一面全体、あるいは点在するように設けられる。 次に、 無機接着材層 1 4が形成された補強リング 1 3の一面を、 半導体基板 1 1の他面に重ねる。 続いて、 無機接着材層 1 4が溶融する温度 (無機接着材層 1 4を構成する金属または合金の融点以上の温度) でこれらを加熱する。 そして、 これらを冷却することにより、 無機接着材層 1 4を硬化させ、 補強リング 1 3を 半導体基板 1 1に固着させる。
上述したように、 無機接着材層 1 4を構成する金属または合金の融点は、 第 1 のテープ部材 1 2の耐熱温度よりも低い。 このため、 無機接着材層 1 4の加熱溶 融の際に、 第 1のテープ部材 1 2が熱によって劣化することは避けられる。 補強リング 1 3の固着の後、 図 1 Dに示すように、 半導体基板 1 1の一面から 第 1のテープ部材 1 2を剥離し、 除去する。 例えば、 第 1のテープ部材 1 2を紫 外線硬化性樹脂から構成される有機系接着剤によって半導体基板 1 1に固着した 場合は、 接着剤に紫外線を照射する。 これによつて重合反応が生じて接着剤の接 着力が低下するので、 第 1のテープ部材 1 2を半導体基板 1 1から容易に剥離す ることができる。
次に、 半導体基板 1 1の他面に金属膜 (電極) を形成するため、 半導体基板 1 1を金属膜形成ユニットに搬送する。 なお、 搬送の際は、 半導体基板 1 1には捕 強リング 1 3が固着されているために半導体基板 1 1の強度は十分に確保され、 割れや欠けの発生が抑制または防止されている。
また、 上述したように、 半導体基板 1 1 (例えば、 Ι Ο Ο μ πι) と補強リング 1 3 (例えば、 6 0 θ ί ΐη) とを合わせた厚さは、 薄くされる前の元の半導体基 板 1 1の厚さとほぼ同じである。 このため、 薄くされていない従来の半導体基板 1 1を搬送するための、 既存の搬送装置を用いて半導体基板 1 1と補強リング 1 3とを搬送することができる。
搬送に続いて、 スパッタリングや真空蒸着等によって図 1 Εに示すよ'うに、 半 導体基板 1 1の他面に金属膜 1 5を形成する。 金属膜 1 5は、 例えば、 チタン、 ニッケル、 金、 白金等から構成されており、 例えば 0 . 5 mの厚さで形成され ている。 この金属膜 1 5は、 例えばパワートランジスタのコレクタ電極を構成す る。 金属膜 1 5は、 半導体基板 1 1の他面のみならず、 補強リング 1 3の上面に も形成される。
金属膜 1 5を形成する際、 半導体基板 1 1の他面には、 無機接着材層 1 4によ 5 つて補強リング 1 3が固着されている。 無機接着材層 1 4は、 上述したように、 スパッタリングゃ真空蒸着等の処理温度よりも融点が高い金属または合金から構 成されている。 このため、 無機系接着材層 1 4は、 有機系接着剤とは異なり、 金 属膜 1 5を形成する条件下、 例えば、 処理温度 1 0 0 °C〜2 0 0 °C、 真空密度約 1 0— 5 P a ( 1 0一7 T o r r ) では状態変化を起こさず、 ガスを発生させない。 10 膜形成時に無機系接着材層 1 4が熱によって溶融することがないので、 半導体 基板 1 1は補強リング 1 3に確実に保持された状態を維持することができる。 このように、 補強リング 1 3を、 無機材料から構成される接着材で半導体基板 1 1に固着することにより、 悪影響がもたらされることなく、 信頼性の高い金属 膜 1 5を形成することができる。
15 金属膜 1 5を形成した後、 必要に応じて、 金属膜 1 5をパターユングし、 電極 ■ を形成する。
続いて、 半導体基板 1 1を他の処理ユニットに搬送する。 この搬送の際にも、 半導体基板 1 1は補強リング 1 3によって補強され、 また、 補強リング 1 3によ つて十分な厚みが付与されているので、 薄く加工されていない従来の半導体基板
20 1 1を搬送するための既存の搬送装置によって搬送可能である。
処理ユニットには、 図 1 Fに示すように、 半導体基板 1 1を載置するための凸 型のステージ(サセプタ) 1 6が配置されている。ステージ 1 6の凸部の上面は、 補強リング 1 3の内径よりも小径の平坦面に形成されている。 この平坦面にほ、 補強リング 1 3が固着された面 (他面) を下方に向けた半導体基板 1 1が載置さ
25れる。 従って、 半導体基板 1 1の他面に形成された金属膜 1 5と平坦面とは、 互 いに接する。 ステージ 1 6の凸部のうち、 少なくとも金属膜 1 5に接する部分は、 金属から 構成されており、 検査回路 3 0に接続されている。 検査回路 3 0は、 また、 処理 ュニットが備えるプローブ 1 7に接続されている。 プローブ 1 7は、 半導体基板
1 1の一面に形成された電極に接触し、 良品 Z不良品をインクマーキングやマツ ビング等によって区別する。
次に、 図 1 Gに示すように、 半導体基板 1 1の一面に、 有機系接着剤 (図示せ ず) を用いて第 2のテープ部材 1 8を貼り付ける。 第 2のテープ部材 1 8は、 第 1のテープ部材 1 2と同様に、 無機接着材層 1 4の融点よりも高い耐熱温度を有 する樹脂材料から構成される。
続いて、 半導体基板 1 1を、 一面に第 2のテープ部材 1 8が、 他面に補強リン グ 1 3がそれぞれ固着された状態で、 無機接着材層 1 4の融点温度以上の温度で 加熱する。 これにより、 無機接着材層 1 4が溶融し、 図 1 Hに示すように、 補強 リング 1 3が半導体基板 1 1力 ら除去される。 第 2のテープ部材 1 8の耐熱温度 は、 無機接着材層 1 4の融点よりも高いので、 補強リング 1 3を除去する際に熱 によって劣化することはない。
半導体基板 1 1の一方の主面には第 2のテープ部材 1 8が貼着されているの で、 補強リング 1 3が除去された後も半導体基板 1 1の強度は十分に保持されて いる。 なお、 この状態では、 半導体基板 1 1の他面には、 無機材料が残存付着し ている。
次に、 図 1 Iに示すように、 半導体基板 1 1の他面に、 ダイシング用テープ 1 9を貼り付ける。 ダイシング用テープ 1 9は、 塩ィ匕ビニルゃポリエステル等から 構成される。 ダイシング用テープ 1 9は、 その外周縁に配置されたリング状のキ ャリア部材 2 0によって保持されている。
続いて、 半導体基板 1 1から第 2のテープ部材 1 8を除去する。 紫外線硬化性 接着剤で第 2のテープ部材 1 8を半導体基板 1 1の一面に貼り付けた場合は、 紫 外線を照射することによって第 2のテープ部材 1 8を除去できる。 次に、 図 1 Jに示すように、 ダイシング用テープ 1 9がダイシングステージ 2 3の上面に接するように半導体基板 1 1をダイシングステージ 2 3に載置する。 ダイシングステージ 2 3は、 例えば、 多孔質材料から構成されている。 ダイシン グステージ 2 3に載置された半導体基板 1 1は、 ダイシングステージ 2 3の下方 5 から吸気することにより、 ダイシングステージ 2 3に固定される。
次に、 半導体基板 1 1をダイシング刃 2 1でダイシングする。 これによつて半 導体基板 1 1から個々の半導体素子 (ダイ) 2 2を分離する。 半導体基板 1 1に は、 例えば紫外線硬化性接着剤でダイシング用テープ 1 9が貼り付けられている ので、 各ダイ 2 2からダイシング用テープ 1 9を剥離するため、 紫外線を照射す 10 る。そして、コレツトと呼ばれる吸引治具によって各ダイ 2 2をピックアップし、 ダイボンディング等の次の工程を実行するためのュ-ットに搬送する。
以上のように、 本実施の形態では、 比較的薄い半導体基板 1 1を用いた半導体 素子の製造方法において、 金属または合金から構成される無機接着材層 1 4によ り、 シリコンから構成される捕強リング 1 3を半導体基板 1 1に固着して金属膜 15 1 5を形成している。
上記のような構成の補強リング 1 3及び無機接着材層 1 4を用いることによ り、 補強のためにテープ部材を有機系接着剤で半導体基板 1 1に固着することな く、 スパッタリングや真空蒸着等によって電極を形成することができる。 これに より、 有機系接着剤からのガスの発生等がない状態で電極 (金属膜 1 5 ) を形成 20することが可能となるので、 信頼性の高い半導体素子を製造することができる。
また、 膜形成の際に、 無機接着材層 1 4が溶融することなく、 薄ぐ加工された半 導体基板 1 1が補強リング 1 3によって保持された状態を維持することが可能で ある。 このため、 半導体基板 1 1に割れや欠けが発生することが防止される。 また、 無機接着材層 1 4は、 第 1のテープ部材 1 2の耐熱温度よりも低い融点 25 を有する金属または合金から構成されている。 このため、 半導体基板 1 1に第 1 のテープ部材 1 2を貼り付けた状態でこれを劣化させることなく、 無機接着材層 1 4を溶融させて補強リング 1 3を半導体基板 1 1に固着させることができる。 さらに、薄く加工された半導体基板 1 1と補強リング 1 3とを合わせた厚さが、 薄く加工される前の元の半導体素子の厚さとほぼ等しい。 このため、 既存の製造 ユニットをそのまま使用することができる。 従って、 本実施の形態の捕強リング 1 3を用いることにより、 製造コストを大幅に増大させることなく、 薄い半導体 基板 1 1に割れや欠けが発生することを防止できる。
(第 2の実施の形態)
この実施の形態では、 捕強リング 1 3を、 無機接着材層 1 4の代わりにポリィ ミド系樹脂等から構成される耐熱性樹脂によって半導体基板 1 1に固着する場合 の半導体素子の製造方法について説明 "る。 以下、 この実施の形態の半導体素子 の製造方法を図 3 A〜図 3 Gを参照して説明する。
まず、 半導体基板 1 1を用意する。 この半導体基板 1 1は、 第 1の実施の形態 と同様に、 複数の半導体素子が形成されている。 また、 半導体基板 1 1の一面に は、 電極が形成されている。
次に、 半導体基板 1 1の一面に、 例えば紫外線硬化型接着剤を介して第 1のテ 一プ部材 1 2を貼り付け、半導体基板 1 1を薄くする。本実施の形態においても、 例えば当初厚さ 5 0 0 mの半導体基板 1 1を厚さ 1 0 0 μ πιにまで薄くした。 続いて、 半導体基板 1 1を、 図 3 Αに示すように、 第 1のテープ部材 1 2が貼 り付けられた他面を上にして、 吸着ステージ 2 4上に載置する。 吸着ステージ 2 4は、 例えば多孔質材料から構成されている。 半導体基板 1 1は、 吸着ステージ 2 4の下方からの吸気によって吸着ステージ 2 4上に固定される。
吸着ステージ 2 4は、 ヒータ 3 1を備えており、 吸着面 (半導体基板 1 1が載 置された面) を室温よりも 5〜7 0 °C程度高い温度にし、 半導体基板 1 1を加熱 する。 吸着ステージ 2 4は、 載置された半導体基板 1 1を室温よりも数十。 C高い 温度 (例えば、 4 0〜7 0 °C) に加熱する。
第 1のテープ部材 1 2が貼り付けられた半導体基板 1 1には、 半導体基板 1 1 と第 1のテープ部材 1 2との線膨張係数の差によって反りが生じている場合があ る。 この反りは、 吸着ステージ 2 4による加熱によって緩和される。
より詳細に説明すると、 第 1のテープ部材 1 2は、 半導体基板 1 1が所定の温 度に加熱された状態で該半導体基板 1 1の一面に貼り付けられる。 このため、 半 導体基板 1 1の温度が低下すると、 線膨張係数の差によって半導体基板 1 1に反 りが生じる場合がある。 そこで、 第 1のテープ部材 1 2が貼り付けられた半導体 基板 1 1を吸着ステージ 2 4上で再度加熱することにより、 線膨張係数の差によ つて生じた反りを緩和させる。 これにより、 後続する種々の工程での処理を、 高 い精度で実行することができる。
次に、 吸着ステージ 2 4に固定された半導体基板 1 1力、ら、 第 1のテープ部材 1 2を除去する。
続いて第 1の実施の形態と同様の捕強リング 1 3を用意し、 図 3 Cに示すよう に、 耐熱性接着材層 2 5を介して半導体基板 1 1に固着する。
耐熱性接着材層 2 5は、 例えば、 ポリイミド系樹脂から構成されている。 耐熱 性接着材層 2 5は、 後述するスパッタリングや真空蒸着工程を実行する温度 (例 えば、 1 0 0〜2 0 0 °C) よりも高い融点または軟ィヒ点を有する。
この耐熱性接着材層 2 5を用いた補強リング 1 3の半導体基板 1 1への固着 は、 具体的には以下のようにして実行することができる。
まず、 補強リング 1 3の一面に、 例えば溶解または軟化させた耐熱性接着材を 塗布することにより、 耐熱性接着材層 2 5を形成する。
次いで、 補強リング 1 3の一面と半導体基板 1 1の一面とが対向するように、 補強リング 1 3を半導体基板 1 1に載置する。半導体基板 1 1、補強リング 1 3、 耐熱性接着材層 2 5等を後述するスパッタリングゃ真空蒸着工程を実行する温度 よりも高い温度で加熱し、 耐熱性接着材層 2 5を再び溶解または軟ィヒさせる。 そして、 半導体基板 1 1、 補強リング 1 3、 耐熱性接着材層 2 5等を冷却する ことにより、 補強リング 1 3を半導体基板 1 1に固着させる。 補強リング 1 3の固着は、 第 1のテープ部材 1 2を半導体基板 1 1から剥離し た後に行われている。 しかし、 半導体基板 1 1は吸着ステージ 2 4に固定されて いるので半導体基板 1 1の強度は十分に確保されている。 これにより、 補強リン グ 1 3を固着する際に半導体基板 1 1に割れや欠けが発生することが抑制または P方止されている。
補強リング 1 3の固着後、 金属膜を形成するための金属膜形成ュニットに半導 体基板 1 1を搬送する。 搬送の際、 半導体基板 1 1には補強リング 1 3が固着さ れているので、 半導体基板 1 1の強度は十分に確保され、 割れや欠けの発生は抑 制または防止される。
半導体基板 1 1と補強リング 1 3とを合わせた厚さは、 薄く加工されていない 半導体基板 1 1の厚さとほぼ同じである。 このため、 薄く加工されていない従来 の半導体基板 1 1を搬送するための、 既存 搬送装置で半導体基板 1 1と補強リ ング 1 3とを搬送することができる。
金属膜形成ュニットに半導体基板 1 1を搬送した後、 スパッタリングゃ真空蒸 着等により、 図 3 Dに示すように、 半導体基板 1 1の他面に金属膜 1 5を形成す る。 金属膜 1 5は、 例えば、 チタン、 ニッケル、 金、 白金等から構成され、 例え ば、 0 . 5 μ mの厚さで形成されている。
金属膜 1 5を形成する際、 半導体基板 1 1には、 ポリイミド系樹脂から構成さ れた耐熱性接着材層 2 5によって補強リング 1 3が固着されている。 上述したよ うに、 耐熱性接着材層 2 5は、 スパッタリングや真空蒸着工程を実行する温度よ りも高い融点または軟化点を有するので、 電極形成の条件下、 処理温度 1 0 0 °C 〜2 0 0 °C、 真空度約 1 0— 5 P a ( 1 0— 7 T o r r ) で分解等によってガスが発 生しない。
このように、 ポリイミド系樹脂から構成される接着材で補強リング 1 3を半導 体基板 1 1に固着することにより、 悪影響がもたらされることなく金属膜 1 5を 形成することができる。 金属膜 1 5を形成した後、 必要に応じて金属膜 1 5をパターユングし、 例えば パワートランジスタのコレクタ電極を形成する。
続いて、 半導体基板 1 1を他の処理ユニットに搬送する。 この搬送の際も、 補 強リング 1 3によって安定に保持された状態の半導体基板 1 1を、 既存の撇送装 置で搬送することができる。
処理ユニットには、 図 3 Eに示すように、 平坦な平面を有するステージ 2 6が 配置されている。 搬送された半導体基板 1 1は、 ステージ 2 6の平坦面に載置さ れる。 図示するように、 半導体基板 1 1は、 補強リング 1 3が取り付けられた面 を上向きにしてステージ 2 6に載置されるので、 ステージ 2 6は、 第 1の実施の 形態のステージ 1 6のように凸型である必要はない。
ステ ジ 2 6の、 少なくとも半導体基板 1 1に接する部分は、 金属から構成さ れ、 検查回路 3 0に接続されている。 この検査回路 3 0は、 処理ユニットに設け られたプローブ 2 7にも接続されている。 プローブ 2 7により、 第 1の実施の形 態と同様に検査が行われる。
検査の後、 第 1の実施の形態と同様にして、 図 3 Fに示すように、 半導体基板 1 1の他面にダイシング用テープ 1 9が貼り付けられる。 ダイシング用テープ 1 9は、 塩化ビエルやポリエステル等から構成されており、 その外周縁に沿って配 されたリング状のキャリア部材 2 0によって保持されている。
次に、 図 3 Gに示すように、 ダイシングステージ 2 3に、 半導体基板 1 1を載 置する。 より詳細には、 半導体基板 1 1の他面に貼り付けられたダイシング用テ ープ 1 9がダイシングステージ 2 3の上面に接するように半導体基板 1 1をダイ シングステージ 2 3に載置する。 ダイシングステージ 2 3に載置された半導体基 板 1 1は、 第 1の実施の形態と同様に、 例えばダイシングステージ 2 3の下方か らの吸気によって、 ダイシングステージ 2 3の上面に固定する。
そして、 第 1の実施の形態と同様に、 ダイシングステージ 2 3に固定された状 態で、 半導体基板 1 1をダイシング刃 2 1でダイシングする。 ダイシングによって分離された個々の半導体素子 (ダイ) 2 2から、 第 1の実 施の形態と同様にダイシング用テープ 1 9を剥離する。 そして、 コレットと呼ば れる吸引治具で各ダイ 2 2をピックアップし、 次の処理 (例えばダイボンディン グ) を行うためのユニットに搬送する。
なお、 補強リング 1 3が固着された部分の半導体基板 1 1は、 ダイ 2 2として 使用さ ないので、 補強リング 1 3が固着されたままの状態で除去される。
以上のように、 補強リング 1 3を半導体基板 1 1に固着させるためにポリイミ ド系樹脂等から構成される耐熱性接着材層 2 5を用いても、 第 1の実施の形態と 同様の効果を得ることができる。
また、 本実施の形態の製造方法では、 半導体基板 1 1から第 1のテープ部材 1 2を剥離した後に、補強リング 1 3を半導体基板 1 1に固着している。このため、 補強リング 1 3を固着する際に、 第 1のテープ部材 1 2の耐熱性を考慮する必要 がない。 この結果、 第 1のテープ部材 1 2として使用できる材料の自由度が、 第 1の実施の形態よりも大きくなるので、 コスト削減等が可能となる。
さらに、 本実施の形態の製造方法では、 薄く加工した半導体基板 1 1を加熱し ているので、 半導体基板 1 1と第 1のテープ部材 1 2の線膨張係数の差によって 生じた反りを緩和することができる。
本実施の形態の製造方法によれば、 第 1の実施の形態の製造方法よりもテープ 部材の張り替え工程が少なく、 より高い生産性を実現できる。
なお、 第 1及ぴ第 2の実施の形態の製造方法は、 コンピュータがプログラムに 基づいて搬送ュニットゃ半導体処理ュニット等を制御することによって実行する ことができる。
本発明は上記実施の形態に限定されない。 例えば、 第 1及び第 2の実施の形態 の製造方法を適宜組み合わせてもよい。 例えば、 第 1の実施の形態において無機 接着材層 1 4の代わりに耐熱性接着材層 2 5を用いてもよいし、 第 2の実施の形 態において耐熱性接着材層 2 5の代わりに無機接着材層 1 4を用いてもよい。 第 1及ぴ第 2の実施の形態では、 補強リング 1 3が、 半導体基板 1 1と同一の 材料から構成される場合を例にして説明した。 このような構成を採用することに より、半導体基板 1 1と補強リング 1 3との線膨張係数を同じにすることができ、 ' 線膨張係数差に起因する歪み等の発生を低減または防止できる。 しかし、 線膨張 係数差に起因する歪み等の発生を低減または防止できる限り、 補強リング 1 3は 他の材料から構成されてもよい。
第 1及び第 2の実施の形態では、 半導体基板 1 1が、 シリコン単結晶基板から 構成される場合を例にした。 しかし、 半導体基板 1 1は、 インジウム一リンゃシ リコンカーバイド等の化合物半導体等から構成されてもよい。
第 1及び第 2の実施の形態では、 パワー系の半導体素子を製造する場合を例に した。 しかし、 これに限定されず、 比較的薄い半導体基板を用いた他の種の半導 体素子を製造してもよい。
なお、 本発明は、 2 0 0 2年 6月 2 5日に出願された日本国特許出願 2 0 0 2 - 1 8 3 9 3 9号及び 2 0 0 2年 1 1月 1日出願された日本国特許出願 2 0 0 2 - 3 1 9 8 8 4号に基づき、 本明細書中にその明細書、 特許請求の範囲、 図面全 体を取り込むものとする。 産業上の利用の可能性
本発明は、 比較的薄い半導体基板を備えた半導体素子の製造方法に利用可能で ある。

Claims

請求の範囲
1. 複数の半導体素子が形成された半導体基板 (11) を用意し、 該半導体基 板 (11) を薄くする第 1の工程と、
前記半導体基板 (11) の一面に、 該一面の一部を露出する補強部材 (13) を接着部材によって固着させる第 2の工程と、
前記半導体基板 (11) の一面の露出部分または該半導体基板 (1 1) の他面 に、 前記半導体素子が備える電極を構成するための金属膜 (15) を形成する第 3の工程と、
前記補強部材(13) を前記半導体基板(11) 力 ら除去し、該半導体基板(1 1) をダイシングする第 4の工程と、
を含んでおり、
前記接着部材 (13、 25) は、 状態が前記第 3の工程における処理温度より も高い温度で変化する材料から構成されている、
ことを特徴とする半導体素子の製造方法。
2. 前記補強部材 (13) は、 中心に開口を有し、 前記半導体基板 (11) の 外径と等しい外径を有するリング状の形状を有し、
前記第 2の工程は、該半導体基板(11)の外周縁と該リング状の補強部材(1 3) の外周縁とを合わせて該半導体基板 (1 1) の一面に該補強部材 (13) を 前記接着部材によって固着し、
前記第 3の工程は、 前記リング状の捕強部材 (13) の開口を介して露出した 前記半導体基板 (11) の一面に、 前記金属膜 (15) を形成する、
ことを特徴とする請求項 1に記載の半導体素子の製造方法。
3. 前記接着部材は、 前記第 3の工程における処理温度よりも高い融点を有す る金属あるいは合金、 または前記第 3の工程における処理温度よりも高い融点あ るレヽは軟化点を有する耐熱性樹脂から構成されることを特徴とする請求項 1に記 載の半導体素子の製造方法。
4. 前記耐熱性樹脂は、 ポリイミド系樹脂である、 ことを特徴とする請求項 3 に記載の半導体素子の製造方法。
5. 前記第 2の工程では、
前記リング状の補強部材 (13) の一面に前記接着部材の層 (14、 25) を 形成し、
前記リング状の補強部材 (13) の一面を前記半導体基板 (1 1) の一面に重 ね、 加熱によって前記リング状の補強部材 (13) と前記半導体基板 (11) と の間に介在する前記接着部材の層 (14、 25) を溶融させ、
冷却によって前記接着部材の層 (14、 25) を固化させることにより、 前記 リング状の補強部材 (13) を前記半導体基板 (11) に固着させる、
. ことを特徴とする請求項 3に記載の半導体素子の製造方法。
6. 前記第 1の工程では、
用意した前記半導体基板 (11) の他面に、 第 1のテープ状補強部材 (12) を有機系接着剤によって貼り付け、 前記第 1のテープ状補強部材 (12) を貼り 付けた状態で、 該半導体基板 (11) の一面に薄く加工をすることにより、 該半 導体基板 (11) を所定の厚さにまで薄くし、
前記第 2の工程では、
前記第 1のテープ状補強部材 (12) が前記半導体基板 (11) の他面に貼り 付けられた状態で、 該半導体基板の一面に前記リング状の補強部材 (13) を接 着部材の層 (14) によって固着させ、
前記第 3の工程では、
該リング状の補強部材 (13) が該半導体基板 (11) に固着された状態で、 該半導体基板 (11) から第 1のテープ状補強部材 (12) を除去した後に、 前 記金属膜(15) を該リング状補強部材(13)の開口を介して該半導体基板(1 1) の一面に形成する、 ことを特徴とする請求項 5に記載の半導体素子の製造方法。
7. 前記接着部材の層 (14) は、 前記第 1のテープ状補強部材 (12) が備 える耐熱温度よりも低い融点を有することを特徴とする請求項 6に記載の半導体 素子の製造方法。
8. 前記第 4の工程では、 前記半導体基板 (11) の他面に第 2のテープ状補 強部材 (18) を貼り付け、 該半導体基板 (11) の一面から前記リング状の補 強部材 (13) を除去し、 該半導体基板 (11) を各半導体素子を構成するチッ プ (22) にダイシングする、 ことをさらに特徴とする請求項 6に記載の半導体 素子の製造方法。
9. 前記接着部材の層 (14) は、 前記第 2のテープ状補強部材 (18) の耐 熱温度よりも低レ、融点を有し、
前記第 2のテープ状補強部材 (18) の耐熱温度よりも低い温度の加熱によつ て前記接着部材の層(14)を溶融することにより、前記リング状の補強部材( 1 3) を前記半導体基板 (11) から除去する、
ことを特徴とする請求項 8に記載の半導体素子の製造方法。
10. 前記第 1の工程では、
用意した半導体基板 (11) の他面に、 第 1のテープ部材 (12) を有機系接 着剤で貼り付け、 該半導体基板 (11) の一面に、 薄く加工することにより、 該 半導体基板 (1 1) を所定の厚さにまで薄くし、
前記第 2の工程では、
前記半導体基板 (11) を、 ヒータを備えるステージ (24) 上に固定し、 該 ステージ(24)上に固定された前記半導体基板(11) を加熱することにより、 前記第 1のテープ状補強部材(12)が有する線膨張係数と該半導体基板(11) が有する線膨張係数との差によって該半導体基板 (1 1) に生じた反りを緩和す る、
ことを特徴とする請求項 3に記載の半導体素子の製造方法。
1 1. 所定の厚みに薄く加工された半導体基板 (1 1) を備える半導体素子の 製造工程に用いられ、
中心に開口を有し、 前記半導体基板 (1 1) の外径と等しい外径を有するリン グ状の形状を有し、 該半導体基板 (1 1) の一面に接着部材によって固着される ことにより、 薄く加工することによって低下した該半導体基板 (1 1) の強度を 補う、
ことを特徴とするリング状補強部材。
1 2.薄く加工された前記半導体素子の所定の厚みよりも大きな厚みを有する、 ことを特徴とする請求項 1 1に記載のリング状補強部材。
1 3. 前記半導体基板 (1 1) と同一の材料から構成され、 該半導体基板 (1 1) と等しい線膨張係数を有する、 ことを特徴とする請求項 1 2に記載のリング 状補強部材。 '
PCT/JP2003/007975 2002-06-25 2003-06-24 半導体素子の製造方法およびリング状補強部材 WO2004001819A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004530924A JP4239974B2 (ja) 2002-06-25 2003-06-24 半導体素子の製造方法およびリング状補強部材
US10/518,131 US7148126B2 (en) 2002-06-25 2003-06-24 Semiconductor device manufacturing method and ring-shaped reinforcing member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-183939 2002-06-25
JP2002183939 2002-06-25
JP2002-319884 2002-11-01
JP2002319884 2002-11-01

Publications (1)

Publication Number Publication Date
WO2004001819A1 true WO2004001819A1 (ja) 2003-12-31

Family

ID=30002271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007975 WO2004001819A1 (ja) 2002-06-25 2003-06-24 半導体素子の製造方法およびリング状補強部材

Country Status (3)

Country Link
US (1) US7148126B2 (ja)
JP (1) JP4239974B2 (ja)
WO (1) WO2004001819A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294623A (ja) * 2004-04-01 2005-10-20 Disco Abrasive Syst Ltd ウェーハの加工方法
JP2007200917A (ja) * 2006-01-23 2007-08-09 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2007266364A (ja) * 2006-03-29 2007-10-11 Disco Abrasive Syst Ltd ウエーハの処理方法および処理装置
JP2009004474A (ja) * 2007-06-20 2009-01-08 Disco Abrasive Syst Ltd ウエーハの搬送機構
WO2010140666A1 (ja) * 2009-06-04 2010-12-09 ミツミ電機株式会社 半導体基板及びその製造方法、並びに半導体装置及びその製造方法
JP2011159864A (ja) * 2010-02-02 2011-08-18 Shin Etsu Polymer Co Ltd 半導体ウェーハ用治具及び半導体ウェーハの加工方法
JP2012156292A (ja) * 2011-01-26 2012-08-16 Seiko Epson Corp 基板の加工方法
JP2013175628A (ja) * 2012-02-27 2013-09-05 Shin Etsu Polymer Co Ltd 半導体ウェーハ用治具の剥離装置及び半導体ウェーハの取り扱い方法
JP2017034254A (ja) * 2015-07-31 2017-02-09 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG ウェハ構造体の形成方法、半導体デバイスの形成方法およびウェハ構造体
JP7424896B2 (ja) 2020-04-13 2024-01-30 株式会社ディスコ ウエーハの加工方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055860A (ja) * 2002-07-22 2004-02-19 Renesas Technology Corp 半導体装置の製造方法
US20070207592A1 (en) * 2006-03-03 2007-09-06 Lu James J Wafer bonding of damascene-patterned metal/adhesive redistribution layers
US20080242052A1 (en) * 2007-03-30 2008-10-02 Tao Feng Method of forming ultra thin chips of power devices
JP4985513B2 (ja) * 2008-03-26 2012-07-25 富士通セミコンダクター株式会社 電子部品の剥離方法及び剥離装置
KR101105981B1 (ko) * 2009-04-28 2012-01-18 한양대학교 산학협력단 저항변화 메모리 소자 및 이의 제조방법
TWI523263B (zh) * 2011-02-01 2016-02-21 隆達電子股份有限公司 發光二極體及其製造方法
JP5895676B2 (ja) * 2012-04-09 2016-03-30 三菱電機株式会社 半導体装置の製造方法
JP6131605B2 (ja) 2013-01-21 2017-05-24 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP6385131B2 (ja) * 2014-05-13 2018-09-05 株式会社ディスコ ウェーハの加工方法
DE102016112976A1 (de) * 2016-07-14 2018-01-18 Infineon Technologies Ag Verfahren zum Bearbeiten eines Wafers und Schichtstapel
KR102525490B1 (ko) 2017-10-24 2023-04-24 삼성전자주식회사 인쇄 회로 기판, 반도체 패키지 및 반도체 패키지의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012492A (ja) * 1998-06-22 2000-01-14 Nippon Motorola Ltd 半導体ウェハの研磨方法および半導体ウェハ構造体
JP2002100589A (ja) * 2000-09-21 2002-04-05 Hitachi Ltd 半導体装置製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3176542B2 (ja) * 1995-10-25 2001-06-18 シャープ株式会社 半導体装置及びその製造方法
US6342434B1 (en) * 1995-12-04 2002-01-29 Hitachi, Ltd. Methods of processing semiconductor wafer, and producing IC card, and carrier
JP3441382B2 (ja) * 1998-10-14 2003-09-02 日本電信電話株式会社 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012492A (ja) * 1998-06-22 2000-01-14 Nippon Motorola Ltd 半導体ウェハの研磨方法および半導体ウェハ構造体
JP2002100589A (ja) * 2000-09-21 2002-04-05 Hitachi Ltd 半導体装置製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647228B2 (ja) * 2004-04-01 2011-03-09 株式会社ディスコ ウェーハの加工方法
JP2005294623A (ja) * 2004-04-01 2005-10-20 Disco Abrasive Syst Ltd ウェーハの加工方法
JP2007200917A (ja) * 2006-01-23 2007-08-09 Disco Abrasive Syst Ltd ウエーハの分割方法
JP2007266364A (ja) * 2006-03-29 2007-10-11 Disco Abrasive Syst Ltd ウエーハの処理方法および処理装置
JP2009004474A (ja) * 2007-06-20 2009-01-08 Disco Abrasive Syst Ltd ウエーハの搬送機構
JPWO2010140666A1 (ja) * 2009-06-04 2012-11-22 ミツミ電機株式会社 半導体基板及びその製造方法、並びに半導体装置及びその製造方法
WO2010140666A1 (ja) * 2009-06-04 2010-12-09 ミツミ電機株式会社 半導体基板及びその製造方法、並びに半導体装置及びその製造方法
US8624358B2 (en) 2009-06-04 2014-01-07 Mitsumi Electric Co., Ltd. Semiconductor substrate and semiconductor device
JP2011159864A (ja) * 2010-02-02 2011-08-18 Shin Etsu Polymer Co Ltd 半導体ウェーハ用治具及び半導体ウェーハの加工方法
JP2012156292A (ja) * 2011-01-26 2012-08-16 Seiko Epson Corp 基板の加工方法
JP2013175628A (ja) * 2012-02-27 2013-09-05 Shin Etsu Polymer Co Ltd 半導体ウェーハ用治具の剥離装置及び半導体ウェーハの取り扱い方法
JP2017034254A (ja) * 2015-07-31 2017-02-09 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG ウェハ構造体の形成方法、半導体デバイスの形成方法およびウェハ構造体
CN106409669A (zh) * 2015-07-31 2017-02-15 英飞凌科技股份有限公司 形成晶片结构的方法、形成半导体器件的方法和晶片结构
US9793167B2 (en) 2015-07-31 2017-10-17 Infineon Technologies Ag Method for forming a wafer structure, a method for forming a semiconductor device and a wafer structure
CN106409669B (zh) * 2015-07-31 2020-06-30 英飞凌科技股份有限公司 形成晶片结构的方法、形成半导体器件的方法和晶片结构
JP7424896B2 (ja) 2020-04-13 2024-01-30 株式会社ディスコ ウエーハの加工方法

Also Published As

Publication number Publication date
US20050250295A1 (en) 2005-11-10
JPWO2004001819A1 (ja) 2005-10-27
US7148126B2 (en) 2006-12-12
JP4239974B2 (ja) 2009-03-18

Similar Documents

Publication Publication Date Title
WO2004001819A1 (ja) 半導体素子の製造方法およびリング状補強部材
JP4544231B2 (ja) 半導体チップの製造方法
JP3761444B2 (ja) 半導体装置の製造方法
JP4286497B2 (ja) 半導体装置の製造方法
US10186447B2 (en) Method for bonding thin semiconductor chips to a substrate
TW200411755A (en) Method of processing a semiconductor wafer
US6792991B2 (en) Device for detaching a carrier from a semi-conductor disk
WO2012056867A1 (ja) 積層体、およびその積層体の分離方法
KR100811958B1 (ko) 반도체 웨이퍼 처리 방법 및 양면 접착 시트
JP2002373870A (ja) 半導体ウエーハの加工方法
WO2004030053A1 (ja) 薄型半導体チップの製造方法
TWI270160B (en) Semiconductor wafer protection unit and semiconductor wafer processing method
JP2019057526A (ja) ウエーハの加工方法
WO2005083763A1 (ja) ウェハの転写方法
JP2005019435A (ja) ウェハ研磨方法
JP2000091281A (ja) ウエハ表面保護テープ剥離装置
JP4462940B2 (ja) 半導体装置の製造方法
JP2002270560A (ja) ウエハの加工方法
US20200266089A1 (en) Carrier and method for manufacturing semiconductor device
JP2001308033A (ja) ウエハ固定方法
JP5034488B2 (ja) 半導体装置の製造方法
JP2020064921A (ja) ウエーハの加工方法
JP2005116588A (ja) チップ部品の製造方法
JP2005236112A (ja) 半導体装置の製造方法
JP2005340390A (ja) 半導体装置の製造装置及び製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004530924

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10518131

Country of ref document: US