WO2003067128A1 - Dispositif de transmission de rotation de type a roue libre et demarreur - Google Patents

Dispositif de transmission de rotation de type a roue libre et demarreur Download PDF

Info

Publication number
WO2003067128A1
WO2003067128A1 PCT/JP2003/000377 JP0300377W WO03067128A1 WO 2003067128 A1 WO2003067128 A1 WO 2003067128A1 JP 0300377 W JP0300377 W JP 0300377W WO 03067128 A1 WO03067128 A1 WO 03067128A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
peripheral surface
roller
rollers
roller clutch
Prior art date
Application number
PCT/JP2003/000377
Other languages
English (en)
French (fr)
Inventor
Yuji Shimomura
Daisuke Fujimori
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to US10/496,957 priority Critical patent/US7370741B2/en
Priority to EP03701772A priority patent/EP1482212A4/en
Priority to AU2003203254A priority patent/AU2003203254A1/en
Priority to JP2003566446A priority patent/JPWO2003067128A1/ja
Publication of WO2003067128A1 publication Critical patent/WO2003067128A1/ja
Priority to US11/854,622 priority patent/US20080053778A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • F02N15/023Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch of the overrunning type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/064Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls
    • F16D41/066Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical
    • F16D41/067Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by rolling and having a circular cross-section, e.g. balls all members having the same size and only one of the two surfaces being cylindrical and the members being distributed by a separate cage encircling the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/08Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing being of friction type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/08Lubrication of starters; Sealing means for starters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys

Definitions

  • the rotation transmission device with a built-in roller clutch for engine start is, for example, a so-called idling stop vehicle for automatically stopping the engine without idling when the vehicle is stopped. Use it with it attached to the end of the drive shaft.
  • idling stop vehicle for automatically stopping the engine without idling when the vehicle is stopped.
  • an idling stop that automatically stops the engine without idling when the vehicle is stopped.
  • Idlinda stop vehicles with a stop function are actually used.
  • the engine is automatically stopped (without operating the ignition switch) based on the zero speed signal detected by the vehicle speed sensor.
  • a clutch sensor that detects the movement of the clutch pedal (in the case of a manual transmission vehicle) or an accelerator sensor or a brake sensor that detects the movement of the accelerator pedal or the brake pedal (automatically) Automatically restarts the vehicle engine (without operating the identification switch) based on the signal from the transmission.
  • the idling stop of the engine can reduce the energy consumption and the emission of carbon dioxide.
  • a drive pulley device 6 with a built-in one-way clutch is used to transmit power from the rotary drive shaft 5 to the endless belt 7.
  • power is not transmitted from the endless belt 7 to the rotary drive shaft 5.
  • the actual engine is equipped with drive units for various accessories such as an alternator and a war pump, but these drive units are not directly related to the present invention. I do.
  • the drive pulley device 6 is rotated by energizing the star motor 4, and is driven via the endless belt 7 and the driven pulley 3. Then, the crankshaft 2 is rotationally driven. At this time, the one-way clutch incorporated in the drive pulley device 6 is engaged (locked), and power is transmitted from the rotary drive shaft 5 to the endless belt 7. As a result, after the start of the engine, the connection of the one-way clutch is disconnected (overrun state), and the starter motor 4 is driven regardless of the running of the endless belt 7 accompanying the rotation of the crankshaft 2. The rotary drive shaft 5 does not rotate. Therefore, the starter motor 4 does not become a resistance to the operation of the engine 1 or the durability of the motor 4 does not deteriorate.
  • a roller clutch is used as a one-way clutch as described in Patent Documents 1 and 2, for example. It is possible to use something. According to the structure using the roller clutch, vibration, noise, and friction generated when the clutch is not connected can be reduced as compared with a case where a ratchet mechanism is used. Also, compared to the case of using a sprag type cam clutch, friction generated inside when not connected can be reduced.
  • the following patent documents are cited as prior art of the present application.
  • Patent Document 1
  • the one-way clutch built-in pulley devices described in Patent Documents 1 and 2 must be installed at the end of the rotating shaft of an engine accessory, which is an engine accessory.
  • the use of the engine is very different from that of the engine starter.
  • the pulley device with a built-in one-way clutch is directly attached to the end of the rotary drive shaft in the star-and-morning mode, sufficient durability cannot be obtained. That is, one of the reasons for using a pulley device with a built-in one-way clutch on the rotating shaft of the belt is that the inner circumferential surface of the belt and the outer circumferential surface of the pulley are not affected by the minute displacement of the engine speed.
  • the pulley device with a built-in one-way clutch for the night and evening is basically operated in the locked state, and the operation time in the overrun state is much shorter than the entire operation time. The duration of the overrun state is extremely short.
  • the roller clutch incorporated into the alternator one-way clutch built-in pulley device should surely achieve a locked state during engine operation.
  • the structure described and conventionally known as shown in Fig. 56 is adopted.
  • the inner ring 9 and the outer ring 10 are arranged concentrically with each other, and the outer peripheral surface of the inner ring 9 and the inner peripheral surface of the outer ring 10 are Between them, a cage 11 and a plurality of rollers 12 and springs 13 and 13 are respectively installed.
  • the outer peripheral surface of the inner ring 9 is a cam surface having a plurality of concave portions 14 called a ramp portion, and the inner peripheral surface of the outer ring 10 is a simple cylindrical surface.
  • the retainer 11 engages the engaging projection 15 formed on the inner peripheral edge thereof with the recess 14. As a result, relative rotation with respect to the inner ring 9 is prevented. In other words, the cage 11 and the inner ring 9 rotate in synchronization. Further, each of the springs 13 presses each of the rollers 12 toward the shallow side of the concave portion 14 in the same circumferential direction.
  • the rotation transmission device with a built-in roller clutch for starting an engine according to the present invention has In view of the above, it was invented to ensure sufficient durability. Disclosure of the invention
  • any of the rotation transmission devices with a built-in roller clutch for engine start include: a rotating member that rotates together with the crankshaft of the engine during use; a rotary member that is inserted into the center of the rotating member and rotates only in a predetermined direction during use; The power is transmitted only in this predetermined direction between the rotating shaft of the engine start motor and the rotating shaft of the motor.
  • the shaft is provided in an annular space between the inner peripheral surface of the rotating member and the outer peripheral surface of the rotating shaft. It includes a pair of servo bearings spaced apart from each other in the direction, and a roller clutch provided between the pair of support bearings in the annular space.
  • the roller clutch is connected when the rotation shaft rotates in the predetermined direction, and transmits power to the rotation member from the rotation shaft.
  • the rotation member moves in the predetermined direction from the rotation shaft.
  • the pulley with a built-in roller clutch for star and evening motor according to claim 1, wherein the first support bearing is disposed on one side in the axial direction of the pulley, and is disposed on the other side in the axial direction of the pulley.
  • the cam surface is formed on the inner peripheral surface of the pulley or on the inner peripheral surface of the clutch outer ring fitted inside the pulley.
  • a plurality of roller forces constituting the roller clutch are used to displace each of these rollers in the radial direction of the rotating member.
  • a plurality of roller forces constituting the roller clutch are used to displace each of these rollers in the radial direction of the rotating member.
  • each of the support bearings and roller clutches is lubricated with the same type of grease in which the base oil is a synthetic oil and the increasing agent is a urea system.
  • each of the support bearings is a ball bearing, and a retainer for rotatably holding a plurality of balls is combined. It is a crown-shaped cage made of resin. Of the inner surface of each pocket provided in the cage, the center axis of the cage is provided on both sides in the circumferential direction facing the rolling surface of each ball. A partial cylindrical surface having a parallel central axis is provided.
  • the seal rings are provided on the outer side opposite to the roller clutch.
  • the seal ring is a contact type
  • the inner seal ring on the roller clutch side is a non-contact type.
  • a cam surface for displacing a plurality of rollers constituting the roller clutch in a radial direction of the rotating member is provided by the rotation surface.
  • the inner peripheral surface of the member or the inner peripheral surface of the outer ring for clutch fixedly fitted to the rotating member is formed on the outer peripheral surface of the rotating shaft or the outer peripheral surface of the inner ring for clutch fixed to the rotating shaft. With the face. Further, a chemical conversion coating is formed on at least one of the outer peripheral surface of the cylindrical surface and the surfaces of the plurality of rollers.
  • each of the plurality of rollers constituting the roller clutch is provided on an outer peripheral surface of an intermediate portion in the axial direction of the retainer.
  • a plurality of support protrusions provided in a state protruding in the radial direction at positions facing the base side surfaces of the plurality of springs pressing the rollers;
  • a side eaves portion is provided on a portion deviated from the base side surface to the outer diameter side, in such a manner as to protrude toward the base side of each of the elastic members.
  • each of the eaves from the side surface of each of the support protrusions is set to be larger than the thickness of a portion of the base of each of the springs facing the side surface.
  • a cam surface for displacing a plurality of rollers constituting the roller clutch in a radial direction of the rotating member is formed by the rotation.
  • Internally fit on the inner peripheral surface of the member or this rotating member It is formed on the inner peripheral surface of the fixed outer race for clutch, and the outer peripheral surface of the rotating shaft or the outer peripheral surface of the inner race for clutch externally fixed to the rotating shaft is a cylindrical surface.
  • the plurality of rollers are sandwiched between the cam surface and the outer peripheral surface of the cylindrical surface, and each roller moves along the plurality of concave portions constituting the cam surface to a deep side of each of the concave portions.
  • the rolling direction of each roller is larger than the position of the front end of the rolling surface of each roller in the radial direction of the cage that constitutes the roller clutch. Abut the spring in the position inside.
  • the roller clutch is provided between the inner peripheral surface of the rotating member and the outer peripheral surface of the rotating shaft.
  • Each of these springs is composed of a main body part in contact with a part of the retainer, and a pair of pressing parts whose base ends are connected to both ends of the main body.
  • Each of the pressing portions extends and contracts independently of each other while being in contact with the rolling surface of each of the rollers.
  • the position of the center of gravity of each roller in the axial direction is located between the portions of the above-mentioned pressing portions that contact the rolling surface of each of the rollers, and the above-mentioned pressing portions are fixed by the above-mentioned rollers.
  • the axial spacing between the portions of these pressing portions that abut against the rolling surfaces of the rollers is at least half the axial length of the rollers.
  • the mouth clutch is provided between an inner peripheral surface of the rotating member and an outer peripheral surface of the rotating shaft.
  • a plurality of rollers a spring for pressing these rollers in the same direction with respect to the circumferential direction of the rotating member and the rotating shaft, and a retainer for holding these rollers.
  • Each of these springs is composed of a main body part in contact with a part of the retainer, and a pair of pressing parts whose base ends are continuous with both ends of the main body.
  • Each pressing portion expands and contracts independently of each other in a state of contact with the rolling surface of each roller, and the radius of curvature of each pressing portion gradually decreases from the base end to the tip end. It is curved.
  • a rotation transmission device with a built-in roller clutch for engine start according to claim 11.
  • a retainer for retaining a plurality of rollers constituting the roller clutch includes a pair of rims arranged in parallel with each other at intervals in an axial direction of the annular space. It is connected by a plurality of pillars arranged parallel to each other at intervals in the circumferential direction of the space, and a grease pool for holding grease is provided on the inner peripheral surface of each of these pillars .
  • the durability can be improved.
  • the rolling surfaces of the plurality of rollers constituting the roller clutch are the inner peripheral surface of the pulley or the pulley.
  • the guide is guided by the inner peripheral surface of the clutch outer ring which is fixedly fitted inside the clutch. Therefore, the frictional heat generated inside the roller clutch during rotation is minimized to improve the durability of the roller clutch and the adjacent support bearing. Can be improved.
  • the radial gap of each support bearing causes the center axis of the rotating member and the center axis of the rotating shaft to be divided by the radial gap. Even when the engine is eccentric, after the engine is started, the rolling surfaces of all the rollers and the outer peripheral surface of the rotating shaft or the inner ring for the clutch externally fixed to this rotating shaft can be reliably separated. . Therefore, the durability of the rotation transmission device with a built-in roller clutch for starting the engine can be improved.
  • the rotation transmission device with a built-in roller clutch for starting the engine in the case of the rotation transmission device with a built-in roller clutch for starting the engine according to the third aspect, excellent shear stability and heat resistance (high-temperature stability) of the grease sealed inside the roller clutch can be secured. At the same time, it is possible to prevent the occurrence of inconvenience such as deterioration due to mixing of the grease sealed in the roller clutch and the support bearings, and to improve the durability of the engine-starting roller clutch built-in rotation transmission device. Further, in the case of the rotation transmission device with a built-in roller clutch for engine start as set forth in claim 4, the span for applying the radial load can be increased, the rigidity can be increased, and the durability can be improved.
  • the retainer is made of synthetic resin and has a crown shape, even if abrasion powder of the retainer is generated, the abrasion powder does not easily deteriorate the grease. Also, since the hardness of the abrasion powder is low, the abrasion powder causes damage such as dents on the outer raceway and the inner raceway. It does not cause the peeling life of each of these tracks to deteriorate. Therefore, the durability of the engine-starting roller clutch built-in rotation transmission device can be improved.
  • the rotation transmission device with a built-in roller clutch for starting the engine described in claim 5 it is possible to prevent foreign substances, such as dust, entering the internal space of each support bearing and the roller clutch from entering the outside, and Leakage of the grease sealed in this internal space can be prevented, and the durability of the rotation transmission device with a built-in roller clutch for starting the engine can be improved.
  • the rotation resistance of the roller clutch during overrun can be reduced.
  • the surface and the cylindrical surface of the plurality of rollers constituting the roller clutch can be reduced.
  • a chemical conversion coating such as a manganese phosphate coating is formed on at least one of the outer peripheral surfaces of the substrate.
  • the surface of this chemical conversion coating is rough. Therefore, the coefficient of static friction at the contact portion between the surfaces of the plurality of rollers and the cylindrical surface can be increased. Therefore, when the locked state of the roller clutch is realized, the contact between the surfaces of the plurality of rollers and the cylindrical surface is less likely to slip, and the locked state is easily realized.
  • the chemical conversion coating film can prevent the surfaces of the plurality of rollers and the cylindrical surface from coming into metal contact.
  • the lubricant is held between the crystal grains of the chemical conversion coating, the held lubricant improves the lubrication state at the sliding contact between the surfaces of the plurality of rollers and the cylindrical surface. Can be. Therefore, when the roller clutch is overrun, it is possible to prevent the sliding contact portion from being worn or seized, thereby improving the durability of the engine-starting roller clutch built-in rotation transmission device.
  • each of these springs has a supporting projection. However, it can be prevented from shifting to the outside diameter side or coming off. Therefore, the reliability and durability of the roller clutch can be improved.
  • the retainer continues to rotate with the rotating member at a high speed for a long time after the engine is started, the springs tend to shift to the outer diameter side of the retainer. By preventing this shift to the outer diameter side, the reliability of the rotation transmission device with a built-in roller clutch for starting the engine is improved. And durability can be improved.
  • each roller when shifting from the locked state to the overbalun state, each roller causes the cam surface to move based on the action of centrifugal force. It is easy to move to the deep side of the recess along the constituting recess. For this reason, it is possible to prevent the rolling surface of each of the rollers and the outer peripheral surface of the cylindrical surface from being kept in sliding contact with each other in the overrun state, thereby suppressing the generation of frictional heat and frictional loss. Therefore, the durability and performance of the roller clutch can be improved. As a result, the durability and performance of the engine-starting roller clutch built-in rotation transmission device can be improved despite the fact that a spring having a large elasticity is used as a spring for pressing each roller.
  • each spring for pressing each roller is formed by a pair of pressing portions provided on each spring. At two points separated in the axial direction. For this reason, even when the contact position between each of these pressing portions and each of the above rollers slightly changes, it is possible to prevent the force and moment applied to each of the rollers from being largely changed, and to maintain the posture of each of the rollers at an appropriate position. .
  • each spring and each port are brought into contact at two points by the pair of pressing portions constituting each spring, these pressing portions can expand and contract independently of each other. .
  • a large reaction force is generated at the pressing portion on the side where the amount of displacement (the amount of expansion and contraction) is large.
  • a moment is applied to each of the rollers to restore the attitude of each of the rollers, and the attitude of each of the rollers can be maintained at an appropriate position.
  • the position of the center of gravity of each roller in the axial direction is located between the portions of the pressing portions that come into contact with the rolling surfaces of the rollers.
  • the axial distance between the portions of the pressing portions that contact the rolling surface of each of the rollers is defined as the axial length of each of the ports.
  • the center of gravity of each roller is determined regardless of how the attitude of each roller changes, or how each of the pressing portions is pressed by each roller. It can always be located between the contact portions. Therefore, the action of stabilizing the posture of each roller can be sufficiently ensured by the fact that each roller is in contact with each spring at two points separated in the axial direction, and the posture of each roller is properly maintained. You can do it.
  • each pressing portion in the case of the rotation transmission device with a built-in roller clutch for engine start described in claim 10, the stress applied to the base end side of each pressing portion can be sufficiently reduced, and each spring can be enlarged without increasing its size. The necessary pressing force can be secured. That is, the stress applied to each of these pressing portions increases toward the base end, and increases as the radius of curvature decreases (the curvature increases).
  • the radius of curvature of the base end side of each pressing portion is increased (curvature is reduced), and thereby this is achieved. The stress applied to the base end can be reduced.
  • the grease reservoir is fixed to the rolling surface of each roller, the outer peripheral surface of the rotating shaft or the outer periphery of the rotating shaft.
  • Grease can be supplied to the contact portion with the outer peripheral surface of the clutch inner ring. Therefore, even when these two surfaces rub against each other, the wear on these two surfaces is suppressed, and the durability of the rotation transmission device with a built-in roller clutch for engine start can be improved.
  • FIG. 1 is a cross-sectional view showing an overall configuration of a first example of an embodiment of the present invention.
  • Fig. 2 is a sectional view taken along the line A-A of Fig. 1, showing the roller clutch taken out.
  • Fig. 3 is an enlarged view of part B in Fig. 2.
  • Fig. 4 is a schematic diagram of a part of the roller clutch, viewed from the same direction as Fig. 3, which is used to explain the size of the gap related to the roller clutch.
  • FIG. 5 is a partially enlarged perspective view showing an example of a support bearing cage.
  • FIG. 6 is a schematic diagram for explaining a preferable size of a wedge angle in terms of realizing a locked state.
  • FIG. 7 is a schematic diagram for explaining a preferable size of a wedge angle from a surface separating a rolling surface of a roller and an outer peripheral surface of an inner ring for a clutch.
  • FIG. 8 is a cross-sectional view showing the overall configuration of a second example of the embodiment of the present invention.
  • FIG. 9 is a sectional view showing the third embodiment.
  • FIG. 10 is a sectional view showing the fourth embodiment.
  • FIG. 11 is a sectional view showing the fifth embodiment.
  • FIG. 12 is a sectional view showing the sixth embodiment.
  • FIG. 13 is a sectional view showing the seventh embodiment.
  • FIG. 14 is a sectional view showing the eighth embodiment.
  • FIG. 15 is a sectional view showing the ninth embodiment.
  • FIG. 16 is a sectional view showing the tenth embodiment.
  • FIG. 17 is a sectional view showing the eleventh embodiment.
  • FIG. 18 is a sectional view showing the twelfth embodiment.
  • FIG. 19 is a view similar to FIG. 22, showing an example of the reference example of the present invention.
  • FIG. 20 is a view similar to FIG. 23, showing a thirteenth example of the embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a first example of a conventional structure of a pulley device with a built-in roller clutch.
  • FIG. 22 is a cross-sectional view taken along a line CC of FIG.
  • FIG. 23 is a view similar to FIG. 22, showing a second example of the conventional structure of the pulley device with a built-in roller clutch.
  • FIG. 24 is a view similar to FIG. 23 for explaining the force applied to the roller from the cylindrical surface and the cam surface.
  • FIG. 25 is a sectional view showing a fourteenth example of the embodiment of the present invention.
  • FIG. 26 is a partially cutaway perspective view showing the retainer and the spring taken out of FIG.
  • FIG. 27 is a sectional view taken along the line DD of FIG.
  • FIG. 28 illustrates a fifteenth example of the embodiment of the present invention, which illustrates the positional relationship between the clutch inner ring and the rollers before the clutch inner ring is pushed into the inner diameter sides of the plurality of rollers.
  • FIG. 29 is a cross-sectional view showing an engaged state of a chamfer formed on an outer peripheral edge portion of an end between a clutch inner ring and a roller.
  • FIG. 30 is a partial cross-sectional view showing a sixteenth example of an embodiment of the present invention with a part thereof omitted.
  • FIG. 31 is a view similar to FIG. 8, showing the seventeenth embodiment in a state at the moment of transition from the lock state to the overrun state.
  • FIG. 32 is a partial perspective view showing the roller clutch of the second example of the conventional structure in a state where the outer ring and the inner ring are omitted.
  • FIG. 33 is a partial cross-sectional view showing the third example.
  • FIG. 34 is a view corresponding to a section taken along line FF of FIG. 25, illustrating an eighteenth example of the embodiment of the present invention with the roller clutch taken out.
  • Fig. 35 is an enlarged view of part G in Fig. 34.
  • FIG. 36 shows the roller and the spring taken out, wherein (a) shows a free state and (b) shows a compressed state.
  • FIG. 37 is a view similar to FIG. 36 (a), showing a nineteenth example of the embodiment of the present invention.
  • FIG. 38 is a view similar to FIG. 36 (a), showing the twentieth embodiment.
  • FIG. 39 is a view similar to FIG. 36 (a), showing the twenty-first embodiment.
  • FIG. 40 is a view similar to FIG. 36 (a), showing the twenty-second embodiment.
  • FIG. 41 is a view similar to FIG. 36 (a), showing a first example of a conventional spring.
  • FIG. 42 is a view similar to FIG. 36 (a), showing the second example.
  • FIG. 43 is a view similar to FIG. 36 (a), showing the third example.
  • FIG. 44 is a perspective view showing a twenty-third example of the embodiment of the present invention, in which a part of a retainer incorporated in a roller clutch is cut and viewed from an inner diameter side.
  • FIG. 45 is a view indicated by an arrow H in FIG.
  • FIG. 46 is a view similar to FIG. 44, illustrating a twenty-third example of the embodiment of the present invention.
  • FIG. 47 is a view similar to FIG. 44, illustrating four examples.
  • FIG. 48 is a view similar to FIG. 44, showing the twenty-fifth embodiment.
  • FIG. 49 is a cross-sectional view showing the overall configuration of the roller clutch built-in pulley device according to the prior invention.
  • FIG. 50 is a sectional view taken along the line II of FIG. 49, showing the roller clutch taken out.
  • FIG. 51 is an enlarged view of a portion J in FIG. 50.
  • FIG. 52 is a perspective view showing a state in which a part of the conventional clutch retainer is cut and viewed from the outer diameter side.
  • FIG. 53 is a perspective view showing the same when viewed from the inner diameter side.
  • FIG. 54 is a view similar to FIG. 52, showing a state in which a spring is incorporated in the clutch retainer.
  • Figure 55 is a schematic diagram of an engine starter for an idling stop vehicle.
  • FIG. 56 is a partial sectional view showing a first example of a general roller clutch having a conventional structure.
  • the roller transmission with built-in roller clutch which is the rotation transmission device with built-in roller clutch of this example, is an engine starter for an idling stop vehicle shown in Fig. 55. It is used as a driving pulley device 6 for transmitting the fifth rotation of the rotary shaft 5 to the endless belt 7.
  • the star motor 4 When the star motor 4 is energized, the rotation of the rotary drive shaft 5 is transmitted to the endless belt 7, but the engine 1 starts and the endless belt 7 is driven by the engine 1. In this case, power is not transmitted from the endless belt 7 to the rotary drive shaft 5.
  • Such a pulley device 16 with a built-in roller clutch connects the endless belt 7 to the outside.
  • a pulley element 17, which is a rotating member for bridging the peripheral surface, and a sleeve 18 for externally fitting and fixing to the front end of the rotary drive shaft 5 are arranged concentrically with each other.
  • a pair of deep groove ball bearings 19, each of which is a support bearing, and a roller clutch 20 are provided between the outer peripheral surface of the sleeve 18 and the inner peripheral surface of the pulley element 17. ing.
  • the inner peripheral surface of the bull element 17 is simply a cylindrical surface, and the outer peripheral surface of the sleeve 18 is a large-diameter portion 21 at the axially intermediate portion. And a small-diameter portion 22 at both ends are formed as a stepped cylindrical surface that is continuous at the step.
  • the roller clutch 20 is provided at an axially intermediate portion of the annular space existing between the outer peripheral surface of the sleeve 18 and the inner peripheral surface of the pulley element 17.
  • the ball bearings 19 are arranged at positions sandwiching the roller clutch 20 from both sides in the axial direction.
  • the ball bearing 19 has a function of arranging the pulley element 17 and the sleeve 18 concentrically with each other and allowing the relative rotation of the two members 17, 18.
  • the span for applying the radial load is lengthened to increase rigidity and ensure durability.
  • axial loads in both directions applied to the pulley element 17 can be freely supported.
  • Each of the ball bearings 19 includes an outer ring 24 having a deep groove type outer raceway 23 on each inner peripheral surface, an inner ring 26 having a deep groove type inner raceway 25 on each outer peripheral surface, and the above outer race.
  • a plurality of balls 27 are provided between the track 23 and the inner ring track 25 so as to be able to roll freely.
  • the outer ring 24 is fitted to the inner peripheral surface of the pulley element 17 near both ends by tight fitting
  • the inner ring 26 is fitted to each of the small diameter portions 22 provided at both ends of the outer peripheral surface of the sleeve 18 by tight fitting. It is fixed. Further, in this state, one axial surface of each of the inner races 26 is brought into contact with a step surface that connects the large-diameter portion 21 and the small-diameter portion 22 respectively.
  • seal rings 28 a and 28 b between the inner peripheral surfaces of both ends of each outer ring 24 and the outer peripheral surfaces of both ends of each inner ring 26, the balls 27 are installed. The openings at both ends of the space are closed. A lubricant such as grease is sealed in this space to lubricate the rolling contact portions between the outer raceway 23 and the inner raceway 25 and the rolling surface of each ball 27.
  • the type of grease used in this case is not particularly limited, but grease in which the base oil is a synthetic oil and the urea-based thickener has excellent heat resistance (high-temperature stability) is preferably used. it can.
  • seal rings 28a and 28b There is no particular restriction on the structure of the seal rings 28a and 28b.
  • a general seal ring can be used, which is made of a metal plate and has a ring-shaped core metal reinforced with an elastic material such as rubber or the like.
  • the seal ring 28 a on the outer side of each of the ball bearings 19 (the side opposite to the roller clutch 20) the inner peripheral edge of each seal lip is entirely formed on the outer peripheral surface of the inner ring 26. It is preferable to use a so-called contact-type seal ring that slides over the entire surface. The reason for this is to prevent the intrusion of foreign substances such as dust and the like which float outside, and also to prevent the leakage of the grease sealed in the space.
  • the seal ring 28 b on the inner side may be of a contact type, but the inner peripheral edge of the seal ring 28 b is provided on the outer peripheral surface of the inner ring 26. It is also possible to form a so-called non-contact type shield ring that is closely opposed through a gap. If a non-contact type shield ring is used, the rotation resistance of the roller clutch 20 during overrun can be reduced accordingly. Further, as described later, when the roller clutch 20 and the ball bearings 19 are lubricated with the same type of grease, the inner seal ring 28 b may be omitted. it can.
  • a fluorine rubber having excellent heat resistance as the elastic material constituting each of the seal rings 28a and 28b, and to keep the inner ring 26 stopped while the outer ring 2 is stopped. 4 ensures excellent durability irrespective of frictional heat generated when rotating at high speed.
  • the outer seal ring 28a to be attached to at least one of the ball bearings 19 (or the inner seal ring 28b if the inner seal ring 28b is a contact type)
  • This hole is present in the space between these two peripheral surfaces when the ball bearing 19 is fitted and fixed between the inner peripheral surface of the pulley element 17 and the outer peripheral surface of the sleeve 18.
  • Exhaust air has the function of suppressing the rise in pressure in this space.
  • deformation such as rolling up of the seal rings 28a and 28b incorporated in the ball bearings 19 is prevented, and these seal rings are prevented from being deformed.
  • the pressure in the space fluctuates due to a temperature change due to operation or stop, the deformation is suppressed, and deterioration of the sealing performance is prevented.
  • the structure and material of the retainer 41 incorporated in each of the ball bearings 19 and rotatably holding the respective balls 27 are not particularly limited.
  • a metal corrugated press retainer as shown in Fig. 1 may be used.
  • a crown-shaped cage made of a synthetic resin can be used as the cage 41.
  • the responsiveness when the angular velocity fluctuates is improved because the cage is lighter than a cage made of metal. Also, even if abrasion powder of the cage is generated, the abrasion powder does not easily deteriorate the grease.
  • the wear powder since the hardness of the wear powder is low, the wear powder does not cause damage such as indentation on the outer raceway 23 and the inner raceway 25, and the peeling life of each of the raceways 23, 25 is reduced. None worse.
  • the synthetic resin for forming the crown-shaped cage it is preferable to use polyamide 46 having excellent heat resistance.
  • a reinforcing material such as glass fiber can be included in order to increase the strength to suppress deformation during high-speed rotation.
  • the rolling surface of each of the balls 27 among the inner surfaces of the bockets 42 for holding each of the balls 27 A part of a cylindrical surface having a central axis parallel to the central axis of the retainer 41a is formed on both sides in the circumferential direction opposite to the so-called equator part which actually makes rolling contact with the outer raceway 23 and the inner raceway 25.
  • a shape having 43 is also possible. If a cage 41a having such a pocket 42 is used, a sufficient amount of grease is introduced between the inner surface of each pocket 42 and the rolling surface of each ball 27, and The lubrication performance of each ball bearing 19 can be improved.
  • the resistance acting between the inner surface of each pocket 42 and the rolling surface of each ball 27 is reduced, the rotational resistance of each ball bearing 19 is reduced, and the roller clutch 20 Can reduce the rotational resistance at the time of overrun.
  • the reduction of the rotational resistance reduces the load on the engine 1 and improves the acceleration performance and fuel consumption performance. Contributes to improved driving performance.
  • roller clutch 20 is provided between the pulley element 17 and the sleeve 18 only when the burry element 17 tends to rotate relative to the sleeve 18 in a predetermined direction. Transmission of the rotational force of the motor.
  • an inner ring 29 for a clutch is externally fitted and fixed to the large diameter portion 21 of the sleeve 18 by interference fitting.
  • the inner ring 29 for the clutch is formed into a cylindrical shape by applying plastic working such as pressing to a steel plate such as carburized steel, and the inner and outer peripheral surfaces are each merely a cylindrical surface.
  • the clutch inner ring 29 is formed by subjecting a steel plate such as carburized steel to plastic working such as press working, and then performing a carburizing or carbonitriding heat treatment, or, usually, quenching and tempering the bearing steel or the like. It is made by performing nitriding heat treatment.
  • the inner peripheral surface of the clutch outer race 30 fixed inside by the interference fit at the intermediate portion of the inner peripheral surface of the pulley element 17 is a cam surface 31.
  • a plurality of concave portions 32 called ramp portions are formed at equal intervals in the circumferential direction on the inner peripheral surface of the outer race 30 for clutches.
  • the peripheral surface is the cam surface 31 described above.
  • the outer ring 30 for such a clutch is also formed into a cylindrical shape as a whole by subjecting a steel plate such as carburized steel to plastic working such as pressing. That is, the outer race 30 for clutches is manufactured by subjecting a steel plate such as carburized steel to press working and then performing a carburizing or carbonitriding heat treatment.
  • the plurality of rollers 33 constituting the roller clutch 20 together with the clutch inner ring 29 and the clutch outer ring 30 cannot rotate the clutch outer ring 30 with respect to the clutch outer ring 30.
  • the clutch retainer 34 externally fitted therein so as to be slightly displaceable in the rolling and circumferential directions.
  • a bearing steel or the like which is usually subjected to quenching and tempering or nitriding heat treatment, a ceramic one, or a chromium steel subjected to a nitriding treatment can be used.
  • the clutch retainer 34 is made of a synthetic resin (for example, a synthetic resin such as polyamide 66, polyamide 46, or polyphenylene sulfide mixed with about 20% of glass fiber), and the whole is cage-shaped.
  • a pair of rims 35 formed in a cylindrical shape, each having an annular shape, and a plurality of pillars 3 connecting these rims 35 to each other 6 is provided.
  • each rim portion 35 and the circumferential side surface of each column portion 36 on the four sides is rolled by each roller 33 and slightly displaced in the circumferential direction.
  • the pocket 37 is used for holding freely.
  • the engaging projections 38 formed at a plurality of positions on the outer peripheral surface of each of the rim portions 35 are engaged with the concave portions 32 formed on the inner peripheral surface of the clutch outer ring 30.
  • the clutch retainer 34 is attached to the clutch outer race 30 so as to be unable to rotate relative to the clutch outer race 30.
  • the clutch retainer 34 is clamped from both axial sides by the inward flanges 39 a and 39 b formed at both axial ends of the clutch outer ring 30, whereby the clutch retainer is provided. 3 4 is prevented from being displaced in the axial direction with respect to the clutch outer ring 30.
  • a spring 40 is mounted on one side in the circumferential direction of the pillar 36 constituting the clutch retainer 34.
  • the springs 40 provided for each of the pillars 36 serve to fix the rollers 33 held in the pockets 37 to the cam surface 31 and the outer peripheral surface (cylindrical surface) of the clutch inner ring 29.
  • the springs 40 are depicted as compression coil springs.
  • each of the springs 40 is a leaf spring formed by bending a spring steel plate into a substantially “triangular hook” shape. Is often used.
  • a synthetic resin spring integrated with the clutch retainer 34 can be used.
  • the cross-sectional shape of each of the concave portions 32 formed on the inner peripheral surface of the clutch outer ring 30 is not a straight line but a single arc.
  • the center of the curvature of the arc representing the cross-sectional shape is located at a position shifted from the center of the clutch outer ring 30.
  • the radius of curvature and the center point of the arc are set so that the arc becomes a curved line approximated by a logarithmic spiral, so that the so-called wedge angle is constant.
  • the wedge angle is determined by the tangent at the point of contact between each of the recesses 32 and the rolling surface of each of the rollers 33, the outer peripheral surface of the clutch inner ring 29, and the rolling surface of each of the rollers 33. It is defined as the angle between the tangent at the point of contact and. In the case of this example, the radius of curvature of the arc and its center point are By appropriately defining the wedge angle, the wedge angle is almost constant even if the wedge angle is cut into any part between the rollers 33 and the recesses 32 and the outer peripheral surface of the inner ring 29 for the clutch. I am trying to become.
  • the size of the wedge angle is restricted to a range of 8 ° to 11 °. This reason will be described with reference to FIG.
  • the roller clutch 20 is transmitting torque between the pulley element 17 and the sleeve 18, assuming that the load acting on each of the rollers 33 is the same, the smaller the wedge angle ⁇ , the smaller the crack.
  • the component force P′sina in the circumferential direction becomes smaller. Since this means that the torque capacity of the roller clutch 20 is small, it is not preferable from the viewpoint of securing the torque transmission capacity. on the other hand
  • the condition under which the roller clutch 20 is locked and torque can be transmitted is represented by tan a ⁇ z, where ⁇ is the friction coefficient of the contact surface. From this equation, it can be seen that when the wedge angle is increased, the roller clutch 20 is not locked, and torque cannot be transmitted between the pulley element 17 and the sleeve 18. In the case of this example, the wedge angle is restricted to the range of 8 ° to 11 °, so that the required torque capacity is secured and the locked state is reliably realized to achieve stable torque transmission. I can do it.
  • Such a roller clutch 20 is also lubricated with grease sealed therein.
  • the type of grease used in this case is not particularly limited.
  • the base oil is a synthetic oil, and the grease in which the thickening agent is urea-based has excellent heat resistance (high-temperature stability) and shear stability. Can be preferably used.
  • a contact portion between the rolling surface of each roller 33 and the outer peripheral surface of the clutch inner race 29 and the inner peripheral surface of the clutch outer race 30 may be rubbed. is there. In such a state, since a large shearing force is applied to the grease, a grease having excellent shear stability is required to sufficiently secure the durability of the roller clutch 20.
  • Greases in which the thickening agent is urea-based are preferably used because they have excellent shear stability.
  • the base oil is a synthetic oil having a low pour point, sufficient lubricity can be obtained in a wide temperature range from a low temperature environment at the start to a high temperature environment after the start. For this reason, damage such as peeling or seizure may occur on the rolling surfaces of the rollers 33, the outer peripheral surface of the clutch inner ring 29, and the inner peripheral surface of the clutch outer ring 30. Can be effectively prevented.
  • the grease suitable for lubricating the roller clutch 20 and the grease suitable for lubricating each of the ball bearings 19 coincide with each other. Therefore, the same type of grease can be filled in each of the ball bearings 19 and 19 and the roller clutch 20. In this case, it is possible to prevent inconvenience such as deterioration due to mixing of the grease sealed in each part.
  • the roller clutch 20 configured as described above is used when the pulley element 17 and the sleeve 18 tend to rotate relative to each other in a predetermined direction, that is, when the sleeve 18 moves relative to the pulley element 17.
  • the spring 40 tends to rotate relatively in the direction in which the rollers 33 press the rollers 33 (counterclockwise in FIGS. 2 to 3)
  • the rollers 33 are formed into the substantially cylindrical shape. Bite into the narrow part of the space in the diameter direction. Then, the relative rotation between the sleeve 18 and the pulley element 17 becomes impossible (locked state).
  • the pulley element 17 and the sleeve 18 are in a direction opposite to the predetermined direction, that is, the sleeve 18 presses the pulley element 17, and the spring 40 presses the rollers 33. If there is a tendency to rotate relatively in the opposite direction (clockwise in FIGS. 2 and 3), the rollers 33 are substantially cylindrically shaped against the elasticity of the springs 40. The pulley element 17 and the above-mentioned sleeve 18 are allowed to rotate relative to each other (overrun state).
  • the pulley device 16 with a built-in roller clutch which is the rotation transmission device with a built-in roller clutch for the engine of the present embodiment configured as described above, is replaced with a drive burry device for an engine start device for an idling stop car shown in FIG.
  • the effect when used as 6 is as follows. First, when starting the engine, electricity was supplied to the motor 4 and the sleeve 18 fixed externally to the tip of the rotary drive shaft 5 and the sleeve 18 was fixed externally to the sleeve 18. The clutch inner ring 29 is rotated counterclockwise in FIGS. Therefore, each of the rollers 33 is displaced in the counterclockwise direction in FIGS.
  • the rollers 33 When the roller clutch 20 is in the overrun state as described above, the rollers 33 are pushed by the pillars 36 of the clutch holder 34 and the springs 40, and are fitted in the pulley elements 17 described above. It rotates together with the fixed clutch outer ring 30. However, the rotation speed of the clutch outer ring 30 is adjusted to the rotation speed required to start the engine 1 (for example, in the case of a gasoline engine vehicle, the belt transmission mechanism is set at 400 to 50 O min- 1). In the following case, the centrifugal force acting on each of the rollers 33 does not become a value enough to compress each of the springs 40.
  • the rotation speed of the clutch outer ring 30 is adjusted to a rotation speed suitable for idling of the engine 1 (for example, 700 to 800 min. If the speed exceeds the speed obtained by multiplying the gear ratio by the belt transmission mechanism), not only the connection of the roller clutch 20 is disconnected (it becomes an over-balun state), but also the chain line in FIG. As shown, this roller clutch 2 The rolling surface of each of the rollers 33 constituting 0 and the outer peripheral surface of the clutch inner ring 29 are separated from each other. This point will be described with reference to FIG.
  • the wedge angle ⁇ is set to 9 ° 30 ' ⁇ 10 ° 30' and within the range of 8 ° -11 ° mentioned above, set near the upper limit.
  • the reason for this is that the larger the wedge ⁇ is, the larger the component force F, of the centrifugal force F, is to compress the springs 40, and the rolling surface of each roller 33 and the clutch This is to make it easier to separate the outer peripheral surface of the inner ring 29 from the outer peripheral surface.
  • the roller clutch built-in type pulley device 16 when the roller clutch built-in type pulley device 16 is incorporated into the rotating shaft of an auxiliary machine of an automobile, it is necessary to consider a wide operating temperature range. That is, when used at a low temperature, the rollers 33 dig into the outer peripheral surface of the clutch inner ring 29 and the inner peripheral surface of the clutch outer ring 30 due to the influence of grease fluidity. To The wedge angle ⁇ may not be very large in order to reliably achieve the locked state even when the wedge is closed. In such a case, the wedge angle ⁇ is set near the lower limit in the range of 8 ° to 11 °.
  • the concave portions are formed so that the rolling surface of each roller 33 and the outer peripheral surface of the clutch inner ring 29 are securely separated.
  • the depth of 32 is properly regulated. That is, when each of the rollers 33 is located at the deepest portion of each of the concave portions 32 as shown by a chain line in FIG. 4, the rolling surface of each of the rollers 33 and the outer periphery of the inner ring 29 for the clutch are formed.
  • the radial clearance [delta] of the respective ball bearing 1 9 is made larger ( ⁇ 5> [delta]] 9) than 9.
  • the upper SL gap (5 2 () is the dimension of the radius of the radial clearance ⁇ 5 is a dimension of diameter min. Slave connexion, for the clutch by a radial clearance ⁇ 5, 9 of each ball bearing 1 9 Even if the center axis of the inner ring 29 and the center axis of the outer ring 30 for the clutch are eccentric (by this radial gap ⁇ , 9 minutes), after the engine is started, the rolling surfaces of all the rollers 33 become The outer peripheral surface of the clutch inner ring 29 is securely separated.
  • the rolling surface of each roller 33 and the outer peripheral surface of the clutch inner ring 29 are separated from each other.
  • the rotation speed of the clutch outer ring 30 depends on the durability of the roller clutch 20 and the like. However, it is preferable to set the value low as long as the connection of the roller clutch 20 is securely performed when the engine 1 is started. However, in this case, even if the elasticity of each of the springs 40 is slightly reduced in consideration of the aging of each of the springs 40, for example, a new state of the connection is ensured. In the case where the rotation speed of the crankshaft 2 of the engine 1 is about 100 to 150 mi ⁇ ′′ ′, it is considered that the rolling surface and the outer peripheral surface are set to be separated from each other.
  • FIG. 8 shows a second example of the embodiment of the present invention.
  • the independent clutch inner ring 29 is omitted from the structure of the first embodiment shown in FIG. 1, and a roller clutch 20a is formed in the middle of the sleeve 18a.
  • Inner ring As a function.
  • the surface layer portion (oblique lattice portion in FIG. 8) of the large diameter portion 21 formed in the middle portion of the sleeve 18a is subjected to high-frequency heat treatment, carbonitriding, or the like.
  • the surface of the large-diameter portion 21 is hardened by heat treatment to have a hardness of HV500 or more.
  • the independent inner ring 29 for the clutch is not required, thereby simplifying parts production, parts management, and assembling work, thereby enabling cost reduction.
  • assembly errors can be kept low, and performance can be improved based on the improved accuracy of the roller clutch built-in pulley device.
  • the surface layer of the large diameter portion 21 is hardened, and the surface of the sleeve 18a is hardened. The part close to the inner peripheral surface is not quenched and hardened, but is raw.
  • the structure for externally fixing the sleeve 18a to the end of the rotary drive shaft 5 is not limited.
  • the sleeve is also omitted, and the outer peripheral surface of the rotary shaft, such as the rotary drive shaft 5, is brought into contact with the rolling surface of the roller constituting the roller clutch. It can be an orbit.
  • the inner ring of the support bearing directly fits on the outer peripheral surface of the rotary shaft such as the rotary drive shaft 5 or the like.
  • roller clutch built-in type rotation transmission device is incorporated into an engine starting device for an idling stop vehicle and used. It is not limited to the starting device. It is effective to use the structures of the above examples for applications where the rotating speed of the rotating member during overrun is faster than the rotating speed of the rotating member during licking, and the operating time in the overrun state is long. It is.
  • Such applications include, for example, accessory drive devices, such as compressors, incorporated in idling stop vehicles.
  • a clutch outer ring 3 Ob having an inward flange portion 39 formed only at one end (the left end in FIG. 10) is used.
  • the clutch outer ring 30b is sandwiched between the outer rings 24 of the pair of ball bearings 19 to regulate the axial position.
  • the axial position of the clutch retainer 34 is regulated by the inward flange portion 39 and the outer ring 24 on one side (right side in FIG. 10).
  • a cylindrical outer race 30a having no bent portions at both ends is used as the outer race 30a for the clutch.
  • the axial position of the clutch retainer 34 is regulated by the outer ring 24 of the pair of ball bearings 19.
  • the outer ring 30a a cylindrical member having no bent portions at both ends is used.
  • the outer peripheral surface of the sleeve 18b is a mere cylindrical surface without a step in the middle.
  • the clutch inner ring 29 is externally fitted and fixed to the axially intermediate portion of the sleeve 18b by interference fitting.
  • the inner peripheral surface of the intermediate portion of the pulley element 17a is made smaller in diameter than both ends, and the cam surface 31 is formed directly on the inner peripheral surface of the intermediate portion. ing .
  • a flange portion 47 formed on the outer peripheral surface of the end portion of the clutch retainer 34a so as to protrude radially outward is attached to the end surface of the intermediate portion where the diameter is reduced and the ball.
  • the clutch 19 is sandwiched between the outer ring 24 of the bearing 19 and regulates the axial position of the clutch retainer 34a.
  • the inner peripheral surface of the intermediate portion of the pulley element 17a is made smaller in diameter than both ends, and the cam surface 31 is formed directly on the inner peripheral surface of the intermediate portion. ing . Further, the axial position of the clutch retainer 34 is regulated by the outer ring 24 of the pair of ball bearings 19.
  • an end cap 44 made of a synthetic resin or metal in a Petri dish is externally fitted and fixed to prevent foreign matter from entering the space in which the ball bearings 19 and the roller clutch 20b are stored. Is being planned.
  • a notch 45 formed on the outer end face (the left end face in FIG. 17) of the pulley element 17 has an outer peripheral edge of the end cap 44 b. The parts are locked to prevent foreign substances from entering the space in which the ball bearings 19 and the roller clutch 20b are stored.
  • the end cap is formed in the dovetail-shaped locking groove 46 formed on the outer end surface of the pulley element 17 (the left end surface in FIG. 18).
  • the outer peripheral edge of 44c is locked to prevent foreign substances from entering the space in which the ball bearings 19 and the roller clutch 20b are stored.
  • the axial dimension of a portion of the pulley element 17 existing radially outside the end cap 44c is reduced.
  • the roller clutch built-in type pulley device 16 is an annular pulley that can freely hang an endless belt around the outer peripheral surface, and is an annular pulley that rotates only in a predetermined direction when used, and is inserted into the center of the pulley. In use, only power in this predetermined direction is transmitted to and from a rotating shaft that rotates only in this predetermined direction during use.
  • the pulley device 16 with a built-in roller clutch is provided with a pair of supports spaced apart from each other in the axial direction in an annular space between the inner peripheral surface of the pulley and the outer peripheral surface of the rotary shaft.
  • a bearing, and a roller clutch provided between the pair of support bearings in the annular space.
  • the roller clutch is connected when the rotating shaft rotates in the predetermined direction, and transmits power from the rotating shaft to the burry.
  • the motor rotates at a speed higher than that of the rotating shaft, the motor idles and does not transmit power from the pulley to the rotating shaft.
  • a cam surface for displacing a plurality of rollers constituting the roller clutch in the direction of the bully is formed on an inner peripheral surface of the pulley or an inner peripheral surface of a clutch outer ring fixed to the pulley.
  • the outer peripheral surface of the rotating shaft or the outer peripheral surface of the clutch inner ring externally fixed to the rotating shaft is a cylindrical surface.
  • the pulley rotates at a higher speed than the rotary shaft even when the rotary shaft is stopped.
  • the connection of the roller clutch disconnected, but also the rolling surfaces of a plurality of rollers constituting the roller clutch and the outer peripheral surface of the rotating shaft or the outer peripheral surface of the clutch inner ring fixed to the rotating shaft. Separated from the surface. Therefore, the frictional heat generated inside the roller clutch when the pulley rotates can be reduced to a small extent, and the durability of the roller clutch and the adjacent support bearing can be improved.
  • FIG. 19 shows an example of a reference example out of the scope of the present invention
  • FIG. 20 shows a thirteenth example of the embodiment of the present invention.
  • Each of these examples was developed to ensure the durability of the rotation transmission device with a built-in roller clutch, including for starting the engine.
  • the purpose was to solve the following problems: And.
  • the roller clutch built-in type rotation transmission device is used for driving auxiliary equipment will be described.
  • a pulley device with a built-in one-way clutch is used as a pulley device for driving a machine (for example, see Patent Documents 1 and 3), and some of them are actually used.
  • 21 and 22 show a first example of a conventional structure of a pulley device with a built-in roller clutch, which is one type of a pulley device with a built-in one-way clutch.
  • This one-way clutch built-in pulley device includes a sleeve 18b and a pulley element 17 arranged concentrically with each other.
  • a roller clutch 8 as a one-way clutch and a pair of servo bearings 48 are provided between the outer peripheral surface of the sleeve 18 b and the inner peripheral surface of the pulley element 17. .
  • the above sleeve 18b has a cylindrical shape as a whole. And is rotatable with this rotating shaft.
  • the pulley element 17 also has a cylindrical shape as a whole. It is free.
  • the roller clutch 8 is provided at the axially intermediate portion of the annular space existing between the outer peripheral surface of the sleeve 18 b and the inner peripheral surface of the pulley element 17.
  • a pair of support bearings 48 are disposed at positions sandwiching the roller clutch 8 from both sides in the axial direction. Of these, a pair of support bearings 48 allow the relative rotation between the pulley element 17 and the sleeve 18 b while supporting the radial load applied to the pulley element 17.
  • a deep groove ball bearing is used as each of the support bearings 48.
  • the roller clutch 8 rotates between the pulley element 17 and the sleeve 18b only when the pulley element 17 and the sleeve 18b tend to rotate relative to each other in a predetermined direction. Freely transmit force.
  • a roller clutch 8 includes a steel plate clutch inner ring 29 as an inner member, a steel plate clutch outer ring 30 as an outer member, a plurality of steel rollers 33, and a synthetic resin , And a spring, which is an elastic material (not shown).
  • the clutch inner ring 29 is fitted and fixed to the outer peripheral surface of the intermediate portion of the sleeve 18b, and the outer ring 30 for clutch is fixed to the inner peripheral surface of the intermediate portion of the pulley element 17 by interference fitting. I have.
  • the inner peripheral surface of the intermediate portion of the outer race 30 is a cylindrical surface 49
  • the outer peripheral surface of the inner race 29 is a cam surface 50. That is, a plurality of concave portions 51 each called a ramp portion are formed at equal intervals in the circumferential direction on the outer peripheral surface of the clutch inner ring 29, and the outer peripheral surface of the clutch inner ring 29 is formed on the cam surface. 50. Then, in the cylindrical space between the cam surface 50 and the cylindrical surface 49, the plurality of rollers 33 and the respective rollers 33 are held by rolling and slight displacement in the circumferential direction.
  • the clutch retainer 34 (not shown in FIG. 22) is provided. Each of the rollers 33 is disposed at a portion that matches the concave portion 51.
  • the clutch retainer 34 has its inner peripheral edge engaged with a part of the cam surface 50 to prevent relative rotation with respect to the clutch inner ring 29. say In other words, the clutch retainer 34 and the clutch inner ring 29 rotate synchronously. Between the clutch retainer 34 and the rollers 33, the rollers 33 are directed to the shallow side of the recesses 51 in the same circumferential direction (the right side in FIG. 22). A spring (not shown) for pressing in the direction (1) is provided.
  • the sleeve 18 b is externally fitted and fixed to the end of the rotating shaft of an auxiliary machine such as an ore and a bully element 17.
  • the endless belt is wound around a drive pulley fixed to an end of the engine such as a crankshaft, and driven by the rotation of the drive pulley.
  • the roller clutch 8 is connected (locked) and the pulley element 17 The transmission of rotational force from above to the above-mentioned rotating shaft is made freely.
  • the cylindrical surface 49 constituting the roller clutch 8 is provided on the inner peripheral surface of the outer race 30 for clutch, and the force surface 5 is provided. 0 is provided on the outer peripheral surface of the inner ring 29 for the clutch.
  • the arrangement of the cylindrical surface and the cam surface in the radial direction may be reversed as shown in FIG. 23 as a second example of the conventional structure of the pulley device with a built-in roller clutch. Reference 4). That is, in the case of the roller clutch 8a shown in FIG.
  • the cylindrical surface 49a is provided on the outer peripheral surface of the clutch inner ring 29a, and the cam surface 50a is provided on the inner peripheral surface of the clutch outer ring 3Oc. On each side.
  • the cylindrical surfaces 49 and 49a and the cam surfaces 50 and 50a are respectively formed on the inner peripheral surface of the burry element 17 as described above. Alternatively, it may be formed directly on the outer peripheral surface of the sleeve 18b (for example, see Patent Document 4).
  • the roller 33 is formed by the cylindrical surface 49a and the cam surface 50a. It is necessary to prevent slippage from occurring at the contact between the rolling surface of the roller 33 and the cylindrical surface 49a in a state where the roller is pressed into the narrow portion between the two (wedge angle). is there.
  • the force P that the roller 33 receives from the cylindrical surface 49a The force P is applied to the contact portion between the rolling surface of the roller 33 and the cylindrical surface 49 a, and the frictional force “P sin” acts on the roller 33 from the cylindrical surface 49 a.
  • the vertical resistance that the roller 33 receives from the cam surface 50a increases as the force P increases. Then, the roller 33 is received from the cam surface 50a in this way. If the vertical reaction force becomes large, the maximum static friction force at the contact portion between the rolling surface of the roller 33 and the cam surface 50a becomes large, and slipping hardly occurs at this contact portion. On the other hand, the above-mentioned force P is generated while no slippage occurs at the contact portion between the rolling surface of the roller 33 and the cylindrical surface 49a (while the above-mentioned condition "Psina ⁇ Pcosh" is satisfied). If there is, the larger the rotational force to be transmitted by the roller clutches 8 and 8a, the larger it becomes.
  • the lubricating state of the contact portion is determined. It is conceivable to adopt a regulation method. However, since it is difficult to regulate the lubrication state of the contact portion in this way, it is difficult to adopt this method.
  • another method of increasing the coefficient of static friction of the contact portion is to increase the roughness between the rolling surface of the roller 33 and the cylindrical surface 49a, which are the two surfaces that are in contact with each other.
  • the rolling surface of the roller 33 and the cylindrical surface 49a are metal surfaces.
  • the rolling surface of the roller 33 and the cylindrical surface 49a are in sliding contact with each other. Therefore, if the roughness of the rolling surface and the cylindrical surface 49a of the rollers 33 is increased, the frictional force acting on the sliding contact between the two surfaces during overrun increases, and this sliding contact is increased. Causes wear and seizure.
  • one example of the reference example shown in Fig. 19 relates to a pulley device with a built-in roller clutch that is fixed to the end of the rotating shaft of the motor.
  • the feature of this is that the roller is a one-way clutch. It has the properties of the cylindrical surface 49b constituting the clutch 8b.
  • the structure and operation of the other parts are the same as those of the first example of the conventional structure of the roller clutch built-in type bury device shown in FIGS. 21 to 22 described above, and therefore, duplicate illustration and description are omitted. Or, in a simplified manner, the following description will focus on the features of this example.
  • the roller clutch 8b constituting the pulley device with a built-in one-way clutch in this example has a cylindrical surface 49b on the inner peripheral surface of the clutch outer ring 30d and a cam surface 5 on the outer peripheral surface of the clutch inner ring 29. 0 is provided for each.
  • the one-way clutch built-in pulley that is fixed to the end of the rotating shaft of the alternator is basically operated in the open state, and is operated in the overrun state. Is much shorter than the total operating time.
  • the roller clutch 8b incorporated in the pulley device with a built-in one-way clutch of the present example is provided with a plurality of rollers by centrifugal force accompanying rotation in order to easily realize a locked state during engine operation.
  • the cam surface 50 is provided on the outer peripheral surface of the clutch inner ring 29 in order to prevent the 33 from retracting into the concave portion of the cam surface.
  • a manganese phosphate coating film 52 as a chemical conversion coating film is formed on the cylindrical surface 49 b. The formation process of such a manganese phosphate film 52 is generally as follows.
  • the inner peripheral surface of the outer race 30d for a clutch which is a base material, is immersed in an aqueous solution of manganese phosphate.
  • free phosphoric acid is generated by the first dissociation of the aqueous solution of manganese phosphate, and iron on the inner peripheral surface (metal surface) of the outer ring 30d for the clutch is dissolved.
  • the hydrogen ion concentration on the metal surface decreases, and the dissociation equilibrium of the manganese phosphate aqueous solution shifts on the metal surface, and insoluble manganese phosphate crystals precipitate on the metal surface. .
  • the crystals thus precipitated form the manganese phosphate film 52.
  • the manganese phosphate film 52 is formed on the cylindrical surface 49b. Since the surface of the manganese phosphate film 52 is rough, the coefficient of static friction at the contact portion between the cylindrical surface 49 b on which the manganese phosphate film 52 is formed and the rolling surfaces of the plurality of rollers 33 is determined. Can be bigger. Obedience Thus, when the locked state of the roller clutch 8b is realized, it is possible to make it less likely that slip will occur at the contact portion between the cylindrical surface 49b and the rolling surface of each roller 33. Therefore, in the case of this example, the locked state can be reliably realized.
  • the manganese phosphate film 52 prevents the cylindrical surface 49b from contacting the rolling surface of each of the rollers 33 with metal. Further, since the lubricant is held between the crystal grains of the manganese phosphate film 52, the held lubricant makes sliding contact between the cylindrical surface 49b and the rolling surface of each roller 33. The lubrication condition in the part becomes good. Therefore, when the roller clutch 8b is overbalanced, abrasion and seizure can hardly occur at the sliding contact portion.
  • FIG. 20 shows a thirteenth example of the embodiment of the present invention corresponding to claims 1 and 6.
  • This example relates to a rotation transmission device with a built-in roller clutch for starting the engine, which is fixed to the end of a drive shaft that is driven to rotate by a star and a motor.
  • the cylindrical surface 49c constituting the roller clutch 8c which is a one-way clutch has the properties.
  • the structure and operation of the other parts are the same as those of the first and second examples of the conventional structure of the roller clutch built-in pulley device shown in FIGS. 21 and 23 described above. The description will be omitted or simplified, and the following description will focus on the features of this example.
  • the roller clutch 8c that constitutes the rotation transmission device with a built-in roller clutch for engine start of this example has a cylindrical surface 49c on the outer peripheral surface of the clutch inner ring 29b, and an inner peripheral surface of the clutch outer ring 30a.
  • the cam surface 50a is provided for each.
  • a manganese phosphate film 52 which is a chemical conversion film, is formed on the cylindrical surface 49c.
  • the rotation transmission device with a built-in roller clutch for engine start of this embodiment configured as described above has a sleeve 18b (see Fig. 21) which is externally fitted and fixed to the end of the drive shaft of the star-motor. Endless belt is wound around the outer peripheral surface of the pulley element 17 (see Fig. 21). At the same time, the endless belt is passed over a driven bullion fixed to the end of the crankshaft of the engine.
  • the rotation of the engine start roller clutch built-in type rotation transmission device is rotated by energizing the star and the motor, and the crankshaft is rotationally driven via the endless belt and the driven pulley. . That is, at this time Then, the roller clutch 8c is locked, and power is transmitted from the drive shaft of the starter motor to the endless belt. Then, after the engine is started, the roller clutch 8c is in an overrun state, and the drive shaft of the star motor is prevented from rotating irrespective of the running of the endless belt accompanying the rotation of the crankshaft. Therefore, the star motor does not become a resistance to the operation of the engine, or the durability of the star motor is not impaired. In such a structure, the engine can be started immediately by simply starting the star mode. Therefore, if such a structure is incorporated into an idling stop car, restarting after idling stop can be performed in a short time, and it is possible to prevent the driver from feeling uncomfortable when restarting.
  • the rotation transmission device with a built-in roller clutch for starting the engine in this example is often operated in an overrun state, and the time in the locked state is much shorter than the entire operation time. .
  • the roller clutch 8c incorporated in the rotation transmission device with a built-in roller clutch for starting the engine in this example is in a short-run state when the engine is started, and a plurality of rollers 3c is generated by centrifugal force caused by rotation. 3 is retracted into the recess 51 of the cam surface 50a, and in order to prevent the rolling surface of each roller 3 3 from rubbing against the cylindrical surface 49c, the cam surface 50a is It is provided on the inner peripheral surface of the clutch outer ring 30c.
  • the roller clutch 8c is locked only for a short time when the engine is started. 8c is in an overrun state, and the rolling surface of each roller 33 and the cylindrical surface 49c do not rub against each other.
  • the chemical conversion film is formed only on the cylindrical surface of the rolling surface and the cylindrical surface of the plurality of rollers constituting the roller clutch.
  • the roller may be formed only on the rolling surface, or on both the rolling surface and the cylindrical surface of each roller.
  • Such an example of the reference example shown in FIGS. 19 to 20 and the thirteenth embodiment are similar to those of the first and second embodiments, which are the auxiliary parts for the automobile, the compressor and the starting device of the automobile. Evening motors, motors for driving auxiliary equipment for idling stop vehicles, etc.Used by incorporating them into the one-way clutch built-in bully device fixed to the end of the rotating shaft of the rotating shaft, etc. And a one-way clutch.
  • the one-way clutch (first and second one-way clutches) and the one-way clutch built-in pulley device (first to third one-way clutches) shown in one example of the above reference example and the thirteenth embodiment are shown.
  • the configuration with the clutch-integrated pulley device) is summarized as follows.
  • the first one-way clutch comprises: an inner member; an outer member disposed concentrically with the inner member around the inner member; and an outer peripheral surface of the inner member and an inner peripheral surface of the outer member. And a plurality of engaging elements provided on the first and second members. At least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member is a cylindrical surface. Only when the inner member and the outer member tend to relatively rotate in a predetermined direction, between the inner member and the outer member, the outer peripheral surface of the inner member and the inner peripheral surface of the outer member In particular, in the first 'one-way clutch, at least one of the surface of each of the engaging members and the cylindrical surface is provided. On one side, a chemical conversion coating such as a manganese phosphate coating is formed.
  • the second one-way clutch has an inner member and a peripheral member around the inner member, similarly to the roller clutches 8 and 8a shown in FIGS.
  • An outer member arranged concentrically with the inner member, a cam surface, a cylindrical surface, a plurality of rollers, a retainer, and a flexible material.
  • the cam surface is provided on one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member, and has concave portions at a plurality of circumferential positions.
  • the cylindrical surface is provided on the other of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member.
  • each of the rollers is disposed at a portion of the cylindrical space between the cylindrical surface and the cam surface which is aligned with each of the concave portions.
  • the retainer is supported in the cylindrical space so as not to rotate with respect to the member on which the cam surface is formed, and holds the rollers so that they can be rolled and slightly displaced in the circumferential direction.
  • the elastic material is provided between the retainer and each of the rollers, and presses these rollers in the circumferential direction in the same direction.
  • a chemical conversion coating such as a manganese phosphate coating is applied to at least one of the rolling surface of each roller and the cylindrical surface. Has formed.
  • the first one-way clutch built-in pulley device includes a cylindrical pulley arranged around the rotating shaft and concentric with the rotating shaft, a support bearing, and a one-way clutch.
  • the support bearing is provided between the outer peripheral surface of the rotary shaft and the inner peripheral surface of the pulley, and supports the radial load acting between the rotary shaft and the pulley while supporting the rotary shaft and the pulley. Can rotate freely.
  • the one-way clutch is provided at a portion between the outer peripheral surface of the rotary shaft and the inner peripheral surface of the pulley, which is separated from the support bearing in the axial direction, and the rotary shaft and the pulley are arranged in a predetermined direction.
  • the one-way clutch is any one of the first and second one-way clutches.
  • the rotary shaft is a rotary shaft constituting an alternate gear
  • a cylindrical surface constituting a one-way clutch is provided on an inner peripheral surface of an outer member
  • a cam surface is provided on a cam surface.
  • Each is provided on the outer peripheral surface of the inner member.
  • the rotation shaft is a drive shaft that is rotationally driven by a star and a motor.
  • a cam surface is provided on the outer peripheral surface of the inner member, and a cam surface is provided on the inner peripheral surface of the outer member.
  • the surface of the plurality of engaging members and the cylindrical surface constituting the one-way clutch are different from each other.
  • a chemical conversion coating such as a manganese phosphate coating is formed on at least one of the surfaces. The surface of this chemical conversion coating is rough.
  • the coefficient of static friction at the contact portion between the surfaces of the plurality of engagement elements and the cylindrical surface can be increased. Therefore, when achieving the locked state of the one-way clutch, slippage is less likely to occur at the contact portions between the surfaces of the plurality of engagement elements and the cylindrical surface, and the locked state is easily achieved.
  • the chemical conversion coating film can prevent the surfaces of the plurality of joints from coming into metallic contact with the cylindrical surface.
  • the lubricant is held between the crystal grains of the chemical conversion coating, the held lubricant causes a sliding contact between the surfaces of the plurality of engaging elements and the cylindrical surface. Good lubrication can be achieved.
  • FIGS. 25 to 27 show the fourteenth example of the embodiment of the present invention
  • FIGS. 28 to 29 show the fifteenth example of the embodiment of the present invention.
  • FIG. 31 shows a seventeenth example of the embodiment of the present invention.
  • Each of these examples was also invented in order to sufficiently secure the durability of the rotary transmission device with a built-in roller clutch, including for starting the engine. Specifically, the purpose was to solve the following problems. And
  • FIGS. 32 and 33 show the second and third examples of the conventional structure of such a conventionally known roller clutch.
  • an inner ring 9a as an inner member and an outer ring 10a as an outer member are concentrically arranged with each other. While holding, hold between the outer peripheral surface of these inner races 9a and the inner peripheral surface of outer race 10a.
  • a container 11a, a plurality of rollers 12 and the same number of springs 13 as the rollers 12 are provided.
  • the inner peripheral surface of the outer ring 10a is a cam surface 53 (see FIG. 33 described later) having a plurality of concave portions 14 called a ramp portion, and the outer peripheral surface of the inner ring 9a is simple. It has a cylindrical surface.
  • the retainer 1 la includes a pair of rim portions 54 each having a ring shape, and a column portion 55 connecting the two rim portions 54 at a plurality of positions in the circumferential direction.
  • Each of the springs 13 is formed by bending a spring steel plate into a substantially triangular hook shape. And, at the radially outer surface of each column portion 55 provided at the axially intermediate portion of the retainer 11a, the supporting protrusions 57a and 57b are provided at three positions in the axial direction on the radially outer surface, respectively. In addition to being provided in a protruding state, the bases 58 of the springs 13 are supported by the support projections 57a and 57b.
  • each of the rollers 13 presses each of the rollers 12 toward the shallow side of the concave portion 14 in the circumferential direction by the springs 13.
  • each roller 12 is sandwiched between the cam surface 53 of the outer ring 10a and the outer peripheral surface of the inner ring 9a.
  • the leading edge of each spring 13 is brought into contact with a position (the position indicated by a point P in the figure) which is the front end of the rolling surface of each roller 12.
  • the rollers 12 will not be able to adjust the elasticity of the springs 13.
  • the roller is piled and moved to the deep portion of each of the concave portions 14, and the contact pressure between the rolling surface of each of the rollers 12 and the outer peripheral surface of the inner ring 9 a is reduced.
  • the transmission of the rotational force between the outer ring 10a and the outer ring 10a is stopped (sliding).
  • the cam surface 53 is provided on the inner peripheral surface of the outer ring 10a, and the cam surface 53 is formed. Since the outer peripheral edge of the retainer 11a is engaged with the concave portion 14 to be formed, the retainer 11a rotates together with the outer ring 10a in a short balun state. Therefore, when used, this retainer 11a is likely to rotate at a high speed.
  • each of the springs 13 is provided on the outer diameter side with respect to the supporting protrusions 57 a and 57 b provided on each column 55. No consideration has been given to prevent deviation.
  • a one-way clutch is built in as a drive burry device 6 (see Fig. 55) provided at the end of the rotary drive shaft 5 of the star motor 4 to provide this function and the engine starter of the idling stop vehicle.
  • a type As described above, it is necessary to use a type. Further, as described above, it is considered that a conventionally known roller clutch as shown in FIGS. 32 to 33 described above is used as the drive pulley device 6.
  • a roller clutch is used for the driving pulley device 6, compared with the case where a ratchet mechanism is used, when the roller pulley device 6 is not connected, Vibration and noise, and friction can be reduced.
  • the friction generated inside when not connected can be reduced as compared with the case of using a sprag type cam clutch.
  • the cam surface 53 is formed on the inner peripheral surface of the outer ring 10a, and the cage 11a is rotated together with the outer ring 10a. Therefore, unlike the case of using a roller clutch which forms a cam surface on the outer peripheral surface of the inner ring and rotates the retainer together with the inner ring, the centrifugal force acting on each roller 12 at the time of use causes each of these rollers 12 is displaced to the deep portion of the concave portion 14 of the cam surface 53.
  • each roller 13 and each spring 13 are attached to the retainer 11a. 12 may be strongly pressed against a part of the retainer 11a by the elastic force of each of the springs 13. Then, with the rollers 12 pressed in this manner, a part of each of the rollers 12 protrudes farther to the inner diameter side than the inner peripheral edge of the retainer 11a, and a plurality of rollers 12 are formed.
  • the diameter of the inscribed circle on the rolling surface may be smaller than the outer diameter of the inner ring 9a.
  • each of these rollers is The axial end face of 12 and the axial end face of the inner ring 9a interfere (collide).
  • each of the rollers 12 is moved from the position between each of the springs 13 and the column 55 by the above-described method. There is a possibility that the cage may fall off to the inner diameter side of 1a.
  • each roller 12 falls off, if the elasticity of each spring 13 is small, it is possible to reassemble the dropped roller 12 to some extent easily. However, if the elasticity of each spring 13 is increased to use the roller clutch for the engine starter, it will be difficult to reassemble the dropped roller 12 and the roller clutch assembly work will be troublesome. .
  • each roller 12 moves along the recess 14 to the deep side of the recess 14 from the locked state to the overrun state.
  • the rollers 12 When the springs 13 are brought into contact with the front end of the rolling surface of the rollers 12 with respect to the movement direction of the central axis 0 of the rollers 12 at the time, the rollers 12 The movement to move to the deep side of the concave portion 14 along the concave portion 14 is easily hindered by the springs 13 described above.
  • the cage 1 1 Apply each spring to the outer diameter side of a. In the case of contact, the movement of each of the rollers 12 is more likely to be hindered.
  • each roller 12 When the movement of each roller 12 is hindered by each spring 13 in this way, even in the overrun state, the rolling surface of each roller 12 does not separate from the outer peripheral surface of the inner ring 9a.
  • the rolling surface of the roller 12 and the outer peripheral surface of the inner ring 9a rub against each other, so that frictional heat and friction loss are likely to occur at a contact portion between these two surfaces.
  • the generation of frictional heat causes the durability of the dusty sealed inside the roller clutch to decrease, and the generation of frictional loss occurs in vehicles such as vehicles equipped with an engine equipped with a starter incorporating a roller clutch. This may hinder performance improvement of various mechanical devices.
  • the fourteenth to seventeenth embodiments of the present invention shown in FIGS. 25 to 31 should be used at least by incorporating them into the engine starter of an idling stop car.
  • the cage is rotated at a high speed for a long time during use, and the inventor has invented to eliminate the inconvenience that occurs when a spring having high elasticity is used as each elastic member. .
  • FIGS. 25 to 27 show a fourteenth example of the embodiment of the present invention.
  • An engine starting roller clutch built-in type rotary transmission device of this embodiment the pulley device 5 9, the engine starting device for an idling stop vehicle shown in FIG. 5. 5 described above, the scan Tatamo - evening rotary drive shaft 5 of the 4 It is used as a drive pulley device 6 for transmitting the rotation of the endless belt 7 to the endless belt 7.
  • the star motor 4 When power is supplied to the star motor 4, the rotation of the rotation drive shaft 5 is transmitted to the endless belt 7, but the engine 1 starts and the endless belt 7 is driven by the engine 1. In this state, power is not transmitted from the endless belt 7 to the rotary drive shaft 5.
  • Such a pulley device 59 corresponds to a rotating member described in the claims, a pulley element 17 for hanging the endless belt 7 around its outer peripheral surface, and a pulley element Sleeves 60 for fitting and fixing are arranged concentrically with each other.
  • a pair of ball bearings 19, each of which is a support bearing, and a roller clutch 61 are provided between the outer peripheral surface of the sleeve 60 and the inner peripheral surface of the pulley element 17. Further, the inner peripheral surface of the pulley element 17 and the outer peripheral surface of the sleeve 60 are simply cylindrical surfaces.
  • the roller clutch 61 is provided at an axially intermediate portion of the annular space existing between the outer peripheral surface of the sleeve 60 and the inner peripheral surface of the pulley element 17.
  • each ball bearing 19 is the same as that used in the case of the first embodiment shown in FIGS. 1 to 5 described above, and the outer ring 24 constituting each of these ball bearings 19 is
  • the inner ring 26 is similarly fitted and fixed to the inner peripheral surface of the bully element 17 at both ends thereof, and similarly to the outer peripheral surface of both ends of the sleeve 60 by interference fit.
  • a pair of seal rings 28 a and 28 are not provided at the axial end of each of the ball bearings 19, but in the case of the first embodiment described above.
  • seal rings 28a and 28b can be provided. .
  • an inner ring 29 for a clutch which is an inner member, is externally fitted and fixed to the intermediate portion of the outer peripheral surface of the sleeve 60 by interference fitting.
  • the clutch inner ring 29 is formed into a cylindrical shape by subjecting a steel plate such as carburized steel to plastic working such as press working, and the inner and outer peripheral surfaces are each merely a cylindrical surface.
  • the inner peripheral surface of the outer ring 30 for the clutch which is the outer member, is fixed to the middle portion of the inner peripheral surface of the pulley element 17 by interference fit, and the inner peripheral surface of the outer ring 30 for the clutch is a cam surface 31. That is, a plurality of concave portions 14 (refer to FIG. 33) called ramp portions are formed on the inner peripheral surface of the clutch outer ring 30 at equal intervals in the circumferential direction, and the depth thereof in the circumferential direction.
  • the inner peripheral surface is formed as the cam surface 31 by being formed in a state of gradually decreasing (gradually becoming shallower) in one direction (leftward in FIG. 33).
  • the outer ring 30 for such a clutch is also formed into a cylindrical shape as a whole by subjecting a steel plate such as carburized steel to plastic working such as press working.
  • the cage 34 is made of a synthetic resin (for example, a synthetic resin such as polyamide 66, polyamide 46, or polyamide mixed with about 20% of glass fiber) and is formed in a basket-shaped cylindrical shape as a whole.
  • a pair of rim portions 35 each having an annular shape; and a column portion 36 a connecting a plurality of circumferential portions of the both rim portions 35 with each other.
  • each column portion 36a The portion surrounded by the side surface and the circumferential side surface of each column portion 36a is surrounded by a portion for rolling each roller 33 and holding the roller 33 slightly displaceable in the circumferential direction. Pocket 3 and 7. Further, the engaging projections 56 formed at a plurality of positions on the outer peripheral surface of each of the rim portions 35 are engaged with the concave portions 14 formed on the inner peripheral surface of the outer ring 30 for the clutch, thereby holding the clutch.
  • the clutch 34 is mounted on the outer ring 30 for the clutch so as not to rotate relative to the outer ring 30 for the clutch.
  • the clutch retainer 34 is sandwiched from both axial sides by inward flanges 39 a and 39 b formed at both axial ends of the clutch outer ring 30, whereby the clutch retainer is held. 3-4 is prevented from being displaced in the axial direction with respect to the clutch outer ring 30.
  • each of the springs 13 is formed by bending a spring steel plate into a substantially triangular hook shape, as in the second to third examples of the conventional structure shown in FIG. It consists of.
  • supporting projections 57 a and 57 b project radially outward at three positions in the axial direction on the radially outer surface of each column 36 a constituting the clutch retainer 34. It is provided in a state.
  • a pair of support projections 57 a provided at both ends in the axial direction of each column 36 a is provided with the clutch retainer.
  • the phases of 34 in the circumferential direction match each other.
  • one support protrusion 57 b provided at the axially intermediate portion of each column 36 a is provided with respect to the other support protrusion 57 a provided at the column 36 a.
  • the phase of the clutch retainer 34 in the circumferential direction is shifted.
  • Each of the springs 13 is provided between a pair of support projections 57 a provided on each of the pillars 36 a near both ends in the axial direction and a support projection 57 b at an intermediate portion in the axial direction.
  • the base 58 is pinched. With this configuration, the base 58 of each of the springs 13 is supported by a part of each of the pillars 36a. .
  • the respective springs 13 hold the respective openings 33 held in the respective pockets 37 together with the inner peripheral surface of the cam surface 31 and the outer peripheral surface (cylindrical surface) of the clutch inner ring 29. Of the substantially cylindrical space formed between the clutch retainer 34 and the portion having a narrower diameter in the diametrical direction. .
  • An eaves portion 62 is provided on a portion of the opposing side surface that is off the side of the base 58 beyond the side surface of the base 58 so as to protrude toward the base 58.
  • the pulley device 6 incorporating the roller clutch 61 configured as described above is used for an engine start device of an idling stop vehicle, the operation is as follows. First, when the engine 1 is started, power is supplied to the star motor 4 and the sleeve 60 fixed externally to the tip of the rotary drive shaft 5 and the sleeve 60 fixed externally to the sleeve 60.
  • the clutch inner ring 29 is rotated in a predetermined direction (counterclockwise in FIG. 33). Accordingly, each of the rollers 33 becomes narrower in the diameter direction in the substantially annular space between the outer peripheral surface of the clutch inner race 29 and the inner peripheral surface of the clutch outer race 30.
  • the power supply to the star motor 4 is stopped, and the rotary drive shaft 5 stops.
  • the pulley element 17 is rotationally driven by the crankshaft 2 of the engine 1 via the endless belt 7, and the outer race 30 continues to rotate in a predetermined direction.
  • the roller clutch 61 is in an overrun state, and the rotation of the bully element 17 does not reach the sleeve 60 until the rotation of the bully element 17 reaches the sleeve 60. It will not be transmitted. Therefore, when the engine 1 is operated, the star mode 4 does not become a load for the rotation of the engine 1.
  • a projection length L 6 2 from the supporting protrusion piece 5 7 b side of the eaves portion 6 2 is made larger than the thickness t 1 3 of the respective spring 1 3 of the base 5 8 (L 6 2 > t).
  • each of the springs 13 becomes It is possible to prevent the support projections 57a and 57b from being shifted toward the outer diameter side or coming off. Therefore, the reliability of the roller clutch can be improved.
  • the clutch retainer 34 and the clutch outer ring 30 are connected together after the engine is started.
  • each of the springs 13 is not limited to a shape having a substantially triangular hook shape in cross section as in the case of this example.
  • various shapes such as a “u” shape can be adopted.
  • a spring having a “u” shape when used, one arm of a pair of arms constituting the spring corresponds to the “base” according to claim 7. I do.
  • FIGS. 28 to 29 show a fifteenth example of the embodiment of the present invention.
  • the cross-sectional shape of each of the outer peripheral edges of the axial end surfaces of each of the rollers 33 constituting the roller clutch 61 a and the axial end surfaces of the clutch inner ring 29 is each quarter.
  • An arc-shaped or partially conical convex chamfer 63, 64 (FIG. 29) is formed.
  • the total width of the chamfers 63, 64 in the radial direction is regulated as follows in relation to the mouthpiece 33, and the clutch inner ring 29.
  • each roller 33 is held in the respective pockets 37 of the clutch holder 34, and the respective springs 13 provided in the clutch holder 34 are provided.
  • the clutch outer ring 30 is engaged around the clutch retainer 34, and the engaging convex portions 56 are engaged with the concave portions 14 forming the cam surface 31. Even if it is arranged, the rolling surface of each roller 33 does not contact this cam surface 31.
  • one of the two widths W 1, W 2 may be 0. That is, a chamfer can be formed on only one of the clutch inner ring 29 and each of the rollers 33.
  • the assembling work of the roller clutch 61a in which each part is configured as described above is performed as follows. First, the springs 13 are mounted on the clutch retainer 34, and the rollers 33 are retained in the pockets 37 provided on the clutch retainer 34, respectively. Carry. In this state, the rollers 33 are pressed against one end of the pockets 37 in the circumferential direction by the springs 13. Therefore, a combination of the rollers 33, the springs 13, and the retainer 34 for the clutch is assembled on the inner diameter side of the outer race 30 for the clutch.
  • the inner ring 29 for the clutch is mounted on the inner diameter side of each of the rollers 33.
  • one axial end (the right end in FIG. 29) of the clutch inner ring 29 is pushed (fitted) into the inner diameter side of each roller 33.
  • the inner surfaces 29 for the clutch and the rollers 33 function as the chamfers 63, 64 formed on the axial ends of the rollers 33, respectively.
  • each of the rollers 33 is located at a relatively shallow portion of the concave portion 14 forming the cam surface 31 on the inner peripheral surface of the clutch outer ring 30. Further, in this state, between the rolling surface of each of the rollers 33 and the concave portion 14, each of the rollers 3 is located closer to the inner diameter side than the cylindrical surface provided on the outer peripheral surface of the clutch inner ring 29. There is a gap s smaller than the protrusion amount ⁇ of 3.
  • the distance L between the outer peripheral surface of the clutch inner race 29 and the cam surface 31 formed on the inner peripheral surface of the clutch outer race 30 is a portion where the rollers 33 are located. is smaller than 3 3 diameter (L ⁇ D 3:. Therefore, the clutch outer ring 3 0 the phase of each roller 3 3 in the circumferential direction of intact, the inner fitting work of the inner ring for the clutch 2 9 It is difficult to do. However, if the inner ring 29 for the clutch is fitted inside the inner diameter side of each roller 33, the cam surface 3 1 formed on the inner peripheral surface of the outer ring 30 for the clutch is applied. Pile to the elasticity of spring 13 and displace in the circumferential direction.
  • each of the rollers 33 receives a reaction from the inner peripheral surface of the clutch outer ring 30, and the concave portions 14 forming the cam surface 31 provided on the inner peripheral surface of the clutch outer ring 30.
  • the inclined surface presses each of the rollers 33 in a direction perpendicular to the inclined surface.
  • each of the rollers 33 is piled on the elasticity of each of the springs 13, and FIG.
  • a predetermined position in the circumferential direction between the inner peripheral surface of the clutch outer ring 30 and the outer peripheral surface of the clutch inner ring 29, that is, the distance between these two surfaces is exactly the same as that of the roller 3.
  • the assembly of the roller clutch 61a is completed.
  • the inner ring 29 for the clutch is fitted to the sleeve 60 (see FIG. 25) with the interference fit.
  • the roller clutch 61a is assembled between the inner peripheral surface of the intermediate portion of the pulley element 17 and the outer peripheral surface of the intermediate portion of the sleeve 60.
  • a pair of ball bearings is provided between the inner peripheral surfaces of both ends in the axial direction of the pulley element 17 and the outer peripheral surfaces of both ends in the axial direction of the sleeve 60 so as to sandwich the roller clutch 61 a from both sides in the axial direction. Assemble 1 9 (see Fig. 25). In this state, the pulley device 59 is completed.
  • the axial end faces of the rollers 33 and the axial direction of the inner ring 29 for the clutch are used.
  • Chamfers 63 and 64 are formed on the outer peripheral edge with the end face, respectively.
  • the rollers 33 are held in the clutch holder 34, and the rollers 33 are provided in the clutch holder 34, respectively.
  • a spring 13 presses against a part of each pocket 37, and the clutch inner ring 29 is arranged coaxially with the clutch retainer 34, and is provided on the outer peripheral surface of the clutch inner ring 29.
  • the protrusion amount ⁇ of each of the rollers 33 toward the inner diameter side from the clutch track is determined by the chamfered end 37 of each of the rollers 33, the width W in the radial direction of the roller 33, and the inner ring 2 for the clutch 2. It is smaller sum by remote of the width W 2 in the radial direction of the chamfered end of the 9 (5 ⁇ W, + W ). Therefore, in the case of the present example, the operation of pushing the clutch inner ring 29 into the inner diameter side of each of the rollers 33 while the rollers 33 are held by the clutch retainer 34 can be performed smoothly. .
  • FIG. 30 shows a sixteenth example of the embodiment of the present invention.
  • the width L 3 7 in the circumferential direction of the inner diameter side opening of the clutch retainer 3 4, each It is smaller than the diameter D 3 3 of the roller 3 3 (L 3 7 ⁇ D 3 3).
  • the rollers 33 cannot pass through the inner diameter side opening while the rollers 33 are held in the pockets 37.
  • the clutch inner ring 29 (see FIGS. 25, 28, and 29) is fitted inside the rollers 33 while holding the rollers 33 in the clutch retainer 34.
  • the shape of the clutch retainer 34 is such that the width of the opening of each pocket 37 in the circumferential direction of the inner diameter side opening of the clutch retainer 34 is smaller than the diameter of each roller 33.
  • the shape is not limited to the shape shown in the drawing, and various shapes can be adopted.
  • FIG. 31 shows a seventeenth example of the embodiment of the present invention.
  • the position where the rolling surface of each roller 33 constituting the roller clutch 6 1b abuts on each spring 13 is restricted by the relationship with the moving direction of each roller 33. ing.
  • each of the rollers 33 is sandwiched between the cam surface 53 of the outer ring 30 for the clutch and the outer peripheral surface of the inner ring 29 for the clutch.
  • each of the above-mentioned springs 13 is located on the rolling surface of each of the rollers 33 on the inner side in the radial direction of the clutch retainer 34 (the position indicated by the point Q in the drawing).
  • the dimensions of each part are regulated so that the leading edge abuts.
  • each of the above-mentioned rollers 33 is held between the cam surface 53 of the above-mentioned rollers 33 and the outer peripheral surface of the clutch inner ring 29 and the inner surface of the clutch inner ring 29.
  • the direction in which the roller 3 presses the rollers 33 coincides with the tangential direction of the clutch retainer 34 in the circumferential direction.
  • the direction in which 13 presses each roller 33 (the direction indicated by arrow Y in FIG. 31) is such that, from this locked state, these rollers 33
  • the rollers 33 are pressed against the recesses 14 with respect to the direction of movement of the central axis o of the rollers 33 (the direction indicated by the arrow X in the figure) when the rollers 33 move to the side. Incline in the direction in which the force occurs.
  • the clutch outer ring 30 and the clutch inner ring 29 constituting the roller clutches 61, 61a and 61b are respectively connected to the pulley element 17 and the sleeve 60 ( The description has been given of a case where the inner peripheral surface of the pulley element 17 and the outer peripheral surface of the sleeve 60 are fitted and fixed separately from each other.
  • the structure is not limited to such a structure, and the clutch outer ring and the pulley element are connected to each other, and the clutch inner ring and the sleeve are connected to each other.
  • each of them can be of a unitary structure. In this case, the pulley element becomes the outer member, and the sleeve becomes the inner member.
  • the roller clutch is a rotation transmission device with a built-in roller clutch for starting an engine for an idling stop vehicle. I explained the case of using it incorporated in 9. That is, the roller clutch shown in the fourteenth to seventeenth embodiments is used in a starting device for starting an engine in the idling stop car.
  • the application of the roller clutch incorporated in the fourteenth to seventeenth embodiments is not limited to the engine starter of an idling stop vehicle.
  • the rotation transmission unit for other accessory drive devices may cause the cage to rotate at high speed for a long period of time during use, and transmit between the clutch inner ring 29 and the clutch outer ring 30 in the locked state.
  • the above fourteenth to seventeenth It is effective to use the roller clutch incorporated in the embodiment.
  • the roller clutch of the fourteenth to seventeenth embodiments can be incorporated between the outer peripheral surface of the sleeve and the outer peripheral surface of the sleeve.
  • the configuration of the roller clutches (first to fifth roller clutches) and the rotation transmission unit for driving the accessory shown in the fourteenth to seventeenth embodiments is summarized as follows.
  • the first to fifth roller clutches each have an outer member and an inner diameter of the outer member, as in the second and third examples of the conventional roller clutch structure shown in FIGS. And a cam surface having a plurality of concave portions provided on the inner peripheral surface of the outer member, the concave portions being provided on an inner peripheral surface of the outer member and each of the concave portions having a depth gradually decreasing in one direction in the circumferential direction.
  • a plurality of rollers provided in a cylindrical gap between an inner peripheral surface of the outer member and an outer peripheral surface of the inner member; a retainer for retaining each of the rollers; and a part of the retainer And a plurality of elastic members that support the respective base portions and press the rollers toward a portion where the thickness in the radial direction of the cylindrical gap is reduced.
  • a plurality of support protrusions provided in a radially protruding position at a position facing the base side surface of each of the elastic members on the outer peripheral surface of the intermediate portion in the axial direction of the retainer.
  • each of the support protrusions facing the base side surface of each elastic member, and protruding toward the base side of each elastic member at a portion deviated from the base side surface to the outer diameter side.
  • an eaves portion provided in a state. The length of projection of each of the eaves from the side surface of each of the support projections is greater than the thickness of the portion of the base of each of the elastic members facing the side surface.
  • a chamfer is formed on at least one outer peripheral edge of the axial end face of each roller and the axial end face of the inner member.
  • Each of the rollers is held in a state in which the rollers are pressed against a part of each of the pockets by the elasticity of the elastic material in pockets provided at a plurality of positions in the circumferential direction of the retainer.
  • the inner member is arranged on the same axis as the retainer at a position deviated in the axial direction from the shaft, the amount of protrusion of each of the rollers to the inner diameter side of the track for the clutch provided on the outer peripheral surface of the inner member.
  • the end of each of these rollers The width in the radial direction of the chamfer and the width in the radial direction of the chamfer at the end of the inner member are smaller than the sum of the width in the radial direction.
  • the circumference of the inner diameter side opening may be selected among the openings of a plurality of pockets provided for holding the rollers at a plurality of positions in the circumferential direction of the cage.
  • the width in the direction is smaller than the diameter of each roller.
  • each of the rollers is sandwiched between the cam surface and the outer peripheral surface of the inner member, and each of the rollers extends along the concave portion on a deep side of the concave portion.
  • the roller rolling surface of each roller is located on the inner side with respect to the radial direction of the retainer than the position at the front end of the rolling surface of each roller.
  • Each elastic material is brought into contact with the position.
  • the retainer in any one of the first to fourth mouth clutches, is made of a synthetic resin.
  • the rotation transmission unit for driving the auxiliary device includes a rotating member that rotates together with a rotation shaft of the engine or the auxiliary device, and an auxiliary device or an auxiliary device driving device such as a star motor, which is disposed on an inner diameter side of the rotating member.
  • the cage can be used for a long time and at a high speed during use as in the case of being used by being incorporated into an engine start device of an idling stop car. In addition to the occurrence of a rotating state, it is possible to prevent inconvenience caused when using elastic materials having high elasticity.
  • an eaves portion is provided on a portion of the side surface of the support protrusion opposite to the base portion of the elastic member on the side surface outside the base portion, and
  • the length of the eaves protruding from the side surface of the support protruding piece is made larger than the thickness of the portion facing the side surface at the base of the elastic material.
  • the idling stop vehicle end Even when the retainer continues to rotate at high speed for a long time together with the outer member after the engine is started, such as when used for a gin starter, the respective elastic members tend to shift to the outer diameter side of the retainer. Despite this, it is possible to prevent the deviation to the outer diameter side and improve reliability and durability.
  • the axial direction of each of these rollers is The end face and the end face in the axial direction of the inner member interfere with each other, so that it is possible to prevent these rollers from dropping to the inner diameter side of the retainer. Therefore, the assembly work of the roller clutch can be facilitated.
  • the rotation transmission unit for driving an auxiliary machine incorporating the roller clutch even when each elastic material has a high elasticity, such as used for an engine start device of an idling stop vehicle, the roller can be used. Can be prevented from falling off to facilitate the assembly operation.
  • each roller is driven by the outer member based on the action of the centrifugal force. It is easy to move to the deep side of the concave portion along the concave portion constituting the cam surface of the inner peripheral surface. For this reason, it is possible to prevent the rolling surface of each roller and the outer peripheral surface of the inner member from remaining in sliding contact with each other in the overrun state, and to suppress the generation of frictional heat and frictional loss. Therefore, the durability and performance of the roller clutch can be improved.
  • the weight can be reduced and the manufacturing operation can be simplified.
  • FIGS. 34 to 36 show an eighteenth example of the embodiment of the present invention
  • FIG. 38 shows the twentieth embodiment
  • FIG. 39 shows the twenty-first embodiment of the embodiment of the present invention
  • FIG. 40 shows the embodiment of the present invention.
  • a twenty-second embodiment of the form is shown respectively.
  • a drive pulley device 6 (see FIG. 55) provided at the end of the rotary drive shaft of the motor drive 4 is provided as described above. It is considered to use a one-way clutch built-in type incorporating a one-way clutch such as the roller clutch 8 shown in FIG.
  • the roller clutch 8 has an inner ring 9 and an outer ring 10 arranged concentrically with each other, and a retainer 11 and a retainer 11 are provided between the outer peripheral surface of the inner ring 9 and the inner peripheral surface of the outer ring 10.
  • a plurality of rollers 12 and springs 13 are arranged.
  • the outer surface of the inner ring 9 is a cam surface having a plurality of concave portions 14 called a ramp portion, and the inner peripheral surface of the outer ring 10 is a simple cylindrical surface.
  • the spring 13 for pressing the rollers 12 is a leaf spring 13 bent into a triangular hook shape as shown in FIG. 41, or bent into a mountain shape as shown in FIG. 42.
  • a leaf spring 13a formed and a leaf spring 13b bent and formed into an S-shape as shown in FIG. 43 are used.
  • roller clutch 8 in a short balun state in which the rotation force is not transmitted, that is, in a state in which the springs 13, 13 a, and 13 b are pressed by the rollers 12, If the posture of each roller 12 is shifted from the proper position in the direction in which the center axis is inclined (skewed), the respective rollers 12 and the inner peripheral surface of the outer ring 10 may be in sliding contact with each other. Uneven wear or abnormal heat generation may occur, and the rollers 12 and the outer ring 10 may have a short life.
  • each roller as described above is used. It is important to prevent the skew of 1 and 2 from the viewpoint of ensuring durability (extending the life). Even in the locked state in which the torque is transmitted, such a skew of each roller 12 is appropriately adjusted between the outer peripheral surface of the inner ring 9 and the inner peripheral surface of the outer ring 10. Difficult to engage In other words, the predetermined power cannot be transmitted between the inner ring 9 and the outer ring 10, or there is an inconvenience that damage such as early peeling is likely to occur due to excessively large surface pressure. It is still unfavorable because of the possibility.
  • the overrun state in which the torque is not transmitted similarly that is, each spring 13a In a state where 13a is pressed, a large tensile stress may be applied to a continuous portion between the main body 67 of each of the springs 13a and the pressing portion 66a.
  • a large tensile stress is applied to the continuous portion in this manner, the continuous portion may be plastically deformed. If the continuous portion is plastically deformed, it becomes impossible to apply an appropriate pressing force to each of the rollers 12.
  • the eighteenth to twenty-second examples of the embodiment of the present invention shown in FIGS. 34 to 40 are in an overrun state (a state in which each spring is pressed by each roller).
  • the invention has been invented to realize a rotation transmission device with a built-in roller clutch for starting the engine, which has excellent durability (has a long service life).
  • FIGS. 34 to 36 show an eighteenth example of the embodiment of the present invention.
  • the pulley device with built-in roller clutch which is the rotation transmission device with built-in roller clutch for starting the engine in this example, is the engine start device for an idling stop car shown in Fig. 55 described above.
  • An example in which the rotation of the rotary drive shaft 5 is used as a drive pulley device 6 for transmitting the rotation of the endless belt 7 will be described.
  • the drive pulley device 6 incorporated in such an engine starting device transmits the rotation of the rotary drive shaft 5 to the endless belt 7 when the power supply to the star motor 4 is energized, but the engine 1 starts. Then, when the endless belt 7 is driven by the engine 1, power is not transmitted from the endless belt 7 to the rotary drive shaft 5.
  • a bullion device with a built-in roller clutch used as such a drive pulley device includes a pulley element 17 (see FIG. 25) for extending the endless belt 7 around its outer peripheral surface, and a rotary drive shaft 5.
  • a sleeve 60 (see FIG. 25) for externally fitting and fixing to the distal end is arranged concentrically with each other. 'And between the outer peripheral surface of the sleeve 60 and the inner peripheral surface of the bridging element 17, each is a support bearing, which is different from the case of the first embodiment shown in FIGS.
  • a similar pair of deep groove ball bearings 19 and a roller clutch 61c are provided.
  • the inner peripheral surface of the pulley element 17 and the outer peripheral surface of the sleeve 60 are simply cylindrical surfaces. However, a radial step may be provided on the inner peripheral surface of the pulley element 17 or the outer peripheral surface of the sleeve 60 in order to position the ball bearing 19 and the roller clutch 61c in the axial direction. .
  • the outer ring 24 (see FIG. 1) is provided on the inner peripheral surface of the pulley element 17 at both ends
  • the inner ring 26 (see FIG. 1) is provided at the outer periphery of both ends of the sleeve 60. The surfaces are fitted and fixed by interference fit. Note that, unlike the case of the first embodiment, each of the ball bearings 19 does not have a pair of seal rings 28a and 28b (see FIG. 1) at the axial ends. You can also.
  • the roller clutch 61c can move between the pulley element 17 and the sleeve 60. Transmission of rotational force is free.
  • the clutch inner ring 29 is externally fitted and fixed to the intermediate portion of the outer peripheral surface of the sleeve 60 by interference fitting.
  • the clutch inner ring 29 is formed entirely into a cylindrical shape by subjecting a steel plate such as carburized steel to plastic working such as press working, and the inner and outer peripheral surfaces are each merely a cylindrical surface.
  • the sleeve 60 and the clutch inner ring 29 may be formed integrally.
  • the inner peripheral surface of the clutch outer race 30 fixed to the intermediate portion of the inner peripheral surface of the pulley element 17 by interference fit is a cam surface 31. That is, a plurality of concave portions 14 called ramps are formed at equal intervals in the circumferential direction on the inner peripheral surface of the outer ring 30 for clutch, so that the inner peripheral surface is formed on the cam surface 3. It is assumed to be 1.
  • the outer ring 30 for such a clutch is also formed into a cylindrical shape as a whole by subjecting a steel plate such as carburized steel to plastic working such as press working.
  • the pulley element 17 and the clutch outer ring 30 may be integrally formed.
  • the clutch retainer 34 fitted therein with the roller incapable of being displaced is supported to be slightly displaceable in the rolling and circumferential directions.
  • the retainer 34 for the clutch is made of synthetic resin (for example, polyamide 66, polyamide 46,
  • the entire body is formed in the shape of a cage-shaped cylinder, and a pair of rims 35 each of which is annular, and both rims And a plurality of pillars 36 connecting the parts 35 to each other.
  • each rim portion 35 and the circumferential side surface of each column portion 36 on the four sides is rolled by each roller 33 and slightly displaced in the circumferential direction.
  • the pocket 37 is used for holding freely.
  • the engaging projections 38 formed at a plurality of positions on the outer peripheral surface of each of the rim portions 35 are formed into concave portions 14 formed on the inner peripheral surface of the outer race 30 for clutch.
  • the clutch retainer 34 is attached to the clutch outer race 30 so as to be unable to rotate relative to the clutch outer race 30 by being engaged. Also, the clutch retainer 34 is sandwiched from both axial sides by inward flanges 39a and 39b (see FIG. 25) formed at both axial ends of the clutch outer ring 30. The clutch retainer 34 is not displaced in the axial direction with respect to the clutch outer race 30.
  • a spring 68 is attached to one circumferential side surface of the column 36 forming the clutch retainer 34.
  • the springs 68 provided for each of the column portions 36 are adapted to connect the rollers 33 held in the pockets 37 to the inner peripheral surface of the cam surface 31 and the outer peripheral surface of the inner ring 29 for the clutch ( Of the substantially cylindrical space formed between the clutch retainer 34 and the circumferential direction of the clutch retainer 34 in the same direction (counterclockwise direction). It is elastically pressed to the left (Fig. 35, above Fig. 36).
  • the spring 68 is drawn like a compression coil spring to make it easier to recognize the presence of the spring.
  • a plate spring 68 formed by bending a steel plate such as a plate is incorporated.
  • a part of the pillar 36 of the clutch retainer 34 is arranged on one side in the circumferential direction. There is no protruding eaves 62 (see Figures 26, 27).
  • each spring 68 of the present example has a main body 69 that comes into contact with the column 36 of the clutch retainer 34, and a base end connected to both ends of the main body 69. And a pair of pressing portions 70.
  • Each of the pressing portions 70 is curved from the base end portion to the tip end portion, and expands and contracts independently of each other while being in contact with the rolling surface of each of the rollers 33. It is. Then, as shown in (a) and (b) of FIG. 36, the position of the center of gravity G of each roller 33 in the axial direction is determined by the rolling of each roller 33 among the pressing portions 70. It is located between the (outermost) parts ⁇ that come into contact with the surface. At the same time, as shown in (b) of FIG.
  • the pulley element 17 and the sleeve 60 are in a direction opposite to the predetermined direction, that is, the sleeve 60 presses the pulley element 17 and the spring 68 presses the rollers 33.
  • the roller 33 is inclined to rotate in the opposite direction (clockwise in FIG. 35)
  • the rollers 33 are substantially cylindrically shaped against the elasticity of the springs 68.
  • the pulley element 17 and the sleeve 60 are retracted to a wide portion in the diameter direction of the gap, and the relative rotation between the pulley element 17 and the sleeve 60 becomes free (overrun state).
  • the springs 68 are overrun, that is, the springs 68 are driven by the rollers 33.
  • the posture of each mouthpiece 33 In the pressed state, it is possible to prevent the posture of each mouthpiece 33 from being shifted (skewed) from a proper position in a direction in which the central axis is inclined. Therefore, uneven wear and abnormal heat generation due to the skew of each roller 33 can be prevented, and the above-mentioned roller clutch 61c and the engine-incorporating roller clutch built-in roller clutch incorporating this roller clutch 61c are provided.
  • the durability of the device can be improved (the service life can be increased).
  • the rollers 33 are brought into contact with the rollers 33 at two points spaced apart in the axial direction by a pair of pressing portions 70 provided on 68. For this reason, even when the contact position between each of the pressing portions 70 and each of the rollers 33 changes slightly, the force and moment applied to each of the rollers 33 can be prevented from greatly changing, and each of the rollers 33 can be prevented.
  • the posture of (3) can be held at an appropriate position. That is, in the case of the S-shaped spring 13 b as shown in FIG. 43 described above, each of the springs 13 b and each of the rollers 12 contact at one point (line contact). It is rare that each of the springs 13 b and each of the rollers 12 make proper line contact.
  • rollers 12 skew even slightly, the contact state changes from line contact to point contact. Therefore, the pressing force of each spring 13 b deviates from the direction of the center of gravity of each roller 12, so that a moment is easily applied to each roller 12, and the inclination of each roller 12 is easily increased. Become.
  • the rollers 33 and the springs 68 are separated in the axial direction by a pair of pressing portions 70 provided on the springs 68 as described above. Since the rollers are in contact at points, the posture of each of the rollers 33 can be maintained at an appropriate position.
  • each pressing portion 70 is mutually Can expand and contract independently. Therefore, when each of the rollers 33 skews, a large reaction force is generated in the pressing portion 70 on the side where the displacement amount (extension / contraction amount) is large. As a result, a moment is applied to each of the rollers 33 to restore the attitude of each of the rollers 33, and the attitude of each of the rollers 33 can be maintained at an appropriate position.
  • the position of the center of gravity G of each of the rollers 33 in the axial direction is set between the (outermost) portions ⁇ of the pressing portions 70 that come into contact with the rolling surfaces of the rollers 33.
  • each of the pressing portions 70 is curved from the base end portion to the distal end portion, when each of the pressing portions 70 faces inward as in the case of this example (a pair of pressing portions) 70 are bent in directions approaching each other) or, as shown in FIG. 37 as a nineteenth example of an embodiment of the present invention, each pressing portion 70 a faces outward. In either case (when the pair of pressing portions 70a are formed to be bent away from each other), the pressing force of each pressing portion 70a can be sufficiently ensured.
  • FIG. 37 as a nineteenth example of the embodiment of the present invention, when each pressing portion 70a faces outward, these pressing portions 70a and the main body 6 It is possible to alleviate the tensile stress applied to the connecting portion with the connecting portion 9 and prevent loss of the pressing force due to plastic deformation of the connecting portion. That is, when the pressing portions 70a are pressed by the mouthpieces 33, not only the continuous portions but also the curved portions of the pressing portions 70a tend to be elastically deformed. For this reason, even in the curved portion of each of the pressing portions 70a, the pressing force can be applied to each of the rollers 33, so that the concentration of the tensile stress in the continuous portion can be reduced.
  • roller transmission with a built-in roller clutch for engine start is constructed as described above.
  • the idling stop vehicle shown in FIG. When the roller clutch 6 1c is in an overrun condition when used as a drive pulley device 6 for an engine starter for a vehicle, each roller 33 is provided with a column 3 of a clutch retainer 34. 6 and the spring 68, it rotates together with the clutch outer ring 30 fixedly fitted in the pulley element 17 (FIG. 25). However, the rotation speed of the clutch outer ring 30 is the rotation speed required for starting the engine 1 (see FIG.
  • each of the rollers 33 is displaced toward a narrow portion of the space between the outer peripheral surface of the clutch inner race 29 and the inner peripheral surface of the clutch outer race 30.
  • the roller clutch 61c is securely locked.
  • the rotation speed of the clutch outer ring 30 is adjusted to a rotation speed suitable for idling of the engine 1 (for example, in the case of a gasoline engine vehicle, 700 to 80 O min). - to 1, when it becomes the gear ratio multiplied speed) or by a belt transmission mechanism, the connection of the roller clutch 6 1 c is cut off (O - a balun state) as well, the roller clutch The rolling surface of each of the rollers 33 constituting the 6 1 c is separated from the outer peripheral surface of the clutch inner ring 29.
  • each roller 33 tends to be displaced in a direction of pressing each spring 68 (compressing each spring 68). Also, after the engine 1 is started, when the power supply to the above-mentioned clutch 4 is stopped, the clutch inner ring 2 9 also stops, so that the only force for displacing each roller 33 in the counterclockwise direction in FIGS. 34 to 35 is the elasticity of each spring 68.
  • the force applied to each roller 33 is the pressing force of each spring 68 and the centrifugal force opposing this pressing force.
  • FIG. 38 shows a twentieth example of the embodiment of the present invention.
  • a continuous portion of the main body portion 69 constituting each spring 68a and the pair of pressing portions 70 is smoothly continued.
  • the main body 69 and the column portion 36 of the clutch holder 34 (FIG. Both ends of the contact portion move to the leading end sides of these pressing portions 70. Therefore, the contact position between each of the pressing portions 70 and each of the rollers 33 is moved to the base end side of each of the pressing portions 70, so that these pressing portions 70 can be seen. Can be made shorter, and the force for recovering the inclination of each roller 33 can be increased.
  • Other configurations and operations are the same as those of the eighteenth embodiment shown in FIGS. 34 to 36 described above.
  • FIG. 39 shows an example of the second embodiment of the embodiment of the present invention.
  • a pair of pressing portions 70 b constituting each spring 68 b are curved in such a manner that the radius of curvature gradually decreases from the base end to the front end (so that the radius of curvature gradually decreases). I have.
  • the curvature of each of the pressing portions 7Ob is increased toward the distal end.
  • the stress applied to the base end side of each pressing portion 70b can be further reduced, and the required pressing force can be secured without increasing the size of each spring 68b.
  • the stress applied to each of the pressing portions 70b increases as it approaches the base end and increases as the radius of curvature decreases (the curvature increases).
  • the stress applied to the base end side is further reduced by increasing the curvature radius of the base end side of each pressing portion 70b (decreasing the curvature).
  • the pressing force of each of the pressing portions 70b is secured by reducing the curvature radius of the tip side of each of the pressing portions 70b (to increase the curvature).
  • Other configurations and operations are the same as those of the eighteenth embodiment shown in FIGS. 34 to 36 described above.
  • FIG. 40 shows a twenty-second example of the embodiment of the present invention.
  • the continuation of the main body 69 forming each spring 68c and the pair of pressing portions 70b is continued with a smooth curve, and these pressing portions 7Ob are It is curved with the radius of curvature gradually decreasing (curvature gradually increasing) from the base end to the tip.
  • the pressing portion 7 O b and the axial spacing L 3 3 of the contact position between the rollers 3 3, and a main body 6 9 cage clutch 3 4 (FIG. 3 4
  • the desired spring characteristics can be easily obtained by regulating the distance L36 between the contact portions of the column portion 36 with the column portion 36.
  • Other configurations and operations are the same as those of the twentieth embodiment shown in FIG. 38 and the twenty-first embodiment shown in FIG.
  • the eighteenth to twenty-second embodiments shown in FIGS. 34 to 40 described above relate to a case where the roller clutch built-in type rotation transmission device is incorporated into an engine start device for an idling stop vehicle and used. explained.
  • the application of the roller clutch built-in type rotation transmitting device of each of the eighteenth to twenty-second embodiments is not limited to the above-described engine starting device.
  • the roller according to any one of the eighteenth to twenty-second embodiments described above is used for applications in which the rotating speed of the rotating member during overrun is faster than the rotating speed of the rotating member during locking, and the operating time in the overrun condition is long. It is effective to use a rotation transmission device with a built-in clutch.
  • Such applications include, for example, incorporation into idling stop vehicles,
  • An auxiliary device driving device such as a compressor is conceivable. It is not intended to increase the operating time in the overrun state, but it is used as a drive pulley device to be incorporated in the drive devices of various auxiliary machines such as an alternator and a war pump, and as a one-way clutch constituting the drive pulley device. Can also be used.
  • roller clutch shown in each of the eighteenth to twenty-second embodiments described above is configured such that, when one of the two members concentrically combined with each other rotates in both directions, It is used for transmitting only one-way rotational movement to the other member.
  • roller clutch built-in type pulley device shown in each of the eighteenth to twenty-second embodiments incorporates the roller clutch described above, and rotates the crankshaft of the engine to various engine accessories such as an alternator. Can also be used to communicate
  • the configurations of the roller clutch and the roller clutch built-in type burying device shown in the eighteenth to twenty-second embodiments are summarized as follows.
  • the roller clutch shown in the eighteenth to twenty-second embodiments includes an outer ring equivalent member, an inner ring equivalent member, a cam surface, a cylindrical surface, a plurality of rollers, a retainer, and a spring.
  • the inner ring equivalent member is arranged inside the outer ring equivalent member and concentrically with the outer ring equivalent member.
  • the cam surface is uneven in the circumferential direction, and is formed on one of the inner peripheral surface of the outer ring equivalent member and the outer peripheral surface of the inner ring equivalent member.
  • the cylindrical surface is formed on the other of the inner peripheral surface of the outer ring-equivalent member and the outer peripheral surface of the inner ring-equivalent member.
  • Each of the rollers is provided in a cylindrical gap between the cylindrical surface and the cam surface.
  • the retainer is supported in the cylindrical gap so as not to rotate with respect to the member having the cam surface formed thereon, and retains the plurality of rollers.
  • Each of the springs is made of metal and is provided between the retainer and each of the rollers, and presses these rollers in the same direction with respect to the circumferential direction.
  • each of the springs has a main body portion in contact with a part of the retainer, and base members provided at both ends of the main body portion. end And a pair of pressing portions each having a continuous portion.
  • Each of the pressing portions is curved from the base end to the front end, and expands and contracts independently of each other while being in contact with the rolling surfaces of the rollers.
  • the position of the center of gravity of each roller in the axial direction is located between the portions of the pressing portions that contact the rolling surfaces of the rollers.
  • the axial distance between the portions of the pressing portions that contact the rolling surfaces of the rollers is determined. More than half of the axial length.
  • the pulley device with a built-in roller clutch shown in the eighteenth to twenty-second embodiments includes a sleeve, a pulley, a radial rolling bearing, and a roller clutch. It can be externally fixed to the shaft.
  • the pulley has a cylindrical inner peripheral surface, and is arranged around the sleeve and concentrically with the sleeve.
  • the radial rolling bearing is provided between the outer peripheral surface of the sleeve and the inner peripheral surface of the pulley, and supports the radial load applied to the pulley while allowing relative rotation between the sleeve and the pulley.
  • roller clutch is the sixth roller clutch, and is provided between the outer peripheral surface of the sleeve and the inner peripheral surface of the pulley at a portion axially displaced from the radial rolling bearing. I have.
  • roller clutch and the roller clutch built-in type pulley device shown in the eighteenth to twenty-second embodiments configured as described above in the overrun state, that is, in the state where each spring is pressed by each roller, It is possible to prevent the position of the roller from being shifted (skewed) from a proper position in a direction in which the central axis is inclined. Therefore, uneven wear and abnormal heat generation due to the skew of each roller can be prevented, and the durability of the roller clutch and the pulley device with a built-in roller clutch can be improved (life extension). For this reason, the performance of various types of mechanical devices can be improved, for example, the reliability and durability of the engine start device for an idling stop vehicle can be improved.
  • FIGS. 44 to 45 show the twenty-third embodiment of the embodiment of the present invention
  • FIG. 46 shows the twenty-fourth embodiment in the same manner
  • FIG. FIG. 48 shows the second embodiment. Sixteen embodiments are shown respectively.
  • Each of these examples was also invented in order to sufficiently secure the durability of the rotation transmission device with a built-in mouth clutch including the one for starting the engine. Specifically, the purpose was to solve the following problems. And
  • a drive pulley device 6 (see FIG. 55) provided at the end of the rotary drive shaft of the star drive motor 4 is provided as described above. It is considered to use a one-way clutch built-in type incorporating a one-way clutch such as the roller clutch 8 shown in FIG. However, as described above, in the case of the roller clutch 8 shown in FIG. 56, even when the rotational force is not transmitted between the inner ring 9 and the outer ring 10, the rolling of each of the rollers 12 is performed.
  • the pulley device 16 with a built-in roller clutch includes a pulley element 17 for passing an endless belt 7 (see FIG. 55) around its outer peripheral surface, and a rotary drive shaft 5 (see FIG. 55).
  • a sleeve 18 for externally fitting and fixing to the distal end is arranged concentrically with each other.
  • a pair of deep groove ball bearings 19, each of which is a support bearing, and a roller clutch 20 are provided between the outer peripheral surface of the sleeve 18 and the inner peripheral surface of the pulley element 17 respectively.
  • the inner peripheral surface of the pulley element 17 is simply a cylindrical surface, and the outer peripheral surface of the sleeve 18 is a large-diameter portion at the axially intermediate portion.
  • a stepped cylindrical surface is formed by connecting 21 and the small-diameter portions 22 at both ends at a step.
  • the roller clutch 20 is provided at an axially intermediate portion of the annular space existing between the outer peripheral surface of the sleeve 18 and the inner peripheral surface of the pulley element 17.
  • the ball bearings 19 are arranged at positions where the roller clutch 20 is sandwiched from both sides in the axial direction.
  • the ball bearing 19 has a function of arranging the pulley element 17 and the sleeve 18 concentrically with each other and allowing the relative rotation of the two members 17, 18.
  • the span for applying the radial load is lengthened to increase rigidity and ensure durability.
  • axial loads applied to the pulley element 17 in both directions can be freely supported.
  • Each of the ball bearings 19 includes an outer ring 24 having a deep groove type outer raceway 23 on each inner peripheral surface, an inner ring 26 having a deep groove type inner raceway 25 on each outer peripheral surface, and the above outer race.
  • a plurality of balls 27 are provided between the track 23 and the inner ring track 25 so as to be able to roll freely.
  • the outer ring 24 is fitted to the inner peripheral surface of the pulley element 17 near both ends by tight fitting
  • the inner ring 26 is fitted to each of the small diameter portions 22 provided at both ends of the outer peripheral surface of the sleeve 18 by tight fitting. It is fixed. Further, in this state, one axial surface of each of the inner races 26 is brought into contact with a step surface that connects the large boss portion 21 and the small boss portion 22 respectively.
  • the roller clutch 20 is provided between the pulley element 17 and the sleeve 18 only when the pulley element 17 tends to rotate relative to the sleeve 18 in a predetermined direction. Transmission of the rotational force of the motor.
  • an inner ring 29 for a clutch is externally fitted and fixed to the large diameter portion 21 of the sleeve 18 by interference fitting.
  • the inner ring 29 for the clutch is formed into a cylindrical shape by applying plastic working such as pressing to a steel plate such as carburized steel, and the inner and outer peripheral surfaces are each merely a cylindrical surface.
  • the inner peripheral surface of the clutch outer race 30 fixed inside by the interference fit at the intermediate portion of the inner peripheral surface of the pulley element 17 is a cam surface 31. That is, as shown in FIGS. 50 to 51, a plurality of concave portions 32 called ramp portions are formed at equal intervals in the circumferential direction on the inner peripheral surface of the outer race 30 for clutches.
  • the inner peripheral surface is the cam surface 31 described above.
  • the outer ring 30 for such a clutch is also formed into a cylindrical shape as a whole by subjecting a steel plate such as carburized steel to plastic working such as press working.
  • the clutch retainer 34 is entirely made of a synthetic resin (for example, a synthetic resin such as polyamide 66, polyamide 46, or polyphenylene sulfide mixed with about 20% of glass fiber) in a cage cylindrical shape.
  • a pair of rims 35 each having an annular shape, and a plurality of pillars 36 connecting the two rims 35 are provided.
  • Rollers 33 are rolled along the circumferential direction of the portion surrounded by the inner surface of each of the rim portions 35, 35 and the circumferential side surface of each of the pillar portions 36.
  • the pocket 37 is used to hold the battery slightly displaceable.
  • the engaging projections 38 formed at a plurality of positions on the outer peripheral surface of each of the rim portions 35 are formed into concave portions 3 2 formed on the inner peripheral surface of the clutch outer ring 30 as shown in FIG.
  • the clutch retainer 34 is connected to the clutch outer race 30 relative to the clutch outer race 30. It is mounted with rotation disabled.
  • the clutch retainer 34 is clamped from both axial sides by inward flanges 39a and 39b formed at both axial ends of the clutch outer ring 30. 4 does not displace in the axial direction with respect to the clutch outer ring 30.
  • a spring 40 is mounted on one side surface in the circumferential direction of the pillar 36 constituting the clutch retainer 34.
  • the springs 40 provided for each of the column portions 36 are used to connect the rollers 33 held in the pockets 37 to the inner peripheral surface of the cam surface 31 and the outer peripheral surface of the inner ring 29 for the clutch ( In the substantially cylindrical space formed between the clutch retainer 34 and the circumferential direction of the clutch retainer 34 in the same direction (FIG. 50- 5 Elastic pressing in the counterclockwise direction 1).
  • the above-mentioned springs 40 are depicted as compression coil springs. In actual cases, these springs 40 are formed by bending a spring steel plate into a generally triangular hook shape. In many cases, a leaf spring made of That is, as shown in FIGS. 52 to 54, springs are attached to locking projections 71a and 71b formed on the outer peripheral surface of each of the pillars 36 and 36 constituting the clutch retainer 34. In addition to locking the base 72 of 40, a pair of elastic pieces 73, 73 provided for each spring 40 presses each roller 33 in the same direction in the circumferential direction. I do. Further, a synthetic resin spring integrated with the clutch retainer 34 can be used. The roller clutch 20 is also lubricated with grease sealed in the inner sound 15.
  • the roller clutch 20 configured as described above has a configuration in which the pulley element 17 and the sleeve 18 tend to rotate relative to each other in a predetermined direction. If the springs 40 tend to rotate relative to each other in a direction pressing the rollers 33 (counterclockwise in FIGS. 50 to 51), the rollers 33 are substantially It digs into a narrow part in the diameter direction in the cylindrical space. Then, relative rotation between the sleeve 18 and the pulley element 17 becomes impossible (locked state). On the other hand, the pulley element 17 and the sleeve 18 are in a direction opposite to the predetermined direction, that is, the sleeve 18 force is applied to the pulley element 17, and the spring 40 presses the rollers 33.
  • roller clutch built-in type pulley device 16 according to the prior invention configured as described above is used as the drive pulley device 6 of the engine start device for an idling stop vehicle shown in FIG. 55 is as follows. It is. First, when the engine is started, power is supplied to the star drive 4 and the sleeve 18 is externally fixed to the tip of the rotary drive shaft 5 and the clutch is externally fixed to the sleeve 18. The inner ring 29 is rotated counterclockwise as shown in FIGS. Therefore, each of the rollers 33 is displaced in the counterclockwise direction in FIG. 50-51, and a substantially cylindrical shape is formed between the outer peripheral surface of the clutch inner ring 29 and the inner peripheral surface of the clutch outer ring 30.
  • each of the rollers 33 bites into a wedge shape between the outer peripheral surface of the clutch inner race 29 and the inner peripheral surface of the clutch outer race 30, and the roller clutch 20 is locked. Power is transmitted from the clutch inner ring 29 to the clutch outer ring 30.
  • the crankshaft 2 (see FIG. 55) of the engine 1 is driven to rotate via the pulley element 17, the endless belt 7, and the driven pulley 3, and the engine 1 is started.
  • the rollers 33 are pushed by the pillars 36 of the clutch holder 34 and the springs 40, and are fitted in the pulley elements 17 described above. It rotates together with the fixed clutch outer ring 30.
  • the rotation speed of the clutch outer ring 30 is the rotation speed required for starting the engine 1 (for example, In the case of a gasoline engine vehicle, the speed is obtained by multiplying the speed ratio by the belt transmission mechanism to 400 to 500 min— '.
  • the centrifugal force acting on each roller 33 is The value is not enough to compress each of the springs 40.
  • the rotation speed of the clutch outer ring 30 is adjusted to a rotation speed commensurate with the idling of the engine 1 (for example, in the case of a gasoline engine vehicle, 700 to 80 O min— 1 is multiplied by the gear ratio of the belt transmission mechanism), the rollers 33 press the springs 40 based on the centrifugal force, while the rollers 3 2 Is displaced to the deep side.
  • the rollers 33 press the springs 40 based on the centrifugal force, while the rollers 3 2 Is displaced to the deep side.
  • each roller 33 tends to be displaced in the direction of pressing each spring 40 (compressing each spring 40). Also, after the engine 1 is started, in a state where the power supply to the starter motor 4 is stopped, the clutch inner ring 29 is also stopped, so that the rollers 33 are moved counterclockwise in FIGS. 50 to 51.
  • the force to be displaced is only the elasticity of each spring 40 described above.
  • each roller 33 presses each spring 40 based on centrifugal force, while each concave portion 32 In a state before being displaced to the deep side, the rolling surface of each of the rollers 33 and the outer peripheral surface of the inner ring 29 for the clutch rub against each other. Accordingly, in this state, a sufficient amount of grease is supplied to a sliding contact portion between the rolling surface of each of the rollers 33 and the outer peripheral surface of the inner ring 29 for the clutch. This is important from the viewpoint of ensuring the durability of the pulley device with a built-in roller clutch.
  • FIGS. 44 to 45 show a twenty-third example of the embodiment of the present invention.
  • the feature of this example is that by devising the structure of the clutch retainer 34 b, the contact portion between the outer peripheral surface of the inner ring for the clutch and the rolling surface of each roller 33 (see FIGS. 49 to 51) (See Ref. 1).
  • the structure and operation of the other parts, such as the entire structure of the pulley device with a built-in roller clutch, are the same as those of the prior invention shown in FIGS. 49 to 51, so illustration and description of the equivalent parts are omitted.
  • the description will focus on the characteristic portions of this example.
  • each pillar portion 36 b constituting the above-mentioned clutch retainer 34 b is disposed radially outward from the inner peripheral edge 75 of each rim portion 35. It is depressed.
  • the inner diameter of each of the rim portions 35 is slightly smaller than the outer diameter of the clutch inner ring 29. It is bigger. Therefore, in a state where the clutch retainer 34 b is incorporated in the pulley device with a built-in roller clutch, each of the inner peripheral edges 75 closely opposes both ends of the outer peripheral surface of the clutch inner ring 29.
  • Grease is taken into the space 77 during operation of the rotation transmission device with a built-in roller clutch for engine start incorporating the clutch retainer 34 b as described above. That is, the roller clutch 20 is sealed in the roller clutch 20 (see FIGS. 49 to 51) and adheres to the rolling surface of each of the rollers 33. The grease pushed into the space is taken into the space 77.
  • This space 77 has a sufficient volume, and the outer side in the radial direction is partitioned by the inner peripheral surface 74 of each of the pillars 36 b, and both sides in the axial direction are partitioned by the rims 35. I have.
  • the grease taken into the space 77 is the centrifugal force applied when the clutch retainer 34 b rotates together with the pulley element 17 and the clutch outer ring 30 (see FIGS. 49 to 51). Regardless, it is hard to be washed away radially outward. In addition, due to the presence of the above labyrinth gaps 76, 76, it is difficult for the labyrinth to flow outward in the axial direction.
  • FIG. 46 shows a twenty-fourth example of the embodiment of the present invention.
  • the inner peripheral surface 74a of each column 36c and the inner peripheral edge 75 of each rim 35 are located on a single cylindrical surface.
  • a concave hole 78 is formed at the center in the circumferential direction of the inner peripheral surface 74a of each of the column portions 36c, and the concave hole 78 serves as a grease pool. It works.
  • the cross-sectional shape of the concave hole 78 is made into a crescent shape, so that it becomes shallower toward the both ends in the circumferential direction. In this way, the rotor is efficiently supplied to the outer peripheral surface of the clutch inner ring 29 with the relative rotation between the clutch retainer 34 c and the clutch inner ring 29 (see FIGS. 49 to 51). I have to.
  • FIG. 47 shows a twenty-fifth example of the embodiment of the present invention.
  • the inner peripheral surface 74a of each column 36d and the inner peripheral edge 75 of each rim 35 are located on a single cylindrical surface.
  • one half in the circumferential direction of the inner peripheral surface 74a of each of the column portions 36c is recessed radially outward to form a stepped recess 79, and this stepped portion is formed.
  • the concave portion 79 functions as a grease pool.
  • the stepped concave portion 79 is directly opposed to the roller 33 (see FIGS. 49 to 51) held in the pocket 37, and the grease taken into the stepped concave portion 79 is disengaged from the clutch. With the relative rotation between the retainer 34 d for clutch and the inner ring 29 for the clutch (see FIGS. 49 to 51), the clutch is efficiently supplied to the outer peripheral surface of the inner ring 29 for this clutch.
  • FIG. 48 shows a twenty-sixth example of the embodiment of the present invention.
  • the inclined concave portion 80 is formed by recessing one half in the circumferential direction of the inner peripheral surface 74 a of each column portion 36 e radially outward toward the circumferential edge.
  • the inclined recess 80 functions as a grease reservoir.
  • the inclined recess 80 is directly opposed to the roller 33 (see FIGS. 49 to 51) held in the pocket 37, and the grease taken into the inclined recess 80 is removed.
  • the clutch retainer 34 e With the relative rotation between the clutch retainer 34 e and the clutch inner ring 29 (see FIGS. 49 to 51), the clutch retainer 34 e is efficiently supplied to the outer peripheral surface of the clutch inner ring 29. I have.
  • Other configurations and operations are the same as those in the 23rd to 25th embodiments shown in FIGS. 44 to 47 described above.
  • the twenty-third to twenty-sixth embodiments shown in FIGS. 44 to 48 described above are applicable to the case where the rotation transmission device with a built-in roller clutch is incorporated in an engine start device for an idling stop vehicle. I did it.
  • the rollers shown in the 23rd to 26th embodiments above The rotation transmission device with a built-in clutch is not limited to such applications, and can be used in a state of being incorporated in various rotation transmission mechanisms such as a mechanism for driving an auxiliary device such as a compressor when the engine is stopped in an idling stop car.
  • the configuration of the burry device with a built-in mouth clutch shown in the twenty-third to twenty-sixth embodiments is summarized as follows.
  • this pulley device with a built-in roller clutch like a conventionally-known bury device with a built-in roller clutch, has an endless belt that can be freely wound around the outer peripheral surface.
  • the roller clutch is disengaged when the rotating shaft rotates in the predetermined direction and transmits power from the rotating shaft to the burry.
  • the pulley has a higher speed than the rotating shaft in the predetermined direction. In this case, the motor runs idle and does not transmit power from this pulley to this rotating shaft.
  • a cam for displacing a plurality of rollers constituting the roller clutch in a radial direction of the pulley is provided.
  • the surface exists on the inner peripheral surface of the bully or the inner peripheral surface of the clutch outer ring fixed to the pulley.
  • the outer peripheral surface of the rotating shaft or the outer peripheral surface of the clutch inner ring fixed to the rotating shaft is a cylindrical surface.
  • the rollers hold the respective rollers so as to be freely displaceable in the circumferential direction of the annular space.
  • a retainer for holding a spring for pressing the roller in the same direction with respect to the circumferential direction of the annular space is rotatable with respect to the rotation shaft together with the pulley.
  • a grease reservoir for holding grease is provided on the inner peripheral surface of the retainer.
  • the rolling of each roller is performed from the grease pool provided on the inner peripheral surface of the cage.
  • Grease can be supplied to a contact portion between the surface and the outer peripheral surface of the rotating shaft or the outer peripheral surface of the clutch inner ring externally fixed to the rotating shaft. Because of this, these two sides rub each other Even in the case of a match, the wear on both sides can be suppressed, and the durability of the pulley device with a built-in roller clutch can be improved. Therefore, the durability of the roller clutch can be ensured even when the clutch outer ring and the clutch inner ring rotate relatively at high speed. For this reason, the performance of various mechanical devices can be improved, for example, the reliability and durability of an engine start device for an idling stop vehicle can be improved.
  • the rotating member described in the claims is a pulley element 17 (FIG. 1 or the like) that allows an endless belt to be freely wound around the outer peripheral surface.
  • the rotation transmission device with a built-in roller clutch for engine start of the present invention is not limited to such a structure.
  • an element having a gear portion formed on an outer peripheral surface is used as the rotating member. It can be done even in cases When such an element is used, for example, another gear section that rotates together with the crankshaft of the engine is combined with a gear section provided on the element.
  • the rotation transmission device with a built-in roller clutch for the engine start of the present invention is configured and operates as described above, the reliability and durability of the engine start device for an idling stop vehicle can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pulleys (AREA)
  • Rolling Contact Bearings (AREA)

Description

明細書
台動用ローラクラッチ内蔵型回転伝達装置 技術分野
この発明に係るエンジン始動用ローラクラッチ内蔵型回転伝達装置は、 例えば 、 自動車の走行を停止した状態でエンジンもアイドリングさせずに自動的に停止 させる、 所謂アイドリングストップ車で、 上記エンジンを始動させる為のス夕一 夕モー夕の駆動軸の端部に装着した状態で使用する。 そして、 エンジンの始動時 にはこの駆動軸から上記エンジンのクランクシャフ卜への動力伝達を行ない、 上 記エンジンの始動後には、 このエンジンにより上記駆動軸が回転駆動されない様 に機能する。 背景技術
近年、 省エネルギ並びに二酸化炭素の排出抑制を目的として、 自動車が停止し た状態でエンジンもアイドリングさせずに自動的に停止させる、 アイドリングス トップを行なう事が考えられ、 一部ではこの様なアイドリングストップ機能を備 えたアイドリンダストップ車が実際に使用されている。 この様なアイドリングス トップ車の場合、 自動車が停止すると、 車速センサが検出した、 車速ゼロの信号 に基づいてエンジンを自動的に (イダニッシヨンスィッチを操作する事なく) 停 止させる。 これに対して、 自動車を再発進させる場合には、 クラッチペダルの動 きを検知するクラッチセンサ (手動変速車の場合) 或はアクセルペダル若しくは ブレーキペダルの動きを検知するアクセルセンサ若しくはブレーキセンサ (自動 変速車の場合) からの信号に基づき、 上記自動車用エンジンを自動的に (やはり イダニッシヨンスィッチを操作する事なく) 再起動させる。 この様なアイドリン グストップ車によれば、 エンジンのアイドリングストップを行なう分、 省エネル ギ並びに二酸化炭素の排出抑制を図れる。
この様なアイドリングストップ車の場合、 一般的な自動車の場合に比べてェン ジンの始動を迅速に行なわせる必要がある。 従って、 一般的に使用されている様 に、 始動時にのみ、 スター夕モー夕の駆動軸に固定したピニオンと、 フライホイ —ルに固設した大歯車とを嚙合させる構造を採用する事は難しい。 この様な事情 に鑑みて、 図 5 5に示す様に、 エンジン 1のクランクシャフト 2の端部に固定し た従動プーリ 3と、 スター夕モー夕 4の回転駆動軸 5の端部に固定した駆動ブー リ装置 6との間に無端ベルト 7を掛け渡す構造が、 各種提案されている。 ェンジ ンの始動装置にこの様な構造を採用する場合には、 上記駆動プーリ装置 6として 一方向クラッチ内蔵型のものを使用して、 上記回転駆動軸 5から上記無端ベル卜 7に動力を伝達するが、 この無端ベルト 7から回転駆動軸 5へは動力を伝達しな い様にする。 尚、 実際のエンジンには、 オルタネ一夕やウォー夕ポンプ等の各種 補機の駆動装置が組み付けられるが、 この駆動装置部分に関しては、 本発明とは 直接は関係しないので、 図示並びに説明は省略する。
上述の様な構造を有するエンジンの始動装置の場合、 エンジン始動時には、 上 記スター夕モータ 4への通電によって上記駆動プーリ装置 6を回転駆動し、 上記 無端ベルト 7、 上記従動プーリ 3を介して、 上記クランクシャフト 2を回転駆動 する。 この際、 上記駆動プーリ装置 6に内蔵した一方向クラッチは繋がれ (ロッ ク状態となり) 、 上記回転駆動軸 5から上記無端ベルト 7に動力を伝達する。 こ の結果、 上記エンジンが始動した後には、 上記一方向クラッチの接続が断たれ ( オーバラン状態となり) 、 上記クランクシャフト 2の回転に伴う上記無端ベルト 7の走行に拘らず、 上記スター夕モータ 4の回転駆動軸 5が回転する事はなくな る。 従って、 このスタータモ一夕 4が上記エンジン 1の運転に対する抵抗になつ たり、 或はこのスター夕モータ 4の耐久性が損なわれる事はない。
この様なエンジンの始動装置に駆動プーリ装置 6として組み込む、 一方向クラ ツチ内蔵型プーリ装置としては、 例えば特許文献 1、 特許文献 2に記載された様 に、 一方向クラッチとしてローラクラッチを使用したものを利用する事が考えら れる。 ローラクラッチを使用した構造によれば、 ラチェット機構を使用する場合 等に比べて、 非接続時に発生する振動や騒音、 更には摩擦を低減できる。 又、 ス プラグ式等のカムクラッチを使用する場合に比べて、 非接続時に内部で発生する 摩擦を低減できる。 本願の先行技術として、 次の特許文献が揚げられる。
特許文献 1
特開平 1 1— 6 3 1 7 0号公報 特許文献 2
特公平 7 - 7 2 5 8 5号公報
特許文献 3
特開 2 0 0 2— 1 7 4 2 7 0号公報
特許文献 4
特開平 9— 1 9 6 0 9 0号公報
但し、 上述した各特許文献のうち、 特許文献 1 、 2に記載された一方向クラッ チ内蔵型プーリ装置は、 エンジン用補機であるオル夕ネー夕の回転軸の端部に設 置する事を意図したものであって、 エンジンの始動装置の場合とは使用形態が大 きく異なる。 この為、 上記一方向クラッチ内蔵型プーリ装置をそのままスター夕 モー夕の回転駆動軸の端部に装着しても、 十分な耐久性を得られない。 即ち、 ォ ル夕ネー夕の回転軸に一方向クラッチ内蔵型プーリ装置を使用する理由の一つは 、 エンジンの回転数の微小変位に拘らず、 ベルトの内周面とプーリの外周面との 間に作用する摩擦力の方向を一定にして、 このベルトの耐久性を確保する為であ る。 又、 別の理由は、 エンジンの回転速度低下時にも上記オル夕ネ一夕のロー夕 をその慣性により回転させ続ける事により、 発電効率を向上させる為である。 従って、 オル夕ネー夕用の一方向クラッチ内蔵型プーリ装置は、 ロック状態で 運転される事が基本であり、 オーバラン状態で運転される時間は全体の運転時間 に比べれば遥かに短い。 又、 オーバラン状態の継続時間は極短時間である。 この 様な事情に鑑みて、 上記オルタネー夕用の一方向クラッチ内蔵型プーリ装置に組 み込むローラクラッチは、 エンジンの運転時にロック状態を確実に実現すベく、 上記特許文献 1 、 2等に記載され、 従来から知られている、 図 5 6に示す様な構 造を採用している。
この図 5 6に示した従来構造の第 1例のローラクラッチ 8は、 内輪 9と外輪 1 0とを互いに同心に配置すると共に、 これら内輪 9の外周面と外輪 1 0の内周面 との間に、 保持器 1 1と、 それぞれ複数個ずつのローラ 1 2及びばね 1 3、 1 3 とを設置している。 上記内輪 9の外周面は、 ランプ部と呼ばれる複数の凹部 1 4 を備えたカム面とし、 上記外輪 1 0の内周面は単なる円筒面としている。 上記保 持器 1 1は、 その内周縁部に形成した係合凸部 1 5を上記凹部 1 4に係合させる 事により、 上記内輪 9に対する相対回転を阻止している。 言い換えれば、 上記保 持器 1 1とこの内輪 9とが同期して回転する様にしている。 又、 上記各ばね 1 3 は上記各ローラ 1 2を、 上記凹部 1 4の浅い側に向け、 円周方向に関して同方向 に押圧している。
この様なローラクラッチ 8の場合、 上記外輪 1 0に対し上記内輪 9が図 5 6の 時計方向に相対回転する傾向の場合には、 上記各ローラ 1 2が上記内輪 9の外周 面と外輪 1 0の内周面との間に食い込み (係合し) 、 これら内輪 9と外輪 1 0と の間で回転力の伝達が行なわれる。 これに対して、 上記内輪 9が図 5 6の反時計 方向に相対回転する傾向の場合には、 上記各ローラ 1 2が上記各ばね 1 3の弾力 に杭して上記各凹部 1 4の深い部分に移動し、 これら各ローラ 1 2の転動面と上 記外輪 1 0の内周面との当接部の面圧が低下して、 上記内輪 9とこの外輪 1 0と の間で回転力の伝達が行なわれなくなる。
但し、 この様に内輪 9と外輪 1 0との間で回転力の伝達を行なわない状態でも 、 上記各ローラ 1 2の転動面と上記外輪 1 0の内周面との当接部が擦れ合う事が 避けられない。 この為、 オーバラン状態が長く続くと、 この当接部で無視できな い程の摩擦熱が発生する事により、 上記ローラクラッチ 8内部の温度が上昇し、 このローラクラッチ 8内に封入したグリースが劣化し易くなる。 更には、 この口 ーラクラツチ 8に隣接して設けるサポート軸受の温度も上昇し、 このサポート軸 受に組み込んだ、 ゴム製或は合成樹脂製のシール板が劣化し易くなる。 オルタネ 一夕用の一方向クラツチ内蔵型ブーリ装置の場合、 前述した様に口ック状態を基 本として運転され、 オーバラン状態で運転される時間は短い為、 上述の様な摩擦 熱による温度上昇は問題とはなりにくい。
これに対して、 前述の図 5 5に示した様なアイドリングストップ車用の駆動プ ーリ装置 6に組み込む一方向クラッチの場合、 ロック状態となるのはエンジンを 始動する際の短時間だけであり、 エンジン始動後には、 このエンジンが運転され ている限り、 オーバラン状態となる。 従って、 図 5 6に示す様なローラクラッチ 8をアイドリングストップ車用のエンジン始動装置に組み込んでも、 十分な耐久 性を確保する事が難しい。
本発明のェンジン始動用ローラクラッチ内蔵型回転伝達装置は、 この様な事情 等に鑑みて、 耐久性を十分に確保すべく発明したものである。 発明の開示
本発明のエンジン始動用ローラクラッチ内蔵型回転伝達装置の何れも、 使用時 にエンジンのクランクシャフトと共に回転する回転部材と、 この回転部材の中心 部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モー夕の回転 軸との間で、 この所定方向のみの動力を伝達するものであり、 上記回転部材の内 周面と上記回転軸の外周面との間の環状空間内に、 軸方向に関して互いに間隔を あけて配置された 1対のサボ一ト軸受と、 この環状空間内でこれら 1対のサポー ト軸受同士の間に設けられたローラクラッチとを備える。
又、 このローラクラッチは、 上記回転軸が上記所定方向に回転する際に繋がれ てこの回転軸から上記回転部材に動力を伝達するが、 この回転部材が上記所定方 向に、 この回転軸よりも高速で回転する場合に空転してこの回転部材からこの回 転軸への動力の伝達を行なわないものである。
そして、 請求項 1に記載したスター夕モー夕用ローラクラッチ内蔵型プーリは 、 該プーリの軸方向の一方側に配置された第 1のサポート軸受と、 前記プーリの 軸方向他方側に配置された第 2のサポート軸受と、 第 1のサポート軸受と第 2の サポート軸受の間にローラクラッチ部とを有し、 該ローラクラッチ部は、 回転方 向の一方でロックし、 他方でアンロックするようになっていて、 プーリの内周面 に、 またはプーリの内側にはめ込まれたクラッチ用外輪の内周面に、 カム面を形 成してあること特徴とする。
又、 請求項 2に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記ローラクラッチを構成する複数のローラ力 これら各ローラを上 記回転部材の径方向に変位させる為のカム面を構成する凹部の最深部に位置した 場合に、 上記各ローラの転動面と、 上記回転軸の外周面若しくはこの回転軸に外 嵌固定したクラッチ用内輪の外周面との間に存在する隙間の大きさを、 上記各サ ポート軸受のラジアル隙間よりも大きくしている。
又、 請求項 3に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記各サポート軸受及びローラクラッチが、 基油が合成油であり増ち よう剤がウレァ系である、 同種のグリースにより潤滑されている。
. 又、 請求項 4に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記各サポート軸受が玉軸受であって、 複数の玉を転動自在に保持す る保持器が合成樹脂製で冠型の保持器であり、 この保持器に設けた各ポケッ卜の 内面のうちで上記各玉の転走面に対向する円周方向両側部分に、 この保持器の中 心軸と平行な中心軸を有する部分円筒面が設けられている。
又、 請求項 5に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記各サポート軸受の両端部に設けられたシールリングのうち、 上記 ローラクラッチと反対側である外側に設けたシールリングは接触式、 このローラ クラッチ側である内側のシールリングは非接触式のものである。
又、 請求項 6に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記ローラクラッチを構成する複数のローラを上記回転部材の径方向 に変位させる為のカム面は、 この回転部材の内周面若しくはこの回転部材に内嵌 固定したクラッチ用外輪の内周面に形成しており、 上記回転軸の外周面若しくは この回転軸に外嵌固定したクラッチ用内輪の外周面は円筒面としている。 又、 こ の円筒面の外周面と上記複数のローラの表面とのうちの少なくとも一方の面に化 成処理皮膜を形成している。
又、 請求項 7に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記ローラクラッチを構成する複数のローラを保持する為の保持器の 軸方向中間部外周面で、 これら各ローラを押圧する複数のばねの基部側面と対向 する位置に径方向に突出する状態で設けられた複数の支持突片と、 これら各支持 突片のうちの上記各弹性材の基部側面と対向する側の側面で、 この基部側面より も外径側に外れた部分にこれら各弾性材の基部側に突出する状態で設けられた庇 部とを備える。 そして、 上記各支持突片の側面からのこれら各庇部の突出長さを 、 上記各ばねの基部でこの側面と対向する部分の厚さよりも大きくしている。 又、 請求項 8に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記ローラクラツチを構成する複数のローラを上記回転部材の径方向 に変位させる為のカム面は、 この回転部材の内周面若しくはこの回転部材に内嵌 固定したクラツチ用外輪の内周面に形成しており、 上記回転軸の外周面若しくは この回転軸に外嵌固定したクラッチ用内輪の外周面は円筒面としている。 そして 、 上記複数のローラが上記カム面とこの円筒面の外周面との間に挾持され、 これ ら各ローラがこのカム面を構成する複数の凹部に沿ってこれら各凹部の深い側に 移動する状態でのこれら各ローラの中' 0軸の移動方向に関して、 これら各ローラ の転動面の前端となる位置よりも、 これら各ローラの転動面で上記ローラクラッ チを構成する保持器の径方向に関して内側の位置にばねを当接させる。
又、 請求項 9に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置に 於いては、 上記ローラクラッチが、 上記回転部材の内周面と上記回転軸の外周面 との間に設けられた複数本のローラと、 これら各ローラをこれら回転部材及び回 転軸の円周方向に関して同方向に押圧する為のばねと、 これら各ローラを保持す る保持器とを備えたものである。 又、 これら各ばねは、 上記保持器の一部と当接 する本体部と、 この本体部の両端部にその基端部を連続させた 1対の押圧部とか ら成るものである。 又、 このうちの各押圧部は、 上記各ローラの転動面と当接し た状態で、 互いに独立して伸縮するものである。 そして、 これら各ローラの重心 の軸方向に関する位置を、 上記各押圧部のうちでこれら各ローラの転動面と当接 する部分同士の間に位置させると共に、 上記各押圧部が上記各ローラにより押圧 された状態で、 これら各押圧部のうちでこれら各ローラの転動面と当接する部分 同士の軸方向間隔を、 これら各ローラの軸方向長さの半分以上としている。 又、 請求項 1 0に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置 に於いては、 上記口一ラクラッチが、 上記回転部材の内周面と上記回転軸の外周 面との間に設けられた複数本のローラと、 これら各ローラをこれら回転部材及び 回転軸の円周方向に関して同方向に押圧する為のばねと、 これら各ローラを保持 する保持器とを備えたものである。 又、 これら各ばねは、 この保持器の一部と当 接する本体部と、 この本体部の両端部にその基端部を連続させた 1対の押圧部と から成るものであり、 このうちの各押圧部は、 上記各ローラの転動面と当接した 状態で、 互いに独立して伸縮するものであり、 これら各押圧部を基端部から先端 部に向う程曲率半径が漸減する状態で湾曲させている。
又、 請求項 1 1に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置 に於いては、 上記ローラクラッチを構成する複数のローラを保持する為の保持器 は、 上記環状空間の軸方向に間隔をあけて互いに平行に配置された 1対のリム部 同士を、 この環状空間の円周方向に関して間隔をあけて互いに平行に配置された 複数本の柱部により連結したものであり、 これら各柱部の内周面に、 グリースを 保持する為のグリース溜りを設けている。
上述の様に構成する本発明のエンジン始動用ローラクラッチ内蔵型回転伝達装 置によれば、 耐久性の向上を図れる。
即ち、 請求項 1に記載したスター夕モー夕用ローラクラッチ内蔵型プーリの場 合には、 このローラクラツチを構成する複数のローラの転動面が上記プ一リの内 周面若しくはプ一リに内嵌固定したクラッチ用外輪の内周面により案内される。 従って、 回転時に上記ローラクラッチの内部で発生する摩擦熱を僅少に抑えて、 このローラクラッチ及び隣接するサポート軸受の耐久性向上を図れ、 スター夕モ —夕用ローラクラッチ内蔵型プーリの耐久性の向上を図れる。
又、 請求項 2に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置の 場合には、 各サポート軸受のラジアル隙間により回転部材の中心軸と回転軸の中 心軸とが (このラジアル隙間の分だけ) 偏心した場合でも、 エンジンの始動後に は、 総てのローラの転動面と、 回転軸又はこの回転軸に外嵌固定したクラッチ用 内輪の外周面とを、 確実に離隔させる事ができる。 この為、 エンジン始動用ロー ラクラッチ内蔵型回転伝達装置の耐久性の向上を図れる。
又、 請求項 3に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置の 場合には、 ローラクラツチの内部に封入するグリ一スの優れた剪断安定性及び耐 熱性 (高温安定性) を確保できると共に、 ローラクラッチ及び各サポート軸受に 封入したグリース同士が混和する事で劣化する等の不都合の発生を防止でき、 ェ ンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性の向上を図れる。 又、 請求項 4に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置の 場合には、 ラジアル荷重を負荷するスパンを高くして、 剛性を高くできると共に 、 耐久性の向上を図れる。 又、 保持器を合成樹脂製で冠型としている為、 この保 持器の摩耗粉が生じた場合でも、 この摩耗粉がグリースを劣化させにくい。 又、 摩耗粉の硬度が低い為、 この摩耗粉が外輪軌道や内輪軌道に圧痕等の損傷を生じ させる事がなく、 これら各軌道の剥離寿命を悪化させる事がない。 この為、 ェン ジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性の向上を図れる。
又、 請求項 5に記載したェンジン始動用ローラクラツチ内蔵型回転伝達装置の 場合には、 各サポート軸受及びローラクラッチの内部空間への塵芥等、 外部に浮 遊する異物の侵入を防止できると共に、 この内部空間内に封入したグリースの漏 洩を防止でき、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性の向 上を図れる。 しかも、 ローラクラッチのオーバラン時の回転抵抗の低減を図れる 又、 請求項 6に記載したェンジン始動用ローラクラツチ内蔵型回転伝達装置の 場合には、 ローラクラッチを構成する複数のローラの表面と円筒面の外周面との うちの少なくとも一方の面に、 リン酸マンガン皮膜等の化成処理皮膜を形成して いる。 この化成処理皮膜の表面は粗い。 この為、 上記複数のローラの表面と上記 円筒面との接触部の静止摩擦係数を大きくする事ができる。 従って、 ローラクラ ツチのロック状態を実現する際に、 上記複数のローラの表面と上記円筒面との接 触部で滑りが生じにくくなり、 上記ロック状態が実現され易くなる。 一方、 口一 ラクラッチのオーバラン時には、 上記化成処理皮膜により、 上記複数のローラの 表面と上記円筒面とが金属接触する事を防止できる。 これと共に、 この化成処理 皮膜の結晶粒子間に潤滑剤が保持される為、 この保持された潤滑剤によって、 上 記複数のローラの表面と上記円筒面との摺接部での潤滑状態を良好にできる。 従 つて、 ローラクラッチのォ一バラン時に、 この摺接部で摩耗や焼き付きを生じに くくでき、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性の向上を 図れる。
又、 請求項 7に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置の 場合には、 保持器が高速回転する事により各ばねに大きな遠心力が作用する場合 でも、 これら各ばねが支持突片に対し外径側にずれたり、 外れる事を防止できる 。 従って、 ローラクラッチの信頼性及び耐久性の向上を図れる。 この結果、 ェン ジンの始動後に上記保持器が回転部材と共に長時間高速で回転し続ける為に、 上 記各ばねが上記保持器の外径側へずれ易い傾向となるのにも拘らず、 この外径側 へのずれを防止して、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の信頼 性及び耐久性の向上を図れる。
又、 請求項 8に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置の 場合には、 ロック状態からォ一バラン状態に移行する際に、 各ローラが、 遠心力 の作用に基づいてカム面を構成する凹部に沿ってこの凹部の深い側に移動し易く なる。 この為、 オーバラン状態で、 これら各ローラの転動面と円筒面の外周面と が滑り接触した状態のままになるのを防止し、 摩擦熱及び摩擦損失の発生を抑え る事ができる。 従って、 ローラクラッチの耐久性及び性能の向上を図れる。 この 結果、 上記各ローラを押圧するばねとして弾力が大きいものを使用するのにも拘 らず、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性及び性能の向 上を図れる。
又、 請求項 9に記載したェンジン始動用ローラクラツチ内蔵型回転伝達装置の 場合には、 オーバラン状態、 即ち各ローラにより各ばねが押圧された状態で、 こ れら各ローラの姿勢が適正位置から中心軸が傾く方向にずれる (スキューする) のを防止できる。 この為、 この様な各ローラのスキューに基づく偏摩耗や異常発 熱を防止でき、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性向上 (長寿命化) を図れる。
即ち、 請求項 9に記載したェンジン始動用ローラクラッチ内蔵型回転伝達装置 の場合には、 上記各ローラを押圧する各ばねを、 これら各ばねに設けた 1対の押 圧部により、 これら各ローラに、 軸方向に離隔した 2点で接触させる。 この為、 これら各押圧部と上記各ローラとの接触位置が多少変化した場合でも、 これら各 ローラに加わる力やモーメントが大きく変化する事を防止でき、 これら各ローラ の姿勢を適正位置に保持できる。
又、 この様に各ばねを構成する 1対の押圧部によりこれら各ばねと上記各口一 ラとを 2点で接触させている為、 これら各押圧部が互いに独立して伸縮する事が できる。 この為、 上記各ローラがスキューした場合には、 変位量 (伸縮量) の大 きい側の押圧部に大きな反力が生じる。 この結果、 これら各ローラの姿勢を元に 戻そうとするモーメントがこれら各ローラに加わり、 これら各ローラの姿勢を適 正位置に保持できる。 又、 これら各ローラの重心の軸方向に関する位置を、 上記 各押圧部のうちでこれら各ローラの転動面と当接する部分同士の間に位置させら れる為、 これら各ローラの重心位置と上記各押圧部の押圧方向とが不適正になる 事を防止できる。 この結果、 これら各ローラにモーメントが加わる事を防止し、 これら各ローラがスキューするのを防止できる。
又、 上記各押圧部が上記各ローラにより押圧された状態で、 これら各押圧部の うちでこれら各ローラの転動面と当接する部分同士の軸方向間隔をこれら各口一 ラの軸方向長さの半分以上としている為、 これら各ローラの姿勢がどの様に変化 しても、 或は、 上記各押圧部がこれら各ローラによりどの様に押圧されても、 こ れら各ローラの重心を上記当接部分同士の間に常に位置させる事ができる。 従つ て、 上記各ローラが上記各ばねと軸方向に離隔した 2点で接触している事による これら各ローラの姿勢安定化作用を十分に確保でき、 これら各ローラの姿勢を適 正に保持する事ができる。
又、 請求項 1 0に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置 の場合には、 各押圧部の基端側に加わる応力を十分に小さくできると共に、 各ば ねを大型化する事なく必要な押圧力を確保できる。 即ち、 これら各押圧部に加わ る応力は、 基端側程大きくなると共に、 曲率半径が小さい (曲率が大きい) 程大 きくなる。 これに対して請求項 1 0に記載したエンジン始動用ローラクラッチ内 蔵型回転伝達装置の場合には、 上記各押圧部の基端側の曲率半径を大きく (曲率 を小さく) する事により、 この基端側に加わる応力を小さくできる。 又、 これと 共に、 これら各押圧部の先端側の曲率半径を小さく (曲率を大きく) する事によ り、 上記各ばねを大型化する事なく、 これら各押圧部の押圧力を確保できる。 こ の為、 各ローラのスキューに基づく偏摩耗や異常発熱を防止でき、 エンジン始動 用ローラクラッチ内蔵型回転伝達装置の耐久性向上を図れる。
又、 請求項 1 1に記載したエンジン始動用ローラクラッチ内蔵型回転伝達装置 の場合には、 グリース溜りから、 各ローラの転動面と、 回転軸の外周面若しくは この回転軸に外嵌固定したクラッチ用内輪の外周面との接触部にグリースを供給 できる。 この為、 これら両面同士が擦れ合った場合にも、 これら両面の摩耗を抑 えて、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性向上を図れる 図面の簡単な説明
図 1は、 本発明の実施の形態の第一実施例の全体構成を示す断面図。
図 2は、 ローラクラッチを取り出して示す、 図 1の A— A断面図。
図 3は、 図 2の B部拡大図。
図 4は、 ローラクラッチに関する隙間の大きさを説明する為に使用する、 ロー ラクラッチの一部を図 3と同方向から見た模式図。
図 5は、 サポート軸受の保持器の 1例を示す、 部分拡大斜視図。
図 6は、 ロック状態を実現する面から、 くさび角の好ましい大きさを説明する 為の模式図。
図 7は、 ローラの転動面とクラッチ用内輪の外周面とを離隔させる面から、 く さび角の好ましい大きさを説明する為の模式図。
図 8は、 本発明の実施の形態の第二実施例の全体構成を示す断面図。
図 9は、 同第三実施例を示す断面図。
図 1 0は、 同第四実施例を示す断面図。
図 1 1は、 同第五実施例を示す断面図。
図 1 2は、 同第六実施例を示す断面図。
図 1 3は、 同第七実施例を示す断面図。
図 1 4は、 同第八実施例を示す断面図。
図 1 5は、 同第九実施例を示す断面図。
図 1 6は、 同第十実施例を示す断面図。
図 1 7は、 同第十一実施例を示す断面図。
図 1 8は、 同第十二実施例を示す断面図。
図 1 9は、 本発明の参考例の 1例を示す、 図 2 2と同様の図。
図 2 0は、 本発明の実施の形態の第十三実施例を示す、 図 2 3と同様の図。 図 2 1は、 ローラクラッチ内蔵型プーリ装置の従来構造の第 1例を示す断面図 図 2 2は、 一部を省略して示す、 図 2 1の C— C断面図。
図 2 3は、 ローラクラッチ内蔵型プーリ装置の従来構造の第 2例を示す、 図 2 2と同様の図。 図 2 4は、 円筒面及びカム面からローラに加わる力を説明する為の、 図 2 3と 同様の図。
図 2 5は、 本発明の実施の形態の第十四実施例を示す断面図。
図 2 6は、 図 2 5から保持器及びばねを取り出して示す部分切断斜視図。 図 2 7は、 図 2 6の D— D断面図。
図 2 8は、 本発明の実施の形態の第十五実施例を示す、 クラッチ用内輪を複数 のローラの内径側に押し込む以前の状態でのこれらクラッチ用内輪とローラとの 位置関係を説明する為の、 図 2 5の E— E断面に相当する図。
図 2 9は、 クラッチ用内輪とローラとの端部外周縁部に形成した面取りの係合 状態を示す断面図。
図 3 0は、 本発明の実施の形態の第十六実施例を、 一部を省略した状態で示す 部分断面図。
図 3 1は、 同じく第十七実施例を、 ロック状態からオーバラン状態に移行する 瞬間の状態で示す、 図 8と同様の図。
図 3 2は、 従来構造の第 2例のローラクラッチを、 外輪と内輪とを省略した状 態で示す部分斜視図。
図 3 3は、 同第 3例を示す部分断面図。
図 3 4は、 本発明の実施の形態の第十八実施例を、 ローラクラッチを取り出し て示す、 図 2 5の F— F断面に相当する図。
図 3 5は、 図 3 4の G部拡大図。
図 3 6は、 ローラ及びばねを取り出して示す図で、 (a ) は自由状態を、 (b ) は圧縮状態を、 それぞれ示している。
図 3 7は、 本発明の実施の形態の第十九実施例を示す、 図 3 6 ( a ) と同様の 図。
図 3 8は、 同第二十実施例を示す、 図 3 6 ( a ) と同様の図。
図 3 9は、 同第二十一実施例を示す、 図 3 6 ( a ) と同様の図。
図 4 0は、 同第二十二実施例を示す、 図 3 6 ( a ) と同様の図。
図 4 1は、 従来のばねの第 1例を示す、 図 3 6 ( a ) と同様の図。
図 4 2は、 同第 2例を示す、 図 3 6 ( a ) と同様の図。 図 4 3は、 同第 3例を示す、 図 3 6 ( a ) と同様の図。
図 4 4は、 本発明の実施の形態の第二十三実施例を示す、 ローラクラッチに組 み込む保持器の一部を切断して内径側から見た状態で示す斜視図。
図 4 5は、 図 4 4の H矢示図。
図 4 6は、 本発明の実施の形態の第二十三実施例を示す、 図 4 4と同様の図。 図 4 7は、 四実施例を示す、 図 4 4と同様の図。
図 4 8は、 同第二十五実施例を示す、 図 4 4と同様の図。
図 4 9は、 先発明に係るローラクラッチ内蔵型プーリ装置の全体構成を示す断 面図。
図 5 0は、 ローラクラッチを取り出して示す、 図 4 9の I— I断面図。
図 5 1は、 図 5 0の J部拡大図。
図 5 2は、 従来構造のクラッチ用保持器の一部を切断して外径側から見た状態 で示す斜視図。
図 5 3は、 同じく内径側から見た状態で示す斜視図。
図 5 4は、 クラッチ用保持器にばねを組み込んだ状態で示す、 図 5 2と同様の 図。
図 5 5は、 アイドリングストップ車用のエンジン始動装置の模式図。
図 5 6は、 従来構造の一般的なローラクラッチの第 1例を示す部分断面図。 発明を実施するための最良の形態
図 1〜5は、 本発明の実施の形態の第一実施例を示している。 本例のエンジン 始動用ローラクラッチ内蔵型回転伝達装置である、 ローラクラッチ内蔵型ブーリ 装置 1 6は、 前述の図 5 5に示したアイドリングストップ車用のエンジン始動装 置で、 スター夕モー夕 4の回転駆動軸 5め回転を無端ベルト 7に伝達する為の駆 動プーリ装置 6として利用する。 そして、 上記スター夕モータ 4への通電時には 、 上記回転駆動軸 5の回転を上記無端ベルト 7に伝達するが、 エンジン 1が始動 してこの無端ベルト 7がエンジン 1により駆動される状態となった場合には、 こ の無端ベル卜 7から上記回転駆動軸 5に動力が伝達されない様にする。
この様なローラクラッチ内蔵型プーリ装置 1 6は、 上記無端ベルト 7をその外 周面に掛け渡す為の回転部材である、 プーリ素子 1 7と、 上記回転駆動軸 5の先 端部に外嵌固定する為のスリーブ 1 8とを、 互いに同心に配置している。 そして 、 このスリーブ 1 8の外周面と上記プーリ素子 1 7の内周面との間に、 それぞれ がサポート軸受である、 1対の深溝型の玉軸受 1 9と、 ローラクラッチ 2 0とを 設けている。 これら玉軸受 1 9及びローラクラッチ 2 0を設ける為に、 上記ブー リ素子 1 7の内周面は単なる円筒面とし、 上記スリーブ 1 8の外周面は、 軸方向 中間部の大径部 2 1と両端部の小径部 2 2とを段差部で連続させた段付の円筒面 としている。
そして、 上記スリーブ 1 8の外周面とプーリ素子 1 7の内周面との間に存在す る環状空間の軸方向中間部に上記ローラクラッチ 2 0を、 同じくこの環状空間の 軸方向両端寄り部分でこのローラクラッチ 2 0を軸方向両側から挾む位置に上記 各玉軸受 1 9を、 それぞれ配置している。 このうちの玉軸受 1 9は、 上記プーリ 素子 1 7と上記スリーブ 1 8とを互いに同心に配置すると共に、 これら両部材 1 7、 1 8の相対回転を自在とする役目を有する。 本例の場合、 上記両玉軸受 1 9 を上記ローラクラッチ 2 0の両側に設置する事により、 ラジアル荷重を負荷する スパンを長くして、 剛性を高くすると共に耐久性の確保を図っている。 又、 上記 両玉軸受 1 9に、 互いに逆向きの (好ましくは背面組み合わせ型の) 接触角を付 与する事により、 上記プーリ素子 1 7に加わる、 両方向のアキシアル荷重を支承 自在としている。
上記各玉軸受 1 9は、 それぞれの内周面に深溝型の外輪軌道 2 3を有する外輪 2 4と、 それぞれの外周面に深溝型の内輪軌道 2 5を有する内輪 2 6と、 上記外 輪軌道 2 3と内輪軌道 2 5との間にそれぞれ複数個ずつ転動自在に設けた玉 2 7 とから成る。 そして、 上記外輪 2 4を上記プーリ素子 1 7の両端寄り部内周面に 、 上記内輪 2 6を上記スリーブ 1 8の外周面両端部に設けた上記各小径部 2 2に 、 それぞれ締り嵌めにより嵌合固定している。 又、 この状態で上記各内輪 2 6の 軸方向片面を、 それぞれ上記大径部 2 1と上記各小径部 2 2とを連続させる段差 面に当接させている。
又、 上記各外輪 2 4の両端部内周面と上記各内輪 2 6の両端部外周面との間に 、 それぞれシールリング 2 8 a、 2 8 bを設ける事により、 上記各玉 2 7を設置 した空間の両端開口部を塞いでいる。 そして、 この空間内にグリース等の潤滑剤 を封入して、 上記外輪軌道 2 3及び内輪軌道 2 5と上記各玉 2 7の転動面との転 がり接触部の潤滑を図っている。 この場合に使用するグリースの種類は特に限定 しないが、 基油が合成油であり、 増ちよう剤がウレァ系であるグリースが、 優れ た耐熱性 (高温安定性) を有する事から、 好ましく使用できる。
又、 上記各シールリング 2 8 a、 2 8 bの構造に就いては特に規制しない。 金 属板製で円輪状の芯金により、 ゴムの如きエラストマ一等の弹性材を補強した、 一般的なシールリングを使用できる。 但し、 上記各玉軸受 1 9の外側 (前記ロー ラクラッチ 2 0と逆側) のシ一ルリング 2 8 aに関しては、 それぞれのシールリ ップの内周縁部を上記内輪 2 6の外周面に全周に亙って摺接させる、 所謂接触式 のシールリングとする事が好ましい。 この理由は、 塵芥等、 外部に浮遊する異物 の侵入を防止すると共に、 上記空間内に封入したグリースの漏洩を防止する為で ある。
これに対して、 内側 (上記ローラクラッチ 2 0側) のシールリング 2 8 bに関 しては、 接触式のものでも良いが、 それぞれの内周縁部を上記内輪 2 6の外周面 に、 ラビリンス隙間を介して近接対向させた、 所謂非接触式のシールドリングと する事もできる。 非接触式のシールドリングとすれば、 その分、 前記ローラクラ ツチ 2 0のオーバラン時の回転抵抗の低減を図れる。 更には、 後述する様に、 こ のローラクラッチ 2 0と上記各玉軸受 1 9とを、 同種のグリースにより潤滑する 様にした場合には、 上記内側のシールリング 2 8 bを省略する事もできる。 何れ にしても、 上記各シールリング 2 8 a、 2 8 bを構成する弹性材として好ましく は、 優れた耐熱性を有する弗素ゴムを使用して、 上記内輪 2 6が停止したまま前 記外輪 2 4が高速回転する際に発生する摩擦熱に拘らず、 優れた耐久性を得られ る様にする。
尚、 少なくとも何れか一方の玉軸受 1 9に装着する外側のシールリング 2 8 a に (内側のシールリング 2 8 bを接触式とする場合には、 この内側のシールリン グ 2 8 bにも) 、 空気が流通する程度の微小な孔を形成する事もできる。 この孔 は、 当該玉軸受 1 9を前記プーリ素子 1 7の内周面と前記スリーブ 1 8の外周面 との間に嵌合固定する際に、 これら両周面同士の間の空間内に存在する空気を排 出し、 この空間内の圧力が上昇するのを抑える役目を有する。 この様にしてこの 空間内の圧力上昇を抑える事により、 上記各玉軸受 1 9に組み込んだシールリン グ 2 8 a、 2 8 bに捲れ等の変形が生じる事を防止して、 これら各シールリング 2 8 a、 2 8 bによるシール性の悪化を防止する。 又、 運転、 停止に基づく温度 変化により、 上記空間内の圧力が変動した場合にも、 上記変形を抑えて、 シール 性の悪化を防止する。
尚、 上記各玉軸受 1 9に組み込んで前記各玉 2 7を転動自在に保持する保持器 4 1の構造及び材質は、 特に限定しない。 図 1に示す様な、 金属製の波形プレス 保持器でも良い。 但し、 より優れた耐久性を得る為には、 上記保持器 4 1として 、 合成樹脂製の冠型保持器を使用する事もできる。 合成樹脂製の保持器を使用し た場合には、 金属製の保持器と比べて軽量である為、 角速度変動時の応答性が良 くなる。 又、 保持器の摩耗粉が生じた場合でも、 この摩耗粉がグリースを劣化さ せにくい。 又、 摩耗粉の硬度が低い為、 この摩耗粉が前記外輪軌道 2 3や内輪軌 道 2 5に圧痕等の損傷を生じさせる事がなく、 これら各軌道 2 3、 2 5の剥離寿 命を悪化させる事がない。 尚、 上記冠型の保持器を構成する為の合成樹脂として は、 優れた耐熱性を有するポリアミド 4 6を使用する事が好ましい。 又、 高速回 転時の変形を抑えるべく強度を向上させる為に、 ガラス繊維等の補強材を含有さ せる事もできる。
更に、 図 5に示す様に、 上記冠型の保持器を構成する場合に、 上記各.玉 2 7を 保持する為のボケット 4 2の内面のうちでこれら各玉 2 7の転走面 (実際に上記 外輪軌道 2 3及び内輪軌道 2 5と転がり接触する、 所謂赤道部分) に対向する円 周方向両側部分を、 保持器 4 1 aの中心軸と平行な中心軸ひを有する部分円筒面 4 3を有する形状とする事もできる。 この様な形状のポケット 4 2を有する保持 器 4 1 aを使用すれば、 これら各ポケット 4 2の内面と上記各玉 2 7の転動面と の間に十分量のグリースを取り入れて、 前記各玉軸受 1 9の潤滑性能を向上させ る事ができる。 更には、 上記各ポケット 4 2の内面と上記各玉 2 7の転動面との 間に作用する抵抗を小さくして、 上記各玉軸受 1 9の回転抵抗を小さくし、 前記 ローラクラッチ 2 0のオーバラン時の回転抵抗の低減を図れる。 この回転抵抗の 低減は、 前記エンジン 1の負荷を低減して、 加速性能及び燃費性能を初めとする 走行性能の向上に寄与する。
又、 前記ローラクラッチ 2 0は、 上記ブーリ素子 1 7が上記スリーブ 1 8に対 して所定方向に相対回転する傾向となる場合にのみ、 これらプーリ素子 1 7とス リーブ 1 8との間での回転力の伝達を自在とする。 この様なローラクラッチ 2 0 を構成する為、 上記スリーブ 1 8の大径部 2 1にクラッチ用内輪 2 9を、 締まり 嵌めにより外嵌固定している。 このクラッチ用内輪 2 9は、 浸炭鋼等の鋼板にプ レス加工等の塑性加工を施して全体を円筒状に形成しており、 内外両周面は、 そ れぞれ単なる円筒面としている。 即ち、 上記クラッチ用内輪 2 9は、 浸炭鋼等の 鋼板にプレス加工等の塑性加工を施した後、 浸炭又は浸炭窒化熱処理を施すか、 或は、 軸受鋼等に、 通常焼き入れ焼き戻し又は窒化熱処理を施す事により造って いる。
これに対して、 上記プーリ素子 1 7の内周面中間部に締まり嵌めにより内嵌固 定したクラッチ用外輪 3 0の内周面は、 カム面 3 1としている。 即ち、 このクラ ツチ用外輪 3 0の内周面に、 図 2〜3に示す様に、 ランプ部と呼ばれる複数の凹 部 3 2を、 円周方向に関して等間隔に形成する事により、 上記内周面を上記カム 面 3 1としている。 この様なクラッチ用外輪 3 0は、 やはり浸炭鋼等の鋼板にプ レス加工等の塑性加工を施して、 全体を円筒状に形成している。 即ち、 上記クラ ツチ用外輪 3 0は、 浸炭鋼等の鋼板にプレス加工を施した後、 浸炭又は浸炭窒化 熱処理を施す事により造っている。
又、 上記クラッチ用内輪 2 9及び上記クラッチ用外輪 3 0と共に上記ローラク ラッチ 2 0を構成する複数個のローラ 3 3は、 上記クラッチ用外輪 3 0にこのク ラッチ用外輪 3 0に対する回転を不能として外嵌したクラッチ用保持器 3 4に、 転動及び円周方向に関する若干の変位自在に支持されている。 このうちのローラ 3 3としては、 軸受鋼等に、 通常焼き入れ焼き戻し又は窒化熱処理を施したもの や、 セラミックス製のもの、 更にはクロム鋼に窒化処理を施したもの等が使用で きる。 又、 上記クラッチ用保持器 3 4は、 合成樹脂 (例えば、 ポリアミド 6 6、 ポリアミド 4 6、 ポリフエ二レンサルフアイド等の合成樹脂にガラス繊維を 2 0 %程度混入したもの) により全体を籠型円筒状に形成しており、 それぞれが円環 状である 1対のリム部 3 5と、 これら両リム部 3 5同士を連結する複数の柱部 3 6とを備える。
そして、 上記各リム部 3 5の内側面と各柱部 3 6の円周方向側面とにより四周 を囲まれた部分を、 それぞれ上記各ローラ 3 3を転動並びに円周方向に亙る若干 の変位自在に保持する為の、 ポケット 3 7としている。 そして、 上記各リム部 3 5の外周面複数個所に形成した係合凸部 3 8を、 図 3に示す様に、 上記クラッチ 用外輪 3 0の内周面に形成した凹部 3 2に係合させて、 上記クラッチ用保持器 3 4を上記クラッチ用外輪 3 0に、 このクラッチ用外輪 3 0に対する相対回転を不 能に装着している。 又、 上記クラッチ用外輪 3 0の軸方向両端部に形成した内向 鍔部 3 9 a、 3 9 bで上記クラッチ用保持器 3 4を軸方向両側から挾持する事に より、 このクラッチ用保持器 3 4が上記クラッチ用外輪 3 0に対し軸方向に変位 しない様にしている。
又、 この様なクラッチ用保持器 3 4を構成する柱部 3 6の円周方向片側面には 、 それぞれ図 2 ~ 3に示す様に、 ばね 4 0を装着している。 これら各柱部 3 6毎 に設けたばね 4 0は、 上記各ポケット 3 7内に保持した上記各ローラ 3 3を、 前 記カム面 3 1と前記クラッチ用内輪 2 9の外周面 (円筒面) との間に形成される 略円筒状の空間のうち、 直径方向の幅が狭くなつた部分に向け、 上記クラッチ用 保持器 3 4の円周方向に関して同方向 (図 2〜 3の左方 =反時計方向) に、 弹性 的に押圧している。 尚、 図示の例では、 上記ばね 4 0を圧縮コイルばねの如く描 いているが、 これら各ばね 4 0として実際の場合には、 ばね鋼板を大略 「三角形 状フック」 形に折り曲げて成る板ばねを使用する場合が多い。 更には、 クラッチ 用保持器 3 4と一体の合成樹脂ばねを使用する事もできる。
又、 本例の場合、 上記クラッチ用外輪 3 0の内周面に形成した、 前記各凹部 3 2の断面形状は、 直線ではなく、 単一円弧としている。 この断面形状を表す円弧 の曲率の中心は、 上記クラッチ用外輪 3 0の中心からずれた位置に存在する。 又 、 この円弧の曲率半径とその中心点とは、 この円弧が、 対数螺旋に近似される曲 線となる様に設定して、 所謂くさび角が一定となる様にしている。 このくさび角 は、 上記各凹部 3 2と上記各ローラ 3 3の転動面との接触点での接線と、 上記ク ラッチ用内輪 2 9の外周面とこれら各ローラ 3 3の転動面との接触点での接線と が成す角度として規定される。 本例の場合、 上記円弧の曲率半径とその中心点と を適切に規定する事により、 上記各ローラ 3 3力 上記各凹部 3 2と上記クラッ チ用内輪 2 9の外周面との間の何れの部分に食い込んだ場合でも、 上記くさび角 がほぼ一定となる様にしている。
尚、 上記くさび角の大きさに就いては、 8 ° 〜 1 1 ° の範囲に規制する事が好 ましい。 この理由に就いて、 図 6により説明する。 プーリ素子 1 7とスリーブ 1 8との間でローラクラッチ 2 0がトルク伝達を行なっている場合、 上記各ローラ 3 3に作用する荷重が同じであると仮定すると、 くさび角 αが小さい程、 クラッ チ用内輪 2 9の外周面から上記各ローラ 3 3に加わる荷重 Ρのうちで、 円周方向 の分力 P ' s in aが小さくなる。 この事は、 上記ローラクラッチ 2 0のトルク容量 が小さい事を意味する為、 トルク伝達の容量確保の面からは好ましくない。 一方
、 上記ローラクラッチ 2 0がロックしてトルク伝達可能となる為の条件は、 接触 面の摩擦係数を αとした場合に、 tan a≤ zで表される。 この式から、 くさび角 ひが大きくなると、 ローラクラッチ 2 0がロックせず、 上記プーリ素子 1 7とス リーブ 1 8との間でトルク伝達を行なえない事が分かる。 本例の場合、 上記くさ び角ひを 8 ° 〜1 1 ° の範囲に規制している為、 必要とするトルク容量を確保し つつ、 確実にロック状態を実現して、 安定したトルク伝達を行なえる。
この様なローラクラッチ 2 0に関しても、 内部に封入したグリースにより潤滑 している。 この場合に使用するグリースの種類も特に限定しない力 基油が合成 油であり、 増ちよう剤がウレァ系であるグリースが、 優れた耐熱性 (高温安定性 ) 及び剪断安定性を有する事から、 好ましく使用できる。 特にローラクラッチ 2 0の場合には、 上記各ローラ 3 3の転動面と前記クラッチ用内輪 2 9の外周面及 び前記クラッチ用外輪 3 0の内周面との接触部が摩擦する場合がある。 この様な 状態では、 上記グリースに大きな剪断力が加わる為、 上記ローラクラッチ 2 0の 耐久性を十分に確保する為には、 優れた剪断安定性を有するグリースが必要にな る。 増ちよう剤がウレァ系であるグリースは、 優れた剪断安定性を有する事から 好ましく使用できる。 又、 基油が流動点の低い合成油である場合には、 始動時の 低温環境から始動後の高温環境まで、 幅広い温度範囲で十分な潤滑性を得られる 。 この為、 上記各ローラ 3 3の転動面と前記クラッチ用内輪 2 9の外周面及び前 記クラッチ用外輪 3 0の内周面とに、 剥離や焼き付き等の損傷が発生する事を有 効に防止できる。
尚、 上記ローラクラッチ 2 0の潤滑に好適なグリースと、 前記各玉軸受 1 9の 潤滑に好適なグリースとは、 互いに一致する。 従って、 これら各玉軸受 1 9、 1 9と上記ローラクラッチ 2 0とに、 同種のグリースを封入する事もできる。 この 場合には、 各部に封入したグリース同士が混和する事で劣化する等の不都合の発 生を防止できる。
上述の様に構成するローラクラッチ 2 0は、 前記プーリ素子 1 7と前記スリ一 ブ 1 8とが所定方向に相対回転する傾向となった場合、 即ち、 プーリ素子 1 7に 対してスリーブ 1 8が、 上記ばね 4 0が上記各ローラ 3 3を押圧している方向 ( 図 2〜3の反時計方向) に相対回転する傾向になった場合には、 上記各ローラ 3 3が前記略円筒状の空間のうちで直径方向の幅の狭い部分に食い込む。 そして、 上記スリーブ 1 8と上記プーリ素子 1 7との相対回転が不能 (ロック状態) とな る。 一方、 これらプーリ素子 1 7とスリーブ 1 8とが上記所定方向とは反対方向 、 即ち、 このプーリ素子 1 7に対してこのスリーブ 1 8が、 上記ばね 4 0が上記 各ローラ 3 3を押圧しているのと反対方向 (図 2〜3の時計方向) に相対回転す る傾向になった場合には、 上記各ローラ 3 3が上記各ばね 4 0の弾力に抗して上 記略円筒状の隙間の直径方向の幅の広い部分に退避し、 上記プーリ素子 1 7と上 記スリーブ 1 8との相対回転が自在 (オーバラン状態) となる。
上述の様に構成する本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置 である、 ローラクラッチ内蔵型プーリ装置 1 6を、 図 5 5に示したアイドリング ストツプ車用のエンジン始動装置の駆動ブーリ装置 6として使用した場合の作用 は、 次の通りである。 先ず、 エンジンを始動する際には、 前記ス夕一夕モー夕 4 に通電し、 前記回転駆動軸 5の先端部に外嵌固定した上記スリーブ 1 8並びにこ のスリーブ 1 8に外嵌固定した前記クラッチ用内輪 2 9を、 図 2〜 3の反時計方 向に回転させる。 この為、 上記各ローラ 3 3が図 2〜3の反時計方向に変位して 上記クラッチ用内輪 2 9の外周面と前記クラッチ用外輪 3 0の内周面との間の略 円筒状の空間のうちで直径方向の幅が狭くなつた部分に向け変位する。 この結果 、 上記各ローラ 3 3の転動面が、 上記クラッチ用内輪 2 9の外周面と上記クラッ チ用外輪 3 0の内周面とにくさび状に食い込み、 前記ローラクラッチ 2 0がロッ ク状態となって、 上記クラッチ用内輪 2 9からクラッチ用外輪 3 0に対し動力が 伝達される。 この状態で、 前記プーリ素子 1 7と無端ベルト 7と従動プーリ 3と を介して、 エンジン 1のクランクシャフト 2 (図 5 5参照) が回転駆動され、 こ のエンジン 1が始動される。
エンジン 1の始動後には上記スター夕モー夕 4への通電が停止され、 上記回転 駆動軸 5が停止する。 この状態では上記プーリ素子 1 7が上記エンジン 1のクラ ンクシャフト 2により、 上記従動ブーリ 3及び上記無端ベルト 7を介して回転駆 動され、 上記クラッチ用外輪 3 0は、 図 2〜3の反時計方向に回転し続ける。 こ の結果、 上記ローラクラッチ 2 0がオーバラン状態となり、 上記プーリ素子 1 7 の回転が上記スリーブ 1 8にまでは伝わらなくなる。 従って、 上記エンジン 1が 運転される際に、 上記スター夕モー夕 4がこのエンジン 1の回転に対する負荷と はならない。
この様にローラクラッチ 2 0がオーバラン状態となる場合に、 前記各ローラ 3 3は、 クラッチ用保持器 3 4の柱部 3 6とばね 4 0とに押され、 上記プーリ素子 1 7に内嵌固定した上記クラッチ用外輪 3 0と共に回転する。 但し、 このクラッ チ用外輪 3 0の回転速度が、 エンジン 1の始動に必要とされる回転速度 (例えば 、 ガソリンエンジン車の場合で、 4 0 0〜5 0 O min— 1 に、 ベルト伝達機構によ る変速比を掛け合せた速度) 以下の場合には、 上記各ローラ 3 3に働く遠心力は 、 上記各ばね 4 0を圧縮する程の値とはならない。 又、 エンジンの始動時に上記 各ローラ 3 3には、 前記クラッチ用内輪 2 9の外周面から、 上記各ばね 4 0の弹 力と同方向の力が加わる。 従って、 エンジンの始動時に上記各ローラ 3 3は、 上 記クラッチ用内輪 2 9の外周面と上記クラッチ用外輪 3 0の内周面との間の空間 のうちの幅の狭い部分に向け確実に変位し、 上記ローラクラッチ 2 0が確実に口 ック状態となる。
これに対して、 上記エンジン 1が始動し、 上記クラッチ用外輪 3 0の回転速度 が、 エンジン 1のアイドリングに見合う回転速度 (例えば、 ガソリンエンジン車 の場合で、 7 0 0〜8 0 0 min— 1 に、 ベルト伝達機構による変速比を掛け合せた 速度) 以上となった場合には、 上記ローラクラッチ 2 0の接続が断たれる (ォ一 バラン状態となる) だけでなく、 図 4に鎖線で示す様に、 このローラクラッチ 2 0を構成する上記各ローラ 3 3の転動面と、 上記クラッチ用内輪 2 9の外周面と が離隔する。 この点に就いて、 図 7を参照しつつ説明する。
上記エンジン 1の回転時には、 上記各ローラ 3 3に遠心力 F n (=m - ω 2 · r ) が働き、 これら各ローラ 3 3が前記各凹部 3 2の底面に押し付けられる。 こ れら各凹部 3 2の底面は傾斜しているので、 上記各ローラ 3 3は、 F , (= F o •s in a ) なる分力で、 上記各ばね 4 0 (図 2、 3参照) を押圧する (これら各ば ね 4 0を圧縮する) 方向に変位する傾向になる。 又、 エンジン 1の始動後、 前記 スター夕モータ 4への通電を停止した状態では、 上記クラッチ用内輪 2 9も停止 するので、 上記各ローラ 3 3を図 2〜 3の反時計方向に変位させようとする力は 、 上記各ばね 4 0の弾力のみとなる。
この状態では、 上記回転力の上昇に伴って上記遠心力 F。 が増大し、 上記分力 F , の大きさが上記各ばね 4 0の弾力よりも大きくなると、 上記各ローラ 3 3が これら各ばね 4 0を圧縮しつつ、 上記各凹部 3 2の深い部分に向け、 図 4の実線 状態から鎖線状態にまで移動する。 この結果、 上述の様に、 上記各ローラ 3 3の 転動面と、 上記クラッチ用内輪 2 9の外周面とが離隔する。 この状態では、 上記 エンジン 1の高速回転に拘らず、 上記ローラクラッチ 2 0の内部で発生する摩擦 熱が僅少に抑えられ、 前述した通り、 このローラクラッチ 2 0及び隣接する玉軸 受 1 9の耐久性向上を図れる。 勿論、 このローラクラッチ 2 0自体に関しても、 異常摩耗、 焼き付き等の損傷を防止できる。
この様に、 エンジン始動後に上記各ローラ 3 3の転動面と上記クラッチ用内輪 2 9の外周面とを離隔させる作用を確実にする為に好ましくは、 前記くさび角 α を、 9 ° 3 0 ' 〜 1 0 ° 3 0 ' と、 前記した 8 ° 〜 1 1 ° の範囲内で、 上限近く に設定する。 この理由は、 上記くさび各 αが大きい程、 前記遠心力 F « の分力 F , を大きくして、 上記各ばね 4 0を圧縮し、 上記各ローラ 3 3の転動面と上記ク ラッチ用内輪 2 9の外周面とを離隔させさせ易くなる為である。
これに対して、 ローラクラッチ内蔵型プーリ装置 1 6を、 自動車の補機の回転 軸部分に組み込む場合は、 広い使用温度範囲を考慮する必要がある。 即ち、 低温 下で使用される場合に、 グリースの流動性の影響で上記各ローラ 3 3が上記クラ ツチ用内輪 2 9の外周面と上記クラッチ用外輪 3 0の内周面との間に食い込みに くくなつた場合でも確実にロック状態を実現する為には、 上記くさび角度 αをあ まり大きくできない場合がある。 この様な場合にはこのくさび角 αを、 上記 8 ° 〜1 1 ° の範囲内での下限値近傍に設定する。
又、 本例の場合には、 前述の様に、 エンジンの始動後に、 上記各ローラ 3 3の 転動面と上記クラッチ用内輪 2 9の外周面とが確実に離隔する様に、 上記各凹部 3 2の深さを適正に規制している。 即ち、 上記各ローラ 3 3が、 図 4に鎖線で示 す様に上記各凹部 3 2の最深部に位置した場合に、 これら各ローラ 3 3の転動面 と上記クラッチ用内輪 2 9の外周面との間に存在する隙間の大きさ δ 2。を、 上記 各玉軸受 1 9のラジアル隙間 δ , 9よりも大きく (<5 〉δ】9) している。 尚、 上 記隙間 (5 2 ()は半径分の寸法であり、 ラジアル隙間 <5 は直径分の寸法である。 従 つて、 これら各玉軸受 1 9のラジアル隙間 <5 , 9により上記クラッチ用内輪 2 9の 中心軸と前記クラッチ用外輪 3 0の中心軸とが (このラジアル隙間 δ , 9分だけ) 偏心した場合でも、 エンジンの始動後には、 総てのローラ 3 3の転動面と上記ク ラッチ用内輪 2 9の外周面とが確実に離隔する。
尚、 上記各ローラ 3 3の転動面と上記クラッチ用内輪 2 9の外周面とが離隔す る状態となる、 前記クラッチ用外輪 3 0の回転速度は、 上記ローラクラッチ 2 0 の耐久性等を考慮して規制するが、 前述したエンジン 1の始動時に、 上記ローラ クラッチ 2 0の接続が確実に行なわれる限り、 低く設定する事が好ましい。 但し 、 この場合に、 上記各ばね 4 0の経年劣化等を考慮して、 これら各ばね 4 0の弾 力が多少低下した場合でも, 上記接続が確実に行なわれる様に、 例えば新品の状 態で、 上記エンジン 1のクランクシャフ卜 2の回転速度が 1 0 0 0〜1 5 0 0 mi η" ' 程度の場合に、 上記転動面と外周面とが離隔する様に設定する事が考えられ る。 この場合、 初期状態に於いては、 エンジン 1のアイドリング時に、 上記転動 面と外周面とが擦れ合うが、 この場合に於ける擦れ合'い面の当接圧は、 遠心力の 影響によって極小さくなる。 しかも、 回転速度自体低い為、 上記擦れ合い面で生 じる摩擦熱や摩耗は僅少に抑えられる。
次に、 図 8は、 本発明の実施の形態の第二実施例を示している。 本例の場合に は、 図 1に示した第一実施例の構造から、 独立したクラッチ用内輪 2 9を省略し 、 スリーブ 1 8 aの中間部に、 ローラクラッチ 2 0 aを構成するクラッチ用内輪 としての機能を持たせている。 この為に本例の場合には、 上記スリーブ 1 8 aの 中間部に形成した大径部 2 1の表面層部分 (図 8の斜格子部分) を、 高周波熱処 理、 浸炭窒化処理等の熱処理により硬化させて、 上記大径部 2 1の表面の硬度を 、 H V 5 0 0以上としている。
本例は、 この様な構成を採用する事により、 上記独立したクラッチ用内輪 2 9 を不要にして、 部品製作、 部品管理、 組立作業を簡略化し、 コスト低減を可能に している。 又、 構成部品の数を少なくする事で、 組み付け誤差を低く抑え、 ロー ラクラッチ内蔵型プーリ装置の精度向上に基づく性能向上を図れる。 尚、 ローラ 3 3の転動面が強く押し付けられた場合の変形を防止する為、 表面を硬化させた のは、 上記大径部 2 1の表面層部分だけであり、 上記スリーブ 1 8 aの内周面寄 り部分は、 焼き入れ硬化される事なく、 生のままである。 従って、 このスリーブ 1 8 aの内周面に雌ねじやスプライン等を加工する作業は、 容易に行なえる。 こ の為、 上記スリーブ 1 8 aを回転駆動軸 5 (図 5 5 ) の端部に外嵌固定する構造 が限定される事はない。 尚、 本発明を実施する場合に、 スリーブも省略し、 上記 回転駆動軸 5等の回転軸の外周面自体を、 ローラクラッチを構成するローラの転 動面を当接させる為の、 クラッチ用内輪軌道とする事もできる。 この場合には、 サポート軸受の内輪は、 上記回転駆動軸 5等の回転軸の外周面に直接外嵌する。 又、 上述した各例は、 ローラクラッチ内蔵型回転伝達装置をアイドリングスト ップ車用のエンジン始動装置に組み込んで使用した場合に就いて説明したが、 上 述した各例の用途は、 上記エンジン始動装置に限定するものではない。 オーバラ ン時に於ける回転部材の回転速度が口ック時に於ける回転部材の回転速度よりも 早く、 しかもオーバラン状態での運転時間が長くなる用途に上述した各例の構造 を使用する事は有効である。 この様な用途としては、 例えばアイドリングストツ プ車に組み込む、 コンプレッサ等の補機駆動装置が考えられる。
更に、 本発明を実施する場合、 ローラクラッチ内蔵型回転伝達装置の各部の構 造は、 特許請求の範囲に記載した要件を満たす限り、 各種変更実施する事ができ る。 先ず、 図 9に示した、 本発明の実施の形態の第三実施例の場合には、 クラッ チ用外輪 3 0 aとして、 両端部に折れ曲がり部を持たない、 円筒状のものを使用 している。 これに合わせて、 クラッチ用保持器 3 4 aの端部外周面に径方向外方 に突出する状態で形成した鍔部 4 7を、 上記クラッチ用外輪 3 0 aと玉軸受 1 9 の外輪 2 4との間で挟持して、 上記クラッチ用保持器 3 4 aの軸方向位置を規制 している。
次に、 図 1 0に示した第四実施例の場合には、 クラッチ用外輪 3 O bとして、 一端部 (図 1 0の左端部) にのみ内向鍔部 3 9を形成したものを使用している。 本例の場合、 上記クラッチ用外輪 3 0 bは、 1対の玉軸受 1 9の外輪 2 4同士の 間で挟持して、 軸方向位置を規制している。 又、 クラッチ用保持器 3 4の軸方向 位置は、 上記内向鍔部 3 9と一方 (図 1 0の右方) の外輪 2 4とにより規制して いる。
次に、 図 1 1に示した第五実施例の場合には、 クラッチ用外輪 3 0 aとして、 両端部に折れ曲がり部を持たない、 円筒状のものを使用している。 又、 クラッチ 用保持器 3 4の軸方向位置は、 1対の玉軸受 1 9の外輪 2 4により規制している 次に、 図 1 2に示した第六実施例の場合には、 クラッチ用外輪 3 0 aとして、 両端部に折れ曲がり部を持たない、 円筒状のものを使用している。 又、 スリーブ 1 8 bの外周面を、 途中に段差を持たない、 単なる円筒面としている。 そして、 このスリーブ 1 8 bの軸方向中間部に、 クラッチ用内輪 2 9を、 締り嵌めにより 外嵌固定している。
次に、 図 1 3に示した第七実施例の場合には、 プーリ素子 1 7 aの中間部内周 面を両端部よりも小径にし、 この中間部内周面に直接カム面 3 1を形成している 。 これに合わせて、 クラッチ用保持器 3 4 aの端部外周面に径方向外方に突出す る状態で形成した鍔部 4 7を、 上記中間部で径が小さくなつた部分の端面と玉軸 受 1 9の外輪 2 4との間で挟持して、 上記クラッチ用保持器 3 4 aの軸方向位置 を規制している。
次に、 図 1 4に示した第八実施例の場合には、 プーリ素子 1 7 aの中間部内周 面を両端部よりも小径にし、 この中間部内周面に直接カム面 3 1を形成している 。 又、 クラッチ用保持器 3 4の軸方向位置は、 1対の玉軸受 1 9の外輪 2 4によ り規制している。
次に、 図 1 5に示した第九実施例の場合には、 プーリ素子 1 7の外端部 (図 1 5の左端部) に、 合成樹脂或は金属をシャーレ状に形成したエンドキャップ 4 4 を外嵌固定して、 玉軸受 1 9やローラクラッチ 2 0 bを収納した空間内への異物 の侵入防止を図っている。
次に、 図 1 6に示した第十実施例の場合には、 外側 (図 1 6の左側) の玉軸受 1 9を構成する外輪 2 4の外端部内周面に形成した係止溝にエンドキャップ 4 4 aの外周縁部を係止して、 玉軸受 1 9やローラクラッチ 2 0 bを収納した空間内 への異物の侵入防止を図っている。
次に、 図 1 7に示した第十一実施例の場合には、 プーリ素子 1 7の外端面 (図 1 7の左端面) に形成した切り欠き 4 5にエンドキャップ 4 4 bの外周縁部を係 止して、 玉軸受 1 9やローラクラッチ 2 0 bを収納した空間内への異物の侵入防 止を図っている。
次に、 図 1 8に示した第十二実施例の場合には、 プーリ素子 1 7の外端面 (図 1 8の左端面) に形成した、 あり溝状の係止溝 4 6にエンドキャップ 4 4 cの外 周縁部を係止して、 玉軸受 1 9やローラクラッチ 2 0 bを収納した空間内への異 物の侵入防止を図っている。 本例の場合には、 上記プーリ素子 1 7のうちで上記 エンドキャップ 4 4 cよりも径方向外側に存在する部分の軸方向寸法を小さくし ている。
尚、 上述した第一〜第十二実施例で示したローラクラツチ内蔵型ブーリ装置 1 6の構成を要約すると、 次の通りである。
即ち、 このローラクラッチ内蔵型プーリ装置 1 6は、 外周面に無端ベルトを掛 け渡し自在とした、 円環状で使用時に所定方向にのみ回転するプーリと、 このプ ーリの中心部に挿入されて使用時にこの所定方向にのみ回転する回転軸との間で 、 この所定方向の動力のみを伝達するものである。
又、 上記ローラクラッチ内蔵型プーリ装置 1 6は、 上記プーリの内周面と上記 回転軸の外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置 された 1対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士 の間に設けられたローラクラッチとを備える。
そして、 このローラクラッチは、 上記回転軸が上記所定方向に回転する際に繋 がれてこの回転軸から上記ブーリに動力を伝達するが、 このブーリが上記所定方 向に、 この回転軸よりも高速で回転する場合に空転して、 このプーリからこの回 転軸への動力の伝達を行なわないものである。
又、 上記ローラクラッチを構成する複数のローラを上記ブーリの怪方向に変位 させる為のカム面は、 このプーリの内周面若しくはこのプーリに内嵌固定したク ラッチ用外輪の内周面に形成しており、 上記回転軸の外周面若しくはこの回転軸 に外嵌固定したクラッチ用内輪の外周面は円筒面としている。
この様な、 第一〜第十二実施例で示したローラクラッチ内蔵型プーリ装置 1 6 によれば、 回転軸が停止している場合を含めて、 プーリが回転軸よりも高速で回 転する場合には、 ローラクラッチの接続が断たれるだけでなく、 このローラクラ ツチを構成する複数のローラの転動面と上記回転軸の外周面若しくはこの回転軸 に外嵌固定したクラッチ用内輪の外周面とが離隔する。 従って、 上記プーリの回 転時に上記ローラクラッチの内部で発生する摩擦熱を僅少に抑えて、 このローラ クラッチ及び隣接するサポート軸受の耐久性向上を図れる。
次に、 図 1 9は本発明の範囲からは外れる参考例の 1例を、 図 2 0は、 本発明 の実施の形態の第十三実施例を、 それぞれ示している。 これら各例は、 エンジン 始動用を含むローラクラッチ内蔵型回転伝達装置の耐久性を十分に確保すべく発 明したものであるが、 具体的には、 次の様な課題を解決する事を目的としている 。 尚、 次の説明は、 ローラクラッチ内蔵型回転伝達装置を補機駆動用として使用 する場合に就いて説明するが、 エンジン始動用として使用する場合も同様である 即ち、 オル夕ネー夕等の補機を駆動する為のプーリ装置として従来から、 一方 向クラッチ内蔵型プーリ装置を使用する事が知られており (例えば、 特許文献 1 、 3参照) 、 一部では実際に使用されている。 図 2 1〜 2 2は、 この様な一方向 クラッチ内蔵型プ一リ装置の一種であるローラクラッチ内蔵型プ一リ装置の従来 構造の第 1例を示している。 この一方向クラッチ内蔵型プーリ装置は、 互いに同 心に配置したスリーブ 1 8 bとプーリ素子 1 7とを備える。 そして、 これらスリ ーブ 1 8 bの外周面とプーリ素子 1 7の内周面との間に、 一方向クラッチである ローラクラッチ 8と、 1対のサボ一ト軸受 4 8とを設けている。
上記スリーブ 1 8 bは、 全体を円筒状に構成しており、 オル夕ネー夕等の補機 の回転軸に外嵌固定して、 この回転軸と共に回転自在である。 一方、 上記プーリ 素子 1 7は、 やはり全体を円筒状に構成しており、 その外周面の中間部の幅方向 に関する断面形状を波形として、 ポリ Vベルトと呼ばれる無端ベルトの一部を掛 け渡し自在としている。 そして、 上記スリーブ 1 8 bの外周面と上記プーリ素子 1 7の内周面との間に存在する環状空間の軸方向中間部に上記ローラクラッチ 8 を、 同じくこの空間の軸方向両端部でこのローラクラッチ 8を軸方向両側から挟 む位置に 1対のサポート軸受 4 8を、 それぞれ配置している。 このうちの.1対の サポート軸受 4 8は、 上記プーリ素子 1 7に加わるラジアル荷重を支承しつつ、 このプーリ素子 1 7と上記スリーブ 1 8 bとの相対回転を自在とする。 この様な 各サポート軸受 4 8として、 図示の例では、 それぞれ深溝型の玉軸受を使用して いる。
又、 上記ローラクラッチ 8は、 上記プーリ素子 1 7と上記スリーブ 1 8 bとが 所定方向に相対回転する傾向となる場合にのみ、 これらプーリ素子 1 7とスリー ブ 1 8 bとの間で回転力の伝達を自在とする。 この様なローラクラッチ 8は、 内 側部材である鋼板製のクラッチ用内輪 2 9と、 外側部材である鋼板製のクラッチ 用外輪 3 0と、 複数の鋼製のローラ 3 3と、 合成樹脂製のクラッチ用保持器 3 4 と、 図示しない弾性材であるばねとから成る。 このうちのクラッチ用内輪 2 9は 上記スリーブ 1 8 bの中間部外周面に、 上記クラッチ用外輪 3 0は上記プーリ素 子 1 7の中間部内周面に、 それぞれ締り嵌めで嵌合固定している。 又、 上記クラ ツチ用外輪 3 0の中間部内周面を円筒面 4 9とすると共に、 上記クラッチ用内輪 2 9の外周面をカム面 5 0としている。 即ち、 このクラッチ用内輪 2 9の外周面 に、 それぞれがランプ部と呼ばれる複数の凹部 5 1を、 円周方向に関し等間隔に 形成して、 このクラッチ用内輪 2 9の外周面を上記カム面 5 0としている。 そして、 このカム面 5 0と上記円筒面 4 9との間の円筒状空間に、 上記複数の ローラ 3 3と、 これら各ローラ 3 3を転動並びに円周方向に関する若干の変位自 在に保持する、 上記クラッチ用保持器 3 4 (図 2 2では図示省略) とを設けてい る。 上記各ローラ 3 3はそれぞれ、 上記凹部 5 1と整合する部分に配置している 。 又、 上記クラッチ用保持器 3 4は、 その内周縁部を上記カム面 5 0の一部に係 合させる事で、 上記クラッチ用内輪 2 9に対する相対回転を阻止している。 言い 換えれば、 上記クラッチ用保持器 3 4とこのクラッチ用内輪 2 9とが同期して回 転する様にしている。 又、 上記クラッチ用保持器 3 4と上記各ローラ 3 3との間 には、 これら各ローラ 3 3を上記各凹部 5 1の浅い側に向け、 円周方向に関して 同方向 (図 2 2の右方向) に押圧する為の図示しないばねを設けている。
この様なローラクラッチ 8の場合、 上記クラッチ用外輪 3 0が上記クラッチ用 内輪 2 9に対し、 図 2 2の時計回り (右回り) に回転する傾向となる場合には、 同図に示す様に、 上記各ローラ 3 3が上記円筒面 4 9と上記カム面 5 0を構成す る凹部 5 1の底面との間に食い込む。 この結果、 上記クラッチ用外輪 3 0と上記 クラッチ用内輪 2 9との間で回転力の伝達が行なわれる様になり、 これらクラッ チ用外輪 3 0とクラッチ用内輪 2 9とが共回りする。 この状態を、 ロック状態と いう。 反対に、 上記クラッチ用外輪 3 0が上記クラッチ用内輪 2 9に対し、 図 2 2の反時計回り (左回り) に回転する傾向となる場合には、 上記各ローラ 3 3が 上記各ばねの弾力に抗して上記各凹部 5 1の深い部分 (図 2 2の左側部分) に移 動し、 これら各ローラ 3 3の転動面と上記円筒面 4 9との当接部の面圧が低下す る。 この結果、 上記クラッチ用外輪 3 0と上記クラッチ用内輪 2 9との間で回転 力の伝達が行なわれなくなり、 これらクラッチ用外輪 3 0とクラッチ用内輪 2 9 とが相対回転する。 この状態を、 オーバラン状態という。
上述の様に構成するローラクラッチ内蔵型プーリ装置は、 上記スリーブ 1 8 b をオル夕ネー夕等の補機の回転軸の端部に外嵌固定すると共に、 上記ブーリ素子 1 7の外周面に無端ベルトを掛け渡す。 この無端ベルトは、 エンジンのクランク シャフト等の端部に固定された駆動プーリに掛け渡され、 この駆動プーリの回転 により駆動する。 この様な状態で組み付けられるローラクラッチ内蔵型ブーリ装 置は、 上記無端ベルトの走行速度が一定若しくは上昇傾向にある場合には、 上記 ローラクラッチ 8がつながり (ロック状態となり) 、 上記プーリ素子 1 7から上 記回転軸への回転力の伝達を自在とする。 反対に、 上記無端ベルトの走行速度が 低下傾向にある場合には、 上記ローラクラッチ 8の接続が断たれ (オーバラン状 態となり) 、 これらプーリ素子 1 7と回転軸との相対回転を自在とする。 この結 果、 上記クランクシャフトの回転角速度が変動した場合でも、 上記無端ベルトと 上記プーリ素子 1 7とが擦れ合う事を防止して、 鳴きと呼ばれる異音の発生や摩 耗による無端ベルトの寿命低下を防止すると共に、 オルタネー夕の発電効率が低 下する事を防止できる。
尚、 上述の図 2 1〜 2 2に示したローラクラッチ内蔵型プーリ装置の場合には 、 ローラクラッチ 8を構成する円筒面 4 9をクラッチ用外輪 3 0の内周面に、 力 ム面 5 0をクラッチ用内輪 2 9の外周面に、 それぞれ設けている。 但し、 これら 円筒面とカム面との径方向に関する配置は、 図 2 3にローラクラッチ内蔵型プ一 リ装置の従来構造の第 2例として示す様に、 逆にする場合もある (例えば、 特許 文献 4参照) 。 即ち、 この図 2 3に示したローラクラッチ 8 aの場合には、 円筒 面 4 9 aをクラッチ用内輪 2 9 aの外周面に、 カム面 5 0 aをクラッチ用外輪 3 O cの内周面に、 それぞれ設けている。 又、 上述の様な各ローラクラッチ 8、 8 aを構成する場合、 上記円筒面 4 9、 4 9 a及びカム面 5 0、 5 0 aは、 それぞ れ上記ブーリ素子 1 7の内周面及び上記スリーブ 1 8 bの外周面に直接形成する 場合もある (例えば、 特許文献 4参照) 。
上述した様な口一ラクラッチ 8、 8 aのロック状態を確実に実現する為には、 例えば図 2 4に示す様に、 上記ローラ 3 3が上記円筒面 4 9 aと上記カム面 5 0 aとの間 (くさび角ひ) の幅の狭い部分に押し込まれた状態で、 上記ローラ 3 3 の転動面と上記円筒面 4 9 aとの接触部にそれぞれ滑りが生じない様にする必要 がある。 ここで、 上記ローラ 3 3が上記円筒面 4 9 aから受ける力 Pを考える。 この力 Pは、 これらローラ 3 3の転動面と円筒面 4 9 aとの接触部に作用する摩 擦力 「P s i n ひ」 と、 この円筒面 4 9 aから上記ローラ 3 3に作用する垂直抗カ
「P cos ひ」 との合力である。 そして、 この接触部の静止摩擦係数を とすると 、 この接触部に於ける最大静止摩擦力は、 「; u P cos ひ」 となる。 従って、 上記 ローラ 3 3の転動面と上記円筒面 9 aとの接触部で滑りが生じない為の条件は、
「P s i n a≤ P cos α」 (即ち、 この接触部に作用する摩擦力 「P s i n α」 が 上記最大静止摩擦力 「 P cos ひ」 以下である事) となる。 又、 この条件 「P s i n a≤ P cos ひ」 から、 上記接触部の静止摩擦係数 が大きい程、 この接触部 で滑りが生じにくくなる事が分かる。
一方、 上記ローラ 3 3が上記カム面 5 0 aから受ける垂直抗カは、 上記力 Pが 大きくなる程大きくなる。 そして、 この様にローラ 3 3がカム面 5 0 aから受け る垂直抗力が大きくなれば、 これらローラ 3 3の転動面とカム面 5 0 aとの接触 部に於ける最大静止摩擦力が大きくなり、 この接触部で滑りが生じにくくなる。 一方、 上記力 Pは、 上記ローラ 3 3の転動面と上記円筒面 4 9 aとの接触部で滑 りが生じない間 (上述の条件 「P s i n a≤ P cos ひ」 を満たす間) であれば、 上記ローラクラッチ 8、 8 aにより伝達すべき回転力が大きくなる程大きくなる 。 従って、 上記ローラ 3 3の転動面と上記円筒面 4 9 aとの接触部の静止摩擦係 数 を大きくすれば、 上記力 Pをより大きくする事が可能となり、 結果として、 上記ローラ 3 3の転動面と上記カム面 5 0 aとの接触部で滑りを生じにくくでき る。
以上の事から、 上記ローラ 3 3の転動面と上記円筒面 4 9 aとの接触部の静止 摩擦係数 を大きくすれば、 これらローラ 3 3の転動面と円筒面 4 9 aとの接触 部、 並びに、 このローラ 3 3の転動面と上記カム面 5 0 aとの接触部で、 それぞ れ滑りを生じにくくする事ができ、 結果として、 上記ローラクラッチ 8、 8 aの ロック状態を実現し易くできる事が分かる。
そこで、 上記ローラ 3 3の転動面と上記円筒面 4 9 aとの接触部の静止摩擦係 数 を大きくすべく、 これを実現する為の方法として、 例えば、 この接触部の潤 滑状態を規制する方法を採用する事が考えられる。 ところが、 この様に接触部の 潤滑状態を規制する事は困難である為、 この方法は採用しにくい。
そこで、 上記接触部の静止摩擦係数 を大きくする別の方法として、 互いに接 触する 2面である、 上記ローラ 3 3の転動面と上記円筒面 4 9 aとの粗さを大き くする事が考えられる。 ところ力 これらローラ 3 3の転動面と円筒面 4 9 aと は、 それぞれ金属面である。 そして、 オーバラン時には、 これらローラ 3 3の転 動面と円筒面 4 9 aとが互いに摺接する。 従って、 これらローラ 3 3の転動面及 び円筒面 4 9 aそのものの粗さを大きくすると、 オーバラン時に、 これら両面同 士の摺接部に作用する摩擦力が大きくなつて、 この摺接部で摩耗や焼き付きが生 じ易くなる。
図 1 9〜 2 0に示した参考例の 1例と第十三実施例の構造は、 上述の様な事情 に鑑み、 一方向クラッチのロック状態を確実に実現できる様にすると共に、 この 一方向クラッチのオーバラン時に摺接部で摩耗や焼き付きが生じにくい構造を実 現すべく発明したものである。
先ず、 図 1 9に示す参考例の 1例は、 オル夕ネー夕の回転軸の端部に固定する ローラクラッチ内蔵型プーリ装置に関する例であるが、 その特徴は、 一方向クラ ツチであるローラクラッチ 8 bを構成する円筒面 4 9 bの性状にある。 その他の 部分の構造及び作用は、 前述の図 2 1〜2 2に示したローラクラッチ内蔵型ブー リ装置の従来構造の第 1例の場合と同様である為、 重複する図示並びに説明を省 略若しくは簡略にし、 以下、 本例の特徴部分を中心に説明する。
本例の一方向クラッチ内蔵型プーリ装置を構成するローラクラッチ 8 bは、 ク ラッチ用外輪 3 0 dの内周面に円筒面 4 9 bを、 クラッチ用内輪 2 9の外周面に カム面 5 0を、 それぞれ設けている。 本例の様に、 オルタネー夕の回転軸の端部 に固定する一方向クラツチ内蔵型プ一リ装置は、 口ック状態で運転される事が基 本であり、 オーバラン状態で運転される時間は全体の運転時間に比べれば遥かに 短い。 この様な事情に鑑みて、 本例の一方向クラッチ内蔵型プーリ装置に組み込 むローラクラッチ 8 bは、 エンジンの運転時にロック状態を実現し易くすべく、 回転に伴う遠心力によって複数のローラ 3 3がカム面の凹部に退避しない様にす る為、 上述の様にカム面 5 0をクラッチ用内輪 2 9の外周面に設けている。 又、 本例の場合、 上記円筒面 4 9 bに、 化成処理皮膜であるリン酸マンガン皮 膜 5 2を形成している。 この様なリン酸マンガン皮膜 5 2の形成過程は、 概ね、 次の通りである。 即ち、 所定の温度条件の下、 母材である上記クラッチ用外輪 3 0 dの内周面を、 リン酸マンガン塩水溶液に浸漬する。 この結果、 このリン酸マ ンガン塩水溶液の第 1次解離により遊離リン酸が生じ、 上記クラッチ用外輪 3 0 dの内周面 (金属表面) の鉄が溶解する。 これに伴い、 この金属表面の水素ィォ ン濃度が減少し、 上記リン酸マンガン塩水溶液の解離平衡がこの金属表面で移行 しながら、 この金属表面に不溶性のリン酸マンガン塩の結晶が析出する。 この様 に析出した結晶が、 上記リン酸マンガン皮膜 5 2となる。
上述の様に構成する本例の一方向クラッチ内蔵型プーリ装置の場合、 円筒面 4 9 bにリン酸マンガン皮膜 5 2を形成している。 このリン酸マンガン皮膜 5 2の 表面は粗い為、 このリン酸マンガン皮膜 5 2を形成した上記円筒面 4 9 bと、 複 数のローラ 3 3の転動面との接触部の静止摩擦係数を大きくする事ができる。 従 つて、 上記ローラクラッチ 8 bのロック状態を実現する際に、 上記円筒面 4 9 b と上記各ローラ 3 3の転動面との接触部で滑りを生じにくくできる。 従って、 本 例の場合には、 上記ロック状態を確実に実現する事ができる。
一方、 上記ローラクラッチ 8 bのオーバラン時には、 上記リン酸マンガン皮膜 5 2が、 上記円筒面 4 9 bと上記各ローラ 3 3の転動面とが金属接触する事を防 止する。 又、 上記リン酸マンガン皮膜 5 2の結晶粒子間に潤滑剤が保持される為 、 この保持された潤滑剤によって、 上記円筒面 4 9 bと上記各ローラ 3 3の転動 面との摺接部での潤滑状態が良好になる。 従って、 上記ローラクラッチ 8 bのォ 一バラン時に、 この摺接部で摩耗や焼き付きを生じにくくできる。
次に、 図 2 0は、 請求項 1、 6に対応する、 本発明の実施の形態の第十三実施 例を示している。 尚、 本例は、 スター夕モー夕により回転駆動される駆動軸の端 部に固定するエンジン始動用ローラクラッチ内蔵型回転伝達装置に関する例であ るが、 その特徴は、 上述の図 1 9に示した参考例の 1例の場合と同様、 一方向ク ラッチであるローラクラッチ 8 cを構成する円筒面 4 9 cの性状にある。 その他 の部分の構造及び作用は、 前述の図 2 1、 2 3に示した、 ローラクラッチ内蔵型 プーリ装置の従来構造の第 1、 2例の場合と同様である為、 重複する図示並びに 説明は省略若しくは簡略にし、 以下、 本例の特徴部分を中心に説明する。
本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置を構成するローラク ラッチ 8 cは、 クラッチ用内輪 2 9 bの外周面に円筒面 4 9 cを、 クラッチ用外 輪 3 0 aの内周面にカム面 5 0 aを、 それぞれ設けている。 そして、 上記円筒面 4 9 cに、 化成処理皮膜である、 リン酸マンガン皮膜 5 2を形成している。 この 様に構成する本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置は、 スリ ーブ 1 8 b (図 2 1参照) をスター夕モー夕の駆動軸の端部に外嵌固定すると共 に、 プーリ素子 1 7 (図 2 1参照) の外周面に無端ベルトを掛け渡す。 これと共 に、 この無端ベル卜を、 エンジンのクランクシャフトの端部に固定した従動ブー リに掛け渡す。
そして、 エンジンの始動時には、 上記スター夕モー夕への通電によって上記ェ ンジン始動用ローラクラッチ内蔵型回転伝達装置を回転駆動し、 上記無端ベルト 及び従動プーリを介して、 上記クランクシャフトを回転駆動する。 即ち、 この際 には、 上記ローラクラッチ 8 cがロック状態となり、 上記スタータモータの駆動 軸から上記無端ベルトに動力を伝達する。 そして、 上記エンジンが始動した後に は、 上記ローラクラッチ 8 cがオーバラン状態となり、 上記クランクシャフトの 回転に伴う上記無端ベルトの走行に拘らず、 上記スター夕モータの駆動軸が回転 しない様にする。 従って、 このスター夕モータが上記エンジンの運転に対する抵 抗になったり、 或はこのスター夕モータの耐久性が損なわれる事はない。 この様 な構造の場合、 上記スター夕モー夕を起動さえすれば、 上記エンジンを直ちに始 動させる事ができる。 従って、 この様な構造をアイドリングストップ車に組み込 めば、 アイドリングストップ後の再発進を短時間で行なえる様になり、 運転者に 再発進時の違和感を与えない様にできる。
尚、 上述の様に、 本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置は 、 オーバラン状態で運転される事が多く、 ロック状態で運転される時間は全体の 運転時間に比べれば遥かに短い。 この様な事情に鑑みて、 本例のエンジン始動用 ローラクラッチ内蔵型回転伝達装置に組み込むローラクラッチ 8 cは、 エンジン の起動時に伴うォ一バラン状態で、 回転に伴う遠心力により複数のローラ 3 3を カム面 5 0 aの凹部 5 1に退避させ、 これら各ローラ 3 3の転動面と前記円筒面 4 9 cとの擦れ合いを防止する為、 上述の様にカム面 5 0 aをクラッチ用外輪 3 0 cの内周面に設けている。
上述の様に構成する本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置 の場合には、 ローラクラッチ 8 cを構成する円筒面 4 9 cにリン酸マンガン皮膜 5 2を形成している為、 上述の図 1 9に示した参考例の 1例の場合と同様、 この ローラクラッチ 8 cのロック状態を確実に実現できると共に、 ォ一バラン時に上 記円筒面 4 9 cと複数のローラ 3 3の転動面との摺接部で摩耗や焼き付きを生じ にくくでき、 耐久性の向上を図れる。 特に、 本例の場合、 上記ローラクラッチ 8 cがロック状態となるのは、 エンジンを始動する際の短時間だけであり、 ェンジ ン始動後には、 このエンジンが運転されている限り、 上記ローラクラッチ 8 cは オーバラン状態となり、 上記各ローラ 3 3の転動面と上記円筒面 4 9 cとが擦れ 合う事がなくなる。 従って、 上述の様にォ一バラン時に摺接部で摩耗や焼き付き を生じにくくできると言った効果が、 より有効に得られる。 尚、 上述した各例では、 ローラクラッチを構成する複数のローラの転動面と円 筒面とのうちの、 円筒面にのみ化成処理皮膜を形成したが、 この化成処理皮膜は 、 上記各ローラの転動面にのみ、 或はこれら各ローラの転動面と円筒面との双方 に形成する事もできる。 そして、 これらの場合も、 ロック状態が実現され易くな ると共に、 オーバラン時に摺接部で摩耗や焼き付きが生じにくくなると言った効 果を得られる。 又、 上述の図 1 9に示した参考例の 1例と図 2 0に示した第十三 実施例は、 上述したローラクラッチだけでなく、 スプラグクラッチの如きカムク ラッチ等の、 他の構造の一方向クラッチにも適用可能である。
この様な、 図 1 9〜2 0で示した参考例の 1例と第十三実施例とは、 自動車用 補機であるオル夕ネー夕やコンプレッサ、 自動車の始動装置を構成するス夕一夕 モータ、 アイドリングストップ車の補機駆動用モー夕等の回転軸の端部に固定し て使用する一方向クラツチ内蔵型ブーリ装置と、 この一方向クラツチ内蔵型プ一 リ装置等に組み込んで使用する一方向クラッチとの改良に関する。 そして、 上記 参考例の 1例と第十三実施例とで示した、 一方向クラッチ (第一、 第二の一方向 クラッチ) と一方向クラッチ内蔵型プーリ装置 (第一〜第三の一方向クラッチ内 蔵型プーリ装置) との構成を要約すると、 次の通りである。
先ず、 上記第一の一方向クラッチは、 内側部材と、 この内側部材の周囲にこの 内側部材と同心に配置された外側部材と、 これら内側部材の外周面と外側部材の 内周面との間に設けられた複数の係合子とを備える。 そして、 上記内側部材の外 周面と上記外側部材の内周面とのうちの少なくとも一方の面を円筒面としている 。 そして、 上記内側部材と上記外側部材とが所定方向に相対回転する傾向となる 場合にのみ、 これら内側部材と外側部材との間で、 これら内側部材の外周面と外 側部材の内周面とに係合させた上記各係合子を介して回転力の伝達を自在とする 特に、 上記第一の'一方向クラッチに於いては、 上記各係合子の表面と上記円筒 面とのうちの少なくとも一方の面に、 リン酸マンガン皮膜等の化成処理皮膜を形 成している。
又、 上記第二の一方向クラッチ (ローラクラッチ) は、 前述の図 2 1〜2 3に 示したローラクラッチ 8、 8 aと同様、 内側部材と、 この内側部材の周囲にこの 内側部材と同心に配置された外側部材と、 カム面と、 円筒面と、 複数のローラと 、 保持器と、 弹性材とを備える。 このうちのカム面は、 上記内側部材の外周面と 外側部材の内周面とのうちの一方の周面に設けられて、 円周方向複数個所に凹部 を有する。 又、 上記円筒面は、 上記内側部材の外周面と外側部材の内周面とのう ちの他方の周面に設けられている。 又、 上記各ローラは、 上記円筒面と上記カム 面との間の円筒状空間で上記各凹部と整合する部分に配置されている。 又、 上記 保持器は、 上記カム面を形成した部材に対する回転を不能として上記円筒状空間 内に支持され、 上記各ローラを転動並びに円周方向に関する若干の変位自在に保 持する。 又、 上記弾性材は、 上記保持器と上記各ローラとの間に設けられ、 これ ら各ローラを円周方向に関して同方向に押圧する。
特に、 上記第二の一方向クラッチ (ローラクラッチ) に於いては、 上記各ロー ラの転動面と上記円筒面とのうちの少なくとも一方の面に、 リン酸マンガン皮膜 等の化成処理皮膜を形成している。
又、 上記第一の一方向クラッチ内蔵型プーリ装置は、 回転軸の周囲に、 この回 転軸と同心に配置する筒状のプーリと、 サポート軸受と、 一方向クラッチとを備 える。 このうちのサポート軸受は、 上記回転軸の外周面と上記プーリの内周面と の間に設けられ、 これら回転軸とプーリとの間に働くラジアル荷重を支承しつつ 、 これら回転軸とプーリとの相対回転を自在とする。 又、 上記一方向クラッチは 、 上記回転軸の外周面と上記プーリの内周面との間で軸方向に関して上記サポー 卜軸受から外れた部分に設けられ、 これら回転軸とプーリとが所定方向に相対回 転する場合にのみ、 これら回転軸とプーリとの間で回転力の伝達を自在とする。 特に、 上記第一の一方向クラッチ内蔵型プーリ装置に於いては、 この一方向ク ラッチが上記第一〜第二の一方向クラッチのうちの何れかの一方向クラッチであ る。
又、 上記第二の一方向クラッチ内蔵型プーリ装置は、 上記回転軸がオルタネ一 夕を構成する回転軸であり、 一方向クラッチを構成する円筒面を外側部材の内周 面に、 カム面を内側部材の外周面に、 それぞれ設けている。
更に、 上記第三の一方向クラッチ内蔵型プーリ装置は、 上記回転軸がスター夕 モー夕により回転駆動される駆動軸であり、 一方向クラッチを構成する円筒面を 内側部材の外周面に、 カム面を外側部材の内周面に、 それぞれ設けている。 この様な、 第一〜第二の一方向クラッチ及び第一〜第三の一方向クラツチ内蔵 型ブーリ装置の場合には、 一方向クラツチを構成する複数の係合子の表面と円筒 面とのうちの少なくとも一方の面に、 リン酸マンガン皮膜等の化成処理皮膜を形 成している。 この化成処理皮膜の表面は粗い。 この為、 上記複数の係合子の表面 と上記円筒面との接触部の静止摩擦係数を大きくする事ができる。 従って、 一方 向クラッチのロック状態を実現する際に、 上記複数の係合子の表面と上記円筒面 との接触部で滑りが生じにくくなり、 上記ロック状態が実現され易くなる。 一方 、 一方向クラッチのオーバラン時には、 上記化成処理皮膜により、 上記複数の係 合子の表面と上記円筒面とが金属接触する事を防止できる。 これと共に、 この化 成処理皮膜の結晶粒子間に潤滑剤が保持される為、 この保持された潤滑剤によつ て、 上記複数の係合子の表面と上記円筒面との摺接部での潤滑状態を良好にでき る。 従って、 一方向クラッチのオーバラン時に、 この摺接部で摩耗や焼き付きを 生じにくくできる。 この様に、 ロック状態を確実に実現できると共に、 オーバラ ン時に摺接部で摩耗や焼き付きを生じにくくできる為、 信頼性及び耐久性の向上 を図れる。
次に、 図 2 5〜2 7は、 本発明の実施の形態の第十四実施例を、 図 2 8〜2 9 は、 本発明の実施の形態の第十五実施例を、 図 3 0は同じく本発明の実施の形態 の第十六実施例を、 図 3 1は、 本発明の実施の形態の第十七実施例を、 それぞれ 示している。 これら各例も、 エンジン始動用を含むローラクラッチ内蔵型回転伝 達装置の耐久性を十分に確保すべく発明したものであるが、 具体的には、 次の様 な課題を解決する事を目的としている。
即ち、 従来から、 互いに同心に配置された部材同士の間で、 所定方向の回転の みを伝達自在とする機能を有する一方向クラッチとして、 例えば特許文献 4等に 記載されている様な、 ローラクラッチが知られている。 図 3 2、 3 3は、 この様 な従来から知られているローラクラッチの従来構造の第 2、 3例を示している。 先ず、 図 3 2に示したローラクラッチの従来構造の第 2例は、 内側部材である内 輪 9 aと、 外側部材である外輪 1 0 a (後述する図 3 3参照) とを互いに同心に 配置すると共に、 これら内輪 9 aの外周面と外輪 1 0 aの内周面との間に、 保持 器 1 1 aと、 複数個のローラ 1 2と、 これらローラ 1 2と同数のばね 1 3とを設 けている。 又、 上記外輪 1 0 aの内周面は、 ランプ部と呼ばれる複数の凹部 1 4 を備えたカム面 5 3 (後述する図 3 3参照) とし、 上記内輪 9 aの外周面は単な る円筒面としている。 又、 上記保持器 1 l aは、 それぞれが円輪状である 1対の リム部 5 4と、 これら両リム部 5 4の円周方向複数個所同士を連結する柱部 5 5 とを備える。 そして、 これら各リム部 5 4の外周縁部に形成した係合凸部 5 6を 上記凹部 1 4に係合させる事により、 上記外輪 1 0 aに対する上記保持器 1 1 a の相対回転を阻止している。 言い換えれば、 これら保持器 1 1 aと外輪 1 O aと が同期して回転する様にしている。
又、 上記各ばね 1 3は、 ばね鋼板を大略三角形状フック形に折り曲げる事によ り構成している。 そして、 上記保持器 1 1 aの軸方向中間部に設けた各柱部 5 5 の径方向外側面で軸方向 3個所位置に支持突片 5 7 a、 5 7 bを、 それぞれ外径 側に突出する状態で設けると共に、 これら各支持突片 5 7 a、 5 7 bに上記各ば ね 1 3の基部 5 8を支持している。 即ち、 上記各柱部 5 5の軸方向両端寄り部に 設けた 1対の支持突片 5 7 aと、 同じく軸方向中間部に設けた 1個の支持突片 5 7 bとの間で、 上記各ばね 1 3の基部 5 8を挟持する事により、 これら基部 5 8 を上記各支持突片 5 7 a、 5 7 bに支持している。 そして、 これら各ばね 1 3に より上記各ローラ 1 2を、 上記凹部 1 4の浅い側に向け、 円周方向に関して同方 向に押圧している。
更に、 図 3 3に示したローラクラッチの従来構造の第 3例の場合、 外輪 1 0 a のカム面 5 3と内輪 9 aの外周面との間で上記各ローラ 1 2が挟持され、 これら 各ローラ 1 2が上記凹部 1 4に沿ってこの凹部 1 4の深い側に移動する状態での これら各ローラ 1 2の中心軸 oの移動方向 (図 3 3に矢印 Xで示す方向) に関し て、 これら各ローラ 1 2の転動面の前端となる位置 (同図に点 Pで示す位置) に 、 各ばね 1 3の先端縁を当接させる様にしている。 従って、 本例の場合には、 こ の状態で、 これら各ばね 1 3が上記各ローラ 1 2を押圧する方向 (同図に矢印 Y で示す方向) と、 上記中心軸 0の移動方向とが、 同一直線上に位置している。 上述の様に構成する、 従来から知られた各口一ラクラッチの場合、 外輪 1 0 a に対し内輪 9 aが図 3 3の反時計方向に相対回転する傾向の場合には、 上記各口 ーラ 1 2が上記内輪 9 aの外周面と外輪 1 0 aの内周面との間に食い込み、 これ ら内輪 9 aと外輪 1 0 aとの間で回転力の伝達が行なわれる。 これに対して、 上 記外輪 1 0 aが上記内輪 9 aよりも図 3 3の反時計方向に高速で回転する傾向の 場合には、 上記各ローラ 1 2が上記各ばね 1 3の弾力に杭して前記各凹部 1 4の 深い部分に移動し、 これら各ローラ 1 2の転動面と上記内輪 9 aの外周面との当 接部の面圧が低下して、 この内輪 9 aと上記外輪 1 0 aとの間で回転力の伝達が 行なわれなくなる (空転する) 。
上述の図 3 2〜3 3に示した様な、 従来から知られている各ローラクラッチの 場合、 カム面 5 3を外輪 1 0 aの内周面に設けると共に、 このカム面 5 3を構成 する凹部 1 4に保持器 1 1 aの外周縁部を係合させている為、 ォ一バラン状態で は、 保持器 1 1 aが上記外輪 1 0 aと共に回転する。 この為、 使用時に、 この保 持器 1 1 aが高速で回転する状態が生じ易い。 これに対して、 上述した従来構造 の第 2、 3例の場合には、 各柱部 5 5に設けた支持突片 5 7 a、 5 7 bに対し上 記各ばね 1 3が外径側にずれるのを防止する為の考慮がされていない。 従って、 上記ローラクラッチのオーバラン状態で、 上記保持器 1 1 aが高速で回転した場 合に、 上記各ばね 1 3が上記各支持突片 5 7 a、 5 7 bに対し外径側にずれ易く なる。 又、 著しい場合には、 これら各ばね 1 3の基部 5 8が上記各支持突片 5 7 a、 5 7 bの間から抜け出る可能性がある。 この様に各ばね 1 3がずれたり、 抜 け出た場合には、 上記ローラクラッチで必要とする性能を確保できなくなる。 特 に、 このローラクラッチを、 所謂アイドリングストップ車のエンジン始動装置用 の回転伝達ユニットに使用する場合に、 上述の様な不都合が生じ易い。 次に、 こ の不都合が生じ易い理由を説明する。
尚、 上記アイドリングストップ車のエンジン始動装置の機能や、 この機能を持 たせる為にスター夕モータ 4の回転駆動軸 5の端部に設ける駆動ブーリ装置 6 ( 図 5 5参照) として一方向クラッチ内蔵型のものを使用する必要がある事は、 前 述した通りである。 又、 この駆動プーリ装置 6として、 上述の図 3 2〜 3 3に示 した様な、 従来から知られているローラクラッチを使用する事が考えられている 事も前述した通りである。 そして、 上記駆動プーリ装置 6にこの様なローラクラ ツチを使用する場合には、 ラチヱット機構を使用する場合等に比べて、 非接続時 に発生する振動や騒音、 更には摩擦を低減できる。 又、 スプラグ式等のカムクラ ツチを使用する場合に比べて、 非接続時に内部で発生する摩擦を低減できる。 又、 上述の図 3 2〜 3 3に示したローラクラッチの従来構造の第 2、 3例の場 合には、 外輪 1 0 aの内周面にカム面 5 3を形成すると共に、 保持器 1 1 aをこ の外輪 1 0 aと共に回転させる様にしている。 従って、 内輪の外周面にカム面を 形成すると共に、 保持器をこの内輪と共に回転させる様にしたローラクラッチを 使用する場合と異なり、 使用時に各ローラ 1 2に作用する遠心力により、 これら 各ローラ 1 2を上記カム面 5 3のうちの凹部 1 4の深い部分に変位させられる。 この為、 オーバラン状態で、 これら各ローラ 1 2の転動面と内輪 9 aの外周面と を離隔させて、 これら両面同士が擦れ合う事を防止できる。 この結果、 この当接 部で摩擦熱が発生して、 グリースが劣化し易くなつたり、 摩擦損失が大きくなる 事を防止できる。
但し、 上記駆動プーリ装置 6に、 上述の図 3 2〜 3 3に示したローラクラッチ の各例を使用すると、 エンジンの始動後に、 保持器 1 1 aと外輪 1 0 aと複数の ローラ 1 2とが、 高速で回転し続ける状態になる。 この為、 この保持器 1 1 aの 支持突片 5 7 a、 5 7 bに支持した各ばね 1 3に長期間大きな遠心力が作用して 、 これら各ばね 1 3がこれら各支持突片 5 7 a、 5 7 bに対し外径側に大きくず れ易くなる。 そして、 この様に外径側に大きくずれた場合には、 ローラクラッチ で必要とする性能を確保できなくなる。 この様に、 上記駆動プーリ装置 6に上述 の図 3 2〜 3 3に示したローラクラッチを使用した場合には、 上記各支持突片 5 7 a、 5 7 bに対する上記各ばね 1 3の外径側へのずれを考慮していない事によ る不都合が生じ易くなる。
又、 上記駆動プーリ装置 6に、 前述の図 3 2〜3 3に示したローラクラッチを 使用する場合には、 ロック状態でエンジン始動用のトルクを内輪 9 aと外輪 1 0 aとの間で伝達する為、 これら内輪 9 aと外輪 1 0 aとの間で伝達すべきトルク が大きくなる。 この為、 オーバーラン状態からロック状態への変換を円滑且つ確 実に行なわせる為には上記各ばね 1 3の弾力を、 一般的なローラクラッチに使用 されているばねの弾力に比べて大きくする必要がある。 但し、 これら各ばね 1 3 の弹カを大きくした場合には、 次に述べる第一、 第二の不都合が生じる。 先ず、 これら各ばね 1 3の弾力を大きくした場合に生じる第一の不都合として、 ローラ クラッチを組み立てるべく、 保持器 1 1 aに各ローラ 1 2及び各ばね 1 3を組み 付けた状態で、 これら各ローラ 1 2が、 これら各ばね 1 3の弾力により上記保持 器 1 1 aの一部に強く押し付けられる事がある。 そして、 この様に各ローラ 1 2 が押し付けられた状態で、 これら各ローラ 1 2の一部が、 上記保持器 1 1 aの内 周縁よりも内径側に大きく突出して、 複数のローラ 1 2の転動面の内接円の直径 が内輪 9 aの外径よりも小さくなる可能性がある。 この内接円の直径がこの内輪 9 aの外径よりも小さくなつた状態では、 ローラクラッチ 1を組み立てるべく上 記複数のローラ 1 2の内径側に内輪 9 aを押し込む際に、 これら各ローラ 1 2の 軸方向端面と内輪 9 aの軸方向端面とが干渉 (衝合) する。 そして、 この様に両 端面同士が干渉した状態のまま、 上記内輪 9 aの押し込み作業を継続した場合に は、 これら各ローラ 1 2が、 各ばね 1 3と柱部 5 5との間から上記保持器 1 1 a の内径側に脱落する可能性がある。 この様に各ローラ 1 2が脱落した場合でも、 上記各ばね 1 3の弾力が小さければ、 脱落したローラ 1 2を再度組み付ける事も 或る程度は容易に行なえる。 但し、 エンジンの始動装置にローラクラッチを使用 すべく各ばね 1 3の弾力を大きくした場合には、 脱落したローラ 1 2を再度組み 付ける事が難しくなる為、 ローラクラッチの組立作業が面倒になる。
又、 上記各ばね 1 3の弾力を大きくした場合に生じる第二の不都合として、 口 ック状態からオーバラン状態へ移行する場合に、 遠心力の作用により上記各ロー ラ 1 2が前記カム面 5 3を構成する凹部 1 4に沿ってこの凹部 1 4の深い側へ移 動しょうとする動きが、 上記各ばね 1 3の弾力により妨げられる事がある。 特に 、 前述の図 3 3に示した従来構造の第 3例の様に、 ロック状態からオーバーラン 状態に向け、 各ローラ 1 2が凹部 1 4に沿ってこの凹部 1 4の深い側に移動する 際のこれら各ローラ 1 2の中心軸 0の移動方向に関して、 これら各ローラ 1 2の 転動面の前端となる位置に各ばね 1 3を当接させる場合には、 これら各ローラ 1 2が上記凹部 1 4に沿ってこの凹部 1 4の深い側に移動しょうとする動きが、 上 記各ばね 1 3により妨げられ易くなる。 又、 ロック状態からオーバーラン状態に 向けての上記中心軸 0の移動方向に関して、 各ローラ 1 2の転動面の前端となる 位置よりもこれら各ローラ 1 2の転動面で保持器 1 1 aの外径側に、 各ばねを当 接させる場合には、 これら各ローラ 1 2の動きが更に妨げられ易くなる。 この様 に各ローラ 1 2の動きが各ばね 1 3により妨げられた場合には、 オーバラン状態 でも、 上記各ローラ 1 2の転動面が上記内輪 9 aの外周面から離隔せず、 これら 各ローラ 1 2の転動面と内輪 9 aの外周面とが擦れ合って、 これら両面同士の当 接部で摩擦熱や摩擦損失が生じ易くなる。 このうち、 摩擦熱の発生は、 ローラク ラッチの内部に封入したダリースの耐久性が低下する原因となり、 摩擦損失の発 生は、 ローラクラッチを組み込んだ始動装置を付設したエンジンを搭載した車両 等の各種機械装置の性能向上を妨げる原因となる。
図 2 5〜3 1に示す、 本発明の実施の形態の第十四〜十七実施例は、 この様な 事情に鑑みて、 少なくとも、 アイドリングストップ車のエンジン始動装置に組み 込んで使用する場合の様に、 使用時に保持器が長時間高速で回転する状態が生じ ると共に、 それぞれが各弾性材である各ばねとして弾力が大きいものを使用する 場合に生じる不都合をなくすべく発明したものである。
先ず、 図 2 5〜2 7は、 本発明の実施の形態の第十四実施例を示している。 本 例のエンジン始動用ローラクラッチ内蔵型回転伝達装置である、 プーリ装置 5 9 は、 前述の図 5 5に示したアイドリングストップ車用のエンジン始動装置で、 ス タータモ—夕 4の回転駆動軸 5の回転を無端ベルト 7に伝達する為の駆動プーリ 装置 6として利用する。 そして、 上記スター夕モー夕 4への通電時には、 上記回 転駆動軸 5の回転を上記無端ベル卜 7に伝達するが、 エンジン 1が始動してこの 無端ベル卜 7がエンジン 1により駆動される状態となった場合には、 この無端べ ルト 7から上記回転駆動軸 5に動力が伝達されない様にする。
この様なプーリ装置 5 9は、 請求項に記載した回転部材に相当する、 上記無端 ベルト 7をその外周面に掛け渡す為のプーリ素子 1 7と、 上記回転駆動軸 5の先 端部に外嵌固定する為のスリーブ 6 0とを、 互いに同心に配置している。 そして 、 このスリーブ 6 0の外周面と上記プーリ素子 1 7の内周面との間に、 それぞれ がサポート軸受である 1対の玉軸受 1 9と、 ローラクラッチ 6 1とを設けている 。 又、 上記プーリ素子 1 7の内周面及び上記スリーブ 6 0の外周面は、 単なる円 筒面としている。 そして、 上記スリーブ 6 0の外周面とプーリ素子 1 7の内周面との間に存在す る環状空間の軸方向中間部に上記ローラクラッチ 6 1を、 同じくこの環状空間の 軸方向両端寄り部分でこのローラクラッチ 6 1を軸方向両側から挾む位置に上記 各玉軸受 1 9を、 それぞれ配置している。 このうちの各玉軸受 1 9は、 前述の図 1〜 5で示した第一実施例の場合に使用したものと同様のものであり、 これら各 玉軸受 1 9を構成する外輪 2 4は、 上記ブーリ素子 1 7の両端寄り部内周面に、 同じく内輪 2 6は上記スリーブ 6 0の両端寄り部外周面に、 それぞれ締り嵌めに より嵌合固定している。 尚、 図示の例の場合、 上記各玉軸受 1 9の軸方向端部に 1対のシールリング 2 8 a、 2 8 (図 1参照) を設けていないが、 上記第一実 施例の場合と同様にシールリング 2 8 a、 2 8 bを設ける事もできる。 .
又、 上記ローラクラッチ 6 1は、 上記プ一リ素子 1 7が上記スリーブ 6 0に対 して所定方向に相対回転する傾向となる場合にのみ、 これらプーリ素子 1 7とス リーブ 6 0との間での回転力の伝達を自在とする。 この様なローラクラッチ 6 1 を構成する為、 上記スリーブ 6 0の外周面中間部に、 内側部材であるクラッチ用 内輪 2 9を、 締まり嵌めにより外嵌固定している。 このクラッチ用内輪 2 9は、 浸炭鋼等の鋼板にプレス加工等の塑性加工を施して全体を円筒状に形成しており 、 内外両周面は、 それぞれ単なる円筒面としている。
これに対して、 上記プーリ素子 1 7の内周面中間部に締まり嵌めにより内嵌固 定した、 外側部材であるクラッチ用外輪 3 0の内周面は、 カム面 3 1としている 。 即ち、 このクラッチ用外輪 3 0の内周面に、 ランプ部と呼ばれる複数の凹部 1 4 (図 3 3参照) を、 円周方向に関して等間隔に、 且つ、 その深さが円周方向に 関し一方向 (図 3 3の左方向) に向かう程漸減する状態 (漸次浅くなる状態) で 形成する事により、 上記内周面を上記カム面 3 1としている。 この様なクラッチ 用外輪 3 0は、 やはり浸炭鋼等の鋼板にプレス加工等の塑性加工を施して、 全体 を円筒状に形成している。
又、 上記クラッチ用内輪 2 9及び上記クラッチ用外輪 3 0と共に上記ローラク ラッチ 6 1を構成する複数個のローラ 3 3は、 上記クラッチ用外輪 3 0にこのク ラッチ用外輪 3 0に対する回転を不能として内嵌したクラッチ用保持器 3 4に、 転動及び円周方向に関する若干の変位自在に支持されている。 このクラッチ用保 持器 3 4は、 合成樹脂 (例えば、 ポリアミド 6 6、 ポリアミド 4 6、 ポリフエ二 ド等の合成樹脂にガラス繊維を 2 0 %程度混入したもの) により 全体を籠型円筒状に形成しており、 それぞれが円環状である 1対のリム部 3 5と 、 これら両リム部 3 5の円周方向複数個所同士を連結する柱部 3 6 aとを備える そして、 上記各リム部 3 5の内側面と各柱部 3 6 aの円周方向側面とにより四 周を囲まれた部分を、 それぞれ上記各ローラ 3 3を転動並びに円周方向に亙る若 干の変位自在に保持する為の、 ポケット 3 7としている。 又、 上記各リム部 3 5 の外周面複数個所に形成した係合凸部 5 6を、 上記クラッチ用外輪 3 0の内周面 に形成した凹部 1 4に係合させて、 上記クラッチ用保持器 3 4を上記クラッチ用 外輪 3 0に、 このクラッチ用外輪 3 0に対する相対回転を不能に装着している。 更に、 このクラッチ用外輪 3 0の軸方向両端部に形成した内向鍔部 3 9 a、 3 9 bで上記クラツチ用保持器 3 4を軸方向両側から挟持する事により、 このクラッ チ用保持器 3 4が上記クラッチ用外輪 3 0に対し軸方向に変位しない様にしてい る。
又、 この様なクラッチ用保持器 3 4を構成する各柱部 3 6 aの一部に、 それぞ ればね 1 3を装着している。 即ち、 本例の場合、 これら各ばね 1 3は、 前述の図 3 2 - 3 3に示した従来構造の第 2〜 3例と同様に、 ばね鋼板を大略三角形状フ ック形に折り曲げる事により構成している。 又、 上記クラッチ用保持器 3 4を構 成する各柱部 3 6 aの径方向外側面の軸方向 3個所位置に支持突片 5 7 a、 5 7 bを、 それぞれ径方向外側に突出する状態で設けている。 又、 これら各支持突片 5 7 a、 5 7 bのうち、 上記各柱部 3 6 aの軸方向両端寄り部に設けた 1対の支 持突片 5 7 aは、 上記クラッチ用保持器 3 4の円周方向に関する位相を互いに一 致させている。 これに対して、 上記各柱部 3 6 aの軸方向中間部に設けた 1個の 支持突片 5 7 bは、 当該柱部 3 6 aに設けた他の支持突片 5 7 aに対し、 上記ク ラッチ用保持器 3 4の円周方向に関する位相をずらせている。 そして、 上記各柱 部 3 6 aに設けた軸方向両端寄り部の 1対の支持突片 5 7 aと、 軸方向中間部の 支持突片 5 7 bとの間で、 上記各ばね 1 3の基部 5 8を挟持している。 この構成 により、 これら各ばね 1 3の基部 5 8は、 上記各柱部 3 6 aの一部に支持される 。 そして、 これら各ばね 1 3により、 上記各ポケット 3 7内に保持した上記各口 —ラ 3 3を、 前記カム面 3 1の内周面と前記クラッチ用内輪 2 9の外周面 (円筒 面) との間に形成される略円筒状の空間のうち、 直径方向の幅が狭くなつた部分 に向け、 上記クラッチ用保持器 3 4の円周方向に関して同方向に、 弾性的に押圧 している。
特に、 本例の場合には、 上記各柱部 3 6 aのうち、 軸方向中間部に設けた支持 突片 5 7 bの円周方向側面で、 上記各ばね 1 3の基部 5 8側面に対向する側面の この基部 5 8側面よりも外怪側に外れた部分に庇部 6 2を、 この基部 5 8側へ突 出する状態で設けている。 そして、 上記軸方向中間部に設けた支持突片 5 7 の 円周方向側面からのこれら各庇部 6 2の突出長さ L 6 2を、 上記各ばね 1 3の基部 5 8の厚さ t 1 3よりも大きくしている (L fi 2〉 t , 3) 。
上述の様に構成するローラクラッチ 6 1を組み込んだプーリ装置 6を、 アイド リングストップ車のエンジン始動装置に使用する場合の作用は、 次の通りである 。 先ず、 エンジン 1を始動する際には、 前記スター夕モー夕 4に通電し、 前記回 転駆動軸 5の先端部に外嵌固定した前記スリーブ 6 0並びにこのスリーブ 6 0に 外嵌固定した前記クラッチ用内輪 2 9を所定方向 (図 3 3の反時計方向) に回転 させる。 これに伴って、 前記各ローラ 3 3がこのクラッチ用内輪 2 9の外周面と 前記クラツチ用外輪 3 0の内周面との間の略円環状の空間のうちで直径方向の幅 が狭くなつた部分に向け変位する。 この結果、 上記各ローラ 3 3の転動面が、 上 記クラッチ用内輪 2 9の外周面とクラッチ用外輪 3 0の内周面との間にくさび状 に食い込み、 ローラクラッチ 6 1がロック状態となって、 上記クラッチ用内輪 2 9からクラッチ用外輪 3 0に回転が伝達される。 この状態で、 前記プーリ素子 1 7と無端ベル卜 7と従動プーリ 3とを介して、 エンジン 1のクランクシャフト 2 (図 5 5参照) が駆動され、 このエンジン 1が始動される。
エンジン 1 5の始動後には上記スター夕モータ 4への通電が停止され、 上記回 転駆動軸 5が停止する。 この状態では上記プーリ素子 1 7が上記エンジン 1のク ランクシャフト 2により、 上記無端ベルト 7を介して回転駆動され、 上記クラッ チ用外輪 3 0は所定方向に回転し続ける。 この結果、 上記ローラクラッチ 6 1が オーバラン状態となり、 上記ブーリ素子 1 7の回転が上記スリーブ 6 0にまでは 伝わらなくなる。 従って、 上記エンジン 1が運転される際に、 上記スター夕モー 夕 4がこのエンジン 1の回転に対する負荷とはならない。
特に、 本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置に組み込んだ ローラクラッチの場合には、 クラッチ用保持器 3 4を構成する各柱部 3 6 aに設 けた各支持突片 5 7 a、 5 7 bのうち、 軸方向中間部に設けた支持突片 5 7 bの 円周方向側面で各ばね 1 3の基部 5 8側面と対向する側の側面の外径側に庇部 6 2を設けている。 又、 この庇部 6 2のこの支持突片 5 7 bの側面からの突出長さ L 6 2を、 上記各ばね 1 3の基部 5 8の厚さ t 1 3よりも大きくしている (L 6 2> t ) 。 この為、 上記ローラクラッチによれば、 使用時に、 クラッチ用保持器 3 4 が高速回転する事により上記各ばね 1 3に大きな遠心力が作用する場合でも、 こ れら各ばね 1 3が上記各支持突片 5 7 a、 5 7 bに対し外径側にずれたり、 外れ る事を防止できる。 従って、 上記ローラクラッチの信頼性向上を図れる。 この結 果、 このローラクラッチを組み込んだ、 アイドリングストップ車用のエンジン始 動用ローラクラッチ内蔵型回転伝達装置によれば、 エンジンの始動後に上記クラ ツチ用保持器 3 4が前記クラッチ用外輪 3 0と共に長時間高速で回転し続ける為 に上記各ばね 1 3が外径側にずれ易い傾向となるのにも拘らず、 これら各ばね 1 3の外径側へのずれを防止して、 信頼性向上及び耐久性の向上を図れる。 更に、 本例の場合には、 上記クラッチ用保持器 3 4を合成樹脂により造っている為、 軽 量化を図れると共に、 製造作業の容易化を図れる。
尚、 本例の場合には、 上記各柱部 3 6 aに設けた各支持突片 5 7 a、 5 7 の うち、 軸方向中間部の支持突片 5 7 bのみに各ばね 1 3の外径側へのずれ及び外 れを防止する為の庇部 6 2を形成している。 但し、 軸方向両端寄り部の支持突片 5 7 aの側面で上記基部 5 8側面と対向する側の側面にも、 同様の庇部を形成す る事もできる。 又、 軸方向中間部の支持突片 5 7 bに庇部 3 6を形成せず、 上記 軸方向両端寄り部の支持突片 5 7 aにのみ庇部を形成する事もできる。 この様に 、 各柱部 3 6 a毎に設ける庇部 6 2を多くした場合には、 各ばね 1 3の外径側へ のずれや外れを、 より効果的に防止できる。 但し、 この場合には各ばねの組み付 け作業が本例の場合に比べて面倒にはなる。 又、 これら各ばね 1 3の形状は、 本 例の場合の様に、 断面が大略三角形状フック形であるものに限定するものではな く、 例えば、 「u」 字形等の種々の形状を採用できる。 例えば、 「u」 字形の形 状を有するばねを使用する場合には、 このばねを構成する 1対の腕部のうちの一 方の腕部が、 請求項 7に記載した 「基部」 に相当する。
次に、 図 2 8〜2 9は、 本発明の実施の形態の第十五実施例を示している。 本 例の場合には、 ローラクラッチ 6 1 aを構成する各ローラ 3 3の軸方向両端面と クラッチ用内輪 2 9の軸方向両端面との外周縁部に、 それぞれ断面形状が四分の 一円弧状、 或は部分円すい凸面状の面取り 6 3、 6 4 (図 2 9 ) を形成している 。 そして、 これら各面取り 6 3、 6 4の径方向に関する幅の合計を、 上記各口一 ラ 3 3及びクラッチ用内輪 2 9との関係で、 次の様に規制している。
即ち、 図 2 8に示す様に、 クラッチ用保持器 3 4の各ポケット 3 7に上記各口 ーラ 3 3を保持すると共に、 このクラッチ用保持器 3 4に設けた各ばね 1 3によ り、 これら各ローラ 3 3の転動面を上記各ポケット 3 7の円周方向一端側 (図 2 8の右端側) に押し付けた状態を考える。 本例の場合、 この状態で、 上記クラッ チ用保持器 3 4の周囲にクラッチ用外輪 3 0を、 各係合凸部 5 6をカム面 3 1を 構成する凹部 1 4に係合させつつ配置しても、 上記各ローラ 3 3の転動面がこの カム面 3 1に接触する事がない様にしている。 そして、 これら各ローラ 3 3の内 径側に上記クラッチ用内輪 2 9を進入させる事なく、 上記クラッチ用保持器 3 4 と上記クラッチ用内輪 2 9とを同軸上に配置した状態を考える。 そして、 この様 に両部材 3 4、 2 9を配置した状態で、 このクラッチ用内輪 2 9の外周面に設け たクラッチ用の軌道よりも内径側への上記各ローラ 3 3の飛び出し量 (クラッチ 用内輪 2 9と各ローラ 3 3とが軸方向に関して重畳する量) δが、 これら各口一 ラ 3 3の端部の面取り 6 3の径方向に関する幅 と、 上記クラッチ用内輪 2 9 の端部の面取り 6 4の径方向に関する幅 W2 との合計よりも小さくなる (6 <W , +W2 ) 様に、 各部の寸法を規制している。 尚、 この関係が成立すれば、 上記 両幅 W , 、 W, のうちの何れか一方が 0であっても良い。 即ち、 上記クラッチ用 内輪 2 9と各ローラ 3 3との何れか一方のみに、 面取りを形成する事もできる。 各部を上述の様に構成したローラクラッチ 6 1 aの組立作業は、 次の様にして 行なう。 先ず、 上記クラッチ用保持器 3 4に上記各ばね 1 3を装着すると共に、 このクラッチ用保持器 3 4に設けた各ポケット 3 7内にそれぞれローラ 3 3を保 持する。 この状態でこれら各ローラ 3 3は、 上記各ばね 1 3により上記各ポケッ ト 3 7の円周方向一端側に押し付けられた状態となる。 そこで、 上記各ローラ 3 3と各ばね 1 3とクラッチ用保持器 3 4とを組み合わせたものを、 クラッチ用外 輪 3 0の内径側に組み付ける。 この際、 上記クラッチ用保持器 3 4に設けた係合 凸部 5 6と、 上記クラッチ用外輪 3 0のカム面 3 1に設けた凹部 1 4とを係合さ せて、 このクラッチ用外輪 3 0と上記クラッチ用保持器 3 4との相対回転を阻止 する。 尚、 図示の例の場合には、 上記各ポケット 3 7の円周方向一端側に位置す る、 各柱部 5 5 aの円周方向片側面 (図 2 8の右側面) の軸方向両端部に断面 V 字形の傾斜面 6 5を形成している。 そして、 上述の様に、 各ローラ 3 3を、 各ば ね 1 3により各ポケット 3 7の円周方向一端側に押し付けた状態で、 これら各口 —ラ 3 3の転動面を上記各傾斜面 6 5に当接させる。
その後、 上記各ローラ 3 3の内径側にクラッチ用内輪 2 9を組み付ける。 この クラッチ用内輪 2 9の組み付け作業時には、 先ず、 このクラッチ用内輪 2 9の軸 方向一端部 (図 2 9の右端部) を、 上記各ローラ 3 3の内径側に押し込む (内嵌 する) 。 この押し込み作業の際、 これらクラッチ用内輪 2 9と各ローラ 3 3との 軸方向端部にそれぞれ形成した前記各面取り 6 3、 6 4力 案内面として機能す る。
尚、 この様にしてクラッチ用内輪 2 9の押し込み作業を開始する瞬間には、 上 記クラッチ用外輪 3 0に対する上記各ローラ 3 3の円周方向に関する位相は、 図 2 8の実線で示した状態になる。 即ち、 これら各ローラ 3 3が上記クラッチ用外 輪 3 0の内周面のカム面 3 1を構成する凹部 1 4の比較的浅い部分に位置する。 又、 この状態で、 上記各ローラ 3 3の転動面とこの凹部 1 4との間に、 上記クラ ツチ用内輪 2 9の外周面に設けた円筒面よりも内径側へのこれら各ローラ 3 3の 突出量 δよりも小さい隙間 sが存在する。 そして、 これら各ローラ 3 3が存在す る部分で、 上記クラッチ用内輪 2 9の外周面と上記クラッチ用外輪 3 0の内周面 に形成したカム面 3 1との距離 Lが、 上記各ローラ 3 3の直径 よりも小さく なる (L <D 3 : 。 従って、 上記クラッチ用外輪 3 0の円周方向に関する上記各 ローラ 3 3の位相がそのままでは、 上記クラッチ用内輪 2 9の内嵌作業を行なう 事が困難である。 但し、 上記クラッチ用内輪 2 9を上記各ローラ 3 3の内径側に内嵌すると、 上 記クラッチ用外輪 3 0の内周面に形成したカム面 3 1力 上記各ローラ 3 3を上 記各ばね 1 3の弾力に杭して円周方向に変位させる。 即ち、 上記各面取り 6 3、 6 4同士の係合に基づいて、 上記クラッチ用内輪 2 9の軸方向端部が上記各ロー ラ 3 3の内径側に入り込むと同時に、 このクラッチ用内輪 2 9の外周面がこれら 各ローラ 3 3を、 上記クラッチ用外輪 3 0の内周面に押し付ける。 従って、 これ ら各ローラ 3 3は、 このクラッチ用外輪 3 0の内周面からの反作用を受け、 この クラッチ用外輪 3 0の内周面に設けたカム面 3 1を構成する凹部 1 4の傾斜面が 上記各ローラ 3 3を、 この傾斜面に対し直角方向に押圧する。 そして、 この直角 方向の力のうち、 上記クラッチ用外輪 3 0の円周方向の分力により、 上記各ロー ラ 3 3が上記各ばね 1 3の弾力に杭して、 図 2 8に鎖線で示す様に、 上記クラッ チ用外輪 3 0の内周面と上記クラッチ用内輪 2 9の外周面との間の円周方向の所 定位置、 即ち、 これら両面同士の間隔が丁度上記各ローラ 3 3の直径 D 3 3に一致 する部分に移動する。 この状態で、 ローラクラッチ 6 1 aの組立は終了する。 又、 この様にして組み立てたローラクラッチ 6 1 aを組み込んだプーリ装置 5 9 (図 2 5参照) を組み立てる場合には、 上記クラッチ用外輪 3 0をプーリ素子 1 7 (図 2 5参照) に締り嵌めで内嵌すると共に、 上記クラッチ用内輪 2 9をス リーブ 6 0 (図 2 5参照) に締り嵌めで外嵌する。 この状態で上記ローラクラッ チ 6 1 aが、 上記プーリ素子 1 7の中間部内周面と上記スリーブ 6 0の中間部外 周面との間に組み付けられる。
そして、 上記プーリ素子 1 7の軸方向両端部内周面とスリーブ 6 0の軸方向両 端部外周面との間で上記ローラクラッチ 6 1 aを軸方向両側から挟む部分に、 1 対の玉軸受 1 9 (図 2 5参照) を組み付ける。 この状態で、 上記プーリ装置 5 9 が完成する。
上述の様に構成し組み立てる本例のアイドリングストップ車用のエンジン始動 用ローラクラッチ内蔵型回転伝達装置の場合には、 上記各ローラ 3 3の軸方向端 面と上記クラッチ用内輪 2 9の軸方向端面との外周縁部に、 それぞれ面取り 6 3 、 6 4を形成している。 又、 上記クラッチ用保持器 3 4に上記各ローラ 3 3を保 持し、 且つ、 これら各ローラ 3 3をそれぞれこのクラッチ用保持器 3 4に設けた ばね 1 3により各ポケット 3 7の一部に押し付け、 且つ、 このクラッチ用保持器 3 4と同軸上に上記クラッチ用内輪 2 9を配置した状態で、 このクラッチ用内輪 2 9の外周面に設けたクラッチ用の軌道よりも内径側への上記各ローラ 3 3の飛 び出し量 δを、 これら各ローラ 3 3の端部の面取り 3 7の径方向に関する幅 W , と、 上記クラッチ用内輪 2 9の端部の面取りの径方向に関する幅 W2 との合計よ りも小さくしている (5 <W, +W ) 。 従って、 本例の場合には、 上記クラッ チ用保持器 3 4に各ローラ 3 3を保持した状態で、 これら各ローラ 3 3の内径側 にクラッチ用内輪 2 9を押し込む作業を円滑に行なえる。 又、 上記各ローラ 3 3 の軸方向端部と上記クラッチ用内輪 2 9の軸方向端部とが千涉する事により、 こ れら各口一ラ 3 3が上記クラッチ用保持器 3 4の内径側に脱落する事を防止でき る。 この為、 本例のエンジン始動用ローラクラッチ内蔵型回転伝達装置に組み込 むローラクラッチの組立作業の容易化を図れる。 この結果、 このローラクラッチ を組み込んだアイドリングストップ車用のエンジン始動用ローラクラツチ内蔵型 回転伝達装置によれば、 上記各ローラの脱落を防止し、 上記各ばね 1 3として弾 力が大きいものを使用した場合でも、 組立作業の容易化を図れる。
その他の構成及び作用は、 上述の図 2 5〜2 7に示した第十四実施例の場合と 同様である為、 重複する説明は省略する。
次に、 図 3 0は、 本発明の実施の形態の第十六実施例を示している。 本例の場 合には、 クラッチ用保持器 3 4を構成する各ポケット 3 7の開口部のうち、 この クラッチ用保持器 3 4の内径側開口の円周方向に関する幅 L 3 7を、 各ローラ 3 3 の直径 D 3 3よりも小さくしている (L 3 7<D 3 3) 。 この様な本例の場合には、 上記各ポケット 3 7に上記各ローラ 3 3を保持した状態で、 これら各ローラ 3 3 が上記内径側開口を通過する事ができない。 この為、 上記クラッチ用保持器 3 4 に各ローラ 3 3を保持した状態でこれら各ローラ 3 3の内径側にクラツチ用内輪 2 9 (図 2 5、 2 8、 2 9参照) を内嵌する際に、 これら各ローラ 3 3の一部と クラッチ用内輪 2 9の一部とが干渉した場合でも、 これら各ローラ 3 3が上記ク ラッチ用保持器 3 4の内径側に脱落する事を防止できる。 従って、 本例の場合も 、 上述の図 2 8〜2 9に示した第十五実施例の場合と同様に、 ローラクラッチ 6 1 aの組立作業の容易化を図れる。 この結果、 このローラクラッチ 6 1 aを組み 込んだアイドリングストップ車のエンジン始動用ローラクラッチ内蔵型回転伝達 装置の場合には、 各ばね 1 3として弾力が大きいものを使用した場合でも、 組立 作業の容易化を図れる。
その他の構成及び作用は、 上述の図 2 8〜2 9に示した第十五実施例の場合と 同様である為、 重複する説明は省略する。 尚、 クラッチ用保持器 3 4の形状は、 各ポケット 3 7の開口部のうち、 このクラッチ用保持器 3 4の内径側開口の周方 向に関する幅を、 各ローラ 3 3の直径よりも小さくするものであれば、 図示の形 状に限定するものではなく、 種々の形状を採用できる。
次に、 図 3 1は、 本発明の実施の形態の第十七実施例を示している。 本例の場 合には、 ローラクラッチ 6 1 bを構成する各ローラ 3 3の転動面と各ばね 1 3と が当接する位置を、 これら各ローラ 3 3の移動方向との関係で規制している。 即 ち、 本例の場合には、 上記各ローラ 3 3が、 クラッチ用外輪 3 0のカム面 5 3と クラッチ用内輪 2 9の外周面との間に挟持され、 これら各ローラ 3 3がこのカム 面 5 3を構成する凹部 1 4に沿ってこの凹部 1 4の深い側に移動する状態を考え る。 そして、 この状態での上記各ローラ 3 3の中心軸 oの移動方向 (図 3 1に矢 印 Xで示す方向) に関して、 これら各ローラ 3 3の転動面の前端となる位置 (同 図に点 Pで示す位置) よりも、 これら各ローラ 3 3の転動面でクラッチ用保持器 3 4の径方向に関して内側の位置 (同図に点 Qで示す位置) に、 上記各ばね 1 3 の先端縁が当接する様に、 各部の寸法を規制している。 又、 本例の場合には、 上 記各ローラ 3 3力 クラッチ用外輪 3 0のカム面 5 3とクラッチ用内輪 2 9の外 周面との間に挟持された状態で、 上記各ばね 1 3が上記各ローラ 3 3を押圧する 方向が、 上記クラッチ用保持器 3 4の円周方向に関する接線方向と一致している この様な本例の構造によれば、 口ック状態で各ばね 1 3が各ローラ 3 3を押圧 する方向, (図 3 1に矢印 Yで示す方向) が、 このロック状態からこれら各ローラ 3 3が上記各凹部 1 4に沿ってこれら各凹部 1 4の深い側に移動する状態でのこ れら各ローラ 3 3の中心軸 oの移動方向 (同図に矢印 Xで示す方向) に対し、 こ れら各ローラ 3 3を上記各凹部 1 4に押し付ける分力が生じる方向に傾斜する。 この為、 本例の様に、 アイドリングストップ車のエンジン始動装置用として使用 すべく上記各ばね 1 3の弾力を大きくした場合でも、 ロック状態からオーバラン 状態に移行する際に、 上記各ローラ 3 3が、 遠心力の作用により、 上記各凹部 1 4に沿ってこれら各凹部 1 4の深い側に移動し易くなる。 従って、 オーバラン状 態で、 上記各ローラ 3 3の転動面とクラッチ用内輪 2 9の外周面とが滑り接触し た状態のままになるのを防止し、 摩擦熱及び摩擦損失の発生を抑える事ができる 。 従って、 本例のローラクラッチ 6 1 bの耐久性及び性能の向上を図れる。 この 結果、 このローラクラッチ 6 1 bを組み込んだアイドリングストップ車用のェン ジン始動用ローラクラッチ内蔵型回転伝達装置によれば、 上記各ばね 1 3として 弾力が大きいものを使用するのにも拘らず、 耐久性及び性能の向上を図れる。 その他の構成及び作用に就いては、 前述の図 2 5〜2 7で示した第十四実施例 の場合と同様である為、 重複する説明は省略する。
尚、 上述した各例の場合には、 ローラクラッチ 6 1、 6 1 a、 6 1 bを構成す るクラッチ用外輪 3 0及びクラッチ用内輪 2 9を、 それぞれプーリ素子 1 7及び スリーブ 6 0 (図 2 5等) とは別体とし、 このプーリ素子 1 7の内周面とスリー ブ 6 0の外周面とに嵌合固定した場合に就いて説明した。 但し、 上述の図 2 5〜 3 1に示した第十四〜十七実施例では、 この様な構造に限定するものではなく、 クラッチ用外輪とプーリ素子とを、 クラッチ用内輪とスリーブとを、 それぞれ一 体構造とする事もできる。 この場合には、 プーリ素子が外側部材となり、 スリー ブが内側部材となる。
又、 上述の図 2 5〜3 1で示した第十四〜第十七実施例は、 ローラクラッチを 、 アイドリングストップ車用のエンジン始動用ローラクラッチ内蔵型回転伝達装 置である、 プーリ装置 5 9に組み込んで使用する場合に就いて説明した。 即ち、 上記第十四〜第十七実施例で示したローラクラッチは、 上記アイドリングストツ プ車で、 エンジンの始動を行なわせる為の始動装置に使用するものである。 但し 、 上記第十四〜第十七実施例で組み込んだローラクラッチの用途は、 アイドリン グストップ車のエンジン始動装置に限定するものではない。 例えば、 その他の補 機駆動装置用回転伝達ュニットで、 使用時に保持器が長時間高速で回転する状態 が生じると共に、 ロック状態でクラッチ用内輪 2 9とクラッチ用外輪 3 0との間 で伝達すべきトルクが大きくなる状態で使用する場合に、 上記第十四〜第十七実 施例で組み込んだローラクラッチを使用する事は有効である。 例えば、 アイドリ ングストップ車で、 空気調和装置用のコンプレッサをエンジン停止時にも始動さ せるべく、 このコンプレッサの回転軸と共に回転する回転部材の内周面と、 補機 駆動用モータの回転軸と共に回転するスリーブの外周面との間に、 上記第十四〜 第十七実施例のローラクラッチを組み込んで使用する事もできる。 この様な第十 四〜第十七実施例で示したローラクラッチ (第一〜第五のローラクラッチ) と補 機駆動用回転伝達ユニットとの構成を要約すると、 次の通りである。
先ず、 上記第一〜第五のローラクラッチは何れも、 前述の図 3 2〜3 3に示し たローラクラッチの従来構造の第 2、 3例と同様に、 外側部材と、 この外側部材 の内径側に配置された内側部材と、 この外側部材の内周面に設けられた、 それぞ れの深さが円周方向に関し一方向に向かう程漸減する凹部を円周方向複数個所に 有するカム面と、 上記外側部材の内周面と内側部材の外周面との間の円筒状隙間 内に設けられた複数個のローラと、 これら各ローラを保持する保持器と、 この保 持器の一部にそれぞれの基部を支持されて、 これら各ローラを上記円筒状隙間の 径方向に関する厚さが狭くなつた部分に向け押圧する複数の弾性材とを備える。 特に、 上記第一のローラクラッチに於いては、 上記保持器の軸方向中間部外周 面で上記各弾性材の基部側面と対向する位置に径方向に突出する状態で設けられ た複数の支持突片と、 これら各支持突片のうちの上記各弾性材の基部側面と対向 する側の側面で、 この基部側面よりも外径側に外れた部分にこれら各弾性材の基 部側に突出する状態で設けられた庇部とを備える。 そして、 上記各支持突片の側 面からのこれら各庇部の突出長さを、 上記各弾性材の基部でこの側面と対向する 部分の厚さよりも大きくしている。
又、 上記第二のローラクラッチに於いては、 上記各ローラの軸方向端面と上記 内側部材の軸方向端面とのうちの少なくとも一方の外周縁部に面取りが形成され ている。 そして、 上記保持器の円周方向複数個所に設けられたポケット内に上記 各ローラを、 上記各弾性材の弾力によりこれら各ポケッ卜の一部に押し付けた状 態で保持すると共に、 これら各ローラから軸方向に外れた位置で上記保持器と同 軸上に上記内側部材を配置した状態で、 この内側部材の外周面に設けたクラッチ 用の軌道よりも内径側への上記各ローラの飛び出し量を、 これら各ローラの端部 の面取りの径方向に関する幅と上記内側部材の端部の面取りの径方向に関する幅 との合計よりも小さくしている。
又、 上記第三のローラクラッチに於いては、 上記保持器の円周方向複数個所に 上記各ローラを保持する為に設けられた複数のポケッ卜の開口部のうち、 内径側 開口の円周方向に関する幅を、 上記各ローラの直径よりも小さくしている。 又、 上記第四のローラクラッチに於いては、 上記各ローラが上記カム面と上記 内側部材の外周面との間に挟持され、 これら各ローラが上記凹部に沿ってこの凹 部の深い側に移動する状態でのこれら各ローラの中心軸の移動方向に関して、 こ れら各ローラの転動面の前端となる位置よりも、 これら各ローラの転動面で上記 保持器の径方向に関して内側の位置に、 上記各弾性材を当接させる。
更に、 上記第五のローラクラッチは、 上記第一〜第四の口一ラクラッチの何れ かに於いて、 保持器が合成樹脂製である。
又、 上記補機駆動用回転伝達ユニットは、 エンジン又は補機の回転軸と共に回 転する回転部材と、 この回転部材の内径側に配置された、 スター夕モータ等の補 機又は補機駆動用モー夕の回転軸と共に回転するスリーブと、 これら回転部材の 内周面とスリーブの外周面との間に組み込まれた、 上記第一〜第五のローラクラ ツチのうちの何れかのローラクラッチとを備える。
上述の様な第一〜第五のローラクラッチと補機駆動用回転伝達ュニットによれ ば、 アイドリングストップ車のエンジン始動装置に組み込んで使用する場合の様 に、 使用時に保持器が長時間高速で回転する状態が生じると共に、 各弾性材とし て弾力が大きいものを使用する場合に生じる不都合を防止できる。
先ず、 上記第一のローラクラッチの場合には、 支持突片の側面のうち、 弾性材 の基部と対向する側の側面でこの基部よりも外径側に外れた部分に庇部を設ける と共に、 この庇部の上記支持突片の側面からの突出長さを、 上記弹性材の基部で この側面と対向する部分の厚さよりも大きくしている。 この為、 使用時に、 保持 器が高速回転する事により各弹性材に大きな遠心力が作用する場合でも、 これら 各弾性材が上記支持突片に対し外径側にずれたり、 外れる事を防止できる。 従つ て、 ローラクラッチの信頼性向上を図れる。 この結果、 このローラクラッチを組 み込んだ補機駆動用回転伝達ュニッ卜によれば、 アイドリングストップ車のェン ジン始動装置用として使用する場合の様に、 エンジンの始動後に上記保持器が外 側部材と共に長時間高速で回転し続ける場合でも、 上記各弾性材が上記保持器の 外径側へずれ易い傾向となるのにも拘らず、 この外径側へのずれを防止して、 信 頼性及び耐久性の向上を図れる。
又、 上記第二、 第三のローラクラッチの場合には、 保持器と複数のローラとを 組み合わせた後にこれら複数のローラの内径側に内側部材を押し込む場合に、 こ れら各ローラの軸方向端面と上記内側部材の軸方向端面とが千渉して、 これら各 ローラが上記保持器の内径側に脱落する事を防止できる。 この為、 ローラクラッ チの組立作業の容易化を図れる。 この結果、 このローラクラッチを組み込んだ補 機駆動用回転伝達ュニットによれば、 アイドリングストップ車のエンジン始動装 置用として使用する様に、 各弾性材として弾力が大きいものを使用した場合でも 、 ローラの脱落を防止して組立作業の容易化を図れる。
又、 上記第四のローラクラッチの場合には、 各弾性材の弹力を大きくした場合 でも、 ロック状態からオーバラン状態に移行する際に、 各ローラが、 遠心力の作 用に基づいて外側部材の内周面のカム面を構成する凹部に沿ってこの凹部の深い 側に移動し易くなる。 この為、 オーバラン状態で、 これら各ローラの転動面と内 側部材の外周面とが滑り接触した状態のままになるのを防止し、 摩擦熱及び摩擦 損失の発生を抑える事ができる。 従って、 ローラクラッチの耐久性及び性能の向 上を図れる。 この結果、 このローラクラッチを組み込んだ補機駆動用回転伝達ュ ニッ卜によれば、 アイドリングストップ車のエンジン始動装置用として使用する 場合の様に、 各弾性材として弾力が大きいものを使用する場合でも、 耐久性及び 性能の向上を図れる。
更に、 上記第五のローラクラッチ及びこのローラクラッチを組み込んだ補機駆 動用回転伝達ユニットによれば、 軽量化を図れると共に、 製造作業の容易化を図 れる。
この様に、 上記第一〜第五の口一ラクラッチと上記補機駆動用回転伝達ュニッ トとによれば、 使用時に保持器が長時間高速で回転する状態が生じると共に、 各 弾性材として弾力が大きいものを使用する場合に生じる不都合を防止できる。 次に、 図 3 4〜3 6は、 本発明の実施の形態の第十八実施例を、 図 3 7は同じ く第十九実施例を、 図 3 8は同じく第二十実施例を、 図 3 9は、 本発明の実施の 形態の第二十一実施例を、 図 4 0は、 本発明の実施の形態の第二十二実施例を、 それぞれ示している。 これら各例も、 エンジン始動用を含むローラクラッチ内蔵 型回転伝達装置の耐久性を十分に確保すべく発明したものであるが、 具体的には 、 次の様な課題を解決する事を目的としている。
即ち、 近年、 前述した様なアイドリングストップ車が、 一部で実際に使用され ている。 又、 このアイドリングストップ車のエンジン始動装置に所定の機能を持 たせる為に、 ス夕一夕モー夕 4の回転駆動軸の端部に設ける駆動プーリ装置 6 ( 図 5 5参照) として、 前述の図 5 6に示したローラクラッチ 8等の一方向クラッ チを組み込んだ一方向クラッチ内蔵型のものを使用する事が考えられている。 こ のローラクラッチ 8は、 内輪 9と外輪 1 0とを互いに同心に配置すると共に、 こ れら内輪 9の外周面と外輪 1 0の内周面との間に、 保持器 1 1と、 それぞれ複数 個ずつのローラ 1 2及びばね 1 3とを配置している。 又、 上記内輪 9の外]!面は 、 ランプ部と呼ばれる複数の凹部 1 4を備えたカム面とし、 上記外輪 1 0の内周 面は単なる円筒面としている。 又、 上記各ローラ 1 2を押圧する為のばね 1 3と して、 図 4 1に示す様な三角形状フック形に折り曲げた板ばね 1 3、 或は図 4 2 に示す様な山形に曲げ形成して成る板ばね 1 3 a、 更には図 4 3に示す様な S字 形に曲げ形成して成る板ばね 1 3 b等が使用される。
但し、 上述の様なローラクラッチ 8の場合、 回転力の伝達が行なわれないォ一 バラン状態、 即ち各ローラ 1 2により各ばね 1 3、 1 3 a , 1 3 bが押圧された 状態で、 これら各ローラ 1 2の姿勢が適正位置から中心軸が傾く方向にずれる ( スキューする) と、 これら各口一ラ 1 2と外輪 1 0の内周面とが局部的に摺接す る事による偏摩耗や異常発熱が生じ、 これら各ローラ 1 2や外輪 1 0が早期に寿 命に至る可能性がある。 特に、 上述した様なアイドリングストップ車のエンジン の始動装置等に組み込まれ、 回転力の伝達が行なわれないオーバラン状態で長時 間使用されるローラクラッチ 8の場合には、 上述の様な各ローラ 1 2のスキュー を防止する事が、 耐久性確保 (長寿命化) の面で重要である。 尚、 回転力の伝達 が行なわれるロック状態においても、 この様な各ローラ 1 2のスキューは、 これ ら各ローラ 1 2が内輪 9の外周面と外輪 1 0の内周面との間で適正に係合しにく くなつて、 これら内輪 9と外輪 1 0との間で所定の動力を伝達できなくなったり 、 極 [5的に過大面圧が加わつて早期剥離等の損傷を発生し易くなる等の不都合を 生じる可能性がある為、 やはり好ましくない。
ところが、 前述の図 4 1に示す様な三角形状フック形に折り返したばね 1 3の 場合には、 回転力の伝達が行なわれないオーバラン状態、 即ち上記各ローラ 1 2 によりこれら各ばね 1 3が押圧された状態で、 これら各ばね 1 3を構成する 1対 の押圧部 6 6と各ローラ 1 2の転動面との当接部分同士の軸方向間隔 Lが小さく
(短く) なる。 この様に当接部分同士の間隔 Lが小さくなると、 上記各ばね 1 3 の上記各ローラ 1 2に加わるモーメント荷重 (スキューさせようとする力) を抑 える剛性 (モーメント剛性) が低下すると共に、 これら各ばね 1 3の不可避的な 寸法誤差等により、 上記各ばね 1 3が各ローラ 1 2を押圧する方向が適正方向か らずれ易くなる。 そして、 ずれた場合にはこれら各ローラ 1 2に、 これら各ロー ラ 1 2を傾斜させる方向のモーメントが加わる。 そしてこの結果、 これら各口一 ラ 1 2がスキューし易くなる。 しかも、 これら各ローラ 1 2がスキューした場合 に、 これら各ローラ 1 2の姿勢を適正位置に回復させる為の十分な押圧力を、 上 記各ばね 1 3により付与できない可能性もある。 この為、 上述の様な各ローラ 1 2のスキューに基づく不都合が生じて、 早期に寿命に至る可能性がある。
又、 前述の図 4 2に示す様な山形に曲げ形成して成るばね 1 3 aの場合には、 同じく回転力の伝達が行なわれないオーバラン状態、 即ち上記各ローラ 1 2によ り各ばね 1 3 aが押圧された状態で、 これら各ばね 1 3 aの本体部 6 7と押圧部 6 6 aとの連続部に大きな引っ張り応力が加わる可能性がある。 そして、 この様 に連続部に大きな引っ張り応力が加わると、 この連続部が塑性変形する可能性が あり、 塑性変形した場合には、 上記各ローラ 1 2に適正な押圧力を付与できなく なる。 又、 上記各ばね 1 3 aの押圧部 6 6 aと上記各ローラ 1 2の転動面との当 接部ひとこれら各ローラ 1 2の重心 Gとの位置関係によっては、 これら各ローラ 1 2にモーメントが加わり、 これら各ローラ 1 2がスキューし易くなる可能性が ある。 この為、 やはり上述の様な各ローラ 1 2のスキューに基づく不都合が生じ て、 早期に寿命に至る可能性がある。
又、 前述の図 4 3に示す様な S字形に曲げ形成して成るばね 1 3 bの場合には 、 これら各ばね 1 3 bと各ローラ 1 2とが通常は線接触している力 これら各口 ーラ 1 2が極僅かでもスキューすると、 上記各ばね 1 3 bと各ローラ 1 2との接 触状態が点接触になる。 又、 これと共に、 これら各ばね 1 3 bと各ローラ 1 2と の接触位置が定まりにくくなつて、 これら各接触点位置が常に変動する状態とな る。 この結果、 上記各ばね 1 3 bの押圧力が加わる方向が、 上記各ローラ 1 2の 重心方向とずれる事になり、 これら各ローラ 1 2にモーメントが加わり、 これら 各ローラ 1 2の傾きを増大する可能性がある。 この為、 やはり上述の様な各口一 ラ 1 2のスキューに基づく不都合が生じ、 早期に寿命に至る可能性がある。
図 3 4〜4 0に示す、 本発明の実施の形態の第十八〜二十二実施例は、 この様 な事情に鑑みて、 オーバラン状態 (各ローラにより各ばねが押圧された状態) で これら各ローラがスキューするのを防止する事により、 優れた耐久性を有する ( 長寿命の) エンジン始動用ローラクラッチ内蔵型回転伝達装置を実現すべく発明 したものである。
先ず、 図 3 4〜3 6は、 本発明の実施の形態の第十八実施例を示している。 本 例のェンジン始動用ローラクラッチ内蔵型回転伝達装置である、 ローラクラッチ 内蔵型プーリ装置は、 前述の図 5 5に示したアイドリングストップ車用のェンジ ン始動装置で、 ス夕一夕モー夕 4の回転駆動軸 5の回転を無端ベルト 7に伝達す る為の駆動プーリ装置 6として利用する場合を例に説明する。 この様なエンジン 始動装置に組み込まれる駆動プーリ装置 6は、 上記スター夕モ一夕 4への通電時 に、 上記回転駆動軸 5の回転を上記無端ベルト 7に伝達するが、 エンジン 1が始 動してこの無端ベルト 7がこのエンジン 1により駆動される状態となった場合に 、 この無端ベルト 7力 ^ら上記回転駆動軸 5に動力が伝達されなくなる。
この様な駆動プ一リ装置として使用するローラクラツチ内蔵型ブーリ装置は、 上記無端ベルト 7をその外周面に掛け渡す為のプーリ素子 1 7 (図 2 5参照) と 、 上記回転駆動軸 5の先端部に外嵌固定する為のスリーブ 6 0 (図 2 5参照) と を、 互いに同心に配置している。'そして、 このスリーブ 6 0の外周面と上記ブ一 リ素子 1 7の内周面との間に、 それぞれがサポート軸受であり、 前述の図 1〜5 で示した第一実施例の場合と同様の 1対の深溝型の玉軸受 1 9と、 ローラクラッ チ 6 1 cとを設けている。 これら玉軸受 1 9及びローラクラツチ 6 1 cを設ける 為に、 上記プーリ素子 1 7の内周面並びに上記スリーブ 6 0の外周面は、 単なる 円筒面としている。 但し、 上記玉軸受 1 9及びローラクラッチ 6 1 cの軸方向の 位置決めを図るべく、 上記プーリ素子 1 7の内周面や上記スリーブ 6 0の外周面 に径方向に関する段部を設ける場合もある。 そして、 上記各玉軸受 1 9は、 外輪 2 4 (図 1参照) を上記プーリ素子 1 7の両端寄り部内周面に、 内輪 2 6 (図 1 参照) を上記スリーブ 6 0の両端寄り部外周面に、 それぞれ締り嵌めにより嵌合 固定している。 尚、 上記各玉軸受 1 9は、 上記第一実施例の場合と異なり、 軸方 向端部に 1対のシールリング 2 8 a、 2 8 b (図 1参照) を設けない構造とする 事もできる。
又、 上記ローラクラッチ 6 1 cは、 上記プーリ素子 1 7が上記スリーブ 6 0に 対して所定方向に相対回転する傾向となる場合にのみ、 これらプーリ素子 1 7と スリーブ 6 0との間での回転力の伝達を自在とする。 この様なローラクラッチ 6 1 cを構成する為、 上記スリーブ 6 0の外周面中間部にクラッチ用内輪 2 9を、 締り嵌めにより外嵌固定している。 このクラッチ用内輪 2 9は、 浸炭鋼等の鋼板 にプレス加工等の塑性加工を施して全体を円筒状に形成しており、 内外両周面は 、 それぞれ単なる円筒面としている。 尚、 上記スリーブ 6 0とクラッチ用内輪 2 9とを一体に形成しても良い。
これに対して、 上記プーリ素子 1 7の内周面中間部に締り嵌めにより内嵌固定 したクラッチ用外輪 3 0の内周面は、 カム面 3 1としている。 即ち、 このクラッ チ用外輪 3 0の内周面に、 ランプ部と呼ばれる複数の凹部 1 4を、 円周方向に関 して等間隔に形成する事により、 上記内周面を上記カム面 3 1としている。 この 様なクラッチ用外輪 3 0は、 やはり浸炭鋼等の鋼板にプレス加工等の塑性加工を 施して、 全体を円筒状に形成している。 尚、 上記プーリ素子 1 7とクラッチ用外 輪 3 0とを一体に形成しても良い。
又、 上記クラッチ用内輪 2 9及び上記クラッチ用外輪 3 0と共に上記口一ラク ラッチ 6 1 cを構成する複数個のローラ 3 3は、 上記クラッチ用外輪 3 0にこの クラツチ用外輪 3 0に対する回転を不能として内嵌したクラツチ用保持器 3 4に 、 転動及び円周方向に関する若干の変位自在に支持されている。 このクラッチ用 保持器 3 4は、 合成樹脂 (例えば、 ポリアミド 6 6、 ポリアミド 4 6、 ポリフエ ド等の合成樹脂にガラス繊維を 2 0 %程度混入したもの) によ り全体を籠型円筒状に形成しており、 それぞれが円環状である 1対のリム部 3 5 と、 これら両リム部 3 5同士を連結する複数の柱部 3 6とを備える。
そして、 上記各リム部 3 5の内側面と各柱部 3 6の円周方向側面とにより四周 を囲まれた部分を、 それぞれ上記各ローラ 3 3を転動並びに円周方向に亙る若干 の変位自在に保持する為の、 ポケット 3 7としている。 そして、 上記各リム部 3 5の外周面複数個所に形成した係合凸部 3 8を、 図 3 5に示す様に、 上記クラッ チ用外輪 3 0の内周面に形成した凹部 1 4に係合させて、 上記クラッチ用保持器 3 4を上記クラッチ用外輪 3 0に、 このクラッチ用外輪 3 0に対する相対回転を 不能に装着している。 又、 上記クラッチ用外輪 3 0の軸方向両端部に形成した内 向鍔部 3 9 a、 3 9 b (図 2 5参照) で上記クラッチ用保持器 3 4を軸方向両側 から挟持する事により、 このクラッチ用保持器 3 4が上記クラッチ用外輪 3 0に 対し軸方向に変位しない様にしている。
又、 この様なクラッチ用保持器 3 4を構成する柱部 3 6の円周方向片側面には 、 それぞれ図 3 4〜 3 6に示す様に、 ばね 6 8を装着している。 これら各柱部 3 6毎に設けたばね 6 8は、 上記各ポケット 3 7内に保持した上記各ローラ 3 3を 、 前記カム面 3 1の内周面と前記クラッチ用内輪 2 9の外周面 (円筒面) との間 に形成される略円筒状の空間のうち、 直径方向の幅が狭くなつた部分に向け、 上 記クラッチ用保持器 3 4の円周方向に関して同方向 (反時計方向 =図 3 5の左方 、 図 3 6の上方) に、 弾性的に押圧している。 尚、 図 3 4には、 ばねの存在を認 識し易くする為に、 上記ばね 6 8を圧縮コイルばねの如く描いているが、 実際に は図 3 5〜 3 6に示す様に、 ステンレス板等の鋼板を折り曲げ形成して成る板ば ね 6 8を組み込んでいる。 尚、 本例の場合には、 前述の図 2 5〜2 7で示した第 十四実施例の場合と異なり、 クラッチ用保持器 3 4の柱部 3 6の一部に円周方向 片側に突出する庇部 6 2 (図 2 6、 、 2 7参照) を設けていない。
特に本例の各ばね 6 8は、 上記クラッチ用保持器 3 4の柱部 3 6と当接する本 体部 6 9と、 この本体部 6 9の両端部にその基端部を連続させた 1対の押圧部 7 0とから成る。 このうちの各押圧部 7 0は、 基端部から先端部に亙り湾曲してお り、 上記各ローラ 3 3の転動面と当接した状態で、 互いに独立して伸縮するもの である。 そして、 上記図 3 6の (a ) ( b ) に示す様に、 上記各ローラ 3 3の 重心 Gの軸方向に関する位置を、 上記各押圧部 7 0のうちでこれら各ローラ 3 3 の転動面と当接する (最も外側の) 部分 α同士の間に位置させている。 又、 これ と共に、 上記図 3 6の (b ) に示す様に、 上記各押圧部 7 0が上記各ローラ 3 3 により押圧された状態で、 これら各押圧部 7 0のうちでこれら各ローラ 3 3の転 動面と当接する (最も外側の) 部分 α同士の軸方向間隔 L , を、 これら各ローラ 3 3の軸方向長さ L 2 の半分以上 { ( L , ≥ ( L 2 / 2 ) } としている。
上述の様に構成するローラクラッチ 6 1 cは、 前記プーリ素子 1 7と前記スリ ーブ 6 0とが所定方向に相対回転する傾向となった場合、 即ち、 プーリ素子 1 7 に対してスリーブ 6 0が、 上記ばね 6 8が上記各ローラ 3 3を押圧している方向 (図 3 5の左方 =反時計方向) に相対回転する傾向になった場合に、 上記各ロー ラ 3 3がクラッチ用内輪 2 9の外周面とクラッチ用外輪 3 0の内周面との間の略 円筒状の空間のうちで、 直径方向の幅の狭い部分に食い込む。 そして、 上記スリ ーブ 6 0と上記プーリ素子 1 7との相対回転が不能 (ロック状態) となる。 一方 、 これらプーリ素子 1 7とスリーブ 6 0とが上記所定方向とは反対方向、 即ち、 このプーリ素子 1 7に対してこのスリーブ 6 0が、 上記ばね 6 8が上記各ローラ 3 3を押圧しているのと反対方向 (図 3 5の右方 時計方向) に相対回転する傾 向になった場合に、 上記各ローラ 3 3が上記各ばね 6 8の弾力に抗して上記略円 筒状の隙間の直径方向の幅の広い部分に退避し、 上記プーリ素子 1 7と上記スリ ーブ 6 0との相対回転が自在 (オーバラン状態) となる。
上述の様に構成するローラクラッチ 6 1 cを組み込んだ、 本例のエンジン始動 用ローラクラッチ内蔵型回転伝達装置によれば、 オーバラン状態、 即ち上記各口 ーラ 3 3により上記各ばね 6 8が押圧された状態で、 これら各口一ラ 3 3の姿勢 が適正位置から中心軸が傾く方向にずれる (スキューする) のを防止できる。 こ の為、 この様な各ローラ 3 3のスキューに基づく偏摩耗や異常発熱を防止でき、 上記ローラクラッチ 6 1 c並びにこのローラクラッチ 6 1 cを組み込んだェンジ ン始動用ローラクラッチ内蔵型回転伝達装置の耐久性向上 (長寿命化) を図れる 即ち、 本例の場合、 上記各ローラ 3 3を押圧する各ばね 6 8を、 これら各ばね 6 8に設けた 1対の押圧部 7 0により、 これら各ローラ 3 3に、 軸方向に離隔し た 2点で接触させる。 この為、 これら各押圧部 7 0と上記各ローラ 3 3との接触 位置が多少変化した場合でも、 これら各ローラ 3 3に加わる力やモーメントが大 きく変化する事を防止でき、 これら各ローラ 3 3の姿勢を適正位置に保持できる 。 即ち、 前述の図 4 3に示した様な S字型のばね 1 3 bの場合には、 これら各ば ね 1 3 bと各ローラ 1 2とが 1点で接触 (線接触) するが、 これら各ばね 1 3 b と各ローラ 1 2とが適正に線接触する事は稀であり、 これら各ローラ 1 2が極く 僅かでもスキューすると、 接触状態が線接触から点接触に変化する。 この為、 こ れら各ばね 1 3 bの押圧力がこれら各ローラ 1 2の重心方向とずれて、 これら各 ローラ 1 2にモーメントが加わり易くなり、 これら各ローラ 1 2の傾きが増大し 易くなる。 これに対して本例の場合には、 上述の様に各ローラ 3 3と上記各ばね 6 8とを、 これら各ばね 6 8に設けた 1対の押圧部 7 0により軸方向に離隔した 2点で接触させている為、 これら各ローラ 3 3の姿勢を適正位置に保持する事が できる。
又、 この様に各ばね 6 8を構成する 1対の押圧部 7 0によりこれら各ばね 6 8 と上記各ローラ 3 3とを 2点で接触させている為、 これら各押圧部 7 0が互いに 独立して伸縮する事ができる。 この為、 上記各ローラ 3 3がスキューした場合に は、 変位量 (伸縮量) の大きい側の押圧部 7 0に大きな反力が生じる。 この結果 、 これら各ローラ 3 3の姿勢を元に戻そうとするモーメントがこれら各ローラ 3 3に加わり、 これら各ローラ 3 3の姿勢を適正位置に保持できる。 又、 これら各 ローラ 3 3の重心 Gの軸方向に関する位置を、 上記各押圧部 7 0のうちでこれら 各ローラ 3 3の転動面と当接する (最も外側の) 部分 α同士の間に位置させられ る為、 これら各ローラ 3 3の重心位置 Gと上記各押圧部 7 0の押圧方向とが不適 正になる事を防止できる。 この結果、 これら各ローラ 3 3にモーメントが加わる 事を防止し、 これら各ローラ 3 3がスキューするのを防止できる。
又、 上記各押圧部 7 0が上記各ローラ 3 3により押圧された状態で、 これら各 押圧部 7 0のうちでこれら各ローラ 3 3の転動面と当接する (最も外側の) 部分 ひ同士の軸方向間隔 を、 これら各ローラ 3 3の軸方向長さ L 2 の半分以上 ( L , 1≥L 2 / 2 ) としている為、 これら各口一ラ 3 3の姿勢がどの様に変化し ても、 或は、 上記各押圧部 7 0がこれら各ローラ 3 3によりどの様に押圧されて も、 これら各ローラ 3 3の重心 Gを上記当接部分ひ同士の間に常に位置させる事 ができる。 従って、 上記各ローラ 3 3が上記各ばね 6 8と 2点で接触している事 によるこれら各ローラ 3 3の姿勢安定化作用を十分に確保でき、 これら各ローラ 3 3の姿勢を適正に保持できる。
更には、 上記各押圧部 7 0を基端部から先端部に亙り湾曲させている為、 本例 の場合の様にこれら各押圧部 7 0が内側に向いている場合 (1対の押圧部 7 0が 互いに近付く方向に曲げ形成されている場合) 、 或は、 図 3 7に本発明の実施の 形態の第十九実施例として示す様に各押圧部 7 0 aが外側に向いている場合 (1 対の押圧部 7 0 aが互いに離れる方向に曲げ形成されている場合) の何れの場合 でも、 これら各押圧部 7 0 aの押圧力を十分に確保できる。
即ち、 本例の様に、 これら各押圧部 7 0が内側に向いている場合には、 これら 各押圧部 7 0が上記各ローラ 3 3に押圧されて変形した状態でも、 これら各押圧 部 7 0と各ローラ 3 3との当接位置 αの軸方向間隔 L , が小さくなりにくくなる 。 又、 上記各押圧部 7 0が弾性変形するとこれら各押圧部 7 0と各ローラ 3 3と の当接位置 αがこれら各押圧部 7 0の基端側に移動する為、 これら各押圧部 7 0 の見かけ上の長さが短くなつて、 ばね定数が大きくなる。 この為、 これら各押圧 部 7 0の押圧力が大きくなり、 上記各ローラ 3 3の傾きを回復させる為のカを大 きくできる。
一方、 図 3 7に本発明の実施の形態の第十九実施例として示す様に、 各押圧部 7 0 aが外側に向いている場合には、 これら各押圧部 7 0 aと本体部 6 9との連 続部に加わる引っ張り応力を緩和する事ができ、 これら連続部の塑性変形による 押圧力の喪失等を防止できる。 即ち、 上記各押圧部 7 0 aが上記各口一ラ 3 3に 押圧された場合に、 上記各連続部だけでなく、 これら各押圧部 7 0 aの湾曲部分 も弾性変形する傾向となる。 この為、 これら各押圧部 7 0 aの湾曲部分でも、 上 記各ローラ 3 3に押圧力を付与する事ができる結果、 上記連続部に引っ張り応力 が集中するのを緩和できる。 又、 上記各押圧部 7 0 aが弾性変形すると、 これら 各押圧部 7 0 aと各ローラ 3 3との当接位置がこれら各押圧部 7 0 aの基端側に 移動する為、 これら各押圧部 7 0 aの見かけ上の長さが短くなつて、 やはりばね 定数が大きくなる。 この為、 上述の図 3 6に示した各押圧部 7 0が内側に向いて いる場合と同様に、 これら各押圧部 7 0 aの押圧力が大きくなり、 上記各ローラ 3 3の傾きを回復させる為の力を大きくできる。
上述の様なローラクラッチ 6 1 cを組み込んで、 前述の様に構成する第十八、 十九実施例のエンジン始動用ローラクラッチ内蔵型回転伝達装置を、. 図 5 5に示 したアイドリングストップ車用のエンジン始動装置の駆動プ一リ装置 6として使 用した場合で、 ローラクラッチ 6 1 cがオーバラン状態となる場合には、 各ロー ラ 3 3は、 クラッチ用保持器 3 4の柱部 3 6とばね 6 8とに押され、 プーリ素子 1 7 (図 2 5 ) に内嵌固定したクラッチ用外輪 3 0と共に回転する。 但し、 この クラッチ用外輪 3 0の回転速度が、 エンジン 1 (図 5 5参照) の始動に必要とさ れる回転速度 (例えば、 ガソリンエンジン車の場合で、 4 0 0〜5 0 0 min— 1 に 、 ベルト伝達機構による変速比を掛け合せた速度) 以下の場合には、 上記各ロー ラ 3 3に働く遠心力は、 上記各ばね 6 8を圧縮する程の値とはならない。 又、 ェ ンジンの始動時に上記各ローラ 3 3には、 前記クラッチ用内輪 2 9の外周面から 、 上記各ばね 6 8の弾力と同方向の力が加わる。 従って、 エンジン 1の始動時に 上記各ローラ 3 3は、 上記クラッチ用内輪 2 9の外周面と上記クラッチ用外輪 3 0の内周面との間の空間のうちの幅の狭い部分に向け変位し、 上記ローラクラッ チ 6 1 cが確実にロック状態となる。
これに対して、 上記エンジン 1が始動し、 上記クラッチ用外輪 3 0の回転速度 が、 エンジン 1のアイドリングに見合う回転速度 (例えば、 ガソリンエンジン車 の場合で、 7 0 0〜8 0 O mi n— 1 に、 ベルト伝達機構による変速比を掛け合せた 速度) 以上となった場合には、 上記ローラクラッチ 6 1 cの接続が断たれる (ォ —バラン状態となる) だけでなく、 このローラクラッチ 6 1 cを構成する上記各 ローラ 3 3の転動面と、 上記クラッチ用内輪 2 9の外周面とが離隔する。
即ち、 上記エンジン 1の回転時には、 上記各ローラ 3 3に遠心力が働き、 これ ら各ローラ 3 3が前記各凹部 1 4の底面に押し付けられる。 これら各凹部 1 4の 底面は傾斜しているので、 上記各ローラ 3 3は、 上記各ばね 6 8を押圧する (こ れら各ばね 6 8を圧縮する) 方向に変位する傾向になる。 又、 エンジン 1の始動 後、 前記ス夕一夕モ一夕 4への通電を停止した状態では、 上記クラッチ用内輪 2 9も停止するので、 上記各ローラ 3 3を図 3 4〜3 5の反時計方向に変位させよ うとする力は、 上記各ばね 6 8の弾力のみとなる。
この状態では、 上記回転力の上昇に伴って上記遠心力が増大し、 この分力の大 きさが上記各ばね 6 8の弹力よりも大きくなると、 上記各ローラ 3 3がこれら各 ばね 6 8を圧縮しつつ、 上記各凹部 3 2の深い部分に向け移動する。 この結果、 上述の様に、 上記各ローラ 3 3の転動面と、 上記クラッチ用内輪 2 9の外周面と が離隔する。 尚、 前述の様に各ローラ 3 3により各ばね 6 8が圧縮された状態で 、 これら各ローラ 3 3がスキューする事を防止できる為、 この様なスキューに基 づく摩擦損失の増大、 偏摩耗や異常発熱等を防止でき、 エンジン始動用ローラク ラッチ内蔵型回転伝達装置の耐久性向上 (長寿命化) を図れる。 特に上述の様な オーバラン時に、 上記各ローラ 3 3に加わる力は、 上記各ばね 6 8による押圧力 、 並びに、 この押圧力に対抗する遠心力、 更に低回転時には上記ローラクラッチ 用内輪 2 9の外周面から受ける摩擦力となるが、 第十八、 十九実施例の場合は、 このローラクラッチ用内輪 2 9の外周面から受ける摩擦力のばらつきや上記各ば ね 6 8の不可避的な製造誤差等に拘らず、 上記各ローラ 3 3のスキューを防止し て、 このスキューに基づく不都合を防止できる。
その他の構成及び作用は、 前述の図 2 5〜2 7に示した第十四実施例の場合と 、 同様である。
次に、 図 3 8は、 本発明の実施の形態の第二十実施例を示している。 本例の場 合には、 各ばね 6 8 aを構成する本体部 6 9と 1対の押圧部 7 0との連続部を滑 らかに連続させている。 この様な本例の場合には、 これら各押圧部 7 0が各ロー ラ 3 3に押圧されて弾性変形すると、 上記本体部 6 9とクラッチ用保持器 3 4の 柱部 3 6 (図 3 4〜3 5参照) との当接部分の両端が、 これら各押圧部 7 0の先 端側に移動する。 この為、 これら各押圧部 7 0と各ローラ 3 3との当接位置がこ れら各押圧部 7 0の基端側に移動する事と相まって、 これら各押圧部 7 0の見か け上の長さをより短くでき、 上記各ローラ 3 3の傾きを回復させる為の力をより 大きする事ができる。 その他の構成及び作用は、 上述の図 3 4〜3 6に示した第 十八実施例と同様である。
次に、 図 3 9は、 本発明の実施の形態の第二 i "一実施例を示している。 本例の 場合には、 各ばね 6 8 bを構成する 1対の押圧部 7 0 bを、 基端部から先端部に 亙り曲率半径が漸減する状態で (曲率半径が次第に小さくなる様に) 湾曲させて いる。 言い換えれば、 これら各押圧部 7 O bを、 先端側に向う程曲率を大きくし ている。 この様な本例の場合には、 上記各押圧部 7 0 bの基端側に加わる応力を より小さくできると共に、 これら各ばね 6 8 bを大型化する事なく必要な押圧力 を確保できる。 即ち、 上記各押圧部 7 0 bに加わる応力は、 基端側程大きくなる と共に、 曲率半径が小さい (曲率が大きい) 程大きくなる。 これに対して本例の 場合には、 上記各押圧部 7 0 bの基端側の曲率半径を大きく (曲率を小さく) す る事により、 この基端側に加わる応力をより小さくしている。 又、 これと共に、 これら各押圧部 7 0 bの先端側の曲率半径を小さく (曲率を大きく) する事によ り、 これら各押圧部 7 0 bの押圧力を確保している。 その他の構成及び作用は、 前述の図 3 4〜 3 6に示した第十八実施例と同様である。
次に、 図 4 0は、 本発明の実施の形態の第二十二実施例を示している。 本例の 場合には、 各ばね 6 8 cを構成する本体部 6 9と 1対の押圧部 7 0 bとの連続部 を滑らかな曲線で連続させると共に、 これら各押圧部 7 O bを、 基端部から先端 部に亙り曲率半径が漸減 (曲率が漸増) する状態で湾曲させている。 この様な本 例の場合、 各押圧部 7 O bと各ローラ 3 3との当接位置の軸方向間隔 L 3 3、 及び 、 本体部 6 9とクラッチ用保持器 3 4 (図 3 4〜3 5参照) の柱部 3 6との当接 部分の間隔 L 3 6を規制する事により、 所望のばね特性を容易に得る事ができる。 その他の構成及び作用は、 前述の図 3 8に示した第二十実施例及び上述の図 3 9 に示した第二十一実施例と同様である。
尚、 上述の図 3 4〜4 0に示した第十八〜二十二実施例は、 ローラクラッチ内 蔵型回転伝達装置をアイドリングストップ車用のエンジン始動装置に組み込んで 使用した場合に就いて説明した。 但し、 上記各第十八〜二十二実施例のローラク ラッチ内蔵型回転伝達装置の用途は、 上記エンジン始動装置に限定するものでは ない。 オーバラン時に於ける回転部材の回転速度がロック時に於ける回転部材の 回転速度よりも早く、 しかもォ一バラン状態での運転時間が長くなる用途に上記 各第十八〜二十二実施例のローラクラッチ内蔵型回転伝達装置を使用する事は有 効である。 この様な用途としては、 例えばアイドリングストップ車に組み込む、 コンプレッサ等の補機駆動装置が考えられる。 又、 オーバラン状態での運転時間 が長くなる用途ではないが、 オルタネー夕やウォー夕ポンプ等の各種補機の駆動 装置部分に組み込む駆動プーリ装置、 並びに、 この駆動プーリ装置を構成する一 方向クラッチとして使用する事もできる。
この様な上記各第十八〜二十二実施例で示したローラクラッチは、 互いに同心 に組み合わされた 2個の部材のうち、 一方の部材が両方向の回転運動をした場合 に、 このうちの一方向の回転運動のみを他方の部材に伝達する場合等に利用する 。 又、 上記各第十八〜第二十二実施例で示したローラクラッチ内蔵型プーリ装置 は、 上記ローラクラッチを組み込んで、 オルタネ一夕等の各種エンジン用補機に 、 エンジンのクランクシャフトの回転を伝達する為に利用する事もできる。 この 様な第十八〜二十二実施例で示したローラクラッチとローラクラッチ内蔵型ブー リ装置との構成を要約すると、 次の通りである。
先ず、 上記第十八〜二十二実施例で示したローラクラッチは、 外輪相当部材と 、 内輪相当部材と、 カム面と、 円筒面と、 複数本のローラと、 保持器と、 ばねと を備える。
このうちの内輪相当部材は、 上記外輪相当部材の内側にこの外輪相当部材と同 心に配置されている。
又、 上記カム面は、 円周方向に亙る凹凸であり、 上記外輪相当部材の内周面と 内輪相当部材の外周面とのうちの一方の周面に形成されている。
又、 上記円筒面は、 上記外輪相当部材の内周面と内輪相当部材の外周面とのう ちの他方の周面に形成されている。
又、 上記各ローラは、 上記円筒面と上記カム面との間の円筒状隙間内に設けら れている。
又、 上記保持器は、 上記カム面を形成された部材に対する回転を不能として上 記円筒状隙間内に支持され、 上記複数本のローラを保持している。
又、 上記各ばねは、 金属製のものであり、 上記保持器と上記各ローラとの間に 設けられ、 これら各ローラを円周方向に関して同じ方向に押圧している。
特に、 上記第十八〜二十二実施例で示した口一ラクラッチに於いては、 上記各 ばねは、 上記保持器の一部と当接する本体部と、 この本体部の両端部にその基端 部を連続させた 1対の押圧部とから成る。 このうちの各押圧部は、 基端部から先 端部に亙り湾曲しており、 上記各ローラの転動面と当接した状態で、 互いに独立 して伸縮するものである。 そして、 上記各ローラの重心の軸方向に関する位置を 、 上記各押圧部のうちでこれら各ローラの転動面と当接する部分同士の間に位置 させている。 又、 これと共に、 上記各押圧部が上記各ローラにより押圧された状 態で、 これら各押圧部のうちでこれら各ローラの転動面と当接する部分同士の軸 方向間隔を、 これら各ローラの軸方向長さの半分以上としている。
又、 上記第十八〜二十二実施例で示したローラクラツチ内蔵型プ一リ装置は、 スリーブと、 プーリと、 ラジアル転がり軸受と、 ローラクラッチとを備えている このうちのスリーブは、 回転軸に外嵌固定自在である。
又、 上記プーリは、 円筒状の内周面を有し、 上記スリーブの周囲にこのスリー ブと同心に配置されている。
又、 上記ラジアル転がり軸受は、 上記スリーブの外周面とプーリの内周面との 間に設けられ、 このプーリに加わるラジアル荷重を支承しつつ、 これらスリーブ とプーリとの相対回転を自在としている。
更に、 上記ローラクラッチは、 上記第六のローラクラッチとしており、 上記ス リ一ブの外周面とプーリの内周面との間で上記ラジアル転がり軸受に対し軸方向 に外れた部分に設けられている。
上述の様に構成する第十八〜二十二実施例で示したローラクラッチ及びローラ クラッチ内蔵型プーリ装置によれば、 オーバラン状態、 即ち各ローラにより各ば ねが押圧された状態で、 これら各ローラの姿勢が適正位置から中心軸が傾く方向 にずれる (スキューする) のを防止できる。 この為、 この様な各ローラのスキュ —に基づく偏摩耗や異常発熱を防止でき、 上記ローラクラッチ並びにローラクラ ツチ内蔵型プーリ装置の耐久性向上 (長寿命化) を図れる。 この為、 上記アイド リングストップ車用のエンジン始動装置の信頼性及び耐久性を向上できる等、 各 種機械装置の性能向上を図れる。
次に、 図 4 4〜4 5は、 本発明の実施の形態の第二十三実施例を、 図 4 6は同 じく第二十四実施例を、 図 4 7は同じく第二十五実施例を、 図 4 8は同じく第二 十六実施例を、 それぞれ示している。 これら各例も、 エンジン始動用を含む口一 ラクラッチ内蔵型回転伝達装置の耐久性を十分に確保すべく発明したものである が、 具体的には、 次の様な課題を解決する事を目的としている。
即ち、 近年、 前述した様なアイドリングストップ車が、 一部で実際に使用され ている。 又、 このアイドリングストップ車のエンジン始動装置に所定の機能を持 たされる為に、 スター夕モー夕 4の回転駆動軸の端部に設ける駆動プーリ装置 6 (図 5 5参照) として、 前述の図 5 6に示したローラクラッチ 8等の一方向クラ ツチを組み込んだ一方向クラッチ内蔵型のものを使用する事が考えられている。 但し、 前述した様に、 この図 5 6に示したローラクラッチ 8の場合には、 内輪 9 と外輪 1 0との間で回転力の伝達を行なわない状態でも、 上記各ローラ 1 2の転 動面と上記外輪 1 0の内周面との当接部が擦れ合う事が避けられない。 この為、 オーバラン状態が長く続くと、 この当接部で無視できない程の摩擦熱が発生する 事により、 上記ローラクラッチ 8内部の温度が上昇し、 このローラクラッチ 8内 に封入したグリースが劣化し易くなる。 更には、 このローラクラッチ 8に隣接し て設けるサポート軸受の温度も上昇し、 このサポート軸受に組み込んだ、 ゴム製 或は合成樹脂製のシール板が劣化し易くなる。 オルタネー夕用の一方向クラッチ 内蔵型プーリ装置の場合、 前述した様にロック状態を基本として運転され、 ォー バラン状態で運転される時間は短い為、 上述の様な摩擦熱による温度上昇は問題 とはなりにくレ
これに対して、 前述の図 5 5に示した様なアイドリングストップ車用の駆動プ ーリ装置 6に組み込む一方向クラッチの場合、 ロック状態となるのはェンジンを 始動する際の短時間だけであり、 エンジン始動後には、 このエンジンが運転され ている限り、 オーバラン状態となる。 従って、 図 5 6に示す様なローラクラッチ 8をアイドリングストップ車用のエンジン始動装置に組み込んでも、 十分な耐久 性を確保する事が難しい。
この様な事情に鑑みて本発明者は先に、 図 4 9〜5 1に示す様なローラクラッ チ内蔵型プーリ装置 1 6を発明 (特願 2 0 0 2— 3 3 8 3 5号) した。 この先発 明に係るローラクラッチ内蔵型プーリ装置 1 6は、 無端ベルト 7 (図 5 5参照) をその外周面に掛け渡す為のプーリ素子 1 7と、 回転駆動軸 5 (図 5 5参照) の 先端部に外嵌固定する為のスリーブ 1 8とを、 互いに同心に配置している。 そし て、 このスリーブ 1 8の外周面と上記プーリ素子 1 7の内周面との間に、 それぞ れがサポート軸受である、 1対の深溝型の玉軸受 1 9と、 ローラクラッチ 2 0と を設けている。 これら玉軸受 1 9及びローラクラッチ 2 0を設ける為に、 上記プ ーリ素子 1 7の内周面は単なる円筒面とし、 上記スリーブ 1 8の外周面は、 軸方 向中間部の大径部 2 1と両端部の小径部 2 2とを段差部で連続させた段付の円筒 面としている。
そして、 上記スリーブ 1 8の外周面とプーリ素子 1 7の内周面との間に存在す る環状空間の軸方向中間部に上記ローラクラッチ 2 0を、 同じくこの環状空間の 軸方向両端寄り部分でこのローラクラッチ 2 0を軸方向両側から挟む位置に上記 各玉軸受 1 9を、 それぞれ配置している。 このうちの玉軸受 1 9は、 上記プーリ 素子 1 7と上記スリーブ 1 8とを互いに同心に配置すると共に、 これら両部材 1 7、 1 8の相対回転を自在とする役目を有する。 図示の例の場合、 上記両玉軸受 1 9を上記ローラクラッチ 2 0の両側に設置する事により、 ラジアル荷重を負荷 するスパンを長くして、 剛性を高くすると共に耐久性の確保を図っている。 又、 上記両玉軸受 1 9に、 互いに逆向きの (好ましくは背面組み合わせ型の) 接触角 を付与する事により、 上記プーリ素子 1 7に加わる、 両方向のアキシアル荷重を 支承自在としている。
上記各玉軸受 1 9は、 それぞれの内周面に深溝型の外輪軌道 2 3を有する外輪 2 4と、 それぞれの外周面に深溝型の内輪軌道 2 5を有する内輪 2 6と、 上記外 輪軌道 2 3と内輪軌道 2 5との間にそれぞれ複数個ずつ転動自在に設けた玉 2 7 とから成る。 そして、 上記外輪 2 4を上記プーリ素子 1 7の両端寄り部内周面に 、 上記内輪 2 6を上記スリーブ 1 8の外周面両端部に設けた上記各小径部 2 2に 、 それぞれ締り嵌めにより嵌合固定している。 又、 この状態で上記各内輪 2 6の 軸方向片面を、 それぞれ上記大怪部 2 1と上記各小怪部 2 2とを連続させる段差 面に当接させている。
又、 上記各外輪 2 4の両端部内周面と上記各内輪 2 6の両端部外周面との間に 、 それぞれシールリング 2 8 a、 2 8 bを設ける事により、 上記各玉 2 7を設置 した空間の両端開口部を塞いでいる。 そして、 この空間内にグリース等の潤滑剤 を封入して、 上記外輪軌道 2 3及び内輪軌道 2 5と上記各玉 2 7の転動面との転 がり接触部の潤滑を図っている。
又、 前記ローラクラッチ 2 0は、 上記プーリ素子 1 7が上記スリーブ 1 8に対 して所定方向に相対回転する傾向となる場合にのみ、 これらプーリ素子 1 7とス リーブ 1 8との間での回転力の伝達を自在とする。 この様なローラクラッチ 2 0 を構成する為、 上記スリーブ 1 8の大径部 2 1にクラッチ用内輪 2 9を、 締まり 嵌めにより外嵌固定している。 このクラッチ用内輪 2 9は、 浸炭鋼等の鋼板にプ レス加工等の塑性加工を施して全体を円筒状に形成しており、 内外両周面は、 そ れぞれ単なる円筒面としている。
これに対して、 上記プーリ素子 1 7の内周面中間部に締まり嵌めにより内嵌固 定したクラッチ用外輪 3 0の内周面は、 カム面 3 1としている。 即ち、 このクラ ツチ用外輪 3 0の内周面に、 図 5 0〜 5 1に示す様に、 ランプ部と呼ばれる複数 の凹部 3 2を、 円周方向に関して等間隔に形成する事により、 上記内周面を上記 カム面 3 1としている。 この様なクラッチ用外輪 3 0は、 やはり浸炭鋼等の鋼板 にプレス加工等の塑性加工を施して、 全体を円筒状に形成している。
又、 上記クラッチ用内輪 2 9及び上記クラッチ用外輪 3 0と共に上記ローラク ラッチ 2 0を構成する複数個のローラ 3 3は、 上記クラッチ用外輪 3 0にこのク ラツチ用外輪 3 0に対する回転を不能として外嵌したクラツチ用保持器 3 4に、 転動及び円周方向に関する若干の変位自在に支持されている。 このクラッチ用保 持器 3 4は、 合成樹脂 (例えば、 ポリアミド 6 6、 ポリアミド 4 6、 ポリフエ二 レンサルフアイド等の合成樹脂にガラス繊維を 2 0 %程度混入したもの) により 全体を籠型円筒状に形成しており、 それぞれが円環状である 1対のリム部 3 5と 、 これら両リム部 3 5同士を連結する複数の柱部 3 6とを備える。
そして、 上記各リム部 3 5、 3 5の内側面と各柱部 3 6の円周方向側面とによ り四周を囲まれた部分を、 それぞれ上記各ローラ 3 3を転動並びに円周方向に亙 る若干の変位自在に保持する為の、 ポケット 3 7としている。 そして、 上記各リ ム部 3 5の外周面複数個所に形成した係合凸部 3 8を、 図 5 1に示す様に、 上記' クラッチ用外輪 3 0の内周面に形成した凹部 3 2に係合させて、 上記クラッチ用 保持器 3 4を上記クラッチ用外輪 3 0に、 このクラッチ用外輪 3 0に対する相対 回転を不能に装着している。 又、 上記クラッチ用外輪 3 0の軸方向両端部に形成 した内向鍔部 3 9 a、 3 9 bで上記クラッチ用保持器 3 4を軸方向両側から挾持 する事により、 このクラッチ用保持器 3 4が上記クラッチ用外輪 3 0に対し軸方 向に変位しない様にしている。
又、 この様なクラッチ用保持器 3 4を構成する柱部 3 6の円周方向片側面には 、 それぞれ図 5 0〜 5 1に示す様に、 ばね 4 0を装着している。 これら各柱部 3 6毎に設けたばね 4 0は、 上記各ポケット 3 7内に保持した上記各ローラ 3 3を 、 前記カム面 3 1の内周面と前記クラッチ用内輪 2 9の外周面 (円筒面) との間 に形成される略円筒状の空間のうち、 直径方向の幅が狭くなつた部分に向け、 上 記クラッチ用保持器 3 4の円周方向に関して同方向 (図 5 0〜 5 1の反時計方向 ) に、 弾性的に押圧している。
尚、 図 5 0〜 5 1には、 上記ばね 4 0を圧縮コイルばねの如く描いているが、 これら各ばね 4 0として実際の場合には、 ばね鋼板を大略三角形状フック形に折 り曲げて成る板ばねを使用する場合が多い。 即ち、 図 5 2〜 5 4に示す様に、 ク ラッチ用保持器 3 4を構成する各柱部 3 6、 3 6の外周面にそれぞれ形成した係 止突起 7 1 a、 7 1 bにばね 4 0の基部 7 2を係止すると共に、 このばね 4 0毎 に設けた 1対ずつの弾性片 7 3、 7 3により、 各ローラ 3 3を円周方向に関して 同方向に押圧する様に構成する。 更には、 クラッチ用保持器 3 4と一体の合成樹 脂ばねを使用する事もできる。 この様なローラクラッチ 2 0に関しても、 内音 15に 封入したグリースにより潤滑している。
上述の様に構成するローラクラッチ 2 0は、 前記プーリ素子 1 7と前記スリー ブ 1 8とが所定方向に相対回転する傾向となった場合、 即ち、 プーリ素子 1 7に 対してスリーブ 1 8が、 上記ばね 4 0が上記各ローラ 3 3を押圧している方向 ( 図 5 0〜 5 1の反時計方向) に相対回転する傾向になった場合には、 上記各ロー ラ 3 3が前記略円筒状の空間のうちで直径方向の幅の狭い部分に食い込む。 そし て、 上記スリーブ 1 8と上記プーリ素子 1 7との相対回転が不能 (ロック状態) となる。 一方、 これらプーリ素子 1 7とスリーブ 1 8とが上記所定方向とは反対 方向、 即ち、 このプーリ素子 1 7に対してこのスリーブ 1 8力^ 上記ばね 4 0が 上記各ローラ 3 3を押圧しているのと反対方向 (図 5 0〜 5 1の時計方向) に相 対回転する傾向になった場合には、 上記各ローラ 3 3が上記各ばね 4 0の弾力に 抗して上記略円筒状の隙間の直径方向の幅の広い部分に退避し、 上記プーリ素子 1 7と上記スリーブ 1 8との相対回転が自在 (オーバラン状態) となる。
上述の様に構成する先発明に係るローラクラッチ内蔵型プーリ装置 1 6を、 図 5 5に示したアイドリングストップ車用のエンジン始動装置の駆動プーリ装置 6 として使用した場合の作用は、 次の通りである。 先ず、 エンジンを始動する際に は、 前記スター夕モ一夕 4に通電し、 前記回転駆動軸 5の先端部に外嵌固定した 上記スリーブ 1 8並びにこのスリーブ 1 8に外嵌固定した前記クラッチ用内輪 2 9を、 図 5 0〜 5 1の反時計方向に回転させる。 この為、 上記各ローラ 3 3が図 5 0 - 5 1の反時計方向に変位して上記クラッチ用内輪 2 9の外周面と前記クラ ツチ用外輪 3 0の内周面との間の略円筒状の空間のうちで直径方向の幅が狭くな つた部分に向け変位する。 この結果、 上記各ローラ 3 3が、 上記クラッチ用内輪 2 9の外周面と上記クラッチ用外輪 3 0の内周面との間にくさび状に食い込み、 前記ローラクラッチ 2 0がロック状態となって、 上記クラッチ用内輪 2 9からク ラッチ用外輪 3 0に対し動力が伝達される。 この状態で、 前記プーリ素子 1 7と 無端ベルト 7と従動プーリ 3とを介して、 エンジン 1のクランクシャフト 2 (図 5 5参照) が回転駆動され、 このエンジン 1が始動される。
エンジン 1の始動後には上記スター夕モー夕 4への通電が停止され、 上記回転 駆動軸 5が停止する。 この状態では上記プーリ素子 1 7が上記エンジン 1のクラ ンクシャフト 2により、 上記従動プーリ 3及び上記無端ベルト 7を介して回転駆 動され、 上記クラッチ用外輪 3 0は、 図 5 0〜 5 1の反時計方向に回転し続ける 。 この結果、 上記ローラクラッチ 2 0がオーバラン状態となり、 上記プーリ素子 1 7の回転が上記スリーブ 1 8にまでは伝わらなくなる。 従って、 上記エンジン 1が運転される際に、 上記スター夕モ一夕 4がこのエンジン 1の回転に対する負 荷とはならない。
この様にローラクラッチ 2 0がオーバラン状態となる場合に、 前記各ローラ 3 3は、 クラッチ用保持器 3 4の柱部 3 6とばね 4 0とに押され、 上記プーリ素子 1 7に内嵌固定した上記クラッチ用外輪 3 0と共に回転する。 但し、 このクラッ チ用外輪 3 0の回転速度が、 エンジン 1の始動に必要とされる回転速度 (例えば 、 ガソリンエンジン車の場合で、 4 0 0〜5 0 0 min— ' に、 ベルト伝達機構によ る変速比を掛け合せた速度) 以下の場合には、 上記各ローラ 3 3に働く遠心力は 、 上記各ばね 4 0を圧縮する程の値とはならない。 又、 エンジンの始動時に上記 各ローラ 3 3には、 前記クラッチ用内輪 2 9の外周面から、 上記各ばね 4 0の弾 力と同方向の力が加わる。 従って、 エンジンの始動時に上記各ローラ 3 3は、 上 記クラッチ用内輪 2 9の外周面と上記クラツチ用外輪 3 0の内周面との間の空間 のうちの幅の狭い部分に向け確実に変位し、 上記ローラクラッチ 2 0が確実に口 ック状態となる。
これに対して、 上記エンジン 1が始動し、 上記クラッチ用外輪 3 0の回転速度 が、 エンジン 1のアイドリングに見合う回転速度 (例えば、 ガソリンエンジン車 の場合で、 7 0 0〜8 0 O min— 1 に、 ベルト伝達機構による変速比を掛け合せた 速度) 以上となった場合には、 上記各ローラ 3 3が、 遠心力に基づいて上記各ば ね 4 0を押圧しつつ、 前記各凹部 3 2の深い側に変位する。 この結果、 上記口一 ラクラッチ 2 0の接続が断たれる (オーバラン状態となる) だけでなく、 この口 ーラクラッチ 2 0を構成する上記各ローラ 3 3の転動面と、 上記クラッチ用内輪 2 9の外周面とが離隔する。
即ち、 上記エンジン 1の回転時には、 上記各ローラ 3 3に遠心力が働き、 これ ら各ローラ 3 3が前記各凹部 3 2の底面に押し付けられる。 これら各凹部 3 2の 底面は傾斜しているので、 上記各ローラ 3 3は、 上記各ばね 4 0を押圧する (こ れら各ばね 4 0を圧縮する) 方向に変位する傾向になる。 又、 エンジン 1の始動 後、 前記スタータモ一夕 4への通電を停止した状態では、 上記クラッチ用内輪 2 9も停止するので、 上記各ローラ 3 3を図 5 0〜5 1の反時計方向に変位させよ うとする力は、 上記各ばね 4 0の弾力のみとなる。
この状態では、 上記回転力の上昇に伴って上記遠心力が増大し、 この分力の大 きさが上記各ばね 4 0の弹力よりも大きくなると、 上記各ローラ 3 3がこれら各 ばね 4 0を圧縮しつつ、 上記各凹部 3 2の深い部分に向け移動する。 この結果、 上述の様に、 上記各ローラ 3 3の転動面と、 上記クラッチ用内輪 2 9の外周面と が離隔する。 この状態では、 上記エンジン 1の高速回転に拘らず、 上記口一ラク ラッチ 2 0の内部で発生する摩擦熱が僅少に抑えられ、 前述した通り、 このロー ラクラッチ 2 0及び隣接する玉軸受 1 9の耐久性向上を図れる。 勿論、 この口一 ラクラッチ 2 0自体に関しても、 異常摩耗、 焼き付き等の損傷を防止できる。 但し、 上述した様な先発明に係るローラクラッチ内蔵型プ一リ装置の使用時、 エンジン始動後、 各ローラ 3 3が遠心力に基づいて各ばね 4 0を押圧しつつ、 各 凹部 3 2の深い側に変位する以前の状態では、 上記各ローラ 3 3の転動面とクラ ツチ用内輪 2 9の外周面とが擦れ合う。 従って、 この状態で上記各ローラ 3 3の 転動面とクラッチ用内輪 2 9の外周面との滑り接触部分に十分量のグリースを供 給する事が、 これら各面の摩耗防止を図って、 上記ローラクラッチ内蔵型プーリ 装置の耐久性を確保する面からは重要である。
これに対して、 上記先発明に係るクラッチ用保持器 3 4の場合には、 各リム部 3 5の内周縁と各柱部 3 6の内周面とが単一の円筒面上に存在する為、 上記滑り 接触部分に十分量のグリースを供給する事が難しい。 即ち、 上記クラッチ用保持 器 3 4の場合には、 上記各柱部 3 6が、 上記クラッチ用内輪 2 9の外周面で上記 各ローラ 3 3の転動面と接触する部分のグリースを搔き取るのみで、 この部分に 供給すべきグリースを保持する機能を殆ど持たない。 この為、 上記各面の摩耗防 止が不十分となり、 上記ローラクラッチ内蔵型ブーリ装置の耐久性を十分に確保 できない可能性がある。
図 4 4〜4 8に示した第二十三〜二十六実施例は、 この様な事情に鑑みて発明 したものである。
先ず、 図 4 4〜4 5は、 本発明の実施の形態の第二十三実施例を示している。 尚、 本例の特徴は、 クラッチ用保持器 3 4 bの構造を工夫する事により、 クラッ チ用内輪の外周面と各ローラ 3 3の転動面との接触部 (図 4 9〜 5 1参照) に十 分量のグリースを供給自在とする点にある。 ローラクラッチ内蔵型プーリ装置全 体の構造等、 その他の部分の構造及び作用は、 前述の図 4 9〜 5 1に示した先発 明と同様であるから、 同等部分に関する図示並びに説明は省略し、 以下、 本例の 特徴部分を中心に説明する。
本例の場合には、 上記クラッチ用保持器 3 4 bを構成する各柱部 3 6 bの内周 面 7 4全体を、 各リム部 3 5の内周縁 7 5よりも、 径方向外方に凹ませている。 又、 これら各リム部 3 5の内径は、 上記クラッチ用内輪 2 9の外径よりも少しだ け大きくしている。 従って、 上記クラッチ用保持器 3 4 bをローラクラッチ内蔵 型プーリ装置に組み込んだ状態では、 上記各内周縁 7 5は、 上記クラッチ用内輪 2 9の外周面両端部に近接対向する。 即ち、 これら各内周縁 7 5と上記クラッチ 用内輪 2 9の外周面両端部との間には、 グリースが自由に流通できない程度のラ ビリンス隙間 7 6が存在する状態となる。 これに対して、 上記各柱部 3 6 bの内 周面 7 4と上記クラッチ用内輪 2 9の外周面中間部との間には、 十分な空間 7 7 が存在する状態となる。
上述の様なクラッチ用保持器 3 4 bを組み込んだエンジン始動用ローラクラッ チ内蔵型回転伝達装置の運転時には、 上記空間 7 7内にグリースが取り込まれる 。 即ち、 ローラクラッチ 2 0 (図 4 9〜5 1参照) 内に封入されて前記各ローラ 3 3の転動面に付着し、 或はこれら各ローラ 3 3により上記ローラクラッチ 2 0 の円周方向に押されたグリースが、 上記空間 7 7内に取り込まれる。 この空間 7 7は十分な容積を有し、 しかも径方向外側が上記各柱部 3 6 bの内周面 7 4によ り、 軸方向両側が前記各リム部 3 5により、 それぞれ仕切られている。 従って、 上記空間 7 7内に取り込まれたグリースは、 プーリ素子 1 7及びクラッチ用外輪 3 0 (図 4 9〜5 1参照) と共に上記クラッチ用保持器 3 4 bが回転した場合に 加わる遠心力に拘らず、 径方向外方に流失しにくい。 又、 上記各ラビリンス隙間 7 6、 7 6の存在により、 軸方向外側にも流失しにくレ^
従って、 上記空間 7 7内に取り込まれたグリースは、 前記クラッチ用内輪 2 9 の外周面と各ローラ 3 3の転動面との接触部に効果的に供給されて、 これら両面 の摩耗を防止する。 この結果、 両面同士が擦れ合った場合にも、 これら両面の摩 耗を抑えて、 エンジン始動用ローラクラッチ内蔵型回転伝達装置の耐久性向上を 図れる。
次に、 図 4 6は、 本発明の実施の形態の第二十四実施例を示している。 本例の 場合は、 各柱部 3 6 cの内周面 7 4 aと各リム部 3 5の内周縁 7 5とは、 単一円 筒面上に位置している。 その代わりに本例の場合には、 上記各柱部 3 6 cの内周 面 7 4 aの円周方向中央部に凹孔 7 8を形成し、 この凹孔 7 8がグリース溜りと して機能する様にしている。 又、 この凹孔 7 8の断面形状を三日月型として、 円 周方向両端部に向かう程浅くなる形状とし、 この凹孔 4 8内に取り込まれたダリ —スが、 クラッチ用保持器 3 4 cとクラッチ用内輪 2 9 (図 4 9〜5 1参照) と の相対回転に伴って、 このクラッチ用内輪 2 9の外周面に効率良く供給される様 にしている。
その他の構成及び作用は、 上述の図 4 4〜4 5に示した第二十三実施例の場合 と同様である。
次に、 図 4 7は、 本発明の実施の形態の第二十五実施例を示している。 本例の 場合は、 各柱部 3 6 dの内周面 7 4 aと各リム部 3 5の内周縁 7 5とは、 単一円 筒面上に位置している。 その代わりに本例の場合には、 上記各柱部 3 6 cの内周 面 7 4 aの円周方向片半部を径方向外方に凹ませて段付凹部 7 9とし、 この段付 凹部 7 9がグリース溜りとして機能する様にしている。 又、 この段付凹部 7 9を 、 ポケット 3 7内に保持したローラ 3 3 (図 4 9〜5 1参照) に直接対向させて 、 この段付凹部 7 9内に取り込まれたグリースが、 クラッチ用保持器 3 4 dとク ラッチ用内輪 2 9 (図 4 9〜5 1参照) との相対回転に伴って、 このクラッチ用 内輪 2 9の外周面に効率良く供給される様にしている。
その他の構成及び作用は、 上述の図 4 4〜4 6に示した第二十三〜二十四実施 例の場合と同様である。
次に、 図 4 8は、 本発明の実施の形態の第二十六実施例を示している。 本例の 場合は、 各柱部 3 6 eの内周面 7 4 aの円周方向片半部を、 円周方向端縁部に向 かう程径方向外方に凹ませて傾斜凹部 8 0とし、 この傾斜凹部 8 0がグリース溜 りとして機能する様にしている。 本例の場合も、 この傾斜凹部 8 0を、 ポケット 3 7内に保持したローラ 3 3 (図 4 9〜5 1参照) に直接対向させて、 この傾斜 凹部 8 0内に取り込まれたグリースが、 クラッチ用保持器 3 4 eとクラッチ用内 輪 2 9 (図 4 9〜5 1参照) との相対回転に伴って、 このクラッチ用内輪 2 9の 外周面に効率良く供給される様にしている。 その他の構成及び作用は、 上述の 図 4 4〜4 7に示した第二十三〜二十五実施例の場合と同様である。
尚、 上述の図 4 4〜4 8に示した第二十三〜二十六実施例は、 ローラクラッチ 内蔵型回転伝達装置を、 アイドリングストップ車用のエンジン始動装置に組み込 んだ場合に就いて行なった。 但し、 上記第二十三〜二十六実施例で示したローラ クラツチ内蔵型回転伝達装置は、 この様な用途に限らず、 アイドリングス卜ップ 車でエンジン停止時にコンプレッサ等の補機を駆動する機構等、 各種回転伝達機 構に組み込んだ状態で使用できる。 又、 上記第二十三〜二十六実施例で示した口 ーラクラッチ内蔵型ブーリ装置の構成を要約すると、 次の通りである。
即ち、 このローラクラッチ内蔵型プーリ装置は、 従来から知られているローラ クラッチ内蔵型ブーリ装置と同様に、 外周面に無端ベルトを掛け渡し自在とした 、 円環状で使用時に所定方向にのみ回転するプーリと、 このプーリの中心部に挿 入されて使用時にこの所定方向にのみ回転する回転軸と、 これらプーリの内周面 と回転軸の外周面との間の環状空間内に設けられたローラクラッチとを備える。 そして、 このローラクラッチは、 上記回転軸が上記所定方向に回転する際に繫 がれてこの回転軸から上記ブーリに動力を伝達するが、 このプーリが上記所定方 向にこの回転軸よりも高速で回転する場合に空転して、 このプーリからこの回転 軸への動力の伝達を行なわないものである。
特に、 上記第二十三〜二十六実施例で示したローラクラッチ内蔵型プ一リ装置 に於いては、 上記ローラクラッチを構成する複数のローラを上記プーリの径方向 に変位させる為のカム面は、 このブーリの内周面若しくはこのプ一リに内嵌固定 したクラッチ用外輪の内周面に存在する。
又、 上記回転軸の外周面若しくはこの回転軸に外嵌固定したクラツチ用内輪の 外周面は円筒面であり、 上記各ローラを上記環状空間の円周方向の変位自在に保 持すると共にこれら各ローラをこの環状空間の円周方向に関して同方向に押圧す る為のばねを保持する保持器は、 上記プーリと共に上記回転軸に対し回転自在と されている。
更に、 上記第二十三〜二十六実施例で示したローラクラッチ内蔵型ブーリ装置 の場合には、 上記保持器の内周面に、 グリースを保持する為のグリース溜りを設 けている。
この様に構成する上記第二十三〜二十六実施例で示したローラクラッチ内蔵型 プーリ装置の場合には、 保持器の内周面に設けられたグリース溜りから、 各ロー ラの転動面と、 回転軸の外周面若しくはこの回転軸に外嵌固定したクラッチ用内 輪の外周面との接触部にグリースを供給できる。 この為、 これら両面同士が擦れ 合った場合にも、 これら両面の摩耗を抑えて、 ローラクラッチ内蔵型プーリ装置 の耐久性向上を図れる。 この為、 クラッチ用外輪とクラッチ用内輪とが高速で相 対回転する場合でも、 ローラクラッチの耐久性確保を図れる。 この為、 例えばァ ィドリングストップ車用のエンジン始動装置の信頼性及び耐久性を向上できる等 、 各種機械装置の性能向上を図れる。
尚、 上述した各例では、 請求項に記載した回転部材が、 外周面に無端ベルトを 掛け渡し自在としたプ一リ素子 1 7 (図 1等) である場合に就いて説明した。 但 し、 本発明のエンジン始動用ローラクラッチ内蔵型回転伝達装置は、 この様な構 造に限定するものではなく、 例えば、 上記回転部材として、 外周面に歯車部を形 成した素子を使用する場合でも実施できる。 この様な素子を使用した場合には、 例えば、 この素子に設けた歯車部に、 エンジンのクランクシャフトと共に回転す る別の歯車部を嚙合させる。
又、 各請求項に記載した発明は、 それぞれが単独で実施できる他、 請求項に記 載した発明の一部または総てを組み合わせて実施する事もできる。 又、 この総て の発明を組み合わせたもののうちから一部の発明を適宜取り除いて実施する事も でさる。 産業上の利用の可能性
本発明のエンジン始動用ローラクラッチ内蔵型回転伝達装置は、 以上に述べた 通り構成され作用するので、 アイドリングストップ車用のエンジン始動装置の信 頼性及び耐久性を向上できる。

Claims

請求の範囲
1 . スター夕モー夕に使用されるローラクラッチ内蔵型プーリにおいて、 該プ一 リの軸方向の一方側に配置された第 1のサポート軸受と、 前記ブーリの軸方向他 方側に配置された第 2のサポート軸受と、 第 1のサボ一ト軸受と第 2のサポート 軸受の間にローラクラッチ部とを有し、 該ローラクラッチ部は、 回転方向の一方 でロックし、 他方でアンロックするようになっていて、 プーリの内周面に、 また はブーリの内側にはめ込まれたクラッチ用外輪の内周面に、 カム面を形成してあ ること特徴とするローラクラッチ内蔵型プーリ。
2 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するエンジン始動用ロー ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサボ一ト軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に槃がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 ローラクラッチを構成する複数のローラが、 これら各ローラを上記回転部材の径 方向に変位させる為のカム面を構成する凹部の最深部に位置した場合に、 上記各 ローラの転動面と、 上記回転軸の外周面若しくはこの回転軸に外嵌固定したクラ ッチ用内輪の外周面との間に存在する隙間の大きさを、 上記各サボ一卜軸受のラ ジアル隙間よりも大きくしたエンジン始動用ローラクラッチ内蔵型回転伝達装置
3 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するェンジン始動用口一 ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 各サポート軸受及びローラクラッチが、 基油が合成油であり増ちよう剤がゥレア 系である、 同種のグリースにより潤滑されているエンジン始動用ローラクラッチ 内蔵型回転伝達装置。
4 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するェンジン始動用ロー ラクラッチ内蔵型回転伝達装置であつて、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 各サポート軸受が玉軸受であって、 複数の玉を転動自在に保持する保持器が合成 樹脂製で冠型の保持器であり、 この保持器に設けた各ポケッ卜の内面のうちで上 記各玉の転走面に対向する円周方向両側部分に、 この保持器の中心軸と平行な中 心軸を有する部分円筒面が設けられているエンジン始動用ローラクラッチ内蔵型 回転伝達装置。
5 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ —タの回転軸との間で、 この所定方向のみの動力を伝達するェンジン始動用口一 ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサボ一ト軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 各サポート軸受の両端部に設けられたシールリングのうち、 上記口一ラクラッチ と反対側である外側に設けたシールリングは接触式、 このローラクラッチ側であ る内側のシールリングは非接触式のものであるェンジン始動用ローラクラッチ内 蔵型回転伝達装置。
6 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するエンジン始動用ロー ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 ローラクラッチを構成する複数のローラを上記回転部材の径方向に変位させる為 のカム面は、 この回転部材の内周面若しくはこの回転部材に内嵌固定したクラッ チ用外輪の内周面に形成しており、 上記回転軸の外周面若しくはこの回転軸に外 嵌固定したクラッチ用内輪の外周面は円筒面としており、 この円筒面の外周面と 上記複数のローラの表面とのうちの少なくとも一方の面に化成処理皮膜を形成し たェンジン始動用ローラクラツチ内蔵型回転伝達装置。
7 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するエンジン始動用ロー ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 ローラクラッチを構成する複数のローラを保持する為の保持器の軸方向中間部外 周面で、 これら各ローラを押圧する複数のばねの基部側面と対向する位置に径方 向に突出する状態で設けられた複数の支持突片と、 これら各支持突片のうちの上 記各ばねの基部側面と対向する側の側面で、 この基部側面よりも外径側に外れた 部分にこれら各ばねの基部側に突出する状態で設けられた庇部とを備え、 上記各 支持突片の側面からのこれら各庇部の突出長さを、 上記各ばねの基部でこの側面 と対向する部分の厚さよりも大きくしたエンジン始動用ローラクラツチ内蔵型回 転伝達装置。
8 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するェンジン始動用口一 ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサボ一ト軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上記 ローラクラッチを構成する複数のローラを上記回転部材の径方向に変位させる為 のカム面は、 この回転部材の内周面若しくはこの回転部材に内嵌固定したクラッ チ用外輪の内周面に形成しており、 上記回転軸の外周面若しくはこの回転軸に外 嵌固定したクラッチ用内輪の外周面は円筒面としており、 上記複数のローラが上 記カム面とこの円筒面の外周面との間に挟持され、 これら各ローラがこのカム面 を構成する複数の凹部に沿ってこれら各凹部の深い側に移動する状態でのこれら 各ローラの中心軸の移動方向に関して、 これら各ローラの転動面の前端となる位 置よりも、 これら各ローラの転動面で上記口一ラグラッチを構成する保持器の径 方向に関して内側の位置にばねを当接させるエンジン始動用ローラクラッチ内蔵 型回転伝達装置。
9 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回転 部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用モ 一夕の回転軸との間で、 この所定方向のみの動力を伝達するェンジン始動用口一 ラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸の 外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された 1 対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に設 けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記所 定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達するが 、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空転 してこの回転部材からこの回転軸への動力の伝達を行なわないもので、 この回転 部材の内周面とこの回転軸の外周面との間に設けられた複数本のローラと、 これ ら各ローラをこれら回転部材及び回転軸の円周方向に関して同方向に押圧する為 のばねと、 これら各ローラを保持する保持器とを備えたものであり、 これら各ば ねは、 この保持器の一部と当接する本体部と、 この本体部の両端部にその基端部 を連続させた 1対の押圧部とから成るものであり、 このうちの各押圧部は、 上記 各ローラの転動面と当接した状態で、 互いに独立して伸縮するものであり、 これ ら各ローラの重心の軸方向に関する位置を、 上記各押圧部のうちでこれら各ロー ラの転動面と当接する部分同士の間に位置させると共に、 これら各押圧部がこれ ら各ローラにより押圧された状態で、 これら各押圧部のうちでこれら各ローラの 転動面と当接する部分同士の軸方向間隔を、 これら各ローラの軸方向長さの半分 以上としたェンジン始動用ローラクラッチ内蔵型回転伝達装置。
1 0 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回 転部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用 モ一夕の回転軸との間で、 この所定方向のみの動力を伝達するエンジン始動用口 ーラクラッチ内蔵型回転伝達装置であって、 上記回転部材の内周面と上記回転軸 の外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された
1対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に 設けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記 所定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達する が、 この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空 転してこの回転部材からこの回転軸への動力の伝達を行なわないもので、 この回 転部材の内周面とこの回転軸の外周面との間に設けられた複数本のローラと、 こ れら各ローラをこれら回転部材及び回転軸の円周方向に関して同方向に押圧する 為のばねと、 これら各ローラを保持する保持器とを備えたものであり、 これら各 ばねは、 この保持器の一部と当接する本体部と、 この本体部の両端部にその基端 部を連続させた 1対の押圧部とから成るものであり、 このうちの各押圧部は、 上 記各ローラの転動面と当接した状態で、 互いに独立して伸縮するものであり、 こ れら各押圧部を基端部から先端部に向う程曲率半径が漸減する状態で湾曲させた ェンジン始動用ローラクラッチ内蔵型回転伝達装置。
1 1 . 使用時にエンジンのクランクシャフトと共に回転する回転部材と、 この回 転部材の中心部に挿入されて使用時に所定方向にのみ回転する、 エンジン始動用 モー夕の回転軸との間で、 この所定方向のみの動力を伝達するエンジン始動用口 ーラクラッチ内蔵型回転伝達装置であつて、 上記回転部材の内周面と上記回転軸 の外周面との間の環状空間内に、 軸方向に関して互いに間隔をあけて配置された
1対のサポート軸受と、 この環状空間内でこれら 1対のサポート軸受同士の間に 設けられたローラクラッチとを備え、 このローラクラッチは、 上記回転軸が上記 所定方向に回転する際に繋がれてこの回転軸から上記回転部材に動力を伝達する カ^ この回転部材が上記所定方向に、 この回転軸よりも高速で回転する場合に空 転してこの回転部材からこの回転軸への動力の伝達を行なわないものであり、 上 記ローラクラッチを構成する複数のローラを保持する為の保持器は、 上記環状空 間の軸方向に間隔をあけて互いに平行に配置された 1対のリム部同士を、 この環 状空間の円周方向に関して間隔をあけて互いに平行に配置された複数本の柱部に より連結したものであり、 これら各柱部の内周面に、 グリースを保持する為のグ リース溜りを設けたエンジン始動用ローラクラッチ内蔵型回転伝達装置。
PCT/JP2003/000377 2002-01-21 2003-01-17 Dispositif de transmission de rotation de type a roue libre et demarreur WO2003067128A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/496,957 US7370741B2 (en) 2002-01-21 2003-01-17 Engine start roller clutch-housed type rotation transmission device
EP03701772A EP1482212A4 (en) 2002-01-21 2003-01-17 FREE-ROLL TYPE ROTATION TRANSMISSION DEVICE AND STARTER
AU2003203254A AU2003203254A1 (en) 2002-01-21 2003-01-17 Engine start roller clutch-housed type rotation transmission device
JP2003566446A JPWO2003067128A1 (ja) 2002-01-21 2003-01-17 エンジン始動用ローラクラッチ内蔵型回転伝達装置
US11/854,622 US20080053778A1 (en) 2002-01-21 2007-09-13 Engine Start Roller Clutch-Housed Type Rotation Transmission Device

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2002-11020 2002-01-21
JP2002011020 2002-01-21
JP2002-33835 2002-02-12
JP2002033835 2002-02-12
JP2002141472 2002-05-16
JP2002141471 2002-05-16
JP2002-141472 2002-05-16
JP2002-141471 2002-05-16
JP2002-219467 2002-07-29
JP2002219467 2002-07-29
JP2002292096 2002-10-04
JP2002-292096 2002-10-04
JP2002-311557 2002-10-25
JP2002311557 2002-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/854,622 Continuation US20080053778A1 (en) 2002-01-21 2007-09-13 Engine Start Roller Clutch-Housed Type Rotation Transmission Device

Publications (1)

Publication Number Publication Date
WO2003067128A1 true WO2003067128A1 (fr) 2003-08-14

Family

ID=27739525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000377 WO2003067128A1 (fr) 2002-01-21 2003-01-17 Dispositif de transmission de rotation de type a roue libre et demarreur

Country Status (6)

Country Link
US (2) US7370741B2 (ja)
EP (1) EP1482212A4 (ja)
JP (1) JPWO2003067128A1 (ja)
CN (1) CN100510479C (ja)
AU (1) AU2003203254A1 (ja)
WO (1) WO2003067128A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002925A (ja) * 2004-06-21 2006-01-05 Nsk Warner Kk ローラ型ワンウェイクラッチ及びローラ型ワンウェイクラッチ用のローラ
JP2006234008A (ja) * 2005-02-22 2006-09-07 Nsk Ltd 一方向クラッチ内蔵型プーリ装置
JP2012184732A (ja) * 2011-03-07 2012-09-27 Mitsuba Corp スタータ
CN102758908A (zh) * 2011-04-27 2012-10-31 武汉集信传动技术有限公司 弹簧扩张式超越皮带轮结构
EP3260738A4 (en) * 2015-02-20 2018-10-31 Mitsuboshi Belting Ltd. Pulley structure
CN109404435A (zh) * 2018-12-18 2019-03-01 屠申富 双向自动变速电机的传动机构
CN113531019A (zh) * 2021-07-20 2021-10-22 苏州泰格驱动技术有限公司 一种制动装置

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1924212B1 (de) * 2005-09-16 2012-02-29 Mehrhof Implant Technologies GmbH Zweiteiliges zahnimplantat
CN101297058B (zh) * 2005-12-28 2012-07-18 株式会社美姿把 发动机起动装置
DE102006000746A1 (de) * 2006-01-04 2007-07-05 Robert Bosch Gmbh Schaltbarer Freilauf und elektromechanische Fahrzeugbremse mit dem schaltbaren Freilauf
US20070267263A1 (en) * 2006-05-19 2007-11-22 Jack Eric Pederson Overrunning clutch
DE102006026774A1 (de) 2006-06-07 2007-12-13 Ringspann Gmbh Reibschlüssige Freilaufkupplung
JP4158182B2 (ja) * 2006-08-29 2008-10-01 三菱電機株式会社 オーバーランニングクラッチの製造方法
US7621263B2 (en) * 2006-08-31 2009-11-24 Eaton Corporation Supercharger drive system
JP4905001B2 (ja) * 2006-09-05 2012-03-28 株式会社ジェイテクト 一方向クラッチ及び動力伝達装置
EP1900957B1 (de) * 2006-09-16 2011-07-06 Schaeffler Technologies AG & Co. KG Anordnung zur Betätigung einer Kupplung
WO2008078412A1 (ja) * 2006-12-26 2008-07-03 Mitsuba Corporation エンジン始動装置
TWM324136U (en) * 2007-06-27 2007-12-21 Thai Dieng Industry Co Ltd Unidirectional bearing
JP2009222032A (ja) * 2008-03-18 2009-10-01 Daikin Ind Ltd 冷凍装置
DE102008021960A1 (de) * 2008-05-02 2009-11-05 Schaeffler Kg Freilauf mit verringerter Masse
KR101654952B1 (ko) * 2008-09-15 2016-09-06 마그나 파워트레인 인크. 밀봉된 고용량의 오버러닝 롤러 클러치
TWM367257U (en) * 2008-10-22 2009-10-21 Auto A J Prec Inc Improved structure of one-way bearing
EP2184504B1 (en) * 2008-11-05 2013-05-29 NSK Ltd. One-way clutch and pulley apparatus incorporating such one-way clutch
EP2447557B1 (en) * 2009-06-26 2018-10-10 NTN Corporation Retainer made of synthetic resin for use in a deep groove ball bearing; deep groove ball bearing; and gear support device
CN102261397B (zh) * 2011-06-09 2013-01-30 北京佩特来电器有限公司 滚柱式单向离合器及其制造方法、起动电机
CN202788572U (zh) * 2012-09-26 2013-03-13 太仓敬富塑胶制品有限公司 无外露拉绳的百叶窗卷绳装置
US10428801B2 (en) 2013-03-12 2019-10-01 Jtekt Corporation Wind power generation device
JP6155713B2 (ja) * 2013-03-12 2017-07-05 株式会社ジェイテクト 風力発電装置用の一方向クラッチ及び風力発電装置
EP2985460A4 (en) * 2013-03-12 2016-11-02 Jtekt Corp SHAFT COUPLING DEVICE AND WIND POWER GENERATING DEVICE
JP6142587B2 (ja) 2013-03-12 2017-06-07 株式会社ジェイテクト クラッチユニット及び風力発電装置
JP6221391B2 (ja) * 2013-06-19 2017-11-01 日本精工株式会社 一方向クラッチ用ばね及び一方向クラッチ
JP6237116B2 (ja) 2013-10-28 2017-11-29 株式会社ジェイテクト 継手構造及び風力発電装置
FR3013785A1 (fr) * 2013-11-25 2015-05-29 Skf Ab Ebauche de cage pour roue libre, cage de roue libre formee a partir d'une telle ebauche, roue libre comprenant une telle cage et procede de montage d'une telle roue libre
JP6273832B2 (ja) 2013-12-25 2018-02-07 株式会社ジェイテクト 分割型保持器、一方向クラッチ及び発電装置用の継手
KR101672650B1 (ko) * 2015-09-09 2016-11-04 지상훈 양방향 회전이 가능한 원웨이 클러치
JP2017110729A (ja) * 2015-12-16 2017-06-22 株式会社ジェイテクト 一方向クラッチ
JP2017110723A (ja) * 2015-12-16 2017-06-22 株式会社ジェイテクト 一方向クラッチ
US10578070B2 (en) * 2016-08-23 2020-03-03 Ford Global Technologies, Llc Rocker pinion starter
CN108071710B (zh) * 2016-11-07 2020-07-28 索恩格汽车德国有限责任公司 起动机及其单向离合器与外座圈
JP6509933B2 (ja) * 2017-03-15 2019-05-08 本田技研工業株式会社 動力伝達装置
CN107387596B (zh) * 2017-07-20 2019-02-19 安徽江淮汽车集团股份有限公司 一种离合式电控水泵
CN107489577A (zh) * 2017-09-29 2017-12-19 重庆洋迪机电有限公司 一种单向器总成
CN109764070A (zh) * 2019-03-11 2019-05-17 江苏南方轴承股份有限公司 一种内燃机曲轴解耦器
CN112137443A (zh) * 2019-06-28 2020-12-29 广东美的生活电器制造有限公司 旋转头、旋转组件、容器和食品处理机
CN112137444A (zh) * 2019-06-28 2020-12-29 广东美的生活电器制造有限公司 旋转头、旋转组件、容器和食品处理机
CN112549074B (zh) * 2020-11-23 2022-02-08 江西联创光电超导应用有限公司 一种具有耐电磁扰动功能的机械手末端操作器
CN112405544B (zh) * 2020-11-23 2022-02-08 江西联创光电超导应用有限公司 一种基于多柱式末端操作器加热导体棒料的方法
CN115163690B (zh) * 2021-04-02 2024-03-12 上海汽车集团股份有限公司 离合装置及离合器总成

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485141U (ja) * 1971-06-02 1973-01-20
JPS6090571U (ja) * 1983-11-28 1985-06-21 日産自動車株式会社 エンジン始動装置
JPH0772585A (ja) 1993-07-06 1995-03-17 Fuji Photo Film Co Ltd ポリエステル支持体
JPH08100827A (ja) * 1994-09-30 1996-04-16 Ntn Corp クラッチ
JPH08303489A (ja) * 1996-05-20 1996-11-19 Hitachi Ltd オーバーランニングクラッチ
JPH09196090A (ja) 1996-01-18 1997-07-29 Nippon Seiko Kk ローラクラッチ
JPH09317609A (ja) * 1996-05-24 1997-12-09 Denso Corp スタータ
JP3044908U (ja) * 1997-06-30 1998-01-23 スターテング工業株式会社 エンジン起動装置
GB2320744A (en) * 1996-12-27 1998-07-01 Nsk Ltd Radial bearing cage with axial cylindrical pocket
JPH1163026A (ja) * 1997-08-25 1999-03-05 Koyo Seiko Co Ltd 一方向クラッチ
JPH1163170A (ja) 1997-08-28 1999-03-05 Nippon Seiko Kk オルタネータ用ローラクラッチ内蔵型プーリ装置
JP2000120730A (ja) * 1998-10-19 2000-04-25 Ntn Corp 一方向クラッチ
JP2000130563A (ja) * 1998-10-28 2000-05-12 Koyo Seiko Co Ltd プーリユニット
EP1030074A2 (en) * 1999-02-17 2000-08-23 Koyo Seiko Co., Ltd. One-way clutch
JP2001108069A (ja) * 1999-10-04 2001-04-20 Koyo Seiko Co Ltd プーリユニット
DE10057516A1 (de) * 2000-05-09 2001-11-22 Mitsubishi Electric Corp Die Rotation übertragende Vorrichtung, die eine Einwegkupplung beinhaltet
JP2001349413A (ja) * 2000-06-07 2001-12-21 Nsk Ltd ローラクラッチ内蔵型プーリ装置
JP2001355654A (ja) * 2000-06-15 2001-12-26 Koyo Seiko Co Ltd クラッチ装置
JP2002174270A (ja) 2000-12-06 2002-06-21 Nsk Ltd ローラクラッチ内蔵型回転伝達装置
JP2002221130A (ja) * 2001-01-26 2002-08-09 Nsk Ltd エンジンの始動・発電装置と始動・発電装置を備えた自動車

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3339687A (en) * 1965-10-24 1967-09-05 Torrington Co Retainer for overrunning clutch rollers
US3500977A (en) * 1968-02-21 1970-03-17 Torrington Co Retainer for overrunning clutch with spring insert
FR2377531A1 (fr) * 1977-01-17 1978-08-11 Paris & Du Rhone Perfectionnements aux lanceurs de demarreurs electriques
US5351565A (en) * 1987-11-27 1994-10-04 Komatsu Zenoah Kabushiki Kaisha Engine starter
US4878570A (en) * 1988-01-25 1989-11-07 Dana Corporation Surface hardened sprags and rollers
JP3170608B2 (ja) * 1992-01-24 2001-05-28 光洋精工株式会社 一方向クラッチ装置
JPH0690571A (ja) 1992-06-09 1994-03-29 Yasuhiko Ogawa ステッピングアクチュエータ
CN2172366Y (zh) 1993-08-11 1994-07-20 朱冠群 汽车转向节主销轴承及避震器轴承
DE4442404C2 (de) * 1994-11-30 1999-07-01 Schaeffler Waelzlager Ohg Verdrehsicherung für einen Kunststoffkäfig eines Freilaufs
JPH08317599A (ja) * 1995-05-22 1996-11-29 Mitsubishi Electric Corp 車両用発電機
JPH0914301A (ja) * 1995-06-27 1997-01-14 Ntn Corp 一方向クラッチ
JPH1182688A (ja) 1997-09-04 1999-03-26 Koyo Seiko Co Ltd プーリユニット
JP2000297730A (ja) * 1999-04-16 2000-10-24 Nsk Ltd 自動車用エンジンの起動装置
EP1067303B1 (en) * 1999-07-09 2008-12-31 Nsk Ltd Alternator pulley unit with a built-in one-way clutch
JP4306032B2 (ja) 1999-07-12 2009-07-29 日本精工株式会社 オルタネータ用一方向クラッチ内蔵型プーリ装置
JP4140143B2 (ja) 1999-09-22 2008-08-27 株式会社ジェイテクト 一方向クラッチおよびこれを用いたプーリユニット
JP2001165022A (ja) * 1999-09-29 2001-06-19 Toyota Motor Corp エンジン始動装置およびその機能を備えたエンジンシステム
JP2001153010A (ja) * 1999-11-25 2001-06-05 Honda Motor Co Ltd エンジンの始動装置
JP2002349282A (ja) * 2001-05-18 2002-12-04 Denso Corp 電磁クラッチ付き二連プーリ装置を有する車両用補機駆動装置及び発電電動機の制御方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS485141U (ja) * 1971-06-02 1973-01-20
JPS6090571U (ja) * 1983-11-28 1985-06-21 日産自動車株式会社 エンジン始動装置
JPH0772585A (ja) 1993-07-06 1995-03-17 Fuji Photo Film Co Ltd ポリエステル支持体
JPH08100827A (ja) * 1994-09-30 1996-04-16 Ntn Corp クラッチ
JPH09196090A (ja) 1996-01-18 1997-07-29 Nippon Seiko Kk ローラクラッチ
JPH08303489A (ja) * 1996-05-20 1996-11-19 Hitachi Ltd オーバーランニングクラッチ
JPH09317609A (ja) * 1996-05-24 1997-12-09 Denso Corp スタータ
GB2320744A (en) * 1996-12-27 1998-07-01 Nsk Ltd Radial bearing cage with axial cylindrical pocket
JP3044908U (ja) * 1997-06-30 1998-01-23 スターテング工業株式会社 エンジン起動装置
JPH1163026A (ja) * 1997-08-25 1999-03-05 Koyo Seiko Co Ltd 一方向クラッチ
JPH1163170A (ja) 1997-08-28 1999-03-05 Nippon Seiko Kk オルタネータ用ローラクラッチ内蔵型プーリ装置
JP2000120730A (ja) * 1998-10-19 2000-04-25 Ntn Corp 一方向クラッチ
JP2000130563A (ja) * 1998-10-28 2000-05-12 Koyo Seiko Co Ltd プーリユニット
EP1030074A2 (en) * 1999-02-17 2000-08-23 Koyo Seiko Co., Ltd. One-way clutch
JP2001108069A (ja) * 1999-10-04 2001-04-20 Koyo Seiko Co Ltd プーリユニット
DE10057516A1 (de) * 2000-05-09 2001-11-22 Mitsubishi Electric Corp Die Rotation übertragende Vorrichtung, die eine Einwegkupplung beinhaltet
JP2001349413A (ja) * 2000-06-07 2001-12-21 Nsk Ltd ローラクラッチ内蔵型プーリ装置
JP2001355654A (ja) * 2000-06-15 2001-12-26 Koyo Seiko Co Ltd クラッチ装置
JP2002174270A (ja) 2000-12-06 2002-06-21 Nsk Ltd ローラクラッチ内蔵型回転伝達装置
JP2002221130A (ja) * 2001-01-26 2002-08-09 Nsk Ltd エンジンの始動・発電装置と始動・発電装置を備えた自動車

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006002925A (ja) * 2004-06-21 2006-01-05 Nsk Warner Kk ローラ型ワンウェイクラッチ及びローラ型ワンウェイクラッチ用のローラ
JP4629369B2 (ja) * 2004-06-21 2011-02-09 Nskワーナー株式会社 ローラ型ワンウェイクラッチ及びローラ型ワンウェイクラッチ用のローラ
JP2006234008A (ja) * 2005-02-22 2006-09-07 Nsk Ltd 一方向クラッチ内蔵型プーリ装置
JP2012184732A (ja) * 2011-03-07 2012-09-27 Mitsuba Corp スタータ
CN102758908A (zh) * 2011-04-27 2012-10-31 武汉集信传动技术有限公司 弹簧扩张式超越皮带轮结构
EP3260738A4 (en) * 2015-02-20 2018-10-31 Mitsuboshi Belting Ltd. Pulley structure
US10415685B2 (en) 2015-02-20 2019-09-17 Mitsuboshi Belting Ltd. Pulley structure
CN109404435A (zh) * 2018-12-18 2019-03-01 屠申富 双向自动变速电机的传动机构
CN109404435B (zh) * 2018-12-18 2023-09-05 屠申富 双向自动变速电机的传动机构
CN113531019A (zh) * 2021-07-20 2021-10-22 苏州泰格驱动技术有限公司 一种制动装置

Also Published As

Publication number Publication date
AU2003203254A1 (en) 2003-09-02
CN1617988A (zh) 2005-05-18
EP1482212A1 (en) 2004-12-01
US7370741B2 (en) 2008-05-13
US20080053778A1 (en) 2008-03-06
US20050087417A1 (en) 2005-04-28
CN100510479C (zh) 2009-07-08
EP1482212A4 (en) 2010-05-12
JPWO2003067128A1 (ja) 2005-06-02

Similar Documents

Publication Publication Date Title
WO2003067128A1 (fr) Dispositif de transmission de rotation de type a roue libre et demarreur
US6464057B2 (en) Pulley with a built-in one-way clutch
US5740893A (en) One-way clutch and method of making bearing ring
EP1138969B1 (en) Rotation transmitting device incorporating one-way clutch therein
JP2000240461A (ja) オルタネータ用一方向クラッチ内蔵型プーリ装置とオルタネータ駆動用無端ベルトの鳴き防止方法
WO2002002967A1 (fr) Dispositif de poulie integre pour embrayage a roue libre
US6513633B2 (en) Rotation transmitting device incorporating one-way clutch therein
US20040211063A1 (en) Method for assembling pulley apparatus with built-in roller clutch
US10072627B2 (en) Torque transfer unit for an engine starting system
US6889808B2 (en) Positive locking overrunning clutch mechanism
JP4287983B2 (ja) プーリユニット
JP2003083426A (ja) ローラクラッチ内蔵型プーリ装置とその組立方法
JP2006307922A (ja) 一方向クラッチ
JP2000337405A (ja) 一方向クラッチ内蔵型プーリ装置
JP2006161827A (ja) 一方向クラッチ付きプーリユニット
JP2001032911A (ja) オルタネータ用ローラクラッチ内蔵型プーリ装置
JP2000291782A (ja) オルタネータ用一方向クラッチ内蔵型プーリ装置
JP2000234667A (ja) オルタネータ用ローラクラッチ内蔵型プーリ装置
JP2000310314A (ja) オルタネータ用一方向クラッチ内蔵型プーリ装置及びその組立方法
JP2003156075A (ja) 一方向クラッチ付きプーリユニット
JP2001032911A5 (ja)
JP2000283267A (ja) オルタネータ用一方向クラッチ内蔵型プーリ装置
JP2001041314A (ja) オルタネータ用一方向クラッチ内蔵型プーリ装置
JP2005257021A (ja) 一方向クラッチおよび一方向クラッチ付きプーリユニット
JP2004232703A (ja) 一方向クラッチ機能を備えた転がり軸受

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003566446

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003701772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038023016

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003701772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10496957

Country of ref document: US