WO2003036744A1 - Slurry composition, electrode and secondary cell - Google Patents

Slurry composition, electrode and secondary cell Download PDF

Info

Publication number
WO2003036744A1
WO2003036744A1 PCT/JP2002/011075 JP0211075W WO03036744A1 WO 2003036744 A1 WO2003036744 A1 WO 2003036744A1 JP 0211075 W JP0211075 W JP 0211075W WO 03036744 A1 WO03036744 A1 WO 03036744A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
electrode
slurry composition
binder
weight
Prior art date
Application number
PCT/JP2002/011075
Other languages
English (en)
French (fr)
Inventor
Akira Nakayama
Takao Suzuki
Hidekazu Mori
Katsuya Nakamura
Masahiro Yamakawa
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001329072A external-priority patent/JP4200349B2/ja
Priority claimed from JP2002079576A external-priority patent/JP4207443B2/ja
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to KR1020047006182A priority Critical patent/KR100960757B1/ko
Priority to US10/493,491 priority patent/US7316864B2/en
Publication of WO2003036744A1 publication Critical patent/WO2003036744A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for an electrode, an electrode manufactured using the same, and a secondary battery having the electrode. Background art.
  • the lithium ion secondary battery has a structure in which a positive electrode and a negative electrode are arranged via a separator, and are housed in a container together with an electrolytic solution.
  • Electrodes (positive electrode and negative electrode) are composed of an electrode active material (hereinafter sometimes simply referred to as an active material) and, if necessary, a conductive additive or the like, and a binder polymer for an electrode (hereinafter simply referred to as a binder). Is attached to a current collector such as aluminum or copper.
  • the electrode is usually formed by dissolving or dispersing a binder in a liquid medium, applying a slurry composition for a secondary battery electrode obtained by mixing an active material and the like to a current collector, and coating the liquid medium.
  • Battery capacity is strongly influenced by the amount of active material.
  • the rate characteristics are affected by the ease of electron transfer, and increasing the amount of a conductivity-imparting agent such as carbon is effective for improving the rate characteristics.
  • a conductivity-imparting agent such as carbon
  • polyvinyl fluoride has been used as the binder for the positive electrode of lithium ion secondary batteries.
  • fluorine-containing polymers such as niliden are widely used, it is difficult to increase the capacity and improve the rate characteristics of the battery due to insufficient binding power and flexibility.
  • An object of the present invention is to provide a slurry composition for an electrode containing a binder having a low degree of swelling in an electrolytic solution and having good binding properties, and an electrode produced using the slurry composition. . .
  • Another object of the present invention is to provide a secondary battery which achieves high capacity and improved rate characteristics of the battery.
  • the present inventors have found that a binder composed of a copolymer having a specific composition having an atariloetrile unit or a metatalonitrile unit and a specific 1-olefin or (meth) acrylate unit has a low degree of swelling in an electrolytic solution and It was found that the binding property was good. Furthermore, they have found that a lithium ion secondary battery produced using the slurry composition for an electrode containing the polymer exhibits high battery capacity and good charge / discharge cycle characteristics and rate characteristics. The invention has been completed.
  • An electrode slurry composition comprising a binder, an electrode active material, and a liquid medium
  • the binder is a resin derived from atarilonitrile or methacrylonitrile. With a return unit of 60 to 95 mol%
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group.
  • a slurry composition for an electrode wherein the liquid medium dissolves polymer X.
  • the binder further comprises a polymer Y having a glass transition temperature of _80 to 0 ° C and an N-methylpyrrolidone-insoluble content of 5% by weight or less,
  • the binder further comprises a polymer Z having a glass transition temperature of 80 to 0 ° C. and 50% by weight or more of an N-methylpyrrolidone-insoluble component;
  • the binder contains a polymer X, a polymer Y and a polymer Z, and the ratio of these contents is 5: 1 to 1: 5 in the weight ratio of (X + Y): Z.
  • the electrode slurry compositions [1] to [4] are preferably used for a positive electrode of a lithium ion secondary battery.
  • the liquid medium is preferably N-methylpyrrolidone.
  • the polymer Y is a hydrogenated atariloetrile / butadiene copolymer.
  • the polymer Z is preferably acryl rubber.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group.
  • the binder further comprises a polymer Y having a glass transition temperature of 180 to 0 ° C. and an N-methylpyrrolidone insoluble content of 5% by weight or less,
  • the binder further comprises a polymer Z having a glass transition temperature of 80 to 0 ° C. and 50% by weight or more of an N-methylpyrrolidone-insoluble component,
  • the binder contains the polymer X, the polymer Y and the polymer Z, and the content ratio thereof is 5: 1 to 1: 5 in the weight ratio of (X + Y): Z. ]
  • the electrode as described above.
  • the electrode slurry composition of the present invention (hereinafter sometimes simply referred to as “slurry composition”) contains an electrode active material, a binder for binding the same to a current collector, and a liquid medium. It is made.
  • the binder in the slurry composition of the present invention comprises a repeating unit derived from atarilonitrile or methacrylonitrile;
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group.
  • a polymer X containing a repeating unit derived from at least one or more monomers selected from the following (hereinafter, also referred to as a second monomer) is an essential component.
  • Akurironitoriru or methacrylonitrile Repetition rate unit content of from nitrile in the polymer X is 6 0-9 5 mol% based on the total amount of the polymer X, preferably 6 5-9 0 mol 0/0. If the content of the repeating unit derived from atarilonitrile or methacrylonitrile is too small, the degree of swelling with respect to the electrolytic solution increases, so that the binding stability is poor and the cycle characteristics are deteriorated. Conversely, if the amount is too large, the binding property of the active material is poor.
  • the content of the repeating unit derived from the second monomer in the polymer X is 5 to 30 mol%, preferably 10 to 25 mol%. If the content of the repeating unit derived from the second monomer is too small, the binding properties of the active material will be poor, and it will be difficult to apply the slurry composition uniformly to the current collector . Conversely, if the amount is too large, the binding property of the active material is rather reduced. In addition, the degree of swelling in the electrolyte tends to increase.
  • the method for producing the polymer X is not particularly limited.
  • copolymerization of acrylonitrile or methacrylonitrile and a second monomer by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a solution polymerization method, or a bulk polymerization method.
  • a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a solution polymerization method, or a bulk polymerization method.
  • the 1-olefin used as the second monomer include ethylene, propylene, 1-butene, 1-pentene, 3-methylenol 1-butene, 1-hexene, and among them, ethylene, propylene, 1-butene 1-olefins having 2 to 4 carbon atoms are preferred, and ethylene is particularly preferred.
  • Examples of the compound represented by the general formula (1) include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, n-amyl acrylate, and isobutyl acrylate.
  • Alkyl acrylates such as amyl, n-hexyl acrylate, 2-ethylhexyl acrylate, laurinole atalylate;
  • R 2 in the general formula (1) has 3 or less carbon atoms is preferred.
  • Methyl acrylate and methyl methacrylate are more preferred.
  • a polymer obtained by using a conjugated diene such as butadiene as a part of a raw material monomer may be hydrogenated to have a structure derived from the second monomer unit.
  • the conjugated gen include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethinolane 1,3-butadiene, and 1,3-pentadiene.
  • These monomers capable of forming a structure derived from the second monomer unit may be used alone or in combination of two or more.
  • the polymer X may contain a unit derived from another copolymerizable monomer as long as it can be dissolved in the liquid medium used in the slurry composition of the present invention.
  • the copolymerizable monomer include acrylates or methacrylates having a hydroxyl group in the alkyl group such as hydroxypropyl acrylate and hydroxypropyl methacrylate; Ethyl phosphate, propyl crotonate, butyl crotonate, isobutyl crotonate, n -amyl crotonate, n-hexyl crotonate, n-hexyl crotonate, 2-ethylhexyl crotonate, crotonic acid Crotonates such as hydroxypropyl; methacrylates containing amino groups such as dimethylaminoethyl methacrylate and dimethylaminoethyl methacrylate; methacrylates containing alk
  • Acid ester phosphoric acid residue in alkyl group Acrylate or methacrylate having sulfonic acid residue, boric acid residue, etc .; ethylenically unsaturated monocarboxylic acid such as acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid; maleic acid, fumaric acid, Unsaturated dicarboxylic acids such as citraconic acid, mesaconic acid, glutaconic acid, and itaconic acid; and acid anhydrides thereof. These monomers may be used in combination of two or more, the total content of these monomeric units is 3 5 mole 0/0 or less, preferably 2 0 mole 0 or less.
  • the glass transition temperature (T g) of the polymer X is usually higher than 0 ° C., and preferably 50 to 90 ° C. If the Tg of the polymer X is too low, the electrode density may not be sufficiently increased when the electrode is pressed to increase the electrode density.
  • the polymer X can be used alone as a binder, but may be used in combination with another polymer.
  • the polymer that can be used in combination with the polymer X is not particularly limited, but a preferred polymer has a Tg of 180 to 0 ° C and is suitable for N-methylpyrrolidone (hereinafter sometimes referred to as “NMP”).
  • NMP N-methylpyrrolidone
  • Polymer Y having an insoluble content of 5% by weight or less, preferably 3% by weight or less, more preferably 1% by weight or less.
  • the amount of NMP insolubles was determined by immersing 0.2 g of the polymer in NMP 20 milliliters at a temperature of 60 ° C for 72 hours, filtering through an 80 mesh sieve, and drying the components on the sieve. It is expressed as a percentage obtained by dividing the obtained weight by the weight of the polymer before immersion (0.2 g).
  • the Tg of the polymer Y is from 180 to 0 ° C, preferably from 160 to 15 ° C, and more preferably from 140 to 110 ° C. If the T g is too high, the electrode mixed layer (hereinafter, sometimes referred to as “mixed layer”) formed on the current collector with the polymer Y and the active material is not flexible, and the battery is repeatedly charged and discharged. Cracks may occur in the mixed layer and the active material may easily fall off the current collector. If the Tg is too low, the battery capacity may decrease.
  • the monomer constituting the structural unit of the polymer Y is not particularly limited, but is preferably a monomer containing no fluorine. Specific examples include ethylene, propylene, 1-butene, 1-pentene, isobutene, 3-methyl-1-butene, and other ⁇ -amino olefins; ethyl acrylate, ⁇ -propyl acrylate, butyl acrylate, isobutyl acrylate.
  • Acrylates such as ⁇ -octyl acrylate, 2-ethylhexyl acrylate, methoxethyl acrylate, and ethoxyxyl acrylate; ⁇ -octyl methacrylate, ⁇ -decyl methacrylate, ⁇ methacrylate —Methacrylic esters such as lauryl; 2-methyl-1,3-butadiene (isoprene), 2,3-dimethinole-1,3-butadiene And conjugated diene compounds such as 1,3-pentadiene and 1,3-hexadiene; and unsaturated nitrile compounds such as acrylonitrile and methacrylonitrile;
  • the polymer Y may be a block copolymer or a random copolymer.
  • Preferred examples of the polymer Y include an atarilonitrile / butadiene copolymer and a hydride thereof, an ethylene / methyl acrylate copolymer, a butadiene / methyl acrylate copolymer, a styrene Z-butadiene copolymer, a butadiene rubber, and ethylene.
  • / Propylene non-conjugated gen terpolymer (EPDM), ethylene / butyl alcohol copolymer, and the like, and hydrogenated atarilonitrile / butadiene copolymer is particularly preferred.
  • the method for producing the polymer Y is not particularly limited.
  • it can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method or a solution polymerization method.
  • a polymer Z having a T g of ⁇ 80 to 0 ° C. and an insoluble content in NMP of 50% by weight or more can also be suitably used.
  • the binder as a whole dissolves to a certain extent in the liquid medium so that the slurry composition has a high viscosity suitable for coating, and the undissolved binder is in the form of fibers or particles.
  • the temperature it is possible to prevent the binder from hiding the surface of the active material and hindering the battery reaction.
  • the Tg of the polymer Z is from _80 to 0 ° C, preferably from 165 ° C, more preferably from 150 to 110 ° C. If the Tg is too high, the flexibility of the electrode decreases, and the active material is likely to peel off from the current collector when charging and discharging are repeated. On the other hand, if the Tg is too low, the battery capacity may be reduced.
  • the monomer constituting the structural unit of the polymer Z is not particularly limited, and any of the monomers exemplified for the polymer X and the polymer Y can be used.
  • the polymer Z In order for the polymer Z to have a Tg in the above range, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, isoptyl acrylate, n-octyl acrylate, 2-ethyl acrylate Alkyl acrylates such as hexyl; n-octyl methacrylate, methacrylic acid It preferably has a repeating unit derived from an alkyl ester such as n-decyl acid or n-lauryl methacrylate; or a conjugated diene such as butadiene or isoprene.
  • the insoluble content of the polymer Z in NMP is at least 50% by weight, preferably at least 60% by weight, more preferably at least 70% by weight. If the amount of NMP insolubles is too small, the continuity of the binding of the active material is reduced, and the capacity may be reduced due to repeated charge and discharge.
  • the polymer Z In order for the polymer Z to contain the NMP-insoluble content in the above range, it is preferable to add a polyfunctional ethylenically unsaturated monomer to the monomer component to form a crosslinked polymer.
  • the amount of the polyfunctional ethylenically unsaturated monomer used is usually from 0.1 to 10% by weight, preferably from 0.5 to 5% by weight, based on the total amount of the monomers used for producing the polymer Z. So that
  • polyfunctional ethylenically unsaturated monomer examples include divier compounds such as dibierbenzene; dimethacrylic acid esters such as ethylene dimethacrylate, diethylene glycol dimethacrylate, and ethylene glycol dimethacrylate; trimethylol Trimethacrylic acid esters such as propane trimethacrylate; diacrylic acid esters such as diethylene glycol diatalylate and 1,3-butylene glycol diacrylate; and triacrylic acid esters such as trimethylolpropane pantriatalylate.
  • divier compounds such as dibierbenzene
  • dimethacrylic acid esters such as ethylene dimethacrylate, diethylene glycol dimethacrylate, and ethylene glycol dimethacrylate
  • trimethylol Trimethacrylic acid esters such as propane trimethacrylate
  • diacrylic acid esters such as diethylene glycol diatalylate and 1,3-butylene glycol diacrylate
  • triacrylic acid esters such
  • the crosslinked polymer When a polymer obtained by copolymerizing a conjugated diene such as butadiene or isoprene is used, by appropriately adjusting the polymerization reaction conditions such as the polymerization temperature, the polymerization conversion, and the amount of the molecular weight modifier, the crosslinked polymer can be used. It can be.
  • polymer Z having each of the above properties examples include 2-ethylhexyl acrylate / methacrylic acid / methacrylo-tolyl Z diethylene glycol dimethacrylate copolymer, butyl acrylate Z acrylonitrile Z diethylene glycol dimethacrylate Acryl rubber such as copolymer, butyl acrylate Z, acrylic acid Z trimethylolpropane trimethacrylate copolymer; acrylonitrile / butadiene copolymer, butadiene rubber, methyl methacrylate // Gen such as butadiene copolymer Rubber.
  • ataryl rubber is particularly preferred.
  • the particle diameter of the polymer Z is preferably from 0.05 to 100 ⁇ , more preferably from 0.01 to L 0 / im, particularly preferably from 0.05 to 10111. Puru. If the particle size is too large, the amount required as a binder will be too large, and the internal resistance of the electrode will increase. Conversely, if the particle diameter is too small, the surface of the active material is covered and the battery reaction is hindered.
  • the particle size is a number average particle size calculated by measuring the diameter of 100 polymer particles randomly selected in a transmission electron micrograph and calculating the arithmetic average value.
  • the method for producing the polymer Z is not particularly limited.
  • the polymer Z can be obtained by polymerization by a known polymerization method such as an emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, or a solution polymerization method. It is preferable to control the particle diameter when dispersed in a liquid medium.
  • the content ratio of each is not particularly limited, but X: Y or X: Z is usually 1:10 to 10: 10: 1, preferably 1: 5 to 5: 1, more preferably 1: 3 to 3: 1.
  • the ratio of the content of each polymer is preferably 1: 5 to 5: 1, more preferably 1: 3 to 3: 1, and more preferably 1: 2 to 5 by weight ratio of ( ⁇ + ⁇ ): ⁇ . 2: 1 is particularly preferred. If the amount of the polymer is excessively large, the binding property is improved, but the fluidity of the slurry is reduced, and the mixed layer obtained by coating the electrode may not be smooth.
  • the amount of the total binder in the present invention is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.5 to 3 parts by weight based on 100 parts by weight of the active material. Parts by weight. If the total amount of the binder is too small, the active material may easily fall off the electrode. If the total amount is too large, the active material may be covered by the binder and hinder the battery reaction.
  • the liquid medium used in the slurry composition for a secondary battery electrode of the present invention is not particularly limited as long as it is a liquid that dissolves the polymer X, but preferably has a boiling point at normal pressure of 80 ° C. or more and 350 ° C. or less, It is more preferably at least 100 ° C. and at least 300 ° C. (: The following It is.
  • liquid media examples include amides such as N-methylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide.
  • N-methylpyrrolidone is particularly preferred because of its good coatability on the current collector and good dispersibility of the polymer Z.
  • the amount of the liquid medium is adjusted according to the type of the binder, the active material described later, and the conductivity-imparting agent so that the viscosity becomes suitable for coating.
  • the concentration of the solid content of the binder, the active material and the conductivity-imparting agent is preferably 50 to 95% by weight, more preferably 70 to 90% by weight.
  • the active material used in the slurry composition of the present invention is appropriately selected depending on the type of battery or capacitor.
  • the slurry composition of the present invention can be used for both a positive electrode and a negative electrode, and is preferably used for a positive electrode, and more preferably for a positive electrode of a lithium ion secondary battery.
  • any active material can be used as long as it is used in a normal lithium ion secondary battery.
  • the positive electrode active material for example, L i C O_ ⁇ 2, L i N i 0 2 , L i Mn 0 2, L i Mn 2 0 4 lithium-containing composite metal oxides such as; T i S 2, T i S 3, transition metal sulfides such as amorphous Mo S 3; C u 2 V 2 ⁇ 3, such as an amorphous V 2 0- P 2 0 5, M o 0 3, V 2 0 5, VeO 3 Transition metal oxides.
  • conductive polymers such as polyacetylene and poly (p-phenylene) can also be used.
  • the negative electrode active material examples include amorphous carbon, graphite, natural graphite, mesocarbon microbeads (MCMB), carbonaceous materials such as pitch-based carbon fibers, and conductive polymers such as polyacene.
  • the shape and size of the active material are not particularly limited, and those having a conductivity imparting agent adhered to the surface by a mechanical reforming method can be used.
  • any active material can be used as long as it is used in a normal electrochemical capacitor.
  • the active material of the positive electrode and the negative electrode includes, for example, activated carbon.
  • a conductivity imparting agent is added to the slurry composition of the present invention as needed.
  • Guidance As a charge imparting agent, carbon such as graphite or activated carbon is used in a lithium ion secondary battery. '
  • Examples of the conductivity imparting agent used in the nickel hydrogen secondary battery include cobalt oxide for the positive electrode, nickel powder, cobalt oxide, titanium oxide, and carbon for the negative electrode.
  • examples of carbon include acetylene black, furnace black, graphite, carbon fiber, and fullerenes. Among them, acetylene black and furnace black are preferable.
  • the amount of the conductivity-imparting agent to be used is generally 1 to 20 parts by weight, preferably 2 to 10 parts by weight, per 100 parts by weight of the active material.
  • a viscosity modifier, a fluidizing agent, and the like may be added to the slurry composition as needed.
  • the electrode slurry composition of the present invention is produced by mixing the above components.
  • the mixing method and the mixing order are not particularly limited.
  • it can be produced by adding a polymer X and a polymer Y, an active material, and a conductivity-imparting agent to a dispersion obtained by dispersing a polymer Z in a liquid medium, and mixing with a mixer.
  • the degree of dispersion can be measured by a grain gauge, it is preferable to carry out mixing and dispersion so as to eliminate at least aggregates larger than 100 / m.
  • a mixing machine a ball mill, a sand mill, a pigment dispersing machine, a crusher, an ultrasonic dispersing machine, a homogenizer, a planetary mixer, a Hobart mixer, or the like can be used.
  • At least the mixed layer containing the binder and the active material is bound to a current collector.
  • the current collector is not particularly limited as long as it is made of a conductive material.
  • the power of a metal such as iron, copper, aluminum, Eckel, and stainless steel is particularly effective when aluminum is used for the positive electrode and copper is used for the negative electrode. Appear well.
  • the shape of the current collector of the lithium ion secondary battery is not particularly limited, but is preferably a sheet having a thickness of about 0.001 to 0.5 mm.
  • punching metal expanded metal, gold A mesh, a foamed metal, a reticulated metal fiber sintered body, a metal plating resin plate, or the like can be used.
  • the electrode of the present invention is obtained by applying the slurry composition for an electrode of the present invention to a current collector and drying it to obtain a binder and an active material, and further include a conductivity-imparting agent and a thickener, if necessary. It can be produced by binding the contained mixed layer.
  • the method for applying the slurry composition to the current collector is not particularly limited.
  • methods such as a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method may be used.
  • the amount of the slurry to be applied is not particularly limited, but the thickness of the mixed layer formed of the active material, the binder, and the like formed after drying and removing the liquid medium is usually 0.
  • the drying method is not particularly limited, and examples thereof include a drying method using warm air, hot air, low-humidity air, vacuum drying, and a drying method using irradiation with (far) infrared rays or electron beams.
  • the drying rate is adjusted so that the liquid medium can be removed as quickly as possible within a speed range that does not cause cracks in the mixed layer due to stress concentration or peeling of the mixed layer from the current collector.
  • the density of the active material of the electrode may be increased by pressing the dried current collector.
  • a pressing method a method such as a die press or a roll press is used.
  • the secondary battery of the present invention contains the above-described electrodes and electrolyte, and is manufactured by using a component such as a separator according to a conventional method.
  • a component such as a separator according to a conventional method.
  • a specific manufacturing method for example, a negative electrode and a positive electrode are overlapped with a separator interposed therebetween, and this is wound into a battery container according to the shape of the battery, folded, and placed in a battery container, and an electrolytic solution is injected into the battery container. Seal it.
  • expanded metal, fuses, overcurrent protection elements such as PTC elements, and lead plates can be inserted to prevent pressure rise inside the battery and overcharge / discharge.
  • the shape of the battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • the electrolyte As long as the electrolyte is used in ordinary secondary batteries, it can be either liquid or gel. It is only necessary to select a material that functions as a battery according to the types of the negative electrode active material and the positive electrode active material.
  • the electrolyte of lithium ion secondary batteries, also known lithium salt is any conventionally available, L i C 10 4, L i BF 4, L i PF 6, L i CF 3 C0 2, L i As F physician L i S b F 6 , L i B 10 C 1 io N L i A l C l 4 , L i C l, L i B r, L i B (C 2 H 5 ) 4 , L i CF 3 S0 3 , Li CH 3 S0 3, L i C 4 F 9 S 3, L i (CF 3 S0 2) 2 N, such as a lower fatty acid lithium carboxylate is fist up.
  • the medium in which these electrolytes are dissolved is not particularly limited.
  • Specific examples include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethinolecarbonate, ethynolemethinolecarbonate, and jeti / lecarbonate; ratatones such as dimethylolactone; trimethoxymethane; 1,2 Ethers such as dimethoxetane, jeti / reether, 2-etoxetane, tetrahydrofuran, and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; and the like, either alone or as a mixture of two or more solvents. Can be used.
  • the electrolyte of the nickel-hydrogen secondary battery for example, a conventionally known aqueous solution of potassium hydroxide having a concentration of 5 mol / liter or more can be used.
  • a conventionally known aqueous solution of potassium hydroxide having a concentration of 5 mol / liter or more can be used.
  • the present invention will be described with reference to examples, but the present invention is not limited thereto.
  • the parts and percentages in the examples are on a weight basis unless otherwise specified.
  • a solution prepared by dissolving 0.2 g of the polymer in 10 ml of N-methylpyrrolidone (NMP) is cast on a polytetrafluoroethylene sheet and dried to obtain a cast film / REM. After 4 cm 2 of the cast finolem is cut out and its weight is measured, it is immersed in an electrolyte solvent at a temperature of 60 ° C. The immersed film was pulled up after 72 hours, wiped off with a towel paper, immediately weighed, and the value of (weight after immersion) Z (weight before immersion) was defined as the degree of solvent swelling of the electrolyte solution.
  • NMP N-methylpyrrolidone
  • electrolyte solvent ethylene carbonate, propylene carbonate, A mixed solvent obtained by mixing five kinds of solvents, chillcarbonate, ethynolecarbonate, and ethyl methynolecarbonate, in a volume ratio at 20 ° C. of 1: 1: 1: 1: 1 was used.
  • the amount of NMP-insoluble matter in the polymer was determined by immersing 0.2 g of the polymer in 20 ml of NMP at 60 ° C for 72 hours, filtering through an 80-mesh sieve, and drying the components on the sieve. Shown as a percentage of the original polymer weight.
  • the Tg of the polymer was measured by a differential scanning calorimeter (DSC) at a temperature rise of 10 ° C / min.
  • the particle size of the polymer was determined as the number average particle size calculated by measuring the diameter of 100 randomly selected polymer particles in a transmission electron microscope photograph and calculating the average value.
  • the slurry yarn composition is charged into a cylindrical glass bottle having a height of 4 Omm N and a volume of 5 m 1 to a height of 25 mm, sealed and allowed to stand, and 24 hours later, equivalent to 5 mm above the slurry composition in the glass bottle was sampled, and the solid concentration was measured.
  • the change rate of the solid content concentration was determined by the following equation. The smaller the value of the rate of change, the smaller the degree of slurry sedimentation.
  • Rate of change (%) ⁇ 1-(Average upper layer solids concentration Z Initial solids concentration) ⁇ X 100
  • the slurry for the positive electrode was uniformly applied to an aluminum foil (thickness 20 / zm) by a doctor blade method, and dried at 120 ° C for 45 minutes by a drier. After further dried under reduced pressure for 2 hours at 0. 6 k P a, 1 20 ° C using a vacuum dryer, and compressed so that the electrode density by mouth Lumpur press biaxial becomes 3. 3 g / cm 3 A positive electrode was obtained.
  • the slurry for the negative electrode was evenly spread on copper foil (18 ⁇ thick) by the doctor blade method. They were applied at the same time and dried under the same conditions as for the positive electrode. It was compressed by a biaxial roll press to an electrode density of 1.4 gZ cm 3 to obtain a negative electrode.
  • the positive electrode manufactured by the method described in (6) above was cut into a circular shape with a diameter of 15 mm, and the lithium metal of the negative electrode was contacted with a separator made of a circular polypropylene porous film with a diameter of 18 mm and a thickness of 25 / m interposed. It was arranged to be.
  • a stainless steel coin-type outer container (diameter: 2 Omm, height: 1.8 mm, stainless steel thickness: 0.25 mm) with expanded metal placed on top of lithium metal on the opposite side of the separator and polypropylene packing installed ) Stowed inside.
  • the negative electrode produced by the method described in the above (6) was cut out into a circular shape having a diameter of 15 mm, and was arranged so that metallic lithium of the positive electrode was in contact with a separator interposed therebetween. Expanded metal was placed on lithium metal on the opposite side of the separator and stored in a coin-type outer container. In the subsequent steps, a coin-type battery (for negative electrode evaluation) was manufactured in the same manner as the positive electrode evaluation battery. The separator and coin-type exterior The same device as that for the positive electrode evaluation was used.
  • the battery capacity was determined as the discharge capacity at the third cycle (initial discharge capacity) measured by the constant current method.
  • the unit is mAhZg (per active material).
  • the discharge capacity at the third cycle and the 50th cycle was measured in the same manner as the measurement of the initial discharge capacity, and the ratio of the discharge capacity at the 50th cycle to the discharge capacity at the third cycle was calculated as a percentage. The larger the value, the smaller the capacity reduction.
  • the discharge capacity at the third cycle at each constant current was measured in the same manner as the measurement of the initial discharge capacity, except that the measurement conditions were changed to a constant current of 1 C.
  • the ratio of the discharge capacity at 1 C to the discharge capacity at 0.1 C in the third cycle was calculated as a percentage. The higher the value, the faster the charge / discharge is possible.
  • each polymer used as the binder is shown in Tables 1 to 3 separately for polymer X component, polymer Y component, and polymer Z component.
  • the polymer Y-1 is a hydride of acrylonitrile-butadiene rubber, and the ethylene units in the polymer composition are obtained by hydrogenating butadiene units.
  • PVDF polyvinylidene fluoride
  • # 1100 manufactured by Kureha Chemical Co., Ltd., NMP insoluble content less than 0.1% by weight was used.
  • the polymer X_ l 1. 5 parts solution in NMP, lithium cobalt acid as the active material (L i C o 0 2) 100 parts acetylene blanking rack as the conductive material (Electrochemical Co.: HS- 1 00 3 parts were mixed, NMP was further added so that the solid content became 77%, and the mixture was stirred and mixed with a planetary mixer to obtain a uniform positive electrode slurry. A positive electrode and a secondary battery were manufactured using this slurry. Table 4 shows the results of measuring the peel strength of the positive electrode and the characteristics of the secondary battery at 25 ° C.
  • Example 9 A slurry composition was prepared in the same manner as in Example 1 except that the polymer shown in Table 4 was used as the polymer X component. Table 4 shows the results of measuring the characteristics of the positive electrode and the secondary battery produced using these slurry compositions in the same manner as in Example 1.
  • Example 9 A slurry composition was prepared in the same manner as in Example 1 except that the polymer shown in Table 4 was used as the polymer X component. Table 4 shows the results of measuring the characteristics of the positive electrode and the secondary battery produced using these slurry compositions in the same manner as in Example 1.
  • a slurry composition was prepared in the same manner as in Example 10 using the components and amounts shown in Table 5, and a slurry composition, an electrode prepared using the slurry composition, and The characteristics of the secondary battery were tested. Table 5 shows the test results. In Comparative Example 4, the battery performance was not able to be measured because the binding force was weak and the formed electrode was cracked.
  • a solution obtained by dissolving 0.8 parts of polymer X—100.8 in NMP and a dispersion obtained by dispersing 1.5 parts of polymer Z—11.5 in NMP were mixed.
  • 100 parts of lithium cobaltate as an active material and 5 parts of acetylene black (HS-100, manufactured by Denki Kagaku) as a conductivity-imparting agent were added, and NMP was further added so that the solid content became 75%.
  • the mixture was stirred and mixed using a planetary mixer to obtain a uniform positive electrode slurry.
  • a positive electrode and a secondary battery were manufactured using this slurry.
  • Table 6 shows the results of positive electrode peel strength, battery capacity measured at 30 ° C, and charge / discharge cycle characteristics and charge / discharge rate characteristics measured at 60 ° C.
  • Example 10 a dispersion having a solid content of 87% was prepared by kneading lithium cobaltate, polymer Z-5 (0.4 part) and NMP for 1 hour in advance.
  • a lithium ion secondary battery was prepared in the same manner as in Example 10, except that a solution prepared by dissolving Y-1 and polymer X-15 in NMP was added in an amount of 0.2 part based on the solid content, respectively, to prepare a carbon coating.
  • a slurry composition for a positive electrode was obtained. The viscosity of this slurry composition was 2,40 OmPa ⁇ s, and the rate of change of the slurry settling property was 2.5%. Electrode made using this slurry composition And c Table 7 The results in the characteristics of the secondary battery was measured at 2 5 ° C Table 7
  • a slurry composition was prepared in the same manner as in Example 7 using the components and amounts shown in Table 7, and the characteristics of the slurry composition, the electrodes produced using the slurry composition, and the secondary battery were tested. Table 7 shows the test results.
  • the peel strength is high and high binding performance is exhibited even when the amount of the binder polymer used is small.
  • the lithium ion secondary battery having this electrode had a high battery capacity and exhibited good charge / discharge cycle characteristics and rate characteristics.
  • an electrode having a low swelling property with respect to an electrolytic solution and an excellent binding property of an active material can be obtained, which is suitable for production of electrodes for various batteries and electrochemical capacitors.
  • an electrode having a low swelling property with respect to an electrolytic solution and an excellent binding property of an active material can be obtained, which is suitable for production of electrodes for various batteries and electrochemical capacitors.
  • a lithium ion secondary battery provided with this electrode has high charge / discharge capacity, good cycle characteristics, and excellent rate characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書 電極用スラリ一組成物、 電極および二次電池 発明の属する技術分野
本発明は電極用スラリー組成物、 それを用いて製造される電極および該電 極を有する二次電池に関する。 背景技術 .
近年、 ノート型パソコンや携帯電話、 P D Aなどの携帯端末の普及が著し い。 そしてこれらの電源には、 リチウムイオン二次電池が多用されている。 最近では、携帯端末の使用時間の延長や充電時間の短縮などの要望が高まり、 これに伴い電池の高性能化、 特に高容量化と充電速度 (レート特性) の向上 が強く求められている。
リチウムイオン二次電池は、正極と負極とをセパレーターを介して配置し、 電解液とともに容器内に収納した構造を有する。電極(正極および負極)は、 電極活物質 (以下、 単に活物質と記すことがある。) と、 必要に応じて導電付 与剤などとを電極用バインダーポリマー (以下、 単にバインダーと記すこと がある。) によりアルミニウムや銅などの集電体に結着させたものである。電 極は、 通常、 バインダーを液状媒体に溶解または分散させ、 これに活物質な どを混合して得られる二次電池電極用スラリ一組成物を集電体に塗布して、 該液状媒体を乾燥などにより除去して、混合層として結着させて形成される。 電池容量は、 活物質の充填量に強く影響される。 一方、 レート特性は電子 の移動の容易さに影響され、 レート特性の向上にはカーボンなどの導電付与 剤の増量が効果的である。 電池という限られた空間内で活物質と導電付与剤 を増量するには、 バインダー量を低減する必要がある。 しかしながら、 バイ ンダー量を少なくすると活物質の結着性が損なわれるという問題があった。 そのため、 使用量が少なくても活物質を強く結着できるバインダーが求めら れている。
従来、 リチウムイオン二次電池の正極用バインダ一としてはポリフッ化ビ 二リデンなどのフッ素含有ポリマーが汎用されているが、 結着力や柔軟性が 不足しているので電池の高容量化やレート特性の向上は困難であった。
上記のフッ素含有ポリマーの欠点を改善する方法として、 ゴム系高分子パ インダーを用いることが提案された(特開平 4 _ 2 5 5 6 7 0号公報)。 しか し、 ゴム系高分子を用いて電極を作成すると結着力や柔軟性は改善し得るも のの、 電池のサイクル特性が劣り、 繰り返し充放電により電池容量が低下し たり、 レート特性が悪化するという問題があった。 これは、 バインダーが電 解液により膨潤するため、 結着性が次第に低下して集電体から活物質が剥離 したり、 バインダ一が集電体を覆って電子の移動を妨げたりするためと考え られる。
このように、 これまで、 電池の高容量化とレート特性の向上とを両立させ ることは困難であった。 発明の開示
本発明の目的は、 電解液に対する膨潤度が低く、 かつ結着性が良好なバイ ンダーを含有する電極用スラリー組成物、 および該スラリー組成物を用いて 製造される電極を提供することである。 .
また本発明の他の目的は、 電池の高容量化とレート特性の向上を達成した 二次電池を提供することである。
本発明者らは、 アタリロェトリル単位またはメタタリロニトリル単位と、 特定の 1ーォレフインまたは (メタ) アクリル酸エステル単位を有する特定 組成の共重合体からなるバインダ一は、 電解液に対する膨潤度が低くかつ結 着性が良好であることを見出した。 さらに、 該重合体を含む電極用スラリー 組成物を用いて製造したリチウムイオン二次電池は高い電池容量と良好な充 放電サイクル特性およびレート特性を示すことを見出し、 これらの知見に基 づいて本発明を完成するに至った。
かくして本発明によれば、 下記 [ 1 ] 〜 [ 4 ] が提供される。
[ 1 ] バインダーと電極活物質と液状媒体とを含有してなる電極用スラリー 組成物であって、
該パインダ一が、 アタリロニトリルまたはメタクリロニトリル由来の繰り 返し単位 60〜 95モル%と、
1一才レフインおよび一般式 (1) で表される化合物
CH2 = CR1-COOR2 (1)
(式中、 R1は水素原子またはメチル基を、 R2はアルキル基を示す。) から選ばれる少なくとも 1種の単量体由来の繰り返し単位 5〜 30モル% とを有するポリマー Xを含有し、
該液状媒体がポリマー Xを溶解するものであることを特徴とする電極用ス ラリ一組成物。
[2] バインダーが、 _ 80〜0°Cのガラス転移温度と 5重量%以下の N— メチルピロリ ドン不溶分とを有するポリマー Yをさらに含み、
ポリマー Xおよびポリマー Yの含有量の割合が、 X : Yの重量比で 1 : 1 0〜10 : 1である上記 [1] 記載の電極用スラリー組成物。
[3] バインダーが、 一 80〜0°Cのガラス転移温度と 50重量%以上の N 一メチルピロリ ドン不溶分とを有するポリマー Zをさらに含み、
ポリマー Xおよびポリマー Zの含有量の割合が、 X : Zの重量比で 1 : 1 0〜10 : 1である上記 [1] 記載の電極用スラリー組成物。
[4] バインダーが、 ポリマー X、 ポリマー Yおよびポリマー Zを含有し、 これらの含有量の割合が、 (X + Y) : Zの重量比で 5 : 1~1 : 5である上 記 [ 1 ] 記載の電極用スラリ一組成物。
[1] 〜' [4] の電極用スラリー組成物は、 リチウムイオン二次電池の正 極用であることが好ましい。
上記液状媒体は、 N—メチルピロリ ドンであることが好ましい。
上記ポリマー Yは、 アタリロェトリル/ブタジエン共重合体水素化物であ ることが好ましい。
上記ポリマー Zは、 ァクリルゴムであることが好ましい。
また、 本発明によれば、 下記 [5] 〜 [9] が提供される。
[5] 少なくともバインダーと電極活物質とを含有する混合層が集電体に結 着してある電極であって、
該バインダーが、 アタリロニトリルまたはメタクリロニトリル由来の繰り 返し単位 60〜 95モル0 /0と、 1一才レフインおよび一般式 (1) で表される化合物
CH^CR1— COOR2 (1)
(式中、 R1は水素原子またはメチル基を、 R 2はアルキル基を示す。) から選ばれる少なくとも 1種の単量体由来の繰り返し単位 5〜 30モル%と を有するポリマー Xを含有するものであることを特徴とする電極。
[6] バインダーが、 一 80〜0°Cのガラス転移温度と 5重量%以下の N— メチルピロリ ドン不溶分とを有するポリマー Yをさらに含み、
ポリマー Xおよびポリマー Yの含有量の割合が、 X : Yの重量比で 1 : 1 0〜10 : 1である上記 [5] 記載の電極。
[7] バインダーが、 一 80〜0°Cのガラス転移温度と 50重量%以上の N —メチルピロリ ドン不溶分とを有するポリマー Zをさらに含み、
'ポリマー Xおよびポリマー Zの含有量の割合が、 X : Zの重量比で 1 : 1 0〜: L 0 : 1である上記 [5] 記載の電極。
[8] バインダーが、 ポリマー X、 ポリマー Yおよびポリマー Zを含有し、 それらの含有量の割合が、 (X + Y) : Zの重量比で 5 : 1〜1 : 5である上 記 [5] 記載の電極。
[9] 上記 [5] 〜 [8] のいずれかに記載の電極を有する二次電池。 発明を実施するための最良の形態
以下、 本発明を、 1) 電極用スラリー組成物、 2) 電極、 3) 二次電池に 項分けして詳細に説明する。
1) 電極用スラリー組成物
本発明の電極用スラリー組成物 (以下、 単に 「スラリー組成物」 と記すこ とがある。) は、 電極活物質、 それを集電体に結着するためのバインダーおよ び液状媒体を含有してなるものである。
本発明のスラリ一組成物におけるバインダ一は、 アタリロニトリルまたは メタクリロニトリル由来の繰り返し単位と、 1一才レフインおよび一般式
(1) で表される化合物
CH^CR'-COOR2 (1)
(式中、 R1は水素原子またはメチル基、 R 2はアルキル基を示す。) から選ばれる少なくとも 1種以上の単量体 (以下、 第 2の単量体ということ がある。)由来の繰り返し単位を含有するポリマー Xを必須成分とするもので あ 。
ポリマー X中のァクリロニトリルまたはメタクリロニトリル由来の繰り返 し単位含有量は、 ポリマー Xの全量に対して 6 0 ~ 9 5モル%、 好ましくは 6 5〜9 0モル0 /0である。 アタリロニトリルまたはメタクリロニトリル由来 の繰り返し単位含有量が少なすぎると電解液に対する膨潤度が大きくなるた め、 結着持続性が劣りサイクル特性が低下する。 逆に、 多すぎると活物質の 結着性が劣る。
ポリマー X中の、 第 2の単量体由来の繰り返し単位の含有量は 5〜 3 0モ ル%、 好ましくは 1 0〜2 5モル%である。 第 2の単量体由来の繰り返し単 位の含有量が少なすぎると活物質の結着性が劣るとともに、 スラリ一組成物 を集電体へ塗布する際に均一に塗布することが困難になる。 逆に、 過度に多 い場合でも、 かえって活物質の結着性は低下する。 さらに、 電解液に対する 膨潤度も大きくなる傾向がある。
ポリマー Xの製法は特に限定されない。 例えば、 アクリロニトリルまたは メタタリロニトリルと第 2の単量体を、 乳化重合法、 懸濁重合法、 分散重合 法、 溶液重合法または塊状重合法などの公知の重合法により共重合して得る ことができる。 第 2の単量体として用いられる 1—ォレフインとしては、 ェ チレン、 プロピレン、 1ーブテン、 1—ペンテン、 3ーメチノレー 1—ブテン、 1—へキセンなどが挙げられ、 中でも、 エチレン、 プロピレン、 1ーブテン などの炭素数が 2〜4の 1—ォレフインが好ましく、 エチレンが特に好まし レ、。
前記一般式 (1 ) で表される化合物としては、 アクリル酸メチル、 アタリ ル酸ェチル、 アクリル酸プロピル、 アクリル酸イソプロピル、 アクリル酸 n 一プチル、 アクリル酸イソブチル、 アクリル酸 n—ァミル、 アクリル酸イソ ァミル、 アクリル酸 n—へキシル、 アクリル酸 2—ェチルへキシル、 アタリ ル酸ラウリノレなどのァクリル酸アルキルエステル類;
メタクリル酸メチル、 メタクリル酸ェチル、 メタクリル酸プロピル、 メタ クリル酸ィソプロピル、メタタリル酸 n一プチル、メタタリル酸ィソブチル、 メタクリル酸 n—ァミル、 メタクリル酸イソァミル、 メタクリル酸 n—へキ シル、 メタクリル酸 2—ェチルへキシル、 メタクリノレ酸ラウリノレなどのメタ クリル酸アルキルエステル類; などが挙げられる。
中でも、 前記一般式 (1 ) において R 2が炭素数 3以下の化合物が好まし. く、 アクリル酸メチルおよびメタクリル酸メチルがより好ましい。
また、 例えば、 ブタジエンなどの共役ジェン類を原料単量体の一部として 用いて得られた重合体を水素化することにより第 2の単量体単位由来の構造 を有するようにしてもよい。 共役ジェンとしては、 1, 3 _ブタジエン、 2 —メチル一 1, 3 _ブタジエン (イソプレン)、 2、 3—ジメチノレー 1, 3— ブタジエン、 1, 3—ペンタジェンなどが挙げられる。
これら第 2の単量体単位由来の構造を形成し得る単量体は、 単独で用いて もよく、 また 2種以上を併用してもよい。
ポリマー Xは、 本発明のスラリー組成物に用いる液状媒体に溶解するもの であれば、 その他の共重合可能な単量体由来の単位を含有していてもよい。 上記共重合可能な単量体としては、 例えば、 ァクリル酸ヒ ドロキシプロピ ル、 メタクリル酸ヒ ドロキシプロピルなどのアルキル基に水酸基を有するァ クリル酸エステルまたはメタクリル酸エステル; ク口 トン酸メチル、 クロ ト ン酸ェチル、 クロ トン酸プロピル、 クロ トン酸ブチル、 クロ トン酸ィソブチ ル、 クロトン酸 n—アミル、 クロトン酸イソァミル、 クロ トン酸 n—へキシ ル、 クロトン酸 2—ェチルへキシル、 クロ トン酸ヒ ドロキシプロピルなどの クロ トン酸エステル; メタタリル酸ジメチルァミノェチル、 メタタリル酸ジ ェチルアミノエチルなどのアミノ基含有メタクリル酸エステル;メ トキシポ リエチレングリコールモノメタタリレートなどのアルコキシ基含有メタクリ ル酸エステル;アルキル基にリン酸残基、 スルホン酸残基、 ホウ酸残基など を有するァクリル酸エステルまたはメタクリル酸エステル;ァクリル酸、 メ タクリル酸、 クロ トン酸、 イソクロトン酸などのエチレン性不飽和モノカル ボン酸;マレイン酸、 フマル酸、 シトラコン酸、 メサコン酸、 グルタコン酸、 ィタコン酸などの不飽和ジカルボン酸およびその酸無水物;が挙げられる。 これらの単量体は 2種以上併用してもよく、 これらの単量体単位の含有量 の合計は 3 5モル0 /0以下、 好ましくは 2 0モル0 以下である。 ポリマー Xのガラス転移温度 (T g ) は通常 0 °Cより高く、 好ましくは 5 0 ~ 9 0 °Cである。 ポリマー Xの T gが過度に低いと、 電極をプレスして電 極密度を高める際に十分に電極密度を上げられない場合がある。
本発明の電極用スラリ一組成物において、 ポリマー Xは単独でバインダー として用いることができるが、 他のポリマーと併用してもよい。 ポリマー X と併用できるポリマーは特に限定されないが、 好ましいポリマーとしては、 T gが一 8 0〜 0 °Cであり、 かつ N—メチルピロリ ドン (以下、 「NM P」 と 記すことがある。) に対する不溶分量が 5重量%以下、好ましくは 3重量%以 下、 より好ましくは 1重量%以下であるポリマー Yが挙げられる。 ポリマー Yを併用することにより、 活物質などの固形分が沈降しにくく、 安定性の高 ぃスラリ一組成物が得られる。
NM P不溶分量は、 NM P 2 0ミリリッ トルにポリマー 0 . 2 gを温度 6 0 °Cで 7 2時間浸潰した後、 8 0メッシュの篩でろ過し、 篩上の成分を乾燥 して求めた重量を浸漬前のポリマー重量 (0 . 2 g ) で除して求められる百 分率で表わす。
ポリマー Yの T gは、 一 8 0〜 0 °C、 好ましくは一 6 0〜一 5 °Cであり、 より好ましくは一 4 0〜一 1 0 °Cである。 T gが高すぎると、 ポリマー Yが 活物質などと集電体上に形成する電極混合層 (以下、 「混合層」 と記すことが ある。) に柔軟性がなく、電池の充放電を繰り返すと混合層にクラックが生じ て活物質が集電体から脱落しやすくなるおそれがある。 また、 T gが低すぎ ると電池容量が低下する可能性がある。
ポリマー Yの構成単位の単量体としては、 特に限定はないが、 フッ素を含 有しない単量体が好ましい。 具体例としては、 エチレン、 プロピレン、 1一 ブテン、 1—ペンテン、 ィソブテン、 3—メチルー 1ーブテンなどの α—才 レフイン類;アクリル酸ェチル、 アクリル酸 η—プロピル、 アクリル酸ブチ ル、 アクリル酸イソプチル、 アクリル酸 η—ォクチル、 アクリル酸 2—ェチ ルへキシル、 ァク リル酸メ トキシェチル、 アタリル酸ェトキシェチルなどの ァクリル酸エステル類; メタクリル酸 η—ォクチル、 メタクリル酸 η—デシ ル、 メタクリル酸 η—ラウリルなどのメタクリル酸エステル類; 2—メチル 一 1 , 3—ブタジエン (イソプレン)、 2, 3—ジメチノレ一 1 , 3—ブタジェ ン、 1, 3—ペンタジェン、 1, 3 _へキサジェンなどの共役ジェン類; ァ クリロニトリル、 メタタリロニトリルなどの不飽和二トリル化合物;などが 挙げられる。
ポリマー Yは、 プロック共重合体やランダム共重合体であってもよい。 ポリマー Yの好ましい例としては、 アタリロニトリル /ブタジエン共重合 体およびその水素化物、 エチレン/アクリル酸メチル共重合体、 ブタジエン /アクリル酸メチル共重合体、 スチレン Zブタジエン共重合体、 ブタジエン ゴム、 エチレン/プロピレン 非共役ジェン三元共重合体 (E P D M)、ェチ レン/ビュルアルコール共重合体などが挙げられ、 アタリロニトリル/ブタ ジェン共重合体水素化物が特に好ましい。
ポリマー Yの製法は特に限定されない。例えば、乳化重合法、懸濁重合法、 分散重合法または溶液重合法などの公知の重合法により重合して得ることが できる。
ポリマー Xと併用するポリマーとして、 T gがー 8 0〜0 °Cで NM Pに対 する不溶分量が 5 0重量%以上であるポリマー Zも好適に用いることができ る。 ポリマー Zを用いることにより、 バインダー全体としては液状媒体にあ る程度溶解してスラリ一組成物が塗工に好適な高粘度になるようにし、かつ、 未溶解のバインダ一が繊維状ないし粒子状を保持することによりバインダー が活物質の表面を覆い隠して電池反応を阻害することのないようにすること ができる。 '
ポリマー Zの T gは、 _ 8 0〜 0 °C、 好ましくは一 6 0 5 °C、 より好 ましくは一 5 0〜一 1 0 °Cである。 T gが高すぎると、 電極の柔軟性が低下 し、 充放電を繰り返した際に活物質の集電体からの剥離が起きやすくなる。 また、 T gが低すぎると電池容量の低下を招く場合がある。
ポリマー Zの構成単位の単量体としては、 特に限定はなく、 ポリマー Xお よびポリマー Yを構成する単量体として例示したものをいずれも用いること ができる。 ポリマー Zが上記範囲の T gを有するようにするためには、 ァク リル酸ェチル、 アクリル酸 n—プロピル、 アクリル酸 n—プチル、 アクリル 酸イソプチル、 アクリル酸 n—ォクチル、 アクリル酸 2—ェチルへキシルな どのァクリル酸アルキルエステル; メタク リル酸 n—ォクチル、 メタクリル 酸 n—デシル、 メタクリル酸 n—ラウリルなどのメタクリル酸アルキルエス テル;ブタジエン、 ィソプレンなどの共役ジェン; 由来の繰り返し単位を有 することが好ましい。
また、 ポリマ一 Zの NM Pに対する不溶分は、 5 0重量%以上、 好ましく は 6 0重量%以上、 より好ましくは 7 0重量%以上である。 NM P不溶分量 が過度に小さいと活物質の結着持続性が低下し、 繰り返し充放電による容量 減が起こる場合がある。
ポリマー Zが上記範囲の NM P不溶分量を含有するためには、 多官能ェチ レン性不飽和単量体を単量体成分に加えて架橋重合体を形成させることが好 ましい。 多官能エチレン性不飽和単量体の使用量は、 ポリマー Z製造のため の全単量体使用量に対する割合が、 通常、 0 . 1〜 1 0重量%、 好ましくは 0 . 5〜5重量%になるようにする。
多官能エチレン性不飽和単量体の例としては、 ジビエルベンゼンなどのジ ビエル化合物;エチレンジメタクリ レート、 ジエチレングリコールジメタク リ レート、 エチレングリコールジメタクリ レートなどのジメタクリル酸エス テル類; トリメチロールプロパントリメタタリ レートなどのトリメタクリル 酸エステル類; ジエチレングリコールジアタリ レート、 1 , 3—ブチレング リコールジァクリ レートなどのジァクリル酸エステル類; トリメチロールプ 口パントリアタリ レートなどのトリァクリル酸エステル類 ; が挙げられる。 また、 ブタジエン、 イソプレンなどの共役ジェン類を共重合させたポリマ 一を用いる場合は、 重合温度、 重合転化率おょぴ分子量調整剤の量などの重 合反応条件を適宜調整することにより架橋ポリマーとすることができる。 上記の各特性を備えたポリマー Zの例としては、 ァクリル酸 2 _ェチルへ キシル /メタクリル酸/メタクリロ-トリル Zジエチレングリコールジメタ クリ レート共重合体、 ァクリル酸ブチル Zァクリ ロニトリル Zジエチレング リコールジメタクリ レート共重合体、 ァクリル酸ブチル Zァクリル酸 Zトリ メチロールプロパントリメタタリレート共重合体などのァクリルゴム ;ァク リロ二トリル/ブタジエン共重合体、 ブタジエンゴム、 メタクリル酸メチル //ブタジエン共重合体などのジェン系ゴム;が挙げられる。 中でも、 アタリ ルゴムが特に好ましい。 ポリマー Zの粒子径は、 好ましくは 0 . 0 0 5〜1 0 0 0 μ ηι、 より好ま しくは 0 . 0 1〜; L 0 0 /i m、 特に好ましくは 0 . 0 5〜1 0 111でぁる。 粒子径が大きすぎるとバインダーとして必要な量が多くなりすぎ、 電極の内 部抵抗が増加する。 逆に、 粒子径が小さすぎると活物質の表面を覆い隠して 電池反応を阻害してしまう。
ここで、 粒子径は、 透過型電子顕微鏡写真で無作為に選んだポリマー粒子 1 0 0個の径を測定し、 その算術平均値として算出される個数平均粒子径で ある。
ポリマー Zの製法は特に限定されず、 例えば、 乳化重合法、 懸濁重合法、 分散重合法または溶液重合法などの公知の重合法により重合して得ることが できるが、 乳化重合法で製造することが、 液状媒体に分散したときの粒子径 の制御が容易であるので好ましい。
ポリマー Xとポリマー Yまたはポリマー Zを併用する場合において、 それ ぞれの含有量の割合は特に限定されないが、 それぞれの重量比で、 X: Yま たは X: Zが通常 1 : 1 0〜1 0 : 1、 好ましくは 1 : 5〜5 : 1、 より好 ましくは 1 : 3〜3 : 1である。
また、 ポリマー X、 ポリマー Y、 ポリマー Ζの 3種を併用してもよい。 こ の場合の各ポリマーの含有量の割合は、 (Χ + Υ) : Ζの重量比で、 1 : 5〜 5 : 1が好ましく、 1 : 3〜3 : 1がより好ましく、 1 : 2〜2 : 1が特に 好ましい。 ポリマー Ζの量が過度に多いと、 結着性は向上するものの、 スラ リーの流動性が低下し、 電極に塗布して得られる混合層が平滑でなくなるお それカある。
本発明における全バインダーの量は、 活物質 1 0 0重量部に対して、 好ま しくは 0 . 1〜5重量部、 より好ましくは 0 . 2〜4重量部、 特に好ましく は 0 . 5〜 3重量部である。 全バインダー量が少なすぎると電極から活物質 が脱落しやすくなるおそれがあり、 逆に多すぎると活物質がバインダーに覆 い隠されて電池反応が阻害される可能性がある。
本発明の二次電池電極用スラリー組成物に用いる液状媒体は、 ポリマー X を溶解する液体であれば特に制限されないが、 常圧における沸点が好ましく は 8 0 °C以上 3 5 0 °C以下、 より好ましくは 1 0 0 °C以上 3 0 0。(:以下のも のである。
かかる液状媒体の例としては、 N—メチルピロリ ドン、 N, N—ジメチル ァセトアミ ド、 N, N—ジメチルホルムアミ ドなどのアミ ド類が挙げられる。 中でも N—メチルピロリ ドンが、 集電体への塗布性やポリマー Zの分散性が 良好なので特に好ましい。
本発明のスラリ一組成物において液状媒体の量は、 バインダーや後述する 活物質および導電付与剤の種類に応じ、 塗工に好適な粘度になるように調整 して用いる。 バインダー、 活物質および導電付与剤を合わせた固形分の濃度 は、好ましくは 50〜95重量%、より好ましくは 70〜90重量%である。 本発明のスラリ一組成物に用いられる活物質は、 電池やキャパシタの種類 により適宜選択される。 本発明のスラリー組成物は、 正極、 負極のいずれに も使用することができ、 正極に使用するのが好ましく、 リチウムイオン二次 電池の正極に用いるのがより好ましい。
リチウムイオン二次電池に用いる場合、 活物質は、 通常のリチウムイオン 二次電池で使用されるものであれば、いずれであっても用いることができる。 正極活物質としては、 例えば、 L i C o〇2、 L i N i 02、 L i Mn 02、 L i Mn 204などのリチウム含有複合金属酸化物; T i S 2、 T i S 3、 非晶 質 Mo S 3などの遷移金属硫化物; C u 2V23、 非晶質 V20— P 205、 M o 03、 V205、 VeO 3などの遷移金属酸化物;が例示される。 さらに、 ポリアセチレン、 ポリ一 p—フヱニレンなどの導電性高分子を用いることも できる。
また、 負極活物質としては、 例えば、 アモルファスカーボン、 グラフアイ ト、 天然黒鉛、 メゾカーボンマイクロビーズ (MCMB)、 ピッチ系炭素繊維 などの炭素質材料、 ポリアセン等の導電性高分子などが挙げられる。 活物質 の形状や大きさについては特に制限はなく、 機械的改質法により表面に導電 付与剤を付着させたものも使用できる。
電気化学キャパシタに用いる場合、 活物質は、 通常の電気化学キャパシタ で使用されるものであれば、 いずれも用いることができる。 正極および負極 の活物質としては、 例えば、 活性炭が挙げられる。
本発明のスラリー組成物には、 必要に応じて導電付与剤が添加される。 導 電付与剤としては、 リチウムイオン二次電池ではグラフアイ ト、 活性炭など のカーボンが用いられる。 '
二ッケル水素二次電池で用いられる導電付与剤は、正極では酸化コバルト、 負極ではニッケル粉末、 酸化コバルト、 酸化チタン、 カーボンなどを挙げる ことができる。
上記両電池において、 カーボンとしては、 アセチレンブラック、 ファーネ スブラック、黒鉛、炭素繊維、 フラーレン類を挙げることができる。 中でも、 アセチレンブラック、 ファーネスブラックが好ましい。
導電付与剤の使用量は、 活物質 1 0 0重量部あたり、 通常、 1〜 2 0重量 部、 好ましくは 2〜 1 0重量部である。
上記のスラリー組成物には、 その他必要に応じて粘度調整剤、 流動化剤な どを添加してもよい。
本発明の電極用スラリー組成物は、 前記各成分を混合して製造される。 混 合方法および混合順序は特に限定されない。 例えば、 ポリマー Zを液状媒体 に分散させた分散液にポリマー Xおよびポリマー Yと活物質と導電付与剤を 加え、 混合機により混合して製造できる。 分散の程度は粒ゲージにより測定 可能であるが、 少なくとも 1 0 0 / mより大きい凝集物が無くなるように混 合分散することが好ましい。 混合機としては、 ボールミル、 サンドミル、 顔 料分散機、 らい潰機、 超音波分散機、 ホモジナイザー、 プラネタリーミキサ 一、 ホバートミキサーなどを用いることができる。
2 ) 電極
本発明の電極は、 少なく とも前記のバインダーと活物質を含有する混合層 が集電体に結着してあるものである。
集電体は、 導電性材料からなるものであれば特に制限されない。 リチウム イオン二次電池では、 鉄、 銅、 アルミニウム、 エッケル、 ステンレスなどの 金属製のものである力 特に正極にアルミニウムを、負極に銅を用いた場合、 本発明のバインダ一組成物の効果が最もよく現れる。 リチウムイオン二次電 池の集電体の形状は特に制限されないが、 厚さ 0 . 0 0 1〜0 . 5 mm程度 のシート状のものが好ましい。
ニッケル水素二次電池では、 パンチングメタル、 エキスパンドメタル、 金 網、 発泡金属、 網状金属繊維焼結体、 金属メツキ樹脂板などを用いることが できる。
本発明の電極は、 集電体に、 本発明の電極用スラリー組成物を塗布し、 乾 燥することにより、 バインダーおよび活物質、 さらに必要に応じ加えられた 導電付与剤、 増粘剤などを含有する混合層を結着させることで製造すること ができる。
スラリー組成物の集電体への塗布方法は特に制限されない。 例えば、 ドク ターブレード法、 ディップ法、 リバースロール法、 ダイレク トロール法、 グ ラビア法、 ェクストルージョン法、 ハケ塗り法などの方法が挙げられる。 塗 布するスラリー量も特に制限されないが、 液状媒体を乾燥して除去した後に 形成される、 活物質、 バインダーなどからなる混合層の厚さが、 通常、 0 .
0 0 5 ~ 5 mm、 好ましくは 0 . 0 1〜 2 mmになる量が一般的である。 乾 燥方法も特に制限されず、例えば温風、熱風、低湿風による乾燥、真空乾燥、 (遠) 赤外線や電子線などの照射による乾燥法が挙げられる。 乾燥速度は、 通常は応力集中によつて混合層に亀裂が入ったり、 混合層が集電体から剥離 したりしない程度の速度範囲の中で、 できるだけ早く液状媒体が除去できる ように調整する。
更に、 乾燥後の集電体をプレスすることにより電極の活物質の密度を高め てもよい。 プレス方法は、 金型プレスやロールプレスなどの方法が挙げられ る。
3 ) 二次電池
本発明の二次電池は、 上記の電極や電解液を含み、 セパレーター等の部品 を用いて、常法に従って製造されるものである。具体的な製造方法としては、 例えば、 負極と正極とをセパレーターを介して重ね合わせ、 これを電池形状 に応じて卷く、 折るなどして電池容器に入れ、 電池容器に電解液を注入して 封口する。 また必要に応じてエキスパンドメタルや、 ヒューズ、 P T C素子 などの過電流防止素子、 リード板などを入れ、 電池内部の圧力上昇、 過充放 電の防止をする事もできる。電池の形状は、 コイン型、ポタン型、シート型、 円筒型、 角形、 扁平型など何れであってもよい。
電解液は、 通常の二次電池に用いられるものであれば、 液状でもゲル状で もよく、 負極活物質、 正極活物質の種類に応じて電池としての機能を発揮す るものを選択すればよい。
リチウムイオン二次電池の電解質としては、 従来より公知のリチウム塩が いずれも使用でき、 L i C 104、 L i BF4、 L i PF6、 L i CF3C02、 L i As Fい L i S b F6、 L i B 10 C 1 i oN L i A l C l 4、 L i C l、 L i B r、 L i B (C2H5) 4、 L i CF3S03、 Li CH3S03、 L i C4 F9S3、 L i (CF3S02) 2N、 低級脂肪酸カルボン酸リチウムなどが拳 げられる。
これらの電解質を溶解させる媒体は特に限定されるものではない。 具体例 としてはプロピレンカーボネート、 エチレンカーボネート、 プチレンカーボ ネート、 ジメチノレカーボネート、 ェチノレメチノレカーボネート、 ジェチ /レカー ボネートなどのカーボネート類; Ί一プチロラク トンなどのラタ トン類; ト リメ トキシメタン、 1, 2ージメ トキシェタン、 ジェチ /レエ一テル、 2—ェ トキシェタン、 テトラヒ ドロフラン、 2—メチルテトラヒ ドロフランなどの エーテル類; ジメチルスルホキシドなどのスルホキシド類等が挙げられ、 こ れらは単独もしくは二種以上の混合溶媒として使用することができる。
また、 ニッケル水素二次電池の電解質としては、 例えば、 従来公知の濃度 が 5モル/リットル以上の水酸化カリゥム水溶液を使用することができる。 以下に、 実施例を挙げて本発明を説明するが、 本発明はこれに限定される ものではない。 なお、 本実施例における部および%は、 特に断りがない限り 重量基準である。
実施例および比較例中の試験および評価は以下の方法で行った。
( 1 ) ポリマーの電解液溶媒膨潤度
ポリマー 0. 2 gを N—メチルピロリ ドン (NMP) 1 0ミリ リットルに 溶解させた液をポリテトラフロォロエチレン製シートにキャストし、 乾燥し てキャストフィ /レムを得る。 このキャストフイノレム 4 c m2を切り取って重 量を測定した後、 温度 60°Cの電解液溶媒中に浸漬する。 浸漬したフィルム を 72時間後に引き上げ、タオルペーパーで拭きとってすぐに重量を測定し、 (浸漬後重量) Z (浸漬前重量) の値を電解液溶媒膨潤度とした。 なお、 電 解液溶媒としては、 エチレンカーボネート、 プロピレンカーボネート、 ジメ チルカーボネート、 ジェチノレカーボネート、 ェチルメチノレカーボネートの 5 種の溶媒を 20°Cでの体積比で 1 : 1 : 1 : 1 : 1の割合で混合した混合溶 媒を用いた。
(2) NMP不溶分量
ポリマーの NMP不溶分量は、 ポリマー 0. 2 gを NMP 20ミリリット ルに 60°Cで 7 2時間浸漬した後、 80メッシュの篩で濾過し、 篩上の成分 を乾燥して求めた重量の、 元のポリマー重量に対する百分率で示す。
(3) ガラス転移温度 (T g)
ポリマーの T gは、 示差走査型熱量計 (DSC) により、 10°C/分で昇 温して測定した。
(4) 粒子径
ポリマーの粒子径は、 透過型電子顕微鏡写真で無作為に選んだポリマー粒 子 100個の径を測定し、 その平均値として算出される個数平均粒子径とし て求めた。
(5) スラリー沈降性
スラリー糸且成物を高さ 4 OmmN 容積 5m 1の円筒ガラス瓶に高さ 25m mになるように仕込み、 密栓をして静置し、 24時間後にガラス瓶中のスラ リー組成物の上部 5mm相当をサンプリングし、 固形分濃度を測定した。 下 式により固形分濃度の変化率を求めた。 変化率の値が小さいほどスラリー沈 降性の度合いが小さい。
変化率 (%) = { 1 - (経時上層固形分濃度 Z初期固形分濃度) } X 100
(6) ピール強度
正極の製造
正極用スラリーをアルミニウム箔 (厚さ 20 /zm) にドクターブレード法 によって均一に塗布し、 1 20°Cで 45分間乾燥機で乾燥した。 さらに真空 乾燥機にて 0. 6 k P a、 1 20°Cで 2時間減圧乾燥した後、 2軸の口ール プレスによって電極密度が 3. 3 g/cm3となるように圧縮して正極を得 た。
負極の製造
負極用スラリーを銅箔 (厚さ 1 8 μπι) にドクターブレード法によって均 一に塗布し、 正極と同様の条件で乾燥した。 2軸のロールプレスによって電 極密度が 1. 4 gZ c m3となるように圧縮して負極を得た。
ピール強度の測定
上記により得た電極 (正極または負極) を幅 2. 5 cmX長さ 10 cmの 矩形に切り、 電極表面にセロハンテープを貼り付け、 電極を固定し、 テープ を 50mm/分の速度で 1 80° 方向に剥離したときの強度 (N/cm) を 10回測定し、 その平均値を求めた。 この値が大きいほど結着強度が高く、 活物質が集電体から剥離しにくいことを示す。
(7) 電池容量
コイン型電池 (正極評価用) の製造
正極評価では、 負極としては金属リチウムを用いた。
上記 (6) に記す方法で製造した正極を直径 1 5mmの円形に切り抜き、 直径 18mm、 厚さ 25 / mの円形ポリプロピレン製多孔膜からなるセパレ 一ターを介在させて、 負極の金属リチウムが接触するように配置した。 セパ レーターとは反対側の金属リチウム上にエキスパンドメタルを入れ、 ポリプ ロピレン製パッキンを設置したステンレス鋼製のコィン型外装容器 (直径 2 Omm、 高さ 1. 8mm、 ステンレス鋼厚さ 0. 2 5mm) 中に収納した。 この容器中に電解液を空気が残らないように注入し、 ポリプロピレン製パッ キンを介して外装容器に厚さ 0. 2mmのステンレス鋼のキヤップをかぶせ て固定し、 電池缶を封止して、 直径 20mm、 厚さ約 2mmのコイン型電池 (正極評価用) を製造した。 電解液はエチレンカーボネートとェチルメチル カーボネートを 20 °Cでの体積比で 1 : 2の割合で混合した混合溶媒に L i P F sを 1モル/リットルの濃度で溶解させた溶液を用いた。
コイン型電池 (負極評価用) の製造
負極評価では、 正極としては金属リチウムを用いた。
上記 (6) に記す方法で製造した負極を直径 1 5mmの円形に切り抜き、 セパレ一ターを介在させて、正極の金属リチウムが接触するように配置した。 セパレーターとは反対側の金属リチウム上にエキスパンドメタルを入れコィ ン型外装容器中に収納し、 後の工程は正極評価用電池と同様にしてコイン型 電池 (負極評価用) を製造した。 なお、 セパレーターおよびコイン型外装容 器も、 正極評価用と同種のものを用いた。
電池容量の測定
上記の方法で製造したコイン型電池を用いて、 正極の評価においては 3 V から 4. 2 Vまで、 負極の評価においては 0 Vから 1. 2 Vまで、 所定の温 度で 0. 1 Cの定電流法によって測定した 3サイクル目の放電容量 (初期放 電容量) として電池容量を求めた。 単位は mAhZg (活物質当たり) であ る。
(8) 充放電サイクル特性
初期放電容量の測定と同様にして 3サイクル目および 50サイクル目の放 電容量を測定し、 3サイクル目の放電容量に対する 50サイクル目の放電容 量の割合を百分率で算出した。 この値が大きいほど容量減が少ないことを示 す。
(9) 充放電レート特性
測定条件を、 定電流量を 1 Cに変更したほかは、 初期放電容量の測定と同 様に各定電流量における 3サイクル目の放電容量を測定した。 3サイクル目 における 0. 1 Cでの放電容量に対する 1 Cでの放電容量の割合を百分率で 算出した。 この値が大きいほど、 高速充放電が可能なことを示す。
バインダーとして用いた各ポリマーの組成、 製法および物性を、 ポリマー X成分、ポリマー Y成分、ポリマー Z成分に分けてそれぞれ表 1〜 3に示す。 ここで、 ポリマー Y— 1はァクリロ二トリル一ブタジエンゴムの水素化物で あり、 ポリマー組成中のエチレン単位はブタジェン単位を水素化したことに よるものである。 なお、 ポリフッ化ビニリデン (P VDF) は # 1 100 (ク レハ化学社製、 NMP不溶分量 0. 1重量%未満) を用いた。
X-1 X-2 X-3 X-4 X-5 X-6 X-7 X-8 X— 9 X - 10 X— 11 ポリマ一組成 (モル%)
アクリロニトリル 78 85 91 82 78 78 87 89 80 82 84 エチレン 22 15 9 15 18 プロピレン 18 16
1-ブ亍ン 22
アクリル酸メチル 7 13 14
メタクリル酸メチル 11 6
ポリマーの製法と物性
製法 (重合方法) 溶液 溶液 溶液 溶液 溶液 溶液 懸濁 懸濁 懸濁 溶液 溶液
Tg (。C) 68 78 85 81 62 53 80 98 80 74 83 電解液溶媒膨潤度 1.5 1.3 1.3 1.6 1.7 1.8 1.7 1.7 1.9 1.5 1.6 表 1続き
X - 12 X— 13 X-14 X-15 X - 16 X— 17 X -1 X -2 X -3 X'-4 ポリマー組成(モル0 /0)
アクリロニトリル 88 80 92 90 85 80 100 35 63 30 エチレン 10 23
プロピレン 20
1 -ブテン 12
アクリル酸メチル 20 15 42 40 メタクリル酸メチル 8 23 14 30 ポリマーの製法と物性
製法 (重合方法) 乳化 懸濁 愁, ¾ 溶液 溶液 溶液 懸濁 懸濁 溶液 懸濁
Tg (°C) 78 72 98 86 78 80 97 59 73 63 電解液溶媒膨潤度 1.6 1.8 1.4 1.3 1.8 1.7 1.1 7.2 5.7 9.6
Figure imgf000020_0001
表 3
Figure imgf000021_0001
実施例 1
ポリマー X_ l 1. 5部を NMPに溶解した溶液に、 活物質としてコバ ルト酸リチウム (L i C o 02) 100部、 導電付与剤としてアセチレンブ ラック (電気化学社製: HS— 1 00) 3部を混合し、 固形分が 77%とな るようにさらに NMPを添加して、 プラネタリーミキサーで攪拌■混合して 均一な正極用スラリ一を得た。 このスラリ一を用いて正極および二次電池を 作製した。 正極のピール強度、 および 25 °Cで二次電池の特性を測定した結 果を表 4に示す。
表 4
Figure imgf000021_0002
実施例 2〜8、 比較例 1〜3
ポリマー X成分として表 4に示すポリマーを用いた他は実施例 1と同様に してスラリー組成物を調製した。 これらのスラリー組成物を用いて作製した 正極および二次電池について、 実施例 1と同様に特性を測定した結果を表 4 に記す。 実施例 9
ポリマー X— 9 5部を NMPに溶解した溶液に、 活物質として MCMB 95部を混合し、 固形分が 68%となるようにさらに NMPを添加して、 攪 拌 ·混合して均一な負極用スラリーを得た。 このスラリーを用いて負極およ び二次電池を作製した。 負極のピール強度、 および 25 °Cで二次電池の特性 を測定した結果を表 4に示す。
実施例 10
ポリマー Y— 1を 0. 6部含む NMP溶液に導電付与剤としてアセチレン ブラック (電気化学工業社製、 HS— 100) 3部を加えて顔料分散機で分 散し、 NMPを加えて固形分濃度 35%のカーボン塗料を調製した。
次いで 2対のフック型回転翼を有するプラネタリーミキサーにコバルト酸 リチウム 100部と、 ポリマー X— 1 5を 0. 2部含む NMP溶液とを仕込 み、 ここに上記のカーボン塗料 1 2. 8部と NMPとを加えて固形分濃度 8 3 %として 1時間混合した後、 さらに NM Pを加えて固形分濃度 78 %とし て 1 0分間混合してリチウムイオン二次電池正極用スラリ一組成物を得た。 スラリー組成物の粘度は 3, 660m P a · s、 スラリー沈降性の変化率は 24時間後で 3. 3%であった。 このスラリー組成物を用いて作製した電極 および二次電池の特性を 2 5 °Cで測定した結果を表 5に記す。
表 5
Figure imgf000022_0001
実施例 1 1〜; L 4、 比較例 4〜 8
表 5に示す成分および量の配合で実施例 10と同様にしてスラリ一組成物 を調製し、 スラリー組成物、 該スラリー組成物を用いて作製した電極および 二次電池の特性を試験した。 試験結果を表 5に記す。 なお、 比較例 4におい ては、 結着力が弱く、 作成した電極にひびが入ったため、 電池性能の測定は できなかった。
実施例 1 5
ポリマー X— 10 0. 8部を NMPに溶解した溶液と、 ポリマー Z— 1 1. 5部を NMPに分散した分散液を混合した。 この混合液に活物質として コバルト酸リチウム 1 00部、 導電付与剤としてアセチレンブラック (電気 化学社製: H S— 100 ) 5部を加え、 固形分が 75 %となるようにさらに NMPを添加して、 プラネタリーミキサーを用いて攪拌 -混合して均一な正 極用スラリーを得た。このスラリーを用いて正極および二次電池を作製した。 正極のピール強度、 30°Cで測定した電池容量、 および 60°Cで測定した充 放電サイクル特性および充放電レート特性の結果を表 6に示す。
表 6
Figure imgf000023_0001
実施例 16〜 2 2、 比較例 9, 1 0
ポリマーとして表 6に示す組成のものを用いたほかは、 実施例 1 5と同様 に各種特性を測定した。 結果を表 6に示す。
実施例 23
実施例 1 0において、 予めコバルト酸リチウムとポリマー Z— 5 (0. 4 部) と NM Pとで、 1時間混練して固形分濃度 87 %の分散液を調製してお き、 そこにポリマー Y— 1およびポリマー X— 1 5を NMPに溶解した溶液 を固形分基準でそれぞれ 0. 2部添加してカーボン塗料を調製したことの他 は実施例 10と同様に行ってリチウムイオン二次電池正極用スラリー組成物 を得た。 このスラリー組成物の粘度は 2, 40 OmP a · s、 スラリー沈降 性の変化率は 2. 5%であった。 このスラリー組成物を用いて作製した電極 および二次電池の特性を 2 5 °Cで測定した結果を表 7に記す c 表 7
Figure imgf000024_0001
実施例 2 4〜 2 8
表 7に示す成分および量の配合で実施例 7と同様にしてスラリ一組成物を 調製し、 スラリー組成物、 該スラリー組成物を用いて作製した電極および二 次電池の特性を試験した。 試験結果を表 7に記す。
以上から明らかなように、 本発明のスラリー組成物を用いて電極を作成す ると、 バインダーポリマーの使用量が少なくてもピール強度が大きく、 高い 結着性能を示す。 また、 この電極を有するリチウムイオン二次電池は、 高い 電池容量を有し、かつ良好な充放電サイクル特性およびレート特性を示した。 産業上の利用可能性
本発明の電極用スラリ一組成物を用いると、電解液に対する膨潤性が低く、 活物質の結着性に優れた電極が得られるので、 各種電池や電気化学キヤパシ タなどの電極の製造に好適に使用できる。
特にリチウムイオン二次電池の正極用として優れており、 この電極を備え たリチウムイオン二次電池は、高い充放電容量と良好なサイクル特性を有し、 かつレート特性にも優れる。

Claims

請求の範囲
1. バインダーと電極活物質と液状媒体とを含有してなる電極用スラリー 組成物であって、
該バインダ一が、 アタリロニトリルまたはメタクリロニトリノレ由来の繰り 返し単位 60〜 95モル0 /0と、 1ーォレフインおよび一般式 (1) で表され る化合物
CH^CR1— COOR2 ( 1 )
(式中、 R1は水素原子またはメチル基を、 R 2はアルキル基を示す。) から選ばれる少なくとも 1種の単量体由来の繰り返し単位 5〜 30モル%と を有するポリマー Xを含有し、 ·
該液状媒体がポリマー Xを溶解するものであることを特徴とする電極用ス ラリ一組成物。
2. バインダーが、 一 80〜0。Cのガラス転移温度と 5重量%以下の N— メチルピロリ ドン不溶分とを有するポリマー Yをさらに含み、
ポリマー Xおよびポリマー Yの含有量の割合が、 : 丫の重量比で1 : 1 0〜10 : 1である請求項 1記載の電極用スラリー組成物。 .
3. バインダーが、 一 80〜0°Cのガラス転移温度と 50重量%以上の N 一メチルピロリ ドン不溶分とを有するボリマー Zをさらに含み、
ポリマー Xおよびポリマー Zの含有量の割合が、 X : Zの重量比で 1 : 1 0〜 1 0 : 1である請求項 1記載の電極用スラリ一組成物。
4. バインダーが、 ポリマー X、 ポリマー Yおよびポリマー Zを含有し、 これらの含有量の割合が、 (X + Y) : Zの重量比で 5 : 1〜1 : 5である請 求項 1記載の電極.用スラリ一組成物。
5. リチウムイオン二次電池の正極用である請求項 1〜4のいずれかに記 載の電極用スラリ一組成物。
6. 液状媒体が、 N—メチルピロリ ドンである請求項 1〜4のいずれかに 記載の電極用スラリ一組成物。
7. ポリマー Yが、 ァクリロ -トリル/ブタジエン共重合体水素化物であ る請求項 2または 4に記載の電極用スラリ一組成物。
Figure imgf000026_0001
' :··:#* ·
WO 03/036744 PCT/JP02/11075
8. ポリマー Zが、 アクリルゴムである請求項 3または 4に記載の電極用 スラリ一組成物。
9. 少なくともバインダーと電極活物質とを含有する混合層が集電体に結 着してある電極であって、
該バインダーが、 アクリロニトリルまたはメタタリロニトリル由来の繰り 返し単位 60~ 95モル0 /0と、 1ーォレフインおよび一般式 (1) で表され る化合物
CH^CR1— COOR2 (1)
(式中、 R1は水素原子またはメチル基を、 R 2はアルキル基を示す。) から選ばれる少なくとも 1種の単量体由来の繰り返し単位 5〜 30モル%と を有するポリマー Xを含有するものであることを特徴とする電極。
10. バインダーが、 一 80〜0°Cのガラス転移温度と 5重量%以下の N 一メチルピロリ ドン不溶分とを有するポリマー Yをさらに含み、
ポリマー Xおよびポリマー Yの含有量の割合が、 : の重量比で1 : 1 0〜1 0 : 1である請求項 9記載の電極。
1 1. バインダーが、 _ 80〜0°Cのガラス転移温度と 50重量%以上の N—メチルピロリ ドン不溶分とを有するポリマー Zをさらに含み、
ポリマー Xおよびポリマー Zの含有量の割合が、 X : Zの重量比で 1 : 1 0〜10 : 1である請求項 9記載の電極。
1 2. バインダ一が、ポリマー X、ポリマ" Yおよびポリマー Zを含有し、 それらの含有量の割合が、 (X + Y) : Zの重量比で 5 : 1〜1 : 5である請 求項 9記載の電極。
1 3. 請求項 9〜1 2のいずれかに記載の電極を有する二次電池。
PCT/JP2002/011075 2001-10-26 2002-10-25 Slurry composition, electrode and secondary cell WO2003036744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020047006182A KR100960757B1 (ko) 2001-10-26 2002-10-25 전극용 슬러리 조성물, 전극 및 이차 전지
US10/493,491 US7316864B2 (en) 2001-10-26 2002-10-25 Slurry composition, electrode and secondary cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-329072 2001-10-26
JP2001329072A JP4200349B2 (ja) 2001-10-26 2001-10-26 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP2002079576A JP4207443B2 (ja) 2002-03-20 2002-03-20 二次電池電極用スラリー組成物、二次電池電極および二次電池
JP2002-79576 2002-03-20

Publications (1)

Publication Number Publication Date
WO2003036744A1 true WO2003036744A1 (en) 2003-05-01

Family

ID=26624132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011075 WO2003036744A1 (en) 2001-10-26 2002-10-25 Slurry composition, electrode and secondary cell

Country Status (4)

Country Link
US (1) US7316864B2 (ja)
KR (1) KR100960757B1 (ja)
CN (1) CN100435391C (ja)
WO (1) WO2003036744A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897281B2 (en) * 2003-03-18 2011-03-01 Zeon Corporation Binder composition for electric double layer capacitor electrode
US7914704B2 (en) 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode
US8043747B2 (en) 2004-09-22 2011-10-25 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP5326566B2 (ja) * 2006-03-31 2013-10-30 日本ゼオン株式会社 リチウムイオン二次電池
CN113728473A (zh) * 2019-05-17 2021-11-30 株式会社Lg新能源 导电材料分散体、以及使用该导电材料分散体制造的电极和锂二次电池
EP4024535A4 (en) * 2020-05-29 2023-10-04 Svolt Energy Technology Co., Ltd POSITIVE ELECTRODE PLATE, PRODUCTION METHOD THEREOF AND USE THEREOF

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107223B2 (en) * 1999-06-11 2012-01-31 U.S. Nanocorp, Inc. Asymmetric electrochemical supercapacitor and method of manufacture thereof
JP4736804B2 (ja) * 2003-04-24 2011-07-27 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー
KR100508925B1 (ko) * 2003-07-01 2005-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 고분자 전해질 및 이를 포함하는 리튬이차 전지
KR101154291B1 (ko) * 2005-03-23 2012-06-13 니폰 제온 가부시키가이샤 비수 전해질 2차 전지 전극용 바인더, 전극, 및 비수 전해질 2차 전지
EP1879252A4 (en) * 2005-04-19 2010-06-23 Panasonic Corp WATER-FREE ELECTROLYTE SOLUTION, ELECTROCHEMICAL ENERGY STORAGE DEVICE THEREFOR AND SECONDARY BATTERY WITH A WATER-FREE ELECTROLYTE
WO2006132141A1 (ja) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology 電解コンデンサ素子及びその製造方法
KR100670483B1 (ko) 2005-08-25 2007-01-16 삼성에스디아이 주식회사 리튬 이차 전지
CN101652884B (zh) * 2007-03-30 2013-05-15 日本瑞翁株式会社 二次电池电极用粘合剂、二次电池电极及二次电池
CN101382489B (zh) * 2007-09-07 2010-11-24 比亚迪股份有限公司 一种评价浆料的稳定性的方法
TWI385844B (zh) * 2008-11-25 2013-02-11 Ind Tech Res Inst 儲能元件
JP2010272272A (ja) * 2009-05-20 2010-12-02 Hitachi Ltd リチウム二次電池用正極及びリチウム二次電池
CN102117914B (zh) * 2009-12-30 2013-08-21 比亚迪股份有限公司 一种电池水系粘结剂及使用该粘结剂的电极及电池
KR20120112712A (ko) * 2010-02-03 2012-10-11 제온 코포레이션 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이차 전지
US8076026B2 (en) * 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
US7931985B1 (en) 2010-11-08 2011-04-26 International Battery, Inc. Water soluble polymer binder for lithium ion battery
PL2592679T3 (pl) 2010-07-09 2019-05-31 Lg Chemical Ltd Środek wiążący do akumulatorów, mający doskonalą siłę adhezji
US20110143206A1 (en) * 2010-07-14 2011-06-16 International Battery, Inc. Electrode for rechargeable batteries using aqueous binder solution for li-ion batteries
US8102642B2 (en) * 2010-08-06 2012-01-24 International Battery, Inc. Large format ultracapacitors and method of assembly
HUE036945T2 (hu) * 2010-10-28 2018-08-28 Zeon Corp Porózus membrán újratölthetõ telephez, szuszpenzió újratölthetõ telephez való porózus membránhoz, valamint újratölthetõ telep
JPWO2013084990A1 (ja) * 2011-12-06 2015-04-27 日本ゼオン株式会社 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物、二次電池正極及び二次電池
FR2985598B1 (fr) 2012-01-06 2016-02-05 Hutchinson Composition carbonee pour electrode de cellule de supercondensateur, electrode, son procede de fabrication et cellule l'incorporant.
US9273399B2 (en) 2013-03-15 2016-03-01 Ppg Industries Ohio, Inc. Pretreatment compositions and methods for coating a battery electrode
CN105074977B (zh) * 2013-03-29 2017-03-15 日本瑞翁株式会社 二次电池电极用粘合剂组合物及其制造方法、二次电池电极用浆料组合物、二次电池用电极、以及二次电池
JP6369473B2 (ja) * 2013-10-31 2018-08-08 日本ゼオン株式会社 リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6221875B2 (ja) * 2014-03-24 2017-11-01 日本ゼオン株式会社 非水系二次電池多孔膜用バインダー、非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜および非水系二次電池
US20150280239A1 (en) 2014-04-01 2015-10-01 Ppg Industries Ohio, Inc. Aqueous binder composition for lithium ion electrical storage devices
US9385374B2 (en) 2014-04-01 2016-07-05 Ppg Industries Ohio, Inc. Electrode binder composition for lithium ion electrical storage devices
JP2016027549A (ja) * 2014-06-30 2016-02-18 パナソニック株式会社 非水電解質二次電池用負極板及びその製造方法
JP6819941B2 (ja) * 2014-12-16 2021-01-27 エルジー・ケム・リミテッド Ptc物質を含む二次電池用電極を製造する方法及びそれにより製造される電極
KR101673763B1 (ko) * 2015-04-30 2016-11-07 현대자동차주식회사 전고체 리튬이온 전지 양극 및 이를 포함하는 전고체 리튬이온 전지
KR20180051498A (ko) * 2015-09-14 2018-05-16 가부시키가이샤 오사카소다 비수전해질 이차전지용 양극재료
PL3457477T3 (pl) * 2016-05-13 2023-01-02 Zeon Corporation Agregat cząstek spoiwa do elektrody urządzenia elektrochemicznego, kompozycja zawiesiny do elektrody urządzenia elektrochemicznego, sposoby ich wytwarzania, elektroda do urządzenia elektrochemicznego i urządzenie elektrochemiczne
CN110785879B (zh) 2017-06-07 2023-01-17 株式会社可乐丽 非水电解质电池用粘合剂组合物
CN108152161A (zh) * 2017-12-13 2018-06-12 桑顿新能源科技有限公司 一种锂离子电池浆料稳定性的评价方法
KR102651679B1 (ko) * 2018-10-23 2024-03-27 에스케이이노베이션 주식회사 이차전지용 분리막 및 이를 이용한 전기화학소자
CN109860635B (zh) * 2019-02-22 2021-09-03 成都新柯力化工科技有限公司 一种新能源电池专用金属网基碳纤维纸的制备方法
WO2021131980A1 (ja) * 2019-12-27 2021-07-01 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
US20230079288A1 (en) * 2020-02-19 2023-03-16 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary batteries
CN117645852B (zh) * 2024-01-29 2024-04-05 中国科学院长春应用化学研究所 一种油性粘合剂体系及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306560A (ja) * 1991-04-03 1992-10-29 Matsushita Electric Ind Co Ltd 固形電極組成物
JPH10188991A (ja) * 1996-12-27 1998-07-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物、電極、および電池
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2000344838A (ja) * 1999-06-01 2000-12-12 Hitachi Chem Co Ltd アクリル系樹脂、非水溶媒系バインダ組成物、電極の製造法、電極及び非水溶媒系二次電池
JP2001332265A (ja) * 2000-05-22 2001-11-30 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04306560A (ja) * 1991-04-03 1992-10-29 Matsushita Electric Ind Co Ltd 固形電極組成物
JPH10188991A (ja) * 1996-12-27 1998-07-21 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダー組成物、電極、および電池
JPH1125989A (ja) * 1997-07-04 1999-01-29 Jsr Corp 電池電極用バインダー
JP2000344838A (ja) * 1999-06-01 2000-12-12 Hitachi Chem Co Ltd アクリル系樹脂、非水溶媒系バインダ組成物、電極の製造法、電極及び非水溶媒系二次電池
JP2001332265A (ja) * 2000-05-22 2001-11-30 Nippon Zeon Co Ltd リチウムイオン二次電池電極用バインダーおよびその利用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897281B2 (en) * 2003-03-18 2011-03-01 Zeon Corporation Binder composition for electric double layer capacitor electrode
US7914704B2 (en) 2003-08-04 2011-03-29 Zeon Corporation Binder for electric double layer capacitor electrode
US8043747B2 (en) 2004-09-22 2011-10-25 Hitachi Chemical Company, Ltd. Binder resin composition for nonaqueous electrolyte energy device electrode, nonaqueous electrolyte energy device electrode, and nonaqueous electrolyte energy device
JP5326566B2 (ja) * 2006-03-31 2013-10-30 日本ゼオン株式会社 リチウムイオン二次電池
CN113728473A (zh) * 2019-05-17 2021-11-30 株式会社Lg新能源 导电材料分散体、以及使用该导电材料分散体制造的电极和锂二次电池
JP2022530019A (ja) * 2019-05-17 2022-06-27 エルジー エナジー ソリューション リミテッド 導電材分散液、これを用いて製造された電極及びリチウム二次電池
JP7301158B2 (ja) 2019-05-17 2023-06-30 エルジー エナジー ソリューション リミテッド 導電材分散液、これを用いて製造された電極及びリチウム二次電池
US11824200B2 (en) 2019-05-17 2023-11-21 Lg Energy Solution, Ltd. Conductive material dispersion, and electrode and lithium secondary battery manufactured using the same
EP4024535A4 (en) * 2020-05-29 2023-10-04 Svolt Energy Technology Co., Ltd POSITIVE ELECTRODE PLATE, PRODUCTION METHOD THEREOF AND USE THEREOF

Also Published As

Publication number Publication date
US7316864B2 (en) 2008-01-08
US20050069769A1 (en) 2005-03-31
CN1602558A (zh) 2005-03-30
KR100960757B1 (ko) 2010-06-01
CN100435391C (zh) 2008-11-19
KR20040048997A (ko) 2004-06-10

Similar Documents

Publication Publication Date Title
WO2003036744A1 (en) Slurry composition, electrode and secondary cell
JP4311002B2 (ja) 電極用スラリー組成物、電極および二次電池
US9202631B2 (en) Porous film and secondary battery electrode
JP4736804B2 (ja) リチウムイオン二次電池電極用バインダー
JP4218244B2 (ja) 二次電池電極用スラリー組成物、二次電池電極および二次電池
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
WO2016152262A1 (ja) 全固体二次電池
WO2001006584A1 (en) Binder composition for lithium ion secondary battery electrodes and use thereof
KR20120027457A (ko) 리튬 이차 전지의 전극 합제용 슬러리, 상기 슬러리를 사용한 전극 및 리튬 이차 전지
JP6020209B2 (ja) 二次電池負極用スラリー組成物の製造方法
JP4207443B2 (ja) 二次電池電極用スラリー組成物、二次電池電極および二次電池
JP4258614B2 (ja) 電極用スラリー組成物、電極および二次電池
JP4200349B2 (ja) 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP4412443B2 (ja) リチウムイオン二次電池負極用増粘剤およびリチウムイオン二次電池
JP6070266B2 (ja) リチウムイオン二次電池正極用スラリー組成物、リチウムイオン二次電池用正極の製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
JP4889067B2 (ja) 非水電池並びに該電池に用いる電極用ペースト及び電極
JP2013004229A (ja) リチウム二次電池電極用バインダー、リチウム二次電池電極用バインダーの製造方法、リチウム二次電池電極およびリチウム二次電池
JP4337331B2 (ja) 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP2020145062A (ja) 二次電池用負極合剤、二次電池用負極、および二次電池
KR101083129B1 (ko) 2차 전지 전극용 슬러리 조성물의 제조방법
JP2003217665A (ja) 固体電解質電池の製造方法
WO2022114033A1 (ja) 二次電池機能層用バインダー、二次電池機能層用スラリー組成物、二次電池用機能層、および二次電池
JP2001155737A (ja) リチウムイオン二次電池電極用バインダー及びその利用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047006182

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028246853

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10493491

Country of ref document: US

122 Ep: pct application non-entry in european phase