WO2003008483A1 - Aromatic fluoropolymer and use thereof - Google Patents

Aromatic fluoropolymer and use thereof Download PDF

Info

Publication number
WO2003008483A1
WO2003008483A1 PCT/JP2002/006589 JP0206589W WO03008483A1 WO 2003008483 A1 WO2003008483 A1 WO 2003008483A1 JP 0206589 W JP0206589 W JP 0206589W WO 03008483 A1 WO03008483 A1 WO 03008483A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
fap
fluorine
crosslinkable functional
aromatic compound
Prior art date
Application number
PCT/JP2002/006589
Other languages
English (en)
French (fr)
Inventor
Shunsuke Yokotsuka
Fusaaki Takeo
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to KR1020037016369A priority Critical patent/KR100870225B1/ko
Priority to DE10297034.3T priority patent/DE10297034B4/de
Priority to JP2003514037A priority patent/JP4206925B2/ja
Publication of WO2003008483A1 publication Critical patent/WO2003008483A1/ja
Priority to US10/754,601 priority patent/US6881811B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Definitions

  • the present invention relates to a fluorine-containing aromatic polymer and its use. ⁇ Background technology>
  • FAP fluorine-containing aromatic polymer
  • PAEs perfluorophenylene, perfluorobiphenylene, perfluoronaphthalenylene, and the like.
  • PAE is linear, its glass transition temperature
  • Tg can be increased by introducing a crosslinkable functional group into PAE and bridging, but the relative dielectric constant increases to about 2.7-3.0, making it difficult to achieve both low dielectric constant and high Tg It is.
  • Jp n., 66, 1053 (1993), etc. describe a fluorine-containing poly (1,4-phenylene) which is a linear FAP.
  • this insulating film If the degree of polymerization exceeds 3, the solubility in the solvent will be significantly reduced, and the coating properties required for the insulating film will be lost.In addition, the insulating film will be sublimated by heat treatment during the manufacturing process. Not applicable to membranes. J. Am. Chem. Soc., 122, 1832 (2000) describes a dendrimer, which is a branched FAP. Although these dendrimers can be dissolved in a solvent, they cannot be used as the present insulating film because their Tg is low at less than 140 ° C and they have sublimability.
  • An object of the present invention is to provide a FAP having a low relative dielectric constant and a high heat resistance and its use as an insulating film.
  • the present invention provides a method for producing a branched aromatic fluorine-containing compound (B) represented by the following formula 1 by one or more methods selected from the group consisting of the following methods (1), (2) and (3): To provide a fluorine-containing aromatic polymer having an ether bond, which contains two or more crosslinkable functional groups (A), and has a number average molecular weight of 1 ⁇ 10 3 to 5 ⁇ 10 5 .
  • n and n are each independently an integer of 1 to 4
  • p, q and r are each independently an integer of 0 or 1 to 5
  • a, b and c are each independently an integer of 0 or 1 to 3
  • the present invention provides an insulating film for an electronic device and an insulating film for a multilayer wiring board, comprising the FAP-containing insulating film.
  • the FAP of the present invention is produced from a branched aromatic fluorine compound (B) represented by the following formula 1 by one or more methods selected from the group consisting of the following methods 1), 2) and 3). FAP having two or more crosslinkable functional groups (A) in the molecule and having a number average molecular weight of 1 ⁇ 10 3 to 5 ⁇ 10 5 and having a polyester bond.
  • n and n are each independently an integer of 1 to 4
  • p, Q and r are each independently an integer of 0 or 1 to 5
  • a, b and c are each independently an integer of 0 or 1 to 3
  • the branched structure fluorine-containing aromatic compound (B) is a fluorine-containing aromatic compound represented by the above formula 1.
  • n + m is 2-3
  • p, q and r are each independently 0-3
  • a, b and c are each independently 0-2.
  • FAP The structure of the following formula 3 is more preferable as the preferred c- fluorinated aromatic compound (B) because it has excellent solubility and the production of the fluorine-containing aromatic compound (B) is easy.
  • al, b1 and c1 are each independently 0, 1 or 2, since FAP having a high glass transition temperature and excellent solubility in a solvent can be obtained.
  • fluorinated aromatic compound (B) examples include a structure represented by the following formula 4. These may be used alone or as a mixture of two or more.
  • the FAP of the present invention contains two or more crosslinkable functional groups (A) in one molecule.
  • the number is preferably 2 to 30, more preferably 3 to 20.
  • the crosslinkable functional group (A) promotes a crosslink or chain extension reaction between FAP molecules, and improves the heat resistance and solvent resistance of FAP.
  • crosslinkable functional group (A) a functional group which is crosslinked by heat, light, electron beam or the like is preferable. Functional groups that are cross-linked by heating have excellent applicability in the manufacturing process of electronic devices or multilayer wiring boards. More preferred. Further, a crosslinkable functional group (A) containing no polar group is preferable since it does not increase the relative dielectric constant of FAP.
  • crosslinkable functional group (A) examples include an ethynyl group, an 11-year-old oxocyclopenter 2,5-dien-3-yl group (hereinafter also referred to as a cyclopentene genone group), a cyano group, and an alkoxy group.
  • examples thereof include a silyl group, a diarylhydroxymethyl group, and a hydroxyfluorenyl group. From the viewpoint of heat resistance, an ethynyl group is more preferred.
  • the content of the crosslinkable functional group (A) in the FAP of the present invention is preferably a ratio of 0.05 to 6 mol of the crosslinkable functional group (A) per 1 mol of the fluorinated aromatic compound (B), A ratio of 0.1 to 4 mol is more preferable. Beyond this range, the brittleness of the FAP coating increases and the relative permittivity may increase. If the amount is less than this range, heat resistance and solvent resistance may decrease.
  • the FAP of the present invention is manufactured by one or more methods selected from the group consisting of the following methods (1), (2) and (3).
  • a phenoxy group (1 O— group) derived from a phenolic hydroxyl group (1 OH group) contains a fluorine-containing compound.
  • the fluorine atom of the aromatic compound (B) attacks the carbon atom to which the fluorine atom is bonded, and then a ether bond is formed by a reaction mechanism in which the fluorine atom is eliminated.
  • the compound (Y2) has two phenolic hydroxyl groups in an ortho-positional relationship, a dioxin skeleton may be generated by the same reaction mechanism or the like as shown in the following formula 6. Equation 5
  • an aromatic compound having an ethynyl group as a crosslinkable functional group is more preferable.
  • ethynylphenols such as 3-ethynylphenol, 4-phenylethynylphenol, and 4- (4-fluorophenyl) ethynylphenol. Is mentioned.
  • the compound (Y 1) having two or more phenolic hydroxyl groups are 2,2′-bis (phenylenetin) -1,5,5′-dihydroxybiphenyl and 2,2′-bis (phenylenyl) Bis (phenylethynyl) dihydroxybiphenyls such as 1,4'-dihydroxybiphenyl and the like, and dihydroxy-opened xidiphenylacetylenes such as 4,4'-dihydroxytolan and 3,3'-dihydroxytolan.
  • Can be These may be used alone or as a mixture of two or more.
  • polyfunctional phenols are preferable. Specific examples thereof include dihydroxybenzene, dihydroxypiphenyl, dihydroxyterphenyl, dihydroxynaphthylene, dihydroxyanthracene, dihydroxyphenanthracene, dihydroxy-1,9-diphenylfluorene, dihydroxydibenzofuran, dihydroxydiphenylfurane, and dihydroxydiphenylfuran.
  • the aromatic compound having a crosslinkable functional group and a fluorine substituent on the aromatic nucleus (Z) is preferably an aromatic compound having an ethynyl group as a crosslinkable functional group, such as perfluorophenyl and perfluorobiphenyl. And the like are preferred.
  • fluorinated aryl acetylenes such as penfluorofluorophenylacetylene and nonafluorobiphenylacetylene, phenylethynylpentylfluorobenzene, phenylethynylnonafluorobiphenyl, decafluorotolan, and the like.
  • Fluorinated diacetylenes and the like can be mentioned. These may be used alone or as a mixture of two or more.
  • the HF removing agent is preferably a basic compound, particularly preferably an alkali metal carbonate, hydrogencarbonate or hydroxide.
  • a basic compound particularly preferably an alkali metal carbonate, hydrogencarbonate or hydroxide.
  • Specific examples include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • the amount of the HF-removing agent used must be at least 1 times, preferably 1.1 to 3 times, the molar number of the phenolic hydroxyl group in the compound (Y 1).
  • the molar ratio of the compound (Y 1) and the phenolic hydroxyl group of the compound (Y 2) must be at least 1 times, preferably 1.1 to 3 times the total number of moles.
  • the molar ratio of the phenolic hydroxyl group of the compound (Y 2) is required to be at least 1 times, preferably 1.1 to 3 times.
  • the condensation reaction is preferably performed in a polar solvent.
  • a polar solvent a solvent containing an aprotic polar solvent such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and sulfolane is preferable.
  • Polar solvents do not reduce the solubility of the generated FAP and have a negative effect on the condensation reaction To the extent that it does not affect, toluene, xylene, benzene, benzotrifluoride, xylenehexafluoride and the like may be contained.
  • the condensation reaction conditions are 10 to 200 and preferably 1 to 80 hours. It is more preferably at 60 to 180 ° C for 2 to 60 hours, most preferably at 80 to 160 ° C for 3 to 24 hours.
  • the FAP of the present invention has a number average molecular weight of 500 to 1,000,000. Within this range, the coating properties are good, and the obtained coating film has good heat resistance, mechanical properties, solvent resistance and the like. It is preferably from 1,000 to 500,000, more preferably from 1,500 to: L 00,000. In the case of insulating films for electronic devices, if the property of penetrating sufficiently into the underlying fine spaces and smoothing the brilliant surface (so-called embedded flatness) is required, the number average molecular weight is 1,500 to 50 , 000 is most preferred.
  • the number average molecular weight of FAP can be controlled by changing the charge ratio between the fluorine-containing aromatic compound (B) and the compound (Y1).
  • the preparation ratio of the fluorine-containing aromatic compound (B), the compound (Y1), and the compound (Y2) is changed.
  • the fluorine-containing aromatic compound (B) and the aromatic compound are mixed. It can be controlled by changing the charge ratio of compound (Z) to compound (Y2).
  • the amount of the compound (Y1) to be used is preferably 2 to 6 times, more preferably 2 to 4 times, in molar ratio to the fluorine-containing aromatic compound (B).
  • the amount of the compound (Y1) to be used is preferably 0.3 to 3 times, more preferably 0.8 to 2 times as much as the molar ratio to the fluorine-containing aromatic compound (B)
  • the amount of the compound (Y2) to be used is preferably 0.3 to 2 times, more preferably 0.5 to 1.5 times, as a molar ratio with respect to the fluorine-containing aromatic compound (B).
  • the amount of the compound (Z) used is preferably 0.3 to 3 times, more preferably 0.5 to 2 times the molar ratio to the fluorine-containing aromatic compound (B).
  • the use amount of Y2) is preferably 0.5 to 2 times, more preferably 0.8 to 1.8 times, as the molar ratio to the fluorine-containing aromatic compound (B).
  • the obtained FAP has both a low dielectric constant value and a high heat resistance, so that it is preferable.
  • the solubility of the FAP obtained by the production methods (1), (2) and (3) is insufficient or if the coating film of the FAP is brittle, to improve the solubility of the FAP, or In order to improve flexibility, it is preferable to add a co-condensation component during the production of FAP.
  • a co-condensation component a monocyclic or polycyclic fluorine-containing aromatic compound (W) having no branched structure is preferable, and a perfluoroaromatic compound is more preferable.
  • perfluorinated benzene perfluorotoluene, perfluoroxylene, perfluorobiphenyl, perfluorotaphenyl, perfluoronaphthalene, perfluoroanthracene, and the like. . These may be used alone or as a mixture of two or more.
  • the amount of the fluorine-containing aromatic compound (W) to be used is preferably 1 to 200% by mass, more preferably 10 to 150% by mass, based on the fluorine-containing aromatic compound (B). If the amount is too large, the heat resistance of the obtained coating film will be low. If the amount is too small, the effect of improving flexibility and solubility will be insufficient.
  • the FAP of the present invention is purified by a method such as neutralization, reprecipitation, extraction, or filtration after the condensation reaction or after the formation of a solution.
  • metals such as potassium and sodium, which are HF-eliminating agents during condensation reactions, and free halogen atoms cause transistor malfunctions and wiring corrosion.
  • Sufficient purification is preferred because it can be a substance.
  • the catalyst include amines such as aniline, triethylamine, aminophenyl trialkoxysilane, and aminoprovirt alkoxysilane, molybdenum, and nickel. Examples thereof include organometallic compounds contained therein.
  • the amount of the catalyst to be added is preferably 0.01 to 1 mol, more preferably 0.05 to 0.5 mol, per 1 mol of the ethynyl group in the FAP.
  • a biscyclopentene genone derivative is preferable.
  • the ethynyl group and the cyclopentene-genone group (11-year-old oxocyclopentene 2,5-dien-3-yl group) form an adduct by the Diels-Alder reaction by heat, and then decarbonize to form an aromatic ring. Form. Therefore, when a biscyclopentenedienone derivative is used, crosslinking or chain extension in which an aromatic ring is a binding site can be performed.
  • biscyclopentagenone derivatives include 1,4-bis (1-oxo-1,2,4,5-triphenyl-cyclopentene-1,5-dien-3-yl) benzene, 4,4 'Bis (1-oxo-1, 2, 4, 5-1-triphenyl-1-cyclopent-1, 2-5-Gen-1-3-yl) Biphenyl, 4, 4' Bis (1-oxo-1, 2-4) , 5—Triphenylcyclopenter 2, 5—Gen-1--3-yl) 1, 1'-Oxybisbenzene, 4, 4'—Bis (1-oxo-1,2,4,5-triphenylcyclopenter 2, 5-Gen-1-cyclo) 1,1,1-bis-bis-benzene, 1,4-bis (1-oxo-1,2,5-di [4-fluorophenyl] —4-fluorocyclopenter 2,5-gen-1 3-yl) benzene, 4,4'-bis (1-oxo-1,2,4,5-triphenyl-
  • bis' derivatives having a wholly aromatic skeleton are preferred from the viewpoint of heat resistance. These may be used alone or in combination of two or more.
  • the amount of the biscyclopentene genone derivative to be added is preferably 0.1 to 0.5 times, more preferably 0.15 to 0.5 times, in molar ratio to the number of moles of ethynyl groups in FAP.
  • the FAP of the present invention is usually used after being dissolved in a solvent. At this time, it is preferable that the crosslinkable functional group (A) in the FAP does not react in a solution, but undergoes a crosslink reaction in a heating (baking) step after film formation.
  • cross-linkable functional group (A) is used in the solution to prevent volatilization during baking. It is also preferred that some of the) react with each other and / or with a catalyst or additive.
  • the heating condition is preferably 50 ° C. to 25 Ot for 1 to 50 hours, more preferably 70 to 200 to 1 to 20 hours.
  • the reaction rate of the crosslinkable functional group in the solution is preferably less than 50%, more preferably less than 30%, from the viewpoint of preventing gelation of FAP in the solution.
  • the solvent for the FA of the present invention is not particularly limited as long as it can effectively dissolve FAP and a catalyst or additives, and can obtain a coating film having a desired film thickness, uniformity, or embedded flatness by a desired method.
  • aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons are examples of aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, and methylnaphthylene.
  • Dipolar aprotic solvents include N-methylpyrrolidone, N, N-dimethylforma Amide, N, N-dimethylacetamide, carboxylactone, dimethylsulfoxide and the like.
  • ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclooctane, methylamyl ketone, and the like.
  • ethers examples include tetrahydrofuran, pyran, dioxane, dimethoxyethane, diethoxetane, diphenyl ether, anisol, phenetol, diglyme, triglyme and the like.
  • Esters include ethyl lactate, methyl benzoate, ethyl benzoate, butyl benzoate, benzyl benzoate, methylcellosolve acetate, ethylcellosolveate, propylene glycol monomethyl ether, propylene glycol monoethyl Ether, propylene daricol monopropyl ether, propylene glycol monobutyl ether, propylene glycol monoethyl ether acetate and the like.
  • halogenated hydrocarbon examples include carbon tetrachloride, chloroform, methylene chloride, tetrachloroethylene, cyclobenzene, and dichlorobenzene.
  • the concentration of FAP is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • Examples of the method for forming a coating film of the FAP of the present invention include known coating methods such as spin coating, dip coating, spray coating, die coating, bar coating, doctor coating, extrusion coating, scan coating, brush coating, and potting. Can be When used as an insulating film of an electronic device, spin coating or scan coating is preferable from the viewpoint of uniformity of the film thickness.
  • bake heat to evaporate the solvent and complete the crosslinking and chain extension reactions. Baking conditions are 200-450 ° C; To 120 minutes is preferable, and 300 to 425 is more preferable for 2 to 60 minutes.
  • the thickness of the FAP coating is preferably from 0.01 to 50 ⁇ rn, more preferably from 0.1 to 30.
  • a pre-baking process at about 50 to 250 ° C is added, and the baking process is divided into several stages. It can also be implemented.
  • adhesion promoter for improving the adhesion between the FAP of the present invention and a substrate.
  • adhesion promoter include silane-based coupling agents, titanate-based coupling agents, and aluminum-based coupling agents, and silane-based cuppers such as epoxysilanes and aminosilanes. Ring agents are more preferred.
  • the aminosilanes include aliphatic aminosilanes such as aminopropylmethylethoxysilane, aminopropyltriethoxysilane, aminophenyltrimethoxysilane, aminophenyltriethoxysilane, and N-phenylaminopropyl. Examples thereof include aromatic group-containing aminosilanes such as trimethoxysilane.
  • a method of treating the base material with the adhesion promoter before the application of the FAP solution or a method of adding the adhesion promoter to the FAP solution is preferable.
  • the method of treating the substrate with the adhesion promoter include, in the case of aminosilanes, a method of spin-coating the substrate as an alcoholic solution of 0.01 to 3% by mass.
  • the amount of the adhesion promoter to be added is preferably 0.05 to 10% by mass, more preferably 0.1 to 5% by mass, based on the FAP contained. If the addition amount of the adhesion promoter is small, the effect of improving the adhesion is not sufficient, and if it is too large, the electrical properties and heat resistance are reduced.
  • FAP of the present invention include protective films, membrane materials for various cells such as fuel cells, photoresists, optical waveguide materials, coating materials, electronic materials, sealants, overcoat agents, transparent film materials, and adhesives. Agents, fiber materials, weather-resistant paints, water repellents, oil repellents, moisture-proof coating agents and the like.
  • insulating film for an electronic device or an insulating film for a multilayer wiring board is preferable.
  • Electronic devices include diodes, transistors, compound semiconductors, individual semiconductors such as thermistor, paris, and thyris, DRAM (dynamic random access memory), SRAM (static random access memory), and EPROM. (Erasable / Programmable / Read / Only memory), Mask ROM (Mask / Read / Only memory), EEPROM (Electrically erasable / Programmable / Read only memory), Flash memory and other storage elements, Microprocessor , DSP, AS IC, and other theoretical circuit elements, integrated circuit elements such as compound semiconductors represented by MMIC (monolithic microwave integrated circuits), hybrid integrated circuits (eight-bridged ICs), light-emitting diodes, charge-coupled devices, etc. Photoelectric conversion elements It is below.
  • Examples of the multilayer wiring board are various substrates for mounting electronic devices and the like, and include a printed wiring board, a build-up wiring board, a high-density wiring board such as a MCM, and the like.
  • the insulating film examples include a buffer coat film, a passivation film, an interlayer insulating film, an alpha ray shielding film, and the like.
  • the FAP insulating film contains vacancies. There are the following two methods for introducing holes.
  • thermoly decomposable polymer a polymer having a low thermal decomposition temperature
  • examples of the thermally decomposable polymer include an aliphatic polyether, an aliphatic polyester, an acrylic polymer, and a styrene polymer.
  • the molecular weight of the thermally decomposable polymer is preferably from 1,000 to 100,000, more preferably from 1,000 to 50,000. When the molecular weight is in this range, compatibility with FAP can be ensured, so that it is preferable.
  • a method of compounding FAP and pyrolytic polymer a method of preparing a mixed solution of FAP and pyrolytic polymer and forming a film to obtain a composite film, blocking FAP and pyrolytic polymer or For example, a method of compounding by grafting can be exemplified.
  • Any known blocking or grafting method can be applied.
  • a method of preparing a thermally decomposable polymer having a fluorinated aromatic ring or a phenolic hydroxyl group at a terminal and co-condensing during the condensation reaction of FAP synthesis is used.
  • the FAP condensation reaction proceeds by the reaction mechanism of the above formula 5 or 6
  • the terminal fluorine-containing aromatic ring or phenolic hydroxyl group portion is bonded to the FAP chain.
  • FAPP to which the thermally decomposable polymer is grafted can be obtained.
  • a block of FAP and the thermally decomposable polymer can be obtained.
  • the thermally decomposable polymer Since the thermally decomposable polymer has a low thermal decomposition temperature, it is selectively decomposed and removed by heating during the formation of the insulating film, and the removed portion becomes a void.
  • the porosity can be controlled by the amount of the thermally decomposable polymer added. Usually, the addition amount is preferably 5 to 80% by volume, more preferably 10 to 70% by volume, based on FAP.
  • the fine particles dispersed in the FAP of the present invention are preferably inorganic fine particles.
  • the inorganic fine particles include fine particles of silica, metal, and the like.
  • the fine particles are dissolved and removed by an acid treatment or the like after film formation, and the removed portion becomes a pore.
  • the porosity can be controlled by the amount of fine particles added.
  • the amount of addition is preferably 5 to 80% by volume, more preferably 10 to 70% by volume, based on FAP. Preferred.
  • the FAP coating film of the present invention is combined with another film.
  • another film For example, when applied as a semiconductor element passivation film or an interlayer insulating film for a semiconductor element, it is preferable to form an inorganic film as a lower layer and / or an upper layer of the FAP coating.
  • the inorganic film is a film formed by normal pressure, reduced pressure, or plasma-enhanced chemical vapor deposition (CVD) or a coating method.
  • CVD chemical vapor deposition
  • a so-called PSG in which a silicon oxide film is doped with phosphorus and / or boron as necessary.
  • the inorganic film By forming an inorganic film between the FAP coating film and the metal wiring, peeling of the metal wiring is prevented, and etching of a damascene shape or the like can be easily performed. It is also preferable that the inorganic film is formed on the upper layer of the FAP coating film after the FAP coating film has been partially removed by an etch-back method or a CMP (chemical mechanical polishing) method.
  • the adhesion between the FAP coating film and the inorganic film is insufficient or the film is reduced during the formation of the inorganic film, the following two methods are preferably applied.
  • (I) Method of forming a multilayer inorganic film When a silicon oxide film is formed by a plasma CVD method, the film is reduced depending on the gas composition used. In this case, first, a thin film of an inorganic film such as a silicon nitride film or a normal pressure CVD-silicon oxide film which does not cause film reduction is formed. Next, a silicon oxide film is formed using this thin film as a barrier layer.
  • an inorganic film such as a silicon nitride film or a normal pressure CVD-silicon oxide film which does not cause film reduction.
  • Treatment with energy rays may have the effect of improving the adhesion at the interface between the FAP coating film and the inorganic film.
  • the energy beam treatment includes electromagnetic waves in a broad sense including light, such as UV light irradiation, laser light irradiation, microwave irradiation, etc., or processing using electron beams, ie, electron beam irradiation, glow discharge processing, Examples of the treatment include corona discharge treatment and plasma treatment.
  • suitable treatment methods for mass production of semiconductor devices include UV light irradiation, laser light irradiation, corona discharge treatment, and plasma treatment.
  • the plasma treatment is more preferable because damage to the semiconductor element is small.
  • the apparatus for performing the plasma treatment is not particularly limited as long as a desired gas can be introduced into the apparatus and an electric field can be applied, and a commercially available barrel-type or parallel-plate-type plasma generator can be used as appropriate.
  • the gas to be introduced into the plasma device is not particularly limited as long as it effectively activates the surface. Lium, nitrogen, oxygen, a mixed gas of these, and the like. Examples of the gas that activates the surface of the FAP coating film and hardly reduces the film thickness include a mixed gas of nitrogen and oxygen and a nitrogen gas.
  • the present invention will be described more specifically with reference to the following Examples and Comparative Examples, but the present invention is not limited to these.
  • Examples 1 to 17 and Examples 20 to 22 are Examples, and Examples 18 and 19 are Comparative Examples.
  • Examples 1 to 4 are synthesis of fluorine-containing aromatic compound (B)
  • Examples 5 to 19 are synthesis results of FAP and evaluation of basic properties
  • Example 2 Q is evaluation of coating adhesion
  • Example 21 is vacancy-introduced coating
  • Example 22 is the evaluation of insulating film characteristics. The molecular weight, relative permittivity, and Tg were measured by the following methods.
  • Tg A 15% solution obtained by dissolving the vacuum-dried FAP powder in cyclohexanone was filtered through a PTFE filter having a pore diameter of 0.2 m. Potting the resulting solution on a silicon wafer, pre-bathing at 200 ° C for 300 seconds using a hot plate, and performing a final bake in a nitrogen atmosphere at 425 ° C for 1 hour in a vertical furnace. Was. The coating film was removed from the silicon wafer and subjected to DSC measurement to determine Tg. In DSC measurement, scanning was performed from 40 to 450 ° C under a nitrogen atmosphere under the conditions of a temperature rise rate of 10 ° CZ.
  • the reaction solution was vigorously stirred and poured into 30 OmL of 0.2 N hydrochloric acid to produce white crystals. Done.
  • the crystals were washed three times with pure water and vacuum dried at 60 ° C. to obtain 5.lg of white crystals. From gas chromatography, mass spectrum, and NMR analysis, the crystal was identified as a fluorinated aromatic compound (hereinafter, referred to as TPB-4P) in which the average values of a, b, and c were all about 1.2. Was.
  • TPB-4P fluorinated aromatic compound
  • this crystal is a hexabromo compound, 3,3 ', 5,5,'-tetrabromo-5 '-(3,5--jib-mouth 2,4,6- Trifluorophenyl) 1,2 ', 2' ,, 4,4,4, ', 6,6 ,,,,
  • TPB-35P (Penuse fluorophenyl) 1,5,1 (Tridecafluoro [1,1,: 3,, 1 '' Iseven 1 phenyl] ⁇ 5 '—yl) ⁇ 1,1': 3 '., 1,' : 3, ', 1',,: 3, ',, 1''''-kink phenyl (hereinafter referred to as TPB-35P).
  • the molecular weight of TPB-35P was 1700.
  • (Y 1) is 1.37 g of 4- (4-fluorophenylethynyl) phenol, 35 g of N, N-dimethylacetoamide (hereinafter referred to as DMAc), and 15 g of tri ⁇ / leene was charged.
  • DMAc N, N-dimethylacetoamide
  • reaction mixture was cooled to room temperature and stirred vigorously.
  • the mixture was gradually poured into 400 mL of a mixture of pure water / methanol (volume ratio: about 1 Z1) containing 7.lg of acetic acid. Precipitated.
  • the light brown powder was filtered, washed 5 times with pure water, and vacuum dried at 80 for 15 hours to obtain 2.76 g of a white-gray powder FAP.
  • the obtained FAP had an ether bond and an average of 3.0 ethynyl groups, a molecular weight of 1,600 and a relative permittivity of 2.4. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and Tg was 450 ° C or higher.
  • Example 5 2.5 g in the same manner as in Example 5, except that 1.15 g of 4-phenylethynylphenol was used instead of 1.37 g of 4- (4-fluorophenylethynyl) phenol
  • An off-white powder of FAP was obtained.
  • the obtained FAP had an ether bond and an average of 2.8 ethynyl groups, a molecular weight of 1,500 and a relative dielectric constant of 2.4. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and T g was 450 ° C or higher.
  • TPB-4P instead of 2.19 g of TPB-4P, use 4.56 g of TPB-35P obtained in Example 4 and reduce the amount of 4- (4-fluorophenylethynyl) phenol to 1.9 g
  • 4.89 g of white powdery FAP was obtained.
  • the obtained FAP had an ether bond and an average of 3.1 ethynyl groups, a molecular weight of 2,200 and a relative permittivity of 2.3. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and Tg was 450 ° C or higher.
  • reaction solution was cooled to room temperature and vigorously stirred.
  • a brown powder was precipitated.
  • the brown powder was filtered, washed with pure water five times, and then dried under vacuum at 8 Ot: for 15 hours to obtain 5.3 g of a slightly brown powder FAP.
  • the obtained FAP had an ether bond and an average of 3.7 ethynyl groups, a molecular weight of 2200 and a relative permittivity of 2.5. No transition point or endothermic peak was observed in the DSC measurement, and T g was 450 or more.
  • FAP slightly brown powdered FAP was obtained in the same manner as in Example 8, except that the amount of 1,3-dihydroxybenzene used was 0.50 g.
  • the obtained FAP had an ether bond and an average of 8.3 ethynyl groups, a molecular weight of 5000 and a relative dielectric constant of 2.4. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and Tg was 450 ° C or higher.
  • Example 10 In the same manner as in Example 10 except that 3.79 g of 124TPB obtained in Example 2 was used instead of 3.78 g of 135TPB, 5.3 g of white powder FAP was obtained.
  • the obtained FAP had an ether bond and an average of 11.8 ethynyl groups, a molecular weight of 8,200 and a relative permittivity of 2.4.
  • Tg was 450 or more.
  • reaction solution was cooled to room temperature, and vigorously stirred.
  • a brown powder was precipitated.
  • the brown powder was filtered, washed with pure water five times, and vacuum dried at 80 for 15 hours to obtain 6.8 g of a slightly brown powder FAP.
  • the obtained FAP had an ether bond and an average of 9.6 ethynyl groups, a molecular weight of 8,700, a relative dielectric constant of 2.5, and a Tg of 384.
  • the reaction solution was cooled to room temperature and slowly poured into vigorously stirred 0.2 N hydrochloric acid (20 OmL), whereby a slightly brown powdery substance precipitated.
  • the light brown powder was filtered and dissolved in about 50 cc of tetrahydrofuran.
  • the obtained FAP had an ether bond and an average of 13.5 ethynyl groups, a molecular weight of 15,000 and a relative permittivity of 2.3. No transition point or exothermic / endothermic peak was observed in the DSC measurement.
  • Example 5 In the same manner as in Example 14, except that 0.52 g of 1,3,5-trihydroxybenzene was replaced by 2.02 g of dihydroxy-2,2-diphenylhexafluoropropane. 5 g of a brown powdered FAP was obtained. The obtained FAP had an ether bond and an average of 8.7 ethynyl groups, a molecular weight of 13,000 and a relative permittivity of 2.4. In the DSC measurement, no transition point or endothermic peak was observed, and Tg was 450 ° C or higher.
  • Example 16 Synthesis of FAP by the production method of (3) using the fluorine-containing aromatic compound (B), the aromatic compound (Z) and the compound (Y2) 4. Instead of 1.66 g of fenerlutiririnonafluorobiphenyl, 1.52 g of decafluorotran and 0.5 lg of 1,3,5-trihydroxybenzene instead of 9, 9 1 Except that 1.95 g of bis (4-hydroxyphenyl) fluorene was used, 5.2 g of white powdered FAP was obtained in the same manner as in Example 14. The obtained FAP had an ether bond and an average of 6.6 ethynyl groups, a molecular weight of 9000 and a relative permittivity of 2.3. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and Tg was 450 ° C or higher.
  • the reaction solution was cooled to room temperature and slowly added to vigorously stirred 0.2 N hydrochloric acid (20 OmL), whereby a slightly brown powdery substance precipitated.
  • the light brown powder was filtered and dissolved in about 50 cc of tetrahydrofuran.
  • This solution was gradually poured into 300 mL of pure water Z methanol (volume ratio of about 1Z1), which was stirred vigorously.
  • the gray-white precipitate obtained was washed 5 times with pure water and then at 80 ° C. Vacuum drying was performed for 20 hours to obtain 4.5 g of white powdery FAP.
  • the obtained FAP had an ether bond and an average of 6.8 ethynyl groups, a molecular weight of 9,800 and a relative permittivity of 2.3. No transition point or exothermic / endothermic peak was observed in the DSC measurement, and the Tg was 450 or more.
  • the relative permittivity and Tg of TPB-35P having a molecular weight of 1700 obtained in Example 4 were 2.4 and 121 for the film after prebaking at 200 "C, respectively. Final baking at 425 ° C When this was carried out, all the films volatilized and disappeared.
  • solution 10 A part of a 15% cyclohexanone solution of FAP obtained in Example 10 (hereinafter referred to as solution 10) was taken out, and 3% by mass of aminophenyltrimethoxysilane was added to FAP to obtain a solution 10-1.
  • solution 10-1 A part of a 15% cyclohexanone solution of FAP obtained in Example 10 (hereinafter referred to as solution 10) was taken out, and 3% by mass of aminophenyltrimethoxysilane was added to FAP to obtain a solution 10-1.
  • ⁇ -aminopropyltriethoxysilane was added at 3% by mass to FAP instead of aminophenyltrimethoxysilane to obtain a solution 10-2.
  • a 20-nm-thick p-SiN film formed by plasma CVD using a mixed gas of monosilane, ammonia and nitrogen
  • a 300 nm-thick p_Sio a mixed gas of monosilane and oxygen dinitride
  • A1 film formed by sputtering
  • TN film formed by sputtering
  • the coating film obtained from Solution 10-1 did not show any peeling on any of the coating films on p-SiN, p-Sio, Al, and TiN. In the coating film obtained from the solution 10-2, no peeling was observed in any of the coating films on p-SiN, pS10, Al, and TiN.
  • solution 14 a homogeneous and transparent solution (hereinafter referred to as solution 14).
  • Solution 14 was spin-coated on a 4-inch silicon wafer, followed by baking to form a coating film. The spin conditions were 2500 rpm x 30 seconds, and prebaking and final baking were performed as in Example 20. As a result of SEM observation of the cross section of the obtained coating film, the existence of microscopic pores on the order of nanometers was confirmed. The relative dielectric constant of the coating film was 1.8. In addition, no peeling or film rupture was observed in the Goban-dye tape peeling test.
  • solution 18 From the silicon wafer Zp—S i0 (300 ⁇ m) / FAP coating (500 nm) / pS i N (50 nm) no p—S i ⁇ (500 nm).
  • the solution was spin-coated on a 4-inch silicon wafer on which a P-SiO film (thickness: 300 nm) was formed to form a 500-nm thick FAP coating film in the same manner as in Example 20.
  • a silicon nitride film is formed to a thickness of 50 nm using a mixture of ammonia and nitrogen, and then:
  • a silicon oxide film having a thickness of 500 nm was formed with a mixed gas of oxygen dinitride.
  • the obtained laminate was baked at 425 for 60 minutes in a hydrogen atmosphere, and crack resistance due to thermal stress was examined with a metallographic microscope. The results are shown below.
  • the laminate formed from Solution 10 was free of cracks and other defects.
  • the laminate formed from Solution 10-1 was free of cracks and other defects.
  • the laminate formed from Solution 14 was free of cracks and other defects.
  • the FAP of the present invention has excellent heat resistance, particularly high glass transition temperature Tg and low relative permittivity.
  • the FAP is excellent in applicability as an insulating film for an electronic device and an insulating film for a multilayer wiring board. Further, the insulating film has a low relative dielectric constant, can achieve high performance such as a reduction in signal propagation delay time of the device, and can achieve high reliability due to excellent mechanical properties in a high temperature range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Insulating Materials (AREA)

Description

明 細 書 含フッ素芳香族ポリマー及びその用途 ぐ技術分野 >
本発明は、 含フッ素芳香族ポリマー及びその用途に関する。 <背景技術 >
電子デバィス及び多層配線板等が益々微細化及び高集積化されるに伴い、 それらに適用す るために、 より低い比誘電率の絶縁膜が要求されている。 その要求を満足し、 かつ電子デバ イス又は多層配線板の製造工程で必要な、 350 以上、 好ましくは 425 °C以上の耐熱性 を確保するために、 含フッ素芳香族ポリマー (以下、 FAPという。 ) が検討されている。 例えば、 特許第 3064011号公報、 米国特許 5115082号明細書、 米国特許 59 59157号明細書、 特開平 9— 202824号公報、 特開平 10— 247646号公報、 J . Po lm. S c i. : P a r t A: P o 1 m. Ch em. , vo l . 36, 2881
(1998) 等に、 FAPとしてエーテル結合を有する含フッ素芳香族ポリマー (以下、 ポ リアリーレンエーテル又は P A Eという。 ) が記載されている。 それらの比誘電率は 2. 5 〜2. 9程度で、 電子デバイス又は多層配線板の絶縁膜 (以下、 本絶縁膜という。 ) として の応用も検討されている。
これらの PAE中のァリーレン構造はペルフルオロフェニレン、 ペルフルォロビフエニレ ン、 ペルフルォロナフタ二レン等である。 そして、 PAEは直鎖状で、 そのガラス転移温度
(以下、 Tgという。 ) が低く耐熱性が充分ではない。 PAEに架橋性官能基を導入して架 橋すると Tgを高くできるが、 比誘電率が 2. 7-3. 0程度に上昇し、 低い比誘電率と高 い T gを両立することが困難である。
Bu l l. Ch em. S o c. J p n. , 66, 1053 (1993) 等には、 直鎖状 F APである含フッ素ポリ (1, 4一フエ二レン) が記載されているが、 本絶縁膜としての応 用の記載がない。 また、 重合度が 3を超えると溶媒への溶解性が大きく低下し、 本絶縁膜と して必要なコーティング性を失うことに加えて、 絶縁膜の製造工程中の熱処理によって昇華 し、 本絶縁膜に適用できない。 J. Am. Chem. Soc. , 122, 1832 (2000) には、 分岐構造の FAP であるデンドリマ一が記載されている。 これらのデンドリマーは溶媒に溶解できるが、 Tg は 140°C未満と低く、 かつ昇華性を有するため本絶縁膜として適用できない。
本発明の目的は、 低い比誘電率及び高い耐熱性を有する F A P及びその絶緣膜としての用 途を提供することである。 ぐ発明の開示 >
本発明は、 下記①、 ②及び③の方法からなる群から選ばれる 1種以上の方法で、 下記式 1 で示される分岐構造の含フッ素芳香族化合物 (B) から製造される、 1分子中に 2個以上の 架橋性官能基 (A) を含有し、 数平均分子量が 1X103 ~5X 105 である、 エーテル結 合を有する含フッ素芳香族ポリマーを提供する。
式 1
Figure imgf000004_0001
ここで、 m及び nはそれぞれ独立に 1〜4の整数、 p、 q及び rはそれぞれ独立に 0又は 1〜5の整数、 a、 b及び cはそれぞれ独立に 0又は 1〜 3の整数、 を表し、 2≤m+n 5である。
①上記式 1で示される分岐構造の含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及び フエノール性水酸基を有する化合物 (Y1) とを、 脱 HF剤存在下に縮合反応させる方法。
②前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及びフエノール性水酸基を有す る化合物 (Y1) と、 架橋性官能基を有さず、 フエノール性水酸基を 2個以上有する化合物
(Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
③前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) を有し、 芳香核にフッ素置換基 を有する芳香族化合物 (Z) と、 架橋性官能基を有さず、 2個以上のフエノール性水酸基を 有する化合物 (Y2) とを、 脱 HF剤存在下に縮合反応させる方法。 また、 本発明は、 該含 FAPからなる電子デバイス用絶縁膜及び多層配線板用絶縁膜を提 供する。
<発明を実施するための最良の形態 >
本発明の FAPは、 下記①、 ②及び③の方法からなる群から選ばれる 1種以上の方法で、 下記式 1で示される分岐構造の含フッ素芳香族化合物 (B) から製造される、 1分子中に 2 個以上の架橋性官能基 (A) を含有し、 数平均分子量が 1 X 103〜5 X 105 である、 ェ 一テル結合を有する F A Pである。
式 1
Figure imgf000005_0001
ここで、 m及び nはそれぞれ独立に 1〜4の整数、 p、 Q及び rはそれぞれ独立に 0又は 1〜5の整数、 a、 b及び cはそれぞれ独立に 0又は 1〜 3の整数、 を表し、 2 m+n≤ 5である。
①上記式 1で示される分岐構造の含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及び フエノール性水酸基を有する化合物 (Y1) とを、 脱 HF剤存在下に縮合反応させる方法。
②前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及びフエノール性水酸基を有す る化合物 (Y1) と、 架橋性官能基を有さず、 フエノール性水酸基を 2個以上有する化合物
(Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
③前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) を有し、 芳香核にフッ素置換基 を有する芳香族化合物 (Z) と、 架橋性官能基を有さず、 2個以上のフエノール性水酸基を 有する化合物 (Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
本発明において、 分岐構造の含フッ素芳香族化合物 (B) は上記式 1で示される含フッ素 芳香族化合物である。 好ましくは、 n+mは 2〜3、 p、 q及び rはそれぞれ独立に 0〜 3, a、 b及び cはそれぞれ独立に 0〜2、 である。 各値がこの範囲にあると FAPの溶剤への 溶解性に優れ、 含フッ素芳香族化合物 (B ) の製造が容易であるので好ましい c 含フッ素芳香族化合物 (B ) としては、 下記式 3の構造がより好ましい。
式 3
Figure imgf000006_0001
ここで、 a l、 b 1及び c 1はそれぞれ独立に 0、 1又は 2であると、 ガラス転移温度が 高く、 溶剤への溶解性に優れた F A Pが得られるので、 より好ましい。
含フッ素芳香族化合物 (B ) の具体例としては、 下記式 4で示される構造が挙げられる。 これらは単独で用いても、 2種以上混合して用いてもよい。
最も好ましくは、 下記式 2で示される、 ペルフルォロ (1, 3 , 5—トリフエ二ルペンゼ ン) 又はペルフルォロ ( 1, 2 , 4一卜リフエニルベンゼン) である。
式 4
Figure imgf000007_0001
式 2
Figure imgf000007_0002
本発明の F A Pは、 1分子中に 2個以上の架橋性官能基 (A) を含有する。 好ましくは 2 〜3 0個、 より好ましくは 3〜2 0個である。 架橋性官能基 (A) により、 F A P分子間の 架橋又は鎖延長反応が進行し、 F A Pの耐熱性及び耐溶剤性が向上する。
架橋性官能基 (A) としては、 熱、 光、 電子線等により架橋する官能基が好ましい。 加熱 により架橋する官能基は、 電子デバイス又は多層配線板の製造工程での適用性に優れるので より好ましい。 また、 極性基を含まない架橋性官能基 (A) が FAPの比誘電率を上昇させ ないので好ましい。
架橋性官能基 (A) の具体例としては、 ェチニル基、 1一才キソシクロペンター 2, 5— ジェン一3—ィル基 (以下、 シクロペン夕ジェノン基ともいう。 ) 、 シァノ基、 アルコキシ シリル基、 ジァリールヒドロキシメチル基、 ヒドロキシフルォレニル基等が挙げられる。 耐 熱性の観点より、 ェチニル基がより好ましい。
本発明の FAPにおける架橋性官能基 (A) の含有量は、 含フッ素芳香族化合物 (B) の 1モルに対して架橋性官能基 ( A) が 0. 05 ~ 6モルの割合が好ましく、 0. 1 ~ 4モル の割合がより好ましい。 この範囲を超えると FAP塗膜の脆性が大きくなり、 比誘電率が上 昇することがある。 また、 この範囲より少ないと、 耐熱性及び耐溶剤性が低下することがあ る。
本発明の FAPは、 下記①、 ②及び③の方法からなる群から選ばれる 1種以上の方法で製 造される。
①上記式 1で示される分岐構造の含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及び フエノール性水酸基を有する化合物 (Y1) とを、 脱 HF剤存在下に縮合反応させる方法。
②前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及びフエノール性水酸基を有す る化合物 (Y1) と、 架橋性官能基を有さず、 フエノール性水酸基を 2個以上有する化合物
(Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
③前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) を有し、 芳香核にフッ素置換基 を有する芳香族化合物 (Z) と、 架橋性官能基を有さず、 2個以上のフエノール性水酸基を 有する化合物 (Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
前記 FAPの①、 ②及び③の製造方法において、 縮合反応では、 下記式 5で示されるよう に、 フエノール性水酸基 (一 OH基) から誘導されるフエノキシ基 (一 O—基) が、 含フッ 素芳香族化合物 (B) のフッ素原子が結合した炭素原子を攻撃し、 ついでフッ素原子が脱離 する反応機構等によりェ一テル結合が生成する。 また、 化合物 (Y2) がオルト位置関係に ある 2個のフエノール性水酸基を有する場合には、 同様の反応機構等により、 下記式 6に示 すようにジォキシン骨格が生成する可能性がある。 式 5
Figure imgf000009_0001
式 6
Figure imgf000009_0002
架橋性官能基 (A) 及びフエノール性水酸基を有する化合物 (Y 1 ) としては、 架橋性官 能基としてェチニル基を有する芳香族化合物がより好ましい。
フエノール性水酸基を 1個有する化合物 (Y 1 ) の具体例としては、 3—ェチニルフエノ —ル、 4一フエニルェチニルフエノール、 4— ( 4一フルオロフェニル) ェチニルフエノー ル等のェチニルフエノール類が挙げられる。
フエノール性水酸基を 2個以上有する化合物 (Y 1 ) の具体例としては、 2, 2 ' —ビス (フエ二ルェチニル) 一 5, 5 ' —ジヒドロキシビフエニル、 2, 2 ' 一ビス (フエニルェ チニル) 一4 , 4 ' ージヒドロキシビフエニル等のビス (フエ二ルェチニル) ジヒドロキシ ビフエ二ル類、 4, 4 ' ージヒドロキシトラン、 3, 3 ' —ジヒドロキシトラン等のジヒド 口キシジフエニルアセチレン類等が挙げられる。 これらは単独で用いても、 2種以上を混合 して用いてもよい。
フエノール性水酸基を 2個以上有する化合物 (Y 2 ) としては、 多官能フエノール類が好 ましい。 その具体例としては、 ジヒドロキシベンゼン、 ジヒドロキシピフエニル、 ジヒドロ キシターフェニル、 ジヒドロキシナフ夕レン、 ジヒドロキシアントラセン、 ジヒドロキシフ ェナントラセン、 ジヒドロキシ一 9, 9ージフエニルフルオレン、 ジヒドロキシジベンゾフ ラン、 ジヒドロキシジフエ二ルェ一テル、 ジヒドロキシジフエ二ルチオエー亍ル、 ジヒドロ キシベンゾフエノン、 ジヒドロキシ一 2, 2—ジフエニルプロパン、 ジヒドロキシ一 2, 2 —ジフエニルへキサフルォロプロパン、 ジヒドロキシビナフチル、 テトラフェニルハイド口 キノン、 へキサフエ二ルジヒドロキシビフエニル、 トリヒドロキシベンゼン、 トリヒドロキ シビフエニル、 トリヒドロキシナフ夕レン、 テトラヒドロキシベンゼン、 テトラヒドロキシ ビフエニル、 テトラヒドロキシビナフチル、 テトラヒドロキシスピロインダン類等が挙げら れる。
ジヒドロキシベンゼン、 ジヒドロキシー 9 , 9—ジフエニルフルオレン、 ジヒドロキシー 2 , 2—ジフエニルへキサフルォロプロパン、 テトラフェニルハイドロキノン及びトリヒド ロキシベンゼンは、 得られる F A Pが低い誘電率値と高い耐熱性を有するのでより好ましレ^ 架橋性官能基を有し、 芳香核にフッ素置換基を有する芳香族化合物 (Z ) としては、 架橋 性官能基としてェチニル基を有する、 ペルフルオロフェニル、 ペルフルォロビフエニル等の ペルフルォロ芳香族化合物が好ましい。 その具体例としては、 ペン夕フルオロフェニルァセ チレン、 ノナフルォロビフエニルアセチレン等の含フッ素ァリールアセチレン類、 フエニル ェチニルペン夕フルォロベンゼン、 フエ二ルェチ二ルノナフルォロビフエニル、 デカフルォ ロトラン等の含フッ素ジァリ一ルアセチレン類等が挙げられる。 これらは単独で用いても 2 種以上を混合して用いてもよい。
本発明において、 脱 H F剤としては、 塩基性化合物が好ましく、 特にアルカリ金属の炭酸 塩、 炭酸水素塩又は水酸化物が好ましい。 具体例としては、 炭酸ナトリウム、 炭酸カリウム、 炭酸水素ナトリウム、 炭酸水素カリウム、 水酸化ナトリウム、 水酸化カリウム等が挙げられ る。
脱 H F剤の使用量は、 ①の製造方法では、 化合物 (Y 1 ) 中のフエノール性水酸基のモル 数に対してモル比で 1倍以上が必要であり、 1 . 1〜 3倍が好ましい。 ②の製造方法では、 化合物 (Y 1 ) 及び化合物 (Y 2 ) のフエノール性水酸基の合計モル数に対してモル比で 1 倍以上が必要であり、 1 . 1 ~ 3倍が好ましい。 ③の製造方法では、 化合物 (Y 2 ) のフエ ノール性水酸基のモル数に対してモル比で 1倍以上が必要であり、 1 . 1 ~ 3倍が好ましい。
①、 ②及び③の製造方法において、 縮合反応は、 極性溶媒中で行うことが好ましい。 極性 溶媒としては、 N, N—ジメチルァセトアミド、 N, N—ジメチルホルムアミド、 N—メチ ルピロリドン、 ジメチルスルホキシド、 スルホラン等の非プロトン性の極性溶媒を含有する 溶媒が好ましい。 極性溶媒には、 生成する F A Pの溶解性を低下せず、 縮合反応に悪影響を 及ぼさない範囲で、 トルエン、 キシレン、 ベンゼン、 ベンゾトリフルオライド、 キシレンへ キサフルオラィド等が含有されてもよい。
縮合反応条件としては、 10~200でで 1〜80時間が好ましい。 より好ましくは 60 〜180°Cで 2〜60時間、 最も好ましくは 80-160°Cで 3 ~ 24時間である。
本発明の FAPの数平均分子量は、 500~1, 000, 000である。 この範囲にある と、 その塗布特性が良好であり、 得られた塗膜は良好な耐熱性、 機械特性、 及び耐溶剤性等 を有する。 好ましくは 1, 000〜 500, 000、 より好ましくは 1, 500〜: L 00, 000、 である。 電子デバイス用絶縁膜用途において、 下地の微細スペース間に充分に浸透 し、 力つ表面を平滑にする特性 (いわゆる埋め込み平坦性) が要求される場合には、 数平均 分子量は 1, 500〜50, 000が最も好ましい。
FAPの数平均分子量は、 ①の製造方法では、 含フッ素芳香族化合物 (B) と化合物 (Y 1) との仕込み比率を変化させることによって制御できる。 同様に、 ②の製造方法では、 含 フッ素芳香族化合物 (B) と化合物 (Y1) と化合物 (Y2) との仕込み比率を、 ③の製造 方法では、 含フッ素芳香族化合物 (B) と芳香族化合物 (Z) と化合物 (Y2) との仕込み 比率を変化させることによって制御できる。
①の製造方法において、 化合物 (Y1) の使用量は含フッ素芳香族化合物 (B) に対する モル比で 2〜6倍が好ましく、 より好ましくは 2〜4倍である。 ②の製造方法において、 化 合物 (Y1) の使用量は含フッ素芳香族化合物 (B) に対するモル比で 0. 3〜3倍が好ま しく、 より好ましくは 0. 8〜 2倍であり、 化合物 (Y2) の使用量は含フッ素芳香族化合 物 (B) に対するモル比で 0. 3〜2倍が好ましく、 より好ましくは 0. 5〜1. 5倍であ る。
③の製造方法において、 化合物 (Z) の使用量は含フッ素芳香族化合物 (B) に対するモ ル比で 0. 3〜 3倍が好ましく、 より好ましくは 0. 5〜 2倍であり、 化合物 (Y2) の使 用量は含フッ素芳香族化合物 (B) に対するモル比で 0. 5〜 2倍が好ましく、 より好まし くは 0. 8~1. 8倍である。 各値がこの範囲にあると、 得られた F A Pが低い誘電率値と 高い耐熱性を併せ持つので好ましい。
本発明において、 ①、 ②及び③の製造方法によって得られた FAPの溶解性が不充分であ つたり、 該 FAPの塗膜が脆い場合には、 FAPの溶解性を向上するために、 または可とう 性を改良するために F A P製造時に共縮合成分を添加することが好ましい。 共縮合成分としては、 分岐構造を有しない、 単環又は多環の含フッ素芳香族化合物 (W) が好ましく、 ペルフルォロ芳香族化合物がより好ましい。 その具体例としては、 ペルフルォ 口ベンゼン、 ペルフルォロトルエン、 ペルフルォロキシレン、 ペルフルォロビフエニル、 ぺ ルフルォロタ一フエニル、 ペルフルォロナフタレン、 ペルフルォロアントラセン等が挙げら れる。 これらは単独で用いても 2種以上混合して用いてもよい。
含フッ素芳香族化合物 (W) の使用量は、 含フッ素芳香族化合物 (B ) に対して 1〜2 0 0質量%が好ましく、 1 0〜1 5 0質量%がより好ましい。 多すぎると得られた塗膜の耐熱 性が低くなり、 少なすぎると可とう性や溶解性の向上効果が不充分である。
本発明の F A Pは縮合反応後又は溶液化後に、 中和、 再沈殿、 抽出、 ろ過等の方法で精製 される。 電子デバイス用絶緣膜及び多層配線板用絶縁膜としての用途において、 縮合反応時 の脱 H F剤であるカリウム、 ナトリウム等の金属及び遊離したハロゲン原子はトランジスタ の動作不良や配線の腐食等を引き起こす原因物質と成りうるので充分に精製することが好ま しい。
本発明の F P Aの架橋反応時、 架橋反応速度を上げる又は反応欠陥を低減させる等の目的 で各種の触媒又は添加剤を用いることも好ましい。
本発明の F A Pが架橋性官能基 (A) としてェチニル基を含有する場合には、 触媒として はァニリン、 トリェチルァミン、 ァミノフエ二ルトリアルコキシシラン、 ァミノプロビルト リアルコキシシラン等のアミン類や、 モリブデン、 ニッケル等を含有する有機金属化合物等 が例示できる。 触媒の添加量は F A P中のェチニル基 1モルに対して 0 . 0 1 ~ 1モルが好 ましく、 さらには好ましくは 0 . 0 5 ~ 0 . 5モルである。
添加剤としては、 ビスシクロペン夕ジェノン誘導体が好ましい。 ェチニル基とシクロペン 夕ジェノン基 (1一才キソシクロペン夕一 2, 5—ジェン一 3—ィル基) は熱によりディー ルスアルダー反応で付加物を形成した後、 脱一酸化炭素反応して芳香環を形成する。 したが つて、 ビスシクロペン夕ジエノン誘導体を使用すると芳香環が結合部位である架橋又は鎖延 長ができる。
ビスシクロペンタジェノン誘導体の具体例としては、 1 , 4—ビス (1—ォキソ一 2, 4 , 5—トリフエ二ル一シクロペン夕一 2, 5—ジェン一 3—ィル) ベンゼン、 4 , 4 ' 一ビス ( 1—ォキソ一 2 , 4 , 5一トリフエ二ル一シクロペン夕一 2, 5—ジェン一 3—ィル) ビ フエニル、 4 , 4 ' 一ビス ( 1一才キソ一 2 , 4, 5—トリフエ二ルーシクロペンター 2 , 5—ジェン一 3—ィル) 1, 1' 一ォキシビスベンゼン、 4, 4 ' —ビス (1一ォキソ一2, 4, 5—トリフエ二ルーシクロペンター 2, 5—ジェン一 3—ィル) 1 , 1, ーチ才ビスべ ンゼン、 1, 4一ビス (1—ォキソ一 2, 5—ジー [4一フルオロフェニル] —4一フエ二 ルーシクロペンター 2, 5—ジェン一 3—ィル) ベンゼン、 4, 4' 一ビス (1—ォキソ一 2, 4, 5—トリフエ二ル一シクロペンター 2, 5—ジェン一3—ィル) 1, 1' 一 (1, 2—エタンジィル) ビスベンゼン、 4, 4' —ビス (1一ォキソ一 2, 4, 5—トリフエ二 ルーシクロペンター 2, 5—ジェン一 3—ィル) 1, 1, 一 (1, 3—プロパンジィル) ビ スベンゼン等を挙げることができる。
'誘導体のうち、 耐熱性の観点から全芳香族骨格のビス '誘導体が好ましい。 これらは単独で用いてもよく、 2種以上を併用し てもよい。 ビスシクロペン夕ジェノン誘導体の添加量は FAP中のェチニル基モル数に対す るモル比で 0. 1〜0. 5倍が好ましく、 0. 15〜0. 5倍がより好ましい。
本発明の FAPは、 通常、 溶媒に溶解して実用に供される。 この際、 FAP中の架橋性官 能基 (A) は、 溶液中では反応せず、 製膜後の加熱 (ベ一ク) 工程で架橋反応することが好 ましい。
FAP溶液に架橋触媒又は添加剤を添加する場合や F A Pが蒸気圧を有する低分子量体を 含有する場合には、 ベ一ク時の揮発を防止するために、 溶液中で架橋性官能基 (A) の一部 がそれ同士及び/又は触媒又は添加剤と反応することも好ましい。
その方法としては加^が好ましい。 加熱条件としては 50°C〜25 Otで 1〜50時間が 好ましく、 より好ましくは 70〜 200 で 1〜 20時間である。 架橋性官能基の溶液中で の反応率は、 溶液中での FAPのゲル化を防止する観点より、 50 %未満とするのが好まし く、 より好ましくは 30%未満である。
本発明の F A Ρの溶媒としては、 F A P及び触媒又は添加剤類を有効に溶かし、 所望の方 法で所望の膜厚、 均一性、 又は埋め込み平坦性を有する塗膜が得られれば特に制限は無く、 芳香族炭化水素類、 双極子非プロトン系溶媒類、 ケトン類、 エステル類、 エーテル類、 ハロ ゲン化炭化水素類が挙げられる。
芳香族炭化水素類としては、 ベンゼン、 トルエン、 キシレン、 ェチルベンゼン、 キュメン、 メシチレン、 テトラリン、 メチルナフ夕レン等が挙げられる。
双極子非プロトン系溶媒類としては、 N—メチルピロリドン、 N, N—ジメチルホルムァ ミド、 N, N—ジメチルァセトアミド、 ァ—プチロラクトン、 ジメチルスルホキシド等が挙 げられる。
ケ卜ン類としては、 シクロペン夕ノン、 シクロへキサノン、 シクロヘプ夕ノン、 シクロォ クタノン、 メチルアミルケトン等が挙げられる。
エーテル類としては、 テトラヒドロフラン、 ピラン、 ジォキサン、 ジメトキシェタン、 ジ エトキシェタン、 ジフエニルエーテル、 ァニソール、 フエネトール、 ジグライム、 トリグラ ィム等が挙げられる。
エステル類としては、 乳酸ェチル、 安息香酸メチル、 安息香酸ェチル、 安息香酸プチル、 安息香酸ベンジル、 メチルセルソルブァセテー卜、 ェチルセルソルブァセテー卜、 プロピレ ングリコールモノメチルエーテル、 プロピレングリコールモノェチルエーテル、 プロピレン ダリコールモノプロピルエーテル、 プロピレングリコールモノブチルエーテル、 プロピレン グリコールモノェチルエーテルァセテ一ト等が挙げられる。
ハロゲン化炭化水素類としては、 四塩化炭素、 クロ口ホルム、 塩化メチレン、 テトラクロ 口エチレン、 クロ口ベンゼン、 ジクロロべンゼン等が挙げられる。
F A Pの濃度は 1 ~ 5 0質量%が好ましく、 5〜3 0質量%がより好ましい。
本発明の F A Pの塗膜形成方法としては、 スピンコート、 ディップコート、 スプレーコ一 ト、 ダイコート、 バーコート、 ドクターコート、 押し出しコート、 スキャンコート、 はけ塗 り、 ポッティング等の公知のコーティング方法が挙げられる。 電子デバイスの絶縁膜として 用いる場合には、 膜厚の均一性の観点からスピンコート又はスキャンコートが好ましい。 塗 布後、 溶媒を揮発させ、 架橋や鎖延長反応を完結させるためにべ一ク (加熱) を行う。 ベー ク条件は 2 0 0 - 4 5 0 °Cで;!〜 1 2 0分間が好ましく、 3 0 0 ~ 4 2 5でで 2〜 6 0分間 がより好ましい。
F A P塗膜の厚さは 0 . 0 1〜5 0 ^rnが好ましく、 0 . 1〜 3 0 がより好ましい。 塗膜の表面平滑性を確保したり、 塗膜の微細スペース埋込性を向上させるために、 5 0〜2 5 0 °C程度のプリベーク工程を追加したり、 ベーク工程を何段階かに分けて実施することも できる。
本発明の F A Pと基材との接着性の向上のため接着促進剤を使用することも好ましい。 接 着促進剤としては、 シラン系カツプリング剤、 チタネート系カップリング剤、 アルミニウム 系カップリング剤等が挙げられ、 エポキシシラン類、 アミノシラン類などのシラン系カップ リング剤がより好ましい。 アミノシラン類としては、 ァーァミノプロピルメチルジェトキシ シラン、 ァーァミノプロピルトリエトキシシランなどの脂肪族アミノシラン類、 ァミノフエ ニルトリメトキシシラン、 ァミノフエ二ルトリエトキシシラン、 N—フエ二ルーァ一ァミノ プロピルトリメトキシシランなどの含芳香族基アミノシラン類が例示される。
接着促進剤の適用方法としては、 F A P溶液の塗布前に基材を接着促進剤で処理する方法 や F A P溶液中に接着促進剤を添加する方法が好ましい。 基材を接着促進剤で処理する方法 としては、 アミノシラン類の例では、 0. 01 ~3質量%のアルコール系溶液として基材に スピンコートする方法が挙げられる。 接着促進剤を FAP溶液中に添加する方法では、 接着 促進剤の添加量は含有される FAPに対して 0. 05〜10質量%が好ましく、 0. 1〜5 質量%がより好ましい。 接着促進剤の添加量が少ないと接着性向上効果が充分でなく、 多す ぎると電気特性や耐熱性が低下する。
本発明の FAPの用途としては、 保護膜、 燃料電池等の各種電池用膜材料、 フォトレジス ト、 光導波材料、 被覆材、 電子用部材、 封止剤、 オーバーコート剤、 透明フィルム材、 接着 剤、 繊維材、 耐候性塗料、 撥水剤、 撥油剤、 防湿コート剤等が挙げられる。 特に、 電子デバ ィス用絶縁膜又は多層配線板用絶縁膜の用途が好ましい。
電子デバイスとしては、 ダイオード、 卜ランジス夕、 化合物半導体、 サーミス夕、 パリス 夕、 サイリス夕等の個別半導体、 DRAM (ダイナミック ·ランダム ·アクセス ·メモリ) 、 SRAM (スタティック ·ランダム ·アクセス ·メモリ) 、 EPROM (ィレイザブル ·プ ログラマブル · リード ·オンリー ·メモリ) 、 マスク ROM (マスク ·リード ·オンリー · メモリ) 、 EEPROM (エレクトリカル ·ィレイザブル ·プログラマブル ·リード ·オン リー 'メモリ) 、 フラッシュメモリなどの記憶素子、 マイクロプロセッサ、 DSP、 AS I Cなどの理論回路素子、 MMI C (モノリシック ·マイクロウエーブ集積回路) に代表され る化合物半導体などの集積回路素子、 混成集積回路 (八イブリツド I C) 、 発光ダイオード、 電荷結合素子などの光電変換素子等が挙げられる。
多層配線板としては、 電子デバイス等を実装するための各種基板であり、 プリント配線板、 ビルドァップ配線板、 M C Mなどの高密度配線板等が挙げられる。
絶縁膜としては、 バッファコート膜、 パッシベーシヨン膜、 層間絶縁膜、 アルファ線遮蔽 膜等が挙げられる。
F AP塗膜を用いる電子デバィス用絶縁膜又は多層配線板用絶縁膜の用途において、 より 低い比誘電率の絶縁膜を得るために、 FAP絶縁膜中に空孔を含有することも好ましい。 空 孔の導入方法としては、 次の 2方法等が挙げられる。
(1) 本発明の FAPと熱分解温度の低いポリマー (以下、 熱分解性ポリマーという。 ) を複合化し、 熱分解性ポリマー部分を絶縁膜形成過程において除去する方法。
(2) 本発明の FAPに分散する微粒子を添加し、 微粒子部分を絶縁膜形成過程において、 又は絶縁膜形成後に除去する方法。
(1) の方法において、 熱分解性ポリマーとしては脂肪族ポリエーテル、 脂肪族ポリエス テル、 アクリル系重合体、 スチレン系重合体等が挙げられる。 熱分解性ポリマーの分子量は 1, 000〜 100, 000が好ましく、 1, 000〜50, 000がより好ましい。 分子 量がこの範囲にあると F A Pとの相溶性を確保できるので好ましい。 F A Pと熱分解性ポリ マーを複合化する手法として、 FAPと熱分解性ポリマーの混合溶液を作成し、 製膜するこ とによって複合膜を得る方法、 F A Pと熱分解性ポリマーとをブロック化又はグラフト化す ることにより複合化する方法等が例示できる。
ブロック化又はグラフト化方法は公知のものが適用できるが、 例えば、 末端に含フッ素芳 香環又はフエノール性水酸基を有する熱分解性ポリマーを作成し、 F A P合成の縮合反応時 に共縮合する手法が例示できる。 F A Pの縮合反応は、 前記式 5又は 6の反応機構で進行す るため、 末端の含フッ素芳香環又はフエノール性水酸基部分が FAP鎖と結合する。 ここで、 熱分解性ポリマーが片末端に含フッ素芳香環又はフェノール性水酸基を有する場合、 熱分解 性ポリマーがグラフトした F A Pを得ることができる。 熱分解性ポリマーが両末端に含フッ 素芳香環又はフエノール性水酸基を有する場合、 FAPと熱分解性ポリマーのブロック体を 得ることができる。
熱分解性ポリマ一は熱分解温度が低いため、 絶縁膜形成中の加熱により選択的に分解除去 され、 除去された部分が空孔となる。 熱分解性ポリマーの添加量により空孔率の制御が可能 である。 添加量は、 通常 FAPに対して 5〜80容積%が好ましく、 10〜70容積%がさ らに好ましい。
(2) の方法において、 本発明の FAPに分散する微粒子としては無機微粒子が好ましい。 無機微粒子としては、 シリカ、 金属等の微粒子が挙げられる。 微粒子は製膜後の酸処理等で 溶解除去され、 除去された部分が空孔となる。 微粒子の添加量により空孔率の制御が可能で ある。 添加量は、 通常 FAPに対して 5〜80容積%が好ましく、 10〜70容積%がさら に好ましい。
本発明における FAPの塗膜は、 他の膜と複合化することも好ましい。 例えば、 半導体素 子パッシベーション膜又は半導体素子用層間絶縁膜として適用する場合、 F A P塗膜の下層 及び/又は上層に無機膜を形成することが好ましい。
無機膜としては、 常圧、 減圧又はプラズマ化学気相成長 (CVD) 法や塗布法で形成され る膜であり、 例えばシリコン酸化膜に必要に応じてリン及ぴ 又はホウ素をドープしたいわ ゆる PSG膜又は BPSG膜、 シリコン酸化膜、 シリコン窒化膜、 シリコン酸化窒化膜、 S i OC膜、 スピン一オン—グラス (SOG) 膜等が挙げられる。
FAP塗膜と金属配線との間に無機膜を形成することによって、 金属配線の剥がれを防止 し、 ダマシン形状等のエッチング加工が容易にできる。 無機膜は、 FAP塗膜をエッチバッ ク法又は CMP (ケミカル ·メカニカル ·ポリツシング) 法により部分的に削除した後に F A P塗膜上層へ形成することも好ましい。
F A P塗膜上層に無機膜を形成する時に、 F A P塗膜と無機膜の密着性が充分でないか無 機膜形成時に膜減りする等の場合には、 次の 2方法の適用が好ましい。
(I) 多層無機膜を形成する方法:シリコン酸化膜をプラズマ CVD法により形成する場 合、 用いるガス組成によっては膜減りが発生する。 この場合には、 まずシリコン窒化膜又は 常圧 C V D—シリコン酸化膜などの膜減りを生起しない無機膜の薄膜を形成する。 ついでこ の薄膜をバリア層としてシリコン酸化膜を形成する。
(I I) F A P塗膜をエネルギー線で処理する方法:エネルギー線による処理が FAP塗 膜と無機膜との界面の密着性を向上させる効果を有する場合がある。 エネルギー線処理とし ては、 光を含む広義の意味での電磁波、 すなわち UV光照射、 レーザ光照射、 マイクロ波照 射等、 又は電子線を利用する処理、 すなわち電子線照射、 グロ一放電処理、 コロナ放電処理、 プラズマ処理などの処理が例示される。
これらのうち半導体素子の量産工程に好適な処理方法としては、 UV光照射、 レーザ光照 射、 コロナ放電処理、 プラズマ処理が挙げられる。
プラズマ処理は半導体素子に与えるダメージが小さくより好ましい。 プラズマ処理を行う 装置としては装置内に所望のガスを導入でき、 電場を印加できるものであれば特に限定され ず、 市販のバレル型、 平行平板型のプラズマ発生装置が適宜使用できる。 プラズマ装置へ導 入するガスとしては、 表面を有効に活性化するものであれば特に限定されず、 アルゴン、 へ リウム、 窒素、 酸素、 これらの混合ガス等が挙げられる。 また、 FAP塗膜の表面を活性化 させ、 膜減りも殆どないガスとしては、 窒素と酸素の混合ガス及び窒素ガスが挙げられる。 本発明を以下の実施例及び比較例より具体的に説明するが、 本発明はこれらに限定されな い。 例 1 ~ 17、 及び例 20〜 22が実施例、 例 18、 19が比較例である。 例 1〜 4は含 フッ素芳香族化合物 (B) の合成、 例 5〜19は F A Pの合成と基本特性の評価結果、 例 2 Qは塗膜の接着性評価、 例 21が空孔導入塗膜の作成、 例 22が絶縁膜特性の評価、 である。 なお、 分子量、 比誘電率、 Tgは下記の方法により測定した。
[分子量] 真空乾燥した FAP粉末をゲルパ一ミエーシヨンクロマトグラフィー法 (GP C) によりボリスチレン換算の数平均分子量を求めた。 溶媒はテトラヒドロフランを使用し た。
[比誘電率] 真空乾燥した FAP粉末をシクロへキサノンに溶解させて得た 15%溶液を ポア径 0. 2 の PTFE製フィル夕でろ過した。 得られた溶液を用いてシリコンウェハ 上にスピンコートして 400〜700 nmの塗膜を形成した。 スピン条件は 2000 r pm X 30秒とし、 ホットプレートによる 100 X 90秒、 20 O X 90秒のプリべ一夕の 後、 縦型炉で 425°CX 1時間、 窒素雰囲気下でのファイナルべ一クを行った。 続いて水銀 プロ一バーによる CV測定を行うことにより 1 MHzの比誘電率を求めた。 塗膜厚さは分光 エリプソメータによって求めた値を使用した。
[Tg] 真空乾燥した FAP粉末をシクロへキサノンに溶解させて得た 15%溶液をポア 径 0. 2 mの PTFE製フィルタでろ過した。 得られた溶液を用いてシリコンウェハ上に ポッティングし、 ホットプレートによる 200°CX 300秒のプリべ一夕の後、 縦型炉で 4 25°CX 1時間、 窒素雰囲気下でのファイナルベークを行った。 シリコンウェハから塗膜を 搔き取り DS C測定を行って Tgを求めた。 DSC測定において、 40 から 450°Cまで 窒素雰囲気下、 昇温速度 10°CZ分の条件でスキャンを行った。
[例 1 ] 含フッ素芳香族化合物 ( B ) (ペルフルォロ (1, 3, 5—トリフエ二ルペンゼ ン) ) の合成
ジムロートコンデンサ、 熱電対温度計、 滴下ロート、 メカニカルスターラの付いた 2 Lパ ィレックス (登録商標) 製 4つ口フラスコにペンタフルォロブロモベンゼンの 148. 2 g と THFの 50 OmLを仕込んだ。 その後、 氷浴下、 激しく撹拌しながら 0. 96mo l/ Lのェチルマグネシウムプロマイド THF溶液の 60 OmLを徐々に滴下し、 滴下終了後 1 時間撹拌を続けた。 次に固体の臭化銅 (CuB r) の 172. 2 gを添加し、 1時間撹拌し た後にジォキサンの 20 OmLを加え、 そのまま 30分間撹拌した。
次に 1, 3, 5—トリヨ一ドー 2, 4, 6—トリフルォロベンゼンの 76. 5 gを添加し、 氷浴からオイルバス上での加熱に切り替え、 撹拌しながら 16時間還流を続けた。 その後反 応液から溶媒を留去して濃縮し、 残留物を水中に入れ、 急冷した。 濾過して集めた固体を 2 000 gのジクロ口ペン夕フルォロプロパンで抽出した後、 エバポレーターで乾固すると 9 2 gの黄色結晶が得られた。 さらにこの結晶をへキサンから再結晶し、 40でで真空乾燥す ることにより白色結晶を得た。 マススぺクトル及び NMR分析により、 本結晶はペルフルォ 口 (1, 3, 5—トリフエニルベンゼン) (以下、 135TPBという。 ) と同定された。
[例 2] 含フッ素芳香族化合物 (B) (ペルフルォロ (1, 2, 4一トリフエ二ルペンゼ ン) ) の合成
1, 3, 5—トリヨ一ドー 2, 4, 6—トリフルォロベンゼンを 1, 2, 4—トリョ一ド -3, 5, 6—トリフルォロベンゼンに変更した以外は例 1と同様の方法にてペルフルォロ (1, 2, 4一トリフエニルベンゼン) の白色結晶 (以下、 124TPBという。 ) を得た。
[例 3] 含フッ素芳香族化合物 (B) (下記式で示される化合物) の合成
Figure imgf000019_0001
ジムロートコンデンサ、 熱電対温度計、 滴下ロート、 メカニカルスターラの付いた 100 mLパイレックス (登録商標) 製 4つ口フラスコにペン夕フルォロブロモベンゼンの 5. 9 4 gと THFの 3 OmLを仕込んだ。 氷浴下、 激しく撹拌しながら 0. 96mo lZLのェ チルマグネシウムプロマイド THF溶液の 25 mLを徐々に滴下し、 滴下終了後 1時間撹拌 を続けた。 次に合成例 1で得られた 135TPBの 2. 52 gを添加し、 氷浴からオイルバ ス上での加熱に切り替え、 撹拌しながら 60°Cで 12時間加熱を行った。
その後、 反応液を激しく撹拌した 0. 2 N塩酸水 30 OmL中に投入すると白色結晶が生 成した。 この結晶を純水で 3回洗浄した後に 60°Cで真空乾燥を行って、 5. l gの白色結 晶を得た。 ガスクロマトグラフィー、 マススペクトル、 及び NMR分析より、 本結晶は a、 b及び cの平均値がいずれも約 1. 2である含フッ素芳香族化合物 (以下、 TPB— 4Pと いう。 ) と同定された。
[例 4] 含フッ素芳香族化合物 (B) (2, 2' , 2 ' , 2 ' 2 ' ' ' ' , 3 3' ' ' ' , 4, 4' , 4' ' , 4' ' ' , 4' ' ' ' 5, 5 ' 6, 6 ' ,
6, , , 6 , , , , 6 ' , ' 一ノナデ力フルオロー 5 , 5 ' '
オロフェニル)— 5 ' ' 一(トリデカフルォロ [1, 1' 3 ' , 1 —夕一フエニル] 一 5 ' —ィル)一 1, 1 ' 3, , 1, , : 3, , , 1, , •• 3 ; ' 1' ' ' ' —キンク フエニル) の合成
ジムロートコンデンサ、 熱電対温度計、 滴下ロート、 メカニカルスターラの付いた 2 Lパ ィレックス (登録商標) 製 4つ口フラスコに、 1—ブロモー 2, 4, 6—トリフルォロベン ゼンの 126. 6 gと THFの 40 OmLを仕込んだ。 氷浴下、 激しく撹拌しながら 0. 9 6mo 1 /Lのェチルマグネシウムブロマイド THF溶液の 60 OmLを徐々に滴下し、 滴 下終了後 1時間撹拌を続けた。 次に固体の臭化銅 (CuB r) の 172. 5 gを添加、 1時 間撹拌した後にジォキサンの 20 OmL及びトルエンの 20 OmLを加え、 そのまま 30分 間撹拌した。 次に 1, 3, 5—トリブロモ—2, 4, 6—トリフルォロベンゼンの 55. 3 gを添加し、 氷浴からオイルパス上での加熱に切り替え、 撹拌しながら 38時間還流を続け た。
その後反応液から溶媒を留去して濃縮し、 残留物を水中に投入し、 急冷した。 濾過して集 めた固体を 2000 gのジクロ口ペン夕フルォロプロパンで抽出した後、 エバポレー夕一で 乾固すると 50. 3 gの黄色結晶が得られた。 NMR、 ガスクロマトグラフ、 マススぺクト ル測定の結果、 本結晶は 2, 2, , 2, , , 4, 4' , 4' , , 6, 6' , 6, , ーノナフ ルォ口— 5, - (2, 4, 6—トリフルオロフェニル) 一 1, 1' : 3, , 1 ' ' —夕ーフ ェニルと同定された。
次にジムロートコンデンサ、 熱電対温度計、 滴下ロート、 メカニカルスターラの付いた 2 Lパイレックス (登録商標) 製 4つ口フラスコへ上記で得られた結晶の 41 · 8 g及び塩化 メチレンの 70 OmLを仕込み撹拌して均一溶液とし、 さらに臭化アルミニウムの 3 gを加 えた。 臭素の 60 g及び塩化メチレンの 20 OmLを滴下ロートへ仕込み、 室温で激しく撹 拌しながら徐々にフラスコ中へ滴下した。 滴下終了後オイルバス上で加温し、 3時間還流さ せた。 室温まで冷却した後に 1 Lの飽和チォ硫酸ナトリウム水溶液、 続いて 500mLの飽 和塩化ナトリゥム水溶液で 2度洗浄し、 有機層を硫酸マグネシウムで乾燥させた。
溶媒を留去し、 残った黄色結晶をへキサンから再結晶することによって 58. 5 gの微黄 色結晶を得た。 NMR、 ガスクロマトグラフ、 マススペクトル測定の結果、 本結晶はへキサ ブロモ体である、 3, 3' ' , 5, 5, ' ーテトラブロモー 5' ― (3, 5—ジブ口モー 2, 4, 6—トリフルオロフェニル) 一2, 2' , 2' , , 4, 4, , 4, ' , 6, 6, ,
6 ' ' ーノナフルオロー 1, 1 , : 3' , 1, ' 一夕一フエニルと同定された。
次にジムロートコンデンサ、 熱電対温度計、 滴下ロート、 メカニカルスターラの付いた 1 Lパイレックス (登録商標) 製 4つ口フラスコにペンタフルォロブロモベンゼンの 74. 1 gと THFの 20 OmLを仕込んだ。 氷浴下、 激しく撹拌しながら 0. 96mo l/Lのェ チルマグネシウムブロマイド THF溶液の 30 OmLを徐々に滴下し、 滴下終了後 1時間撹 拌を続けた。 次に固体の臭化銅 (CuB r) の 86. l gを添加、 1時間撹拌した後にジォ キサンの 10 OmL及びトルエンの 20 OmLを加え、 そのまま 30分間撹拌した。 次に上 記で得られたへキサブロモ体の 37. 3 gを添加し、 氷浴からオイルバス上での加熱に切り 替え、 撹拌しながら 45時間還流を続けた。
その後反応液から溶媒を留去して濃縮し、 残留物を水中に投入し、 急冷した。 濾過して集 めた固体を 1500 gのクロ口ホルムで抽出した後、 エバポレー夕一で乾固すると 44. 1 gの黄色結晶が得られた。 さらにトルエン/へキサン混合溶媒によって再結晶を 2度行い、 60でで真空乾燥を行うことによって 22. 9 gの白色結晶を得た。 NMR、 ガスクロマト グラフ、 マススペクトルの結果、 本結晶は、 下記式に示す 2, 2, , 2' , , 2, ' ' , 2 ' ' ' ' , 3, 3' ' ' ' , 4, 4' , 4' ' , 4' ' ' , 4' ' ' ' , 5, 5' ' ' ' , 6, 6' , 6' , , 6 ' ' ' , 6' ' ' ' —ノナデカフルオロー 5' , 5' ' ' ' —ビス
(ペン夕フルオロフェニル) 一 5, ' 一 (トリデカフルォロ [1, 1, : 3, , 1' ' 一夕 一フエニル] ― 5 ' —ィル) ー 1, 1' : 3' ., 1, ' : 3, ' , 1' , , :3, ' , , 1 ' ' ' ' —キンクフエニル (以下、 TPB— 35Pという。 ) と同定された。 TPB— 3 5 Pの分子量は 1700であった。
Figure imgf000022_0001
[例 5] 含フッ素芳香族化合物 (B) と化合物 (Y1) とを用いた、 ①の製造方法による FAPの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスターラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコに、 例 3で得られた TPB— 4 Pの 2. 19 g、 化合物
(Y 1) として 4一 (4一フルオロフェニルェチニル) フエノールの 1. 37 g、 N, N— ジメチルァセトアミド (以下、 DMAcという。 ) の 35 g、 卜^/レエンの 1 5 gを仕込んだ。 撹拌しながらオイルパス上で加温し、 液温が 80°Cとなった時点で炭酸力リゥムの 1. 84 gを素早く添加し、 撹拌を継続しながら 120 で 4時間加熱した。
その後、 反応液を室温に冷却し、 激しく撹拌した、 酢酸の 7. l gを含む純水/メタノ一 ル (容積比約 1 Z 1 ) 混合液 400 m Lに徐々に投入すると微褐色粉状物が沈殿した。 この 微褐色粉状物をろ過し、 さらに純水で 5回洗浄した後に、 80でで 1 5時間真空乾燥を行つ て 2. 76 gの白灰色粉末状の FAPを得た。 得られた FAPはエーテル結合及び平均 3. 0個のェチニル基を有し、 分子量は 1 600、 比誘電率は 2. 4であった。 DSC測定にお いて転移点や発/吸熱ピークは観測されず、 Tgは 450°C以上であった。
[例 6] 含フッ素芳香族化合物 (B) と化合物 (Y1) とを用いた、 ①の製造方法による FAPの合成
4一 (4—フルオロフェニルェチニル) フエノールの 1. 37 gの代わりに、 4一フエ二 ルェチニルフエノールの 1. 1 5 gを用いた以外は例 5と同様にして 2. 5 gの灰白色粉末 状の F A Pを得た。 得られた F A Pはエーテル結合及び平均 2. 8個のェチニル基を有し、 分子量は 1 500、 比誘電率は 2. 4であった。 DSC測定において転移点や発/吸熱ピー クは観測されず、 T gは 450 °C以上であった。
[例 7] 含フッ素芳香族化合物 (B) と化合物 (Y1) とを用いた、 ①の製造方法による F APの合成
TPB— 4Pの 2. 19 gの代わりに、 例 4で得られた TPB— 35 Pの 4. 56gを用 い、 4一 (4一フルオロフェニルェチニル) フエノールの使用量を 1. 9 gとした以外は例 5と同様にして 4. 89 gの白色粉末状の FAPを得た。 得られた FAPはエーテル結合及 び平均 3. 1個のェチニル基を有し、 分子量は 2200、 比誘電率は 2. 3であった。 DS C測定において転移点や発/吸熱ピークは観測されず、 Tgは 450°C以上であった。
[例 8] 含フッ素芳香族化合物 (B) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による F A Pの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスターラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコに、 例 1で得られた 135TPBの 3. 78 g、 化合物 (Y2) として 1, 3—ジヒドロキシベンゼンの 0. 33 g、 DMAcの 60 g、 トルエン の 5 g、 及び炭酸カリウムの 2. 2 l gを仕込んだ。 オイルバス上で、 撹拌しながら 5時間 130でで加熱した後に、 化合物 (Y 1) として 4一 ( 4 -フルオロフェニルェチニル) フ ェノールの 2. 12 gを投入し、 さらに 3時間 120°Cで加熱した。
その後反応液を室温に冷却し、 激しく撹拌した、 酢酸の 8 gを含む純水/メタノール (容 積比約 1 1 ) 混合液 500 mLに徐々に投入すると褐色粉状物が沈殿した。 この褐色粉状 物をろ過し、 さらに純水で 5回洗浄した後に 8 Ot:で 15時間真空乾燥を行って、 5. 3g の微褐色粉末状の FAPを得た。 得られた FAPはエーテル結合及び平均 3. 7個のェチニ ル基を有し、 分子量は 2200、 比誘電率は 2. 5であった。 DS C測定において転移点や 発ノ吸熱ピークは観測されず、 T gは 450 以上であった。
[例 9] 含フッ素芳香族化合物 (B) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による FAPの合成
1, 3—ジヒドロキシベンゼンの使用量を 0. 50 gとした以外は、 例 8と同様にして 5. 5 gの微褐色粉末状の FAPを得た。 得られた F A Pはエーテル結合及び平均 8. 3個のェ チニル基を有し、 分子量は 5000、 比誘電率は 2. 4であった。 DSC測定において転移 点や発/吸熱ピークは観測されず、 Tgは 450°C以上であった。
[例 10] 含フッ素芳香族化合物 (B) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による F A Pの合成
1, 3—ジヒドロキシベンゼンの 0. 33 gの代わりに、 9, 9一ビス (4ーヒドロキシ フエニル) フルオレンの 1. 40 gを用いた以外は例 8と同様にして 5. 8 gの白色粉末状 の FAPを得た。 得られた F A Pはエーテル結合及び平均 8. 4個のェチニル基を有し、 分 子量は 5800、 比誘電率は 2. 3であった。 D S C測定において転移点や発 Z吸熱ピーク は観測されず、 T gは 450 °C以上であった。
[例 11] 含フッ素芳香族化合物 (B) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による F A Pの合成
135TPBの 3. 78 gの代わりに、 例 2で得られた 124TPBの 3. 79 gを用い た以外は例 10と同様にして 5. 3 g白色粉末状の F A Pを得た。 得られた F A Pはェ一テ ル結合及び平均 11. 8個のェチニル基を有し、 分子量は 8200、 比誘電率は 2. 4であ つた。 DSC測定において転移点や発/吸熱ピークは観測されず、 Tgは 450で以上であ つた。
[例 12] 含フッ素芳香族化合物 (B) 及び化合物 (W) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による FAPの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスターラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコを窒素置換した後に、 135TPBの 3. 78g、 化合 物 (Y2) として 1, 3—ジヒドロキシベンゼンの 0. 99 g、 化合物 (W) としてペルフ ルォロビフエニルの 2. O Og、 N—メチルピロリドンの 60 g、 さらに炭酸カリウムの 1. 86 gを仕込んだ。 撹拌しながらオイルバス上で、 15時間 160でで加熱した後、 炭酸力 リウムの 0. 85g、 及び化合物 (Y1) として 4一 (4一フルオロフェニルェチニル) フ エノ一ルの 1. 91 gを投入し、 さらに 120でで 3時間加熱した。
その後反応液を室温に冷却し、 激しく撹拌した、 酢酸 8 gを含む純水/メタノール (容積 比約 1 1 ) 混合液 400 mLに徐々に投入すると褐色粉状物が沈殿した。 この褐色粉状物 をろ過し、 さらに純水で 5回洗浄した後に 80でで 15時間真空乾燥を行って、 6. 8 gの 微褐色粉末状の F A Pを得た。 得られた F A Pはエーテル結合及び平均 9. 6個のェチニル 基を有し、 分子量は 8700、 比誘電率は 2. 5、 Tgは 384 であった。
[例 13] 含フッ素芳香族化合物 (B) 及び化合物 (W) と化合物 (Y1) 及び化合物 (Y2) とを用いた、 ②の製造方法による FAPの合成
1, 3—ジヒドロキシベンゼンの 0. 99 gの代わりにジヒドロキシー 2, 2—ジフエ二 ルへキサフルォロプロパンの 2. 02 及び1, 2, 4—トリヒドロキシベンゼンの 0. 4 0 gを混合して用いた以外は例 12と同様にして 8. 7 gの褐色粉末状 F A Pを得た。 得ら れた F A Pはエーテル結合及び平均 16. 8個のェチェル基を有し、 分子量は 17000、 比誘電率は 2. 4であった。 DSC測定において転移点や発 Z吸熱ピークは観測されず、 T gは 450°C以上であった。
[例 14] 含フッ素芳香族化合物 (B) 及び芳香族化合物 (Z) と化合物 (Y2) とを用 いた、 ③の製造方法による FAPの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスターラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコを窒素置換した後に、 135TPBの 2. 52g、 化合 物 (Z) として 4一フエ二ルェチ二ルノナフルォロビフエニルの 1 - 66 g、 化合物 (Y 2) として 1, 3, 5—トリヒドロキシベンゼンの 0. 51 g、 01^八(:の408、 さらに 炭酸力リゥムの 1. 25 gを仕込んだ。 オイルバス上で、 撹拌しながら 6時間 150 t:で加 熱した。
反応液を室温に冷却し、 激しく撹拌した 0. 2 N塩酸水 20 OmLに徐々に投入すると、 微褐色粉状物が沈殿した。 この微褐色粉状物をろ過し、 約 50 c cのテトラヒドロフランに 溶解させた。 この溶液を、 激しく撹拌した純水/メタノール (容積比約 1Z1) 混合液 30 OmLに徐々に投入することによって得られた灰白色沈殿を、 純水で 5回洗浄した後に 8 0°Cで 20時間真空乾燥を行って、 4. 2 gの白色粉末状 FAPを得た。 得られた FAPは エーテル結合及び平均 13. 5個のェチニル基を有し、 分子量は 15000、 比誘電率は 2. 3であった。 DS C測定において転移点や発/吸熱ピークは観測されず、 丁 は450で以 上であった。
[例 15] 含フッ素芳香族化合物 (B) 及び芳香族化合物 (Z) と化合物 (Y2) とを用 いた、 ③の製造方法による FAPの合成
1, 3, 5—卜リヒドロキシベンゼンの 0. 51 gの代わりに、 ジヒドロキシー 2, 2— ジフエニルへキサフルォロプロパンの 2. 02 gを用いた以外は例 14と同様にして 5. 5 gの褐色粉末状 F A Pを得た。 得られた FAPはエーテル結合及び平均 8. 7個のェチニル 基を有し、 分子量は 13000、 比誘電率は 2. 4であった。 DSC測定において転移点や 発ノ吸熱ピークは観測されず、 Tgは 450°C以上であった。
[例 16] 含フッ素芳香族化合物 (B) 及び芳香族化合物 (Z) と化合物 (Y2) とを用 いた、 ③の製造方法による FAPの合成 4—フエ二ルェチ二ルノナフルォロビフエニルの 1. 66 gの代わりに、 デカフルォロト ランの 1. 52gを、 1, 3, 5—トリヒドロキシベンゼンの 0. 5 l gの代わりに 9, 9 一ビス (4ーヒドロキシフエニル) フルオレンの 1. 95 gを用いた以外は例 14と同様に して 5. 2 gの白色粉末状の FAPを得た。 得られた F A Pはエーテル結合及び平均 6. 6 個のェチニル基を有し、 分子量は 9000、 比誘電率は 2. 3であった。 DSC測定におい て転移点や発/吸熱ピークは観測されず、 Tgは 450°C以上であった。
[例 17] 含フッ素芳香族化合物 (B) 、 芳香族化合物 (Z) 及び化合物 (W) と化合物 (Y2) とを用いた、 ③の製造方法による FAPの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスタ一ラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコを窒素置換した後に、 135TPBの 2. 52 g、 化合 物 (Z) として 4一フエ二ルェチ二ルノナフルォロビフエエルの 1. 42 g、 化合物 (Y 2) として 1, 3, 5—トリヒドロキシベンゼンの 0. 67 g、 化合物 CW) としてペルフ ルォロビフエニルの 0. 66 g、 01^1 。の40 、 さらに炭酸カリウムの 1. 30 gを仕 込んだ。 オイルバス上で、 撹抻しながら 6時間 1301:で加熱した。
反応液を室温に冷却し、 激しく撹拌した 0. 2 N塩酸水 20 OmLに徐々に投入すると、 微褐色粉状物が沈殿した。 この微褐色粉状物をろ過し、 約 50 c cのテ卜ラヒドロフランに 溶解させた。 この溶液を、 激しく撹拌した純水 Zメタノール (容積比約 1Z1) 混合液 30 0 m Lに徐々に投入することによって得られた灰白色沈殿を、 純水で 5回洗浄した後に 8 0°Cで 20時間真空乾燥を行って、 4. 5 gの白色粉末状 F APを得た。 得られた FAPは エーテル結合及ぴ平均 6. 8個のェチニル基を有し、 分子量は 9800、 比誘電率は 2. 3 であった。 DS C測定において転移点や発/吸熱ピークは観測されず、 Tgは 450で以上 であった。
[例 18 (比較例) ] 公知の F A Pの合成
ジムロートコンデンサ、 熱電対温度計、 メカニカルスターラの付いた 10 OmLパイレツ クス (登録商標) 製 4つ口フラスコを窒素置換した後に、 ペルフルォロビフエニルの 2. 5 1 g、 ジヒドロキシー 2, 2—ジフエニルへキサフルォロプロパンの 1. 68 g、 DMAc の 40 g及びトルエンの 5 gを仕込み、 さらに炭酸カリウムの 1. 66 gを仕込んだ。 オイ ルバス上で、 撹拌しながら 5時間 120°Cで加熱した後に、 炭酸力リゥムの 0. 7 gとフエ ニルェチニルフエノールの 1. 05 gを投入し、 さらに 120*Cで 3時間加熱した。 反応液を室温に冷却し、 激しく撹拌した、 酢酸の 8 gを含む純水/メタノール (容積比約 1/1) 混合液 500mLに徐々に投入すると、 微褐色粉状物が沈殿した。 この微褐色粉状 物をろ過し、 さらに純水で 5回洗浄した後に 80でで 15時間真空乾燥を行って、 4. 2 g の微褐色粉末状の F A Pを得た。 得られた F A Pの分子量は 5100、 比誘電率は 2. 8、 Tgは 295°Cであった。
[例 19 (比較例) ] 架橋性官能基を有しない F A Pの特性評価
例 4で得られた分子量 1700である TPB— 35 Pの比誘電率及び Tgは 200"Cのプ リベーク後の膜については、 それぞれ 2. 4及び 121でであった。 425°Cのファイナル ベークを行うと膜がすべて揮発し消滅した。
[例 20 ] FP A塗膜と基材との接着性
例 10で得られた FAPのシクロへキサノン 15%溶液 (以下、 溶液 10という。 ) の一 部を取り出し、 ァミノフエ二ルトリメトキシシランを FAPに対して 3質量%添加して溶液 10-1を得た。 また、 ァミノフエニルトリメトキシシランに代わりに τ—ァミノプロピル トリエトキシシランを FAPに対して 3質量%添加して溶液 10— 2を得た。 次に膜厚 20 Onmの p— S i N (モノシラン、 ァンモニァ及び窒素混合ガスを原料とするプラズマ C V D法により製膜)、 膜厚 300 nmの p _ S i O (モノシラン及びニ窒化酸素混合ガスを原料 とするプラズマ CVD法により製膜)、 膜厚 50 Onmの A1 (スパッタリング法により製 膜)、 膜厚 50 nmの T i N (スパッタリング法により製膜)をそれぞれ形成した 4インチシ リコンウェハ上に、 溶液 10、 溶液 10— 1及び溶液 10— 2をスピンコートすることによ り塗膜を形成した。
スピン回転数は塗膜厚が 500 nmとなるように調整し、 ホットプレートによる 100°C X 90秒、 200 °C X 90秒のプリベークの後、 縦型炉で 425 °C X 1時間、 窒素雰囲気の ファイナルべ一クを行った。 これらサンプルに対して、 J I S DO 202に記載のゴバン 目テープ剥離テストにより FAP塗膜と基材との接着性を評価した。
溶液 10より得られた塗膜は、 p_S i O、 A 1上の塗膜に剥離は見られなかった。 P— S i N上の塗膜に形成されたゴバン目のうち 20 %が剥離し、 T 1上の塗膜に形成されたゴ バン目のうち 80%が剥離した。
溶液 10— 1より得られた塗膜は、 p— S i N、 p— S i O、 A l、 T i N上いずれの塗 膜においても剥離は見られなかった。 溶液 10— 2より得られた塗膜は、 p— S iN、 p-S 10, A l、 T i N上いずれの塗 膜においても剥離は見られなかった。
本例により、 アミノシランのごとき接着促進剤が F A Pの接着性向上に効果があることが 明らかとなった。
[例 21] 空孔を含有する FAP塗膜の作成
例 14で調整した FAPのシクロへキサノン 15%溶液に、 数平均分子量 3000のポリ (ε—力プロラクトン) を FAPに対して 25質量%添加し、 溶解させた後、 PTFE製フ ィルター (ポア径 0. 2 m) でろ過して均一透明な溶液 (以下、 溶液 14という。 ) を調 整した。 溶液 14を 4インチシリコンウェハ上にスピンコート、 続いてベークを行って塗膜 を形成した。 スピン条件は 2500 r pmX 30秒とし、 例 20と同様にプリべ一ク、 ファ イナルベークした。 得られた塗膜の断面を SEM観察した結果、 ナノメートルオーダーの微 小な空孔の存在が確認された。 塗膜の比誘電率は 1. 8であった。 また、 ゴバン目テープ剥 離テストによる剥離や膜の破壌は見られなかつた。
[例 22] 層間絶縁膜としての評価
溶液 10、 溶液 10— 1、 溶液 14及び例 18で調整製したシク口へキサノン 15 %溶液
(以下、 溶液 18という。 ) より、 以下の方法でシリコンウェハ Zp— S i 0 (300 η m) /FAP塗膜 (500 nm) /p-S i N (50 nm) ノ p— S i〇 (500 nm) の 積層膜を作成した。
P-S i 0膜 (膜厚 300 nm) を形成した 4インチシリコンウェハ上に溶液をスピンコ 一卜して膜厚 500 nmの FAP塗膜を例 20と同様にして形成した。 ついで、 ァンモニァ及び窒素混合ガスによりシリコン窒化膜を 50 nm形成し、 その後:
ニ窒化酸素混合ガスにより 500 nm厚のシリコン酸化膜を形成した。
得られた積層体を水素雰囲気下 425でで 60分べークを行い、 熱ストレスによるクラッ ク耐性を金属顕微鏡にて調べた。 結果を以下に示す。
溶液 10より形成された積層体は、 クラックの発生及びその他の欠陥はなかった。
溶液 10— 1より形成された積層体は、 クラックの発生及びその他の欠陥はなかった。 溶液 14より形成された積層体は、 クラックの発生及びその他の欠陥はなかった。
溶液 18より形成された積層体は、 1 /xm程度の幅のクラックが全面に発生し、 かつ一部 に FAP/p— S i N間の剥離が見られた。 本実施例より本発明の FA Pは、 公知の FAPよりも無機膜の積層が容易であり、 層間絶 縁膜としての適合性に優れることが判明した。
<産業上の利用可能性 >
本発明の FAPは耐熱性に優れ、 特にガラス転移温度 Tgが高く、 比誘電率が低い。 該 F APは、 電子デバイス用絶縁膜及び多層配線板用絶縁膜としての適用性に優れる。 また、 該 絶縁膜は、 比誘電率が低く、 素子の信号伝搬遅延時間の低減等の高性能化を達成でき、 かつ 高温域における優れた機械物性による高信頼性化を図れる。

Claims

請求の範囲
1. 下記①、 ②及び③の方法からなる群から選ばれる 1種以上の方法で、 下記式 1で示され る分岐構造の含フッ素芳香族化合物 (B) から製造される、 1分子中に 2個以上の架橋性官 能基 (A) を含有し、 数平均分子量が 1 X 103 〜5X 105 である、 エーテル結合を有す る含フッ素芳香族ポリマー。
式 1
Figure imgf000030_0001
ここで、 m及び nはそれぞれ独立に 1〜4の整数、 p、 q及び rはそれぞれ独立に 0又は 1〜5の整数、 a、 b及び cはそれぞれ独立に 0又は 1〜 3の整数、 を表し、 2≤m+n≤ 5である。
①上記式 1で示される分岐構造の含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及び フエノール性水酸基を有する化合物 (Y1) とを、 脱 HF剤存在下に縮合反応させる方法。
②前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) 及びフエノール性水酸基を有す る化合物 (Y1) と、 架橋性官能基を有さず、 フエノール性水酸基を 2個以上有する化合物
(Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
③前記含フッ素芳香族化合物 (B) と、 架橋性官能基 (A) を有し、 芳香核にフッ素置換基 を有する芳香族化合物 (Z) と、 架橋性官能基を有さず、 2個以上のフエノール性水酸基を 有する化合物 (Y2) とを、 脱 HF剤存在下に縮合反応させる方法。
2. 前記含フッ素芳香族化合物 (B) が、 下記式 2で示される、 ペルフルォロ (1, 3, 5 一卜リフエニルベンゼン) 又はペルフルォロ (1, 2, 5—トリフエニルベンゼン) である 請求項 1に記載の含フッ素芳香族ポリマー。 式 2
Figure imgf000031_0001
3 . 前記架橋性官能基 (A) が、 ェチニル基である請求項 1又は 2に記載の含フッ素芳香族 ポリマ一。
4. 請求項 1、 2又は 3に記載の含フッ素芳香族ポリマーからなる電子デバイス用絶縁膜。
5 . 請求項 1、 2又は 3に記載の含フッ素芳香族ポリマーからなる多層配線板用絶縁膜。
6 . 絶縁膜中に空孔を含有する請求項 4又は 5に記載の絶縁膜。
PCT/JP2002/006589 2001-07-12 2002-06-28 Aromatic fluoropolymer and use thereof WO2003008483A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037016369A KR100870225B1 (ko) 2001-07-12 2002-06-28 함불소 방향족 폴리머 및 그 용도
DE10297034.3T DE10297034B4 (de) 2001-07-12 2002-06-28 Fluoriertes aromatisches Polymer und Verwendung davon
JP2003514037A JP4206925B2 (ja) 2001-07-12 2002-06-28 含フッ素芳香族ポリマー及びその用途
US10/754,601 US6881811B2 (en) 2001-07-12 2004-01-12 Fluorinated aromatic polymer and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001212379 2001-07-12
JP2001-212379 2001-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/754,601 Continuation US6881811B2 (en) 2001-07-12 2004-01-12 Fluorinated aromatic polymer and use thereof

Publications (1)

Publication Number Publication Date
WO2003008483A1 true WO2003008483A1 (en) 2003-01-30

Family

ID=19047547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006589 WO2003008483A1 (en) 2001-07-12 2002-06-28 Aromatic fluoropolymer and use thereof

Country Status (8)

Country Link
US (1) US6881811B2 (ja)
JP (1) JP4206925B2 (ja)
KR (1) KR100870225B1 (ja)
CN (1) CN100519623C (ja)
DE (1) DE10297034B4 (ja)
RU (1) RU2276159C2 (ja)
TW (1) TWI237039B (ja)
WO (1) WO2003008483A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356582A (ja) * 2003-05-30 2004-12-16 Asahi Glass Co Ltd 積層体
WO2005030837A1 (ja) * 2003-09-30 2005-04-07 Asahi Glass Company, Limited 架橋性含フッ素芳香族プレポリマー及びその用途
JP2008056809A (ja) * 2006-08-31 2008-03-13 Asahi Glass Co Ltd 架橋性含フッ素芳香族プレポリマーおよびその硬化物
JP2009026810A (ja) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd パターン形成方法
US7538177B2 (en) 2005-06-24 2009-05-26 Asahi Glass Company, Limited Crosslinkable fluorinated aromatic prepolymer and its uses
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途
WO2009154254A1 (ja) 2008-06-19 2009-12-23 旭硝子株式会社 硬化性組成物およびそれを用いた硬化膜
WO2011025784A1 (en) 2009-08-31 2011-03-03 Dow Global Technologies Inc. Catalyst and process for polymerizing an olefin and polyolefin prepared thereby
US20110117496A1 (en) * 2006-03-16 2011-05-19 Asahi Glass Company Limited Negative photosensitive fluorinated aromatic resin composition
WO2011162001A1 (ja) 2010-06-23 2011-12-29 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
US8519080B2 (en) 2006-06-02 2013-08-27 Asahi Glass Company, Limited Crosslinkable prepolymer, its production process and its uses

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492507B2 (en) * 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide
KR101558536B1 (ko) * 2008-12-16 2015-10-08 삼성전자주식회사 하이퍼브랜치 폴리머, 이를 포함하는 연료전지용 전극, 이를 포함하는 연료전지용 전해질막 및 이를 채용한 연료전지
CN102301264A (zh) 2009-03-18 2011-12-28 旭硝子株式会社 光波导
GB2471322B (en) * 2009-06-26 2012-12-12 Tyco Electronics Ltd Uk High performance, high temperature lightweight insulating film, tape or sheath
CN102892800B (zh) 2010-05-14 2015-05-13 聂克斯姆化学有限公司 交联催化
CN103946326A (zh) * 2011-11-18 2014-07-23 旭硝子株式会社 固化性组合物、涂布用组合物、固化膜、激光加工方法及多层布线结构体的制造方法
RU2497319C1 (ru) * 2012-02-28 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "Высшая школа экономики" Печатная плата для бортовой радиоэлектронной аппаратуры космических аппаратов

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115082A (en) * 1990-04-17 1992-05-19 Raychem Corporation Fluorinated poly(arylene ether)
EP0755957A1 (en) * 1995-07-13 1997-01-29 Air Products And Chemicals, Inc. Nonhalogenated poly(arylene ethers)
JPH10247646A (ja) * 1997-03-05 1998-09-14 Oki Electric Ind Co Ltd 有機絶縁膜材料の製造方法
US5959157A (en) * 1995-06-26 1999-09-28 Alliedsignal, Inc. Process for making hydroxy-substituted ethynylated biphenyl compounds
JP2001247498A (ja) * 1999-12-27 2001-09-11 Toyota Central Res & Dev Lab Inc 有機化合物及びそれを用いた素子
JP2001302935A (ja) * 2000-04-26 2001-10-31 Asahi Glass Co Ltd 光学樹脂組成物およびその用途
JP2002203683A (ja) * 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114780A (en) * 1990-04-17 1992-05-19 Raychem Corporation Electronic articles containing a fluorinated poly(arylene ether) dielectric
US5155175A (en) * 1989-12-08 1992-10-13 Intellectual Property Law Dept. Crosslinkable fluorinated polyarylene ether composition
KR19990024596A (ko) * 1997-09-04 1999-04-06 윤종용 광통신용 폴리아릴렌에테르
JP2001247496A (ja) 2000-03-09 2001-09-11 Nippon Shokubai Co Ltd 含ハロゲン芳香族化合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115082A (en) * 1990-04-17 1992-05-19 Raychem Corporation Fluorinated poly(arylene ether)
US5959157A (en) * 1995-06-26 1999-09-28 Alliedsignal, Inc. Process for making hydroxy-substituted ethynylated biphenyl compounds
EP0755957A1 (en) * 1995-07-13 1997-01-29 Air Products And Chemicals, Inc. Nonhalogenated poly(arylene ethers)
JPH10247646A (ja) * 1997-03-05 1998-09-14 Oki Electric Ind Co Ltd 有機絶縁膜材料の製造方法
JP2001247498A (ja) * 1999-12-27 2001-09-11 Toyota Central Res & Dev Lab Inc 有機化合物及びそれを用いた素子
JP2001302935A (ja) * 2000-04-26 2001-10-31 Asahi Glass Co Ltd 光学樹脂組成物およびその用途
JP2002203683A (ja) * 2000-10-30 2002-07-19 Toyota Central Res & Dev Lab Inc 有機電界発光素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HYUNG LONG LEE ET AL.: "Crosslinkable fluorinated poly(arylene ethers) bearing phenyl ethynyl moeity for low-loss polymer optical waveguide devices", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 36, 1998, pages 2881 - 2887, XP002957149 *
MASAMICHI IKAI ET AL.: "Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer", APPLIED PHYSICS LETTERS, vol. 79, no. 2, 2001, pages 156 - 158, XP001075381 *
YOUICHI SAKAMOTO ET AL.: "Synthesis, characterization and electron-transport property of perfluorinated phenylene dendrimers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 122, 2000, pages 1832 - 1833, XP002957148 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356582A (ja) * 2003-05-30 2004-12-16 Asahi Glass Co Ltd 積層体
WO2005030837A1 (ja) * 2003-09-30 2005-04-07 Asahi Glass Company, Limited 架橋性含フッ素芳香族プレポリマー及びその用途
JP2005105115A (ja) * 2003-09-30 2005-04-21 Asahi Glass Co Ltd 架橋性含フッ素芳香族プレポリマー及びその用途
JP4501391B2 (ja) * 2003-09-30 2010-07-14 旭硝子株式会社 架橋性含フッ素芳香族プレポリマー及びその用途
US8168742B2 (en) 2003-09-30 2012-05-01 Asahi Glass Company, Limited Crosslinkable fluorinated aromatic prepolymer and its uses
US7538177B2 (en) 2005-06-24 2009-05-26 Asahi Glass Company, Limited Crosslinkable fluorinated aromatic prepolymer and its uses
US20110117496A1 (en) * 2006-03-16 2011-05-19 Asahi Glass Company Limited Negative photosensitive fluorinated aromatic resin composition
US8519080B2 (en) 2006-06-02 2013-08-27 Asahi Glass Company, Limited Crosslinkable prepolymer, its production process and its uses
JP2008056809A (ja) * 2006-08-31 2008-03-13 Asahi Glass Co Ltd 架橋性含フッ素芳香族プレポリマーおよびその硬化物
JP2009026810A (ja) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd パターン形成方法
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途
WO2009154254A1 (ja) 2008-06-19 2009-12-23 旭硝子株式会社 硬化性組成物およびそれを用いた硬化膜
WO2011025784A1 (en) 2009-08-31 2011-03-03 Dow Global Technologies Inc. Catalyst and process for polymerizing an olefin and polyolefin prepared thereby
WO2011162001A1 (ja) 2010-06-23 2011-12-29 旭硝子株式会社 硬化性組成物および硬化膜の製造方法
US8822561B2 (en) 2010-06-23 2014-09-02 Asahi Glass Company, Limited Curable composition and process for producing cured film

Also Published As

Publication number Publication date
RU2004103979A (ru) 2005-04-10
RU2276159C2 (ru) 2006-05-10
US20040147710A1 (en) 2004-07-29
TWI237039B (en) 2005-08-01
CN100519623C (zh) 2009-07-29
CN1525988A (zh) 2004-09-01
JPWO2003008483A1 (ja) 2004-11-11
KR100870225B1 (ko) 2008-11-24
KR20040027518A (ko) 2004-04-01
DE10297034T5 (de) 2004-07-29
US6881811B2 (en) 2005-04-19
JP4206925B2 (ja) 2009-01-14
DE10297034B4 (de) 2015-05-21

Similar Documents

Publication Publication Date Title
US8168742B2 (en) Crosslinkable fluorinated aromatic prepolymer and its uses
WO2003008483A1 (en) Aromatic fluoropolymer and use thereof
KR101250108B1 (ko) 가교성 함불소 방향족 프레폴리머 및 그 용도
US8530596B2 (en) Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having same
US6303733B1 (en) Poly(arylene ether) homopolymer compositions and methods of manufacture thereof
KR20080104308A (ko) 네거티브형 감광성 함불소 방향족계 수지 조성물
JP4843870B2 (ja) 新規ポリアリーレンエーテル、その製造方法及びその用途
JP2003342411A (ja) 多孔質ナノコンポジット薄膜及びその形成方法
JP4324786B2 (ja) 積層体およびその製造方法ならびに絶縁膜および半導体装置
JP2010070618A (ja) 絶縁膜形成用組成物、絶縁膜、および電子デバイス
JPH06271771A (ja) シルセスキオキサンポリマー組成物
JP3462941B2 (ja) 半導体基板の層間絶縁膜および/または表面保護膜用組成物ならびに半導体装置
JPH06271772A (ja) シルセスキオキサンポリマー組成物
JP2004300089A (ja) 新規化合物およびその用途
JP2004250585A (ja) ケイ素含有芳香族ポリマーおよびその用途
JP2000230142A (ja) ポリキノリン樹脂誘導体を用いた絶縁膜樹脂組成物並びに半導体装置
JP2002371025A (ja) 芳香族化合物の精製方法、芳香族化合物、膜形成用組成物、被膜および架橋重合体膜
JPH06122768A (ja) 新規な共重合体およびその製造方法
JP2007063471A (ja) 膜形成用組成物、絶縁膜及びそれを用いた電子デバイス
JP2001064579A (ja) 組成物及び半導体装置
JP2005001997A (ja) 新規化合物およびその用途

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037016369

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003514037

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028139305

Country of ref document: CN

Ref document number: 10754601

Country of ref document: US

122 Ep: pct application non-entry in european phase