WO2005030837A1 - 架橋性含フッ素芳香族プレポリマー及びその用途 - Google Patents

架橋性含フッ素芳香族プレポリマー及びその用途 Download PDF

Info

Publication number
WO2005030837A1
WO2005030837A1 PCT/JP2004/014200 JP2004014200W WO2005030837A1 WO 2005030837 A1 WO2005030837 A1 WO 2005030837A1 JP 2004014200 W JP2004014200 W JP 2004014200W WO 2005030837 A1 WO2005030837 A1 WO 2005030837A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepolymer
compound
film
fluorine
crosslinkable
Prior art date
Application number
PCT/JP2004/014200
Other languages
English (en)
French (fr)
Inventor
Shunsuke Yokotsuka
Masahiro Ito
Kaori Tsuruoka
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to DE602004022839T priority Critical patent/DE602004022839D1/de
Priority to AT04788267T priority patent/ATE440887T1/de
Priority to EP04788267A priority patent/EP1669389B1/en
Publication of WO2005030837A1 publication Critical patent/WO2005030837A1/ja
Priority to US11/392,727 priority patent/US20060173129A1/en
Priority to US12/631,123 priority patent/US8168742B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4018(I) or (II) containing halogens other than as leaving group (X)
    • C08G65/4025(I) or (II) containing fluorine other than as leaving group (X)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene

Definitions

  • the present invention relates to a crosslinkable fluorine-containing aromatic prepolymer and its use.
  • the cured film formed by curing the crosslinkable fluorine-containing aromatic prepolymer of the present invention has a low dielectric constant, a high heat resistance, a low birefringence, and a high flexibility. It is applicable as an edge film or an optical transmission body.
  • a fluorinated aromatic polymer having an ether bond (hereinafter referred to as polyarylene ether or PAE) has been proposed (see, for example, Patent Documents 13 to 13 and Non-Patent Document 1).
  • PAE polyarylene ether
  • Their relative dielectric constants are around 2.5-2.9, and their application as insulating films for electronic devices or multilayer wiring boards is being studied. In addition, application as an optical transmitter is also being studied.
  • PAE having both low ⁇ dielectric constant and high Tg has been proposed (e.g., see Patent Document 5.) 0
  • Patent Document 1 Japanese Patent No. 3064011
  • Patent Document 2 US Patent No. 5115082
  • Patent Document 3 U.S. Pat.No. 5,959,157
  • Patent Document 4 JP-A-10-247646
  • Patent Document 5 International Publication No. 03Z008483 pamphlet
  • Non-Patent Document 1 J. Polm. Sci .: PartA: Polm. Chem., Vol. 36, 2881 (1998) Disclosure of the Invention
  • PAEs disclosed in Patent Documents 13 and 13 and Non-Patent Document 1 are linear polymers produced using a compound having two phenolic hydroxyl groups, and have a glass transition temperature (hereinafter, referred to as Tg). ) Is low and the heat resistance is not sufficient.
  • Tg glass transition temperature
  • the force that can increase Tg rises to about 2.7-3.0, making it difficult to achieve both low dielectric constant and high Tg.
  • the birefringence of the above-mentioned polymer is about 0.007, which is lower than that of polyimide or the like, but cannot be said to be sufficient as an optical transmitter.
  • PAE having a branched structure disclosed in Patent Document 4 has no crosslinkable functional group! Therefore, it is extremely difficult to raise Tg to 300 ° C or more.
  • PAE produced from a specific fluorine-containing aromatic compound having a branched structure disclosed in Patent Document 5 has a very bulky molecular structure, and therefore has a drawback that it is brittle and has poor flexibility. Specifically, when a thick film is formed, cracks are easily generated in the coating film due to thermal stress.
  • the present invention has been made in view of the above circumstances, and includes a crosslinkable fluorine-containing aromatic prepolymer capable of forming a cured product having a low relative dielectric constant, high heat resistance, low birefringence, and high flexibility.
  • An object of the present invention is to provide a coating composition, a cured product formed using the prepolymer, and a cured film formed from the coating composition.
  • the present invention provides a compound (Y-1) having a crosslinkable functional group (A) and a phenolic hydroxyl group, and a compound having a crosslinkable functional group (A) and a fluorine atom-substituted aromatic ring.
  • Y-1 a compound having a crosslinkable functional group (A) and a phenolic hydroxyl group
  • A a crosslinkable functional group
  • A a fluorine atom-substituted aromatic ring
  • is an integer of 0-2, a and b each independently represent an integer of 0-3, and Rf 1 and Rf 2 each have the same or different carbon number of 8
  • F in the aromatic ring indicates that all hydrogen atoms of the aromatic ring are substituted with fluorine atoms.
  • crosslinkable fluorine-containing aromatic prepolymer it is preferable that the crosslinkable functional group (A) is an ethur group.
  • the present invention also provides a cured product formed by curing the crosslinkable fluorine-containing aromatic prepolymer.
  • the present invention also provides a coating composition containing the crosslinkable fluorinated aromatic prepolymer and a solvent.
  • the present invention provides a method for forming a wet film of a crosslinkable fluorine-containing aromatic prepolymer on a substrate using the coating composition, and then removing the solvent in the wet film. It provides a cured film formed by curing the crosslinkable fluorine-containing aromatic prepolymer at the same time as the removal.
  • the film may contain pores.
  • the present invention also provides an electronic / electric component having the cured film.
  • the crosslinkable fluorine-containing aromatic prepolymer of the present invention has three or more phenolic hydroxyl groups.
  • a cured film that simultaneously satisfies a low dielectric constant, a low birefringence, and a high heat resistance can be formed by using the compound (C) having the above-mentioned structure and having the crosslinkable functional group (A).
  • crosslinkable fluorine-containing aromatic prepolymer of the present invention can form a cured film having excellent flexibility, so that a film resistant to external force such as bending can be obtained, and a thick film can be easily formed.
  • the cured product formed by curing the crosslinkable fluorine-containing aromatic prepolymer of the present invention has excellent applicability to insulating films, films and optical transmission bodies for electronic devices and multilayer wiring boards.
  • high performance such as reduction of the signal propagation delay time of the element can be achieved, and high reliability can be achieved by excellent mechanical properties in a high temperature range.
  • prepolymer The crosslinkable fluorine-containing aromatic prepolymer (hereinafter, abbreviated as prepolymer) of the present invention is used.
  • n is an integer of 0-2, a and b each independently represent an integer of 0-3, and Rf 1 and Rf 2 each have the same or different carbon number of 8
  • F in the aromatic ring indicates that all hydrogen atoms of the aromatic ring are substituted with fluorine atoms.
  • the prepolymer of the present invention is produced using a compound (C) having three or more phenolic hydroxyl groups and has a crosslinkable functional group (A), so that it has low dielectric constant, low birefringence, and high heat resistance.
  • a cured product fluorinated aromatic polymer that simultaneously satisfies the properties is obtained. That is, by using a compound (C) having three or more phenolic hydroxyl groups, a branched structure is introduced into the polymer chain, and the molecular structure is made three-dimensional, thereby increasing the free volume of the polymer and lowering the density. , That is, a low dielectric constant is achieved.
  • a linear polymer having an aromatic ring tends to have a large birefringence since molecules are easily oriented by stacking of the aromatic ring.
  • the introduction of the branched structure suppresses the orientation of the molecule, and as a result, the birefringence is reduced.
  • crosslinkable functional group (A) By having the crosslinkable functional group (A), a crosslinked or chain-extended reaction between prepolymer molecules can be advanced in the obtained cured product, and as a result, heat resistance is greatly improved. At the same time, it has the effect of improving the solvent resistance of the cured product.
  • a cured product having good flexibility can be obtained.
  • the density of ether bonds can be increased, the flexibility of the main chain is improved, and as a result, the flexibility is increased.
  • a good cured product is obtained. Good flexibility is particularly advantageous when the cured product is in the form of a cured film.
  • the fluorine-containing aromatic compound (B) is a fluorine-containing aromatic compound represented by the above formula 1.
  • Rf 1 and Rf 2 are a fluorine-containing alkyl group having 8 or less carbon atoms.
  • a perfluoroalkyl group is preferred. Specific examples include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • the production of the fluorinated aromatic compound (B) becomes difficult, and the numbers (a and b) of Rf 1 and Rf 2 are each independent. 0-2 is preferred, and 0 is most preferred.
  • the fluorinated aromatic compound (B) perfluorobenzene, perfluorotoluene, perfluoroxylene, perfluorobiphenyl, perfluoroterfene are preferred, and especially perfluorobenzene, perfluorobenzene, Orobifeil is preferred . These may be used alone or as a mixture of two or more.
  • perfluorobiphenyl is most preferable, since the obtained cured product has an excellent balance between the dielectric constant and the heat resistance and the flexibility of the cured product is increased.
  • a compound having 3 or more, preferably 3 to 5 phenolic hydroxyl groups having 3 or more, preferably 3 to 5 phenolic hydroxyl groups
  • polyfunctional phenols are preferred. Specific examples include trihydroxybenzene, trihydroxybiphenyl, trihydroxynaphthalene, 1,1,1-tris (4-hydroxyphenyl) ethane, tris (4-hydroxyphenyl) benzene, tetrahydroxybenzene, Examples thereof include tetrahydroxybiphenyl, tetrahydroxybinaphthyl, and tetrahydroxyspiroindane.
  • the compound having three phenolic hydroxyl groups is preferred as the compound (C) because the flexibility of the cured film obtained is high, and among these compounds, a compound having three phenolic hydroxyl groups is preferred. Hydroxybenzene is most preferred.
  • the prepolymer of the present invention contains a crosslinkable functional group (A).
  • the crosslinkable functional group (A) does not substantially react during the production of the prepolymer, and by applying external energy at the time of producing a cured product such as a film, a film or a molded product, or at any time after the production.
  • the reactive functional groups react and cause cross-linking or chain elongation between the prepolymer molecules.
  • the external energy heat, light, an electron beam, and the like, and a combination thereof are preferable since they are excellent in applicability in the manufacture of electronic devices, multilayer wiring boards, or optical transmission bodies and in the Z or mounting process.
  • a reactive functional group that reacts at a temperature of 40 ° C to 500 ° C is preferable. If the temperature is too low, the stability of the prepolymer or the coating composition containing the prepolymer during storage cannot be ensured.If the temperature is too high, the prepolymer will be thermally decomposed during the reaction. preferable.
  • the temperature is more preferably from 60 ° C to 400 ° C, and most preferably from 70 ° C to 350 ° C.
  • the external energy When light is used as the external energy, it is also preferable to add a photoradical generator, a photoacid generator, a sensitizer, and the like to the prepolymer or a coating composition containing the prepolymer described below. Further, since the crosslinkable functional group (A) containing no polar group does not increase the relative dielectric constant of the cured film, the polar group is not contained particularly when the prepolymer of the present invention is applied to the production of an insulating film. It is preferable to use a crosslinkable functional group (A).
  • crosslinkable functional group (A) examples include a vinyl group, an aryl group, a methacryloyl (oxy) group, an atalyloyl (oxy) group, a buloxy group, a trifluorofluoro group, a trifluorofluorovinyloxy group, an ethur group, Examples thereof include 1-oxocyclopenter 2,5-gen-3-yl group, cyano group, alkoxysilyl group, diarylhydroxymethyl group, and hydroxyfluorenyl group.
  • a cured product with a favorable heat resistance is preferred, which is preferably a butyl group, a methacryloyl (oxy) group, an atalyloyl (oxy) group, a trifluorofluorooxy group, or an ethur group. From the viewpoint of having properties, an ethynyl group is most preferred.
  • the content of the crosslinkable functional group (A) in the prepolymer of the present invention is preferably such that the crosslinkable functional group (A) was 0.1 to 4 mmol S, and 0.2 to 3 mmol relative to the prepolymer lg. More preferred. Exceeding this range may increase the brittleness of the cured product and increase the relative dielectric constant. If the amount is less than this range, the heat resistance and solvent resistance of the cured product may be reduced.
  • the prepolymer of the present invention can be produced by one or both of the following methods (i) and (ii).
  • a compound having a fluorinated aromatic compound (B) represented by the above formula 1 the compound having three or more phenolic hydroxyl groups (C), a crosslinkable functional group (A), and a phenolic hydroxyl group ( Y-1) is subjected to a condensation reaction in the presence of a HF removing agent.
  • the fluorinated aromatic compound (B), the compound (C), the compound (Y-1) and the compound (Y-2) are removed.
  • a condensation reaction is performed in the presence of an HF agent.
  • the condensation reaction is considered to proceed as follows.
  • the phenolic hydroxyl group is derived.
  • the phenolic group is induced.
  • the fluorinated aromatic compound (B) attacks the carbon atom to which the fluorine atom is bonded, and then the fluorine atom is eliminated.
  • An ether bond is generated by a reaction mechanism or the like.
  • the compounds (C) and Z or (Y-1) have two phenolic hydroxyl groups in an ortho-positional relationship, the same reaction mechanism or the like is used to obtain the compound represented by the following formula (3).
  • Dioxin skeleton is formed May be
  • the compound (Y-1) having a crosslinkable functional group (A) and a phenolic hydroxyl group used in the production method (i) a compound having one phenolic hydroxyl group (Y-11) ) And a compound having two phenolic hydroxyl groups (Y-12) are preferred.
  • the compound (Y-1-1) having one crosslinkable functional group (A) and one phenolic hydroxyl group include phenols having a reactive double bond such as 4-hydroxystyrene and the like. — Ethurphenols such as ethurphenol, 4-phenyl-phenol, and 4- (4-fluoro) ethylphenol. These may be used alone or as a mixture of two or more! An aromatic compound having an ethynyl group as the crosslinkable functional group (A) is more preferable.
  • Specific examples of the compound (Y-1-2) having two crosslinkable functional groups (A) and phenolic hydroxyl groups include 2,2,1-bis (feruletur)-5,5,- Dihydroxybiphenyl, 2,2,1-bis (ferrule) 4,4, dihydroxybiphenyl such as dihydroxybiphenyl, 4,4, dihydroxytolan, 3,4 And dihydroxydiphenylacetylenes such as 3, dihydroxytolan. These may be used alone or as a mixture of two or more.
  • the compound (Y-2) having a crosslinkable functional group (A) and a fluorine atom-substituted aromatic ring used in the production method (ii) includes a crosslinkable functional group (A) and a perfluorophenyl group.
  • compounds having a perfluoroaromatic ring such as perfluorobiphenyl, and the like. Specific examples thereof include pentafluro-rostyrene, pentafluo benzoyl phthalate, pentafluro-ro-benzinolemethalylate, pentaphnoleolofe-norethalylate, pentaphlenolorofe-noremethallate, and perfluoate.
  • Fluorine-containing aryls having a reactive double bond such as polystyrene, pentafluorophenyltrifluorofluoroether, and 3 (pentafluorophenyl) pentafluoropropene 1, etc.
  • -Fluorine-containing aryls having a cyano group such as tolyl, fluorine-containing arylacetylenes such as pentafluorophenylacetylene and nonafluorobiphenyl-acetylene, phenylethylpentafluorene benzene, and phenylene Fluorine-containing diacetylenes such as churnonafluorobiphenyl and decafluorolotran are listed. I can get lost. These may be used alone or in combination of two or more. Since the cross-linking reaction proceeds at a relatively low temperature and the heat resistance of the obtained prepolymer cured product increases, fluorinated arylacetylenes are preferred as the compound (Y-2).
  • the HF removing agent used in producing the prepolymer of the present invention is preferably a basic compound, particularly preferably an alkali metal carbonate, hydrogencarbonate or hydroxide.
  • a basic compound particularly preferably an alkali metal carbonate, hydrogencarbonate or hydroxide.
  • Specific examples include sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydroxide, potassium hydroxide and the like.
  • the amount of the HF-removing agent used is at least 1 times the molar ratio of the total number of the phenolic hydroxyl groups of the compound (C) and the compound (Y-1). Is required, and 1.1 to 3 times is preferable.
  • the molar ratio is required to be at least 1 times, preferably 1.1 to 13 times, the number of moles of the phenolic hydroxyl group of the compound (C).
  • the condensation reaction is preferably performed in a polar solvent.
  • a polar solvent a solvent containing an aprotic polar solvent such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, and sulfolane is preferable.
  • Polar solvents include toluene, xylene, benzene, and tetrahydrogen as long as they do not decrease the solubility of the resulting prepolymer and do not adversely affect the condensation reaction.
  • Oral furan, benzotrifluoride, xylenehexafluoride and the like may be contained. By containing these, the polarity (dielectric constant) of the solvent changes, and the reaction rate can be controlled.
  • Condensation reaction conditions are preferably from 10 to 200 ° C for 118 hours. More preferably, it is 2 to 60 hours at 20 to 180 ° C, and most preferably 3 to 24 hours at 50 to 160 ° C.
  • the number average molecular weight of the prepolymer of the present invention 1 X 10 3 -5 X 10 5, preferably in the range of 1. 5 X 10 3- 1 X 10 5.
  • the coating composition containing the prepolymer described below has good coating properties, and the obtained cured film has good heat resistance, mechanical properties, and resistance to heat. It has solvent properties.
  • the number average molecular weight of the prepolymer is 1 . 5 X 10 3 - 5 X 1 0 4 ranges are most preferred.
  • the number average molecular weight of the prepolymer is changed in the production method (i) by changing the charge ratio of the total of the compound (C) and the compound (Y-1) and the fluorinated aromatic compound (B). Can be controlled.
  • the fluorine-containing aromatic compound (B) usually functions as a bifunctional conjugate. Therefore, the molecular weight should be controlled within a range that does not exceed twice the number of moles of the hydroxyl groups of the compound (C) and the compound (Y-1) and the number of moles of the fluorine-containing aromatic compound (B). Is preferred,.
  • the number average molecular weight of the prepolymer is changed by changing the charge ratio of the total of the fluorine-containing aromatic compound (B) and the compound (Y-2) to the compound (C).
  • the control of the molecular weight is such that when the compound (Y-2) functions as a monofunctional compound, the total number of moles of the hydroxyl groups is twice the number of moles of the fluorine-containing aromatic compound (B) and the compound (Y — The total number of moles of 2) should not be exceeded!
  • compound (Y-2) functions as a difunctional compound
  • the total number of moles of hydroxyl groups is twice the total number of moles of fluorine-containing aromatic compound (B) and compound (Y-2).
  • Exceeding V preferably adjusted within the range.
  • the reaction rate between the fluorine-containing aromatic compound (B) and the compound (Y-2) may vary depending on the order of addition.
  • the reaction rate of the compound (C) with respect to the phenoxy group, which also induces the phenolic hydroxyl group force is (B)> (Y-2)
  • the fluorine-containing aromatic compound (B) and the compound (Y-2) Simultaneously, all phenoxy groups are consumed by the fluorinated aromatic compound (B) before the compound (Y-2) is completely consumed, and the unreacted compound (Y-2) remains There are cases.
  • the reaction rate of the compound (Y-2) it is preferable to first charge the compound (Y-2) and then charge the fluorine-containing aromatic compound (B).
  • the compositional variability between the obtained prepolymer chains tends to be large.
  • the amount of the compound (C) to be used is preferably 0.1 to 1 times, more preferably 0.3 to 1 times in molar ratio to the fluorine-containing aromatic compound (B).
  • the amount of the compound (Y-1) is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, in terms of the molar ratio to the fluorine-containing aromatic compound (B). is there.
  • the amount of the compound (C) used is preferably 0.5 to 2 times, more preferably 0.6 to 1.5 times, in terms of a molar ratio to the fluorine-containing aromatic compound (B).
  • the amount of the compound (Y-2) to be used is preferably 0.1 to 2 times, more preferably 0.2 to 1.5 times, the molar ratio to the fluorine-containing aromatic compound (B). It is preferable that each value is in this range because the obtained prepolymer has both low dielectric constant and high heat resistance.
  • the prepolymer of the present invention is prepared by appropriately selecting the production method (i) or (ii) according to the physical properties such as heat resistance, relative dielectric constant, birefringence, and flexibility of the cured product obtained after curing.
  • a prepolymer capable of obtaining a cured product having desired physical properties can be produced.
  • the relative permittivity and the birefringence value of a cured product obtained by curing the produced prepolymer tend to be generally low.
  • a co-condensation component can be added during the production of the prepolymer.
  • Examples of the compound having two phenolic hydroxyl groups include dihydroxybenzene, dihydroxybiphenyl, dihydroxyterphenyl, dihydroxynaphthalene, dihydroxythracene, dihydroxyphenanthracene, dihydroxy-9,9-diphenylfuran. , Dihydroxydibenzofuran, dihydroxydiphenylether, dihydroxydiphenylthioether, dihydroxybenzophenone, dihydroxy-2,2-diphenylpropane, dihydroxy-2,2-diphenylhexafluoropropane, dihydroxybinaphthyl, etc. And bifunctional phenols. These may be used alone or as a mixture of two or more.
  • perfluoro (1,3,5-trifluorobenzene) (the following formula (4 ()) or perfluoro (1,2,5-trifluorobenzene) ) (Equation (4 ⁇ ⁇ ) below).
  • the prepolymer of the present invention is purified by a method such as neutralization, reprecipitation, extraction, and filtration after the condensation reaction or after the solution is formed.
  • the purification is preferably performed in a state in which a polar solvent preferably used in the production is present or in a state of being dissolved or dispersed in a solvent described later, since the efficiency is higher.
  • metals such as potassium and sodium, which are condensation reaction catalysts, and released halogen atoms cause transistor malfunctions and wiring corrosion. Because of the possibility, it is preferable to purify it sufficiently.
  • various catalysts or additives can be used for the purpose of increasing the reaction rate or reducing reaction defects during the crosslinking reaction for curing.
  • the prepolymer of the present invention contains an ethur group as the crosslinkable functional group (A)
  • examples of the catalyst include amines such as aniline, triethylamine, aminophenyl trialkoxysilane, and aminopropyltrialkoxysilane; molybdenum; An organic metal compound containing nickel or the like can be exemplified.
  • a biscyclopentagenone derivative is preferable.
  • the ethur group and the cyclopentagenone group (1 year old oxocyclopenter 2,5-gen-3-yl group) form an adduct by the Diels-Alder reaction by heat and then form an aromatic ring by a carbon monoxide removal reaction. I do. Therefore, when a biscyclopentagenone derivative is used, crosslinking or chain extension in which an aromatic ring is a binding site can be performed.
  • biscyclopentagenone derivative examples include 1,4-bis (1oxo-2,4,5-tritrifluorocyclopenta-2,5 gen-3-yl) benzene, 4,4,1-bis (1-oxo 2,4,5-triphenyl-cyclopenta-2-yl-5,13-yl) biphenyl, 4,4,1-bis (1-oxo 2,4,5-triphenyl-2-cyclopenta-2-yl) , 5—Gen 3 yl) 1,1,1 oxybisbenzene, 4,4,1 bis (1 oxo 2,4,5—triphenylcyclopenter 2,5—Jen 3 yl) 1, 1, -thiobisbenzene, 1,4-bis (1-oxo 2,5-di- [4-funole-orophyl]] 4-ferrocyclopenter 2,5 gen-3-yl) benzene, 4,4,- Bis (1-oxo 2,4,5-trifluoro-cyclopenta- 1,5 gen-3-yl)
  • biscyclopentagenone derivatives having a wholly aromatic skeleton are preferable from the viewpoint of heat resistance. These may be used alone or in combination of two or more.
  • the prepolymer of the present invention can obtain a cured product by causing a crosslinking reaction to proceed and curing.
  • the present invention provides a cured product formed by curing the prepolymer.
  • the cured product may have any shape.
  • the crosslinking reaction proceeds uniformly From the viewpoint of obtaining a homogeneous cured product, a cured film (cured film) formed from a coating composition containing a solvent as described below is preferable. In the following description, a cured film having a preferable shape will be mainly described in detail.
  • the prepolymer of the present invention can be suitably used as a material of a coating composition used for forming a film by coating on an appropriate substrate, allowing a condensation reaction to proceed, and curing the film. And a coating composition comprising the prepolymer and a solvent.
  • the coating composition of the present invention is obtained, for example, by dissolving or dispersing the above-mentioned prepolymer of the present invention in a solvent.
  • the solvent used in the coating composition of the present invention can dissolve or disperse the prepolymer of the present invention and, if necessary, a catalyst or additives, and can obtain a desired film thickness, uniformity, or embedded flatness by a desired method. Is not particularly limited as long as a cured film having the following formula is obtained. Examples include aromatic hydrocarbons, dipolar aprotic solvents, ketones, esters, ethers, and halogenated hydrocarbons.
  • the solvent for the coating composition may be the same as or different from the reaction solvent used for producing the prepolymer described above.
  • the prepolymer is recovered from the reaction solution by a reprecipitation method or the like, and dissolved or dispersed in a different solvent, or a known method such as an evaporation method or an ultrafiltration method is used. To perform solvent replacement.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, cumene, mesitylene, tetralin, methylnaphthalene and the like.
  • dipolar aprotic solvents examples include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, ⁇ -butyrolataton, dimethylsulfoxide and the like.
  • Ketones include cyclopentanone, cyclohexanone, cycloheptanone, cyclootatanone, methyl amyl ketone and the like.
  • ethers examples include tetrahydrofuran, pyran, dioxane, dimethoxyethane, jetoxetane, diphenyl ether, asol, phenetole, diglyme, triglyme and the like.
  • Esters include ethyl ethyl lactate, methyl benzoate, ethyl benzoate, and butyl benzoate. Butyl, benzyl benzoate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycolone monomethinoleate, propylene glycolone monoethylenoate, propylene glycol monopropyl ether, propylene glycolone monobutynoate And propylene glycol monoethyl ether acetate.
  • hydrogenated hydrocarbons examples include carbon tetrachloride, chloroform, methylene chloride, tetrataroethylene, cyclobenzene, and dichlorobenzene.
  • the concentration of prepolymer is preferably from 50 to 50% by mass, more preferably from 5 to 30% by mass.
  • the coating composition may contain, in addition to the prepolymer and the solvent, at least one additive selected from various additives known in the coating field, such as a plasticizer and a thickener.
  • a plasticizer and a thickener When a film or film having pores is formed, a hollow body to be described later, a substance that can be removed after the thin film is formed, and the like can be appropriately combined.
  • the prepolymer of the present invention contains a low molecular weight substance having a vapor pressure
  • a part of the crosslinkable functional group (A) is reacted in a solution in order to prevent volatilization during heating. You can also. Heating is preferred as the method.
  • the heating conditions are preferably 50 to 250 ° C for 1 to 50 hours, more preferably 70 to 200 ° C for 1 to 20 hours.
  • the reaction rate of the crosslinkable functional group in the solution is preferably less than 50%, more preferably less than 30%, from the viewpoint of preventing gelling of the prepolymer in the solution.
  • the coating composition of the present invention is applied to an appropriate substrate surface to form a wet film, and then subjected to a curing treatment after removing the solvent by volatilization or the like, or simultaneously with the removal, to form a crosslink in the prepolymer. It is used to cause a cross-linking reaction in the reactive functional group (A) to form a cured film used as an insulating film, an optical transmission body, or the like.
  • a method for forming the wet film it is preferable to adopt a coating method.
  • known coating methods such as spin coating, dip coating, spray coating, die coating, bar coating, doctor coating, extrusion coating, scan coating, brush coating, and potting are listed. It is possible.
  • a spin coat method or a scan coat method is preferable from the viewpoint of uniformity of the film thickness.
  • the solvent is volatilized and cured by crosslinking or chain extension reaction.
  • Heating for The crosslinkable functional group (A) of this prepolymer does not substantially react in a solution, but undergoes a crosslinking reaction in a heating step after film formation.
  • the heating condition is preferably about 120 minutes at 200-450 ° C, more preferably about 2-60 minutes at 250-400 ° C.
  • the heating device a hot plate, an oven, and a furnace (furnace) are preferable.
  • the heating atmosphere include an atmosphere of an inert gas such as nitrogen and argon, air, oxygen, and reduced pressure.
  • an inert gas atmosphere and reduced pressure are preferable.
  • a pre-heating step of about 50-250 ° C should be added, or the heating step should be performed in several stages. Is preferred.
  • the reaction rate of the crosslinkable functional group (A) in the cured film is preferably from 30 to 100%. By setting the reaction rate to 30% or more, the heat resistance and chemical resistance of the cured film are improved. In this respect, the reaction rate is most preferably 50% or more, and particularly preferably 70% or more.
  • the thickness of the wet film formed by the coating composition can be appropriately set according to the shape of the cured film to be produced.
  • a wet film of about 0.01 to 500 m on the substrate, more preferably than 0.1 to 300 / z m force S.
  • the cured film obtained from the coating composition of the present invention can be peeled off from the substrate and used as a film alone, or can be used as an insulating film while being adhered to the substrate. it can.
  • an adhesion promoter may be used to improve the adhesion between the cured film and the substrate.
  • the adhesion promoter include a silane coupling agent, a titanate coupling agent, and an aluminum coupling agent, and a silane coupling agent such as an epoxysilane or an aminosilane is more preferable.
  • aminosilanes examples include aliphatic aminosilanes such as 3-aminopropylmethylethoxysilane and 3-aminopropyltriethoxysilane, aminophenyltrimethoxysilane, aminophenyltriethoxysilane, and N-phenyl3.
  • aromatic silane aminosilanes such as aminopropyltrimethoxysilane.
  • a method of applying the adhesion promoter a method of treating the base material with the adhesion promoter before the application of the coating composition or a method of adding the adhesion promoter to the coating composition is preferable.
  • a method for treating a substrate with the adhesion promoter in the example of aminosilanes, as n alcohol include a method of spin coating to the substrate as an alcohol-based solution of 0.5 01- 3 wt% Is preferably methanol, ethanol or isopropyl alcohol.
  • the amount of the adhesion promoter is preferably from 0.05 to 10% by mass, more preferably from 0.1 to 5% by mass, based on the contained prepolymer. If the addition amount of the adhesion promoter is small, the effect of improving the adhesiveness is sufficient, and if it is too large, the electrical properties and heat resistance decrease.
  • the use of the cured product produced using the prepolymer of the present invention includes a protective film, a film material for various batteries such as a fuel cell, a photoresist, an optical waveguide, a nonlinear optical material, an optical adhesive, and a coating material.
  • a protective film such as a fuel cell, a photoresist, an optical waveguide, a nonlinear optical material, an optical adhesive, and a coating material.
  • Electronic components, sealants, overcoat agents transparent film materials, heat-resistant, low-moisture-absorbing film materials, adhesives, fiber materials, weather-resistant paints, water-repellent agents, oil-repellent agents, moisture-proof coating agents, non-stick coatings Agents and the like.
  • the use of insulating films, films, or optical transmission bodies for electronic devices or multilayer wiring boards is preferable.
  • the present invention provides an electronic / electric component having a cured film manufactured using the coating composition containing the prepolymer and a solvent.
  • the electronic devices include discrete semiconductors such as diodes, transistors, compound semiconductors, thermistors, palisters, thyristors, and DRAMs (dynamic 'random' access'). Memory), SRAM (static 'random' access' memory), EPROM (erasable.
  • Programmable 'read' only memory Programmable 'read' only memory
  • mask ROM mask 'read' only memory
  • EEPROM electrically erasable
  • storage elements such as flash memory, theoretical circuit elements such as microprocessors, DSPs, and ASICs; integrated circuit elements such as compound semiconductors represented by MMICs (monolithic 'microwave integrated circuits); Hybrid integrated circuits, light-emitting diodes, charge-coupled devices, etc.
  • Photoelectric conversion elements, amorphous silicon down TFT (thin film transistor), a display such as a polysilicon TFT element or the like is Ru mentioned.
  • multilayer wiring boards are various substrates for mounting electronic devices and the like, and include printed wiring boards, build-up wiring boards, and MCM substrates. And a high-density wiring board such as an interposer.
  • the optical transmission body refers to a member having a function of transmitting, branching, amplifying, or demultiplexing Z light by passing light.
  • Optical transmitters include, for example, optical fibers, rod lenses, optical waveguides, optical splitters, optical multiplexers, optical demultiplexers, optical attenuators, optical switches, optical isolators, optical transmitting modules, optical receiving modules, It includes a bra, a deflector, an optical wavelength conversion element, an optical modulation element, an optical integrated circuit, an optical Z-electric hybrid circuit, a substrate, and the like and the optical transmission part thereof.
  • the wavelength of the light used in the optical transmitter is preferably in the range of 600 to 1600 nm. Of these, laser and other parts are easily available, so 650nm band, 850nm band, 1300mn band or 1550mn band are preferred!
  • the optical transmitter is used as a so-called electro-optic (EO) material that modulates the propagation of light with an external electric field and performs phase change, directional coupling, mode conversion, path change of guided light, and the like.
  • EO electro-optic
  • a nonlinear optical dye a compound having a long ⁇ -electron conjugated system and having a push-pull electronic structure having an electron-donating group and an electron-withdrawing group is preferable.
  • Specific examples include azobenzene dyes and polyene dyes.
  • the insulating film of the present invention is used in order to obtain an insulating film having a lower relative dielectric constant. It is preferable to provide holes inside. Examples of the method for introducing vacancies include the following methods (a) and (b).
  • thermoally decomposable polymer a polymer having a low thermal decomposition temperature
  • a method of removing the thermally decomposable polymer part is sometimes referred to as a "thermally decomposable polymer”.
  • examples of the thermally decomposable polymer include aliphatic polyethers, aliphatic polyesters, acrylic polymers, styrene polymers, and the like.
  • Number-average molecular weight of the thermally decomposable polymer ⁇ 1,000-100,000 force preferred ⁇ , 1,000-50,000 force preferred! / ⁇ . When the molecular weight is in this range, it is preferable because compatibility with the prepolymer of the present invention can be ensured in the coating composition.
  • a coating composition containing a prepolymer and a thermally decomposable polymer is prepared, applied to a substrate, and then a solvent is volatilized, and a heat treatment is performed to obtain a composite film.
  • the method include blocking or grafting a degradable polymer to form a composite, and blending the composite with a coating composition.
  • Known methods can be applied to the blocking or grafting.
  • a method in which a thermally decomposable polymer having a fluorinated aromatic ring or a phenolic hydroxyl group at a terminal is prepared and co-condensed at the time of a condensation reaction in prepolymer polymerization can be exemplified. Since the condensation reaction of the prepolymer proceeds by the reaction mechanism of the above formula (2) or (3), the terminal fluorine-containing aromatic ring or phenolic hydroxyl group is bonded to one chain of the prepolymer.
  • the thermally decomposable polymer has a fluorinated aromatic ring or a phenolic hydroxyl group at one end, a prepolymer which is grafted with the thermally decomposable polymer can be obtained.
  • the thermally decomposable polymer has a fluorinated aromatic ring or a phenolic hydroxyl group at both ends, a block of a prepolymer and a thermally decomposable polymer can be obtained.
  • the thermally decomposable polymer Since the thermally decomposable polymer has a low thermal decomposition temperature, it is selectively decomposed and removed by heating during the formation of the insulating film, and the removed portion becomes a void.
  • the porosity can be controlled by the amount of the thermally decomposable polymer added to the coating composition.
  • the amount of the thermally decomposable polymer to be added is preferably 5 to 80% by volume, more preferably 10 to 70% by volume, based on the prepolymer.
  • inorganic fine particles are preferable as the fine particles dispersed in the coating composition of the present invention.
  • the inorganic fine particles include fine particles of silica, metal, and the like.
  • the fine particles are dissolved and removed by an acid treatment or the like after film formation, and the removed portion becomes a pore.
  • the porosity can be controlled by the amount of fine particles added.
  • the amount of the fine particles to be added is generally preferably from 5 to 80% by volume, more preferably from 10 to 70% by volume, based on the prepolymer.
  • the insulating film of the present invention is combined with another film.
  • an inorganic film when applied as a semiconductor element passivation film or an interlayer insulating film for a semiconductor element, it is preferable to form an inorganic film as a lower layer and a Z or upper layer of the insulating film of the present invention.
  • the inorganic film is formed by normal pressure, reduced pressure or plasma-enhanced chemical vapor deposition (CVD) or a coating method.
  • CVD chemical vapor deposition
  • a so-called PSG film in which a silicon oxide film is doped with phosphorus, Z or boron as necessary.
  • the metal wiring can be prevented from peeling off, and the effect of facilitating the etching of a damascene shape or the like can be obtained.
  • the inorganic film is preferably formed on the insulating film after the insulating film of the present invention is partially removed by an etch-back method or a CMP (chemical 'mechanical' polishing) method.
  • (I) Method of forming a multilayer inorganic film When a silicon oxide film is formed by a plasma CVD method, the film may be reduced depending on the gas composition used. In this case, first, a thin film of an inorganic film such as a silicon nitride film or a normal pressure CVD-silicon oxide film, which does not decrease in film thickness, is formed. Next, a silicon oxide film is formed using this thin film as a barrier layer.
  • an inorganic film such as a silicon nitride film or a normal pressure CVD-silicon oxide film, which does not decrease in film thickness
  • the energy one-line processing includes electromagnetic waves in a broad sense including light, such as UV light irradiation, laser light irradiation, microwave irradiation, or processing using an electron beam, that is, electron beam irradiation, glow discharge processing, Examples of the processing include corona discharge processing and plasma processing.
  • UV light irradiation As a processing method suitable for a semiconductor device mass production process, there are UV light irradiation, laser light irradiation, corona discharge treatment, and plasma treatment.
  • Plasma treatment is more preferable, because the damage to the semiconductor device is small.
  • the apparatus for performing the plasma treatment is not particularly limited as long as a desired gas can be introduced into the apparatus and an electric field can be applied, and a commercially available barrel-type or parallel-plate-type plasma generator can be used as appropriate.
  • the gas introduced into the plasma device is not particularly limited as long as it effectively activates the surface, and examples thereof include argon, helium, nitrogen, oxygen, and a mixed gas thereof.
  • examples of the gas that activates the surface of the cured prepolymer film and hardly reduces the film include a mixed gas of nitrogen and oxygen and a nitrogen gas.
  • Example 19 Synthesis of prepolymer for evaluation of basic properties of cured film
  • Example 10 Evaluation of adhesion of cured film
  • Example 11 Preparation of vacancy-introduced cured film
  • Example 12 Evaluation of insulating film properties
  • Example 13 relates to film preparation and property evaluation
  • Example 14 relates to the synthesis of a prepolymer using both (Y-1) and (Y-2).
  • each measurement item of molecular weight, relative dielectric constant, birefringence, Tg and thick film forming property was measured by the following methods.
  • the vacuum-dried prepolymer powder was subjected to gel permeation chromatography (GPC) to determine the number average molecular weight in terms of polystyrene.
  • the carrier solvent used was tetrahydrofuran.
  • a 20% solution obtained by dissolving the vacuum-dried prevolimer powder in cyclohexanone was filtered through a PTFE filter having a pore diameter of 0.5 m.
  • a cured film having a thickness of about 1 ⁇ m was formed on a 4-inch silicon wafer by spin coating.
  • Spin conditions are 1 000-3000 rpm x 30 hectares and 100 by hot plate.
  • heating was performed in a vertical furnace at 350 ° C for 2 hours in a nitrogen atmosphere.
  • the specific dielectric constant at 1 MHz was obtained by performing CV measurement using a mercury prober (SSM, SSM-495).
  • the cured film thickness used was a value determined by a spectroscopic ellipsometer.
  • a cured film having a thickness of 2 to 5 m was formed on a quartz substrate to produce a slab-type optical waveguide.
  • the heating condition was 300 ° C for 1 hour.
  • a Metricon prism power bra (Model 2010)
  • the refractive indices for the polarized light in the vertical direction and the polarized light in the horizontal direction with respect to the film surface were measured, and the difference was determined. The measurement was performed at a light wavelength of 1550 nm.
  • a 40% solution obtained by dissolving the vacuum-dried prevolimer powder in cyclohexanone is spin-coated on a silicon wafer, and subsequently heated at 250 ° C for 180 seconds on a hot plate to obtain a 10 m thick film.
  • a cured film was formed. The presence or absence of a cured film defect was evaluated by visual observation and metallographic observation.
  • the reaction solution was cooled to room temperature and stirred vigorously.
  • a slightly brown powdery substance precipitated.
  • the light brown powder was filtered, washed 5 times with pure water, and dried in vacuum at 80 ° C. for 15 hours to obtain 3.4 g of a white-grey powdery prepolymer.
  • the obtained prepolymer had an ether bond and an ethynyl group as a crosslinkable functional group (A), and had a molecular weight of 9000.
  • the cured film formed by using the prepolymer by the method described above had a relative dielectric constant of 2.6 and a birefringence of 0.002. In the DSC measurement, no transition point or endothermic Z peak was observed, and Tg was 400 ° C or higher. Defects such as cracks were not observed in the evaluation of thick film formation.
  • reaction solution was cooled to room temperature and stirred vigorously.
  • a slightly brown powdery substance precipitated.
  • the light brown powder was filtered, washed twice with pure water, and vacuum dried at 80 ° C. for 15 hours to obtain 3.5 g of a white-grey powdery prepolymer.
  • the obtained prepolymer had an ether linkage and an ethur group.
  • the same evaluation as in Example 1 was performed, and the results of the evaluation of the basic characteristics are shown in Table 1.
  • a prepolymer powder was obtained in the same manner as in Example 2 except that 0.58 g of pentafluorostyrene was used instead of 0.57 g of pentafluorophenylacetylene as the compound (Y-2). Was.
  • the obtained prepolymer had an ether bond and a vinyl group.
  • the same evaluation as in Example 1 was performed, and the results of the basic characteristic evaluation are shown in Table 1.
  • reaction solution was cooled to room temperature, stirred vigorously, and gradually added to 0.5N aqueous hydrochloric acid (150 mL) to precipitate a slightly brown powder.
  • This light brown powder is filtered, and further purified with pure water.
  • vacuum drying was performed at 80 ° C. for 12 hours to obtain 3.10 g of a white-grey powdery prepolymer.
  • the obtained prepolymer had an ether bond and an ethur group.
  • Table 1 The same evaluation as in Example 1 was performed, and the results of the evaluation of the basic characteristics are shown in Table 1.
  • reaction solution was cooled to room temperature, stirred vigorously, and gradually added to 0.5N aqueous hydrochloric acid (150 mL) to precipitate a slightly brown powder.
  • 0.5N aqueous hydrochloric acid 150 mL
  • the light brown powder was filtered, washed twice with pure water, and dried in vacuum at 80 ° C for 12 hours to obtain 2.58 g of a white-grey powdery prepolymer.
  • the obtained prepolymer had an ether bond and an ethur group.
  • the same evaluation as in Example 1 was performed, and the results of the evaluation of the basic characteristics are shown in Table 1.
  • the reaction solution was cooled to room temperature and vigorously stirred, and gradually poured into 500 mL of a mixed solution of pure water Z methanol (8% by volume) containing 8 g of acetic acid, to precipitate a slightly brown powder.
  • the fine brown powder was filtered, washed with pure water 5 times, and dried in vacuum at 80 ° C for 15 hours to obtain 4.2 g of a fine brown powder prevolimer.
  • the same evaluation as in Example 1 was performed, and the results of the basic characteristic evaluation are shown in Table 1.
  • Example 8 of JP-A-10-247646 a prepolymer was synthesized from perfluorobiphenyl and 1,3,5-trihydroxybenzene. The same evaluation as in Example 1 was performed, and the results of the basic characteristic evaluation are shown in Table 1.
  • solution 4 A portion of a 20% cyclohexanone solution of the prepolymer obtained in Example 4 (hereinafter referred to as solution 4) was taken out, and 2% by mass of aminophenyltrimethoxysilane was added to the prepolymer to obtain a solution 41. Obtained.
  • a solution 42 was obtained by adding 1% by mass of 3-aminopropyltriethoxysilane to prepolymer in place of aminophenoltrimethoxysilane. Next, the solution 4, the solution 41, and the solution 42 were spin-coated on a silicon wafer to form a wet film, and then heated to form a cured film.
  • the spin speed was adjusted so that the wet film thickness was 500 nm.After preheating at 100 ° C for 90 seconds and 200 ° C for 90 seconds on a hot plate, the nitrogen atmosphere was applied at 350 ° C for 2 hours in a vertical furnace. Heat was performed. After performing a pressure tucker test (121 ° C, 100% RH, 4 hours) on these samples in an ETAC chamber, the cured film and the substrate were subjected to a goban-shaped tape peel test described in JIS D0202. Was evaluated for adhesion.
  • solution 5 a homogeneous and transparent solution (hereinafter referred to as solution 5).
  • Solution 5 was spin-coated on a 4-inch silicon wafer, followed by heating to form a cured film. Spin conditions were 2500 rpm for 30 seconds, and preheating and heating were performed as in Example 10. As a result of SEM observation of the cross section of the obtained cured film, the existence of microscopic pores on the order of nanometers was confirmed. The relative dielectric constant of the cured film was 1.8. In addition, peeling and destruction of the film by the Goban-shaped tape peeling test were not seen.
  • Solution 4 1 and Solution 5 a laminated film of silicon wafer Zp SiO (300 nm) Z prepolymer insulating film (500 nm) / p-SiN (50 nm) / p-SiO (500 nm) is made by the following method did.
  • the solution was spin-coated on a 4-inch silicon wafer on which a p-SiO film (thickness: 300 nm) was formed to form a 500 nm-thick pre-bolimer insulating film in the same manner as in Example 10.
  • a silicon nitride film having a thickness of 50 nm was formed using a mixed gas of monosilane, ammonia and nitrogen, and then a silicon oxide film having a thickness of 500 nm was formed using a mixed gas of monosilane and oxygen dinitride.
  • the obtained laminate was heated at 350 ° C for 60 minutes in a nitrogen atmosphere, and crack resistance due to thermal stress was examined with a metallographic microscope. The results are shown below.
  • the laminate formed from Solution 4 was free of cracks and other defects.
  • the laminate formed from the solution 41 was free from cracks and other defects.
  • the laminate formed from Solution 5 was free of cracks and other defects. From this example, it was found that the prepolymer of the present invention was easy to laminate an inorganic film, and was excellent in compatibility as an interlayer insulating film.
  • a 40% cyclohexanone solution of the prepolymer obtained in Example 4 was spin-coated on a silicon wafer, followed by a hot plate heat treatment at 100 ° C for 180 seconds and 200 ° C for 180 seconds, followed by an oven at 300 ° C. Heating in a nitrogen atmosphere was performed for 1 hour at ° C. By peeling off the cured film from the silicon wafer, a flexible light brown film with a thickness of 20 m was obtained. Using a TG-DTA device manufactured by Mac Science, TG (thermogravimetry) was measured in a nitrogen atmosphere at a heating rate of 10 ° CZ for 5% weight loss of this film. there were. The water absorption at 85 ° C.
  • reaction solution is cooled to room temperature, and gradually added to 0.5N aqueous nitric acid (150 mL) with vigorous stirring, whereby a precipitate of a slightly brown powder is formed.
  • the precipitate is filtered, washed twice with pure water, and dried in vacuum at 80 ° C to obtain a white-grey powdered prepolymer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Formation Of Insulating Films (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 低い比誘電率、高い耐熱性、低い複屈折及び高い可とう性を併せ持つ硬化物を形成し得る架橋性含フッ素芳香族プレポリマーとその用途の提供。  架橋性官能基(A)及びフェノール性水酸基を有する化合物(Y−1)及び/又は基(A)及びフッ素原子置換芳香環を有する化合物(Y−2)と、式(1) [式中、nは0~2の整数、a、bはそれぞれ独立に0又は1~3の整数を表し、Rf1及びRf2は炭素数8以下の含フッ素アルキル基を表す。]で示される含フッ素芳香族化合物(B)と、フェノール性水酸基を3個以上有する化合物(C)とを、脱HF剤存在下に縮合反応させて得られ、架橋性官能基(A)及びエーテル結合を有し、数平均分子量が1×103~5×105である架橋性含フッ素芳香族プレポリマー。

Description

明 細 書
架橋性含フッ素芳香族プレボリマー及びその用途
技術分野
[0001] 本発明は、架橋性含フッ素芳香族プレボリマー及びその用途に関する。本発明の 架橋性含フッ素芳香族プレボリマーを硬化させて形成される硬化膜は、低!ヽ比誘電 率、高い耐熱性、低い複屈折及び高い可とう性を併せ持ち、電子 ·電気部品用の絶 縁膜や光伝送体として適用可能である。
背景技術
[0002] 電子デバイス及び多層配線板等が益々微細化及び高集積化されて!/、ることと、 TF T等のディスプレイが大型化、高精細化されていることに伴い、より低い比誘電率の 絶縁膜が要求されている。また、光集積回路、光スィッチ、光一電気混載基板等の光 伝送体に使用される光学材料として、光の透過性が高ぐ複屈折 (屈折率の偏波依 存性)が小さい材料が要求されている。これらの要求を満足し、かつ電子デバイス、 多層配線板又は光伝送体の製造及び Z又は実装工程で必要な、 250°C以上、好ま しくは 300°C以上、さらに好ましくは 350°C以上の耐熱性を確保するために、含フッ 素芳香族ポリマーが検討されて 、る。
[0003] 含フッ素芳香族ポリマーとして、エーテル結合を有する含フッ素芳香族ポリマー(以 下、ポリアリーレンエーテル又は PAEという。)が提案されている(例えば、特許文献 1 一 3及び非特許文献 1参照。 )0それらの比誘電率は 2. 5-2. 9程度で、電子デバィ ス又は多層配線板の絶縁膜としての応用が検討されている。また、光伝送体としての 応用も検討されている。
またフ ノール性水酸基を 3個以上有する化合物を用いて製造される、分岐構造を 有する PAEが提案されている(例えば、特許文献 4参照。 )0
また分岐構造を有する特定の含フッ素芳香族化合物より製造され、低 ヽ誘電率と 高い Tgを両立した PAEが提案されている(例えば、特許文献 5参照。 )0
特許文献 1:特許第 3064011号公報
特許文献 2:米国特許 5115082号明細書 特許文献 3 :米国特許 5959157号明細書
特許文献 4:特開平 10- 247646号公報
特許文献 5:国際公開第 03Z008483号パンフレット
非特許文献 1 :J. Polm. Sci. : PartA: Polm. Chem. , vol. 36, 2881 (1998) 発明の開示
発明が解決しょうとする課題
[0004] し力しながら、前述した従来技術には、次のような問題があった。
特許文献 1一 3及び非特許文献 1に開示された PAEは、フエノール性水酸基を 2個 有する化合物を用いて製造される直鎖状のポリマーであり、そのガラス転移温度 (以 下、 Tgという。)が低ぐ耐熱性が充分ではない。 PAEに架橋性官能基を導入して架 橋すると Tgを高くできる力 比誘電率が 2. 7-3. 0程度に上昇し、低い比誘電率と 高い Tgを両立することが困難である。また、上記のようなポリマーの複屈折は 0. 007 程度であり、ポリイミド等に比べると低い値を有するが、光伝送体として充分であると は言えない。
また特許文献 4に開示された分岐構造を有する PAEは、架橋性官能基を有さな!/、 ため熱可塑性であり、 Tgを 300°C以上にすることは極めて困難である。
また特許文献 5に開示された分岐構造を有する特定の含フッ素芳香族化合物より 製造され PAEは、非常に嵩高い分子構造を有するため、脆ぐ可とう性に劣るという 欠点がある。具体的には、特に厚い膜を形成する場合、熱ストレスによって塗膜にク ラックが発生しやす ヽと 、う欠点を有する。
[0005] 本発明は前記事情に鑑みてなされ、低い比誘電率、高い耐熱性、低い複屈折及 び高い可とう性を併せ持つ硬化物を形成し得る架橋性含フッ素芳香族プレボリマー 、それを含む塗布用組成物、該プレポリマーを用いて形成される硬化物及び該塗布 用組成物から形成される硬化膜の提供を目的とする。
課題を解決するための手段
[0006] 前記目的を達成するため、本発明は、架橋性官能基 (A)及びフエノール性水酸基 を有する化合物 (Y - 1)並びに架橋性官能基 (A)及びフッ素原子置換芳香環を有す る化合物 (Y— 2)の 、ずれか一方又は両方と、 下記式(1)
[0007] [化 1]
Figure imgf000004_0001
[0008] [式中、 ηは 0— 2の整数、 a、 bはそれぞれ独立に 0— 3の整数を表し、 Rf1及び Rf2は それぞれ同じであっても異なっていても良い炭素数 8以下の含フッ素アルキル基を表 し、芳香環内の Fはその芳香環の水素原子が全てフッ素原子で置換されて 、ることを 表す。]
で示される含フッ素芳香族化合物 (B)と、
フエノール性水酸基を 3個以上有する化合物(C)とを、脱 HF剤存在下に縮合反応 させて得られ、架橋性官能基 (A)及びエーテル結合を有し、数平均分子量が 1 X 10 3— 5 X 105である架橋性含フッ素芳香族プレボリマーを提供する。
本発明に係る架橋性含フッ素芳香族プレボリマーにぉ 、て、前記架橋性官能基( A)がェチュル基であることが好まし 、。
[0009] また本発明は、前記架橋性含フッ素芳香族プレボリマーを硬化させることにより形 成される硬化物を提供する。
[0010] また本発明は、前記架橋性含フッ素芳香族プレボリマーと溶剤とを含む塗布用組 成物を提供する。
[0011] また本発明は、前記塗布用組成物を用いて基材上に架橋性含フッ素芳香族プレボ リマーの湿潤膜を形成し、次いで該湿潤膜中の溶剤を除去し、次いでまたは溶剤の 除去と同時に、該架橋性含フッ素芳香族プレボリマーを硬化させることにより形成さ れる硬化膜を提供する。
[0012] この硬化膜にぉ 、て、膜中に空孔を含有してもよ 、。
[0013] また本発明は、前記硬化膜を有する電子'電気部品を提供する。
発明の効果
[0014] 本発明の架橋性含フッ素芳香族プレボリマーは、フエノール性水酸基を 3個以上有 する化合物 (C)を用いて製造され、かつ架橋性官能基 (A)を有することにより、低誘 電率、低複屈折及び高耐熱性を同時に満足する硬化膜を形成できる。
また本発明の架橋性含フッ素芳香族プレボリマーは、可とう性に優れた硬化膜を形 成できるので、曲げなどの外力に強い膜を得ることができ、また厚膜形成が容易とな る。
また本発明の架橋性含フッ素芳香族プレボリマーを硬化させることにより形成される 硬化物は、電子デバイス用及び多層配線板用の絶縁膜、フィルム及び光伝送体へ の適用性に優れる。これらに適用することで、素子の信号伝搬遅延時間の低減等の 高性能化を達成でき、かつ高温域における優れた機械物性による高信頼性ィ匕を図る ことができる。
発明を実施するための最良の形態
[0015] 本発明の架橋性含フッ素芳香族プレボリマー(以下、プレボリマーと略記する。 )は
、架橋性官能基 (A)及びフ ノール性水酸基を有する化合物 (Y - 1)並びに架橋性 官能基 (A)及びフッ素原子置換芳香環を有する化合物 (Y - 2)の ヽずれか一方又は 両方と、
式 (1)
[0016] [化 2]
Figure imgf000005_0001
[0017] [式中、 nは 0— 2の整数、 a、 bはそれぞれ独立に 0— 3の整数を表し、 Rf1及び Rf2は それぞれ同じであっても異なっていても良い炭素数 8以下の含フッ素アルキル基を表 し、芳香環内の Fはその芳香環の水素原子が全てフッ素原子で置換されて 、ることを 表す。]
で示される含フッ素芳香族化合物 (B)と、
フエノール性水酸基を 3個以上有する化合物(C)とを、脱 HF剤存在下に縮合反応 させて得られ、架橋性官能基 (A)及びエーテル結合を有し、数平均分子量が 1 X 10 3— 5 X 105であることを特徴とする。
[0018] 本発明のプレボリマーは、フエノール性水酸基を 3個以上有する化合物(C)を用い て製造され、かつ架橋性官能基 (A)を有することにより、低誘電率、低複屈折及び高 耐熱性を同時に満足する硬化物 (含フッ素芳香族ポリマー)が得られる。すなわち、 フエノール性水酸基を 3個以上有する化合物(C)を用いることにより、ポリマー鎖に分 岐構造を導入し、分子構造を三次元化することにより、ポリマーの自由体積を増大さ せて低密度化、すなわち低誘電率化が達成される。また、一般的に、芳香環を有す る直鎖状ポリマーは芳香環のスタツキングによる分子の配向が起き易ぐ複屈折率が 大きくなる傾向にある。一方、本発明の硬化物では分岐構造を導入することにより分 子の配向が抑えられ、その結果、複屈折力 、さくなる。
架橋性官能基 (A)を有することにより、得られる硬化物において、プレボリマー分子 間の架橋又は鎖延長反応を進行させることができ、その結果、耐熱性が大きく向上 する。同時に硬化物の耐溶剤性が向上するという効果も有する。
さらに、前記式 1で表される含フッ素芳香族化合物 (B)を用いることにより、可とう性 が良好な硬化物が得られる。それ自体が分岐構造を有する含フッ素芳香族化合物よ り製造された含フッ素芳香族ポリマーに比べて、エーテル結合の密度を高めることが でき、主鎖の柔軟性が向上し、結果として可とう性が良好な硬化物が得られる。可とう 性が良好であることは、硬化物が硬化膜の形状である場合に特に有利である。
[0019] 本発明にお ヽて、含フッ素芳香族化合物 (B)は前記式 1で示される含フッ素芳香 族化合物である。この式(1)中、 Rf1及び Rf2は炭素数 8以下の含フッ素アルキル基 である。耐熱性の観点より、ペルフルォロアルキル基が好ましい。具体例としては、ぺ ルフルォロメチル基、ペルフルォロェチル基、ペルフルォロプロピル基、ペルフルォ ロブチル基、ペルフルォ口へキシル基、ペルフルォロォクチル基が挙げられる。
[0020] Rf1及び Rf2の数が、それぞれ 2を超えると含フッ素芳香族化合物(B)の製造が困 難となるので、これら Rf1及び Rf2の数 (a及び b)はそれぞれ独立に 0— 2が好ましぐ 0 が最も好ましい。含フッ素芳香族化合物(B)としては、ペルフルォロベンゼン、ペルフ ルォロトルエン、ペルフルォロキシレン、ペルフルォロビフエニル、ペルフルォロター フエ-ルが好ましぐ特にペルフルォロベンゼン、ペルフルォロビフエ-ルが好ましい 。これらは単独で用いても、 2種以上混合して用いてもよい。得られる硬化物の誘電 率と耐熱性のバランスに優れ、かつ硬化物の可とう性が高くなる点で、含フッ素芳香 族化合物(B)としては、ペルフルォロビフエニルが最も好ましい。
[0021] 本発明において、フエノール性水酸基を 3個以上、好ましくは 3— 5個有する化合物
(C)としては、多官能フエノール類が好ましい。具体例としては、トリヒドロキシベンゼ ン、トリヒドロキシビフエニル、トリヒドロキシナフタレン、 1, 1, 1—トリス(4—ヒドロキシフ ェ -ル)ェタン、トリス(4ーヒドロキシフエ-ル)ベンゼン、テトラヒドロキシベンゼン、テト ラヒドロキシビフエ-ル、テトラヒドロキシビナフチル、テトラヒドロキシスピロインダン類 等が挙げられる。得られる硬化膜の可とう性が高くなることから、化合物 (C)としては フ ノール性水酸基を 3個有する化合物が好ましぐその中でも、得られる硬化物の 誘電率が低くなることから、トリヒドロキシベンゼンが最も好ま 、。
[0022] 本発明のプレボリマーは、架橋性官能基 (A)を含有する。この架橋性官能基 (A) は、プレボリマー製造時には実質上反応を起こさず、膜、フィルム又は成形体などの 硬化物を作製する時点、又は作製後の任意の時点で、外部エネルギーを与えること により反応し、プレボリマー分子間の架橋又は鎖延長を引き起こす反応性官能基で める。
[0023] 外部エネルギーとしては、電子デバイス、多層配線板又は光伝送体の製造及び Z 又は実装工程での適用性に優れるので、熱、光、電子線等、及びこれらの併用が好 ましい。外部エネルギーとして熱を用いる場合、 40°C— 500°Cの温度で反応する反 応性官能基が好ましい。低すぎると、プレボリマー又は該プレポリマーを含む塗布用 組成物の保存時における安定性が確保できず、高すぎると反応時にプレボリマー自 体の熱分解が発生してしまうので、前記範囲にあることが好ましい。より好ましくは 60 °C一 400°Cであり、 70°C— 350°Cが最も好ましい。外部エネルギーとして光を用いる 場合、プレボリマー又は後述する該プレポリマーを含む塗布用組成物に、光ラジカル 発生剤、光酸発生剤、増感剤等を添加することも好ましい。また、極性基を含まない 架橋性官能基 (A)は硬化膜の比誘電率を上昇させないことから、特に本発明のプレ ポリマーを絶縁膜の製造に適用する場合には極性基を含まな 、架橋性官能基 (A) を用いることが好ましい。 [0024] 架橋性官能基 (A)の具体例としては、ビニル基、ァリル基、メタクリロイル (ォキシ) 基、アタリロイル (ォキシ)基、ビュルォキシ基、トリフルォロビュル基、トリフルォロビニ ルォキシ基、ェチュル基、 1ーォキソシクロペンター 2, 5 ジェン 3—ィル基、シァノ基 、アルコキシシリル基、ジァリールヒドロキシメチル基、ヒドロキシフルォレニル基等が 挙げられる。反応性が高ぐ高い架橋密度が得られるので、ビュル基、メタクリロイル( ォキシ)基、アタリロイル (ォキシ)基、トリフルォロビュルォキシ基、ェチュル基が好ま しぐ得られる硬化物が良好な耐熱性を有する点から、ェチニル基が最も好ましい。
[0025] 本発明のプレボリマーにおける架橋性官能基 (A)の含有量は、プレボリマー lgに 対して架橋性官能基 (A)が 0. 1— 4ミリモル力 S好ましく、 0. 2— 3ミリモルがより好まし い。この範囲を超えると硬化物の脆性が大きくなり、比誘電率が上昇することがある。 また、この範囲より少ないと、硬化物の耐熱性及び耐溶剤性が低下することがある。
[0026] 本発明のプレボリマーは、下記 (i)又は (ii)の方法のいずれか一方又は両方で製 造することができる。
(i)前記式 1で示される含フッ素芳香族化合物 (B)と前記フ ノール性水酸基を 3個 以上有する化合物 (C)と架橋性官能基 (A)及びフ ノール性水酸基を有する化合 物 (Y— 1)とを脱 HF剤存在下に縮合反応させる方法。
(ii)前記含フッ素芳香族化合物 (B)と前記フ ノール性水酸基を 3個以上有するィ匕 合物 (C)と架橋性官能基 (A)及びフッ素原子置換芳香環を有する化合物 (Y— 2)と を脱 HF剤存在下に縮合反応させる方法。
なお、前記 (i)及び (ii)の両方でプレボリマーを製造する場合は、含フッ素芳香族 化合物 (B)、化合物 (C)、化合物 (Y - 1)及び化合物 (Y - 2)とを脱 HF剤存在下に 縮合反応させる。
[0027] 前記プレボリマーの製造方法において、縮合反応は以下のように進行すると考えら れる。下記式(2)で示されるように、フ ノール性水酸基力 誘導されるフ ノキシ基 力 含フッ素芳香族化合物 (B)のフッ素原子が結合した炭素原子を攻撃し、ついで フッ素原子が脱離する反応機構等によりエーテル結合が生成する。また、化合物 (C )及び Z又は (Y— 1)がオルト位置関係にある 2個のフ ノール性水酸基を有する場 合には、同様の反応機構等により、下記式 (3)に示すようにジォキシン骨格が生成す る可能性がある。
[0028] [化 3] ] …
Figure imgf000009_0001
[0029] [化 4]
Figure imgf000009_0002
[0030] 製造方法 (i)で用いられる、架橋性官能基 (A)及びフ ノール性水酸基を有する化 合物 (Y— 1)としては、フエノール性水酸基を 1個有する化合物 (Y— 1 1)及びフ ノ ール性水酸基を 2個有する化合物 (Y— 1 2)が好まし 、。
[0031] 架橋性官能基 (A)及びフ ノール性水酸基を 1個有する化合物 (Y - 1 - 1)の具体 例としては、 4ーヒドロキシスチレン等の反応性二重結合を有するフエノール類、 3—ェ チュルフエノール、 4 フエ-ルェチユルフェノール、 4一(4 フルオロフェ -ル)ェチ- ルフヱノール等のェチュルフエノール類が挙げられる。これらは単独で用いても、 2種 以上を混合して用いてもよ!ヽ。架橋性官能基 (A)としてェチニル基を有する芳香族 化合物がより好ましい。
[0032] 架橋性官能基 (A)及びフ ノール性水酸基を 2個有する化合物 (Y - 1 - 2)の具体 例としては、 2, 2,一ビス(フエ-ルェチュル)— 5, 5,ージヒドロキシビフエ-ル、 2, 2,一 ビス(フエ-ルェチュル) 4, 4,ージヒドロキシビフエ-ル等のビス(フエ-ルェチュル) ジヒドロキシビフエニル類、 4, 4,ージヒドロキシトラン、 3, 3,ージヒドロキシトラン等のジ ヒドロキシジフエニルアセチレン類等が挙げられる。これらは単独で用いても、 2種以 上を混合して用いてもよい。 [0033] 製造方法 (ii)で用いられる、架橋性官能基 (A)及びフッ素原子置換芳香環を有す る化合物(Y— 2)としては、架橋性官能基 (A)と、ペルフルオロフヱ-ル、ペルフルォ ロビフ ニル等のペルフルォロ芳香環とを有する化合物が好まし 、。その具体例とし ては、ペンタフル才ロスチレン、ペンタフルォ口べンジルアタリレート、ペンタフル才ロ ベンジノレメタタリレート、ペンタフノレオロフェ-ノレアタリレート、ペンタフノレオロフェ-ノレ メタタリレート、ペルフルォロスチレン、ペンタフルオロフェ-ルトリフルォロビュルエー テル、 3 (ペンタフルォロフエ-ル)ペンタフルォロプロペン 1等の反応性二重結合 を有する含フッ素ァリール類、ペンタフルォ口べンゾ-トリル等のシァノ基を有する含 フッ素ァリール類、ペンタフルオロフェ-ルアセチレン、ノナフルォロビフエ-ルァセ チレン等の含フッ素ァリールアセチレン類、フエ-ルェチ-ルペンタフルォ口べンゼ ン、フエ-ルェチュルノナフルォロビフエ-ル、デカフルォロトラン等の含フッ素ジァリ ールアセチレン類が挙げられる。これらは単独で用 ヽても 2種以上を混合して用 、て もよい。比較的低温で架橋反応が進行し、かつ得られるプレボリマー硬化物の耐熱 性が高くなることから、化合物 (Y— 2)としては含フッ素ァリールアセチレン類が好まし い。
[0034] 本発明のプレボリマーを製造する際に用いられる脱 HF剤としては、塩基性化合物 が好ましぐ特にアルカリ金属の炭酸塩、炭酸水素塩又は水酸化物が好ましい。具体 例としては、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水 酸ィ匕ナトリウム、水酸ィ匕カリウム等が挙げられる。
[0035] 脱 HF剤の使用量は、製造方法 (i)にあっては、化合物(C)及び化合物 (Y— 1)のフ ヱノール性水酸基の合計モル数に対し、モル比で 1倍以上の量が必要であり、 1. 1 一 3倍が好ましい。製造方法 (ii)にあっては、化合物(C)のフエノール性水酸基のモ ル数に対し、モル比で 1倍以上の量が必要であり、 1. 1一 3倍が好ましい。
[0036] 前記製造方法 (i)及び (ii)にお ヽて、縮合反応は、極性溶媒中で行うことが好まし い。極性溶媒としては、 N, N—ジメチルァセトアミド、 N, N—ジメチルホルムアミド、 N メチルピロリドン、ジメチルスルホキシド、スルホラン等の非プロトン性の極性溶媒を 含有する溶媒が好ましい。極性溶媒には、生成するプレボリマーの溶解性を低下せ ず、縮合反応に悪影響を及ぼさない範囲で、トルエン、キシレン、ベンゼン、テトラヒド 口フラン、ベンゾトリフルオライド、キシレンへキサフルオライド等が含有されてもよい。 これらを含有することにより、溶媒の極性 (誘電率)が変化し、反応速度をコントロール することが可能である。
[0037] 縮合反応条件としては、 10— 200°Cで 1一 80時間が好ましい。より好ましくは 20— 180°Cで 2— 60時間、最も好ましくは 50— 160°Cで 3— 24時間である。
[0038] 本発明のプレポリマーの数平均分子量は、 1 X 103—5 X 105、好ましくは 1. 5 X 10 3— 1 X 105の範囲である。 1 X 103— 5 X 105の範囲にあると、後述する該プレポリマ 一を含む塗布用組成物の塗布特性が良好であり、得られた硬化膜は良好な耐熱性 、機械特性、及び耐溶剤性等を有する。電子デバイス用絶縁膜用途において、下地 の微細スペース間に充分に浸透し、かつ表面を平滑にする特性 (V、わゆる埋め込み 平坦性)が要求される場合には、プレボリマーの数平均分子量は 1. 5 X 103— 5 X 1 04の範囲が最も好ましい。
[0039] プレボリマーの数平均分子量は、製造方法 (i)にお 、ては化合物(C)及び化合物( Y-1)の合計と、含フッ素芳香族化合物 (B)との仕込み比率を変化させることによつ て制御できる。ここで、プレボリマー中に水酸基が残存しない方力 比誘電率が低く なるので好ましい。本発明における縮合反応では、含フッ素芳香族化合物(B)は通 常二官能性ィ匕合物としてはたらく。従って、分子量のコントロールは、化合物(C)及 び化合物 (Y - 1)の水酸基の合計モル数力 含フッ素芳香族化合物(B)のモル数の 2倍を超えな 、範囲内で調整することが好ま 、。
[0040] 同様に、製造方法 (ii)にお 、てプレボリマーの数平均分子量は、含フッ素芳香族 化合物 (B)及び化合物 (Y— 2)の合計と化合物 (C)との仕込み比率を変化させること によって制御できる。ここでも前記同様、分子量のコントロールは、化合物 (Y— 2)が 一官能性化合物として働く場合、水酸基の合計モル数が、含フッ素芳香族化合物( B)のモル数の 2倍と化合物(Y— 2)のモル数の合計を超えな!/、範囲内で調整するこ とが好ましい。また、化合物 (Y— 2)が二官能性ィ匕合物として働く場合、水酸基の合計 モル数が、含フッ素芳香族化合物(B)と化合物 (Y - 2)の合計モル数の 2倍を超えな V、範囲内で調整することが好ま 、。
[0041] また製造方法 (ii)にお 、て、含フッ素芳香族化合物 (B)と化合物 (Y— 2)の反応速 度が異なる場合、添加順序によって得られるプレボリマーの分子量や組成が異なる 場合がある。例えば、化合物(C)のフ ノール性水酸基力も誘導されるフ ノキシ基 に対する反応速度が (B) > (Y-2)である場合、含フッ素芳香族化合物 (B)と化合物 (Y— 2)とを同時に仕込むと、化合物 (Y— 2)がすべて消費される前に、すべてのフエ ノキシ基が含フッ素芳香族化合物 (B)により消費され、未反応の化合物 (Y— 2)が残 存する場合がある。この様な場合、化合物 (Y— 2)の反応率を高めるためには、化合 物 (Y— 2)を先に仕込んだ後に含フッ素芳香族化合物 (B)を仕込むことが好ま 、が 、本方法では、得られるプレボリマー鎖間の組成のばらつきが大きくなる傾向がある。 得られるプレボリマー鎖間の組成のばらつきを小さくする必要がある場合は、一括仕 込みにより製造することが好ま 、。
[0042] 製造方法 (i)において、化合物 (C)の使用量は含フッ素芳香族化合物 (B)に対す るモル比で 0. 1— 1倍が好ましぐより好ましくは 0. 3-0. 6倍であり、化合物(Y— 1) の使用量は含フッ素芳香族化合物(B)に対するモル比で 0. 1— 2倍が好ましぐより 好ましくは 0. 2-1. 5倍である。製造方法 (ii)において、化合物(C)の使用量は含フ ッ素芳香族化合物(B)に対するモル比で 0. 5— 2倍が好ましぐより好ましくは 0. 6 一 1. 5倍であり、化合物 (Y - 2)の使用量は含フッ素芳香族化合物(B)に対するモ ル比で 0. 1— 2倍が好ましぐより好ましくは 0. 2-1. 5倍である。各値がこの範囲に あると、得られたプレボリマーが低 ヽ誘電率値と高 ヽ耐熱性を併せ持つので好ま ヽ
[0043] 本発明のプレボリマーは、硬化後に得られる硬化物の耐熱性、比誘電率、複屈折、 可とう性などの物性に応じて、製造方法 (i)又は (ii)を適宜選択して所望の物性の硬 化物が得られるプレボリマーを製造することができる。例えば、製造方法 (ii)を用いる 場合、製造されたプレボリマーを硬化させて得られる硬化物の比誘電率及び複屈折 値が一般に低くなる傾向にあるので、比誘電率及び複屈折値が低 、硬化物を得るた めには、製造方法 (ii)によってプレボリマーを製造することが好ましい。
[0044] 本発明において、プレボリマーの硬化物の耐熱性が不充分であったり、該硬化物 力もなる膜又はフィルムが脆性である場合には、硬化物の耐熱性向上や可とう性を 改良するためにプレボリマー製造時に共縮合成分を添加することができる。 共縮合成分としては、硬化膜の可とう性向上のためには (Y— 1)以外のフエノール 性水酸基を 2個有する化合物 (Ζ)、硬化膜の耐熱性向上のためには分岐構造を有 する含フッ素芳香族化合物 (X)が挙げられる。
[0045] 前記フエノール性水酸基を 2個有する化合物(Ζ)としては、ジヒドロキシベンゼン、 ジヒドロキシビフエニル、ジヒドロキシターフェニル、ジヒドロキシナフタレン、ジヒドロキ シアントラセン、ジヒドロキシフエナントラセン、ジヒドロキシー 9, 9ージフエニルフルォレ ン、ジヒドロキシジベンゾフラン、ジヒドロキシジフエニルエーテル、ジヒドロキシジフエ 二ルチオエーテル、ジヒドロキシベンゾフエノン、ジヒドロキシー 2, 2—ジフエニルプロパ ン、ジヒドロキシー 2, 2—ジフエニルへキサフルォロプロパン、ジヒドロキシビナフチル 等の 2官能フエノール類が挙げられる。これらは単独で用いても 2種以上混合して用 いてもよい。
[0046] 分岐構造を有する含フッ素芳香族化合物 (X)としては、ペルフルォロ(1, 3, 5—トリ フエ-ルベンゼン)(下記式(4Α) )又はペルフルォロ(1, 2, 5—トリフエ-ルベンゼン) (下記式 (4Β) )が挙げられる。
[0047] [化 5]
Figure imgf000013_0001
(4Α) (4Β)
[0048] 本発明のプレボリマーは縮合反応後又は溶液化後に、中和、再沈殿、抽出、ろ過 等の方法で精製される。精製は、製造時において好ましく使用される極性溶媒が存 在する状態又は後述する溶剤に溶解もしくは分散された状態で行った方が効率がよ V、ので好まし ヽ。電子デバイス用絶縁膜及び多層配線板用絶縁膜としての用途にお いて、縮合反応触媒であるカリウム、ナトリウム等の金属及び遊離したハロゲン原子は トランジスタの動作不良や配線の腐食等を引き起こす原因となる可能性があるので充 分に精製することが好ましい。 [0049] 本発明のプレボリマーは、硬化させるための架橋反応時、反応速度を上げる又は 反応欠陥を低減させる等の目的で各種の触媒又は添加剤を用いることもできる。 本発明のプレボリマーが架橋性官能基 (A)としてェチュル基を含有する場合には 、触媒としてはァニリン、トリェチルァミン、ァミノフエニルトリアルコキシシラン、アミノプ 口ピルトリアルコキシシラン等のアミン類や、モリブデン、ニッケル等を含有する有機金 属化合物等が例示できる。
[0050] プレボリマーにカ卩える添加剤としては、ビスシクロペンタジェノン誘導体が好ましい。
ェチュル基とシクロペンタジェノン基(1一才キソシクロペンター 2, 5 ジェン 3—ィル 基)は熱によりディールスアルダー反応で付加物を形成した後、脱一酸化炭素反応 して芳香環を形成する。したがって、ビスシクロペンタジェノン誘導体を使用すると芳 香環が結合部位である架橋又は鎖延長ができる。
[0051] ビスシクロペンタジェノン誘導体の具体例としては、 1, 4 ビス(1 ォキソ—2, 4, 5— トリフエ-ルーシクロペンタ— 2, 5 ジェン 3 ィル)ベンゼン、 4, 4,一ビス(1ーォキソー 2, 4, 5—トリフエ-ルーシクロペンタ一 2, 5 ジェン一 3 ィル)ビフエ-ル、 4, 4,一ビス( 1 ォキソ 2, 4, 5—トリフエ二ルーシクロペンタ一 2, 5—ジェン 3 ィル) 1, 1,一ォキシ ビスベンゼン、 4, 4,一ビス(1 ォキソ 2, 4, 5—トリフエ二ルーシクロペンター 2, 5—ジ ェンー 3 ィル) 1, 1,ーチォビスベンゼン、 1, 4—ビス(1 ォキソ 2, 5—ジー [4ーフノレ オロフェ -ル] 4—フエ-ルーシクロペンター 2, 5 ジェン 3 ィル)ベンゼン、 4, 4,— ビス(1 ォキソ 2, 4, 5—トリフエ-ルーシクロペンタ一 2, 5 ジェン 3 ィル) 1, 1,ー( 1, 2 エタンジィル)ビスベンゼン、 4, 4,一ビス(1 ォキソ—2, 4, 5—トリフエ-ルーシ クロペンター 2, 5—ジェン 3 ィル) 1, 1,—(1, 3 プロパンジィル)ビスベンゼン等を 挙げることができる。
[0052] これらのビスシクロペンタジェノン誘導体のうち、耐熱性の観点から全芳香族骨格 のビスシクロペンタジェノン誘導体が好ましい。これらは単独で用いてもよぐ 2種以 上を併用してもよい。
[0053] 本発明のプレボリマーは、架橋反応を進行させ硬化せしめることにより硬化物を得 ることができる。本発明は、該プレポリマーを硬化させることにより形成される硬化物を 提供する。硬化物としては、どのような形状でも構わない。架橋反応が均一に進行し 、均質な硬化物が得られることから、後述するような溶剤を含む塗布用組成物から形 成される硬化膜 (硬化フィルム)であることが好ましい。以下の説明においては、好ま しい形状である硬化膜を中心に詳述する。
本発明のプレボリマーは、適当な基材上にコ一ティングして縮合反応を進行させ、 硬化させて膜を形成するために用いる塗布用組成物の材料として好適に用いること ができ、本発明は、前記プレボリマーと溶剤とを含む塗布用組成物を提供する。 本発明の塗布用組成物は、例えば前述した本発明のプレボリマーを溶剤に溶解す る力、または分散して得られる。
本発明の塗布用組成物に用いる溶剤としては、本発明のプレボリマー及び必要で あれば加える触媒又は添加剤類を溶解又は分散でき、所望の方法で所望の膜厚、 均一性、又は埋め込み平坦性を有する硬化膜が得られれば特に制限は無い。例え ば、芳香族炭化水素類、双極子非プロトン系溶媒類、ケトン類、エステル類、エーテ ル類、ハロゲン化炭化水素類が挙げられる。塗布用組成物の溶剤は、前述したプレ ポリマー製造時の反応溶剤と同じであっても、異なっていても良い。異なる溶剤を使 用する場合には、再沈殿法などでプレボリマーをー且反応溶液より回収し、異なる溶 剤に溶解若しくは分散させる力、又はエバポレーシヨン法、限外濾過法等の公知の 手法を用いて溶剤置換を行うことができる。
芳香族炭化水素類としては、ベンゼン、トルエン、キシレン、ェチルベンゼン、キュメ ン、メシチレン、テトラリン、メチルナフタレン等が挙げられる。
双極子非プロトン系溶媒類としては、 N—メチルピロリドン、 N, N—ジメチルホルムァ ミド、 N, N—ジメチルァセトアミド、 γ—ブチロラタトン、ジメチルスルホキシド等が挙げ られる。
ケトン類としては、シクロペンタノン、シクロへキサノン、シクロへプタノン、シクロオタ タノン、メチルアミルケトン等が挙げられる。
エーテル類としては、テトラヒドロフラン、ピラン、ジ才キサン、ジメトキシェタン、ジェ トキシェタン、ジフエ-ルエーテル、ァ-ソール、フエネトール、ジグライム、トリグライム 等が挙げられる。
エステル類としては、乳酸ェチル、安息香酸メチル、安息香酸ェチル、安息香酸ブ チル、安息香酸ベンジル、メチルセルソルブアセテート、ェチルセルソルブァセテー ト、プロピレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノェチノレエーテ ル、プロピレングリコールモノプロピルエーテル、プロピレングリコーノレモノブチノレエー テル、プロピレングリコールモノェチルエーテルアセテート等が挙げられる。
ノ、ロゲン化炭化水素類としては、四塩化炭素、クロ口ホルム、塩化メチレン、テトラタ ロロエチレン、クロ口ベンゼン、ジクロロベンゼン等が挙げられる。
[0055] 本発明の塗布用組成物において、組成物中のプレボリマーの濃度は 1一 50質量 %が好ましぐ 5— 30質量%がより好ましい。この塗布用組成物はプレボリマーと溶剤 以外に、可塑剤、増粘剤などのコーティング分野で周知の各種添加剤の中から選択 される少なくとも 1種の添加剤を配合してもよい。また、空孔を有する膜またはフィルム を形成する場合には、後述する中空体及び薄膜形成後除去可能な物質等を適宜配 合することができる。
[0056] 本発明のプレボリマーが蒸気圧を有する低分子量体を含有する場合には、加熱時 の揮発を防止するために、溶液中で架橋性官能基 (A)の一部を反応させておくこと もできる。その方法としては加熱が好ましい。加熱条件としては 50°C— 250°Cで 1一 50時間が好ましぐより好ましくは 70— 200°Cで 1一 20時間である。架橋性官能基の 溶液中での反応率は、溶液中でのプレボリマーのゲルィ匕を防止する観点より、 50% 未満とするのが好ましぐより好ましくは 30%未満である。
[0057] 本発明の塗布用組成物は、適当な基材表面に塗布して湿潤膜を形成し、次いで 溶剤を揮散等で除去した後、または除去すると同時に硬化処理を施し、プレボリマー 中の架橋性官能基 (A)に架橋反応を生じさせ、絶縁膜及び光伝送体などとして適用 される硬化膜を形成するために用いられる。この湿潤膜の形成方法としては、コーテ イング方法を採用することが好ましい。例えば、スピンコート法、ディップコート法、ス プレーコート法、ダイコート法、バーコート法、ドクターコート法、押し出しコート法、ス キャンコート法、はけ塗り法、ポッティング法等の公知のコーティング方法が挙げられ る。電子デバイス用絶縁膜として用いる場合には、膜厚の均一性の観点からスピンコ ート法又はスキャンコート法が好ましい。
[0058] この塗布用組成物を塗布後、溶剤を揮散させ、架橋や鎖延長反応により硬化させ るために加熱を行う。このプレボリマーの架橋性官能基 (A)は、溶液中では実質的に は反応せず、製膜後の加熱工程で架橋反応する。加熱条件は 200— 450°Cで 1一 1 20分程度が好ましぐ 250— 400°Cで 2— 60分程度がより好ましい。
加熱装置としては、ホットプレート、オーブン、ファーネス(炉)が好ましい。加熱雰囲 気は、窒素及びアルゴン等の不活性ガス雰囲気、空気、酸素、減圧などが例示でき る。加熱雰囲気としては、不活性ガス雰囲気及び減圧が好ましい。薄膜の表面平滑 性を確保したり、薄膜の微細スペース埋込性を向上させるために、 50— 250°C程度 の前加熱工程を追加したり、加熱工程を何段階かに分けて実施することが好ましい。 硬化膜中の架橋性官能基 (A)の反応率は、 30— 100%が好ましい。反応率を 30% 以上とすることで硬化膜の耐熱性及び耐薬品性が良好となる。この観点から、反応率 は 50%以上がさらに好ましぐ特に 70%以上であることが最も好ましい。
[0059] 塗布用組成物により形成される湿潤膜の厚さは、製造する目的の硬化膜の形状に 合わせて適宜設定できる。例えば絶縁膜やフィルムを製造する目的においては、基 板上に 0. 01— 500 m程度の湿潤膜を成膜することが好ましぐ 0. 1— 300 /z m力 S より好まし 、。
[0060] 本発明の塗布用組成物から得られる硬化膜は、基材から剥離してフィルム単体とし て用いることもできるし、基材上に接着したままの状態で絶縁膜等として用いることも できる。後者の場合、硬化膜と基材との接着性の向上のため、接着促進剤を使用す ることもできる。接着促進剤としては、シラン系カップリング剤、チタネート系カップリン グ剤、アルミニウム系カップリング剤等が挙げられ、エポキシシラン類、アミノシラン類 などのシラン系カップリング剤がより好ましい。アミノシラン類としては、 3—ァミノプロピ ルメチルジェトキシシラン、 3—ァミノプロピルトリエトキシシランなどの脂肪族アミノシラ ン類、ァミノフエニルトリメトキシシラン、ァミノフエニルトリエトキシシラン、 N—フエ二ルー 3—ァミノプロピルトリメトキシシランなどの含芳香族基アミノシラン類が例示される。
[0061] 接着促進剤の適用方法としては、塗布用組成物の塗布前に基材を接着促進剤で 処理する方法や塗布用組成物中に接着促進剤を添加する方法が好ま ヽ。基材を 接着促進剤で処理する方法としては、アミノシラン類の例では、 0. 01— 3質量%の アルコール系溶液として基材にスピンコートする方法が挙げられる nアルコールとして は、メタノール、エタノール、イソプロピルアルコールが好ましい。接着促進剤をプレポ リマー溶液中に添加する方法では、接着促進剤の添加量は含有されるプレボリマー に対して 0. 05— 10質量%が好ましぐ 0. 1— 5質量%がより好ましい。接着促進剤 の添加量が少ないと接着性向上効果が充分でなぐ多すぎると電気特性や耐熱性が 低下する。
[0062] 本発明のプレボリマーを用いて製造される硬化物の用途としては、保護膜、燃料電 池等の各種電池用膜材料、フォトレジスト、光導波路、非線形光学材料、光学接着 剤、被覆材、電子用部材、封止剤、オーバーコート剤、透明フィルム材、耐熱,低吸 湿フィルム材、接着剤、繊維材、耐候性塗料、撥水剤、撥油剤、防湿コート剤、非粘 着コート剤等が挙げられる。特に、電子デバイス用又は多層配線板用の絶縁膜、フィ ルム、又は光伝送体の用途が好ましい。本発明は前記プレボリマーと溶剤とを含む 塗布用組成物を用いて製造された硬化膜を有する電子'電気部品を提供する。
[0063] 本発明の硬化膜を適用可能な電子 ·電気部品のうち、電子デバイスとしては、ダイ オード、トランジスタ、化合物半導体、サーミスタ、パリスタ、サイリスタ等の個別半導体 、 DRAM (ダイナミック 'ランダム 'アクセス'メモリ)、 SRAM (スタティック'ランダム'ァ クセス 'メモリ)、 EPROM (ィレイザブル.プログラマブル'リード'オンリ^ ~ .メモリ)、マ スク ROM (マスク 'リード'オンリ^ ~ ·メモリ)、 EEPROM (エレクトリカル ·ィレイザブル · プログラマブル.リード.オンリー.メモリ)、フラッシュメモリなどの記憶素子、マイクロプ ロセッサ、 DSP、 ASICなどの理論回路素子、 MMIC (モノリシック'マイクロウエーブ 集積回路)に代表される化合物半導体などの集積回路素子、混成集積回路 (ハイブ リツド IC)、発光ダイオード、電荷結合素子などの光電変換素子、アモルファスシリコ ン TFT (薄膜トランジスタ)、ポリシリコン TFTなどのディスプレイ用素子等が挙げられ る。
[0064] 本発明の絶縁膜を適用可能な電子 ·電気部品のうち、多層配線板としては、電子 デバイス等を実装するための各種基板であり、プリント配線板、ビルドアップ配線板、 MCM用基板、インターポーザーなどの高密度配線板等が挙げられる。
[0065] これらの電子'電気部品における絶縁膜としては、ノ ッファコート膜、パッシベーショ ン膜、層間絶縁膜、再配線用絶縁膜、アルファ線遮蔽膜等が挙げられる。 [0066] 前記光伝送体とは、光を通過させて伝送、分岐、増幅、又は分波 Z合波等の機能 を有する部材をいう。光伝送体は、例えば、光ファイバ、ロッドレンズ、光導波路、光 分岐器、光合波器、光分波器、光減衰器、光スィッチ、光アイソレータ、光送信モジュ ール、光受信モジュール、力ブラ、偏向子、光波長変換素子、光変調素子、光集積 回路、光 Z電気混載回路又は基板などのそのものやその光伝送部分を 、う。
[0067] 前記光伝送体で使用される光の波長は、 600— 1600nmの範囲内にあることが好 ましい。この中でも、レーザー等の部品の入手が容易であるので、 650nm帯、 850η m帯、 1300mn帯又 ίま 1550mn帯力好まし!/ヽ。
[0068] 前記光伝送体を、光の伝播を外部電場で変調制御し、位相変化、方向性結合、モ ード変換、導波光の進路変換などを行う、いわゆる電気光学 (EO)材料として用いる 場合、非線形光学色素をドーピングすることが好ましい。非線形光学色素としては、 長い π電子共役系を有し、電子供与基と電子吸引基を有したプッシュプル型の電子 構造を持つ化合物が好ましい。具体例としては、ァゾベンゼン系色素、ポリェン系色 素等が挙げられる。
[0069] 本発明のプレボリマーカゝら形成される硬化膜を用いる電子デバイス用絶縁膜又は 多層配線板用絶縁膜の用途において、より低い比誘電率の絶縁膜を得るために、本 発明の絶縁膜中に空孔を設けることが好ましい。空孔の導入方法としては、次の (a) 、(b)の方法等が挙げられる。
[0070] (a)本発明の塗布用組成物中に、本発明のプレボリマーと熱分解温度の低いポリマ 一(以下、熱分解性ポリマーという。)とを複合ィ匕しておき、絶縁膜形成時に熱分解性 ポリマー部分を除去する方法。
(b)本発明の塗布用組成物中に微粒子を添加し、絶縁膜形成時又は形成後に微粒 子部分を除去する方法。
[0071] (a)の方法にぉ 、て、熱分解性ポリマーとしては脂肪族ポリエーテル、脂肪族ポリエ ステル、アクリル系重合体、スチレン系重合体等が挙げられる。熱分解性ポリマーの 数平均分子量 ίま 1, 000— 100, 000力好まし <、 1, 000— 50, 000力より好まし!/ヽ。 分子量がこの範囲にあると、塗布用組成物中で本発明のプレボリマーとの相溶性を 確保できるので好まし ヽ。本発明のプレボリマーと熱分解性ポリマーとを複合ィ匕する 手法としては、プレボリマーと熱分解性ポリマーとを含む塗布用組成物を作製し、こ れを基材上に塗布後、溶剤を揮発させ、加熱処理して複合膜を得る方法、プレボリマ 一と熱分解性ポリマーとをブロック化又はグラフトイ匕することにより複合ィ匕し、この複合 体を塗布用組成物に配合する方法等が例示できる。ブロック化又はグラフトイ匕の方法 は公知方法を適用できる。例えば、末端に含フッ素芳香環又はフエノール性水酸基 を有する熱分解性ポリマーを作製し、プレボリマー合成の縮合反応時に共縮合する 手法等が例示できる。プレボリマーの縮合反応は、前記式 (2)又は(3)の反応機構 で進行するため、末端の含フッ素芳香環又はフエノール性水酸基部分がプレボリマ 一鎖と結合する。ここで、熱分解性ポリマーが片末端に含フッ素芳香環又はフエノー ル性水酸基を有する場合、熱分解性ポリマーがグラフトしたプレボリマーを得ることが できる。熱分解性ポリマーが両末端に含フッ素芳香環又はフエノール性水酸基を有 する場合、プレボリマーと熱分解性ポリマーのブロック体を得ることができる。
[0072] 熱分解性ポリマーは熱分解温度が低いため、絶縁膜形成中の加熱により選択的に 分解除去され、除去された部分が空孔となる。塗布用組成物への熱分解性ポリマー の添加量により空孔率の制御が可能である。熱分解性ポリマーの添加量は、通常プ レポリマーに対して 5— 80容積%が好ましく、 10— 70容積%がさらに好まし 、。
[0073] (b)の方法にぉ 、て、本発明の塗布用組成物中に分散させる微粒子としては無機 微粒子が好ましい。無機微粒子としては、シリカ、金属等の微粒子が挙げられる。微 粒子は製膜後の酸処理等で溶解除去され、除去された部分が空孔となる。微粒子の 添加量により空孔率の制御が可能である。この微粒子の添加量は、通常プレボリマ 一に対して 5— 80容積%が好ましぐ 10— 70容積%がさらに好ましい。
[0074] 本発明の絶縁膜は、他の膜と複合ィ匕することも好ま 、。例えば、半導体素子パッ シベーシヨン膜又は半導体素子用層間絶縁膜として適用する場合、本発明の絶縁 膜の下層及び Z又は上層に無機膜を形成することが好まし 、。
無機膜としては、常圧、減圧又はプラズマ化学気相成長 (CVD)法や塗布法で形 成され、例えばシリコン酸ィ匕膜に必要に応じてリン及び Z又はホウ素をドープしたい わゆる PSG膜又は BPSG膜、シリコン酸ィ匕膜、シリコン窒化膜、シリコン酸化窒化膜、 SiOC膜、スピン オン グラス (SOG)膜等が挙げられる。 [0075] 本発明の絶縁膜と金属配線との間に無機膜を形成することによって、金属配線の 剥がれを防止し、ダマシン形状等のエッチング加工が容易にできる効果が得られる。 無機膜は、本発明の絶縁膜をエッチバック法又は CMP (ケミカル 'メカ-カル 'ポリッ シング)法により部分的に削除した後に絶縁膜上層へ形成することが好ましい。
[0076] 本発明の絶縁膜の上層に無機膜を形成する際に、絶縁膜と無機膜との密着性が 充分でないか、又は無機膜形成時に膜減りする等の場合には、次の (I)又は (II)の 方法を適用することが好ましい。
(I)多層無機膜を形成する方法:シリコン酸化膜をプラズマ CVD法により形成する場 合、用いるガス組成などにより膜減りが発生することがある。この場合は、まずシリコン 窒化膜又は常圧 CVD—シリコン酸ィ匕膜などの膜減りを起こさない無機膜の薄膜を形 成する。ついでこの薄膜をバリア層としてシリコン酸ィ匕膜を形成する。
(II)本発明の絶縁膜をエネルギー線で処理する方法:エネルギー線による処理によ つて本発明の絶縁膜と無機膜との界面の密着性を向上させ得る場合がある。ェネル ギ一線処理としては、光を含む広義の意味での電磁波、すなわち UV光照射、レー ザ光照射、マイクロ波照射等、又は電子線を利用する処理、すなわち電子線照射、 グロ一放電処理、コロナ放電処理、プラズマ処理などの処理が例示される。
[0077] これらのうち半導体素子の量産工程に好適な処理方法としては、 UV光照射、レー ザ光照射、コロナ放電処理、プラズマ処理が挙げられる。
プラズマ処理は半導体素子に与えるダメージが小さくより好ま U、。プラズマ処理を 行う装置としては装置内に所望のガスを導入でき、電場を印加できるものであれば特 に限定されず、市販のバレル型、平行平板型のプラズマ発生装置が適宜使用できる 。プラズマ装置へ導入するガスとしては、表面を有効に活性ィ匕するものであれば特に 限定されず、アルゴン、ヘリウム、窒素、酸素、これらの混合ガス等が挙げられる。ま た、プレボリマー硬化膜の表面を活性ィ匕させ、膜減りもほとんどないガスとしては、窒 素と酸素の混合ガス及び窒素ガスが挙げられる。
実施例
[0078] 本発明を以下の実施例及び比較例より具体的に説明するが、本発明はこれらに限 定されない。以下の例示のうち、例 1一 6及び例 10— 14が実施例、例 7— 9が比較例 である。例 1一 9は硬化膜の基本特性の評価のためのプレポリマーの合成、例 10は 硬化膜の接着性評価、例 11が空孔導入硬化膜の作製、例 12が絶縁膜特性の評価 、例 13がフィルムの作製及び特性評価、例 14は (Y— 1)と (Y— 2)とを両方用いたプ レポリマーの合成に関する。なお、例 1一 9のプレポリマー及び該プレポリマーを用い た硬化膜の基本特性として、分子量、比誘電率、複屈折、 Tg及び厚膜形成性の各 測定項目は下記の方法により測定した。
[0079] [分子量]
真空乾燥したプレポリマー粉末をゲルパーミエーシヨンクロマトグラフィー法(GPC) によりポリスチレン換算の数平均分子量を求めた。キャリア溶媒はテトラヒドロフランを 使用した。
[0080] [比誘電率]
真空乾燥したプレボリマー粉末をシクロへキサノンに溶解させて得た 20%溶液をポ ァ径 0. 5 mの PTFE製フィルタでろ過した。得られた溶液を用いて 4インチシリコン ウェハ上にスピンコート法によって厚さ約 1 μ mの硬化膜を形成した。スピン条件は 1 000— 3000rpm X 30禾少とし、ホットプレー卜による 100。C X 90禾少、 200。C X 90禾少の 前加熱の後、縦型炉で 350°C X 2時間、窒素雰囲気下での加熱を行った。続いて水 銀プローバー(SSM社製、 SSM-495)による CV測定を行うことにより 1MHzの比誘 電率を求めた。硬化膜厚さは分光エリプソメータによって求めた値を使用した。
[0081] [複屈折]
前記と同様の方法により、石英基板上に厚さ 2— 5 mの硬化膜を形成し、スラブ型 光導波路を作製した。加熱条件は、 300°Cで 1時間とした。メトリコン社製のプリズム 力ブラ (モデル 2010)により、膜面に対して垂直方向の偏光と、水平方向の偏光に対 する屈折率をそれぞれ測定し、その差を求めた。なお、光の波長は 1550nmで測定 を行った。
[0082] [Tg]
前記のろ過して得たプレボリマーのシクロへキサノン 20%溶液をシリコンウェハ上に ポッティングし、ホットプレートによる 200°C X 300秒の前加熱の後、縦型炉で 350°C X 1時間、窒素雰囲気下での加熱を行い、硬化膜を得た。シリコンウェハから硬化膜 を搔き取り DSC測定を行って Tgを求めた。 DSC測定において、 40°Cから 400°Cま で窒素雰囲気下、昇温速度 10°CZ分の条件でスキャンを行った。
[0083] [厚膜形成性]
真空乾燥したプレボリマー粉末をシクロへキサノンに溶解させて得た 40%溶液をシ リコンウェハ上にスピンコートし、続いてホットプレートによる 250°C X 180秒の加熱を 行うことにより、厚さ約 10 mの硬化膜を形成した。硬化膜欠陥の有無を目視及び金 属顕微鏡観察を行うことにより評価した。
[0084] [例 1]化合物(B)、(C)及び (Y— 1)を用いた、製造方法 (i)によるプレボリマーの合 成
ジムロートコンデンサ、熱電対温度計、メカ-カルスターラの付いた lOOmLパイレツ タス(登録商標)製 4つ口フラスコに、化合物(B)としてペルフルォロビフエ-ルの 2. 6 7g、化合物(C)として 1, 3, 5—トリヒドロキシベンゼンの 0. 50g、及び N, N—ジメチル ァセトアミド(以下、 DMAcという。)の 28gを仕込んだ。撹拌しながらオイノレバス上で 加温し、液温が 60°Cとなった時点で炭酸カリウムの 3. Ogを素早く添加し、撹拌を継 続しながら 60°Cで 4時間加熱した。次いで、化合物 (Y— 1)として 4 (4 フルオロフェ -ルェチュル)フエノールの 0. 85gを DMAcの 6gに溶かした溶液を添カ卩し、さらに 6 0°Cで 5時間加熱した。
その後、反応液を室温に冷却し、激しく撹拌した、 0. 5N塩酸水約 200mLに徐々 に投入すると微褐色粉状物が沈殿した。この微褐色粉状物をろ過し、さらに純水で 5 回洗浄した後に、 80°Cで 15時間真空乾燥を行って 3. 4gの白灰色粉末状のプレボ リマーを得た。得られたプレボリマーはエーテル結合及び架橋性官能基 (A)である ェチニル基を有し、分子量は 9000であった。該プレポリマーを用いて前述した方法 により形成した硬化膜の比誘電率は 2. 6、複屈折は 0. 002であった。 DSC測定に おいて転移点や発 Z吸熱ピークは観測されず、 Tgは 400°C以上であった。厚膜形 成性評価にぉ 、て、クラック等の欠陥は観測されな力つた。
[0085] [例 2]化合物(B)、(C)及び (Y— 2)を用いた、製造方法 (ii)によるプレボリマーの合 成
ジムロートコンデンサ、熱電対温度計、メカ-カルスターラの付いた lOOmLパイレツ タス(登録商標)製 4つ口フラスコに、化合物 (Y— 2)としてペンタフルォロフエ-ルァ セチレンの 0. 57g、化合物(C)として 1, 3, 5—トリヒドロキシベンゼンの 0. 71g、及び DMAcの 3. Ogを仕込んだ。撹拌しながらオイルバス上で加温し、液温が 60°Cとなつ た時点で炭酸カリウムの 0. 4gを素早く添加し、撹拌を継続しながら 60°Cで 5時間加 熱した。次いで、化合物(B)としてペルフルォロビフエ-ルの 3. 00gを DMAcの 37. 8gに溶カゝした溶液を添カ卩し、次いで炭酸カリウムの 3. lgを添カ卩した。さらに 60°Cで 17時間加熱した。
その後、反応液を室温に冷却し、激しく撹拌した、 0. 5N塩酸水約 200mLに徐々 に投入すると微褐色粉状物が沈殿した。この微褐色粉状物をろ過し、さらに純水で 2 回洗浄した後に、 80°Cで 15時間真空乾燥を行って 3. 5gの白灰色粉末状のプレボ リマーを得た。得られたプレボリマーはエーテル結合及びェチュル基を有して 、た。 例 1と同様の評価を行 ヽ、基本特性評価結果を表 1に示した。
[0086] [例 3]化合物(B)、(C)及び (Y— 2)を用いた、製造方法 (ii)によるプレボリマーの合 成
化合物(Y— 2)としてペンタフルオロフェ-ルアセチレンの 0. 57gの代わりに、ペン タフルォロスチレンの 0. 58gを用いた以外は、例 2と同様の方法にてプレポリマー粉 末を得た。得られたプレボリマーはエーテル結合及びビニル基を有していた。例 1と 同様の評価を行い、基本特性評価結果を表 1に示す。
[0087] [例 4]化合物(B)、(C)及び (Y— 2)を用いた、製造方法 (ii)によるプレボリマーの合 成
ジムロートコンデンサー、スターラーチップの付いた 50mL二つ口フラスコに、化合 物(Y— 2)としてペンタフルオロフェ-ルアセチレン(0. 57g)、化合物(C)として 1, 3 , 5—トリヒドロキシベンゼン(0. 75g)、化合物(B)としてペルフルォロビフエ-ル(3. 0 Og)、及び DMAc (38. 97g)を仕込んだ。攪拌しながらオイルバス上で 60°Cに加温 し、炭酸カリウム(3. 72g)を素早く添加し、攪拌を継続しながら 60°Cで 22時間加熱 した。
その後、反応液を室温に冷却し、激しく攪拌した、 0. 5N塩酸水(150mL)に徐々 に投入すると微褐色粉状物が沈殿した。この微褐色粉状物をろ過し、さらに純水で 2 回洗浄した後に、 80°Cで 12時間真空乾燥を行って、 3. 10gの白灰色粉末状のプレ ポリマーを得た。得られたプレボリマーはエーテル結合及びェチュル基を有して 、た 。例 1と同様の評価を行い、基本特性評価結果を表 1に示す。
[0088] [例 5]化合物(B)、(C)及び (Y— 2)を用いた、製造方法 (ii)によるプレボリマーの合 成
ジムロートコンデンサー、スターラーチップの付いた 50mL二つ口フラスコに、化合 物(Y— 2)としてペンタフルオロフェ-ルアセチレン(1. 15g)、化合物(C)として 1, 3 , 5—トリヒドロキシベンゼン(0. 65g)、化合物(B)としてペルフルォロビフエ-ル(2. 0 Og)、及び DMAc (34. 22g)を仕込んだ。攪拌しながらオイルバス上で 60°Cに加温 し、炭酸カリウム(3. 23g)を素早く添加し、攪拌を継続しながら 60°Cで 22時間加熱 した。
その後、反応液を室温に冷却し、激しく攪拌した、 0. 5N塩酸水(150mL)に徐々 に投入すると微褐色粉状物が沈殿した。この微褐色粉状物をろ過し、さらに純水で 2 回洗浄した後に、 80°Cで 12時間真空乾燥を行って、 2. 58gの白灰色粉末状のプレ ポリマーを得た。得られたプレボリマーはエーテル結合及びェチュル基を有して 、た 。例 1と同様の評価を行い、基本特性評価結果を表 1に示す。
[0089] [例 6]化合物(B)、(C)及び (Y— 2)を用いた、製造方法 (ii)によるプレボリマーの合 成
化合物(C)として 1, 3, 5—トリヒドロキシベンゼン(0. 65g)の代わりに、 1, 3, 5—トリ ス (4ーヒドロキシフエ-ル)ベンゼン(1. 83g)を用いた以外は、例 5と同様の方法にて プレボリマー粉末を得た。得られたプレボリマーはエーテル結合及びェチュル基を 有していた。例 1と同様の評価を行い、基本特性評価結果を表 1に示す。
[0090] [例 7 (比較例)]公知のプレボリマーの合成
ジムロートコンデンサ、熱電対温度計、メカ-カルスターラの付いた lOOmLパイレツ タス(登録商標)製 4つ口フラスコを窒素置換した後に、ペルフルォロビフエ-ルの 2. 5 lg、ジヒドロキシー 2, 2—ジフエ-ルへキサフルォロプロパンの 1. 68g、 DMAcの 4 Og及びトルエンの 5gを仕込み、さらに炭酸カリウムの 1. 66gを仕込んだ。オイルバス 上で、撹拌しながら 5時間 120°Cで加熱した後に、炭酸カリウムの 0. 7gとフエ-ルェ チュルフエノールの 1. 05gを投入し、さらに 120°Cで 3時間加熱した。
反応液を室温に冷却し、激しく撹拌した、酢酸の 8gを含む純水 Zメタノール (容積 比約 1Z1)混合液 500mLに徐々に投入すると、微褐色粉状物が沈殿した。この微 褐色粉状物をろ過し、さらに純水で 5回洗浄した後に 80°Cで 15時間真空乾燥を行つ て、 4. 2gの微褐色粉末状のプレボリマーを得た。例 1と同様の評価を行い、基本特 性評価結果を表 1に示す。
[0091] [例 8 (比較例)]公知のプレボリマーの合成
ジムロートコンデンサ、熱電対温度計、メカ-カルスターラの付いた 2Lパイレックス( 登録商標)製 4つ口フラスコに、ペンタフルオロフェ-ルアセチレンの 14. 45g、 1, 3 , 5—トリヒドロキシベンゼンの 13. 44g、及び DMAcの 250. 95gを仕込んだ。撹拌し ながらオイルバス上で加温し、液温が 60°Cとなった時点で炭酸カリウムの 10. 39gを 素早く添加し、撹拌を継続しながら 60°Cで 2. 5時間加熱した。次いで、ペルフルォロ (1, 3, 5—トリフエ-ルベンゼン)の 79gを DMAcの 71 lgに溶かした溶液を添カロし、 次いで炭酸カリウムの 55. 87gを添カ卩した。さらに 60°Cで 14. 5時間加熱した。
その後、反応液を室温に冷却し、激しく撹拌した、 0. 5N塩酸水約 3Lに徐々に投 入すると白色粉状物が沈殿した。この白色粉状物をろ過し、さらに純水で 3回洗浄し た後に、 80°Cで 15時間真空乾燥を行って 91. 8gの白色粉末状のプレボリマーを得 た。得られたプレボリマーはエーテル結合及びェチニル基を有していた。例 1と同様 の評価を行い、基本特性評価結果を表 1に示す。
[0092] [例 9 (比較例)]公知のプレボリマーの合成
特開平 10— 247646号公報の実施例 8記載の方法に従 、、ペルフルォロビフエ- ル及び 1, 3, 5—トリヒドロキシベンゼンより、プレポリマーを合成した。例 1と同様の評 価を行い、基本特性評価結果を表 1に示す。
[0093] [表 1] 例番号 分子量 比誘髦率 複屈折 Tg(°C) 厚膜形成性
1 9000 2.6 0.002 >400 欠陥な · し
2 4000 2.5 〉400 欠陥なし
3 4000 2.4 欠陥なし
4 8300 2.4 0.001 〉400 欠陥なし
5 3300 2.5 0.001 〉400 欠陥なし
6 4000 2.6 >400
7(比較) 5100 2.8 0.008 295 欠 PIなし
8(比較) 5500 2.4 0.001 >400 クラック髡生
9(比較) 10000 2.5 220
[0094] 表 1の結果より、本発明のプレボリマーは、低誘電率、低複屈折、高 Tg及び厚膜形 成性を同時に有し、絶縁膜及び光学材料として有用であることが分力つた。
[0095] [例 10]硬化膜と基材との接着性
例 4で得られたプレボリマーのシクロへキサノン 20%溶液(以下、溶液 4という。)の 一部を取り出し、ァミノフエニルトリメトキシシランをプレボリマーに対して 2質量%添カロ して溶液 4 1を得た。また、ァミノフエ-ルトリメトキシシランに代わりに 3—ァミノプロピ ルトリエトキシシランをプレボリマーに対して 1質量%添加して溶液 4 2を得た。次に 、シリコンウェハ上に、溶液 4、溶液 4 1及び溶液 4 2をスピンコートすることにより塗 布して湿潤膜を形成し、次 、で加熱することにより硬化膜を作製した。
スピン回転数は湿潤膜厚が 500nmとなるように調整し、ホットプレートによる 100°C X 90秒、 200°C X 90秒の前加熱の後、縦型炉で 350°C X 2時間、窒素雰囲気の加 熱を行った。これらサンプルに対して、 ETAC製チャンバ一にてプレッシャータッカー テスト(121°C 100%RH, 4時間)を行った後に、 JIS D0202に記載のゴバン目テ ープ剥離テストにより硬化膜と基材との接着性を評価した。
溶液 4より得られた硬化膜に形成されたゴバン目は、 80%以上が剥離した。 一方、溶液 4 1及び 4 2より得られた硬化膜に形成されたゴバン目には、剥離は 見られなかった。
本例により、アミノシランのような接着促進剤が硬化膜の接着性向上に効果があるこ とが明ら力となった。 [0096] [例 11]空孔を含有する硬化膜の作製
例 5で調整したプレポリマーのシクロへキサノン 20%溶液に、数平均分子量 3000 のポリ( ε—力プロラタトン)をプレボリマーに対して 25質量%添加し、溶解させた後、 PTFE製フィルター(ポア径 0. 2 m)でろ過して均一透明な溶液(以下、溶液 5と ヽ う。)を調整した。溶液 5を 4インチシリコンウェハ上にスピンコート、続いて加熱を行つ て硬化膜を形成した。スピン条件は 2500rpm X 30秒とし、例 10と同様に前加熱、加 熱した。得られた硬化膜の断面を SEM観察した結果、ナノメートルオーダーの微小 な空孔の存在が確認された。硬化膜の比誘電率は 1. 8であった。また、ゴバン目テ ープ剥離テストによる剥離や膜の破壊は見られな力つた。
[0097] [例 12]層間絶縁膜としての評価
溶液 4、溶液 4 1、溶液 5より、以下の方法でシリコンウェハ Zp SiO (300nm)Z プレポリマー絶縁膜(500nm) /p-SiN (50nm) /p-SiO (500nm)の積層膜を作 製した。
p-SiO膜 (膜厚 300nm)を形成した 4インチシリコンウェハ上に溶液をスピンコート して膜厚 500nmのプレボリマー絶縁膜を例 10と同様にして形成した。ついで、モノ シラン、アンモニア及び窒素混合ガスによりシリコン窒化膜を 50nm形成し、その後モ ノシランとニ窒化酸素混合ガスにより 500nm厚のシリコン酸ィ匕膜を形成した。
得られた積層体を窒素雰囲気下 350°Cで 60分加熱を行い、熱ストレスによるクラッ ク耐性を金属顕微鏡にて調べた。結果を以下に示す。
溶液 4より形成された積層体は、クラックの発生及びその他の欠陥はなかった。 溶液 4 1より形成された積層体は、クラックの発生及びその他の欠陥はな力つた。 溶液 5より形成された積層体は、クラックの発生及びその他の欠陥はなかった。 本例より、本発明のプレボリマーは、無機膜の積層が容易であり、層間絶縁膜とし ての適合性に優れることが判明した。
[0098] [例 13]プレポリマーフィルムの作製及び評価
例 4で得られたプレポリマーの 40%シクロへキサノン溶液をシリコンウェハ上にスピ ンコートし、続いてホットプレートによる 100°C X 180秒、 200°C X 180秒の前カロ熱の 後、オーブンで 300°C X 1時間、窒素雰囲気の加熱を行った。 シリコンウェハより硬化膜を引き剥がすことにより、可とう性のある膜厚 20 mの微褐 色フィルムを得た。マックサイエンス社製の TG—DTA装置を用いて、昇温速度 10°C Z分、窒素雰囲気下で TG (熱重量)測定を行ったところ、本フィルムの 5%重量減少 温度は約 470°Cであった。シィベルヘグナー社製の水分吸脱着測定装置 (IGASO RP)を用いて 85°C、 85%RHでの吸水率を測定したところ、 0. 2%であった。 5mm X 15mmの短冊状のサンプルを切り出し、マックサイエンス社製の TMA装置を用い て、引っ張り荷重 5g、昇温速度 10°CZ分の条件で室温から 200°Cまでの線膨張係 数を測定したところ、 55ppmであった。本実施例より、本発明のプレボリマーを用い て高耐熱、低吸水、低膨張係数のフィルムが得られることが分力ゝつた。
[例 14]化合物(B)、(C)、(Y— 1)及び (Y— 2)を用いたプレボリマーの合成 ジムロートコンデンサー、スターラーチップの付いた 50mL二つ口フラスコに、化合 物(Y— 2)としてペンタフルオロフェ-ルアセチレン(0. 57g)、化合物(C)として 1, 3 , 5—トリヒドロキシベンゼン(0. 75g)、化合物(B)としてペルフルォロビフエ-ル(3. 0 0g)、 DMAc (38. 97g)を仕込み、攪拌しながらオイルバス上で 60°Cに加温し、炭 酸カリウム(3. 72g)を素早く添加し、攪拌を継続しながら 60°Cで 18時間加熱する。 次いで、化合物(Y— 1)として 3—ェチュルフエノール(0. 35g)を添カ卩し、さらに 5時間 60°Cでの加温を継続する。
その後、反応液を室温に冷却し、激しく攪拌しながら 0. 5N硝酸水(150mL)に徐 々に投入すると微褐色粉状物の沈殿が生成する。この沈殿物をろ過し、さらに純水 で 2回洗浄し、 80°Cで真空乾燥を行って白灰色粉末状のプレボリマーを得ることが できる。得られたプレボリマーを用いて例 1と同様に基本特性を評価すると、例 1とほ ぼ同様の結果が得られる。

Claims

請求の範囲 [1] 架橋性官能基 (A)及びフ ノール性水酸基を有する化合物 (Y - 1)並びに架橋性 官能基 (A)及びフッ素原子置換芳香環を有する化合物 (Y - 2)の ヽずれか一方又は 両方と、 下記式(1)
[化 1]
Figure imgf000030_0001
[式中、 nは 0— 2の整数、 a、 bはそれぞれ独立に 0— 3の整数を表し、 Rf1及び Rf2は それぞれ同じであっても異なっていても良い炭素数 8以下の含フッ素アルキル基を表 し、芳香環内の Fはその芳香環の水素原子が全てフッ素原子で置換されて 、ることを 表す。 ]
で示される含フッ素芳香族化合物 (B)と、
フエノール性水酸基を 3個以上有する化合物(C)とを、脱 HF剤存在下に縮合反応 させて得られ、架橋性官能基 (A)及びエーテル結合を有し、数平均分子量が 1 X 10 3— 5 X 105である架橋性含フッ素芳香族プレボリマー。
[2] 前記架橋性官能基 (A)がェチニル基である請求項 1に記載の架橋性含フッ素芳香 族プレポリマー。
[3] 請求項 1又は 2に記載の架橋性含フッ素芳香族プレボリマーを硬化させることにより 形成される硬化物。
[4] 請求項 1又は 2に記載の架橋性含フッ素芳香族プレボリマーと溶剤とを含む塗布用 組成物。
[5] 請求項 4に記載の塗布用組成物を用いて基材上に架橋性含フッ素芳香族プレポリ マーの湿潤膜を形成し、次いで、該湿潤膜中の溶剤を除去した後に、または溶剤の 除去と同時に、該架橋性含フッ素芳香族プレボリマーを硬化させることにより形成さ れる硬化膜。
[6] 膜中に空孔を含有する請求項 5に記載の硬化膜。
[7] 請求項 5又は 6に記載の硬化膜を有する電子 ·電気部品。
PCT/JP2004/014200 2003-09-30 2004-09-29 架橋性含フッ素芳香族プレポリマー及びその用途 WO2005030837A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602004022839T DE602004022839D1 (de) 2003-09-30 2004-09-29 Vernetzbares fluoraromatisches präpolymer und verwendung davon
AT04788267T ATE440887T1 (de) 2003-09-30 2004-09-29 Vernetzbares fluoraromatisches präpolymer und verwendung davon
EP04788267A EP1669389B1 (en) 2003-09-30 2004-09-29 Crosslinkable fluoroaromatic prepolymer and use thereof
US11/392,727 US20060173129A1 (en) 2003-09-30 2006-03-30 Crosslinkable fluorinated aromatic prepolymer and its uses
US12/631,123 US8168742B2 (en) 2003-09-30 2009-12-04 Crosslinkable fluorinated aromatic prepolymer and its uses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-340031 2003-09-30
JP2003340031A JP4501391B2 (ja) 2003-09-30 2003-09-30 架橋性含フッ素芳香族プレポリマー及びその用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/392,727 Continuation US20060173129A1 (en) 2003-09-30 2006-03-30 Crosslinkable fluorinated aromatic prepolymer and its uses

Publications (1)

Publication Number Publication Date
WO2005030837A1 true WO2005030837A1 (ja) 2005-04-07

Family

ID=34386193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014200 WO2005030837A1 (ja) 2003-09-30 2004-09-29 架橋性含フッ素芳香族プレポリマー及びその用途

Country Status (9)

Country Link
US (2) US20060173129A1 (ja)
EP (1) EP1669389B1 (ja)
JP (1) JP4501391B2 (ja)
KR (1) KR101026096B1 (ja)
CN (1) CN100519624C (ja)
AT (1) ATE440887T1 (ja)
DE (1) DE602004022839D1 (ja)
TW (1) TW200517413A (ja)
WO (1) WO2005030837A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途
US7892720B2 (en) * 2006-03-16 2011-02-22 Asahi Glass Company, Limited Negative photosensitive fluorinated aromatic resin composition

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137327A1 (ja) * 2005-06-24 2006-12-28 Asahi Glass Company, Limited 架橋性含フッ素芳香族プレポリマー及びその用途
JP5109149B2 (ja) * 2006-02-21 2012-12-26 旭硝子株式会社 光学樹脂材料組成物及び光学部材の製造方法
ATE518901T1 (de) 2006-06-02 2011-08-15 Asahi Glass Co Ltd Vernetzbares prepolymer, herstellungsverfahren dafür und verwendung davon
JP5396694B2 (ja) * 2006-06-02 2014-01-22 旭硝子株式会社 架橋性プレポリマーならびにその製造方法および用途
JP5181444B2 (ja) * 2006-08-31 2013-04-10 旭硝子株式会社 架橋性含フッ素芳香族プレポリマーおよびその硬化物
JP5003415B2 (ja) * 2006-11-22 2012-08-15 旭硝子株式会社 ネガ型感光性組成物ならびにこれを用いた硬化膜およびその製造方法
JP2009026810A (ja) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd パターン形成方法
JP2009088444A (ja) * 2007-10-03 2009-04-23 Asahi Glass Co Ltd エレクトレットおよびエレクトレットコンデンサマイクロフォン
CN102066443B (zh) * 2008-06-19 2014-01-15 旭硝子株式会社 固化性组合物及使用了该组合物的固化膜
WO2010036170A1 (en) 2008-09-23 2010-04-01 Nexam Chemical Ab Acetylenic polyamide
US8716403B2 (en) 2008-12-10 2014-05-06 Electronics And Telecommunications Research Institute Prepolymer prepared by a condensation reaction and a polymer sheet obtained therefrom
EP2410359B1 (en) 2009-03-18 2017-12-13 Asahi Glass Company, Limited Optical waveguide
US8513650B2 (en) * 2009-05-29 2013-08-20 Xerox Corporation Dielectric layer for an electronic device
JP2011021100A (ja) * 2009-07-15 2011-02-03 Nippon Soken Inc デポジット付着防止材料および燃料噴射弁
US8697823B2 (en) 2010-05-14 2014-04-15 Nexam Chemical Ab Catalysis of cross-linking
KR20130089580A (ko) 2010-06-23 2013-08-12 아사히 가라스 가부시키가이샤 경화성 조성물 및 경화막의 제조 방법
JP2013035959A (ja) * 2011-08-09 2013-02-21 Nippon Shokubai Co Ltd フッ素含有芳香族系重合体
WO2013073638A1 (ja) * 2011-11-18 2013-05-23 旭硝子株式会社 硬化性組成物、塗布用組成物、硬化膜、レーザ加工方法、および多層配線構造体の製造方法
JP2015129780A (ja) * 2012-04-10 2015-07-16 旭硝子株式会社 非線形光学材料用組成物、塗布用組成物、非線形光学材料、光導波路および光制御デバイス
CN111923532A (zh) * 2019-04-07 2020-11-13 朱建余 一种耐磨阻燃隔热无纺布的制备方法
TW202222907A (zh) * 2020-12-03 2022-06-16 日商科慕・三井氟產品股份有限公司 氟樹脂
CN113563579B (zh) * 2021-08-17 2023-09-15 西南石油大学 一种偶氮苯-聚芳醚腈复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506042A (ja) * 1990-04-17 1993-09-02 アライド・シグナル・インコーポレイテツド フッ素ポリ(アリーレンエーテル)
JPH10247646A (ja) * 1997-03-05 1998-09-14 Oki Electric Ind Co Ltd 有機絶縁膜材料の製造方法
JPH10510580A (ja) * 1995-06-26 1998-10-13 アライドシグナル・インコーポレーテッド 改善されたポリ(アリーレンエーテル)組成物およびその製造法
JP2002356551A (ja) * 2001-05-31 2002-12-13 Asahi Glass Co Ltd 新規ポリアリーレンエーテル、その製造方法及びその用途
WO2003008483A1 (en) * 2001-07-12 2003-01-30 Asahi Glass Company, Limited Aromatic fluoropolymer and use thereof
JP2003217343A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5155175A (en) 1989-12-08 1992-10-13 Intellectual Property Law Dept. Crosslinkable fluorinated polyarylene ether composition
US5115082A (en) * 1990-04-17 1992-05-19 Raychem Corporation Fluorinated poly(arylene ether)
US5204416A (en) * 1990-04-17 1993-04-20 Raychem Corporation Crosslinked fluorinated poly(arylene ether)
US5959157A (en) * 1995-06-26 1999-09-28 Alliedsignal, Inc. Process for making hydroxy-substituted ethynylated biphenyl compounds
JP2003008483A (ja) * 2001-06-18 2003-01-10 Nec Corp アダプティブアレイアンテナ受信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506042A (ja) * 1990-04-17 1993-09-02 アライド・シグナル・インコーポレイテツド フッ素ポリ(アリーレンエーテル)
JPH10510580A (ja) * 1995-06-26 1998-10-13 アライドシグナル・インコーポレーテッド 改善されたポリ(アリーレンエーテル)組成物およびその製造法
JPH10247646A (ja) * 1997-03-05 1998-09-14 Oki Electric Ind Co Ltd 有機絶縁膜材料の製造方法
JP2002356551A (ja) * 2001-05-31 2002-12-13 Asahi Glass Co Ltd 新規ポリアリーレンエーテル、その製造方法及びその用途
WO2003008483A1 (en) * 2001-07-12 2003-01-30 Asahi Glass Company, Limited Aromatic fluoropolymer and use thereof
JP2003217343A (ja) * 2002-01-24 2003-07-31 Toyobo Co Ltd 熱架橋性高分子固体電解質、高分子固体電解質膜及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892720B2 (en) * 2006-03-16 2011-02-22 Asahi Glass Company, Limited Negative photosensitive fluorinated aromatic resin composition
JP2009132820A (ja) * 2007-11-30 2009-06-18 Asahi Glass Co Ltd 架橋性プレポリマー、その製造方法および用途

Also Published As

Publication number Publication date
TWI336715B (ja) 2011-02-01
CN1845947A (zh) 2006-10-11
US8168742B2 (en) 2012-05-01
EP1669389B1 (en) 2009-08-26
ATE440887T1 (de) 2009-09-15
JP2005105115A (ja) 2005-04-21
US20060173129A1 (en) 2006-08-03
US20100144914A1 (en) 2010-06-10
EP1669389A4 (en) 2007-05-02
JP4501391B2 (ja) 2010-07-14
EP1669389A1 (en) 2006-06-14
TW200517413A (en) 2005-06-01
DE602004022839D1 (de) 2009-10-08
KR20060095947A (ko) 2006-09-05
KR101026096B1 (ko) 2011-03-31
CN100519624C (zh) 2009-07-29

Similar Documents

Publication Publication Date Title
WO2005030837A1 (ja) 架橋性含フッ素芳香族プレポリマー及びその用途
EP1897897B1 (en) Crosslinkable fluorine-containing aromatic prepolymer and use thereof
WO2007119384A1 (ja) ネガ型感光性含フッ素芳香族系樹脂組成物
JP4206925B2 (ja) 含フッ素芳香族ポリマー及びその用途
JP2007238696A (ja) 有機絶縁材料、それを用いた絶縁膜用ワニス、絶縁膜及びその製造方法並びに半導体装置
EP2177545A1 (en) Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having insulating film
JP4843870B2 (ja) 新規ポリアリーレンエーテル、その製造方法及びその用途
TW200400238A (en) Porous nano composite thin film and method of forming the same
KR100679191B1 (ko) 막 형성용 조성물 및 절연막
KR102161847B1 (ko) 반도체 절연막용 저온경화 유/무기 고분자 복합체 제조용 조성물 및 그의 용도
JP2013079344A (ja) ポリイミド前駆体、ポリイミド前駆体を含む組成物、及び該組成物から得られる透明ポリイミド成形体
TW201335238A (zh) 聚醯亞胺前驅物及使用其的樹脂組成物、聚醯亞胺成形體、保護層、半導體裝置及其製造方法、電力零件以及電子零件
JP2007224087A (ja) 光学樹脂材料組成物及び光学部材の製造方法
JP3945220B2 (ja) 低誘電率重合体
JP4254545B2 (ja) 絶縁膜用樹脂、コーティングワニスおよび絶縁膜
JP2008063451A (ja) 芳香族エチニル化合物、樹脂組成物、ワニス、樹脂膜、半導体装置
JP2004250585A (ja) ケイ素含有芳香族ポリマーおよびその用途
JPH06271771A (ja) シルセスキオキサンポリマー組成物
JP2004216270A (ja) 低誘電性表面保護膜、液晶表示素子および半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025131.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004525

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004788267

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11392727

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004788267

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11392727

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067004525

Country of ref document: KR