KR20040027518A - 함불소 방향족 폴리머 및 그 용도 - Google Patents

함불소 방향족 폴리머 및 그 용도 Download PDF

Info

Publication number
KR20040027518A
KR20040027518A KR10-2003-7016369A KR20037016369A KR20040027518A KR 20040027518 A KR20040027518 A KR 20040027518A KR 20037016369 A KR20037016369 A KR 20037016369A KR 20040027518 A KR20040027518 A KR 20040027518A
Authority
KR
South Korea
Prior art keywords
fluorine
fap
compound
containing aromatic
crosslinkable functional
Prior art date
Application number
KR10-2003-7016369A
Other languages
English (en)
Other versions
KR100870225B1 (ko
Inventor
요꼬쯔까순스께
다께오후사아끼
Original Assignee
아사히 가라스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아사히 가라스 가부시키가이샤 filed Critical 아사히 가라스 가부시키가이샤
Publication of KR20040027518A publication Critical patent/KR20040027518A/ko
Application granted granted Critical
Publication of KR100870225B1 publication Critical patent/KR100870225B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1005Formation and after-treatment of dielectrics
    • H01L2221/1042Formation and after-treatment of dielectrics the dielectric comprising air gaps
    • H01L2221/1047Formation and after-treatment of dielectrics the dielectric comprising air gaps the air gaps being formed by pores in the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Insulating Materials (AREA)

Abstract

내열성이 우수하며, 비유전율이 낮은 함불소 방향족 폴리머 및 그것들로 이루어지는 전자디바이스용 절연막 및 다층 배선판용 절연막을 제공한다. 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 과 가교성 관능기 (A) 와 페놀성 수산기를 갖는 화합물 (Y1) 을 탈 HF 제 존재하에서 축합반응시키는 방법 등으로 제조되는 1 분자중에 2 개 이상의 가교성 관능기 (A) 를 함유하고, 수평균분자량이 1 ×103∼ 5 ×105인 에테르결합을 갖는 함불소 방향족 폴리머.
[화학식 1]

Description

함불소 방향족 폴리머 및 그 용도{AROMATIC FLUOROPOLYMER AND USE THEREOF}
전자 디바이스 및 다층 배선판 등이 점점 미세화 및 고집적화됨에 따라 그것들에 적용하기 위해 보다 낮은 비유전율의 절연막이 요구되고 있다. 그 요구를 만족시키고, 또한 전자디바이스 또는 다층 배선판의 제조공정에서 필요한, 350℃ 이상, 바람직하게는 425℃ 이상의 내열성을 확보하기 위해 함불소 방향족 폴리머 (이하, FAP 라고 함) 가 검토되고 있다.
예컨대, 일본 특허공보 제3064011호, 미국 특허명세서 제5115082호, 미국 특허명세서 제5959157호, 일본 공개특허공보 평9-202824호, 일본 공개특허공보 평10-247646호, J. Polm. Sci.: PartA: Polm. Chem., vol. 36, 2881 (1998) 등에, FAP 로서 에테르결합을 갖는 함불소 방향족 폴리머 (이하, 폴리아릴렌에테르 또는 PAE 라고 함) 가 기재되어 있다. 이들의 비유전율은 2.5 ∼ 2.9 정도로 전자디바이스 또는 다층 배선판의 절연막 (이하, 본 절연막이라고 함) 으로서의 응용도 검토되고 있다.
이들 PAE 중의 아릴렌구조는 퍼플루오로페닐렌, 퍼플루오로비페닐렌, 퍼플루오로나프타닐렌 등이다. 그리고, PAE 는 직쇄형상이며, 그 유리전이온도 (이하, Tg 라고 함) 가 낮아 내열성이 충분하지 않다. PAE 에 가교성 관능기를 도입하여 가교하면 Tg 를 높게 할 수 있지만, 비유전율이 2.7 ∼ 3.0 정도로 상승하여 낮은 비유전율과 높은 Tg 를 양립시키기 어렵다.
Bull. Chem. Soc. Jpn., 66, 1053 (1993) 등에는 직쇄형상 FAP 인 함불소 폴리(1,4-페닐렌) 이 기재되어 있지만, 본 절연막으로서의 응용에 대한 기재가 없다. 또, 중합도가 3 을 초과하면 용매로의 용해성이 크게 저하되어 본 절연막으로서 필요한 코팅성이 상실됨과 더불어 절연막의 제조공정중의 열처리에 의해 승화되어 본 절연막에 적용할 수 없다.
J. Am. Chem. Soc., 122, 1832 (2000) 에는 분기구조의 FAP 인 덴드리머가 기재되어 있다. 이들 덴드리머는 용매에 용해할 수 있지만, Tg 는 140℃ 미만으로 낮고 또한 승화성을 갖기 때문에 본 절연막으로서 적용할 수 없다.
본 발명의 목적은 낮은 비유전율 및 높은 내열성을 갖는 FAP 및 그 절연막으로서의 용도를 제공하는 것이다.
본 발명은 함불소 방향족 폴리머 및 그 용도에 관한 것이다.
발명의 개시
본 발명은 하기 ①, ② 및 ③ 의 방법으로 이루어지는 군에서 선택되는 1 종 이상의 방법으로, 하기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 로 제조된다. 1 분자중에 2 개 이상의 가교성 관능기 (A) 를 함유하고, 수평균분자량이 1 ×103∼ 5 ×105인 에테르결합을 갖는 함불소 방향족 폴리머를 제공한다.
여기에서, m 및 n 은 각각 독립적으로 1 ∼ 4 의 정수, p, q 및 r 은 각각 독립적으로 0 또는 1 ∼ 5 의 정수, a, b 및 c 는 각각 독립적으로 0 또는 1 ∼ 3 의 정수를 나타내고, 2≤m+n≤5 이다.
① 상기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
② 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 과, 가교성 관능기를 갖지 않고, 페놀성 수산기를 2 개 이상 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
③ 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 를 갖고, 방향핵에 불소치환기를 갖는 방향족 화합물 (Z) 과, 가교성 관능기를 갖지 않고, 2 개 이상의 페놀성 수산기를 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
또, 본 발명은 이 함FAP 로 이루어지는 전자디바이스용 절연막 및 다층 배선판용 절연막을 제공한다.
발명을 실시하기 위한 최선의 형태
본 발명의 FAP 는 하기 ①, ② 및 ③ 의 방법으로 이루어지는 군에서 선택되는 1 종 이상의 방법으로, 하기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 로 제조된다. 1 분자중에 2 개 이상의 가교성 관능기 (A) 를 함유하고, 수평균분자량이 1 ×103∼ 5 ×105인 에테르결합을 갖는 FAP 이다.
[화학식 1]
여기에서, m 및 n 은 각각 독립적으로 1 ∼ 4 의 정수, p, q 및 r 은 각각 독립적으로 0 또는 1 ∼ 5 의 정수, a, b 및 c 는 각각 독립적으로 0 또는 1 ∼ 3 의 정수를 나타내고, 2≤m+n≤5 이다.
① 상기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
② 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 과, 가교성 관능기를 갖지 않고, 페놀성 수산기를 2 개 이상갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
③ 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 를 갖고, 방향핵에 불소치환기를 갖는 방향족 화합물 (Z) 과, 가교성 관능기를 갖지 않고, 2 개 이상의 페놀성 수산기를 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
본 발명에서 분기구조의 함불소 방향족 화합물 (B) 은 상기 식 1 로 나타내는 함불소 방향족 화합물이다. 바람직하게는 n+m 은 2 ∼ 3, p, q 및 r 은 각각 독립적으로 0 ∼ 3, a, b 및 c 는 각각 독립적으로 0 ∼ 2 이다. 각 값이 이 범위에 있으면 FAP 의 용제로의 용해성이 우수하고, 함불소 방향족 화합물 (B) 의 제조가 용이하여 바람직하다.
함불소 방향족 화합물 (B) 로는, 하기 식 3 의 구조가 보다 바람직하다.
여기에서, al, b1 및 c1 은 각각 독립적으로 0, 1 또는 2 이면, 유리전이온도가 높고 용제로의 용해성이 우수한 FAP 가 얻어져 보다 바람직하다.
함불소 방향족 화합물 (B) 의 구체예로는 하기 식 4 로 나타내는 구조를 들 수 있다. 이들은 단독으로 사용하거나 2 종 이상 혼합하여 사용해도 된다.
가장 바람직하게는 하기 식 2 로 나타내는 퍼플루오로(1,3,5-트리페닐벤젠) 또는 퍼플루오로(1,2,4-트리페닐벤젠) 이다.
본 발명의 FAP 는 1 분자중에 2 개 이상의 가교성 관능기 (A) 를 함유한다. 바람직하게는 2 ∼ 30 개, 보다 바람직하게는 3 ∼ 20 개이다. 가교성 관능기(A) 에 의해 FAP 분자간의 가교 또는 쇄연장반응이 진행되어 FAP 의 내열성 및 내용제성이 향상된다.
가교성 관능기 (A) 로는 열, 광, 전자선 등에 의해 가교되는 관능기가 바람직하다. 가열에 의해 가교되는 관능기는 전자디바이스 또는 다층 배선판의 제조공정에서의 적용성이 우수하여 보다 바람직하다. 또, 극성 기를 함유하지 않는 가교성 관능기 (A) 가 FAP 의 비유전율을 상승시키지 않아 바람직하다.
가교성 관능기 (A) 의 구체예로는 에티닐기, 1-옥소시클로펜타-2,5-디엔-3-일기 (이하, 시클로펜타디에논기라고도 함), 시아노기, 알콕시실릴기, 디아릴히드록시메틸기, 히드록시플루오레닐기 등을 들 수 있다. 내열성의 관점에서 에티닐기가 보다 바람직하다.
본 발명의 FAP 에서의 가교성 관능기 (A) 의 함유량은 함불소 방향족 화합물 (B) 1 몰에 대해 가교성 관능기 (A) 가 0.05 ∼ 6 몰의 비율이 바람직하고, 0.1 ∼ 4 몰의 비율이 보다 바람직하다. 이 범위를 초과하면 FAP 도막의 취성이 커져 비유전율이 상승하는 경우가 있다. 또, 이 범위보다 적으면 내열성 및 내용제성이 저하되는 경우가 있다.
본 발명의 FAP 는 하기 ①, ② 및 ③ 의 방법으로 이루어지는 군에서 선택되는 1 종 이상의 방법으로 제조된다.
① 상기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
② 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 과, 가교성 관능기를 갖지 않고, 페놀성 수산기를 2 개 이상 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
③ 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 를 갖고, 방향핵에 불소치환기를 갖는 방향족 화합물 (Z) 과, 가교성 관능기를 갖지 않고, 2 개 이상의 페놀성 수산기를 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
상기 FAP 의 ①, ② 및 ③ 의 제조방법에서, 축합반응에서는 하기 식 5 로 표시되도록 페놀성 수산기 (-OH 기) 로부터 유도되는 페녹시기 (-O-기) 가 함불소 방향족 화합물 (B) 의 불소원자가 결합된 탄소원자를 공격하고, 이어서 불소원자가 탈리되는 반응기구 등에 의해 에테르결합이 생성된다. 또, 화합물 (Y2) 이 오르토위치관계에 있는 2 개의 페놀성 수산기를 갖는 경우에는, 동일한 반응기구 등에 의해 하기 식 6 에 나타내는 바와 같이 디옥신 골격이 생성될 가능성이 있다.
가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 로는 가교성 관능기로서 에티닐기를 갖는 방향족 화합물이 보다 바람직하다.
페놀성 수산기를 1 개 갖는 화합물 (Y1) 의 구체예로는 3-에티닐페놀, 4-페닐에티닐페놀, 4-(4-플루오로페닐)에티닐페놀 등의 에티닐페놀류를 들 수 있다.
페놀성 수산기를 2 개 이상 갖는 화합물 (Y1) 의 구체예로는 2,2’-비스(페닐에티닐)-5,5’-디히드록시비페닐, 2,2’-비스(페닐에티닐)-4,4’-디히드록시비페닐 등의 비스(페닐에티닐)디히드록시비페닐류, 4,4’-디히드록시트란, 3,3’-디히드록시트란 등의 디히드록시디페닐아세틸렌류 등을 들 수 있다. 이들은 단독으로 사용하거나 2 종 이상을 혼합하여 사용해도 된다.
페놀성 수산기를 2 개 이상 갖는 화합물 (Y2) 로는 다관능 페놀류가 바람직하다. 그 구체예로는 디히드록시벤젠, 디히드록시비페닐, 디히드록시터페닐, 디히드록시나프탈렌, 디히드록시안트라센, 디히드록시페난트라센, 디히드록시-9,9-디페닐플루오렌, 디히드록시디벤조푸란, 디히드록시디페닐에테르, 디히드록시디페닐티오에테르, 디히드록시벤조페논, 디히드록시-2,2-디페닐프로판, 디히드록시-2,2-디페닐헥사플루오로프로판, 디히드록시비나프틸, 테트라페닐하이드로퀴논, 헥사페닐디히드록시비페닐, 트리히드록시벤젠, 트리히드록시비페닐, 트리히드록시나프탈렌, 테트라히드록시벤젠, 테트라히드록시비페닐, 테트라히드록시비나프틸, 테트라히드록시스피로인단류 등을 들 수 있다.
디히드록시벤젠, 디히드록시-9,9-디페닐플루오렌, 디히드록시-2,2-디페닐헥사플루오로프로판, 테트라페닐하이드로퀴논 및 트리히드록시벤젠은 얻어지는 FAP 가 낮은 유전율값과 높은 내열성을 지녀 보다 바람직하다.
가교성 관능기를 갖고, 방향핵에 불소치환기를 갖는 방향족 화합물 (Z) 로는 가교성 관능기로서 에티닐기를 갖는 퍼플루오로페닐, 퍼플루오로비페닐 등의 퍼플루오로 방향족 화합물이 바람직하다. 그 구체예로는 펜타플루오로페닐아세틸렌, 노나플루오로비페닐아세틸렌 등의 함불소 아릴아세틸렌류, 페닐에티닐펜타플루오로벤젠, 페닐에티닐노나플루오로비페닐, 데카플루오로트란 등의 함불소 디아릴아세틸렌류 등을 들 수 있다. 이들은 단독으로 사용하거나 2 종 이상을 혼합하여 사용해도 된다.
본 발명에서 탈 HF 제로는 염기성 화합물이 바람직하고, 특히 알칼리금속의 탄산염, 탄산수소염 또는 수산화물이 바람직하다. 구체적으로는 탄산나트륨, 탄산칼륨, 탄산수소나트륨, 탄산수소칼륨, 수산화나트륨, 수산화칼륨 등을 들 수 있다.
탈 HF 제의 사용량은 ① 의 제조방법에서는 화합물 (Y1) 중의 페놀성 수산기의 몰수에 대해 몰비로 1 배 이상이 필요하며 1.1 ∼ 3 배가 바람직하다. ② 의 제조방법에서는 화합물 (Y1) 및 화합물 (Y2) 의 페놀성 수산기의 합계 몰수에대해 몰비로 1 배 이상이 필요하며 1.1 ∼ 3 배가 바람직하다. ③ 의 제조방법에서는 화합물 (Y2) 의 페놀성 수산기의 몰수에 대해 몰비로 1 배 이상이 필요하며 1.1 ∼ 3 배가 바람직하다.
①, ② 및 ③ 의 제조방법에서 축합반응은 극성 용매중에서 실시하는 것이 바람직하다. 극성 용매로는 N,N-디메틸아세트아미드, N,N-디메틸포름아미드, N-메틸피롤리돈, 디메틸술폭시드, 술포란 등의 비프로톤성의 극성 용매를 함유하는 용매가 바람직하다. 극성 용매에는 생성되는 FAP 의 용해성을 저하시키지 않고, 축합반응에 악영향을 미치지 않는 범위에서 톨루엔, 자일렌, 벤젠, 벤조트리플루오라이드, 자일렌헥사플루오라이드 등이 함유되어도 된다.
축합반응조건으로는 10 ∼ 200℃ 에서 1 ∼ 80 시간이 바람직하다. 보다 바람직하게는 60 ∼ 180℃ 에서 2 ∼ 60 시간, 가장 바람직하게는 80 ∼ 160℃ 에서 3 ∼ 24 시간이다.
본 발명의 FAP 의 수평균분자량은 500 ∼ 1,000,000 이다. 이 범위에 있으면 그 도포특성이 양호하며, 얻어진 도막은 양호한 내열성, 기계특성, 및 내용제성 등을 갖는다. 바람직하게는 1,000 ∼ 500,000, 보다 바람직하게는 1,500 ∼ 100,000 이다. 전자디바이스용 절연막 용도에서 하지(下地)의 미세 스페이스 사이로 충분히 침투되고, 또한 표면을 평활하게 하는 특성 (소위 매립 평탄성) 이 요구되는 경우에는 수평균분자량은 1,500 ∼ 50,000 이 가장 바람직하다.
FAP 의 수평균분자량은 ① 의 제조방법에서는 함불소 방향족 화합물 (B) 과 화합물 (Y1) 의 주입비율을 변화시킴으로써 제어할 수 있다. 마찬가지로, ②의 제조방법에서는 함불소 방향족 화합물 (B) 과 화합물 (Y1) 과 화합물 (Y2) 과의 주입비율을, ③ 의 제조방법에서는 함불소 방향족 화합물 (B) 과 방향족 화합물 (Z) 과 화합물 (Y2) 과의 주입비율을 변화시킴으로써 제어할 수 있다.
① 의 제조방법에서 화합물 (Y1) 의 사용량은 함불소 방향족 화합물 (B) 에 대한 몰비로 2 ∼ 6 배가 바람직하고, 보다 바람직하게는 2 ∼ 4 배이다. ② 의 제조방법에서 화합물 (Y1) 의 사용량은 함불소 방향족 화합물 (B) 에 대한 몰비로 0.3 ∼ 3 배가 바람직하고, 보다 바람직하게는 0.8 ∼ 2 배이며, 화합물 (Y2) 의 사용량은 함불소 방향족 화합물 (B) 에 대한 몰비로 0.3 ∼ 2 배가 바람직하고, 보다 바람직하게는 0.5 ∼ 1.5 배이다.
③ 의 제조방법에서 화합물 (Z) 의 사용량은 함불소 방향족 화합물 (B) 에 대한 몰비로 0.3 ∼ 3 배가 바람직하고, 보다 바람직하게는 0.5 ∼ 2 배이며, 화합물 (Y2) 의 사용량은 함불소 방향족 화합물 (B) 에 대한 몰비로 0.5 ∼ 2 배가 바람직하고, 보다 바람직하게는 0.8 ∼ 1.8 배이다. 각 값이 이 범위에 있으면 얻어진 FAP 가 낮은 유전율값과 높은 내열성을 겸비하여 바람직하다.
본 발명에서 ①, ② 및 ③ 의 제조방법에 의해 얻어진 FAP 의 용해성이 불충분하거나 이 FAP 의 도막이 약한 경우에는, FAP 의 용해성을 향상시키기 위해 또는 가요성을 개선하기 위해 FAP 제조시에 공축합성분을 첨가하는 것이 바람직하다.
공축합성분으로는 분기구조를 갖지 않는 단환 또는 다환 함불소 방향족 화합물 (W) 이 바람직하고, 퍼플루오로 방향족 화합물이 보다 바람직하다. 그 구체예로는 퍼플루오로벤젠, 퍼플루오로톨루엔, 퍼플루오로자일렌, 퍼플루오로비페닐,퍼플루오로터페닐, 퍼플루오로나프탈렌, 퍼플루오로안트라센 등을 들 수 있다. 이들은 단독으로 사용하거나 2 종 이상을 혼합하여 사용해도 된다.
함불소 방향족 화합물 (W) 의 사용량은 함불소 방향족 화합물 (B) 에 대해 1 ∼ 200 질량% 가 바람직하고, 10 ∼ 150 질량% 가 보다 바람직하다. 지나치게 많으면 얻어진 도막의 내열성이 낮아지고, 지나치게 적으면 가요성이나 용해성의 향상 효과가 불충분하다.
본 발명의 FAP 는 축합반응 후 또는 용액화 후에 중화, 재침전, 추출, 여과 등의 방법으로 정제된다. 전자디바이스용 절연막 및 다층 배선판용 절연막으로서의 용도에서, 축합반응시의 탈 HF 제인 칼륨, 나트륨 등의 금속 및 유리된 할로겐원자는 트랜지스터의 동작 불량이나 배선 부식 등을 야기시키는 원인물질이 될 수 있어 충분히 정제하는 것이 바람직하다.
본 발명의 FAP 의 가교반응시, 가교반응속도를 올리거나 또는 반응결함을 저감시키는 등의 목적으로 각종 촉매 또는 첨가제를 사용하는 것도 바람직하다.
본 발명의 FAP 가 가교성 관능기 (A) 로서 에티닐기를 함유하는 경우에는 촉매로서 아닐린, 트리에틸아민, 아미노페닐트리알콕시실란, 아미노프로필트리알콕시실란 등의 아민류나, 몰리브덴, 니켈 등을 함유하는 유기금속 화합물 등을 예시할 수 있다. 촉매의 첨가량은 FAP 중의 에티닐기 1 몰에 대해 0.01 ∼ 1 몰이 바람직하고, 더욱 바람직하게는 0.05 ∼ 0.5 몰이다.
첨가제로는 비스시클로펜타디에논 유도체가 바람직하다. 에티닐기와 시클로펜타디에논기 (1-옥소시클로펜타-2,5-디엔-3-일기) 는 열에 의해 딜스알더(Diels-Alder)반응으로 부가물을 형성한 후, 탈일산화탄소반응하여 방향환을 형성한다. 따라서, 비스시클로펜타디에논 유도체를 사용하면 방향환이 결합부위인 가교 또는 쇄연장을 할 수 있다.
비스시클로펜타디에논 유도체의 구체예로는 1,4-비스(1-옥소-2,4,5 -트리페닐-시클로펜타-2,5-디엔-3-일)벤젠, 4,4’-비스(1-옥소-2,4,5-트리페닐-시클로펜타 -2,5-디엔-3-일)비페닐, 4,4’-비스(1-옥소-2,4,5-트리페닐-시클로펜타-2,5-디엔-3-일)1,1’-옥시비스벤젠, 4,4’-비스(1-옥소-2,4,5-트리페닐-시클로펜타-2,5-디엔 -3-일)1,1’-티오비스벤젠, 1,4-비스(1-옥소-2,5-디-[4-플루오로페닐]-4-페닐-시클로펜타-2,5-디엔-3-일)벤젠, 4,4’-비스(1-옥소-2,4,5-트리페닐-시클로펜타-2,5-디엔-3-일)1,1’-(1,2-에탄디일)비스벤젠, 4,4’-비스(1-옥소-2,4,5-트리페닐-시클로펜타-2,5-디엔-3-일)1,1’-(1,3-프로판디일)비스벤젠 등을 들 수 있다.
이들 비스시클로펜타디에논 유도체 중 내열성의 관점에서 전체 방향족 골격의 비스시클로펜타디에논 유도체가 바람직하다. 이들은 단독으로 사용하거나 2 종 이상을 병용해도 된다. 비스시클로펜타디에논 유도체의 첨가량은 FAP 중의 에티닐기 몰수에 대한 몰비로 0.1 ∼ 0.5 배가 바람직하고, 0.15 ∼ 0.5 배가 보다 바람직하다.
본 발명의 FAP 는 통상 용매에 용해시켜 실용에 제공된다. 이 때, FAP 중의 가교성 관능기 (A) 는 용액중에서는 반응하지 않고, 제막 후의 가열 (베이킹) 공정에서 가교반응하는 것이 바람직하다.
FAP 용액에 가교 촉매 또는 첨가제를 첨가하는 경우나 FAP 가 증기압을 갖는저분자량체를 함유하는 경우에는, 베이킹시의 휘발을 방지하기 위해 용액중에서 가교성 관능기 (A) 의 일부가 그것끼리 및/또는 촉매 또는 첨가제와 반응하는 것도 바람직하다.
그 방법으로는 가열이 바람직하다. 가열조건으로는 50℃ ∼ 250℃ 에서 1 ∼ 50 시간이 바람직하고, 보다 바람직하게는 70 ∼ 200℃ 에서 1 ∼ 20 시간이다. 가교성 관능기의 용액중에서의 반응률은 용액중에서의 FAP 의 겔화를 방지하는 관점에서 50% 미만으로 하는 것이 바람직하고, 보다 바람직하게는 30% 미만이다.
본 발명의 FAP 의 용매로는 FAP 및 촉매 또는 첨가제류를 유효하게 용해시켜 원하는 방법으로 원하는 막두께, 균일성, 또는 매립 평탄성을 갖는 도막이 얻어지면 특별히 제한은 없고, 방향족 탄화수소류, 쌍극자 비프로톤계 용매류, 케톤류, 에스테르류, 에테르류, 할로겐화 탄화수소류를 들 수 있다.
방향족 탄화수소류로는 벤젠, 톨루엔, 자일렌, 에틸벤젠, 쿠멘, 메시틸렌, 테트라린, 메틸나프탈렌 등을 들 수 있다.
쌍극자 비프로톤계 용매류로는 N-메틸피롤리돈, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, γ-부티로락톤, 디메틸술폭시드 등을 들 수 있다.
케톤류로는 시클로펜타논, 시클로헥사논, 시클로헵타논, 시클로옥타논, 메틸아밀케톤 등을 들 수 있다.
에테르류로는 테트라히드로푸란, 피란, 디옥산, 디메톡시에탄, 디에톡시에탄, 디페닐에테르, 아니솔, 페네톨, 디글라임, 트리글라임 등을 들 수 있다.
에스테르류로는 젖산에틸, 벤조산메틸, 벤조산에틸, 벤조산부틸, 벤조산벤질, 메틸셀루솔브아세테이트, 에틸셀루솔브아세테이트, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노에틸에테르, 프로필렌글리콜모노프로필에테르, 프로필렌글리콜모노부틸에테르, 프로필렌글리콜모노에틸에테르아세테이트 등을 들 수 있다.
할로겐화 탄화수소류로는 사염화탄소, 클로로포름, 염화메틸렌, 테트라클로로에틸렌, 클로로벤젠, 디클로로벤젠 등을 들 수 있다.
FAP 의 농도는 1 ∼ 50 질량% 가 바람직하고, 5 ∼ 30 질량% 가 보다 바람직하다.
본 발명의 FAP 의 도막형성방법으로는 스핀 코팅, 딥 코팅, 스프레이 코팅, 다이 코팅, 바 코팅, 닥터 코팅, 압출 코팅, 스캔 코팅, 브러시 코팅, 폿팅 등의 공지된 코팅방법을 들 수 있다. 전자디바이스의 절연막으로 사용하는 경우에는 막두께의 균일성의 관점에서 스핀 코팅 또는 스캔 코팅이 바람직하다. 도포 후, 용매를 휘발시키고 가교나 쇄연장반응을 완결시키기 위해 베이킹 (가열) 을 실시한다. 베이킹조건은 200 ∼ 450℃ 에서 1 ∼ 120 분간이 바람직하고, 300 ∼ 425℃ 에서 2 ∼ 60 분간이 보다 바람직하다.
FAP 도막의 두께는 0.01 ∼ 50㎛ 가 바람직하고, 0.1 ∼ 30㎛ 가 보다 바람직하다. 도막의 표면 평활성을 확보하거나, 도막의 미세 스페이스 매립성을 향상시키기 위해 50 ∼ 250℃ 정도의 프리베이킹공정을 추가하거나, 베이킹공정을 여러 단계로 나눠 실시할 수도 있다.
본 발명의 FAP 와 기재의 접착성 향상을 위해 접착촉진제를 사용하는 것도바람직하다. 접착촉진제로는 실란계 커플링제, 티타네이트계 커플링제, 알루미늄계 커플링제 등을 들 수 있고, 에폭시실란류, 아미노실란류 등의 실란계 커플링제가 보다 바람직하다. 아미노실란류로는 γ-아미노프로필메틸디에톡시실란, γ-아미노프로필트리에톡시실란 등의 지방족 아미노실란류, 아미노페닐트리메톡시실란, 아미노페닐트리에톡시실란, N-페닐-γ-아미노프로필트리메톡시실란 등의 함방향족기 아미노실란류가 예시된다.
접착촉진제의 적용방법으로는 FAP 용액의 도포전에 기재를 접착촉진제로 처리하는 방법이나 FAP 용액중에 접착촉진제를 첨가하는 방법이 바람직하다. 기재를 접착촉진제로 처리하는 방법으로는 아미노실란류의 예에서는 0.01 ∼ 3 질량% 의 알콜계 용매로서 기재에 스핀 코팅하는 방법을 들 수 있다. 접착촉진제를 FAP 용액중에 첨가하는 방법에서는 접착촉진제의 첨가량은 함유되는 FAP 에 대해 0.05 ∼ 10 질량% 가 바람직하고, 0.1 ∼ 5 질량% 가 보다 바람직하다. 접착촉진제의 첨가량이 적으면 접착성 향상효과가 충분하지 않고, 지나치게 많으면 전기특성이나 내열성이 저하된다.
본 발명의 FAP 의 용도로는 보호막, 연료전지 등의 각종 전지용 막재료, 포토레지스트, 광도파 재료, 피복재, 전자용 부재, 밀봉제, 오버 코팅제, 투명 필름재, 접착제, 섬유재, 내후성 도료, 발수제, 발유제, 방습 코팅제 등을 들 수 있다. 특히, 전자디바이스용 절연막이나 다층 배선판용 절연막의 용도가 바람직하다.
전자디바이스로는 다이오드, 트랜지스터, 화합물 반도체, 서미스터, 배리스터, 사이리스터 등의 개별 반도체, DRAM (다이나믹 랜덤 액섹스 메모리), SRAM (스타틱 랜덤 액섹스 메모리), EPROM (이레이저블 프로그래머블 리드 온리 메모리), 마스크 ROM (마스크 리드 온리 메모리), EEPROM (일렉트리컬 이레이저블 프로그래머블 리드 온리 메모리), 플래시 메모리 등의 기억소자, 마이크로프로세서, DSP, ASIC 등의 이론회로소자, MMIC (모노리식 마이크로웨이브 집적회로) 로 대표되는 화합물 반도체 등의 집적회로소자, 혼성 집적회로 (하이브리드 IC), 발광다이오드, 전하결합소자 등의 광전변환소자 등을 들 수 있다.
다층 배선판으로는 전자디바이스 등을 실장하기 위한 각종 기판으로 프린트 배선판, 빌드업 배선판, MCM 등의 고밀도 배선판 등을 들 수 있다.
절연막으로는 버퍼코팅막, 패시베이션막, 층간 절연막, 알파선 차폐막 등을 들 수 있다.
FAP 도막을 사용하는 전자디바이스용 절연막 또는 다층 배선판용 절연막의 용도에서 보다 낮은 비유전율의 절연막을 얻기 위해서는 FAP 절연막중에 공공 (空孔)을 함유하는 것도 바람직하다. 공공의 도입방법으로는 다음 두가지 방법 등을 들 수 있다.
(1) 본 발명의 FAP 와 열분해온도가 낮은 폴리머 (이하, 열분해성 폴리머라고 함) 를 복합화하여 열분해성 폴리머 부분을 절연막 형성과정에서 제거하는 방법.
(2) 본 발명의 FAP 에 분산되는 미립자를 첨가하여 미립자 부분을 절연막 형성과정에서 또는 절연막 형성 후에 제거하는 방법.
(1) 의 방법에서 열분해성 폴리머로는 지방족 폴리에테르, 지방족 폴리에스테르, 아크릴계 중합체, 스티렌계 중합체 등을 들 수 있다. 열분해성 폴리머의 분자량은 1,000 ∼ 100,000 이 바람직하고, 1,000 ∼ 50,000 이 보다 바람직하다. 분자량이 이 범위에 있으면 FAP 와의 상용성을 확보할 수 있어 바람직하다. FAP 와 열분해성 폴리머를 복합화하는 수법으로서 FAP 와 열분해성 폴리머의 혼합용액을 제조하고, 제막함으로써 복합막을 얻는 방법, FAP 와 열분해성 폴리머를 블록화 또는 그래프트화함으로써 복합화하는 방법 등을 예시할 수 있다.
블록화 또는 그래프트화 방법은 공지된 것을 적용할 수 있는데, 예컨대 말단에 함불소 방향환 또는 페놀성 수산기를 갖는 열분해성 폴리머를 제조하여, FAP 합성의 축합반응시에 공축합하는 수법을 예시할 수 있다. FAP 의 축합반응은, 상기 식 5 또는 6 의 반응기구로 진행되기 때문에 말단의 함불소 방향환 또는 페놀성 수산기 부분이 FAP 사슬과 결합된다. 여기에서, 열분해성 폴리머가 한쪽 말단에 함불소 방향환 또는 페놀성 수산기를 갖는 경우, 열분해성 폴리머가 그래프트된 FAP 를 얻을 수 있다. 열분해성 폴리머가 양 말단에 함불소 방향환 또는 페놀성 수산기를 갖는 경우, FAP 와 열분해성 폴리머의 블록체를 얻을 수 있다.
열분해성 폴리머는 열분해온도가 낮기 때문에 절연막 형성중의 가열에 의해 선택적으로 분해 제거되고, 제거된 부분이 공공이 된다. 열분해성 폴리머의 첨가량에 의해 공공율(空孔率)의 제어가 가능하다. 첨가량은 통상 FAP 에 대해 5 ∼ 80 용적% 가 바람직하고, 10 ∼ 70 용적% 가 더욱 바람직하다.
(2) 의 방법에서 본 발명의 FAP 에 분산되는 미립자로는 무기미립자가 바람직하다. 무기미립자로는 실리카, 금속 등의 미립자를 들 수 있다. 미립자는 제막 후의 산처리 등으로 용해 제거되고, 제거된 부분이 공공이 된다. 미립자의 첨가량에 의해 공공율의 제어가 가능하다. 첨가량은 통상 FAP 에 대해 5 ∼ 80 용적% 가 바람직하고, 10 ∼ 70 용적% 가 더욱 바람직하다.
본 발명에서의 FAP 도막은 다른 막과 복합화하는 것도 바람직하다. 예컨대, 반도체소자 패시베이션막 또는 반도체소자용 층간 절연막으로 적용하는 경우, FAP 도막의 하층 및/또는 상층에 무기막을 형성하는 것이 바람직하다.
무기막으로는 상압, 감압 또는 플라스마 화학기상성장 (CVD) 법이나 도포법으로 형성되는 막으로, 예컨대 실리콘 산화막에 필요에 따라 인 및/또는 붕소를 도프한 소위 PSG 막 또는 BPSG 막, 실리콘 산화막, 실리콘 질화막, 실리콘 산화질화막, SiOC 막, 스핀 온 글라스 (SOG) 막 등을 들 수 있다.
FAP 도막과 금속배선 사이에 무기막을 형성함으로써 금속배선의 벗겨짐을 방지하여 다마신형상 등의 에칭가공을 용이하게 할 수 있다. 무기막은 FAP 도막을 에치백법 또는 CMP (케미컬 메커니컬 폴리싱) 법에 의해 부분적으로 삭제한 후에 FAP 도막 상층에 형성하는 것도 바람직하다.
FAP 도막 상층에 무기막을 형성할 때, FAP 도막과 무기막의 밀착성이 충분하지 않거나 무기막 형성시에 막이 감소되는 등의 경우에는 다음 두가지 방법을 적용하는 것이 바람직하다.
(Ⅰ) 다층 무기막을 형성하는 방법: 실리콘 산화막을 플라스마 CVD 법에 의해 형성하는 경우, 사용되는 가스조성에 따라서는 막감소가 발생한다. 이 경우에는 우선 실리콘 질화막 또는 상압 CVD-실리콘 산화막 등의 막감소를 생기시키지않는 무기막의 박막을 형성한다. 이어서 이 박막을 배리어층으로 하여 실리콘 산화막을 형성한다.
(Ⅱ) FAP 도막을 에너지선으로 처리하는 방법: 에너지선에 의한 처리는 FAP 도막과 무기막의 계면의 밀착성을 향상시키는 효과를 갖는 경우가 있다. 에너지선 처리로는 광을 포함하는 광의의 의미에서의 전자파, 즉 UV 광조사, 레이저 광조사, 마이크로파 조사 등, 또는 전자선을 이용하는 처리, 즉 전자선 조사, 글로 방전처리, 코로나 방전처리, 플라스마처리 등의 처리가 예시된다.
이들 중 반도체소자의 양산공정에 바람직한 처리방법으로는 UV 광조사, 레이저 광조사, 코로나 방전처리, 플라스마처리를 들 수 있다.
플라스마처리는 반소체소자에 부여하는 대미지가 작아 보다 바람직하다. 플라스마처리를 실시하는 장치로는 장치내에 원하는 가스를 도입할 수 있고, 전장을 인가할 수 있는 것이면 특별히 한정되지 않고, 시판되고 있는 배럴형, 평행 평판형 플라스마 발생장치를 적절하게 사용할 수 있다. 플라스마장치에 도입되는 가스로는 표면을 유효하게 활성화시키는 것이면 특별히 한정되지 않고, 아르곤, 헬륨, 질소, 산소, 이들의 혼합가스 등을 들 수 있다. 또, FAP 도막 표면을 활성화시키고 막감소도 거의 없는 가스로는 질소와 산소의 혼합가스 및 질소가스를 들 수 있다.
본 발명을 이하의 실시예 및 비교예에 의해 구체적으로 설명하지만, 본 발명은 이들에 한정되지 않는다. 예 1 ∼ 17, 및 예 20 ∼ 22 가 실시예, 예 18, 19 가 비교예이다. 예 1 ∼ 4 는 함불소 방향족 화합물 (B) 의 합성, 예 5 ∼19 는 FAP 의 합성과 기본특성의 평가결과, 예 20 은 도막의 접착성평가, 예 21 이 공공도입 도막의 제조, 예 22 가 절연막특성의 평가이다. 또한, 분자량, 비유전율, Tg 는 하기 방법에 의해 측정하였다.
[분자량]
진공건조시킨 FAP 분말을 겔투과 크로마토그래피법 (GPC) 에 의해 폴리스티렌환산의 수평균분자량을 구하였다. 용매는 테트라히드로푸란을 사용하였다.
[비유전율]
진공건조시킨 FAP 분말을 시클로헥사논에 용해시켜 얻은 15% 용액을 포아 직경 0.2㎛ 의 PTFE 제 필터로 여과하였다. 얻어진 용액을 사용하여 실리콘 웨이퍼 상에 스핀 코팅하여 400 ∼ 700㎚ 의 도막을 형성하였다. 스핀조건은 2000rpm ×30 초로 하고, 핫플레이트에 의한 100℃ ×90 초, 200℃ ×90 초의 프리베이킹 후, 세로형 노 (爐) 에서 425℃ ×1 시간, 질소분위기하에서 파이널베이킹을 실시하였다. 계속해서 수은 프로버에 의한 CV 측정을 실시함으로써 1㎒ 의 비유전율을 구하였다. 도막두께는 분광 엘립소미터에 의해 구한 값을 사용하였다.
[Tg]
진공건조시킨 FAP 분말을 시클로헥사논에 용해시켜 얻은 15% 용액을 포아직경 0.2㎛ 의 PTFE 제 필터로 여과하였다. 얻어진 용액을 사용하여 실리콘 웨이퍼 상에 폿팅하고, 핫플레이트에 의한 200℃ ×300 초의 프리베이킹 후, 세로형 노에서 425℃ ×1 시간, 질소분위기하에서 파이널베이킹을 실시하였다. 실리콘웨이퍼로부터 도막을 긁어내어 DSC 측정을 실시하여 Tg 를 구하였다. DSC 측정에서 40℃ 내지 450℃ 까지, 질소분위기하, 승온속도 10℃/분의 조건에서 스캔을 실시하였다.
[예 1]
함불소 방향족 화합물 (B) (퍼플루오로(1,3,5-트리페닐벤젠)) 의 합성
딤로드 냉각기, 열전대(熱電對) 온도계, 적하깔대기, 기계식 교반기가 부착된 2L 파이렉스 (등록상표) 제 4 구 플라스크에 펜타플루오로브로모벤젠 148.2g 과 THF 500mL 를 주입하였다. 그 후, 빙욕하에서 강하게 교반하면서 0.96㏖/L 의 에틸마그네슘 브로마이드 THF 용액 600mL 를 서서히 적하하고, 적하종료 후 1 시간 동안 교반을 계속하였다. 이어서 고체 브롬화구리 (CuBr) 172.2g 을 첨가하여 1 시간 동안 교반한 후에, 디옥산 200mL 를 첨가하여 그대로 30 분 동안 교반하였다.
이어서, 1,3,5-트리요오드-2,4,6-트리플루오로벤젠 76.5g 을 첨가하고, 빙욕으로부터 오일조 상에서의 가열로 전환하여 교반하면서 16 시간 동안 환류를 계속하였다. 그 후 반응액으로부터 용매를 증류제거하여 농축하고, 잔류물을 수중에 넣어 급랭시켰다. 여과하여 모은 고체를 2000g 의 디클로로펜타플루오로프로판으로 추출한 후, 증발기로 건고(乾固)시키면 92g 의 황색 결정이 얻어졌다. 다시 이 결정을 헥산에 의해 재결정하고 40℃ 에서 진공건조시킴으로써 백색 결정을 얻었다. 매스 스펙트럼 및 NMR 분석에 의해, 본 결정은 퍼플루오로(1,3,5-트리페닐벤젠) (이하, 135TPB 라고 함) 로 동정되었다.
[예 2]
함불소 방향족 화합물 (B) (퍼플루오로(1,2,4-트리페닐벤젠)) 의 합성
1,3,5-트리요오드-2,4,6-트리플루오로벤젠을 1,2,4-트리요오드-3,5,6-트리플루오로벤젠으로 변경한 것 이외는, 예 1 과 동일한 방법으로 퍼플루오로(1,2,4-트리페닐벤젠) 의 백색 결정 (이하, 124TPB 라고 함) 을 얻었다.
[예 3]
함불소 방향족 화합물 (B) (하기 식으로 나타내는 화합물) 의 합성
딤로드 냉각기, 열전대 온도계, 적하깔대기, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크에 펜타플루오로브로모벤젠 5.94g 과 THF 30mL 를 주입하였다. 빙욕하에서 강하게 교반하면서 0.96㏖/L 의 에틸마그네슘 브로마이드 THF 용액 25mL 를 서서히 적하하고, 적하종료 후 1 시간 동안 교반을 계속하였다. 이어서, 합성예 1 에서 얻어진 135TPB 2.52g 을 첨가하고, 빙욕으로부터 오일조 상에서의 가열로 전환하여 교반하면서 60℃ 에서 12 시간 동안 가열을 실시하였다.
그 후, 반응액을 강하게 교반한 0.2N 염산수 300mL 내에 투입하면 백색 결정이 생성되었다. 이 결정을 순수로 3 회 세정한 후에 60℃ 에서 진공건조를 실시하여 5.1g 의 백색 결정을 얻었다. 가스 크로마토그래피, 매스 스펙트럼, 및 NMR 분석에 의해, 본 결정은 a, b 및 c 의 평균값이 모두 약 1.2 인 함불소 방향족 화합물 (이하, TPB-4P 라고 함) 로 동정되었다.
[예 4]
함불소 방향족 화합물 (B) (2,2’,2’’,2’’’,2’’’’,3,3’’’’,4,4’,4’’,4’’’,4’’’’,5,5’’’’,6,6’,6’’,6’’’,6’’’’-노나데카플루오로-5’,5’’’’-비스(펜타플루오로페닐)-5’’-(트리데카플루오로[1,1’:3’,1’’-터페닐]-5’-일)-1,1’:3’,1’’:3’’,1’’’:3’’’,1’’’’-퀸크페닐) 의 합성
딤로드 냉각기, 열전대 온도계, 적하깔대기, 기계식 교반기가 부착된 2L 파이렉스 (등록상표) 제 4 구 플라스크에 1-브로모-2,4,6-트리플루오로벤젠 126.6g 과 THF 400mL 를 주입하였다. 빙욕하에서 강하게 교반하면서 0.96㏖/L 의 에틸마그네슘 브로마이드 THF 용액 600mL 를 서서히 적하하고, 적하종료 후 1 시간 동안 교반을 계속하였다. 이어서, 고체 브롬화구리 (CuBr) 172.5g 을 첨가하여 1 시간 동안 교반한 후에, 디옥산 200mL 및 톨루엔 200mL 를 첨가하여 그대로 30 분 동안 교반하였다. 이어서, 1,3,5-트리브로모-2,4,6-트리플루오로벤젠 55.3g 을 첨가하고, 빙욕으로부터 오일조 상에서의 가열로 전환하여 교반하면서 38 시간 동안 환류를 계속하였다.
그 후 반응액으로부터 용매를 증류제거하여 농축하고, 잔류물을 수중에 넣어급냉시켰다. 여과하여 모은 고체를 2000g 의 디클로로펜타플루오로프로판으로 추출한 후, 증발기로 건고시키면 50.3g 의 황색 결정이 얻어졌다. NMR, 가스 크로마토그래피, 매스 스펙트럼 측정결과, 본 결정은 2,2’,2’’,4,4’,4’’,6,6’,6’’-노나플루오로-5’-(2,4,6-트리플루오로페닐)-1,1’:3’,1’’-터페닐로 동정되었다.
이어서, 딤로드 냉각기, 열전대 온도계, 적하깔대기, 기계식 교반기가 부착된 2L 파이렉스 (등록상표) 제 4 구 플라스크에 상기에서 얻어진 결정 41.8g 및 염화메틸렌 700mL 를 주입하여 교반하여 균일 용액으로 하고, 다시 브롬화알루미늄 3g 을 첨가하였다. 브롬 60g 및 염화메틸렌 200mL 를 적하깔대기에 주입하여 실온에서 강하게 교반하면서 서서히 플라스크중에 적하하였다. 적하종료 후 오일조 상에서 가온하여 3 시간 동안 환류시켰다. 실온까지 냉각한 후에 1L 의 포화티오황산나트륨 수용액, 이어서 500mL 의 포화염화나트륨 수용액으로 2 회 세정하고 유기층을 황산마그네슘으로 건조시켰다.
용매를 증류제거하고, 남은 황색 결정을 헥산에 의해 재결정함으로써 58.5g 의 미황색 결정을 얻었다. NMR, 가스 크로마토그래피, 매스 스펙트럼 측정결과, 본 결정은 헥산브로모체인 3,3’’,5,5’’-테트라브로모-5’-(3,5-디브로모-2,4,6-트리플루오로페닐)-2,2’,2’’,4,4’,4’’,6,6’,6’’-노나플루오로-1,1’:3’,1’’-터페닐로 동정되었다.
이어서, 딤로드 냉각기, 열전대 온도계, 적하깔대기, 기계식 교반기가 부착된 1L 파이렉스 (등록상표) 제 4 구 플라스크에 펜타플루오로브로모벤젠 74.1g 과THF 200mL 를 주입하였다. 빙욕하에서 강하게 교반하면서 0.96㏖/L 의 에틸마그네슘 브로마이드 THF 용액 300mL 를 서서히 적하하고, 적하종료 후 1 시간 동안 교반을 계속하였다. 이어서, 고체 브롬화구리 (CuBr) 86.1g 을 첨가하여 1 시간 동안 교반한 후에, 디옥산 100mL 및 톨루엔 200mL 를 첨가하여 그대로 30 분 동안 교반하였다. 이어서, 상기에서 얻어진 헥산브로모체 37.3g 을 첨가하고, 빙욕으로부터 오일조 상에서의 가열로 전환하여 교반하면서 45 시간 동안 환류를 계속하였다.
그 후 반응액으로부터 용매를 증류제거하여 농축하고, 잔류물을 수중에 넣어 급랭시켰다. 여과하여 모은 고체를 1500g 의 클로로포름으로 추출한 후, 증발기로 건고시키면 44.1g 의 황색 결정이 얻어졌다. 다시 톨루엔/헥산 혼합용매에 의해 재결정을 2 회 실시하고, 60℃ 에서 진공건조를 실시함으로써 22.9g 의 백색 결정을 얻었다. NMR, 가스 크로마토그래피, 매스 스펙트럼 측정결과, 본 결정은 하기 식에 나타내는 2,2’,2’’,2’’’,2’’’’,3,3’’’’,4,4’,4’’,4’’’,4’’’’,5,5’’’’,6,6’,6’’,6’’’,6’’’’-노나데카플루오로-5,5’’’’-비스(펜타플루오로페닐)-5’’-(트리데카플루오로[1,1’:3’,1’’-터페닐]-5’-일)-1,1’:3’,1’’:3’’,1’’’:3’’’,1’’’’-퀸크페닐 (이하, TPB-35P 라고 함) 로 동정되었다. TPB-35P 의 분자량은 1700 이었다.
[예 5]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 을 사용한 ① 의 제조방법에 의한 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크에, 예 3 에서 얻어진 TPB-4P 2.19g, 화합물 (Y1) 로서 4-(4-플루오로페닐에티닐)페놀 1.37g, N,N-디메틸아세트아미드 (이하, DMAc 라고 함) 35g, 톨루엔 15g 을 주입하였다. 교반하면서 오일조 상에서 가온하고, 액온이 80℃ 가 된 시점에서 탄산칼륨 1.84g 을 신속하게 첨가하여 교반을 계속하면서 120℃ 에서 4 시간 동안 가열하였다.
그 후, 반응액을 실온으로 냉각하여 강하게 교반한 아세트산 7.1g 을 함유하는 순수/메탄올 (용적비 약 1/1) 혼합액 400mL 에 서서히 투입하면 미갈색 분말상물이 침전되었다. 이 미갈색 분말상물을 여과하고, 다시 순수로 5 회 세정한 후 80℃ 에서 15 시간 동안 진공건조를 실시하여 2.76g 의 백회색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 3.0 개의 에티닐기를 갖고, 분자량은 1600, 비유전율은 2.4 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 6]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 을 사용한 ① 의 제조방법에 의한 FAP 의 합성
4-(4-플루오로페닐에티닐)페놀 1.37g 대신에 4-페닐에티닐페놀 1.15g 을 사용한 것 이외는, 예 5 와 동일하게 하여 2.5g 의 회백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 2.8 개의 에티닐기를 갖고, 분자량은 1500, 비유전율은 2.4 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 7]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 을 사용한 ① 의 제조방법에 의한 FAP 의 합성
TPB-4P 2.19g 대신에 예 4 에서 얻어진 TPB-35P 4.56g 을 사용하고, 4-(4-플루오로페닐에티닐)페놀의 사용량을 1.9g 으로 한 것 이외는, 예 5 와 동일하게 하여 4.89g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 3.1 개의 에티닐기를 갖고, 분자량은 2200, 비유전율은 2.3 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 8]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의제조방법에 의한 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크에, 예 1 에서 얻어진 135TPB 3.78g, 화합물 (Y2) 로서 1,3-디히드록시벤젠 0.33g, DMAc 60g, 톨루엔 5g, 및 탄산칼륨 2.21g 을 주입하였다. 오일조 상에서 교반하면서 5 시간 동안 130℃ 에서 가열한 후에, 화합물 (Y1) 로서 4-(4-플루오로페닐에티닐)페놀 2.12g 을 투입하여 다시 3 시간 동안 120℃ 에서 가열하였다.
그 후, 반응액을 실온으로 냉각하여 강하게 교반한 아세트산 8g 을 함유하는 순수/메탄올 (용적비 약 1/1) 혼합액 500mL 에 서서히 투입하면 갈색 분말상물이 침전되었다. 이 갈색 분말상물을 여과하고, 다시 순수로 5 회 세정한 후에 80℃ 에서 15 시간 동안 진공건조를 실시하여 5.3g 의 미갈색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 3.7 개의 에티닐기를 갖고, 분자량은 2200, 비유전율은 2.5 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 9]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의 제조방법에 의한 FAP 의 합성
1,3-디히드록시벤젠의 사용량을 0.50g 으로 한 것 이외는, 예 8 과 동일하게 하여 5.5g 의 미갈색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 8.3 개의 에티닐기를 갖고, 분자량은 5000, 비유전율은 2.4 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 10]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의 제조방법에 의한 FAP 의 합성
1,3-디히드록시벤젠 0.33g 대신에 9,9-비스(4-히드록시페닐)플루오렌 1.40g 을 사용한 것 이외는, 예 8 과 동일하게 하여 5.8g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 8.4 개의 에티닐기를 갖고, 분자량은 5800, 비유전율은 2.3 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 11]
함불소 방향족 화합물 (B) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의 제조방법에 의한 FAP 의 합성
135 TPB 3.78g 대신에 예 2 에서 얻어진 124TPB 3.79g 을 사용한 것 이외는, 예 10 과 동일하게 하여 5.3g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 11.8 개의 에티닐기를 갖고, 분자량은 8200, 비유전율은 2.4 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 12]
함불소 방향족 화합물 (B) 및 화합물 (W) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의 제조방법에 의한 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크를 질소치환한 후에, 135TPB 3.78g, 화합물 (Y2) 로서 1,3-디히드록시벤젠 0.99g, 화합물 (W) 로서 퍼플루오로비페닐 2.00g, N-메틸피롤리돈 60g, 추가로 탄산칼륨 1.86g 을 주입하였다. 교반하면서 오일조 상에서 15 시간 동안 160℃ 에서 가열한 후, 탄산칼륨 0.85g, 및 화합물 (Y1) 로서 4-(4-플루오로페닐에티닐)페놀 1.91g 을 투입하여, 다시 120℃ 에서 3 시간 동안 가열하였다.
그 후, 반응액을 실온으로 냉각하여 강하게 교반한 아세트산 8g 을 함유하는 순수/메탄올 (용적비 약 1/1) 혼합액 400mL 에 서서히 투입하면 갈색 분말상물이 침전되었다. 이 갈색 분말상물을 여과하고, 다시 순수로 5 회 세정한 후에 80℃ 에서 15 시간 동안 진공건조를 실시하여 6.8g 의 미갈색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 9.6 개의 에티닐기를 갖고, 분자량은 8700, 비유전율은 2.5, Tg 는 384℃ 이었다.
[예 13]
함불소 방향족 화합물 (B) 및 화합물 (W) 과 화합물 (Y1) 및 화합물 (Y2) 을 사용한 ② 의 제조방법에 의한 FAP 의 합성
1,3-디히드록시벤젠 0.99g 대신에 디히드록시-2,2-디페닐헥사플루오로프로판 2.02g 및 1,2,4-트리히드록시벤젠 0.40g 을 혼합하여 사용한 것 이외는, 예 12 와 동일하게 하여 8.7g 의 갈색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 16.8 개의 에티닐기를 갖고, 분자량은 17000, 비유전율은 2.4 이었다.DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 14]
함불소 방향족 화합물 (B) 및 방향족 화합물 (Z) 과 화합물 (Y2) 을 사용한 ③ 의 제조방법에 의한 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크를 질소치환한 후에, 135TPB 2.52g, 화합물 (Z) 로서 4-페닐에티닐노나플루오로비페닐 1.66g, 화합물 (Y2) 로서 1,3,5-트리히드록시벤젠 0.51g, DMAc 40g, 추가로 탄산칼륨 1.25g 을 주입하였다. 오일조 상에서 교반하면서 6 시간 동안 150℃ 에서 가열하였다.
반응액을 실온으로 냉각하여 강하게 교반한 0.2N 염산수 200mL 에 서서히 투입하면 미갈색 분말상물이 침전되었다. 이 미갈색 분말상물을 여과하여 약 50cc 의 테트라히드로푸란에 용해시켰다. 이 용액을 강하게 교반한 순수/메탄올 (용적비 약 1/1) 혼합액 300mL 에 서서히 투입함으로써 얻어진 회백색 침전을, 순수로 5 회 세정한 후에 80℃ 에서 20 시간 동안 진공건조를 실시하여 4.2g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 13.5 개의 에티닐기를 갖고, 분자량은 15000, 비유전율은 2.3 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 15]
함불소 방향족 화합물 (B) 및 방향족 화합물 (Z) 과 화합물 (Y2) 을 사용한 ③ 의 제조방법에 의한 FAP 의 합성
1,3,5-트리히드록시벤젠 0.51g 대신에 디히드록시-2,2-디페닐헥사플루오로프로판 2.02g 을 사용한 것 이외는, 예 14 와 동일하게 하여 5.5g 의 갈색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 8.7 개의 에티닐기를 갖고, 분자량은 13000, 비유전율은 2.4 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 16]
함불소 방향족 화합물 (B) 및 방향족 화합물 (Z) 과 화합물 (Y2) 을 사용한 ③ 의 제조방법에 의한 FAP 의 합성
4-페닐에티닐노나플루오로비페닐 1.66g 대신에 데카플루오로트란 1.52g 을 1,3,5-트리히드록시벤젠 0.51g 대신에 9,9-비스(4-히드록시페닐)플루오렌 1.95g 을 사용한 것 이외는, 예 14 와 동일하게 하여 5.2g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 6.6 개의 에티닐기를 갖고, 분자량은 9000, 비유전율은 2.3 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 17]
함불소 방향족 화합물 (B), 방향족 화합물 (Z) 및 화합물 (W) 과 화합물 (Y2) 을 사용한 ③ 의 제조방법에 의한 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크를 질소치환한 후에, 135TPB 2.52g, 화합물 (Z) 로서 4-페닐에티닐노나플루오로비페닐 1.42g, 화합물 (Y2) 로서 1,3,5-트리히드록시벤젠0.67g, 화합물 (W) 로서 퍼플루오로비페닐 0.66g, DMAc 40g, 추가로 탄산칼륨 1.30g 을 주입하였다. 오일조 상에서 교반하면서 6 시간 동안 130℃ 에서 가열하였다.
반응액을 실온으로 냉각하여 강하게 교반한 0.2N 염산수 200mL 에 서서히 투입하면 미갈색 분말상물이 침전되었다. 이 미갈색 분말상물을 여과하여 약 50cc 의 테트라히드로푸란에 용해시켰다. 이 용액을 강하게 교반한 순수/메탄올 (용적비 약 1/1) 혼합액 300mL 에 서서히 투입함으로써 얻어진 회백색 침전을, 순수로 5 회 세정한 후에 80℃ 에서 20 시간 동안 진공건조를 실시하여 4.5g 의 백색 분말상 FAP 를 얻었다. 얻어진 FAP 는 에테르결합 및 평균 6.8 개의 에티닐기를 갖고, 분자량은 9800, 비유전율은 2.3 이었다. DSC 측정에서 전이점이나 발/흡열피크는 관찰되지 않고, Tg 는 450℃ 이상이었다.
[예 18 (비교예)]
공지된 FAP 의 합성
딤로드 냉각기, 열전대 온도계, 기계식 교반기가 부착된 100mL 파이렉스 (등록상표) 제 4 구 플라스크를 질소치환한 후에, 퍼플루오로비페닐 2.51g, 디히드록시-2,2-디페닐헥사플루오로프로판 1.68g, DMAc 40g 및 톨루엔 5g 을 주입하고, 추가로 탄산칼륨 1.66g 을 주입하였다. 오일조 상에서 교반하면서 5 시간 동안 120℃ 에서 가열한 후에, 탄산칼륨 0.7g 과 페닐에티닐페놀 1.05g 을 투입하여 다시 120℃ 에서 3 시간 동안 가열하였다.
반응액을 실온으로 냉각하여 강하게 교반한 아세트산 8g 을 함유하는 순수/메탄올 (용적비 약 1/1) 혼합액 500mL 에 서서히 투입하면 미갈색 분말상물이 침전되었다. 이 미갈색 분말상물을 여과하고, 다시 순수로 5 회 세정한 후에 80℃ 에서 15 시간 동안 진공건조를 실시하여 4.2g 의 미갈색 분말상 FAP 를 얻었다. 얻어진 FAP 의 분자량은 5100, 비유전율은 2.8, Tg 는 295℃ 이었다.
[예 19 (비교예)]
가교성 관능기를 갖지 않는 FAP 의 특성평가
예 4 에서 얻어진 분자량 1700 인 TPB-35P 의 비유전율 및 Tg 는 200℃ 의 프리베이킹 후의 막에 대해서는 각각 2.4 및 121℃ 이었다. 425℃ 의 파이널베이킹을 실시하면 막이 모두 휘발되어 소멸되었다.
[예 20]
FPA 도막과 기재의 접착성
예 10 에서 얻어진 FAP 의 시클로헥사논 15% 용액 (이하, 용액 10 이라고 함) 의 일부를 꺼내어, 아미노페닐트리메톡시실란을 FAP 에 대해 3 질량% 첨가하여 용액 10-1 을 얻었다. 또, 아미노페닐트리메톡시실란 대신에 γ-아미노프로필트리에톡시실란을 FAP 에 대해 3 질량% 첨가하여 용액 10-2 를 얻었다. 이어서 막두께 200㎚ 의 p-SiN (모노실란, 암모니아 및 질소 혼합가스를 원료로 하는 플라스마 CVD 법에 의해 제막), 막두께 300㎚ 의 p-SiO (모노실란 및 이질화산소 혼합가스를 원료로 하는 플라스마 CVD 법에 의해 제막), 막두께 500㎚ 의 Al (스퍼터링법에 의해 제막), 막두께 50㎚ 의 TiN (스퍼터링법에 의해 제막) 을 각각 형성한 4 인치 실리콘 웨이퍼 상에 용액 10, 용액 10-1 및 용액 10-2 를 스핀 코팅함으로써도막을 형성하였다.
스핀회전수는 도막두께가 500㎚ 가 되도록 조정하고, 핫플레이트에 의한 100℃ ×90 초, 200℃ ×90 초의 프리베이킹 후, 세로형 노에서 425℃ ×1 시간, 질소분위기의 파이널베이킹을 실시하였다. 이들 샘플에 대해 JIS D0202 에 기재된 바둑판눈금 테이프 박리테스트에 의해 FAP 도막과 기재의 접착성을 평가하였다.
용액 10 에서 얻어진 도막은 p-SiO, Al 상의 도막에 박리는 관찰되지 않았다. p-SiN 상의 도막에 형성된 바둑판눈금 중 20% 가 박리되고, Ti 상의 도막에 형성된 바둑판눈금 중 80% 가 박리되었다.
용액 10-1 에서 얻어진 도막은 p-SiN, p-SiO, Al, TiN 상 중 어떤 도막에서도 박리는 관찰되지 않았다.
용액 10-2 에서 얻어진 도막은 p-SiN, p-SiO, Al,TiN 상 중 어떤 도막에서도 박리는 관찰되지 않았다.
본 예에 의해 아미노실란과 같은 접착촉진제가 FAP 의 접착성 향상에 효과가 있음이 밝혀졌다.
[예 21]
공공을 함유하는 FAP 도막의 제조
예 14 에서 조제한 FAP 의 시클로헥사논 15% 용액에 수평균분자량 3000 의 폴리(ε-카프로락톤) 을 FAP 에 대해 25 질량% 첨가하여 용해시킨 후, PTFE 제 필터 (포아직경 0.2㎛) 로 여과하여 균일 투명한 용액 (이하, 용액 14 라고 함) 을 조제하였다. 용액 14 를 4 인치 실리콘 웨이퍼 상에 스핀 코팅, 이어서 베이킹을 실시하여 도막을 형성하였다. 스핀조건은 2500rpm×30 초로 하고, 예 20 과 동일하게 하여 프리베이킹, 파이널베이킹하였다. 얻어진 도막의 단면을 SEM 관찰한 결과, 나노미터 오더의 미소한 공공의 존재가 확인되었다. 도막의 비유전율은 1.8 이었다. 또, 바둑판눈금 테이프 박리테스트에 의한 박리나 막의 파괴는 관찰되지 않았다.
[예 22]
층간 절연막으로서의 평가
용액 10, 용액 10-1, 용액 14 및 예 18 에서 조제한 시클로헥사논 15% 용액 (이하, 용액 18 이라고 함) 에 의해, 이하의 방법으로 실리콘 웨이퍼/p-SiO (300㎚)/FAP 도막 (500㎚)/p-SiN (50㎚)/p-SiO (500㎚) 의 적층막을 제조하였다.
p-SiO 막 (막두께 300㎚) 을 형성한 4 인치 실리콘 웨이퍼 상에 용액을 스핀 코팅하여 막두께 500㎚ 의 FAP 도막을 예 20 과 동일하게 하여 형성하였다. 이어서, 모노실란, 암모니아 및 질소 혼합가스에 의해 실리콘 질화막을 50㎚ 형성하고, 그 후 모노실란과 이질화산소 혼합가스에 의해 500㎚ 두께의 실리콘 산화막을 형성하였다.
얻어진 적층체를 수소분위기하, 425℃ 에서 60 분 동안 베이킹을 실시하여 열스트레스에 의한 크랙 내성을 금속현미경으로 조사하였다. 결과를 이하에 나타낸다.
용액 10 으로 형성된 적층체는 크랙 발생 및 그 외의 결함은 없었다.
용액 10-1 로 형성된 적층체는 크랙 발생 및 그 외의 결함은 없었다.
용액 14 로 형성된 적층체는 크랙 발생 및 그 외의 결함은 없었다.
용액 18 로 형성된 적층체는 1㎛ 정도 폭의 크랙이 전면에 발생하고, 또한 일부에 FAP/p-SiN 간의 박리가 관찰되었다.
본 실시예에서 본 발명의 FAP 는 공지된 FAP 보다 무기막의 적층이 용이하여 층간 절연막으로서의 적합성이 우수함이 판명되었다.
본 발명의 FAP 는 내열성이 우수하며, 특히 유리전이온도 (Tg) 가 높고 비유전율이 낮다. 이 FAP 는 전자디바이스용 절연막 및 다층 배선판용 절연막으로서의 적용성이 우수하다. 또, 이 절연막은 비유전율이 낮고, 소자의 신호전파 지연시간의 저감 등의 고성능화를 달성할 수 있고, 또한 고온역에서 우수한 기계물성에 의한 고신뢰성화를 도모할 수 있다.

Claims (6)

  1. 하기 ①, ② 및 ③ 의 방법으로 이루어지는 군에서 선택되는 1 종 이상의 방법으로, 하기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 로 제조되는 1 분자중에 2 개 이상의 가교성 관능기 (A) 를 함유하고, 수평균분자량이 1 ×103∼ 5 ×105인 에테르결합을 갖는 함불소 방향족 폴리머.
    [화학식 1]
    여기에서, m 및 n 은 각각 독립적으로 1 ∼ 4 의 정수, p, q 및 r 은 각각 독립적으로 0 또는 1 ∼ 5 의 정수, a, b 및 c 는 각각 독립적으로 0 또는 1 ∼ 3 의 정수를 나타내고, 2≤m+n≤5 이다.
    ① 상기 식 1 로 나타내는 분기구조의 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
    ② 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 및 페놀성 수산기를 갖는 화합물 (Y1) 과, 가교성 관능기를 갖지 않고, 페놀성 수산기를 2 개 이상갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
    ③ 상기 함불소 방향족 화합물 (B) 과, 가교성 관능기 (A) 를 갖고, 방향핵에 불소치환기를 갖는 방향족 화합물 (Z) 과, 가교성 관능기를 갖지 않고, 2 개 이상의 페놀성 수산기를 갖는 화합물 (Y2) 을 탈 HF 제 존재하에서 축합반응시키는 방법.
  2. 제 1 항에 있어서, 상기 함불소 방향족 화합물 (B) 이, 하기 식 2 로 나타내는 퍼플루오로(1,3,5-트리페닐벤젠) 또는 퍼플루오로(1,2,5-트리페닐벤젠) 인 함불소 방향족 폴리머.
    [화학식 2]
  3. 제 1 항 또는 제 2 항에 있어서, 상기 가교성 관능기 (A) 가 에티닐기인 함불소 방향족 폴리머.
  4. 제 1 항, 제 2 항 또는 제 3 항에 기재된 함불소 방향족 폴리머로 이루어지는 전자디바이스용 절연막.
  5. 제 1 항, 제 2 항 또는 제 3 항에 기재된 함불소 방향족 폴리머로 이루어지는 다층 배선판용 절연막.
  6. 제 4 항 또는 제 5 항에 있어서, 절연막중에 공공을 함유하는 절연막.
KR1020037016369A 2001-07-12 2002-06-28 함불소 방향족 폴리머 및 그 용도 KR100870225B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001212379 2001-07-12
JPJP-P-2001-00212379 2001-07-12
PCT/JP2002/006589 WO2003008483A1 (en) 2001-07-12 2002-06-28 Aromatic fluoropolymer and use thereof

Publications (2)

Publication Number Publication Date
KR20040027518A true KR20040027518A (ko) 2004-04-01
KR100870225B1 KR100870225B1 (ko) 2008-11-24

Family

ID=19047547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020037016369A KR100870225B1 (ko) 2001-07-12 2002-06-28 함불소 방향족 폴리머 및 그 용도

Country Status (8)

Country Link
US (1) US6881811B2 (ko)
JP (1) JP4206925B2 (ko)
KR (1) KR100870225B1 (ko)
CN (1) CN100519623C (ko)
DE (1) DE10297034B4 (ko)
RU (1) RU2276159C2 (ko)
TW (1) TWI237039B (ko)
WO (1) WO2003008483A1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356582A (ja) * 2003-05-30 2004-12-16 Asahi Glass Co Ltd 積層体
JP4501391B2 (ja) * 2003-09-30 2010-07-14 旭硝子株式会社 架橋性含フッ素芳香族プレポリマー及びその用途
CN101203546B (zh) * 2005-06-24 2012-02-01 旭硝子株式会社 交联性含氟芳香族预聚物及其用途
JP4730436B2 (ja) * 2006-03-16 2011-07-20 旭硝子株式会社 ネガ型感光性含フッ素芳香族系樹脂組成物
ATE518901T1 (de) 2006-06-02 2011-08-15 Asahi Glass Co Ltd Vernetzbares prepolymer, herstellungsverfahren dafür und verwendung davon
JP5181444B2 (ja) * 2006-08-31 2013-04-10 旭硝子株式会社 架橋性含フッ素芳香族プレポリマーおよびその硬化物
JP2009026810A (ja) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd パターン形成方法
JP5245378B2 (ja) * 2007-11-30 2013-07-24 旭硝子株式会社 架橋性プレポリマー、その製造方法および用途
WO2009154254A1 (ja) 2008-06-19 2009-12-23 旭硝子株式会社 硬化性組成物およびそれを用いた硬化膜
US8492507B2 (en) * 2008-09-23 2013-07-23 Nexam Chemical Ab Acetylenic polyamide
KR101558536B1 (ko) * 2008-12-16 2015-10-08 삼성전자주식회사 하이퍼브랜치 폴리머, 이를 포함하는 연료전지용 전극, 이를 포함하는 연료전지용 전해질막 및 이를 채용한 연료전지
CN102301264A (zh) 2009-03-18 2011-12-28 旭硝子株式会社 光波导
GB2471322B (en) * 2009-06-26 2012-12-12 Tyco Electronics Ltd Uk High performance, high temperature lightweight insulating film, tape or sheath
EP2473538B1 (en) 2009-08-31 2017-07-26 Dow Global Technologies LLC Catalyst and process for polymerizing an olefin and polyolefin prepared thereby
CN102892800B (zh) 2010-05-14 2015-05-13 聂克斯姆化学有限公司 交联催化
CN102947359B (zh) 2010-06-23 2014-12-24 旭硝子株式会社 固化性组合物和固化膜的制造方法
CN103946326A (zh) * 2011-11-18 2014-07-23 旭硝子株式会社 固化性组合物、涂布用组合物、固化膜、激光加工方法及多层布线结构体的制造方法
RU2497319C1 (ru) * 2012-02-28 2013-10-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "Высшая школа экономики" Печатная плата для бортовой радиоэлектронной аппаратуры космических аппаратов

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114780A (en) * 1990-04-17 1992-05-19 Raychem Corporation Electronic articles containing a fluorinated poly(arylene ether) dielectric
US5155175A (en) * 1989-12-08 1992-10-13 Intellectual Property Law Dept. Crosslinkable fluorinated polyarylene ether composition
US5115082A (en) * 1990-04-17 1992-05-19 Raychem Corporation Fluorinated poly(arylene ether)
US5959157A (en) * 1995-06-26 1999-09-28 Alliedsignal, Inc. Process for making hydroxy-substituted ethynylated biphenyl compounds
US5874516A (en) * 1995-07-13 1999-02-23 Air Products And Chemicals, Inc. Nonfunctionalized poly(arylene ethers)
JP3969779B2 (ja) * 1997-03-05 2007-09-05 沖電気工業株式会社 有機絶縁膜材料の製造方法
KR19990024596A (ko) * 1997-09-04 1999-04-06 윤종용 광통신용 폴리아릴렌에테르
JP3716732B2 (ja) * 1999-12-27 2005-11-16 株式会社豊田中央研究所 有機化合物及びそれを用いた素子
JP2001247496A (ja) 2000-03-09 2001-09-11 Nippon Shokubai Co Ltd 含ハロゲン芳香族化合物
JP4682394B2 (ja) * 2000-04-26 2011-05-11 旭硝子株式会社 光学樹脂組成物およびその用途
JP4092901B2 (ja) * 2000-10-30 2008-05-28 株式会社豊田中央研究所 有機電界発光素子

Also Published As

Publication number Publication date
RU2004103979A (ru) 2005-04-10
RU2276159C2 (ru) 2006-05-10
WO2003008483A1 (en) 2003-01-30
US20040147710A1 (en) 2004-07-29
TWI237039B (en) 2005-08-01
CN100519623C (zh) 2009-07-29
CN1525988A (zh) 2004-09-01
JPWO2003008483A1 (ja) 2004-11-11
KR100870225B1 (ko) 2008-11-24
DE10297034T5 (de) 2004-07-29
US6881811B2 (en) 2005-04-19
JP4206925B2 (ja) 2009-01-14
DE10297034B4 (de) 2015-05-21

Similar Documents

Publication Publication Date Title
KR100870225B1 (ko) 함불소 방향족 폴리머 및 그 용도
US8168742B2 (en) Crosslinkable fluorinated aromatic prepolymer and its uses
KR101250108B1 (ko) 가교성 함불소 방향족 프레폴리머 및 그 용도
US6060170A (en) Functional groups for thermal crosslinking of polymeric systems
US6124421A (en) Poly(arylene ether) compositions and methods of manufacture thereof
KR20080104308A (ko) 네거티브형 감광성 함불소 방향족계 수지 조성물
US8530596B2 (en) Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having same
US6303733B1 (en) Poly(arylene ether) homopolymer compositions and methods of manufacture thereof
US7772344B2 (en) Insulating film-forming composition
JP4843870B2 (ja) 新規ポリアリーレンエーテル、その製造方法及びその用途
JP2003342411A (ja) 多孔質ナノコンポジット薄膜及びその形成方法
JP2005529983A (ja) 有機組成物
US7534292B2 (en) Film-forming composition, insulating film obtained from the composition and electronic device having the same
JP5239968B2 (ja) 樹脂組成物、樹脂膜及び半導体装置
JP2010070618A (ja) 絶縁膜形成用組成物、絶縁膜、および電子デバイス
JPH06271771A (ja) シルセスキオキサンポリマー組成物
JPH06271772A (ja) シルセスキオキサンポリマー組成物
JPH06122768A (ja) 新規な共重合体およびその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121019

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131017

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141112

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151106

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161111

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171110

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee