WO2003000966A1 - Composition de derive de cellulose thermoplastique et fibre contenant cette composition - Google Patents

Composition de derive de cellulose thermoplastique et fibre contenant cette composition Download PDF

Info

Publication number
WO2003000966A1
WO2003000966A1 PCT/JP2002/006336 JP0206336W WO03000966A1 WO 2003000966 A1 WO2003000966 A1 WO 2003000966A1 JP 0206336 W JP0206336 W JP 0206336W WO 03000966 A1 WO03000966 A1 WO 03000966A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cellulose derivative
weight
derivative composition
spinning
Prior art date
Application number
PCT/JP2002/006336
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Aranishi
Hiroyuki Yamada
Yuuhei Maeda
Hiroshi Takahashi
Misa Ozaki
Yoshiyuki Nishio
Mariko Yoshioka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001193179A external-priority patent/JP2003013324A/ja
Priority claimed from JP2001270381A external-priority patent/JP2003082525A/ja
Priority claimed from JP2002049627A external-priority patent/JP2003246802A/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to ES02738793.5T priority Critical patent/ES2620407T3/es
Priority to US10/432,191 priority patent/US6984631B2/en
Priority to EP02738793.5A priority patent/EP1335045B1/en
Priority to CNB028014731A priority patent/CN100381622C/zh
Priority to KR1020027017320A priority patent/KR100928887B1/ko
Publication of WO2003000966A1 publication Critical patent/WO2003000966A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/16Preparation of mixed organic cellulose esters, e.g. cellulose aceto-formate or cellulose aceto-propionate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention relates to a thermoplastic cellulose derivative composition and a fiber comprising the same.
  • the present invention relates to a thermoplastic cellulose derivative composition having good thermal fluidity and capable of melt spinning, a fiber comprising the composition, and a method for producing the same. More specifically, for example, a cellulose ester composition having an aliphatic polyester side chain and a fiber composed thereof, or a fiber composed of a cellulose mixed ester composition containing a plasticizer, and a low tensile strength obtained by converging their yarns
  • the present invention relates to a method for producing a fiber to be wound by the method. ⁇ surgery
  • Cellulose materials have received a great deal of attention these days as the most mass-produced biomass materials on the planet and as biodegradable materials in the environment.
  • Cellulose has been used as a fiber for a long time since it is spun from short fibers such as cotton and hemp produced in nature.
  • cellulose is dissolved in a special solvent system such as rayon or lyocell and spinning is performed by wet spinning, or cellulose acetate is used.
  • a method of dissolving a cellulose derivative in an organic solvent such as methylene chloride acetone and spinning the solvent while evaporating the solvent is a dry spinning method.
  • the fibers obtained by these wet spinning or dry spinning methods are: not only have the problem of low productivity due to the low spinning speed, but also carbon disulfide, acetone, methylene chloride, etc. used in fiber production.
  • carbon disulfide, acetone, methylene chloride, etc. used in fiber production.
  • organic drugs may have a negative impact on the environment, so it is not necessarily an eco-friendly fiber.
  • the melt-spinnable thermoplastic cellulose composition and the fiber comprising the same can be found in JP-A-50-46921, JP-A-54-42420, and JP-A-62-250215.
  • a cellulose composition comprising cellulose acetate and a large amount of a water-soluble low-molecular-weight plasticizer such as glycerin-polyethylene dalicol and a fiber comprising the same are known. ing.
  • a water-soluble low-molecular-weight plasticizer such as glycerin-polyethylene dalicol
  • a fiber comprising the same.
  • the composition contains a low molecular weight plasticizer at a very high rate of 50 to 59% by weight in the composition, heating at a spinning temperature is performed. The weight loss was extremely large, the plasticizer volatilized violently, and the spinnability was low.
  • the fiber has an extremely large outer diameter of 200 to 300 ⁇ m, and is used as a multifilament for clothing. It has not been a technology with good heat flow and spinnability enough to be used as a material.
  • cellulose acetate is plasticized by blending a large amount of a low molecular weight plasticizer such as dimethyl triacetate phthalate.
  • a low molecular weight plasticizer such as dimethyl triacetate phthalate.
  • One plastic composition is known, but this composition contains 30 to 50 weight of plasticizer. / 0 and containing, melt properties are not good, also because it has a problem that pre-one Doau bets of the added plasticizer is generated, it can not be used for melt spinning.
  • a cellulose acetate composition externally plasticized by adding an ⁇ -force prolactone derivative or the like as a plasticizer and a fiber obtained by melt-spinning the composition are disclosed in JP-A-9-78339, It is disclosed in JP-A-9-2914, JP-A-10-317228, JP-A-11-506175, and the like.
  • the compositions described in these publications relate to a technique of adding an external plasticizer to cellulose acetate and plasticizing it. It is necessary to contain a large amount of a low-molecular-weight external plasticizer.
  • the external plasticizer volatilizes during melt spinning.
  • the external plasticizer may bleed out in a heated step such as heat setting or dyeing processing, or when used as a final product. You.
  • Japanese Patent Application Laid-Open No. 6-287279 discloses a method for producing a cellulose derivative using lactide (lactide), which is a dimer of lactic acid, as a monomer to be grafted.
  • lactide lactide
  • Cellulose acetate obtained by grafting these lactides does not have a slimy feeling, but when the amount of grafted side chain polylactic acid is too large, there is a problem that heat resistance is deteriorated and brittleness is increased.
  • the rough polymer exemplified in the specification of JP-A-6-287279 as much as 900 to 4900 wt% of L-lactide is used based on cellulose acetate, and the obtained polymer composition is 200 ° C.
  • the melt viscosity was extremely low. In this case, when the composition was melt-spun, there was a problem that the back pressure of the spinneret was too low, resulting in poor spinnability.
  • JP-A-11-240942 discloses a cellulose ester obtained by grafting lactide or a mixed composition of a cellulose ester and a plasticizer.
  • this composition contains a low molecular weight plasticizer, there is a problem that the plasticizer bleeds out during use of the product.
  • Japanese Patent Application Laid-Open Nos. 9-78339 and 9-291414 disclose E- force prolacton inducers.
  • a technique relating to the melt spinning of cellulose acetate plasticized by the addition of the same is disclosed.
  • these methods are production methods that use high-speed air, so that the take-up speed tends to fluctuate due to fluctuations in air pressure and the resulting fineness of the fibers becomes large. It is not yet a satisfactory spinning method when considering use.
  • these methods are based on “drawing and opening with high-speed air.
  • thermoplastic cellulose derivative composition of the present invention and a fiber comprising the same are mainly composed of a cellulose ester having an aliphatic polyester side chain having a repeating unit having 2 to 5 carbon atoms, and heated at 200 ° C.
  • the thermoplastic cellulose derivative composition has excellent heat resistance, heat fluidity and spinnability, and can be melt-spun.
  • the melt viscosity at 200 ° C. and 100 sec- 1 is 5! ) To 300 Pa'sec and 200 ° C> 100 m / min melt tension at 0.1 to 40 mN at a melting point of 180 to 240 ° C. After convergence by applying an oil or water at a distance of 0.5 to 5 cn below the mouthpiece, the convergence is achieved, and the spinning tension is set to 0.1 to 3. OmN / dtex.
  • This is a method for producing fibers comprising a thermoplastic cellulose derivative composition characterized by being wound up into a package, and has excellent fineness uniformity and unwinding property.
  • the present invention provides a method for producing a thermoplastic cellulose composition fiber.
  • thermoplastic cellulose derivative composition of the present invention the cellulose mixed ester 85-98 wt 0/0, the molecular weight from 350 to 20, a thermoplastic containing a plasticizer 1-30 wt% of 000
  • the present invention provides a thermoplastic cellulose derivative composition fiber obtained by melt-spinning a cellulose mixed ester composition and having good mechanical properties and uniformity as a fiber.
  • FIG. 1 is a schematic process diagram showing an example of a method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention.
  • FIG. 2 is a schematic process diagram illustrating another example of the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention.
  • the present invention firstly comprises a cellulose ester having an aliphatic polyester side chain having a repeating unit having 2 to 5 carbon atoms as a main component, and a loss on heating at 200 ° C. Is 5. /. Below, .200.
  • a thermoplastic senorellose derivative composition with a melt viscosity of 50 to 300 Pa 'sec at C, l OOO se' at 200 ° C, 100 m / tn. With a menoleto tension of 0.1 to 40 mN. Thereby, it is possible to provide a thermoplastic cellulose derivative composition that can be melt-spun. .
  • the aliphatic polyester having a repeating unit having 2 to 5 carbon atoms is preferably
  • the aliphatic polyester side chain preferably uses D-lactic acid and / or L-lactic acid as a repeating unit from the viewpoint of the heat resistance of the side chain and the availability of monomers.
  • the aliphatic polyester side chain comprises D-lactic acid and L-lactic acid as essential repeating units, and the molar ratio of D-lactic acid to L-lactic acid is 1: 9 to 9: 1. is there.
  • the constituent ratio of either D-lactic acid or L-lactic acid in the side chain polymer is 98 mol% or more, the side chain shows strong crystallinity, and the melting point is observed by DSC measurement. In this case, the obtained polymer is highly brittle, and may cause problems in the mechanical properties of the molded product.
  • the molar ratio between D-lactic acid and L-lactic acid is from 2: 8 to 8: 2.
  • the polymer has good flexibility and the molded article has good mechanical properties.
  • this polymer is mainly composed of lactic acid Despite having a side chain as a unit: it has the characteristic that it can be dissolved in acetone, a general solvent with low harm.
  • the cellulose derivative composition contains 2 to 40% by weight of a lactic acid homopolymer having a molecular weight of 1,000 to 200,000 and having a molecular weight of 1,000 to 200,000, which is mainly composed of D-lactic acid or L-lactic acid, based on the total amount of the composition. It is also preferable that
  • the cellulose ester refers to a cellulose ester in which part or all of the hydroxyl groups of cellulose, such as cellulose acetate, are blocked by an ester bond.
  • the degree of substitution of the cellulose ester is preferably 0.5 to 2.9 per glucose unit.
  • the substitution degree of the cellulose ester is preferably relatively low, for example, 0.5 to 2.2. Since the degree of substitution is preferably extremely high, for example, 2.2 to 2.9, the degree of substitution of the cellulose ester can be appropriately determined depending on the purpose.
  • the average degree of polymerization of the cell opening derivative is preferably at least 50, more preferably at least 100, and more preferably at least 100, in order to obtain a composition fiber having excellent thermal stability and mechanical properties. It is most preferred that this is the case.
  • the introduction of the aliphatic polyester side chain into the cellulose ester can be performed by a graft polymerization reaction using a cyclic diester, a cyclic monoester, an oxycarboxylic acid or the like as a monomer.
  • the graft reaction may be carried out in an organic solvent capable of dissolving the cellulose ester and monomer used, or using a batch type hopper capable of heating and stirring while applying a shearing force. It may be due to a reaction. Further, the reaction may be based on a reaction using a uniaxial or biaxial actuator. In any case, it is important that the raw materials used for the reaction are highly dried and dehydrated.
  • monomers used for the graft reaction include cyclic diesters such as lactide-glycolide and cyclic monoesters such as propiolactone and pivalolactone. And oxycarboxylic acids such as lactic acid, glycolic acid, and hydroxypropionic acid.
  • cyclic diesters such as lactide-glycolide and cyclic monoesters such as propiolactone and pivalolactone.
  • oxycarboxylic acids such as lactic acid, glycolic acid, and hydroxypropionic acid.
  • D-lactide and / or L-lactide should be combined with a monomer.
  • a known ring-opening polymerization catalyst examples include metals such as tin, zinc, titanium, bismuth, zirconium, germanium, antimony, sodium, potassium, and aluminum, and derivatives thereof. , Carbonate, oxide and halide are preferred. Specific examples thereof include tin octoate, tin chloride, zinc chloride, titanium chloride, alkoxytitanium, germanium oxide, zirconium oxide, antimony trioxide, and alkylaluminum.
  • the graft ratio of the aliphatic polyester side chain (weight increase ratio with respect to the cellulose ester before the grafting) is preferably 20 to 300%.
  • the content is 20% or more, the effect of imparting thermoplasticity is large, and melt spinning becomes easy, and the physical properties and quality of the obtained fiber are excellent.
  • the content is 300% or less, the influence of the side chain is small and preferable characteristics of the cellulose derivative, for example, hygroscopicity, water absorbency, acetone solubility, and the like are easily exhibited, so that it is preferable.
  • the graft ratio of the aliphatic polyester side chain is more preferably from 40 to 200%, and most preferably from 50 to 150%.
  • thermoplastic cellulose derivative composition in the first invention of the present invention is mainly composed of a cellulose ester having an aliphatic polyester side chain, but other additives within a range not impairing the spirit of the present invention. Can be included.
  • the thermoplastic cellulose derivative composition according to the first aspect of the present invention has a loss on heating at 200 ° C. of 5 wt% or less.
  • the heating loss rate means the room temperature under nitrogen.
  • Et until 300 a C when the temperature of the sample at a temperature a temperature rate of 10 ° C / min, refers to the weight reduction rate in 200 ° C. If the low-molecular-weight plasticizer is not contained in large amounts and the weight loss on heating is 5% or less, smoke is not generated at the time of melt-spinning, resulting in poor yarn-making properties. The mechanical properties are also good. From the viewpoint of good heat resistance, the loss on heating at 200 ° C is more preferably 3% or less.
  • the thermoplastic cellulose conductor composition according to the first aspect of the present invention has a melt viscosity at 200 ° C. and 1000 sec ⁇ 1 of 50 to 300 Pa-sec. If the melt viscosity at 200 ° C and 100 sec exceeds 50 Pa ' SeC , the solidification after spinning proceeds sufficiently and the fibers do not stick together even if they converge. Further, in this case, since the back pressure of the base is sufficiently obtained, the distribution property is improved, and there is an advantage that uniformity of fineness is ensured. On the other hand, when the melt viscosity is 300 Pa'sec or less, the spun yarn has a good spinnability, a sufficient orientation is obtained, and the fiber has excellent mechanical properties. Also, there is no trouble caused by abnormal rise in piping pressure. From the viewpoint of good fluidity, the melt viscosity at 200 ° C. and 100 sec 1 is preferably 70 to 250 Pa′sec, and more preferably 80 to 200 Pa200sec.
  • thermoplastic cellulose ester composition according to the first aspect of the present invention has a melt tension of 0.1 to 40 mN at 200 ° C. and 100 m / min take-off.
  • the melt tension is defined as the temperature of 200 ° C, the take-up speed 100m / min, the die size lmm ⁇ X 10mm, the discharge rate 9.55cm, using a capillary pyrograph manufactured by Toyo Seiki Co., Ltd. The value measured under the conditions of min.
  • the melt tension is not less than 0.1 ImN, the internal structure of the fiber is formed by the stress applied to the fiber during melt spinning, and the mechanical properties of the fiber are improved.
  • the stress applied to the fiber does not exceed the fiber strength, and stable spinning can be performed without yarn breakage or single yarn flow, and the quality of the obtained fiber is good.
  • thermoplastic cellulose derivative composition according to the first invention of the present invention contains a known sulfur-soluble agent used for cellulose ester within a range where the weight loss on heating at 200 ° C does not exceed 5% by weight. Can be. If containing large amounts of low molecular weight plasticizers, 20 The loss on heating at 0 ° C exceeds 5%, which may cause the problem of smoke during melt spinning due to the volatilization of the plasticizer, and the bridging of the plasticizer onto the fiber surface. There is a problem that slimy feeling occurs due to For this reason, the molecular weight of the plasticizer used is preferably from 350 to 20,000, more preferably from 500 to 10,000.
  • the amount does not exceed 20 parts by weight, and 10 parts by weight, based on 100 parts by weight of the cellulose ester having an aliphatic polyester side chain. Is more preferably not exceeded.
  • a polylactic acid homopolymer having a molecular weight of 1,000 to 200,000 containing D-lactic acid and / or i-lactic acid as a main repeating unit has good compatibility with cellulose ester having an aliphatic polyester side chain, and thus is effective.
  • Additive When the molecular weight of these additives is sufficiently high, there is an effect of increasing the strength of the obtained thermoplastic cellulose derivative fiber.
  • the weight average molecular weight of the polylactic acid homopolymer having D-lactic acid and / or hoseki-milk as the main repeating unit is at least 1,000 or more, more preferably 10,000 or more. Most preferably, it is more than 50,000.
  • Polylactic acid homopolymers containing D-lactic acid and Z or L-monolactic acid as main repeating units are synthesized separately and added when polylactic acid is synthesized separately or when the graft reaction of aliphatic polyester with cellulose ester is performed. You may do so.
  • the addition amount of these polylactic acid homopolymers is preferably 2 to 40% by weight based on the total amount of the thermoplastic cellulose derivative composition.
  • the amount of the aliphatic polyester homopolymer to be added is 2 to 20% by weight. / 0 , more preferably 2 to 10% by weight.
  • examples of the plasticizer that can be used specifically include plasticizers having a relatively low molecular weight, such as dimethyl phthalate, getyl phthalate, dihexyl phthalate, and octyl phthalate. Rate, dim.
  • Phthalate esters such as r_noretyl dalcolate and butylphthalinolebutyl tallate, and aromatic polycarboxylic acid esters such as tetraoctylpyrromelate and trioctyltrimerate; dibutyladenylate Polycarboxylic acid esters such as octyl adipate, dibutinoreceptate, dioctyl sebacate, getyl azelate, dibutyl azelate, dioctyl azelate, glycerin triacetate, diglyceride Lower fatty acid esters of polyhydric alcohols such as tetra-acetate, and phosphoric acid esters such as triethyl phosphate, tributyl phosphate, tributoxyxenotin phosphate, and tricresyl phosphate. Can be mentioned
  • aliphatic polyesters composed of glycol and dibasic acid, such as polyethylene adipate, polybutylene adipate, polyethylene succinate, polybutylene succinate, and the like, poly Aliphatic polyesters composed of oxycarboxylic acids such as lactic acid and polyglycolic acid; aliphatic polyesters composed of lactones such as polycaprolactone, polypropiolactone, and polyphenolic lactolactone; and vinyls such as polyvinylpyrrolidone Examples include polymers.
  • Examples of the compound having a reactive functional group as a plasticizer include a monofunctional epoxy compound such as phenyldaricidyl ether and a polyfunctional compound having at least one aromatic ring as examples of an aromatic epoxy compound.
  • novolak type epoxy resins e
  • Examples of the alicyclic epoxy compound include 4-bicyclocyclohexene monoepoxide, norbornene monoepoxide, limonene monoepoxide, and 3,4-epoxycyclohexylmethyl.
  • Examples of the aliphatic epoxy compound include, in addition to epoxidized soybean oil and epoxidized linseed oil, which are epoxidized oils and fats, and epoxidized butyl stearate, which is an epoxidized fatty acid ester, and the like.
  • thermoplastic cellulose derivative composition according to the first invention of the present invention comprises inorganic fine particles and organic compounds as antiglazing agents, deodorants, flame retardants, yarn friction reducing agents, antioxidants, coloring pigments, and the like. Can be contained as needed.
  • thermoplastic cellulose derivative composition of the present invention can be fiberized by melt spinning, and the resulting fiber exhibits good mechanical properties.
  • the strength of the fiber comprising the thermoplastic cellulose derivative composition according to the first aspect of the present invention is preferably 0.5 to 4. OcN / dt ex. If the strength is 0.5cN / dtex or more, Higher-order processing such as weaving or knitting: It is preferable because it has good permeability as compared with E and does not lack the strength of the final product. When the molecular orientation is forcibly increased by increasing the strength or stretching to increase the strength, the residual elongation may become too low. From the viewpoint of good strength characteristics, the strength is more preferably from 0.7 'to 3.8 cN / dt ex, and most preferably from 1.0 to 3.5 cN / dt ex.
  • the thermoplastic cell mouth derivative composition according to the first aspect of the present invention comprises: (2) The elongation of the fiber is preferably 2 to 50%. When the elongation is 2% or more, yarn breakage does not occur frequently in higher processing steps such as weaving and knitting. Further, fibers having an elongation of 50% or less are preferable because they do not deform under low stress and do not cause dyeing defects in the final product due to weaves during weaving. The good elongation is more preferably 5 to 45%, and most preferably 10 to 40%.
  • the single fiber fineness of the fiber comprising the thermoplastic cellulose derivative composition in the first invention of the present invention is preferably 0.5 to: LOOdt ex.
  • the fiber can be obtained with good spinnability by the direct melt spinning method. Further, if the single yarn fineness is 100 dtex or less, the bending rigidity of the fibrous structure does not become too large, and a clothing fabric or the like that requires softness can be applied.
  • the fineness is preferably between 0.7 and 50 dtex, most preferably between 1.0 and 25 dtex.
  • the fiber comprising the thermoplastic cellulose derivative composition according to the first aspect of the present invention may preferably be a multifilament.
  • the filament fineness is constant in the fiber axis direction, and the fiber U
  • % is between 0.1 and 2.5%. It is preferable that U% is less than 2.5% because unevenness in the physical properties of the fiber is small and unevenness in dyeing of the fabric hardly occurs. From the viewpoint of fiber uniformity, U% is preferably 0.1 to 2.0%, and most preferably 0.1 to 1.5%.
  • the fiber may have a substantially perfect circular circular cross section, or may have a multi-lobed or flat shape. Shape, oval, W-shaped, S-shaped, X-shaped, ⁇ -shaped, C-shaped, cross-shaped, cross-shaped. Also, . :!? It may be a composite fiber such as a sheath composite, an eccentric core-sheath composite, a side-by-side composite, or a mixed fiber of different denier.
  • the fiber comprising the thermoplastic cellulose derivative fiber composition of the present invention is a filament for clothing. It can be used as a fabric, a textile stable, an industrial filament, and an industrial stable. Also, a nonwoven fabric fiber can be preferably employed.
  • thermoplastic cell'cose derivative composition of the present invention A method for producing a fiber comprising the thermoplastic cell'cose derivative composition of the present invention will be described.
  • thermoplastic cellulose derivative composition of the present invention Heat in the process for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention:
  • the thermoplastic cellulose derivative and the composition have a melt viscosity of 50 to 30 OPa's ec at 200 ° C and l OOOs ec- 1 . .
  • melt viscosity at 200 ° C and l OOOs ec -1 is 50 Pa ⁇ sec or more, sufficient back pressure on the base is obtained and uniformity of fineness among multifilaments is ensured for good distribution. Is done.
  • solidification after spinning does not proceed sufficiently, and when the composition is converged, fibers may adhere to each other.
  • the melt viscosity at 200 ° C. and 100 s ec -1 is more preferably 70 to 250 Pa 's ec, and further preferably 80 to 200 Pa-sec.
  • thermoplastic cellulose derivative composition according to the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention has a melt tension of 0.1 to 40 mN at 200 ° C. and 100 m / min. is there.
  • melt tension refers to a capillarograph manufactured by Toyo Seiki Co., Ltd., which is a capillaries rheometer, at a temperature of 200 ° C, a take-up speed of 100 ra / min, a used die size of lmtn ⁇ X 10 ramL, and a discharge rate of 9, A value measured under the condition of 55 cm 3 / min.
  • melt tension is higher than O.
  • the internal structure of the fiber is formed by the stress applied to the fiber during melt spinning.
  • the pressure is 40 mN or less, the stress applied to the fiber does not exceed the fiber strength, and stable spinning without yarn breakage or single yarn flow can be achieved.
  • the cellulose derivative according to the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention refers to a cellulose derivative in which a hydroxyl group is blocked by a substituent.
  • cellulose esters and specifically, an ester bond with a carboxylic acid such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate.
  • a carboxylic acid such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate.
  • the degree of substitution of the cellulose derivative is preferably 0.5 to 2.9 per glucose unit.
  • the degree of substitution of the cellulose derivative is preferably relatively low, for example, 0.5 to 2.2, and in order to obtain good flowability. Is preferably a relatively high degree of substitution, for example, 2.2 to 2.9, and can be appropriately determined depending on the purpose.
  • cellulose derivatives can contain known plasticizers used for cellulose derivatives.
  • plasticizers used for cellulose derivatives.
  • the amount of the plasticizer is preferably 20 wt% or less.
  • plasticizers that can be used include relatively low-molecular weight plasticizers such as dimethyl phthalate, jetinolephthalate, dihexyl phthalate, dioctinolephthalate, and dimethoxyl ethyl phthalate.
  • Relatively high molecular weight plasticizers include polyethylene adipate and poly Aliphatic polyesters composed of glycols and dibasic acids such as butylene adipate, poly ⁇ ethylene succinate, polybutylene succinate, and oxy-acids such as polylactic acid, polyglycolic acid, and fats composed of rubonic acid Aliphatic polyesters composed of lactones such as aliphatic polyesters, polycarbapatone, polypropiolactone, and polyvalerolactone; and bullet polymers such as polybutylpyrrolidone.
  • aromatic epoxy compound having a reactive functional group as a plasticizer examples include a monofunctional epoxy compound such as 7-n-daldaridyl ether and at least one aromatic ring.
  • novolak-type epoxy resins e.
  • alicyclic epoxy compounds include 4-vinylcyclohexene monoepoxide, norbornene monoepoxide, limonene monoepoxide, and 3,4-epoxycyclohexylmethyl —3,4-epoxy Cyclohexanecarboxylate, bis- (3,4-epoxycyclohexynolemethinole) adipate, 2- (3,4-epoxycyclohexynole-5,5-spiro-1,3,4-epoxy) cyclohexanone Meta-dioxane, bis (2,3-epoxy-cyclopentyl) ethenole, 2- (3,4-epoxycyclohexinole-5,5-spiro-1,3,4-epoxy) cyclohexanone-meta-dioxane, 2, .2 screws
  • Examples of the aliphatic epoxy compound include epoxidized soybean oil, which is an epoxidized oil-based compound, and epoxidized butyl stearate, which is an epoxidized fatty acid ester.
  • plasticizers can be used alone or in combination.
  • thermoplastic cellulose derivative composition in the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention includes an antiglare agent, a deodorant, a flame retardant, a yarn friction reducer, an antioxidant, and coloring.
  • an antiglare agent e.g., a glare agent, a deodorant, a flame retardant, a yarn friction reducer, an antioxidant, and coloring.
  • pigments inorganic fine particles and organic compounds can be contained as necessary.
  • thermoplastic cellulose derivative composition in the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention include an aliphatic polyester having D-lactic acid and / or L-lactic acid as a main repeating unit.
  • the main component is a cellulose ester having a chain, or a mixture containing 85 to 98% by weight of a mixed ester of senole and 1 to 30% by weight of a plasticizer having a molecular weight of 350 to 20,000.
  • a plasticizer having a molecular weight of 350 to 20,000.
  • An appropriate melting temperature can be selected from the range of 180 to 240 ° C.
  • the melting temperature is 180 ° C or higher, the melt viscosity of the composition tends to be low, and the spinnability tends to be improved. If the temperature is 240 ° C or lower, the degree of thermal decomposition of the cellulose ester main chain is small, and the final fiber strength tends to be high.
  • the melting temperature is preferably from 190 to 230 ° C, more preferably from 200 to 220 ° C.
  • the melting temperature refers to the temperature of the spin pack (1).
  • a well-known spinneret (2) used for spinning can be used, and the number of holes may be a desired number of filaments or a natural number multiple thereof. If the number of holes is too large, uniform cooling may not be obtained. Therefore, the number of holes is preferably 1,000 or less. mouth
  • the hole diameter can be appropriately selected depending on the melt viscosity of the polymer and the spinning draft, but is preferably 0.05 to 0.50 mm. If it is 0.05 mm or more, the pressure inside the spinning pack can be prevented from becoming abnormally high, and if it is 0.50 min or less, the spinning draft can be lowered without lowering the spinning speed, so that it is preferable.
  • the die diameter is more preferably 0.10 to 0.40 mm, and still more preferably 0.20 to 0.30 mm.
  • the spun yarn is converged by using a device (3) for applying an oil agent or water at a distance of 0.5 to 5 m below the die. It is necessary. By applying oil or water, the fibers that had received air resistance for each single yarn until then can now run with little air resistance.
  • Cellulose ester-based polymers unlike polyesters and polyamides, tend to have high melt tension and poor spinnability, so if the air resistance on a single yarn increases, the spinning tension will increase significantly, eventually Single yarn flow: yarn breakage occurs. Therefore, converging multifilament is a very important step.
  • a method of applying oil or water to converge the yarn a method of contacting with a rolling roller (3a) or a method of contacting with an oil guide (3'b) may be used. It may be a method.
  • the convergence position is' at a distance of 0.5 m or more below the base, since it must be after the yarn spun in the molten state has solidified. It is preferable to provide a chimney (4) for blowing cooled or heated air between the base and the converging point in order to achieve proper yarn cooling.
  • the convergence position must be less than 5m below the base even if it is far away. If it is farther than this, the spinning tension will be too high and thread breakage will occur frequently.
  • the convergence position is preferably the distance below the base 0.8 to 3 ⁇ , more preferably 1 to 2m.
  • the spinning speed in the production method of the present invention can be determined by a godet roller (5) rotating at a constant speed.
  • the fluctuation rate of the rotation speed of the goddessic roller is preferably ⁇ 0.5% or less, more preferably ⁇ 0.1% or less.
  • Spinning speed fluctuates; n Artaxion method ⁇ Fusion spinning method cannot provide uniformity of fineness in the fiber length direction.
  • the rotation speed of the godet roller is appropriately determined so that the yarn tension is in the range of 0.1 to 3. OmN / dtex. If the spinning tension is less than 0.1 ⁇ ⁇ / dt eX, the fiber structure is not sufficiently formed. 3. If it exceeds OmN / dt ex, single yarn flow and yarn breakage occur frequently, resulting in poor yarn production.
  • the spinning tension is more preferably 0.2 to 2.
  • the spinning speed for achieving such spinning tension varies depending on the polymer used and the spinning draft, and is not particularly limited, and may be appropriately determined, but is suitably 200 to 2000 m / min.
  • the spinning draft is a value defined by a value obtained by dividing the linear velocity (cm / sec) of the fiber that has exited the die hole by the take-up velocity (cm / sec).
  • the fiber drawn by the godet roller is drawn with or without drawing between the next roller (6).
  • a Nelson method using a separate roller (9) that rotates with the rotation axis shifted from the godet opening roller can be adopted.
  • the yarn leaving the final roller is wound into a package (8) by a winder (7), and the winding tension at this time should be 0.1 to 2.
  • OmN / dtex. preferable. It is preferable that the winding tension is not less than 0.1 lmN / dtex, since there is no trouble that the yarn is taken off by the final roller, the winding shape is constant, and the shape does not collapse. In addition, it is preferable that it is 2. OmN / dtex or less, since there is no breakage of the yarn during winding.
  • the winding tension is more preferably from 0.2 to 1.5 raN / dtex, and even more preferably from 0.4 to 1. OmN / dtex.
  • the package may be tightened or the thread may break.
  • the winding tension on the package may be adjusted by using a tension adjusting means (10) such as a dancer arm, or a method of adjusting the speed of the drive roller (11) by detecting the tension is adopted. You may.
  • a tension adjusting means 10 such as a dancer arm, or a method of adjusting the speed of the drive roller (11) by detecting the tension is adopted. You may.
  • a tension adjusting means such as a dancer arm
  • a method of adjusting the speed of the drive roller (11) by detecting the tension is adopted. You may.
  • the method for producing a fiber comprising the thermoplastic cellulose derivative composition of the present invention a multifilament can be easily produced, and the fineness unevenness in the length direction of the fiber of the multifilament is reduced. be able to.
  • the percentage of the fiber wound on the package is 0.1 to 2.5%.
  • the content is more preferably 0.1% to 2.0%, most preferably 0.1% to 1.5%.
  • a fiber having a fineness can be obtained.
  • the single-filament fineness of the fiber wound and wound on the package is preferably 0.5 to 20 dtex, and most preferably 0.7 to 5. Odt ex.
  • the method for producing fibers comprising the thermoplastic cellulose derivative composition of the present invention is not particularly limited with respect to the cross-section and form of the obtained fibers, and can be applied to the production of fibers having known forms. For example, not only can a round hole be used to produce a true circular filament, but also if a hole having a deformed hole is used, a three-leaf cross-section yarn, a six-leaf cross-section yarn, an eight-leaf cross-section yarn, etc.
  • We can manufacture multi-section yarns such as multi-lobed yarns, W-shaped, X-shaped, H-shaped, C-shaped, and rice-shaped yarns.
  • composite fibers such as a core-sheath composite, an eccentric core-sheath composite, a side-by-side type composite, a mixed fiber of different fineness, etc., and the form of the obtained fiber is not particularly limited.
  • thermoplastic cellulose derivative composition of the present invention Next, a fiber composed of another thermoplastic cellulose derivative composition of the present invention will be described.
  • a fiber comprising another thermoplastic cellulose derivative composition of the present invention contains 85 to 98% by weight of a mixed cellulose ester and 1 to 30% by weight of a plasticizer having a molecular weight of 350 to 20,000.
  • the mixed ester means one in which the hydroxyl group of cellulose is blocked by two or more types of ester bonds.
  • Specific examples of mixed esters include cellulose acetate provionate, cellulose acetate butyrate, cellulose acetate sorbate, cellulose propionate butylate, cellulose acetate citrate, and cellulose acetate.
  • Examples include cellulose acetate stearate, cenorellose acetate torate, and the like, and cellulose acetate propionate, cenorellose butyrate, cenorellose acetate tote lid from the viewpoint of raw material cost and ease of production. At a rate It is preferable that there is)
  • Cellulose acetate mouth bionet contains a propionyl group in addition to the cetyl group, so its biodegradability is inferior to that of cellulose acetate.
  • the amount of plasticizer added can be reduced during fiberization.
  • plasticizing cellulose acetate with an external plasticizer alone it is necessary to add as little as 5.0% by weight of a low-molecular-weight plasticizer.In this case, volatilization of the plasticizer and poor spinning properties may occur. This will cause problems.
  • the required amount of the plasticizer is 1 to 30% by weight, the volatilization of the plasticizer during melt spinning is small, and the spinning property is good.
  • a method for producing a mixed ester of cellulose there has been known a method in which cellulose is first esterified with a mixture of two kinds of fatty acid anhydrides @
  • the cellulose mixed ester in the present invention may be obtained by this production method, or may be obtained by another known method.
  • the total substitution degree of the cellulose mixed ester is preferably 0.5 to 2.9 per glucose unit.
  • the substitution degree of the cellulose mixed ester is preferably relatively low, for example, 0.5 to 2.2.To obtain good flowability, It is preferable that the substitution degree is relatively high, for example, 2.2 to 2.9, so that it can be appropriately determined according to the purpose.
  • the degree of substitution of two or more ester groups is not particularly limited, and a cellulose mixed ester having an arbitrary degree of substitution can be used.
  • the average degree of polymerization of the cellulose mixed ester is preferably 50 or more, more preferably 100 or more, and most preferably 150 or more. If the degree of polymerization is less than 50, the mechanical properties are poor and the desired fiber properties May not be obtained. '
  • the content of the plasticizer in the thermoplastic cellulose derivative composition of the present invention is preferably 1 to 30% by weight. If it is 1% by weight or more, the thermoplasticity is good and the spinnability during melt spinning is good. When the content is 20% by weight or less, the volatility of the plasticizer during melt spinning is small, and the spinning property is good. In addition, the plasticizer does not bleed out from the fiber surface to the fiber surface (bleed out), the dimensional stability is poor, and when the fabric is used, the fabric feels slimy and the fabric itself does not stick or rub. There is no thing.
  • the content of the plasticizer is more preferably 1 to 15% by weight, and most preferably 1 to 12% by weight.
  • Plasticizers have a molecular weight of 350-20,000. 'If the molecular weight is less than 350, it will volatilize into the melt-spun B at least even if the addition amount is small. If it is larger than 20,000, the effect as a plasticizer cannot be obtained. .
  • the molecular weight of the plasticizer is more preferably between 500 and 10,000, most preferably between 700 and 5,000.
  • the thermoplastic cellulose derivative composition of the present invention has a melt viscosity force of 50 to 300 Pa'sec at 200 ° C and lOosec- 1 .
  • the melt viscosity at 200 ° C, lOsec- 1 is 50 Pa ⁇ sec or more, it is preferable because the solidification after spinning proceeds sufficiently and the fibers do not stick together even if they converge. Further, in this case, since the back pressure of the base is sufficiently obtained, there is an advantage that the distribution property is good and the uniformity of fineness is ensured.
  • the melt viscosity is 300 Pa'sec or less, it is preferable because the spun yarn has good spinnability, a sufficient orientation is obtained, and the fiber has excellent mechanical properties.
  • the melt viscosity at 200 ° C and 1000 sec- 1 is more preferably 70 to 250 Pa'sec, most preferably 80 to 200 Pa'sec.
  • -Another plasticizer which can be used for the fiber comprising the thermoplastic cellulose derivative composition of the present invention is dihexyl phthalate, octyl phthalate, dimethyl xyshetinolephthalate, ethyl phthalinoleethyl glucorate, Long-chain esters of phthalic acid such as butinolephthalyl butyrglycolate, aromatic polycarboxylic acids such as tetraoctyl bilomerate, trioctyl lime relate, octyl adipate, dibutyl sebacate, dioctyl sebacate, dioctyla Long chain esters of polyhydric alcohols such as aliphatic polycarboxylic acid
  • higher molecular weight plasticizers include aliphatic polyesters composed of glycol and dibasic acid, such as polyethylene adipate, polybutylene adipate, polyethylene succinate, polybutylene succinate, polylactic acid, and the like.
  • Aliphatic polyesters composed of oxycarboxylic acids such as polyglycolic acid
  • aliphatic polyesters composed of lactones such as polycaprolactone, polypropiolactone, polyvalerolactone, vinyl polymers such as polybutylpyrrolidone
  • polyethylene And polyethers such as glycol.
  • plasticizer examples include polylactic acid having a weight average molecular weight of 1,000 to 20,000, polyethylene glycol having a weight average molecular weight of 350 to 20,000, and gum having a molecular weight of 350 to 1,000. Lyserine derivatives and the like. Any of the above plasticizers can be used alone or in combination.
  • the fiber comprising another thermoplastic cellulose derivative composition of the present invention preferably has a strength of 0.5 to 4. OcN / dt ex.
  • OcN / dt ex When the strength is 0.5 cN / dt ex or more, it is preferable because the passability of high-order processing steps such as weaving and knitting is good, and the strength of the final product is not insufficient. In addition, 4. It is practically difficult to obtain high-strength fibers exceeding OcN / dt ex.
  • the elongation of the fiber comprising the thermoplastic cell mouth derivative composition of the present invention is preferably 2 to 50%.
  • Thread breakage does not occur frequently in the high-order processing step. Fibers having an elongation of 50% or less are preferable because they do not deform under low stress and do not cause defects in dyeing of the final product due to weaving during weaving.
  • the good elongation is more preferably 5 to 45%, most preferably 10 to 40%.
  • the single yarn fineness of the thermoplastic cellulose derivative fiber in the present invention is preferably 0.5 to 100 dtex. If the single-fiber fineness is 0.5 dtex or more, the fibers can be obtained with high spinning properties by the direct melt spinning method, and thus, high-quality fibers can be obtained. In addition, if the single-filament fineness force is equal to or less than SlOOdtex, the bending rigidity of the fiber structure does not become too large, and it can be applied to clothing fabrics and the like that require softness.
  • the fineness is preferably 0.7 to 50 dtex, most preferably 1.0 to 25 dtex. .
  • the fiber cross-sectional shape of the fiber made of the thermoplastic cellulose derivative in the present invention may be a substantially perfect circular circular cross-section, or may be multilobular, flat, elliptical, W Irregular cross-sections such as letter, S, X, H, U, C, H, Girder, and hollow are also acceptable. Further, it may be a composite fiber such as a core-sheath composite, an eccentric core-sheath composite, a side-by-side type composite, a mixed fiber of different fineness, or the like.
  • thermoplastic cellulose derivative fiber of the present invention can be used as a filament for clothing, a staple for clothing, an industrial filament, an industrial stable, and a fiber for nonwoven fabric can also be preferably employed. .
  • the fibers made of the thermoplastic cellulose derivative in the present invention can be preferably multifilaments.
  • the filament fineness is constant in the fiber axis direction
  • the U% of the fibers is 0.1 to 2.5. %. It is preferable that U% is smaller than 2.5% because unevenness in physical properties of the fiber is small and unevenness in dyeing of the fabric hardly occurs. From the viewpoint of fiber uniformity, U% is preferably 0.1 to 2.0%, and most preferably 0.1 to 1.5%.
  • inorganic fine particles and organic compounds can be contained as necessary as anti-glazing agents, deodorants, flame retardants, yarn friction reducing agents, antioxidants, coloring pigments, electrostatic agents, antibacterial agents, etc. .
  • Tensileon UCT-100 manufactured by Orientec Co., Ltd. was subjected to a tensile test under the conditions of a sample length of 20 cm and a tensile speed of 20 mm / min, and the stress at the point showing the maximum load was taken as the fiber strength (cN / dte X).
  • the elongation at break was defined as the elongation (%) of the fiber.
  • the measurement was performed for 1 minute at a yarn feeding speed of 25 m / min with a wool tester 4-CX manufactured by Zervega-Wooster, Inc., and the obtained value was defined as U%.
  • the weight increase rate (graft rate) with respect to the weight of the charged cellulose diacetate was 98%.
  • the heat resistance was 1.3%, which was sufficiently excellent.
  • the melt viscosity showed a good fluidity of 120 Pa ⁇ sec, and the melt tension was 12 mN.
  • polymer P1 After drying polymer P1 at 60 ° C for 24 hours to make it completely dry, it is melted using a single-shaft melt spinning machine at a melter temperature of 220 ° C and a pack temperature of 220 ° C, and then discharged. Under a condition of an amount of 6.6 g / min, a spinneret having 0.23 ⁇ -0. No smoke was emitted from the spun yarn, and the discharge state was stable.
  • the spun yarn was cooled by a chimney wind at 25 ° C, and after converging by applying oil, 500 m / tnin in Example 1
  • the first godet roller rotates at a speed of lOOm / min, and the winding tension becomes 0.1 lcN / dtex via the second godet roller rotating at the same speed as the first godet roller. It was wound on a winder rotating at a speed. The spinning property during melt spinning was good, and no yarn breakage was observed.
  • the resulting fibers have a single yarn fineness of 3 to 6 dtex.
  • the fiber had a strength of 0.8 to 1. l cN / dtex and an elongation of 12 to 15%, which was the strength and elongation necessary to pass high-order processing.
  • An attempt was made to create a knitted fabric using a knitting machine (Maruzen Sangyo Co., Ltd., knitting machine MR1 type, 27 gauge). The knitting property was good and the soft and dry wind was good. A knitted fabric having consistency is obtained.
  • the U% of the obtained fiber was as shown in Table 1, and the uniformity of fineness was excellent.
  • a polymer was prepared in the same manner as in Example 1 except that the charging ratio of tin octoate was 0.5 parts by weight with respect to 100 parts by weight of cellulose diacetate. This polymer is designated as P2.
  • the weight increase rate (graft rate) of the polymer P2 with respect to the weight of the charged cellulose diacetate was 310%.
  • the loss on heating of polymer P2 was measured to be -3.2%, indicating that the heat resistance was sufficiently excellent.
  • the melt viscosity was good fluidity of 75 Pa ⁇ sec, and the melt tension was 5 mN.
  • melt spinning was carried out at a spinning speed of 500 m / min in the same manner as in Example 1, except that the polymer P2 was used, and the discharge rate was 4.4 g / min, using a die having four die holes. No smoke was emitted from the spun yarn, and the discharge was stable. The spinning property during melt spinning was good, and no yarn breakage was observed.
  • the obtained fiber has a single yarn fineness of 22 dtex.
  • the strength was 0.6 cN / dtex and the elongation was 43% due to the high rate of grafting.However, when we tried to create a knitted fabric using a tubular knitting machine, knitting was possible, and it was soft and dry. A knitted fabric having a natural texture was obtained.
  • the U% of the obtained fiber was as shown in Table 1, and the uniformity of fineness was excellent.
  • the charging ratio of tin octoate was 0.15 weight per 100 parts by weight of cellulose diacetate.
  • a polymer was prepared in the same manner as in Example 1 except that the amount was changed to parts by mass. The graft rate was '58%. The resulting precipitate was collected by filtration, dried, and then separately prepared and dried.
  • Poly L-lactic acid having a weight average molecular weight of 120,000 was added to 100 parts by weight of a graphing cell-acetate. Then, 20 parts by weight were added, and the mixture was pulverized and pelletized with a twin-screw extruder. The obtained polymer is designated as P3. '
  • Polymer P3 had a loss on heating of 2.2% and had good heat resistance.
  • the melt viscosity was 150 Pa'sec and the melt tension was 20 mN.
  • Example 2 Melt spinning was performed in the same manner as in Example 1 except that the discharge rate was set to 7.9 g / min and the spinning speed was set to 1500 m / min, and no smoke was detected from the spun yarn. was stable. Due to the high spinning speed, a slight single yarn flow was observed, but the spinnability was generally good.
  • the obtained fiber has a single yarn fineness of 2.2 dtex. Although the strength was as good as 1.9 cN / dt ex, the elongation was 8%. An attempt was made to create a knitted fabric with a tube knitting machine, and although slight pulling occurred, knitting was possible and a knitted fabric with a soft and dry texture was obtained.
  • the 'U% of the obtained fibers was as shown in Table 1, and the fibers were excellent in uniformity of fineness.
  • the molar ratio of D-lactic acid to L-lactic acid constituting the side chain of polymer P4 was 50:50, and no melting point was observed in the DSC curve.
  • the weight increase rate (graft rate) with respect to the weight of the charged cellulose acetate was 400%.
  • the loss on heating of the polymer P4 at 200 ° C was measured to be 1.5%, indicating that the heat resistance was sufficiently excellent.
  • the melt viscosity was 83 Pa ⁇ sec, indicating good fluidity.
  • the melt tension was as low as 5 mN.
  • the obtained fiber has a single fiber fineness of 3 dtex.
  • the fiber had a strength of 1.5 cN / dtex and an elongation of 22.1%.
  • the fiber had sufficient strength and good elongation to pass through high-order processing.
  • An attempt was made to knit the obtained fiber using a knitting machine (Maruzen Sangyo Co., Ltd., knitting machine MR1, 27 gauge). The knitting property was good.
  • the texture is young due to the side chain
  • Example 1 Example 2 Example 3 Example 4
  • D-lactic acid shi-milk.
  • D-milk shi-milk
  • D-lactic acid shi-milk
  • a polymer was prepared in the same manner as in Example 1, except that the amount of D, L-lactide charged was 120 parts by weight and the amount of L-lactide charged was 180 parts by weight based on 100 parts by weight of cellulose acetate.
  • This polymer is designated as P5.
  • Polymer P5 is soluble in acetone.
  • the molar ratio of D-lactic acid to L-lactic acid constituting the side chain of polymer P5 was 20:80, and no melting point was observed in the DSC curve.
  • the weight increase rate (graft rate) with respect to the weight of the charged cellulose diacetate was 300%.
  • the loss on heating of the polymer P5 was measured and found to be 1.5%, which was sufficiently excellent in heat resistance.
  • the melt viscosity was 120 Pa ⁇ sec, indicating good fluidity.
  • the melt tension was as low as 10 mN. .
  • melt spinning was performed at a spinning speed of 100 m / min in the same manner as in Example 5, except that the discharge rate was set to 4.8 g / min using polymer P5. No smoke was emitted from the spun yarn, and the discharge was stable. The spinning property during melt spinning was good.
  • the obtained fiber has a single yarn fineness of 2.0 dtex.
  • the strength was 1.2 cN / dtex and the elongation was 23.2%, showing good mechanical properties. Attempts to create a knitted fabric with a tube knitting machine resulted in a knitted fabric with a soft and dry texture.
  • a polymer was prepared in the same manner as in Example 1 except that the charged amount of D-lactide was 30 parts by weight and the charged amount of L-lactide was 70 parts by weight based on 100 parts by weight of cellulose acetate. This polymer is designated as P6. Polymer P6 is soluble in acetone.
  • the molar ratio of D-lactic acid and L-lactic acid constituting the side chain of polymer P6 was 30:70, and no melting point was observed in the DSC curve.
  • the weight increase rate (graft rate) with respect to the weight of the charged cellulose diacetate was 100%.
  • the melt viscosity was 255 Pa ⁇ sec, indicating fluidity.
  • the melt tension was as low as 7 mN.
  • melt spinning was performed at a spinning speed l OOOm / tnin in the same manner as in Example 5, except that the discharge rate was 19.2 g / min. No smoke was emitted from the spun yarn, and the discharge was stable. There was a slight single yarn flow during melt spinning, but it was within the range where spinning was possible. I got it.
  • the resulting fibers have a single yarn fineness of 0.8 Odtex.
  • the strength was 0.8 cN / dt.ex and the elongation was 12.3%.
  • Attempts to create a knitted fabric with a tube knitting machine resulted in a knitted fabric having a soft texture and a dry texture.
  • a cellulose acetate having a degree of substitution of 1.9 and a degree of polymerization of 130 was used.
  • the amount of D-lactide and the amount of L-lactide were 120 parts by weight and 100 parts by weight of cellulose acetate, respectively.
  • a polymer was prepared in the same manner as in Example 1. This polymer is designated as P7. Polymer P7 is soluble in acetone.
  • the molar ratio of D-lactic acid to L-lactic acid constituting the side chain of polymer P7 was 30:70, and no melting point was observed in the DSC curve.
  • the weight increase rate (graft rate) with respect to the weight of the charged cellulose diacetate was 400%.
  • the loss on heating of the polymer P7 was measured and found to be 1.9%, indicating good heat resistance.
  • the melt viscosity was 98 Pa'SeC , indicating good fluidity.
  • the melt tension was as low as 9mN.
  • melt spinning was performed at a spinning speed of 100 m / min in the same manner as in Example 5 using the polymer P7. No smoke was found from the spun yarn, and the discharge was stable. There was a slight flow of single yarn during melt spinning, but it was within the range where spinning was possible.
  • the obtained fiber has a single yarn fineness of 3. Odtex.
  • the strength was 0.8 cN / dtex and the elongation was 15.3%.
  • the texture was slightly slimy due to the influence of the side chains.
  • Example 5 Example 6
  • Example 7 Cellulose acetate lysis 2.5 2.5 2.5 1.9 degrees
  • Polyethylene glycol having a molecular weight of 400 and cellulose diacetate having a degree of substitution of 2.5 were dissolved in acetone so as to have a weight ratio of 1: 9, and a sheet was prepared by a casting method.
  • the obtained polymer is designated as P8.
  • Polymer P8 had a melt viscosity at 200 ° C. of 320 Pa′sec and a melt tension of 120 mN. ,
  • a polymer was prepared in the same manner as in Example 5, except that the charging ratio of the reaction was changed to 100 parts by weight of cellulose diacetate, 50 parts by weight of lactide, and 0.5 parts by weight of tin octoate.
  • the obtained polymer is designated as P9.
  • the weight increase rate (graft rate) of the polymer P9 with respect to the weight of the charged cellulose diacetate was 28%.
  • the loss on heating of the polymer P9 was 1.9%.
  • Melt viscosity was very high value of 580Pa 'sec. Melt tension could not be measured because no gut was obtained.
  • the weight increase rate (graft rate) of the polymer P10 relative to the weight of the charged cell opening per diacetate was 50%.
  • the loss on heating of Polymer P10 was 3.8%.
  • the melt viscosity was 55 Pa'sec and the melt tension was 3 mN.
  • melt spinning was performed at a spinning speed of 1000 m / min, the yarn breakage occurred four times per kg and the spinning property was poor.
  • melt spinning was performed in the same manner as in Example 5.
  • the obtained fiber had a low strength of 0.2 cN / dte> c, and the elongation was too high at 80%.
  • a polymer was prepared in the same manner as in Example 5, except that the reaction charging ratio was changed to 100 parts by weight of cellulose diacetate, 1000 parts by weight of lactide, and 0.5 part by weight of tin octoate.
  • the obtained polymer is designated as P11.
  • the weight increase rate ('graft rate) of the polymer P11 relative to the weight of the charged cellulose diacetate was 920%.
  • the loss on heating of polymer P11 was 5.2%.
  • the melt viscosity was a very low value of 31 Pa'sec due to the increase in side chains.
  • the melt tension was 7mN.
  • the resulting fiber has a single yarn fineness of 6. Odtex.
  • the fiber strength was 0.3 cN / dtex and the elongation was 1.8%.
  • the brittleness of the fiber was high due to too many graft side chains. When trying to create a knitted fabric with a tube knitting machine, the yarn breakage occurred frequently and knitting was impossible.
  • the U% of the obtained fiber had a very high single fiber fineness variation of 7%.
  • Cellulose acetate propionate (Eastman Tenate Propionate) containing 12 wt% of octyl adipate as a plasticizer having a melt viscosity at 200 ° C of 120 Pa'sec and a melt tension of 12 mN is used.
  • Used as a thermoplastic cellulose ester composition melted with an extruder type spinning machine at a melting temperature of 210 ° C and a spinning temperature of 210 ° C, and weighed so that the discharge rate becomes 8 g / min. , 0.20mni ⁇ -0.30mmL was spun from a die having 36 holes.
  • the spun yarn is cooled by a chimney breeze at 25 ° C, applied with an oil agent using a lubrication guide installed at a distance of 2 m below the mouthpiece, converges, and rotates at lOOOOm / min. It was picked up by one god roller. Draft was 155.
  • the yarn was further wound under a condition of a winding tension of 0.15 mN / dtex through a second godet roller rotating at l OOOm / min with a winder driven by a drive port and a one-wheel drive.
  • the spinning tension was a sufficiently low value of 0.2 mN / dtex. No yarn breakage was observed during spinning, and the spinnability was good.
  • the obtained fibers had an 11% of 0.8, and the uniformity of the fineness was very low.
  • Spinning was carried out in the same manner as in Example 9, except that the spinning temperature was 200 ° C, the discharge rate was 7.2 g / min, the spinneret hole diameter was 0.3 nun, and the spinning speed was 600 m / [nin]. The draft was 233.
  • the spinning tension was a sufficiently low value of 0.5 mN / dtex. No yarn breakage was observed during spinning, and the spinnability was good.
  • the obtained fiber had a U% of 1.2 and was excellent in uniformity of fineness.
  • the mixture was melted at an extruder type spinning machine at a melting temperature of 220 ° C and a spinning temperature of 220 ° C, and weighed to give a discharge rate of 26.7 g / min. It was spun from a die having 24 holes with a diameter of 18mm ⁇ -0.30mtnL. The spun yarn is cooled by a 5 ° chimney wind, applied with a lubricating agent using a lubrication guide installed at a distance of lm below the mouthpiece, converges, and rotates at 2000 m / min. It was picked up by the first god roller. The draft was 50.3. ,
  • the yarn was further wound at a drive opening—a winder driven by a roller through a second godet roller rotating at 2000 m / min at a winding tension of 0.15 mN / dt ex.
  • Spinning tension 1. a sufficiently low value and 2 mN / dt e x, but at the time of spinning was observed a slight smoke, spinnability not yarn breakage was good.
  • the obtained fiber had a U% of 1.1 and was excellent in uniformity of fineness.
  • Polyethylene glycol (PEG1000) having a molecular weight of 1000 and a cellulose acetate having a substitution degree of 2.5 were dissolved and dissolved in acetone so as to have a weight ratio of 1: 9 by a casting method. Created a sheet.
  • the melt viscosity of this composition at 200 ° C. was 320 Pa′sec, and the menoret tension was 120 tnN.
  • melt spinning was attempted in the same manner as in Example 9 except that the spinning temperature was set to 240 ° C. However, since both the melt viscosity and the melt tension were too high, the spinnability was poor. Stable spinning could not be performed.
  • Polyethylene glycol (PEG400) having a molecular weight of 400 and cellulose diacetate having a degree of substitution of 2.5 were dissolved in acetone at a weight ratio of 5: 5, and a sheet was prepared by a casting method.
  • the melt viscosity of this composition at 200 ° C. was 20 Pa′sec, and the melt tension was lmN.
  • the spinning tension was too low, 0.05 mN / dtex, and the yarn was not stable. There were 12 thread breaks per kg. In addition, since the melt viscosity was too low, the distribution property of the yarn was poor, and the U% of the fiber was 3.8, which was a fiber with too large a variation in fineness.
  • the spun yarn is cooled by a chimney stream at 25 ° C, and does not converge. It was picked up by the first godet roller rotating at Om / min. The draft was 162, the c- spinning tension was as high as 4 mN / dte.x, and the yarn was broken five times per kg. Further, from the obtained package can not be unwound fiber, c Comparative Example 8 was U% is immeasurable
  • Spinning was performed in the same manner as in Comparative Example 7, except that an air suction gun was used instead of the first godet roller.
  • the spinning tension was 1. ⁇ / dt ex.
  • CDA Cellulose acetate
  • This composition is melted at a melter temperature of 230 ° C and a pack temperature of 230 ° C using a single-screw type melt spinning machine.
  • a 0.23mm ⁇ — 0.30mm die with a discharge rate of 5.9gZmin It was spun from a die having 6 holes. The spun yarn is cooled by a chimney breeze at 25 ° C, applied with an oil agent and converged, then taken up by the first godet roller rotating at ⁇ , and rotated at the same speed as the first godet roller.
  • the film was wound by a winder rotating at a speed such that the winding tension was 0.1 lcN / dtex via a godet roller.
  • the obtained fiber had a strength of 1.0 cN / dtex, an elongation of 38%, a single-fiber fineness of 21.9 dtex, and a U% of 0.7%.
  • This composition was melted at a melter temperature of 240 ° C and a pack temperature of 240 ° C using a single-screw type melt spinning machine.
  • a 0.23mm ⁇ — 0.30tnmL It was spun from a die having 12 holes.
  • the spun yarn is cooled by a chimney stream at 25 ° C, applied with an oil agent and converged, then taken up by the first godet roller rotating at 100 MZ, and rotated at the same speed as the first godet roller. It was wound by a winder rotating at a speed at which the winding tension was 0.1 lcN / dtex through a second godet roller.
  • the obtained fiber has a strength of 1.2 cNZdtex, an elongation of 20%, a single yarn fineness of 5.2 dtex, and a U% of 0.9. %Met.
  • This composition was melted at a melter temperature of 240 ° C and a pack temperature of 240 ° C using a single-shaft type melt spinning machine. — It was spun from a 30 mmL cap with 24 holes. The spun yarn is cooled by a chimney stream at 25 ° C, applied with an oil agent and converged, then taken up by the first godet roller rotating at 750 mZ, and rotated at the same speed as the first godet roller. The winding was performed by a winder rotating at a speed at which the winding tension was 0.1 lcN / dt ex through a second godet roller.
  • the obtained fiber had a strength of 0.8 cNZ dt ex, an elongation of 25%, a single yarn fineness of 3.4 dt ex, and a U% of 0.6%.
  • the spun yarn was cooled by a chimney breeze at 25 ° C, applied oil and converged, and then spun at 500 mZ. It was taken up by a godet roller, and was taken up by a winder rotating at a speed at which the winding tension became 0.1 lcNZ dt ex through a second godet roller rotating at the same speed as the first godet roller.
  • the obtained fiber had a strength of 0. ScNZ dt ex elongation of 35%, single yarn fineness of 2.5 dtex and U% of 0.7%. Attempts were made to produce a knitted fabric that could be knitted smoothly and had a soft and dry texture.
  • This composition was melted at a melter temperature of 240 ° C. and a pack temperature of 240 ° C. using a single-screw melt spinning machine. It was spun from a die having 18 holes of 30 mmL. The spun yarn is cooled by a chimney stream at 25 ° C, applied with oil and converged, taken up by the first godet roller rotating at 1200 ra / min, and rotated at the same speed as the first godet roller. Then, it was wound up by a winder rotating at a speed at which the winding tension became 0.1 lcNZ dtex through a second godet roller.
  • the obtained fiber had a strength of 1.3 cN / dt ex, an elongation of 25%, a single-fiber fineness of . ⁇ .0dtex, and a U% of 1.2%.
  • the cell was made absolutely dry by vacuum drying at 100 ° C for 12 hours.
  • the mouth acetate degree of ester substitution: 2.4, average degree of polymerization: 180
  • plasticizer triacetin (molecular weight: 218)
  • the composition was found to have a melt viscosity of 1050 Pa ⁇ sec, which was poor in heat fluidity, so that fiber spinning by melt spinning was impossible.
  • a plasticizer-free cellulose acetate propionate (ester substitution degree: 2.7, average polymerization degree: 240), which was made absolutely dry by vacuum drying at 100 ° C for 12 hours, was measured for melt viscosity.
  • the heat fluidity was extremely poor at 800 Pa ⁇ sec, and fiberization by melt spinning was impossible.
  • a cellulose acetate propionate (ester substitution degree: 2.7, average degree of polymerization: 240) and a plasticizer (dioctyl adipate (molecular weight: 371)) which had been made absolutely dry by vacuum drying at 100 ° C for 12 hours were used.
  • a plasticizer dioctyl adipate (molecular weight: 371)
  • the spun yarn is cooled by a chimney breeze at 25 ° C, applied with an oil agent and converged, taken up by the first godet roller rotating at 500 m / min, and rotated at the same speed as the first godet roller Winding was performed with a winder rotating at a speed such that the winding tension was 0.1 lcNZdt ex via the second godet roller.
  • the obtained fiber had a strength of 0.4 cN / dt ex, an elongation of 55%, a single-fiber fineness of 12.0 dtex, and a U% of 3.5%.
  • the resulting fiber was yellowish.
  • the knitted fabric was created using a tube knitting machine, the fabric was very slim.
  • Plasticizer addition amount (wt) 1 U ⁇ oO c Loss on heating (wt%) 9.5 Melt viscosity (Pa-sec) 800 35.5 Melt tension (mN) 7 Strength (cN / dtex) 0.4 Elongation (%) 55 Single yarn Fineness 12
  • thermoplastic cell composition having an aliphatic polystyrene graft side chain of the present invention can be melt-spun, and a fiber product can be provided by melt-spinning.
  • the fiber made of the thermoplastic cellulose derivative of the present invention is obtained by melt spinning while being derived from cellulose, and has the mechanical properties and dry and soft hand necessary for the high processability processability. Therefore, it can be widely used as clothing fiber and industrial fiber.
  • it since it is derived from biomass, it can be suitably used as a field utilizing biodegradability, that is, agricultural materials, forestry materials, fishery materials, civil engineering materials, sanitary materials, daily necessities, and nonwoven fabrics.
  • thermoplastic cellulose derivative composition fiber having excellent fineness uniformity and unwoundability without any process troubles such as yarn breakage or single yarn flow. It is possible.

Description

明細書
熱可塑性セルロース誘導体組成物およびそれからなる繊維 技術分野
本発明は、 熱流動性が良好であり、 溶融紡糸が可能な熱可塑性セルロース誘導 体組成物およびそれからなる繊維ならびにその製造方法に関するものである。 よ り詳しくは、 例えば、 脂肪族ポリエステル側鎖を有するセルロースエステル組成 物とそれからなる繊維、 あるいは、 可塑剤を含むセルロース混合エステル組成物 よりなる繊維、 および、 それらの糸条を収束して低張力で巻き取る繊維の製造方 法に関する。 ■ ¾術
セルロース材料は地球上で最も大量に生産されるバイオマス材料として、 また 環境中において生分解が可能な材料と して、 昨今の大きな注目を集めている。 セ ルロースの繊維と しての利用は、 自然界中で産生する綿や麻などの短繊維をその まま紡績して使用することが古くから行われてきた。 また、 短繊維ではなく、 フ イラメ ン ト材料を得るためには、 レーヨン、 リ ヨセル等のようにセルロースを特 殊な溶媒系で溶解させ湿式紡糸法での製糸を行うか、 セルロースアセテー トのよ うにセルロース誘導体を塩化メチレンゃァセ トンなどの有機溶媒に溶解させた後, この溶媒を蒸発させながら紡糸する乾式紡糸法での製糸を行う方法が一般的であ る。
しかし、 これらの湿式紡糸法あるいは乾式紡糸法で得られる繊維は: 紡糸速度 が遅いため生産性が低いという問題があるだけでなく、 繊維の製造に使用する二 硫化炭素、 アセ トン、 塩化メチレンなどの有機薬剤が環境に対して悪影響を及ぼ す懸念が強いため、 必ずしも環境にやさしい繊維とはいえない。 このため、 セル ロースを原料とする環境低負荷型繊維を得るためには、 有機薬剤を使用しない溶 融紡糸法によることが必要である。 溶融紡糸が可能な熱可塑性セルロース組成物およびそれからなる繊維と しては、 特開昭 50-46921号公報、 特開昭 54- 42420号公報、 特開昭 62- 250215号公報に見られ るように、 選択透適性を有する中空糸を得る目的で、 セルロースアセテー トにグ リセリ ンゃポリエチレンダリ コールなど水溶性の低分子量可塑剤を大量に添加し たセルロース組成物およびそれからなる繊維が知られている。 しかし、 例えば、 特開昭 62- 250215号に記載のように、 低分子量可塑剤を組成物中の 50〜59重量パー セントと、 非常に高率で含有するものであるため、 紡糸温度における加熱減量が きわめて大きく、 可塑剤の揮散が激しくて曳糸性が低いものであった。 このよう に、 セルロースアセテートに対して外部可塑剤を添加して可塑化する場合には、 組成物に十分な可塑性を与えるために大量の外部可塑剤の添加が必要となる問題 があった。 さらに、 これらの方法にあっては、 目的が選択性を有する中空糸を得 ることであるため、 繊維は外径が 200〜300 μ mと非常に太繊度であり、 衣料用マル チフィラメン トと して用いられるに足る良好な熱流動^ ΐ、 曳糸性を有する技術で はなかつた。
また、 押出成形や射出成型用の熱可塑性プラスチック材料と してのセルロース 誘導体の利用については、 セルロースアセテートを大量のフタル酸ジメチルゃト リァセチンなど低分子量可塑剤の配合によって可塑化させた、 いわゆるァセテ一 トプラスチック組成物が知られているが、 この組成物は、 可塑剤を 30〜50重量。 /0 含有しており、 溶融特性が良好でなく 、 また、 添加した可塑剤のプリ一ドアウ ト が発生する問題を有するため、 溶融紡糸に用いることはできない。
また、 ε 力プロラク トン誘導体等を可塑剤と して添加することによって外部可 塑化したセルロースァセテ一 ト組成物およびこれを溶融紡糸して得られる繊維が、 特開平 9-78339号公報、 特開平 9- 2914 号公報、 特開平 10- 317228号公報、 特開平 1 1 - 506175号公報などに開示されている。 しかし、 これらの公報に記載の組成物は. セルロースアセテートに対して外部可塑剤を添加して可塑化する技術に関するも のであり、 低分子量の外部可塑剤を多量に含むことが必要であることから、 溶融 紡糸時に外部可塑剤の揮散が著しい問題がある。 また、 外部可塑剤を大量に含む 場合は、 熱セッ トゃ染色加工など加熱される工程において、 あるいは最終製品と しての使用に際して、 それらの外部可塑剤がブリー ドアゥ 卜する懸念を有してい る。
一方、 外部可塑剤を ' 加するのではなく、 セルロース誘導体に直接グラフ.ト反 応を行うことによって內 可塑化を行う方法と して、 セルロースアセテー ト主鎖 に対して E 力プロラグトンを主体に開環グラフ ト重合したポリマーおよびその製 造方法が知られている (特開昭 58-225101号公報、 特開昭 59-86621号公報、 特開平 7- 179662号公報、 特開平 1 1 - 255801号公報など) 。 これらのポリマーでは、 外部可 塑剤のプリ一ドアゥ 卜の懸念がないものの、 側鎖が主としてポリ力プロラク トン からなるため、 60°C程度の低い温度で側鎖の流動が生じてしまい、 繊維と して最 低限必要な耐熱性を満足できるものではなかった。
一方、 グラフ トさせるモノマーと して乳酸の二量体であるラクチド (ラクタイ ド) を用いるセルロース誘導体の製造方法が、 特開平 6- 287279号公報によって開 示されている。 これらのラクチドをグラフ 卜 したセルロースアセテートはヌメ リ 感が見られないものの、 側鎖ポリ乳酸のグラフ 卜量が多すぎる場合、 耐熱性が锊 悪化したり、 脆性が高くなる問題があった。 特開平 6- 287279号公報の明細書中に 例示されているダラフ トポリマーの例では、 セルロースアセテートに対して 900〜 4900wt %もの Lーラクチドを使用しており、 得られるポリマ一組成物は 200°Cにお ける溶融粘度が著しく低いものであった。 この場合、 組成物を溶融紡糸する際に は、 口金背面圧力が低すぎて製糸性不良となる問題点があった。
特開平 11一 240942号公報では、 ラクチドをグラフ ト化させたセルロースエステ ルあるいはセルロースェ一テルと可塑剤の混合組成物が開示されている。 しかし、 この組成物は低分子量可塑剤を含むため、 製品使用時に可塑剤がブリードアゥ ト する問題があった。
繊維の溶融紡糸方法に関しては、 特開平 9- 78339号公報、 特開平 9- 291414号公報. 特開平 10- 317228号公報、 特開平 1 1 - 506175号公報などには、 E 力プロラク トン誘 導体等の添加によって可塑化したセルロースァセテ一トの溶融紡糸に関する技術 が開示されている。 しかし、 これらの方法は、 高速エア.一を用いる製造方法であ るため、 エアー圧の変動によって引き取り速度が変動しやすく、 得られる繊維の 繊度斑が大きくなるので、 衣料用繊維と しての利用を考える場合には未だ満足で きる製糸方法ではない。 さらに、 これらの方法は、 「高速エア一にて延伸、 開繊 してそのまま卷取る力 或いは開繊した後捕集用の支持体面上に体積 · 捕集して ウェブを形成する」 方法であり、 紡糸後に.解繊が行われるものであることから、 紡糸工程中では収束を行う'ことがない。 そのため、 紡糸速度が高速の場合や単糸 繊度が細い場合には、 繊維にかかる紡糸張力が高く なりやすく、 糸切れや単糸流 れなどの工程'トラブルを生じやすいという問題があった。 また、 一且卷き取った パッケージから、 延伸機、 織機、 編機など、高次加工用装置への給糸に際し、 解舒 性が不十分となる問題がある。 また、 高速エア一を用いた引き取り方式であるため、 ヱァー圧の変動によって引き取り速度が変動しゃすく、 得られる繊維の繊度斑が 大きくなるので、 衣料用繊維と しての利用には適したものとはいえない。
このように、 従来は、 可塑剤の揮散なく、 高効率に溶融紡糸可能なセルロース 誘導体組成物は知られておらず、 その結果溶融紡糸によって得られるセルロース 誘導体組成物繊維は、 良好な機械的特性、 均一性を.備えた品位の高い繊維を提供 する方法がなかった。 ' 発明の開示
本発明の熱可塑性セルロース誘導体組成物、 およびそれからなる繊維は、 炭素 数が 2〜 5の繰り返し単位をもつ脂肪族ポリエステル側鎖を有するセルロースェ ステルを主成分と してなり、 200°Cにおける加熱減量率が 5wt %以下、 200°C , 1000 sec-1における溶融粘度が 50〜300Pa · sec、 200°C , 100m/mi n引き取り時におけるメ ノレトテンショ ンが 0. l〜40mNである熱可塑性セル'ロース誘導体組成物、 およびそれ からなる繊維であり、 熱可塑性セルロース誘導体組成物が耐熱性、 熱流動性、 曳 糸性に優れており、 溶融紡糸が可能である。
さらに、 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法は、 200°C , lOOOsec-1における溶融粘度が 5!)〜 300Pa ' secであり、 200°C > 100m/mi n引き 取り時におけるメルトテンションが 0. l〜40mNである熱可塑性セル口一ス誘導体組 成物を、 溶融温度 180〜240°Cにて紡出し、 口金下距離 0. 5〜5cnで油剤あるいは水を 付与することにより収束して、 紡糸張力が 0. 1〜3. OmN/dtexとなる条件でゴデッ ト ローラ一にて引き取った後、 パッケージへ卷き取ることを特徴とする熱可塑性セ ルロース誘導体組成物からなる繊維の製造方法であり、 繊度均一性、 解舒性に優 れた熱可塑性セルロース組成物繊維の製造方法を提供する。
さらに、 本発明の 'もうひとつの熱可塑性セルロース誘導体組成物からなる繊維 は、 セルロース混合エステル 85〜98重量0 /0と、 分子量 350〜20, 000の可塑剤 1〜30 重量%を含む熱可塑性セルロース混合エステル組成物を溶融紡糸して得られ、 .繊 維と して良好な機械的特性、 均一性を備えた熱可塑性セルロース誘導体組成物繊 維を提供する。 図面の簡単な説明
図 1は、 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法の —例を示す工程概略図である。
図 2は、 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法の 他の一例を示す工程概略図である。
(符号の説明)
1 : 紡糸パック
2 : 口金
3 a : 給油ローラ一
3 b : 給油ガイ ド
4 : チムニー
5 : 第 1 ゴデッ トローラー
6 : 第 2ゴデッ 卜ローラ一
7 : ワインダー
8 : パッケージ
9 : セノ レ―トローラー
1 0 : ダンサアーム
1 1 : ドライブ口一ラー 発明の実施するための最良の形態
本発明は、 第一に、 炭素数が 2〜 5の繰り返し単位をもつ脂肪族ポリエステル 側鎖を有するセルロースエステルを主成分と してなり、 200°Cにおける加熱減量率 が 5 。 /。以下、 .200。C , l OOO se 'における溶融粘度が 50〜300 Pa ' sec、 200°C , 100m /tni n引き取り時における..メノレトテンションが 0. l〜40mNである熱可 性セノレロース 誘導体組成物であり、 これにより'、 溶融紡糸が可能な熱可塑性セルロース誘導体 組成物を提供することができる。 . .
本発明において、 炭素数が 2〜 5の繰り返し単位をもつ脂肪族ポリエステルは、 好ましくは、
I I
〇一 R' c- - 式 1
Figure imgf000007_0001
の化合物である。
上記化合物において Riの直鎖状炭素数が、 例えば ε 力プロラク トンを用いた場 合のように多くなると、 側鎖部分のガラス転移温度が低くなり、 得られる繊維の 高温特性が不良と.なる。
本発明において、 脂肪族ポリエステル側鎖は、 側鎖の耐熱性およびモノマーの 入手容易性の観点から、 D—乳酸および または L—乳酸を操り返し単位とするこ とが好ましい。
さらに好ましく は、 脂肪族ポリエステル側鎖が、 D—乳酸と L—乳酸とを必須の 繰り返し単位と,してなり、 D—乳酸と L一乳酸とのモル比が 1 : 9〜9: 1である。 側 鎖ポリマ一における D—乳酸および L一乳酸のいずれかの構成比が 98モル%以上の 範囲では、 側鎖は強い結晶性を示し DSC測定によって融点が観察される。 この場合 には、 得られるポリマーは脆性が高く、 成形物の機械特性に 問題の生じる場合が ある。 側鎖を非晶性とするためには、 D—乳酸および L—乳酸のいずれかの構成比 を低下させることが好ましい。 D—乳酸と L—乳酸とのモル比は、 2: 8〜8 : 2であ ることがさらに好ましい。 この場合、 ポリマ一は柔軟性が良好であり、 成形物の 機械的特性も良好なものとなる。 また、 このポリマーは、 乳酸を主たる繰り返し 単位とする側鎖を:有するにも関わらず、 有害性の低い汎用溶剤であるァセトンに 溶解可能であるという特徴を有している。
また、 セルロース誘導体組成物が、 D—乳酸おょぴノまたは L一乳酸を主たる繰 り返し単位とする分子量 1000〜200 , 000の乳酸ホモポリマーを組成物全量に対して 2〜40重量%含有するものであることも、 好ましい。
本発明において、 セルロースエステルとは、 セルロースアセテートに代表され るようなセルロースの水酸基の一部または全部がエステル結合によって封鎖され ているものをいう。
セルロースエステルの置換度は、 グルコース単位あたり 0. 5〜 2. 9であることが 好ましい。 良好な生分解性を得るためには、 セルロースエステルの置換度は比較 的低い置換度、 例えば、 0. 5〜2. 2であることが好ましく、 良好な流動性を得るた めには、 比較的高い置換度、 例えば、 2. 2〜2. 9であることが好ましいので、 セル ロースエステルの置換度は、 目的によって適宜決定することができる。 セル口一 ス誘導体の平均重合度は、 熱的安定性および機械的特性に優れた組成物繊維を得 るためには 50以上であることが好ましく、 100以上であることがより好ましく、 1 50以上であることが最も好ましい。
セルロースエステルへの脂肪族ポリエステル側鎖の導入は、 環状ジエステル類、 環状モノエステル類、 ォキシカルボン酸などをモノマ一と して用いたグラフ ト重 合反応によって行う ことができる。 グラフ ト反応は、 使用するセルロースエステ ルおよびモノマ一を溶解することが可能な有機溶媒中における反応によってもよ いし、 剪断力を付加しながらの加熱攪拌が可能なバツチ式二一ダーを用いた反応 によるものであってもよレ、。 また、 一軸或いは二軸のェクス トル一ダ一を用いた 反応によるものであってもよい。 いずれの場合にも、 反応に供される原材料は高 度に乾燥され水分を取り除いておく ことが重要である。 バツチ式二一ダ一を用い る場合には窒素など乾燥された不活性気体により内部を置換することが好ましレ、。 ェクス トルーダ一装置を用いる場合にも内部が窒素など乾燥された不活性気体に より置換されるか、 減圧装置により内部を減圧状態とすることが好ましレ、。
グラフ ト反応に用いるモノマ一の具体例と しては、 ラクチドゃグリ コリ ドなど の環状ジエステル類、 プロピオラク トン、 ピバロラク トンなどの環状モノエステ ル類、 乳酸、 グリ コール酸、 ヒ ドロキシプロピオン酸などのォキシカルボン酸な どを用いることができる。 例えは'、 D—乳酸および Zまたは L一乳酸を構成成分と するグラフ ト側鎖を持つセルロースァセテ一トを得るためには、 D—ラクチドおよ び/または L—ラクチドをモノマ一と してセルロースァセテ一 卜へのグラフ ト開環 重合を行う方法、 同じく D, L—ラクチドを.モノマーとしてグラフ ト開漯重合を行 う方法、 同じく D—ラクチ ド及び Z又はし一ラクチドと D, L—ラクチドをモノマー と してグラフ ト開環重合を行う方法などが例示できるが、 これらの他の公知の方 法によってもよい。
また、 環状エステルを用いた開環グラフ ト反応を行う場合には、 公知の開環重 合触媒を用いることが望ましい。 使用できる触媒と しては、 スズ、 亜鉛、 チタン、 ビスマス、 ジルコニウム、 ゲルマニウム、 アンチモン、 ナ ト リ ウム、 カ リ ウム、 アルミニウムなどの金属およびその誘導体が挙げられ、 特に誘導体については金 属有機化合物、 炭酸塩、 酸化物、 ハロゲン化物が好ましい。 具体的にはオクタン 酸スズ、 塩化スズ、 塩化亜鉛、 塩化チタン、 アルコキシチタン、 酸化ゲルマニウ ム、 酸化ジルコニウム、 三酸化アンチモン、 アルキルアルミニウムなどを例示す ることができる。
脂肪族ポリエステル側鎖のグラフ ト率 (グラフ ト化させる前のセルロースエス テルに対する重量増加率) は、 20〜300%であることが好ましい。 20%以上である 場合は熱可塑性付与の効果が大きく、 溶融紡糸が容易となって得られる繊維の物 性、 品位が優れたものになるため好ましい。 また、 300%以下である場合は、 側鎖 の影響が小さくセルロース誘導体の好ましい特性、 例えば吸湿性、' 吸水性、 ァセ トン溶解性などがが発現しやすくなるため好ましい。 脂肪族ポリエステル側鎖の グラフ ト率は、 より好ましくは 40〜200%であり、 最も好ましくは 50〜150 %であ る。
本発明の第一の発明における熱可塑性セルロース誘導体組成物は、 脂肪族ポリ エステル側鎖を有するセルロースエステルを主成分とするものであるが、 本発明 の趣旨を損なわない範囲において他の添加剤を含むことができる。
本発明の第一の発明における熱可塑性セルロース誘導体組成物は、 200°Cにおけ る加熱減量率が 5wt %以下である。 ここで、 加熱減量率とは窒素下において室温か ら 300aCまで、 10°C /分の昇温度速度で試料を昇温した時の、 200°Cにおける重量 減少率をいう。 低分子可塑剤を大量に含むこと等がなく、 加熱減量率が 5 %以下 . である場合には、 溶融紡糸の際に発煙が生じて製糸性不良となることがなく、 得 . られる繊維の機械的特性も良好となる。 良好な耐熱性の観点からは、 200°Cにおけ る加熱減量率は、 3 %以下であることがより好ましい。
本発明の第一の発明における熱可塑性セルロース 導体組成物は、 200°C, 1000 sec-1における溶融粘度が 50〜300Pa-secである。 200°C, lOOOsec における溶融粘度 が 50Pa'SeCを越える場合には、 紡出後の固化が十分に進み、 収束しても繊維同士 が膠着することがない。 また、 この場合、 口金背面圧が十分に得られるため、 分 配性が良好となり、 繊度の均一性が担保されるという利点も有している。 一方、 溶融粘度が 300Pa'sec以下である場合には、 紡出糸条の曳糸性が良好であり、 十分 な配向が得られて機械特性の優れた繊維となる。 また、 配管圧力の異常な上昇に よる トラブルが生じることもない。 良好な流動性の観点から、 200°C, lOOOsecf1にお ける溶融粘度は、 70〜250Pa'secであることが好ましく、 80〜200Pa■ secであるこ とがより好ましい。
さらに、 本発明の第一の発明における熱可塑性セルロースエステル組成物は、 200°C, lOOm/min引き取り時におけるメルトテンションが 0. l~40mNである。 ここで、 メルトテンションとは、 キヤビラリ一レオメーターである東洋精機 (株) 製キヤ ピログラフを用い、 温度 200°C、 引き取り速度 100m/min、 使用ダイ寸法 lmm φ X 10 mmし、 吐出量 9.55cmソ minの条件にて測定した値をいう。 このメルトテンショ ンは 0. ImN以上であることが、 溶融紡糸時に繊維にかかる応力によって繊維の内部構造 の形成が行われ、 繊維の機械的特性が良好となる。 また、 40mN以下であれば繊維 にかかる応力が繊維強度を越えることがなく、 糸切れや単糸流れの発生なく安定 した紡糸が可能となり、 得られる繊維の品質が良好なものとなる。 メルトテンシ ヨンが、 低い値であるほど、 組成物は良好な曳糸性を有する。 そのため、 0.1〜2 OmNであることがより好ましい。
また、 本発明の第一の発明における熱可塑性セルロース誘導体組成物は、 200°C における加熱減量率が 5wt%を越えない範囲内で、 セルロースエステルに用レヽられ る公知の可 S剤を含むことができる。 大量の低分子量可塑剤を含有する場合、 20 0 °Cにおける加熱減量率が 5 %を越えてしまい、 可塑剤の揮散に起因する溶融紡 糸時の発煙の問題が生じることがあり、 また、 繊維表面への可塑剤のブリ一ドア ゥ トによるヌメ リ感が発生する問題がある。 このことから、 使用する可塑剤の分 子量は 350〜20, 000であることが好ましく、 500〜10, 000であることがより好まし い。 特に分子量が 1000に満たない比較的低分子量の可塑剤を用いる場合には、 脂 肪族ポリエステル側鎖を有するセルロースエステル、 100重量部に対し、 20重量部を 越えないことが好ましく、 10重量部を越えないことがより好ましい。 また、 可塑 剤の揮散を抑制する観点から、 可塑剤と して異種ポリマーをブレン ドすること、 . あるいは可塑剤と して反応性の官能基を有するものを用いることも、 好適に採用 することができる。
特に、 D—乳酸および またはい乳酸を主たる繰り返し単位とする分子量 1, 000 〜200, 000のポリ乳酸ホモポリマーは、 脂肪族ポリエステル側鎖を有するセルロー スエステルとの相溶性が良好であるため、 有効な添加剤である。 これらの添加剤 の分子量が十分に高い場合、 得られる熱可塑性セルロース誘導体繊維の強度を高 める効果がある。 高強度化を目的とする場合には、 D—乳酸および またほし一乳 , 酸を主たる繰り返し単位とするポリ乳酸ホモポリマーの重量平均分子量は少なく とも 1 , 000以上、 より好ましく は 10, 000以上、 最も好ましくは 50, 000以上であるこ とがよい。
D—乳酸および Zまたは L一乳酸を主たる繰り返し単位とするポリ乳酸ホモポリ マ一は、 ポリ乳酸を別途合成して添加するか、 セルロースエステルに対する脂肪 族ポリエステルのグラフ ト反応を行う際に同時に合成するようにしてもよい。 こ れらのポリ乳酸ホモポリマーの添加量は、 熱可塑性セルロース誘導体組成物全量 に対し、 2〜40重量%であることが好ましい。 セルロース誘導体と脂肪族ポリエス テルホモポリマーとの相溶性を良好なものとするためには、 脂肪族ポリエステル ホモポリマーの添加量は、 2〜20重量。 /0であることが好ましく、 2〜10重量%であ ることがより好ましい。
本発明の第一の発明において、 具体的に用いうる可塑剤の例と しては、 可塑剤 のうち比較的低分子量のものと して、 例えばジメチルフタレート、 ジェチルフタ レート、 ジへキシルフタレー ト、 ジォクチルフタ レー ト、 ジメ トキシェチルフタ レート、 ェチルフ .! r_ノレェチルダルコレー ト、 ブチルフタ リノレブチルダリ コレー トなどのフタル酸エステル類、 テ トラオクチルピロメ リテート、 トリオクチルト リメ リテー トなどの芳香族多価カルボン酸エステル.類、 ジブチルアジぺー ト、 ジ ォクチルアジペート、 ジブチノレセバケー ト、 ジォクチルセバケ一ト、 ジェチルァ ゼレー ト、 ジブチルァゼレー ト、 ジォクチルァゼレー トなどの脂肪族多価カルボ ン酸エステル類、 グリセリ ン ト リアセテー ト、 ジグリセリ ンテ トラアセテートな どの多価アルコールの低級脂肪酸エステル類、 ト リェチルホスフエ一ト、 卜 リブ チルホスフヱ一ト、 卜リブトキシェチノレホスフェー ト、 ト'リ ク レジルホスフエー トなどのリ ン酸エステル類などを挙げることができる。
可塑剤と して比較的高分子量のものと しては、 ポリエチレンアジぺー小、 ポリ ブチレンアジペート、 ポリエチレンサクシネート、 ポリブチレンサクシネートな どのグリ コールと二塩基酸とからなる脂肪族ポリエステル類、 ポリ乳酸、 ポリグ リ コール酸などのォキシカルボン酸からなる脂肪族ポリエステル類、 ポリ力プロ ラタ トン、 ポリプロピオラク トン、 ポリノくレロラク トンなどのラク トンからなる 脂肪族ポリエステル類、 ポリ ビ ルピロ リ ドンなどのビニルポリマー類などが挙 げられる。
可塑剤と して反応性の官能基を有するものとしては、 芳香族エポキシ化合物の 例と して、 フエニルダリシジルエーテルなどの単官能エポキシ化合物や、 少なく とも 1個の芳香族環を有する多価フエノールまたはそのアルキレンォキサイ ド付加 体のポリ グリ シジノレエ一テルであって、 例えばビスフエノール A、 テ トラブロモビ スフエノール 、 ビスフエノール F、 ビスフエノール S等のビスフエノール化合物ま たはビスフヱノール化合物のアルキレンオキサイ ド (例えば、 エチレンォキサイ ド、 プロピレンオキサイ ド、 ブチレンオキサイ ド等) 付加体とェピクロルヒ ドリ ンとの反応によって製造されるグリシジルエーテル類、 ノボラック型エポキシ樹 脂類 (例えば、 フエノール ' ノボラック型エポキシ榭脂、 ク レゾ一ル ' ノボラッ ク型エポキシ樹脂、 臭素化フエノール · ノボラック型エポキシ樹脂等) 、 ト リス フエノ一ルメタン トリ グリシジルェ一テルなどが挙げられる。 脂環式エポキシ化 合物と しては、 4ービエルシクロへキセンモノェポキサイ ド、 ノルボルネンモノエ ポキサイ ド、 リモネンモノェポキサイ ド、 3, 4—エポキシシクロへキシルメチル —3 , 4—エポキシ^クロへキサン力ノレボキシレー ト、 ビス一 (3 , 4—エポキシシ クロへキシルメチル): アジペー ト、 2— ( 3,' 4一エポキシシク'口へキシルー '5, 5 - スピロ一 3, 4—エポキシ) シクロへキサノン一メ タ一ジォキサン、 ビス (2, 3— エポキシシク ロペンチル) エーテル、 2— ( 3 , 4—エポキシシクロへキシノレ一 5,' · 5—スピロ一 3, 4一エポキシ) シク ロへキサノン一メ タ一ジォキサン、 2, 2—ビス
〔4— ( 2 , 3—エポキシプロポキシ) シク ロへキシル〕 へキサフルォロプロパン、 などが挙げられる。
脂肪族エポキシ化合物と しては、 例えばエポキシ化油脂系化合物であるェポキ シ化大豆油、 エポキシ化アマ二油など、 エポキシ化脂肪酸エステルであるェポキ シ化ステアリ ン酸ブチルなどの他に、 1, 4—ブタンジオールジグリ シジルエーテ ノレ、 1, 6—へキサンジォ一ノレジグリ シジノレエ一テノレ、 エチレングリ コールジグリ シジルエーテル、 エチレングリ コーノレモノグリシジルエーテル、 プロ ピレングリ コーノレジグリ シジノレエーテル、 プロ ピレングリ コールモノグリ シジノレエーテル、 ポリエチレングリ コールジグリ シジルエーテル、 プロ ピレンダリ コールジグリ シ ジルエーテル、 ネオペンチルダリ コ一ルジグリ シジルエーテル、 ネオペンチルグ リ コールモノグリ シジノレエ一テノレ、 グリセ口一ルジグリ シジルエーテノレ、 グリセ ローノレト リ グリシジルェ一テ Λ ト リ メチローノレプロパンジグリ'シジノレエーテノレ、 ト リ メチローノレプロパンモノグリ シジルエーテノレ、 ト リ メチロールプロパン ト リ グリ シジルェ一テル、 ジグリセロールト リ グリ シジルェ一テル、 ソルビトールテ トラグリ シジルエーテル、 ァリルグリ シジノレエ一テル、 2—ェチルへキシルグリ シ ジルエーテルなどが挙げられる。 可塑剤は、 これらを単独、 もしく は併用して使 用する.ことができる。
また、 本発明の第一の発明における熱可塑性セルロース誘導体組成物は、 艷消し 剤、 消臭剤、 難燃剤、 糸摩擦低減剤、 抗酸化剤、 着色顔料等と して、 無機微粒子 や有機化合物を必要に応じて含有することができる。
上述した本発明における熱可塑性セルロース誘導体組成物は、 溶融紡糸によつ て繊維化することができ、 得られる繊維は良好な機械的特性を示す。
本発明の第一の発明における熱可塑性セルロース誘導体組成物からなる繊維の 強度は、 0. 5〜4. OcN/dt exであることが好ましい。 強度が 0. 5cN/dtex以上であれば、 製織や製編時など高次加工: E程の通過性が良好であり、 また最終製品の強力も不 足することがないため好ましい。 .強度を.高くするため ドラフ トの向上或いは延伸 などの操作.によって無理に分子^向を高める処理を行った時には、 残留伸度が低 く なり過ぎることがある。 良好な強度特性の観点から、 強度は 0. 7'.〜3. 8cN/dt exで あることがより好ましく、 1. 0〜3. 5cN/dt exであることが最も好ましい。
また、 本発明の第一の発明における熱可塑性セル口一ス誘導体組成物かちなる:二 繊維の伸度は、 2〜50%であることが好ましい。 伸度が 2 %以上である場合には製 織や製編時など高次加工工程において糸切れが多発することがない。 また、 伸度 が 50 %以下の繊維は低い応力であれば変形することがなく、 製織時の緯ひけなど により最終製品の染色欠点を生じることがないため好ましい。 良好な伸度と して は、 5〜45 %であることがより好ましく、 10〜40 %であることが最も好ましい。 本発明の第一の発明における熱可塑性セルロース誘導体組成物からなる繊維の 単糸繊度は、 0. 5〜: L OOdt exであることが好ましい。 単糸繊度が 0. 5dtex以上であれ ば、 直接溶融紡糸法によって製糸性よく繊維を得ることができる。 また、 単糸繊 度が lOOdtex以下であれば、 繊維構造物の曲剛性が大きくなりすぎることがなく、 ソフ 卜さが要求される衣料用布帛など も適用することができる。 繊度は好まし くは 0. 7〜50dt exであり、 最も好ましくは、 1. 0〜25dtexである。
本発明における第一の発明における熱可塑性セルロース誘導体組成物からなる 繊維は、 マルチフィラメン トであることが好適に採用でき、 この場合フィラメン ト繊度が繊維軸方向に対して一定であり、 繊維の U%が 0. 1 ~ 2. 5 %であることが好 ましい。 U%が 2. 5 %より も小さければ繊維の物性斑が少なく、 布帛の染め斑も起 こりにくいため好ましい。 繊維の均一性の観点から U%は好ましくは、 0. 1〜2. 0 % であり、 最も好ましくは、 0· 1〜1. 5 %である。
また、 本発明における熱可塑性セル口ース誘導体組成物からなる繊維の繊維断 面形状に関しては特に制限がなく、 実質的に真円状の円形断面であってもよいし、 多葉形、 扁平形、 楕円形、 W字形、 S字形、 X字形、 Η字形、 C字形、 田字形、 井桁形. 中空などの異形断面であってもよい。 また、 . :!?鞘複合、 偏芯芯鞘複合、 サイ ドバ ィサイ ド型複合、 異繊度混繊などのように複合繊維であってもよい。
本発明の熱可塑性セルロース誘導体繊組成物からなる繊維は、 衣料用フィラメ ント、 衣料用ステーブル、 産業用フィラメン ト、 産業用ステーブルとすることが 可能であり、. また不織布用繊維とすることも好ましく採用できる。
本発明の熱可塑性セル 'コース誘導体組成物からなる繊維の製造方法について説 明する。
本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法における熱: 可塑性セルロ^ス誘導体,組成物は、 200°C , l OOOs ec-1における溶融粘度が 50〜30 OPa ' s ecである。 200°C, l OOOs ec-1における溶融粘度が 50Pa · sec以上である場合に は、 口金背面圧が十分に得られ、 分配性が良好となるためにマルチフィラメント 間の繊度の均一性が担保される。 また、 溶融粘度が 50Pa ' secに満たない低粘度の 組成物では、 紡出後の固化が十分に進まず、 収束すると繊維同士が膠着すること がある。 また、 溶融粘度が 300Pa ' sec以下である場合には、 ポリマーの熱流動性が 良好であり、 配管圧力の異常な上昇による トラブルが回避できる。 良好な流動性 および分配性の観点から、 200°C , lOOOs ec-1における溶融粘度は 70〜250Pa ' s ecであ ることがより好ましく、 80〜200Pa - secであることがさらに好ましい。
さらに、 本発明における熱可塑性セルロース誘導体組成物からなる繊維の製造 方法に係る熱可塑性セルロース誘導体組成物は、 200°C、 l OOm/mi n引き取り時にお けるメル トテンショ ンが 0. l〜40mNである。 ここで、 メル トテンショ ンとは、 キヤ ビラリ一レオメーターである東洋精機 (株) 製キヤピログラフを用い、 温度 200°C、 引き取り速度 100ra/mi n、 使用ダイ寸法 lmtn φ X 10ramL、 吐出量 9 , 55cm3/mi nの条件に て測定した値をいう。 このメル トテンショ ンは O. lmN以上であることが、 溶融紡糸 時に繊維にかかる応力によって繊維の内部構造の形成が行われる。 また、 40mN以 下であれば繊維にかかる応力が繊維強度を越えることがなく、 糸切れや単糸流れ の発生なく安定した紡糸が可能となる。 メル トテンショ ンは、 低い値であるほど 良好な曳糸性を有する。 そのため、 0. l〜20mNであることがさらに好ましい。
本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法に係るセル ロース誘導体とは、 セルロースの水酸基が置換基によって封鎖されているものを いう。 好適な例と してはセルロースエステルがあり、 具体的には、 セルロースァ セテー ト、 セルロースアセテー トプロ ピオネー ト、 セルロースアセテー トブチレ — ト、 セルロースアセテー トフタ レー トなどカルボン酸とのエステル結合を有す るものであってもよく 、 乳酸、 グリ コール酸、 ヒ ドロキシ酪酸などォキシカルボ ン酸あるいはそれらの重合体とのエステル結合を有するものであってもよぐ、 力 プロラク トン、 プロピオラグ トン、 バレロラク ト ン、 ピバロラク トンなどの環状 エステルあるいはそれらの重合体とのエステルとなっているものであつてもよく、 さらにはこれらの混合エステルとなっているものでもよレ、。
セルロース誘導体の置換度は、 グルコース単位あたり 0. 5〜2. 9であることが好 ましい。 また、 良好な生分解性を得るためには、 セルロース誘導体の置換度は比 較的低置換度、 例えば、 0. 5〜2. 2であることが好ましく、 良好な流動性を得るた めには、 比較的高置換度、 例えば、 2. 2〜2. 9であることが好ましいので、 目的に よって適宜決定することができる。
これらのセルロース誘導体は、 セルロース誘導体に用いられる公知の可塑剤を 含むことができる。 しかし、 大量の可塑剤を含有する場合、 可塑剤の蒸散に起因 する溶融紡糸時の発煙の問題が生じることがあり、 また、 繊維表面への可塑剤の ブリードアウ トによるヌメ リ感が発生する問題がある。 このことから、 特に分子 量が 1000に満たない比較的低分子量の可塑剤を用いる場合には、 その添加量を 20 wt %以下とすることが好ましい。
具体的に用いうる可塑剤の例と しては、 可塑剤のうち比較的低分子量のものと して、 例えばジメチルフタ レー ト、 ジェチノレフタ レ一 卜、 ジへキシルフタ レー ト, ジォクチノレフタ レー ト、 ジメ トキシェチルフタ レー ト、 ェチルフタ リルェチノレグ ノレコ レー ト、 ブチルフタリルブチノレグリ コ レー トなどのフタル酸エステノレ類、 テ トラオクテルピロメ リテート、 ト リオクチルト リメ リテートなどの芳香族多価力 ルボン酸エステル類、 ジブチルアジペート、 ジォクチルアジペート、 ジブチルセ バケ一 ト、 ジォクチルセバケー ト、 ジェチルァゼレー ト、 ジブチルァゼレー ト、 ジォクチルァゼレ一 トなどの脂肪族多価カルボン酸エステル類、 グリセリ ント リ ァセテ一 卜、 ジグリセリ ンテ トラァセテ一トなどの多価アルコールの低級脂肪酸 エステル類、 ト リェチルホスフェー ト、 ト リブチルホスフェー ト、 ト リ ブトキシ ェチルホスフェー ト、 ト リ ク レジルホスフエー トなどのリ ン酸エステル類などを 挙げることができる。
可塑剤と して比較的高分子量のものと しては、 ポリエチレンアジペー ト、 ポリ ブチレンアジペー ト、 ポリ ^チレンサクシネート、 ポリブチレンサクジネートな どのグリコールと二塩基酸とからなる脂肪族ポリエステル類、 ポリ乳酸、 ポリ.グ . リコール酸などのォキシ力.ルボン酸からなる脂肪族ポリエステル類、 ポリカブ ラタ トン、 ポリプロ ピオラク トン、 ポリバレロラク トンなどのラク トンからなる 脂肪族ポリエステル類、 ポリ ビュルピロ リ ドンなどのビュルポリマー類などが挙 げられる。
可塑剤と して反応性の官能基を有するものと しては、 芳香族エポキシ化合物の 例と して、 7ヱニルダリシジルエーテルなどの単官能エポキシ化合物や、 少なく とも 1個の芳香族環を有する多価フヱノールまたはそのアルキレンォキサイ ド付加 体のポリグリシジルエーテルであって、 例えばビスフヱフール A、 テ トラブロモビ スフエノ一ル八、 ビスフエノール F、 ビスフヱノーノレ S等のビスフェン一ノレ化合物ま たはビスフエノール化合物のアルキレンオキサイ ド (例えば、 エチレンォキサイ ド、 プロピレンオキサイ ド、 ブチレンオキサイ ド等) 付加体とェピクロルヒ ドリ ンとの反応によって製造されるグリシジルエーテル類、 ノボラック型エポキシ樹 脂類 (例えば、 フエノール ' ノボラック型エポキシ樹脂、 ク レゾ一ル ' ノボラッ ク型エポキシ樹脂、 臭素化フエノール ' ノボラック型エポキシ樹脂等) 、 トリス フエノールメタン トリグリシジルエーテルなどが挙げられる。 脂環式エポキシ化 合物と しては、 4—ビニルシクロへキセンモノェポキサイ ド、 ノルボルネンモノエ ポキサイ ド、 リモネンモノェポキサイ ド、 3, 4一エポキシシクロへキシルメチル —3 , 4—エポキシシクロへキサンカルボキシレー ト、 ビス一 (3 , 4—エポキシシ クロへキシノレメチノレ) アジペー ト、 2— (3 , 4—エポキシシクロへキシノレ一5 , 5— スピロ一 3, 4—エポキシ) シクロへキサノン一メタ一ジォキサン、 ビス (2, 3 - エポキシ-ンクロ'ペンチノレ) エーテノレ、 2— ( 3 , 4—エポキシシクロへキシノレ一 5 , 5—スピロ一 3 , 4—エポキシ) シクロへキサノン一メタ一ジォキサン、 2, .2—ビス
〔4— ( 2, 3—エポキシプロポキシ) シクロへキシル〕 へキサフルォロプロパン、 などが挙げられる。
脂肪族エポキシ化合物と しては、 例えばエポキシ化油脂系化合物であるェポキ シ化大豆油、 エポキシ化アマ二油など、 エポキシ化脂肪酸エステルであるェポキ シ化ステアリ ン酸ブチルなどの他に、 1 , 4一ブタンジオールジグリシジルエーテ ル、 1 , 6—へキサンジオールジグリ シジルエーテル、 エチレングリ コーノレジグリ シジノレエーテノレ、ュチレジグ .リ コ一ルモノ グ.リ シジノレエ一テル、 プ.口ピレングリ コーノレジグリ シジルエーテノレ、 プロピレングリ コールモノグリ シジルエーテル、 ポリェチレングリ ユールジグリ シジルエーテル、 プロヒ。レングリ コールジグリシ ジノレエ一テル、 ネオペンチノレグリ コ一ノレジグリ シジノレエーテノレ、 ネオペンチノレグ' リ コールモノグリ シジルエーテノレ、 グリセ口一ノレジグリ シジルエーテル、 グリセ ローノレ ト リ グリ シジノレエーテノレ、 ト リ メチロ一ノレプロパンジグリ シジルエーテノレ、 ト リ メチロ一ノレプロパンモノグリ シジノレエ一テノレ、 ト リメチロ一ルプロノ ン ト リ グリ シジルエーテル、 ジグリセ口一ル ト リ グリ シジルエーテル、 ソルビ ト一ルテ 卜ラグリ シジノレエーテル、 ァリノレグリ シジノレエーテ >^レ、 2—ェチルへキシノレグリ シ ジルエーテルなどが挙げられる。 可塑剤は、 これらを単独、 もしくは併用して使 用することができる。
また、 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法にお ける熱可塑性セルロース誘導体組成物は、 艷消し剤、 消臭剤、 難燃剤、 糸摩擦低 減剤、 抗酸化剤、 着色顔料等と して、 無機微粒子や有機化合物を必要に応じて含 有することができる。
本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法における熱 可塑性セルロース誘導体組成物の好適な例と しては、 D—乳酸および/または L一 乳酸を主たる繰り返し単位とする脂肪族ポリエステル側鎖を有するセルロースェ ステノレを主成分と してなるもの、 あるいは、 セノレ口一ス混合エステル 85〜98重量 %と、 分子量 350〜20, 000の可塑剤 1〜30重量%を含むものを挙げることができる。 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法におけるセ ルロース誘導体組成物の溶融紡糸に関し、 以下図面を参照しながら説明する。 溶 融温度は 180〜240°Cの範囲内から適切な温度を選ぶことができる。 溶融温度が 18 0°C以上であれば組成物の溶融粘度が低く なり、 曳糸性も向上する傾向にある。 ま た、 240°C以下であれば、 セルロースエステル主鎖の熱分解の程度が少ないため、 最終的な繊維の強度が高くなる傾向がある。 良好な流動性を確保して、 かつ熱分 解をさけるためには、 溶融温度は 190〜230°Cであることが好ましく、 200〜220°C であることがより好ましい。 溶融温度は、 紡糸パック ( 1 ) の温度をいう。 また、 紡出にあ'たり使用する口金 (2) は公知の物を使用でき、 ホール数は所望 のフイラメン ト数あるいはその自然数倍であればよい。 ホール数が多すぎると均 —な冷却が得られない場合があるので、 ホール数は、 1 , 000個以下が好ましい。 口
/ 金孔径はポリマーの溶融粘度および紡糸 ドラフ トに応じて適宜選択することがで きるが、 0. 05〜0. 50mmが適当である。 0. 05mm以上であれば紡糸パック内の圧力が 異常に高くなることをさけることができ、 0. 50min以下であれば紡糸速度を低下さ せずに紡糸 ドラフ トを低くできるため、 好ましい。 口金孔径は、 より好ましくは 0. 10〜0. 40mmであり、 さらに好ましくは 0. 20 ~ 0. 30mmである。
本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法においては、 紡出した糸条は口金下距離 0. 5〜5mの場所において油剤あるいは水を付与する装置 ( 3) を用い、 収束させることが必要である。 油剤または水を付与することで、 そ れまで単糸毎に空気抵抗を受けていた繊維は、 それ以降ほとんど空気抵抗カを受 けることなく走行が可能となる。 セルロースエステル系ポリマ一はポリエステル やポリアミ ドと異なり、 溶融張力が高く曳糸性に乏しい傾向があるため、 単糸に かかる空気抵抗力が高くなると、 紡糸張力が非常に高くなり、 最終的には単糸流 れゃ糸切れが発生する。 そのため、 マルチフィラメ ン トを収束することは非常に 重要な工程である。 糸条を収束するための油剤または水の付与方法と しては、 ォ ィ リ ングローラー (3a) との接触による方法を用いてもよいし、 油剤ガイ ド (3 ' b) との接触による方法であってもよい。
収束の位置については、'溶融状態で紡出された糸条が固化した後である必要が あるため、 口金下距離 0. 5m以上の箇所である。 口金と収束箇所の間では、 適切な 糸条の冷却を達成するために、 冷却された或いは加熱された空気を送風するチム ニー (4) を設けることが好ましい。 また、 収束の位置は離れても口金下 5m以下の 場所であることが必要である。 これより も離れている場合には紡糸張力が高くな りすぎて、 糸切れが多発する。 収束の位置は、 好ましくは口金下距離 0. 8〜3πιであ り、 より好ましくは l〜2mである。
また、 本発明の製造方法における紡糸速度は、 一定速度で回転するゴデン ト口 ーラ一 (5) により決定することができる。 ゴデシ トロ一ラーの回転速度の変動率 は、 ± 0. 5 %以下であることが好ましく、 ± 0. 1 %以下であることがより好ましレ、。 紡糸速度が変動する; nアーサクシヨ ン方式ゃフ ッシュ紡糸方式では、 繊維の長 さ方向における繊度の均一性が得られない。 ゴデッ トローラーの回転速度は、 钫 糸張力が 0. 1〜3. OmN/dtexの範囲内となるように適宜決定する。 紡糸張力が 0. 1πιΝ· /dt e Xに満たない場合には、 繊維構造が十分に形成されない。 3. OmN/dt ex以上とな' ると単糸流れや糸切れが多発し、 製糸性不良となる。 良好な製糸性の観点からは、 紡糸張力は 0. 2〜2. OmN/dt exであることがより好ましい。 このような紡糸張力にな るための紡糸速度は、 使用するポリマーおよび紡糸 ドラフ トによって変化するの で、 特に限定はなく、 適宜決定すればよいが、 200〜2000m/mi nが適当である。
紡糸 ドラフ 卜は高いほど生産性が良好となるが、 曳糸性が不足する場合には糸 切れが多発する場合がある。 紡糸 ドラフ トは 30以上であれば生産性が良好である 力;、 より好ましくは 50以上、 さらに好ましく 100以上であることがよい。 また、 ド ラフ トカ 300以下であれば紡糸張力が高くなりすぎることがなく、 製糸性が良好で あるが、 より好ましくは 250以下、 さらに好ましくは 200以下であることがよい。 ここで、 紡糸 ドラフ トとは、 口金孔を出た繊維の線速度(cm/sec)を引き取り速度 (cm/sec)で除した値で定義される値である。
ゴデッ トロ一ラーで引き取られた繊維は、 次ぎのローラ一 (6) との間で延伸さ れるか或いは延伸されることなく引き取られる。 延伸される場合には、 ゴデッ ト 口一ラーと回転軸をずらして回転するセパレートローラー (9) を用いるネルソン 方式を採用することができる。
最終ローラーを離れた糸条は、 ワインダ一 (7) にてパッケージ (8) へと卷き 取られるが、 この際の卷き取り張力は、 0. 1〜2. OmN/dtexとすることが好ましい。 卷き取り張力は 0. lmN/dtex以上であれば、 最終ローラ一に糸が取られる トラブル がなく、 卷き形状も一定となり、 形崩れもないため好ましい。 また、 2. OmN/dtex 以下であれば卷き取り時の糸切れがないため好ましい。 卷き取り張力は、 0. 2〜1. 5raN/dtexであることがより好ましく、 0. 4~ 1. OmN/dtexであることがさらに好まし い。 卷き取り張力が著しく高い場合には、 パッケージの卷き締まりや、 さらには 糸切れが生じる場合がある。 パッケージへの卷き取り張力はダンサアームなどの 張力を調節する手段 (10) を用いて調節するようにしてもよいし、 ドライブロー ラー (11) の速度を張力を検知して調節する方式を採用しても良い。 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法によって、 ' 容易にマルチフィラメ ン 卜-を製造することができ、 このマルチフィ ラメ ン トの繊 維の長さ方向の繊度斑を低減することができる。 パッケージへ卷き取られた繊維 のリ%が 0. 1〜2. 5 %となることが好ましい。 さらには 0. 1〜2. 0%となることが好ま しく、 0. 1〜1. 5 %となることが最も好ましい。
また、 本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法によ つて、 細繊度の繊維を得ることができる。 パッケージへ卷,き取られた繊維の単糸 繊度は 0. 5〜20dtexであることが好ましく、 0. 7〜5. Odt exであることが最も好まし レ、。
本発明の熱可塑性セルロース誘導体組成物からなる繊維の製造方法は、 得られ る繊維の断面.形態に関する制限は特になく、 公知の形態を有する繊維の製造に適 用することができる。 例えば、 丸孔を有する口金を用いて真円形のフィ ラメン ト を製造することはもちろん、 異形孔を有する口金を用いることによって、 3葉断面 糸、 6葉断面糸、 8葉断面糸のような多葉断面糸、 W宇型、 X宇型、 H字型、 C字型お よび田型などの異形断面糸を製造することができる。 また、 芯鞘複合、 偏芯芯鞘 複合、 サイ ドバイサイ ド型複合、 異繊度混繊などのように複合繊維を製造するこ とも可能であり、 得られる繊維の形態には特に制限がない。
次に、 本発明のもうひとつの熱可塑性セルロース誘導体組成物からなる繊維に ついて説明する。
本発明のもうひとつの熱可塑性セルロース誘導体組成物からなる繊維は、 セル ロース混合エステル 85〜98重量%と、 分子量 350〜20, 000の可塑剤 1〜 30重量%を 含む。
ここで混合エステルとは、 セルロースの水酸基が 2種類以上のエステル結合に よって封鎖されているものをいう。 混合エステルは、 具体的にはセルロースァセ テ一 卜プロビオネ一 ト、 セノレロースァセテ一トブチレ一 ト、 セルロースァセテ一 トノくリ レー 卜、 セルロースプロ ピオネー トブチレー ト、 セルロースアセテー トラ ゥレー ト、 セノ 口一スァ 'セテー トステアレー ト、 セノレロースァセテ 卜ォレー ト などが例示でき、 原料コス トおよび製造の容易さの観点からセルロースァセテ一 卜プロピオネー ト、 セノレロースブチレ一 ト、 セノレロースアセテー トフタ レー トで あることが好ましレ)
セルロースァセ―テ プ口 ビオネ一トの場合、 '了セチル基以外にプロピオニル 基を含有しているたあ、 セルロースァセテ一ト,と比較して生分解能は劣る.ものの、 熱流動性が良く、 繊維化の際、 可塑剤の添加量を少なくできるという.利点がある。 セルロースァセテ一ドを外部可塑剤のみで可塑化しよう とする場合には、 5.0重量 %近く もの低分子量可塑剤の添加が必要になり、 この場合には可塑剤の揮散や製 糸性不良の問題を生じることになる。 セルロースァセテ一トプロピオネー トでは、 可塑剤の必要量は 1〜30重量%であり、 溶融紡糸時の可塑剤の揮散も少なく 、 製糸 性も良'好である。
プロピオニル基より も長鎖の官能基を導入した場合、 熱流動性は良くなるもの の、 疎水性が顕著に高くなつたり、 また生分解能がさらに低下してしまう。 また、 製造コス トが高くなつたり、 エステル反応の反応性が低下してしまい、 所望の置 換度を有するセルロース脂肪酸混合エステルを得ることが困難となることから、 セルロース混合エステルと してはセルロースァセテ一トプロピオネートが最も好 ましい。
セルロース混合エステルの製造方法には、 2種の脂肪酸無水物の混 @|でセル口 ースをエステル化してまずセルロース ト リエステルを作り、 加水分解によって所 定の置換度にする方法などが知られている。 本発明におけるセルロース混合エス テルは、 この製法によって得られたものであってもよいし、 あるいは別の公知の 方法によって得られたものでも良い。
セル'ロース混合エステルの トータル置換度は、 グルコース単位あたり 0. 5〜2. 9 であることが好ましい。 良好な生分解性を得るためには、 セルロース混合エステ ルの置換度は比較的低い置換度、 例えば、 0. 5〜2. 2であることが好ましく、 良好 な流動性を得るためには、 比較的高い置換度、 例えば、 2. 2〜2. 9であることが好 ましいので、 目的によって適宜決定することができる。 2種類以上のエステル基 の置換度に関しては、 とくに制限はなく、 任意の置換度をもつセルロース混合ェ ステルを用いることができる。 セルロース混合エステルの平均重合度は 50以上で あることが好ましく、 100以上であることがより好ましく、 150以上であることが 最も好ましい。 重合度が 50未満の場合、 機械的特性が不良となり所望の繊維特性 が得られないことがある。 '
本発明の熱可塑性セルロース誘導体組成物における可塑剤は、 その含有量が 1〜30重量%であることが好ましい。 1重量%以上であれば、 熱可塑性が良好で、 溶融 紡糸時の曳糸性が良好である。 20重量%以下であれば、 溶融紡糸時に可塑剤の揮 散が少なく、 製糸性が良好である。 また、 繊維表面から可塑剤が繊維表面へ滲み だしたり (ブリードアウ ト) 、 寸法安定性が不良となったり、 また布帛にした場 合、 ヌメ リ感を感じたり、 布帛自体がはり · こしのないものとなることがない。 可塑剤の含有量は、 より好ましくは 1〜15重量%、 最も好ましくは 1〜12重量%で ある。
可塑剤は、 分子量が 350〜20, 000のものである。 '分子量が 350に満たない場合に は添加量が少なく とも溶融紡糸 B に揮散してしまうこととなり、 20, 000より大き . い場合には可塑剤と しての効果が得られにくレ、。 可塑剤の分子量は、 より好まし くは、 500〜10, 000であり、 最も好ましくは、 700〜5, 000である。
本発明の熱可塑性セルロース誘導体組成物は、 200°C , l OOOsec—1における溶融粘度 力 50〜300Pa ' s ecである。 200°C , l OOOsec—1における溶融粘度が 50Pa · sec以上である 場合には、 紡出後の固化が十分に進み、 収束しても繊維同士が膠着することがな いため好ましい。 また、 この場合、 口金背面圧が十分に得られるため、 分配性が 良好となり、 繊度の均一性が担保されるという利点も有している。 一方、 溶融粘 度が 300Pa ' sec以下である場合には、 紡出糸条の曳糸性が良好であり、 十分な配向 が得られて機械特性の優れた繊維となるため好ましい。 また、 配管圧力の異常な 上昇による トラブルが生じることもない。 良好な流動性の観点から、 200°C , 1000 sec—1における溶融粘度は 70〜250Pa ' secであることがより好ましく、 80〜200Pa ' s ecであることが最も好ましい。 - 本発明のもうひとつの熱可塑性セルロース誘導体組成物からなる繊維に用いる ことができる可塑剤は、 ジへキシルフタ レー ト、 ジォクチルフタ レー ト、 ジメ ト キシェチノレフタ レ一 ト、 ェチルフタ リノレエチルグルコ レー ト、 ブチノレフタ リルブ チルグリ コレートなどのフタル酸長鎖エステル類、 テ トラォクチルビロメ リテー ト、 ト リオクチルト リメ リテートなどの芳香族多価カルボン酸エステル類、 ジォ クチルアジペート、 ジブチルセバケート、 ジォクチルセバケ一卜、 ジォクチルァ ゼレー卜などの脂肪族多価カルボン酸長鎖エステル類、 グリセリ ントリ ラウレー ト、 グリセリ ン ト リ ステア レート、 グリセリ ント リパルミテ一 トなどの多価アル コールの長鎖エステル類、 グリセリ ンジァセ トモノラウレー ト、 グリセリ ンジァ セ トモノパルミテー ト、 グリセリ ンジァセ トモノステアレー ト、 グリセ リ ンジァ セ トモノォレー トなどの多価アルコールの長鏔^合エステル類、 ジグリセリ ンテ トラァセテー トなどの多価アルコール韋合物の脂肪酸エステル類、 ト リェチルホ スフェー ト、 ト リ ブチルホスフェー ト、 ト リブトキシェチノレホスフエ一 卜、 ト リ. ク レジルホスフヱ一 卜などのリ ン酸エステル類などを挙げることができる。
また、 より高分子量の可塑剤と しては、 ポリエチレンアジペート、 ポリブチレ ンアジペー ト、 ポリエチレンサクシネー ト、 ポリブチレンサクシネー トなどのグ リ コールと二塩基酸とからなる脂肪族ポリエステル類、 ポリ乳酸、 ポリ グリ コー ル酸などのォキシカルボン酸からなる脂肪族ポリエステル類、 ポリ力プロラク ト ン、 ポリプロピオラク トン、 ポリバレロラク トンなどのラク トンからなる脂肪族 ポリエステル類、 ポリ ビュルピロ リ ドンなどのビニルポリマー類、 ポリエチレン グリ コールなどのポリエーテル類などが挙げられる。
可塑剤と して好適な例と しては、 重量平均分子量 1 , 000〜20, 000のポリ乳酸、 重 量平均分子量 350〜20, 000のポリエチレングリ コール、 分子量 350〜1, 000であるグ リセリ ン誘導体などが挙げられる。 可塑剤は上記のいずれかを単独もしくは併用 して使用することができる。
本発明のもうひとつの熱可塑性セルロース誘導体組成物からなる繊維の強度は、 0. 5〜4. OcN/dt exであることが好ましい。 強度が 0. 5cN/dt ex以上であれば、 製織や 製編時など高次加工工程の通過性が良好であり、 また最終製品の強力も不足する ことがないため好ましい。 また、 4. OcN/dt exを越える高強度の繊維を得ることは 実際上困難であるし、 強度を高くするため ドラフ トの向上或いは延伸などの操作 によって無理に分子配向を高める処理を行った時には、 残留伸度が低くなり過ぎ ることがある。 良好な強度特性の観点から、 強度は 0. 7〜3. 8cN/dt exであることが より好ましく、 1. 0〜3. 5cN/dt exであることが最も好ましい。
また、 本発明における熱可塑性セル口一ス誘導体組成物からなる繊維の伸度は、 2〜50 %であることが好ましい。 伸度が 2 %以上である場合には製織や製編時など 高次加工工程において糸切れが多発することがない。 また、 伸度が 50 %以下の繊 維は低い応力であれば変形することがなく、 製織時の緯ひけなどにより最終製品 の染色欠点を生じることがないため好ましい。 良好な伸度と しては、 5〜45 %であ ることがより好ましく、 10〜40%であることが最も好ましい。 '
本発明における熱可塑性セルロース誘導体繊維の.単糸繊度は、 0. 5〜100dt exで あることが好ましい。 単糸繊度が 0. 5dtex以上であれば、 直接溶融紡糸法によって' 製糸性よく繊維を得ることができるため、 高品位の繊維となる。 また、 単糸繊度 力 S l OOdt ex以下であれば、 繊維構造物の曲剛性が大きくなりすぎることがなく、 ソ フ トさが要求される衣料用布帛などにも適用することができる。 繊度は好ましく は 0. 7〜50dt exであり、 最も好ましくは、 1. 0〜25dt exである。 .
また、 本発明における熱可塑性セルロース誘導体からなる繊維の繊維断面形状 に関しては特に制限がなく、 実質的に真円状の円形断面であってもよいし、 多葉 形、 扁平形、 楕円形、 W字形、 S字形、 X字形、 H宇形、 C字形、 田字形、 井桁形、 中 空などの異形断面であってもよい。 また、 芯鞘複合、 偏芯芯鞘複合、 サイ ドバイ サイ ド型複合、 異繊度混繊などのように複合繊維であってもよい。
本発明の熱可塑性セルロース誘導体繊維は、 衣料用フィラメント、 衣料用ステ —プル、 産業用フィ ラメ ン ト、 産業用ステーブルとすることが可能であり、 また 不織布用繊維とすることも好ましく採用できる。
本発明における熱可塑性セルロース誘導体からなる繊維はマルチフィラメント であることが好適に採用でき、 この場合フィラメン 卜繊度が繊維軸方向に対して 一定であり、 繊維の U%が 0. 1〜2. 5 %であることが好ましい。 U%が 2. 5 %よりも小 さければ繊維の物性斑が少なく、 布帛の染め斑も起こりにくいため好ましい。 繊 維の均一性の観点から U%は好ましくは 0. 1〜2. 0 %であり、 最も好ましくは 0. 1〜 1. 5 %である。
また、 艷消し剤、 消臭剤、 難燃剤、 糸摩擦低減剤、 抗酸化剤、 着色顔料、 静電 剤、 抗菌剤等として、 無機微粒子や有機化合物を必要に応じて含有することがで きる。
以下、 実施例によって本発明をより詳細に説明する。 なお、 実施例中の各特性 値は次の方法で求めた。 1 . 力 D熱減量率
(株) マック · ィエンス社製 TG— DTA OOSを用い、 窒素下において室温から 30 ' 0°Cまで 10°C 分の昇温度速度で試料を加熱した時、 .200°Cにおけるサンプル 10mg の重量変化を加熱減量率と した。 '
2 · 溶融粘度 ,
60°Cで 24時間專空乾燥して絶乾状態と した測定用試料 20gを、 東洋精機 (株) 製 キヤピログラフを用いて、 測定温度 200°C、 使用ダイ寸法 Ιπιπι φ X lOmmLの条件で溶 融粘度を測定し、 溶融粘度のせん断速度依存性の関係を示す関.係式を得、 この式 よりせん断速度が lOOOsec— 1の時の溶融粘度を算出し、 組成物の溶融粘度 (Pa ' se c) と した。
3 . メルトテンショ ン
60°Cで 24時間真空乾燥して絶乾状態と した測定用試料 20gを、 東洋精機 (株) 製 キヤピログラフを用いて、 測定温度 200°C、 ローラー速度 100ra/mi n、 吐出量 9. 55c mVmi n , 使用ダイ寸法 1瞧 φ— lOmmLの条件で、 口一ラーにかかる張力を測定し、 得 られた張力をメルトテンショ ン (mN) と した。
4 . 強度および伸度
オリエンテック社製テンシロン UCT- 100型を用い、 試料長 20cm、 引張速度 20mm/ minの条件で引張試験を行って、 最大荷重を示す点の応力を繊維の強度 (cN/dte X) と した。 また、 破断時の伸度を繊維の伸度 (%) と した。
5 . U%
ツェルベガ一ウースタ一社製ウースターテスター 4- CXにて給糸速度 25m/minで 1 分間の測定を行い、 得られた値を U%と した。
6 . 製糸性 '
紡糸速度 lOOOm/minにおいて溶融紡糸を行い、 1 kgあたりの糸切れが見られない ものを◎、 1〜3回の糸切れがあるものを 0、 4回以上の糸切れがあるものを厶、 製 糸不能のものを Xと した。
7 . 風合い
得られた繊維を用いて 27ゲージの丸編みを作成し、 官能検査によって風合いを 評価した。 ドライ感があるものを〇、 ドライ感に乏しく若干ヌメ リ感のあるもの を厶、 著しいヌメ 感があるものを) ίίと した。
8 . 融点
試料約 10mgを精枰し、 DSC (パーキンエルマ一社製 DSC- 7) を用いて 15°C Zminの 条件で'昇温し、 得られたサ一モグラム上の吸熱ピークのピーク温度を融点と した。 但し、 ピーク幅が 0°Cより広いか、 吸熱量が 5J/gに満たない微弱なピークのピ一 ク温度は融点と して認知しないものと した。
9 . ァセ トン溶解性
試料に大過剰のアセ トン (和光純薬 (株) 製) を加え、 室温 (20°C ) で 48時間 撹拌して、 不要の固体が認められるかどう'かで溶解性を確認した。
実施例 1〜2
60°C X 24時間の真空乾燥により絶乾状態と したセルロースジァセテート (酢化 度 55 %、 平均重合度 160) 100重量部と、 60°C X 24時間の真空乾燥によって絶乾状 態と した Lーラクチド (ピュラック社製) 400重量部を、 ジムロート冷却管および 熱電対を付け、 N2雰囲気と した 4つ口フラスコに仕込み、 このフラスコをオイルバ ス中に浸漬して 140°Cと し、 60分間撹拌して系を溶解させた。 その後、 開環重合触 媒と して、 オクタン酸スズ 0. 2重量部を添加し、 30分間反応させた。 反応終了後、 フラスコをオイルバスよ り取り出して冷却し、 クロ口ホルムを添加して、 系を完 全に溶解させた。 反応物のクロ口ホルム溶液は、 大過剰のメタノール中にて再沈 殿させ、 フ レーク状の沈殿物を得た。 この沈殿物を濾集し、 乾燥させた後、 重量 を測定した。 得られたポリマーを P1とする。
'仕込みセルロースジアセテー トの重量に対する重量増加率 (グラフ ト率) は、 98%であった。 また、 ポリマー P1の 200°Cにおける加熱減量率を測定したところ、 1. 3%と耐熱が.十分に優れていた。 また、.溶融粘度は、 120Pa · secと良好な流動性 を示しており、 メルトテンションは 12mNであった。
ポリマー P 1を 60°Cにて 24時間乾燥して絶乾状態と した後、 単軸型溶融紡糸機を 用いて、 メルタ一温度 220°C、 パック部温度 220°Cにて溶融させ、 吐出量 6. 6g/mi n の条件で、 0. 23πιπι φ— 0.' 30mmLの口金孔を 24ホール有する口金より紡出させた。 紡 出糸からの発煙は認められず、 吐出状態も安定していた。 紡出糸条は 25°Cのチム ニー風によって冷却し、 '油剤を付与して収束した後、 実施例 1では 500m/tnin、 実施 例 2では lOOOm/minの速度 回転する第 1ゴデッ トローラーにて引き取り、 第 1ゴデ ッ トローラーと同じ速度で回転する第 2ゴデシ トローラーを介して、 卷き取り張力 が 0. l cN/dtexとなる速度で回転するワインダ一にで巻き取った。 溶融紡糸時の製. 糸性は良好であり、 糸切れは認められなかった。
得られた繊維は、 単糸繊度が 3〜6dtexである。 繊維の強度が 0. 8〜1. l cN/dtex、 伸度は 12〜15%と、 高次加工を通過しうるに必要な強度および伸度を有していた。 得られた繊維,を筒編み機 (丸善産業 (株) 製筒編み機 MR1型、 27ゲージ) にて、 編 み地の作成を試みたところ、 編み立て性は良好であり、 ソフ トかつドライな風合 いを有する編み地が得られた。
得られた繊維の U%は表 1に示す通りであり、 繊度の均一性に優れていた。
実施例 3
ォクタン酸スズの仕込み比をセルロースジアセテート 100重量部に対して 0. 5重 量部とする他は、 実施例 1と同様にしてポリマーを作成した。 このポリマーを P2と する。
ポリマー P2の、 仕込みセルロースジアセテートの重量に対する重量増加率 (グ ラフ ト率) は、 310%であった。 また、 ポリマー P2の加熱減量率を測定したところ- 3. 2 %と耐熱が十分に優れていた。 また、 溶融粘度は、 75Pa · secと良好な流動性 を示しており、 メルトテンショ ンは 5mNであった。
ポリマー P2を用いて、 口金孔 4ホールの口金を用い、 吐出量を 4. 4g/minとする以 外は、 実施例 1と同様にして紡糸速度 500m/minにて溶融紡糸を行った。 紡出糸から の発煙は認められず、 吐出は安定していた。. 溶融紡糸時の製糸性は良好であり、 糸切れは認められなかった。
得られた繊維は、 単糸繊度が 22dtexである。 グラフ ト率が高いため、 強度が 0. 6cN/dtexであり、 伸度が 43%であったが、 筒編み機による編み地の作成を試みた ところ、 編み立ては可能であり、 ソフ トかつドライな風合いを有する編み地が得 られた。
得られた繊維の U%は表 1に示す通りであり、 繊度の均一性に優れていた。
実施例 4
ォクタン酸スズの仕込み比をセルロースジァセテー ト 100重量部に対して 0. 15重 量部とする以外は/卖施例 1と同様にポリマーを作成した。 グラフ ト率は、' 58 %で あった。 得られた沈殿物を濾集、 乾燥した後、 別途 '作成して乾燥を行った重量平 均分子量 12. 5万のポリ L—乳酸をグラフ ト化セル-口一スァセテ一ト 100重量部に対 して 20重量部添加し、 二軸ェクス トルーダーにて浪練、 ペレタイズを行った。 得 られたポリマーを P3とする。 '
ポリマー P3は、 加熱減量率が 2. 2 %であり、 耐熱性が良好であった。 また、 溶融 粘度は 150Pa ' s ec、 メルトテンショ ンは 20mNであった。
吐出量を 7. 9g/mi n、 紡糸速度を 1500m/mi nとする他は、 実施例 1と同様にして溶 融紡糸を行ったところ、 紡出糸からの発煙は認められず、 吐出は安定していた。 紡糸速度が速いため、 若干の単糸流れが認められたものの、 耪じて製糸性は良好 であった。
得られた繊維は、 単糸繊度が 2. 2 dt exである。 強度は 1. 9cN/dt exと良好であるが. 伸度が 8%であった。 筒編み機による編み地の作成を試みたところ、 若干の引きつ れが発生したが、 編み立ては可能であり、 ソフ トかつ ドライな風合いを有する編 み地が得られた。
得られた繊維の' U %は表 1に示す通りであり、 繊度の均一性に優れていた。
実施例 5
セルロースアセテー ト (置換度 2. 5、 平均重合度 160) 100重量部と、 D., しーラク チド (ピュラック社製) 400重量部を、 それぞれ乾燥した後、 ジムロー ト冷却管を 付け、 雰囲気と した 4つ口フラスコに仕込み、 このフラスコをオイルバス中に浸 漬して 140°Cと し、 60分間撹拌して系を溶解させた。 その後、 開環重合触媒として, オクタン酸スズ 0· 2重量部を添加し、 30分間反応させた。 反応終了後、 フラスコを オイルバスよ り取り出して冷却し、 アセ トンを添加して、 系を完全に溶解させた。 この際、 不溶の固体は認められず反応物はァセ トンに溶解することが知られた。 反応物のアセ トン溶液は、 大過剰のメタノール中にて再沈殿させ、 餅状の柔らか い沈殿物を得た。 この沈殿物を濾集し、 乾燥させた後、 重量を測定した。 得られ たポリマ一を P4とする。
ポリマ一 P4の側鎖を構成する D—乳酸と L—乳酸のモル比は 50: 50であり、 DSC曲 線における融点は観察されなかった。 仕込みセルロースァセテ一トの重量に対す る重量増加率 (グラフ ト率) は、 400 %であった。 また、 ポリマー P4の 200°Cにお ける加熱減量率を測定したところ、 1. 5%と耐熱性が十分に優れていた。 また、 溶 融粘度は、 83Pa · s ecと良好な流動性を示していた。 また、 メル トテンショ ンも 5 mNと低い値であった。
ポリマ一 P4を 60°Cにて 24時間乾燥して絶乾状態と した後、 単軸型溶融紡糸機を 用いて、 メルタ一温度 220 :、 パック部温度 220°Cにて溶融させ、 吐出量 7. 2g/mi n の条件で、 0. 23mm «i>— 0. 30nunLの口金孔を 24ホール有する口金より紡出させた。 紡 出糸からの発煙は認められず、 吐出状態も安定していた。 紡出糸条は 25°Cのチム ニー風によって冷却し、 油剤を付与して収束した後、 1000m/minで回転する第 1ゴ デッ トローラーにて引き取り、 同速で回転する第 2ゴデッ トローラーを介して、 卷 き取り張力が 0. l cN/dt exとなる速度で回転するワインダ一にて卷き取った。 溶融 紡糸時の製糸性は良好であった。
得られた繊維は、 単糸繊度が 3dtexである。 繊維の強度は 1. 5cN/dtex、 伸度は 2 2. 1 %.と、 高次加工を通過しうるに必要な強度および良好な伸度を有していた。 得 られた繊維を筒編み機 (丸善産業 (株) 製筒編み機 MR1型、 27ゲージ) にて、 編み 地の作成を試みたところ、 編み立て性は良好であった。 風合いは側鎖の影響で若
実施例 1 実施例 2 実施例 3 実施例 4
..セル口一ス セルロース セルロース セルロース 主鎖化合物
ソ / ΊΖΊ 卜 rセ丁一卜 /セ τ—卜
D-乳酸:し-乳 .D-乳餒:し-乳 D -乳酸:し-乳
側鎖モノマ 位 乳酸:し ー単 -乳
Sa.一 υ. ι uu H¾— u . UU ffit一一 Ul, .1 I Π UΠU 側鎖グラフト率 (%) 98 98 310 ' 58 ポリ乳酸 添加剤
. (20重量部) 加熱減量率 (%) 1.3 '■ 1.3 3.2 2.2 溶融粘度 (Pa -sec) 12ひ 120 75 . 150 メルトテンション (mN) 12 12 5 20 強度 (cN/dtex) 0.8 1.1 0.6 1.9 伸度 ( ) 15 12 43 8 単糸遒度 (dtex) 6 3 22 2.2 u% (%) 0.8 1.2 0.7 1.5 製糸性 ◎ ◎ ◎ O 風合い 〇 〇 〇 〇
29 干のヌメ リ感が感じられるものであった。
実施例 6 :
セルロースアセテー ト 100重量部に対する D, Lーラクチドの仕込み量を 120重量 部、 L—ラクチドの仕込量を 180重量部とする他は、 実施例 1と同様にしてポリマー を作成した。 このポリマーを P5とする。 ポリマー P5はアセ トンに可溶である。 ポリマ一 P5の側鎖を構成する D—乳酸と L—乳酸のモル比は 20: 80であり、 DSC曲 線における融点は観察されなかった。 仕込みセルロースジアセテー トの重量に対 する重量増加率 (グラフ ト率) は、 300%であった。 ポリマー P5の加熱減量率を測 - 定したところ、 1. 5%と耐熱性が十分に優れていた。 また、 溶融粘度は、 120Pa · secと良好な流動性を示すものであった。 また、 メル トテンショ ンも 10mNと低いも のであった。 .
ポリマ一 P5を用いて、 吐出量を 4. 8g/minとする以外は、 実施例 5と同様にして紡 糸速度 lOOOm/minにて溶融紡糸を行った。 紡出糸からの発煙は認められず、 吐出は 安定していた。 溶融紡糸時の製糸性は良好であった。
得られた繊維は、 単糸繊度が 2. 0dtexである。 強度は 1. 2cN/dtexであり、 伸度が 23. 2%と良好な機械的特性を示した。 また、 筒編み機による編み地の作成を試み たところ、 ソフ トかつドライな風合いを有する編み地が得られた。
実施例 7
セルロースァセテ一 ト 100重量部に対する Dラクチドの仕込み量を 30重量部、 L— ラクチドの仕込量を 70重量部とする他は、 実施例 1と同様にしてポリマ一を作成し た。 このポリマーを P6とする。 ポリマー P6はアセ トンに可溶である。
ポリマー P6の側鎖を構成する D—乳酸と L—乳酸のモル比は 30: 70であり、 DSC曲 線における融点は観察されなかった。 仕込みセルロースジァセテー卜の重量に対 する重量増加率 (グラフ ト率) は、 100%であった。 ポリマー P6の加熱減量率を測 定したところ、 3. 3%と耐熱性が良好であった。 また、 溶融粘度は、 255Pa · secと 流動性を示すものであった。 また、 メルトテンショ ンも 7mNと低いものであった。 ポリマ一 P6を用いて、 吐出量を 19. 2g/mi nとする以外は、 実施例 5と同様にして 紡糸速度 l OOOm/tninにて溶融紡糸を行った。 紡出糸からの発煙は認められず、 吐出 は安定していた。 溶融紡糸時に若干の単糸流れがあつたが、 製糸可能な範囲であ つた。
得られた繊維は 単糸繊度が.8. Odtexである。 強度は 0. 8cN/dt.exであり、 伸度が 12. 3%であった。 また、 筒編み機による編み地の作成を試みたところ、 ソフ ト力 つドライな風合いを有する編み地が得られた。
実施例 8
セルロースアセテー トと.して置換度 1. 9であり重合度 130のものを使用し、 セル ロースァセテ一 ト 100重量部に対する Dラクチドの仕込み量を 120重量部、 L—ラク チドの仕込量を 280重量部とする他は、 実施例 1と同様にしてポリマーを作成した。 このポリマーを P7とする。 ポリマー P7はァセ トンに可溶である。
ポリマー P7の側鎖を構成する D—乳酸と L—乳酸のモル比は 30: 70であり、 DSC曲 線における融点は観察されなかった。 仕込みセルロースジァセテートの重量に対 する重量増加率 (グラフ ト率) は、 400%であった。 ポリマー P7の加熱減量率を測 定したところ、 1. 9%と耐熱性が良好であった。 また、 溶融粘度は、 98Pa ' S eCと 良好な流動性を示すものであった。 また、 メルトテンションも 9mNと低いものであ つた。
ポリマー P7を用いて、 実施例 5と同様にして紡糸速度 lOOOm/minにて溶融紡糸を 行った。 紡出糸からの発煙は認められず、 吐出は安定していた。 溶融紡糸時に若 干の単糸流れがあつたが、 製糸可能な範囲であった。
得られた繊維は、 単糸繊度が 3. Odtexである。 強度は 0. 8cN/dtexであり、 伸度が 15. 3%であった。 また、 筒編み機による編み地の作成を試みたところ、 風合いは 側鎖の影響で若干のヌメ リ感が感じられるものであった。
S 2 実施例 5 実施例 6. 実施例 7 実施例 8 セルロースァセ亍 —トの置渙 2.5 2.5 2.5 1.9 度
D-乳酸:し-乳酸 50:50 20:80 30:70 30:70 側鎖ゲラフト率 (%) 400 300 100 400 添加剤
加熱減量率 (%) 1.5 1.5 3.3 1.9 溶融粘度 (Pa-sec) 83 120 255 98 メルト亍ンシヨン (mN) 5 , 10 フ 9 強度 (cN/dtex) 1.5 1.2 0.8 0.8 伸度 (%) 22.1 23.2 12.3 15.3 単糸繊度 (dtex) 3.0 2.0 8.0 3.0
U% (%) 0.7 0.5 1.2 1.9 製糸性 © ◎ © 〇 風合い Δ 〇 〇 厶
比較例 1
分子量 400のポリエチレングリ コールと置換度 2.5のセルロースジァセテ一トを 重量比で 1:9となるよ うにアセ トン中に溶解させ、 キャス ト法によってシー トを作 成した。 得られたポリマーを P8とする。
ポリマー P8は、 200°Cにおける溶融粘度は 320Pa'secであり、 メルトテンショ ン は 120mNであった。 ,
このポリマー P8を用いて、 実施例 5と同様に溶融紡糸を試みたが、 溶融粘度およ びメルトテンショ ンの双方が高すぎるため、 曳糸性が悪く、 安定した製糸を行う ことができずに、 繊維が得られなかった。
比較例 2
反応の仕込み比をセルロースジアセテート 100重量部、 ラクチド 50重量部、 ォク タン酸スズ 0.5重量部とする他は、 実施例 5と同様にしてポリマ一を作成した。 得 . られたポリマ一を P9とする。
ポリマー P9の、 仕込みセルロースジアセテー トの重量に対する重量増加率 (グ ラフ ト率) は、 28%であった。 ポリマー P9の加熱減量率は 1.9%であった。 溶融粘 度は 580Pa'secと非常に高い値であった。 メルトテンションはガッ トが得られず測 定不能であった。
このポリマ一 P9を用いて、 実施例 5と同様に溶融紡糸を試みたが、 溶融粘度が高 すぎるため、 曳糸性が悪く、 安定した製糸を行うことができずに、 繊維が得られ なかった。
比較例 3
反応モノマーと してラクチドではなく、 和光純薬 (株) 製 £ 力プロラク トンを 用い、 反応の仕込み比をセルロースジアセテート 100重量部、 Ε 力プロラク トン 8 0重量部、 得られたポリマーの溶解のための溶剤と してアセ トンを用いる他は、 実 施例 5と同様にしてポリマーを作成した。 このポリマ一を P10とする。
ポリマー P10の、 仕込みセル口一スジアセテー トの重量に対する重量増加率 (グ ラフ ト率) は、 50%であった。 ポリマ一 P10の加熱減量率は 3.8%であった。 溶融 粘度は 55Pa'secであり、 メルトテンショ ンは 3mNであった。 紡糸速度 1000m/minで の溶融紡糸を行ったところ、 1kgあたり 4回の糸切れが発生し製糸性は悪かった。 このポリマー P10を用いて、 実施例 5と同様に溶融紡糸を行った。 得られた繊維 は、 強度が 0. 2cN/dte>cと低い強度であり、 伸度は 80%と高すぎる値であつた。 'そ, のため、 筒編み機による編み地の作成を試みたが、 摩擦加熱による軟化もみられ、 編み立て性が不良であった。 得られた編み地もヌメ リ感が強ぐ、 衣料用と しては 不適なものであった。.
比較例 4
反応の仕込み比をセルロースジアセテー ト 100重量部、 ラクチ ド 1000重量部、 ォ クタン酸スズ 0. 5重量部とする他は、 実施例 5ど同様にしてポリマーを作成した。 得られたポリマ一を P11とする。
ポリマー P1 1の、 仕込みセルロースジアセテー トの重量に対する重量増加率 ('グ ラフ ト率) は、 920%であった。 ポリマ一 P11の加熱減量率は 5. 2 %であった。 側鎖 が増えたため、 溶融粘度は 31Pa ' secと非常に低い値であった。 メル トテンショ ン は 7mNであった。 このポリマ一を用いて紡糸速度 lOOOm/minでの製糸性を評価した 'ところ lkgあたり 6回の糸切れが生じ、 製糸性は良好ではなかった。
ポリマー P11を用いて、 実施例 1と同様にして紡糸速度 500m/mi nにて溶融紡糸を 行った。 紡出糸からは熱分解した側鎖に起因する発煙が認められた。 パック圧力 が低すぎるために単糸間の分配性が悪く、 太い繊維と細い繊維が混在したため糸 切れが多発した。
得られた繊維は、 単糸繊度が 6. Odtexである。 繊維の強度は 0. 3cN/dtex、 伸度が 1. 8%と、 グラフ ト側鎖が多すぎるために繊維の脆性が高いものであった。 筒編み 機による編み地の作成を試みたところ、 糸切れが多発して編み立てが不可能であ つた。
得られた繊維の U %は単糸繊度のばらつきが多く 7 %と非常に高いものであった,。
表 3
Figure imgf000037_0001
実施例 9
200°Cにおける溶融粘度が 120Pa ' secであり、 メルトテンションが 12mNであるァ ジピン酸ジォクチルを可塑剤と して 12wt %含有するセルロースァセテ一 トプロピ ォネート .(イース トマン社製テナイ トプロピオネー ト) を熱可塑性セルロースェ ステル組成物と.して用い、 ェクス トルーダー型紡糸機にて溶融温度 210°C、 紡糸温 度 210°Cにて溶融させ、 吐出量が 8g/mi nとなるように計量し、 0. 20mni φ -0. 30mmLの 口金孔を 36ホール有する口金より紡出した。
紡出した糸条は、 25°Cのチムニ一風により冷却され、 口金下距離 2mの位置に設 置された給油ガイ ドを用いて油剤を付与して収束し、 lOOOm/minで回転する第 1ゴ デッ トローラ一にて引き取った。 ドラフ トは 155であった。
糸条はさらに l OOOm/mi nで回転する第 2ゴデッ トローラ一を介して、 ドライブ口 一ラー駆動のワインダ一にて卷き取り張力 0. 15mN/dtexの条件で卷き取った。
紡糸張力は 0. 2mN/dtexと十分に低い値であり、 紡糸の際に糸切れは認められず、 製糸性は良好であった。 得られた繊維は、 11%が 0. 8であり、 繊度の均一性が非常 に僅れていた。
実施例 10
紡糸温度を 200°C、 吐出量を 7. 2g/min、 口金孔径を 0. 3nun、 紡糸速度を 600m/[ni n とする他は、 実施例 9と同様に紡糸を行った。 ドラフ トは 233であった。
紡糸張力は 0. 5mN/dtexと十分に低い値であり、 紡糸の際に糸切れは認められず、 製糸性は良好であった。 得られた繊維は、 U%が 1. 2であり、 繊度の均一性に優れ ていた。
実施例 11 ·
重量平均分子量 800である L-乳酸オリ ゴマー 30wt %と置換度 2. 5のセルロースジ アセテート 70wt %を 2軸ェクス トルーダーにより予備混練してチップ化した。 この ポリマー組成物は、 200°Cにおける溶融粘度が 150Pa ' secであり、 メルトテンショ ンが 25mNであった。
この組成物を用いて'、 ェクス トルーダー型紡糸機にて溶融温度 220°C、'紡糸温度 220°Cにて溶融させ、 吐出量が 26. 7g/minとなるように計量し、 0. 18mm φ - 0. 30mtnL の口金孔を 24ホール有する口金より紡出した。 紡出した糸条は、 5° のチム^ー風により冷却され、 口金下距離 lmの位置に設 置された給油ガイ ドを用いて ¾剤を付与して収束し、 2000m/minで回転する第 1ゴ デッ トローラ一にて引き取った。 .ドラフ トは 50. 3であった。,
糸条はさらに 2000m/mi nで回転する第 2ゴデッ トローラ一を介して、 ドライブ口 —ラー駆動のワインダ一にて卷き取り張力 0. 15mN/dt exの条件で卷き.取った。 紡糸張力は 1. 2mN/dt exと十分に低い値であり、 紡糸の際には若干の発煙が認め られたが、 糸切れはなく製糸性は良好であった。 得られた繊維は、 U%が 1. 1であ り、 繊度の均一性が優れていた。
表 4
Figure imgf000040_0001
CAP:セルロースァセ亍ートプロピオネート. COA:セルロースアセテート
比較例 5
分子量 1000の.ポリエヂレングリ コ一ル (PEG1000) と置換度 2.5のセル口一スジ ァセテ一トを重量比で 1:9となるようにァセ トン中に溶'解させ、 キャス ト法によつ てシートを作成した。 この組成物の 200°Cにおける溶融粘度は 320Pa'secであり、 メノレ卜テンションは 120tnNであった。
この組成物を用いて、 紡糸温度を 240°Cとする他は、 実施例 9と同様に溶融紡糸 を試みたが、 溶融粘度およびメルトテンショ ンの双方が高すぎるため、 曳糸性が 悪く、 安定した製糸を行う ことができなかった。
比較例 δ
分子量 400のポリ エチレングリ コール (PEG400) と置換度 2.5のセルロースジァ セテ一 トを重量比で 5:5となるようにァセ トン中に溶解させ、 キャス ト法によって シー トを作成した。 この組成物の 200°Cにおける溶融粘度は 20Pa'secであり、 メル トテンショ ンは lmNであった。
この組成物は曳糸性が劣っており、 単糸繊度を小さくすることができなかった。 また、 紡糸速度も高くすることができず、 紡糸速度 50tn/minにて引き取って実施例 1と同様に紡糸を行った。 その際、 口金はホール数 4個の物を用い、 吐出量は 2.2g /minと した。 ドラフ トは 4.2であった。 '
紡糸張力は 0.05mN/dtexと低すぎる値であり、 糸条は安定しなかった。 1kgあた りの糸切れは 12回であった。 また、 溶融粘度が低すぎるため糸条の分配性が不良 となり、 繊維の U%は 3.8と繊度斑の大きすぎる繊維であった。
比較例 7
重量平均分子量 3, 000であるし-乳酸ォリ ゴマー 30wt%と置換度 2.5のセルロース ジァセテ一ト 70wt%を 2軸ェクス トルーダ一により予備混練してチップ化した。 このポリマー組成物は、 200°Cにおける溶融粘度が 2lOPa'secであり、 メルトテン ショ ンが 42mNであつた。
この組成物を用いて、 エタス トルーダー型紡糸機にて溶融温度 230°C、 紡糸温度 230°Cにて溶融させ、 吐出量が 3.2g/minとなるように計量し、 0.25mm φ -0.50mm L の口金孔を 18ホール有する口金より紡出した。
紡出された糸条は 25°Cのチムニ一風により冷却した後、 収束することなく、 80 ヽ Om/mi nで回転する第 1 ゴデッ トローラ一にて引き取った。 ドラフ トは 162であった c 紡糸張力は 4mN/dte.xと高い値であり、 lkgあたり 5回の糸切れが発生した。 また、 得られたパッケージからは繊維を解舒することができず、 U %は測定不能であった c 比較例 8
第 1ゴデッ トローラ一に変えてエア一サクションガンを用いること以外は、 比較 例 7と同様にして紡糸を行った。 紡糸張力は 1. ΟπιΝ/dt exであった。
ゴデッ トローラーを使用しないため、 引き取り速度が不均一となり、 得られた 繊維は U%が 2. 8と繊度斑の大きすぎるものであった。 1kgあたりの糸切れは 3回で あった 0
表 5
Figure imgf000043_0001
CDA:セルロースアセテート
実施例 12 —— . ノ
100°C、 12時間の真空乾燥により絶乾状態と したセルロースァセテ一トプロピオ, ネー ト (エステル置換度 : 2.7、 平均重合度 : 240.) と可塑剤 (アジピン酸ジォグ チル (分子量 371) ) を 12重量%含有した組成物め溶融粘度を測定したところ、 1 20. lPa ' secと良好な熱流動性を示していた。 また加熱減量率は 2.0%であり、 耐 熱性は良好であった。 メルトテンショ ンは 12mNであった。
この組成物を単軸型溶融紡糸機を用いて、 メルタ一温度 230°C、 パック部温度 2 30°Cにて溶融させ、 吐出量 5.9gZminの条件で、 0.23mm φ — 0.30mmしの口金孔を 6ホ ール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し、 油剤を付与して収束した後、 ΑδΟπιΖ分で回転する第 1ゴデッ トローラーにて引き取 り、 第 1ゴデッ トローラーと同じ速度で回転する第 2ゴデッ トローラーを介して、 卷き取り張力が 0. lcN/dtexとなる速度で回転するワインダ一にて卷き取った。 得 られた繊維は、 強度が 1.0cN/dtex、 伸度が 38%、 単糸繊度が 21. 9dtex、 U%が 0. 7%であった。 この繊維を用いて筒編み機による編み地の作成を試みたところ、 順 調に編み立てが可能であり、 ソフ トかつドライな風合いを有する編み地が得られ た。
実施例 13
100°C、 12時間の真空乾燥により絶乾状態と したセルロースアセテートプロピオ ネー ト (エステル置換度 : 2.0、 平均重合度 : 240) と可塑剤 (アジピン酸ジォク チル (分子量 371) ) を 9重量。 /0含有した組成物の溶融粘度を測定したところ、 17 3.6Pa · secと良好な熱流動性を示していた。 また加熱減量率は 1.1%であり、 耐熱 性は良好であった。 メル トテンショ ンは 15mNであった。
この組成物を単軸型溶融紡糸機を用いて、 メルタ一温度 240°C、 パック部温度 2 40°Cにて溶融させ、 吐出量 6.2g/minの条件で、 0.23mm φ — 0.30tnmLの口金孔を 12 ホール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し、 油剤を付与して収束した後、 lOOOmZ分で回転する第 1ゴデッ トローラーにて引き 取り、 第 1ゴデッ トロ一ラーと同じ速度で回転する第 2ゴデッ トロ一ラ一を介して、 卷き取り張力が 0. lcN/dtexとなる速度で回転するワインダ一にて卷き取った。 得 られた繊維は、 強度が 1.2cNZdtex、 伸度が 20%、 単糸繊度が 5.2dtex、 U%は 0.9 %であった。 この繊維を甩いて筒編み機による編み地の作成を試みたところ、 順 調に編み立てが可能であり、 ソブトかつドライな風合いを有する編み地が得られ. た。 - 実施例 14
機械的攪拌機、 温度計、 冷却 トラップを備えた 500ml用 4つ口フラスコに、 L -乳 酸 (和光純薬製、 約 10 %の H2 を含む) を 250ml仕込み、 160°Cノ 101080Paで 1時間 攪拌しながら水を留出させた後、 160°C / l 330Paで 10hr攪拌しながら、 重縮合を行 つた。 得られたポリ乳酸ポリマーは.重量平均分子量が 2000であった。
100°C、 12時間の真空乾燥により絶乾状態と したセルロースアセテー トプロピオ ネー ト (エステル置換度 : 2. 5、 平均重合度 : 140) と可塑剤 (分子量 2000のポリ 乳酸) を 9重量%含有した組成物の溶融粘度を測定したところ、 180Pa ' s e Cと良好 な熱流動性を示していた。 また加熱減量率は 1. 3 %であり、 耐熱性は良好であった: メルトテンショ ンは 18mNであった。
この組成物を単軸型溶融紡^機を用いて、 メルタ一温度 240°C、 パック部温度 2 40°Cにて溶融させ、 吐出量 6. l gZ mi riの条件で、 0. 23mm φ— 0. 30mmLの口金孔を 24 ホール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し、 油剤を付与して収束した後、 750mZ分で回転する第 1ゴデッ トローラーにて引き取 り、 第 1ゴデッ トロ一ラーと同じ速度で回転する第 2ゴデッ トローラーを介して、 卷き取り張力が 0. l cN/ dt exとなる速度で回転するワインダ一にて卷き取った。 得 られた繊維は、 強度が 0. 8cNZ dt ex、 伸度が 25 %、 単糸繊度が 3. 4dt ex、 U%は 0. 6. %であった。 この繊維を用いて筒編み機による編み地の作成を試みたところ、 順 調に編み立てが可能であり、 ソフ トかつドライな風合いを有する編み地が得られ た。
実施例 15
100°C、 12時間の真空乾燥により絶乾状態と したセルロースアセテー トプ πζピオ ネート (エステル置換度 : 2. 3、 平均重合度 : 180) と可塑剤 (グリセリ ンジァセ トモノラウレー ト (分子量 358) 1 1重量%含有した組成物の溶融粘度を測定したと ころ、 l 52Pa · secと良好な熱流動性を示していた。 また加熱減量率は 1. 2 %であり . 耐熱性は良好であった。 メル 卜テンショ ンは 17mNであった。 この組成物を単軸型溶融紡糸機を用いて、 メルタ一温度 245°C、 パック部温度 2 45°Cにて溶融させ、 吐出量 4. 5g " mi nの条件で、 0. 23mm φ—0. 30mmLの口金孔を 36 ホール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し、 油剤を付与して収束した後、 500mZ分で回転する第 1ゴデッ トローラーにて引き取 り、 第 1ゴデッ トローラーと同じ速度で回転する第 2ゴデッ トローラ一を介して、 卷き取り張力が 0. lcNZ dt exとなる速度で回転するワインダ一にて卷き取つた。 得 られた繊維は、 強度が 0. ScNZ dt ex 伸度が 35 %、 単糸繊度が 2. 5dtex、 U%は 0. 7 %であった。 この繊維を用いて筒編み機による編み地の作成を試みたところ、 順 調に編み立てが可能であり、 ソフ トかつドライな風合いを有する編み地が得られ た。
実施例 16
100°C、 12時間の真空乾燥により絶乾状態と したセルロースァセテ一トプロピオ ネート (エステル置換度 : 2. 9、 平均重合度 : 300) と可塑剤 (分子量 4000のポリ エチレングリ コール) 10重量%含有した組成物の溶融粘度を測定したところ、 18 5. 8Pa■ secと良好な熱流動性を示していた。 また加熱減量率は 2. 0%であり、 耐熱 性は良好であった。 メル トテンショ ンは 18πιΝであった。
この組成物を単軸型溶融紡糸機を用いて、 メルタ一温度 240°C、 パック部温度 2 40°Cにて溶融させ、 吐出量 21. 6gノ minの条件で、 0. 23mtn φ— 0. 30mmLの口金孔を 1 8ホール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し, 油剤を付与して収束した後、 1200ra/分で回転する第 1ゴデシ トローラーにて引き 取り、 .第 1ゴデッ トローラーと同じ速度で回転する第 2ゴデッ トローラーを介して、 卷き取り張力が 0. lcNZ dtexとなる速度で回転するワインダ一にて卷き取った。 得 られた繊維は、 強度が 1. 3cN/ dt ex、 伸度が 25 %、 単糸繊度が ίθ. 0dtex、 U%は 1. 2%であった。 この繊維を用いて筒編み機による編み地の作成を試みたところ、 順 調に編み立てが可能であり、 ソフ トかつ ドライな風合いを有する編み地が得られ た。
表 6
Figure imgf000047_0001
CAP:セルロースァセ亍一トブ□ピオネート
比較例 9
100°C、 12時間の真空乾燥により絶乾状態と したセル.口ースァセテ一ト (ェステ ル置換度 : 2. 4、 平均重合度 : 180 ) と可塑剤 (トリァセチン (分子量 218) を 10重 量%含有した組成物の溶融粘度を測定したところ、 1050Pa · secと熱流動性は悪い ものであったため、 溶融紡糸による繊維化は不可能であった。
比較例 10
100°C、 12時間の真空乾燥により絶乾状態と した可塑剤を含有しないセルロース アセテートプロピオネート (エステル置換度 : 2. 7、 平均重合度 : 240) 組成物の 溶融粘度を測定したところ、 800Pa · secと熱流動性はきわめて悪く、 溶融紡糸に よる繊維化は不可能であった。
比較例 11
100°C、 12時間の真空乾燥により絶乾状態と したセルロースアセテートプロピオ ネー 卜 (エステル置換度 : 2. 7、 平均重合度 : 240) . と可塑剤 (アジピン酸ジォク チル (分子量 371 ) を 35重量%含有した組成物の溶融粘度を測定したところ、 35. 5Pa · secと良好な熱流動性を示していた。 しかし加熱減量率は 9. 5%であり、 耐熱 性は悪いものであった。 メルトテンションは 7mNであった。
この組成物を単軸型溶融紡糸機を用いて、 メルタ一温度 230°C、 パック部温度 2 30°Cにて溶融させ、 吐出量 7. 2δ πάηの条件で、 0. 23mm φ — 0. 30mmLの口金孔を 12 ホール有する口金より紡出させた。 紡出糸条は 25°Cのチムニ一風によって冷却し、 油剤を付与して収束した後、 500m/分で回転する第 1ゴデッ トローラーにて引き取 り、 第 1ゴデッ トローラーと同じ速度で回転する第 2ゴデッ トローラーを介して、 卷き取り張力が 0. l cNZ dt exとなる速度で回転するワインダ一にて卷き取った。 得 られた繊維は、 強度が 0. 4cN/ dt ex、 伸度が 55 %、 単糸繊度が 12. 0dtex、 U%が 3. 5 %であり、 繊度斑の大きな繊維となった。 得られた繊維は黄味がかっていた。 筒 編み機にて編み地の作成を行ったところ、 非常にヌメ リのある編み地であった。
翠父 1列 10 早父 11! 11 セル口一スァセ
主鎖化合物 CAP し AP
テート
側鎖置換度 , LA 1.1 .1 平均重合度 on
240
可塑剤添加量 (wt ) 1 U η oO c 加熱減量率 (wt%) 9.5 溶融粘度 (Pa -sec) 800 35.5 メルトテンション (mN) 7 強度 (c.N/dtex) 0.4 伸度 (%) 55 単糸繊度 12
(%) 3.5 製糸性 X X △ 風合い X
CAP:セルロースアセテートプロピオネート
産業上の利用可能性
本発明の脂肪族ボリエステルグラフ ト側鎖を有する熱可塑性セル口一,ス誘導体. 組成物は、 溶融紡糸が可能であり、 溶融紡糸によって繊維製品を提供することが 可能である。
本発明の熱可塑性セルロース誘導体からなる繊維は、 セルロース由来ながら溶 融紡糸によって得られる物であり、 高次加工工程通過性に必要な機械的特性およ びドライかつソフ トな風合いを有している-ので、 衣料用繊維、 産業用繊維と して 幅広く利用することが可能である。 た、 バイオマス由来であるため、 生分解性 を活かした分野、 すなわち農業用資材、 林業用資材、 水産資材、 土木資材、 衛生 資材、 日用品、. 不織布などと して好適に用いることができる。
また、 本発明の熱可塑性セルロース誘導体からなる繊維の製造方法は、 糸切れ や単糸流れなどの工程トラブルなく、 繊度均一性、 解舒性に優れた熱可塑性セル ロース誘導体組成物繊維を製造することが可能である。

Claims

請求の範囲
1 . 炭素数が 2〜 5の操り返し単位をもつ脂肪族ポリエステル側鎖を有するセル ロースエステルを主成分と してなり 、 200°Cにおける加熱減量率が 5vrt%以下、 20 0。C, lOOOsec—1における溶融粘度が 50〜300Pa · sec、' 200°C, 100m/min引き取り時に おけるメルトテンショ ンが 0. l〜40mNである熱可塑性セルロース誘導体組成物。
2. 脂肪族ポリエステル側鎖が、 D—乳酸および または L—乳酸を主たる繰り返 し単位とするものである請求項 1記載の熱可塑性セルロース誘導体組成物。
3. 脂肪族ポリエステル側鎖が、 D—乳酸と L一乳酸とを必須の繰り返し単位と し てなり、 D—乳酸と L—轧酸とのモル比が 1 : 9〜9 : 1である請求項 1記載の熱可塑性 セルロース誘導体組成物。
4. セルロース誘導体組成物が、 分子量 1, 000〜200, 000の乳酸ホモポリマーを組 成物全量に対して 2〜40重量%含有するものである請求項 1に記載の熱可塑性セル ロース誘導体組成物。
5. 請求項 1に記載の組成物を溶融紡糸して得た繊維であって、 強度が 0.5〜4.0c N/dtex, 伸度が 2〜50%、 単糸繊度が 0.5〜 lOOdtexである熱可塑性セルロース誘導 体組成物からなる繊維。
6. 繊維の形態がマルチフィラメントである請求項 5記載の熱可塑性セルロース誘 導体組成物からなる繊維。
7. フイラメ ント繊度が繊維軸方向に対して一定であり、 繊維の U%が 0.1〜2.5% である請求項 5に記載の熱可塑性セルロース誘導体組成物からなる繊維。
8 200°C, lOOOsec-1における溶融粘度が 50〜300Pa'secであり、 200°C, I00m/m in引き取り時におけるメルトテンションが 0. l 40mNである熱可塑性セルロース誘 導体組成物を、 溶融温度 180〜240°Cにて紡出し、 口金下距離 0.5〜5mで油剤あるい は水を付与することにより収束して、 ^糸張力が 0.1〜3. OmN/dtexとなる条件でゴ デッ トロ一ラーにて引き取った後、 パッケージへ卷き取ることを特徴とする熱可 塑性セルロース誘導体組成物からなる繊維の製造方法。
9. 紡糸 ドラフ トが 30〜300である請求項 8記載の熱可塑性セルロース誘導体組成 物からなる繊維の製造方法。
1 0 . 熱可塑性セルロース誘導体組成物が、 D—乳酸および/または L一乳酸を主 たる繰り返し単位とする脂肪.族ポリエステル側鎖を有するセルロースエステルを 主成分と してなるものである請求項 8に記載の熱可塑性セルロース誘導体組成物か らなる繊維の製造方法。
1 1 . 熱可塑性セルロース誘導体組成物が、 セルロース混合エステル 85〜98重量 %と、 分子量 350〜20, 000の可塑剤 1〜30重量%を含むものである請求項 8に記載の 熱可塑性セルロース誘導体組成物からなる繊維の製造方法。
1 2 . 繊維の形状がマルチフィラメン トである請求項 8に記載の熱可塑性セルロー ス誘導体組成物からなる繊維の製造方法。
1 3 . セルロース混合エステル 85〜98重量%と、 分子量 350〜20, 000の可塑剤 1〜 30重量%を含む熱可塑性セルロース混合エステル組成物を溶融紡糸して得られる 熱可塑性セルロース誘導体組成物からなる繊維。
1 4 . セノレ口一ス混合エステノレが、 セルロースアセテー トプロピオネー ト、 セノレ ロースアセテー トブチレ一 ト、 セルロースアセテー トフタ レー トからなる群よ り なる少なく とも 1種かちなる請求項 13記載の熱可塑性セル口ース誘導体組成物から なる繊維。
1 5 . 可塑剤が重量平均分子量 1, 000〜20, 000のポリ乳酸である請求項 13に記載の 熱可塑性セルロース誘導体組成物からなる繊維。
1 6 . 可塑剤が重量平均分子量 350〜20, 000であるポリエチレングリ コールである 請求項 13に記載の熱可塑性セルロース誘導体組成物繊維。
1 7 . 可塑剤が分子量 350〜1 , 000であるグリセリ ン誘導体である請求項 13に記載 の熱可塑性セルロース誘導体組成物からなる繊維。
1 8 . 可塑剤の含有率が組成物の全量に対して 1〜15重量%であり、 組成物の 200 °Cにおける加熱減量率が 5wt %以下である請求項 13に記載の熱可塑性セルロース誘 導淬組成物からなる繊維。
1 9 . 繊維の強度が 0. 5〜4. OcN/dtexであり、 伸度力 S 2 50%である請求項 13に記 載の熱可塑性セルロース誘導体組成物からなる繊維。
2 0 . 繊¾の形態がマルチフィラメントである請求項 13に記載の熱可塑性セル口 ース誘導体からなる繊維。
1. フィラメント繊度が繊維.軸方向に対して一定であり、 繊維の U%が 0.1〜2.%である請求項 13に記載の熱可塑性セルロース誘導体からなる繊維。 '
PCT/JP2002/006336 2001-06-26 2002-06-25 Composition de derive de cellulose thermoplastique et fibre contenant cette composition WO2003000966A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES02738793.5T ES2620407T3 (es) 2001-06-26 2002-06-25 Composición de derivado de celulosa termoplástico y fibra que contiene la misma
US10/432,191 US6984631B2 (en) 2001-06-26 2002-06-25 Thermoplastic cellulose derivative composition and fiber comprising the same
EP02738793.5A EP1335045B1 (en) 2001-06-26 2002-06-25 Thermoplastic cellulose derivative composition and fiber comprising the same
CNB028014731A CN100381622C (zh) 2001-06-26 2002-06-25 热塑性纤维素衍生物组合物以及由其构成的纤维
KR1020027017320A KR100928887B1 (ko) 2001-06-26 2002-06-25 열가소성 셀룰로오스 유도체 조성물로 이루어진 섬유

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001193179A JP2003013324A (ja) 2001-06-26 2001-06-26 熱可塑性セルロースエステル系マルチフィラメントの製造方法
JP2001/193179 2001-06-26
JP2001270381A JP2003082525A (ja) 2001-09-06 2001-09-06 熱可塑性セルロース誘導体系繊維
JP2001/270381 2001-09-06
JP2002049627A JP2003246802A (ja) 2002-02-26 2002-02-26 熱可塑性セルロースアセテートおよびそれからなる繊維
JP2002/49627 2002-02-26

Publications (1)

Publication Number Publication Date
WO2003000966A1 true WO2003000966A1 (fr) 2003-01-03

Family

ID=27347023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006336 WO2003000966A1 (fr) 2001-06-26 2002-06-25 Composition de derive de cellulose thermoplastique et fibre contenant cette composition

Country Status (7)

Country Link
US (1) US6984631B2 (ja)
EP (1) EP1335045B1 (ja)
KR (1) KR100928887B1 (ja)
CN (1) CN100381622C (ja)
ES (1) ES2620407T3 (ja)
TW (1) TW593807B (ja)
WO (1) WO2003000966A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336696A (ja) * 2004-04-27 2005-12-08 Toray Ind Inc 織物裏地
WO2007011119A1 (en) * 2005-07-20 2007-01-25 Elecsys Co., Ltd. Biodegradable resin composition
JPWO2005093139A1 (ja) * 2004-03-26 2008-02-14 東レ株式会社 衣料用布帛およびその製造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2438445C (en) * 2002-12-26 2006-11-28 Hyosung Corporation Lyocell multi-filament for tire cord and method of producing the same
CN101410416A (zh) * 2006-01-27 2009-04-15 大赛璐化学工业株式会社 环状酯改性葡聚糖衍生物的制造方法
RU2012138704A (ru) * 2010-02-11 2014-03-20 ЭфПиИННОВЕЙШНЗ Нанокомпозитные биоматериалы из нанокристаллической целлюлозы (нкц) и полимолочной кислоты (пмк)
TWI393807B (zh) * 2010-03-26 2013-04-21 Taiwan Textile Res Inst 高伸長率纖維素母粒之製備方法與應用
US9273195B2 (en) 2010-06-29 2016-03-01 Eastman Chemical Company Tires comprising cellulose ester/elastomer compositions
US20110319531A1 (en) 2010-06-29 2011-12-29 Eastman Chemical Company Cellulose ester compositions
US8973588B2 (en) 2011-07-29 2015-03-10 R.J. Reynolds Tobacco Company Plasticizer composition for degradable polyester filter tow
US9289012B2 (en) 2011-07-29 2016-03-22 R. J. Reynolds Tobacco Company Plasticizer composition for degradable polyester filter tow
US10064429B2 (en) 2011-09-23 2018-09-04 R.J. Reynolds Tobacco Company Mixed fiber product for use in the manufacture of cigarette filter elements and related methods, systems, and apparatuses
US20130150484A1 (en) 2011-12-07 2013-06-13 Eastman Chemical Company Cellulose esters in pneumatic tires
US9179709B2 (en) 2012-07-25 2015-11-10 R. J. Reynolds Tobacco Company Mixed fiber sliver for use in the manufacture of cigarette filter elements
US9119419B2 (en) 2012-10-10 2015-09-01 R.J. Reynolds Tobacco Company Filter material for a filter element of a smoking article, and associated system and method
US10308740B2 (en) 2014-02-07 2019-06-04 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US11267916B2 (en) 2014-02-07 2022-03-08 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10723824B2 (en) 2014-02-07 2020-07-28 Eastman Chemical Company Adhesives comprising amorphous propylene-ethylene copolymers
US9382351B2 (en) 2014-02-07 2016-07-05 Eastman Chemical Company Amorphous propylene-ethylene copolymers
US10647795B2 (en) 2014-02-07 2020-05-12 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and polyolefins
US10696765B2 (en) 2014-02-07 2020-06-30 Eastman Chemical Company Adhesive composition comprising amorphous propylene-ethylene copolymer and propylene polymer
US10077342B2 (en) 2016-01-21 2018-09-18 Eastman Chemical Company Elastomeric compositions comprising cellulose ester additives
CN108495958B (zh) * 2016-01-26 2021-06-11 富士胶片株式会社 纳米纤维及无纺布
CN105803556B (zh) * 2016-03-31 2018-06-26 东华大学 一种可熔融纺丝的二醋酸纤维素接枝共聚物及其制备方法
US10524500B2 (en) 2016-06-10 2020-01-07 R.J. Reynolds Tobacco Company Staple fiber blend for use in the manufacture of cigarette filter elements
US10375984B2 (en) 2016-07-18 2019-08-13 R.J. Reynolds Tobacco Company Nonwoven composite smokeless tobacco product
EP3275619A1 (en) * 2016-07-29 2018-01-31 Dow Global Technologies LLC Systems and methods for the online measurement of melt strength of polymeric multilayer and monolayer structures
CN107793711B (zh) * 2016-09-06 2020-09-04 中国石油化工股份有限公司 热塑性纤维素与脂肪族芳香族共聚酯共混物注塑制品及制备方法
KR101788632B1 (ko) 2016-10-05 2017-10-20 도레이케미칼 주식회사 열가소성 셀룰로오스 유도체 조성물 및 이를 통해 제조된 섬유
CN108531152B (zh) * 2017-03-01 2020-05-08 中国石油天然气股份有限公司 一种低密度、高强度可降解暂堵剂及其制备方法
CN110003533A (zh) * 2019-04-12 2019-07-12 中国科学院化学研究所 一种醋酸纤维素复合材料及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2152944A (en) * 1984-01-23 1985-08-14 Daicel Chem Cellulose acetate graft copolymer and yarn formed therefrom
EP0597478A1 (en) * 1992-11-13 1994-05-18 Daicel Chemical Industries, Ltd. Biodegradable cellulose ester composition and article produced from the same
JPH06207045A (ja) * 1993-01-12 1994-07-26 Daicel Chem Ind Ltd 熱可塑性セルロース誘導体組成物およびその製造方法
JPH09241425A (ja) * 1996-03-05 1997-09-16 Mitsubishi Plastics Ind Ltd 生分解性のフィルム又はシ−ト及びこれらフィルム又はシ−トの加工品
JPH10317228A (ja) * 1997-05-13 1998-12-02 Oji Paper Co Ltd 生分解性セルロースアセテート系繊維およびその製造方法
JPH1171402A (ja) * 1997-08-28 1999-03-16 Oji Paper Co Ltd ポリエステルグラフト化セルロースアセテート誘導体及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1004204A (en) * 1962-11-09 1965-09-15 Teijin Ltd A cellulose ester-polyolefin thermoplastic composition for producing shaped articles
US3797499A (en) * 1970-05-13 1974-03-19 Ethicon Inc Polylactide fabric graphs for surgical implantation
US3637447A (en) * 1970-06-10 1972-01-25 American Filtrona Corp Method of making filter means by crimping and overwrapping a tubular element
AU519458B2 (en) 1977-07-05 1981-12-03 Cordis Dow Corporation Cellulose acetate hollow fibres
US4276173A (en) * 1977-07-05 1981-06-30 Cordis Dow Corp. Cellulose acetate hollow fiber and method for making same
JPS5584412A (en) * 1978-12-20 1980-06-25 Nippon Zeon Co Ltd Production of hollow fiber
JPS58225101A (ja) 1982-06-22 1983-12-27 Daicel Chem Ind Ltd セルロ−スエステル誘導体及びその製造方法
JPS5986621A (ja) 1982-11-10 1984-05-18 Daicel Chem Ind Ltd 新規なグラフト重合体の製造方法
CN1033517C (zh) * 1988-08-08 1996-12-11 巴特尔纪念研究院 可生物降的组合物及其制备方法
DE3842822A1 (de) * 1988-12-20 1990-07-05 Akzo Gmbh Biocompatible dialysemembran aus einem gemischten polysaccharidester
EP0642604A1 (en) * 1992-05-27 1995-03-15 Eastman Chemical Company Environmentally non-persistant cellulose ester fibers
JPH06287279A (ja) 1993-03-31 1994-10-11 Dainippon Ink & Chem Inc ラクタイド系グラフト共重合体の製造方法
DE4325352C1 (de) * 1993-07-28 1994-09-01 Rhodia Ag Rhone Poulenc Plastifiziertes Celluloseacetat, Verfahren zu dessen Herstellung und seine Verwendung zur Herstellung von Filamenten
DE4428211A1 (de) * 1994-08-09 1996-02-15 Buck Chem Tech Werke Hochmolekulare, thermoplastisch verarbeitbare, biologisch abbaubare chemische Substanz und Verfahren zu deren Herstellung
US5817728A (en) * 1995-03-16 1998-10-06 Mitsui Chemicals, Inc. Preparation of degradable copolymers
JPH0978339A (ja) 1995-09-18 1997-03-25 Oji Paper Co Ltd 生分解性セルロースアセテート系繊維及びその製造方法
US5783505A (en) * 1996-01-04 1998-07-21 The University Of Tennessee Research Corporation Compostable and biodegradable compositions of a blend of natural cellulosic and thermoplastic biodegradable fibers
JPH09291414A (ja) 1996-04-22 1997-11-11 Oji Paper Co Ltd 生分解性セルロースアセテート系繊維及びその製造方法
FR2767069B1 (fr) 1997-08-08 1999-09-17 Ard Sa Composition emulsionnante a base de polyglycosides et d'alcool gras
JP3620265B2 (ja) 1998-02-26 2005-02-16 トヨタ自動車株式会社 乳酸系共重合体の製造方法
JP4231569B2 (ja) 1998-03-12 2009-03-04 ダイセル化学工業株式会社 生分解性グラフト重合体およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2152944A (en) * 1984-01-23 1985-08-14 Daicel Chem Cellulose acetate graft copolymer and yarn formed therefrom
EP0597478A1 (en) * 1992-11-13 1994-05-18 Daicel Chemical Industries, Ltd. Biodegradable cellulose ester composition and article produced from the same
JPH06207045A (ja) * 1993-01-12 1994-07-26 Daicel Chem Ind Ltd 熱可塑性セルロース誘導体組成物およびその製造方法
JPH09241425A (ja) * 1996-03-05 1997-09-16 Mitsubishi Plastics Ind Ltd 生分解性のフィルム又はシ−ト及びこれらフィルム又はシ−トの加工品
JPH10317228A (ja) * 1997-05-13 1998-12-02 Oji Paper Co Ltd 生分解性セルロースアセテート系繊維およびその製造方法
JPH1171402A (ja) * 1997-08-28 1999-03-16 Oji Paper Co Ltd ポリエステルグラフト化セルロースアセテート誘導体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1335045A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005093139A1 (ja) * 2004-03-26 2008-02-14 東レ株式会社 衣料用布帛およびその製造方法
JP4552935B2 (ja) * 2004-03-26 2010-09-29 東レ株式会社 衣料用布帛の製造方法
KR101216526B1 (ko) 2004-03-26 2012-12-31 도레이 카부시키가이샤 의료용 직물 및 그 제조방법
JP2005336696A (ja) * 2004-04-27 2005-12-08 Toray Ind Inc 織物裏地
JP4661321B2 (ja) * 2004-04-27 2011-03-30 東レ株式会社 織物裏地
WO2007011119A1 (en) * 2005-07-20 2007-01-25 Elecsys Co., Ltd. Biodegradable resin composition

Also Published As

Publication number Publication date
EP1335045A1 (en) 2003-08-13
US6984631B2 (en) 2006-01-10
CN1462324A (zh) 2003-12-17
KR100928887B1 (ko) 2009-11-30
KR20030058950A (ko) 2003-07-07
CN100381622C (zh) 2008-04-16
TW593807B (en) 2004-06-21
EP1335045B1 (en) 2016-12-28
ES2620407T3 (es) 2017-06-28
US20040030043A1 (en) 2004-02-12
EP1335045A4 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
WO2003000966A1 (fr) Composition de derive de cellulose thermoplastique et fibre contenant cette composition
JP4613575B2 (ja) セルロースエステル短繊維およびその製造方法
MXPA06006949A (es) Procesos rotativos de hilatura para formar fibras que contienen polimeros de hidroxilo.
Cui et al. Cellulose modified by citric acid reinforced Poly (lactic acid) resin as fillers
KR101427226B1 (ko) 친환경 생분해성 복합섬유 및 그 제조방법
JP3928496B2 (ja) セルロースアセテートプロピオネート繊維およびその製造方法
CN100412242C (zh) 聚对苯二甲酸-共-丁二酸丁二醇酯纤维的制备方法
JP2003238669A (ja) 熱可塑性セルロースアセテートおよびそれからなる繊維
JP2003082160A (ja) 熱可塑化セルロースエステル組成物およびそれからなる繊維
JP4609091B2 (ja) ポリ乳酸繊維
KR20230122622A (ko) 폴리에스테르 중합체 나노복합체
JP4093048B2 (ja) 成形加工性に優れた熱可塑性セルロースエステル組成物およびそれから得られる繊維
JPH09291414A (ja) 生分解性セルロースアセテート系繊維及びその製造方法
Akhir et al. Characterisation and production of poly (lactic acid)/poly (ethylene glycol) microfiber via melt drawn spinning process
JPH0978339A (ja) 生分解性セルロースアセテート系繊維及びその製造方法
JP2005248354A (ja) セルロース脂肪酸エステル繊維の製造方法
JP2009084759A (ja) ポリ乳酸短繊維およびその製造方法
KR101643699B1 (ko) 열가소성 셀룰로오스 유도체 복합섬유의 제조방법
JP4687719B2 (ja) 安全ネット
KR101672465B1 (ko) 열가소성 셀룰로오스 유도체 복합섬유
JP2003246802A (ja) 熱可塑性セルロースアセテートおよびそれからなる繊維
JP2004169199A (ja) 熱可塑性セルロースエステル組成物からなる繊維
JP2008031623A (ja) 複合繊維およびそれを用いた繊維製品
JP2004197256A (ja) 熱可塑性セルロースエステル組成物からなるマルチフィラメントの製造方法
KR20150129091A (ko) 열가소성 셀룰로오스 유도체 복합섬유

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020027017320

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028014731

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2002738793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002738793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10432191

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027017320

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002738793

Country of ref document: EP