WO2002060474A2 - Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion - Google Patents

Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion Download PDF

Info

Publication number
WO2002060474A2
WO2002060474A2 PCT/EP2002/000374 EP0200374W WO02060474A2 WO 2002060474 A2 WO2002060474 A2 WO 2002060474A2 EP 0200374 W EP0200374 W EP 0200374W WO 02060474 A2 WO02060474 A2 WO 02060474A2
Authority
WO
WIPO (PCT)
Prior art keywords
fip
lipase
amylase
protease
enzymes
Prior art date
Application number
PCT/EP2002/000374
Other languages
English (en)
French (fr)
Other versions
WO2002060474A3 (de
Inventor
Manfred Galle
Peter-Colin Gregory
Andreas Potthoff
Friederike Henniges
Original Assignee
Solvay Pharmaceuticals Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10144711A external-priority patent/DE10144711A1/de
Priority to EP02716661A priority Critical patent/EP1381386A2/de
Priority to KR10-2003-7009470A priority patent/KR20030067752A/ko
Priority to CA002434808A priority patent/CA2434808A1/en
Priority to BR0206521-5A priority patent/BR0206521A/pt
Priority to IL15700402A priority patent/IL157004A0/xx
Priority to SK929-2003A priority patent/SK9292003A3/sk
Priority to JP2002560665A priority patent/JP2004524838A/ja
Application filed by Solvay Pharmaceuticals Gmbh filed Critical Solvay Pharmaceuticals Gmbh
Priority to MXPA03005960A priority patent/MXPA03005960A/es
Priority to HU0500560A priority patent/HUP0500560A3/hu
Priority to NZ527148A priority patent/NZ527148A/en
Priority to PL02362646A priority patent/PL362646A1/xx
Publication of WO2002060474A2 publication Critical patent/WO2002060474A2/de
Priority to US10/620,759 priority patent/US20040057944A1/en
Priority to NO20033261A priority patent/NO20033261D0/no
Publication of WO2002060474A3 publication Critical patent/WO2002060474A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes

Definitions

  • the present invention relates to new enzyme mixtures which contain a certain combination of microbial lipase, protease and amylase. Furthermore, the invention relates to pharmaceutical preparations containing these mixtures of microbial enzymes. These new pharmaceutical preparations are particularly well suited for the treatment and / or prophylaxis of maldigestion in mammals and humans, in particular for the treatment and / or prophylaxis of maldigestion based on chronic exocrine pancreatic insufficiency.
  • pancreatic insufficiency the organ that produces the most important endogenous digestive enzymes. If there is pathological pancreatic insufficiency, this can be congenital or acquired. Acquired chronic pancreatic insufficiency can be due to alcoholism, for example. Congenital pancreatic insufficiency can, for example, be due to the congenital disease of cystic fibrosis.
  • the consequences of the lack of digestive enzymes can be severe symptoms of malnutrition and malnutrition, which can be associated with an increased susceptibility to secondary diseases.
  • pancreatin preparations intended for oral administration should be coated with gastro-resistant protective layers to protect against acid-induced denaturation in the stomach.
  • gastro-resistant protective layers protect the acid-sensitive pancreatin components from irreversible destruction and only release their contents after passage through the stomach in the upper part of the small intestine, where usually higher, harmless pH values - for example between pH 5.5 and pH 8 - prevail.
  • the upper part of the small intestine for example the duodenum, is the place where the majority of the enzymatically split food components are usually absorbed by the body.
  • pancreatin Since pancreatin is a natural product, it requires a considerable amount of technical effort to provide it in a uniform, high-quality form. In addition, the supply of raw materials suitable for processing into pancreatin can fluctuate.
  • substitution enzymes In order to be suitable for the substitution of digestive enzymes in humans, all substitution enzymes must be one Fulfill a number of requirements (see, for example, BG Peschke, "Active Components and Galenic Aspects of Enzyme Preparations" in: Pancreatic Enzymes in Health and Disease, publisher: PG Lankisch, Springer Verlag Berlin, Heidelberg 1991, pages 55 to 64; hereinafter cited as “Peschke”).
  • these substitution enzymes should be stable to pepsin and other endogenous proteases such as pancreatic proteases. Substitution enzymes should remain active even in the presence of the body's bile salts.
  • the various substitution enzymes contained in the pharmaceutical preparation are able to develop their activities in sufficient amounts at the intended site of action (which is usually the upper part of the small intestine). Since under physiological conditions during or shortly after the food intake in the human stomach there is usually a higher pH value, for example pH 4-5, than in the empty stomach (approx.
  • the object of the present invention was therefore to provide improved mixtures of digestive enzymes and pharmaceutical compositions containing such mixtures for the treatment and / or prophylaxis of maldigestion in mammals and humans which can substitute the body's own lipolytic, proteolytic and amylolytic enzyme activities and which can be more specific Activity of the substitution enzymes contained therein allow relatively small dosage amounts.
  • the substitution enzymes contained in the digestive enzyme mixtures lipase, protease, amylase), both individually and in a mixture with one another, should meet as well as possible all the requirements which are placed on digestive enzymes intended for therapy in humans.
  • the substitution enzymes should have good pH stability and good pH activity in the pH range usually prevailing at the respective physiological site of action.
  • substitution enzymes should be well tolerated with endogenous active substances such as bile salts or endogenous proteases, for example pepsin or pancreatic proteases. Another object was to select, for the purpose according to the invention, those substitution enzymes which can be obtained in manufacturing quality which can always be standardized in terms of process sequence and product quantity and which can always be of constant quality and in any quantity.
  • the task is solved by providing a new mixture of microbial enzymes, which
  • a) a concentrated lipase from Rhizopus delemar, b) a neutral protease from Aspergillus melleus and c) an amylase from Aspergillus oryzae contains.
  • Mixtures of microbial enzymes according to the invention can be contained in conventional pharmaceutical preparations together with customary auxiliaries and / or carriers. These pharmaceutical preparations contain only mixtures according to the invention of microbial enzymes of certain molds as active substances and are suitable for the total substitution of the body's own digestive enzymes from mammals and humans.
  • the individual enzymes (lipase, protease, amylase) contained in the mixture of microbial enzymes according to the invention have in common that they are in the physiological to pathophysiological pH range of the digestive tract (approximately pH 4 to 8) and in particular below those at or shortly after eating prevailing conditions have good pH stability and good pH activity.
  • the pharmaceutical preparations are also characterized by good effectiveness and good tolerability.
  • the Rhizopus delemar strain is considered a subspecies of the Rhizopus oryzae strain. Lipases from molds of the Rhizopus delemar strain are known per se and can be used e.g. B. can be obtained by per se known methods from culture broths of the corresponding mushroom. Processes for the fermentation of molds and for the isolation of the enzyme products formed by these molds are known to the person skilled in the art, for example from relevant textbooks in biotechnology (cf., for example, H. Diekmann, H.
  • the isolated lipases z. B. freed from accompanying substances in a manner known per se and enriched or concentrated to the specific activity desired according to the invention.
  • the lipase (EC No. 3.1.1.3) "Lipase D Amano 2000 ® “(also referred to as” Lipase D2 ® ) from Rhizopus delemar from Amano Pharmaceuticals, Japan.
  • This lipase like the natural pancreatic lipase, has a 1,3-position specificity compared to fatty acid glycerides specific activity, depending on the batch, is between approximately 1,800,000 FIP-E / g and approximately 2,250,000 FIP-E / g.
  • "Lipase D Amano 2000 ®” is characterized by a high stability towards pancreatic protease from pancreatin the lipolytic activity of "Lipase D Amano 2000 ® " in a laboratory test after two hours of exposure to pancreatic protease from pancreatin in a pH range from pH 6 to 8 still at 55% of the initial activity.
  • the pH stability of the "Lipase D Amano 2000 ® " was in a laboratory test in a pH range from pH 4 to 8 at 37 ° C over a period of 120 min with at least 70% of the initial activity.
  • a concentrated lipase from Rhizopus delemar for example, its pH profile is suitable.
  • the pH profile of the "Lipase D Amano 2000®” was therefore determined as a specific activity as a function of the pH.
  • the specific activities at the individual pH values were measured after a modification of the FIP methods for determining the activity of microbial lipases.
  • the pH profiles were also determined in the presence of variable concentrations of bile salts.
  • Samples of 19 ml each at 37 ° C. are thermostatted from the above-mentioned substrate emulsions, in which certain bile salt concentrations are present.
  • pH values of 3, 4, 5, 6, 7 and 8 are then set by adding 0.1 M NaOH or 1 M HCl.
  • 1 ml of the above-mentioned enzyme solution is then added to the samples of substrate emulsions prepared in this way (note: in order to determine the optimal titration rate, the suitable amount of ideally contained lipase in the enzyme solution can in principle be determined in a manner known per se by means of a series of dilutions ).
  • An end point titration to pH 9 is then carried out within 30 seconds in order to completely dissociate the released fatty acids.
  • the total consumption of 0.1 M NaOH required is in lipase activity units E converted: a lipase activity unit E corresponds to a consumption of 1 ⁇ mol per minute.
  • the lipase activity units determined can be converted into units of E / mg by referring to the amount of dry enzymes used in g. To create the pH profile, the units of E / mg for each pH value and each bile salt concentration examined are tabulated in Table 1 and the tabulated values are graphically plotted in FIG. 1.
  • the pH optimum for "Lipase D Amano 2000 ®” as the maximum value of lipase activity at the FIP standard bile salt concentration of 0.5 mmol / l can be determined from the pH profile given above to be about pH 7.
  • the neutral protease from Aspergillus melleus has a specific activity of at least 7,500 FIP-E / g. Their pH optimum is between pH 6 and pH 8.
  • Neutral proteases of molds from the Aspergillus melleus strain are known per se and can be used e.g. B. can be obtained by per se known methods from culture broths of the corresponding mushroom. Processes for the fermentation of molds and for the isolation of the enzyme products formed by these molds are known to the person skilled in the art, for example from relevant textbooks in biotechnology (cf., for example, H. Diekmann, H. Metz, "Fundamentals and Practice of Biotechnology", Gustav Fischer Verlag Stuttgart, New York 1991) or from relevant scientific publications. If desired, the isolated proteases can then be freed of accompanying substances in a manner known per se and enriched or concentrated to the specific activity desired according to the invention.
  • the neutral protease "Prozyme 6 ®” (sometimes also referred to as "alkaline proteinase", EC No. 3.4.21.63) from Aspergillus melleus from Amano Pharmaceuticals, Japan, can be used.
  • This microbial Protease hydrolyzes 1,4- ⁇ -D-glucosidic bonds of polysaccharides which contain at least three 1,4-D-glucose units and has a specific activity of approximately 7,800 FIP-E / g.
  • the pH stability of the protease "Process e 6 ® " in a pH range from pH 5 to 8 at 37 ° C was over a period of 120 min. in a laboratory test with at least 60% of the initial activity.
  • a suitable parameter for determining a neutral protease from Aspergillus melleus is, for example, its pH profile.
  • the pH profile of the protease "Prozyme 6 ®” was therefore determined as a specific activity as a function of the pH.
  • various substrate solutions are produced in accordance with the regulations of the FIP method for determining the activity of pancreatic proteases.
  • a 4% hemoglobin solution is used instead of casein as the substrate solution.
  • different pH values of 2, 3, 4, 5, 6, 7 and 8 are set in various substrate solutions by adding appropriate amounts of IM NaOH or IM HCl. Samples of "Prozyme 6 ® " are added to the substrate solutions.
  • protease activities of the "Prozyme 6 ® " samples are then determined in the substrate solutions of different pH values in accordance with the FIP regulations mentioned above.
  • the measured values for the pH profile found for "Prozyme 6 ® " are tabulated in Table 2 and plotted in Fig. 2.
  • "Prozyme 6 ® " is therefore optimally effective in the physiological pH range. From the pH profile given above, the pH optimum for "Prozyme 6 ® " as the maximum value of the protease activity can be determined to be approximately pH 8.
  • Aspergillus oryzae amylase (EC No. 3.21.1.1) used according to the invention is an ⁇ -amylase and has a specific activity of at least 40,000 FIP-E / g (measured at pH 5.8).
  • the pH optimum is in the pH range from pH 4 to 6.5.
  • Amylases from molds of the Aspergillus oryzae strain are known per se and can, for. B. can be obtained by per se known methods from culture broths of the corresponding mushroom. Processes for the fermentation of molds and for the isolation of the enzyme products formed by these molds are known to the person skilled in the art, for example from relevant textbooks in biotechnology (cf., for example, H. Diekmann, H.
  • amylase AI ® from Aspergillus melleus from Amano Pharmaceuticals, Japan and "Amylase EC ®” from Aspergillus melleus from E Gra-Chemie, Germany can preferably be used. "Amylase AI ® " is preferred.
  • the microbial amylase "Amylase Al ®” has a specific activity of about 52,000 FIP-E / g (measured at pH 5.8).
  • the pH stability of the "Amylase AI ® " in a pH range from pH 5 to 8 at 37 ° C was over a period of 120 min. in a laboratory test with at least 85% of the initial activity. In further laboratory tests, good stabilities of the "Amylase AI ® " against pancreatic protease from pancreatin (measured in the pH range pH 6 to 8), against “Prozyme 6 ® " (measured in the pH range pH 4 to 8) and against pepsin were found.
  • a suitable parameter for determining an amylase from Aspergillus oryzae is, for example, its pH profile. The pH profile of the "Amylase AI ® " was therefore determined as a specific activity as a function of the pH.
  • Various substrate solutions are produced in accordance with the FIP method for determining the activity of microbial amylases.
  • various pH values of 3.25 each are obtained in various substrate solutions by adding appropriate amounts of 5 M NaOH or 5 M HCl to the acetate buffer used according to the FIP method; 4; 5; 6; 6.8 and 7.4 set.
  • Samples of "Amylase AI ®" are added to the substrate solutions.
  • amylase activities of the “Amylase Al® ” samples are then determined in substrate solutions of different pH values in accordance with the FIP regulations mentioned above.
  • the measured values for the pH profile found for "Amylase AI ®" are tabulated in Table 3 and plotted in Fig. 3.
  • the optimum pH for "Amylase AI ®” can be determined as the maximum value of the amylase activity at about pH 5.
  • the microbial amylase "Amylase EC ®” has a specific activity of about 42,500 FIP-E / g (measured at pH 5.8). In addition, small amounts of ß-amylase are still detectable.
  • the pH optimum (measured according to the method given above for Amylase AI ® ") is approximately pH 5.
  • solid orally administrable dosage forms can preferably be selected, for example powders, pellets or microspheres, which, if desired, can be filled into capsules or sachets or pressed into tablets.
  • Liquid pharmaceutical preparations such as suspensions or solutions may also be considered.
  • the individual enzymes lipase, protease and amylase can be present together or spatially separated from one another. If the individual enzymes are not spatially separated from one another, dry processing and / or storage is preferred.
  • the pharmaceutical preparations can furthermore contain customary auxiliaries and / or carriers.
  • auxiliaries and / or carriers are, for example, microcrystalline celluloses, polyethylene glycols, for example PEG 4000, or else lower alcohols, in particular straight-chain or branched C 1 -C 4 alcohols such as 2-propanol, and water.
  • the microbial substitution enzymes used according to the invention are notable for good stability over wide pH ranges and can therefore be used directly for the manufacture of pharmaceutical preparations to be administered orally without further treatment (such as filming).
  • the individual substitution enzymes lipase, protease and amylase
  • the individual substitution enzymes can be pelleted together or separately from one another.
  • the individual substitution enzymes can be filmed with a suitable, known gastric juice-resistant layer. Unless all substitution enzymes are to be film-coated in gastric juice-resistant form, it is advisable to pellet the individual types of substitution enzymes separately and to film the pellets of an enzyme type separately. men.
  • the protease and / or the lipase individually and to film them in an enteric coating.
  • all three enzymes present in the enzyme mixture can also be film-coated together with gastric juice-resistant or two enzymes can be film-coated with gastric juice-resistant while one enzyme is not being filmed.
  • the pharmaceutical preparation can be in the form of an orally administrable capsule of size 0. Even in such a dosage form there can be approximately 10,000-50,000 FIP-E lipase, 8,000 FIP-E amylase and 200 FIP-E protease.
  • the substitution enzymes lipase, amylase and protease are expediently present in a ratio of approximately 50-500 FIP-E: 40-120 FIP-E: 1 FIP-E.
  • the homogenate obtained was made up to a volume of 450 ml with ultrapure water.
  • bile dispersion (FIP standard; lipase activation ixture) was dissolved in 50 ml of ultrapure water.
  • the prepared measuring solution was heated to 37 ° C. and adjusted to pH 7 by end-point titration with 1 M NaOH. Immediately after adding the three enzyme solutions, a pH stat titration was carried out for 20 min. started and the consumption of 1 M NaOH was registered every 10 sec. During the titration, 1 ml of a 4 M calcium chloride solution was added manually in steps of 50 ⁇ l in such a way that a maximum reaction rate was achieved. F) Result
  • the good fat digestion performance of a digestive enzyme mixture containing the enzymes which can be used according to the invention can also be demonstrated in vitro on an olive oil test food.
  • Chymus samples were taken from the diversion cannula over 12 hours each on the 20th to 22nd day of the examination period and these were examined for their content of crude fat, crude protein and starch.
  • the feeding experiments and their evaluation were carried out in a manner known per se (cf. PC Gregory, R. Tabeling, J. Kamphues, "Biology of the Pancreas in Growing Animals”; Developments in Animal and Veterinary Sciences 28 (1999) 381-394, Elsevier, Amsterdam; Ed .: SG Pierzynowski and R. Zabielski).
  • precaecal digestibility The apparent precaecal digestibility of crude fat, crude protein and starch in the test animals determined in the aforementioned in vivo test is given in Table A below in percentages, based on the originally fed absolute amount of fat, protein and starch.
  • the values given as “precaecal digestibility” correspond to the "apparent precaecal digestibility", which differ from the actual precaecal digestibility in that they can also contain small amounts of endogenous fractions of the investigated substances, for example endogenous proteins.
  • the precaecal digestibility was determined using the following formula from the chyme of the test animals using the marker method:
  • SV (%) 100 - (% indicator in the F utter% Mahrstoff in chyme 100)% indicator in chyme% nutrient in the diet

Abstract

Es werden neue Gemische mikrobieller Enzyme beschrieben, welche eine konzentrierte Lipase von Rhizopus delemar und zusätzlich eine Protease von Aspergillus melleus sowie eine Amylase von Aspergillus oryzae enthalten. Weiterhin werden diese Gemische mikrobieller Enzyme enthaltende pharmazeutische Zubereitungen beschrieben. Die neuen pharmazeutischen Zubereitungen sind besonders gut geeignet zur Behandlung und/oder Prophylaxe der Maldigestion, insbesondere der auf Pankreasinsuffizienz beruhenden Maldigestion, in Säugetieren und Menschen.

Description

Neue Gemische mikrobieller Enzyme
Beschreibung
Die vorliegende Erfindung betrifft neue Enzymgemische, welche eine bestimmte Kombination mikrobieller Lipase, Protease und Amylase enthalten. Weiterhin betrifft die Erfindung diese Gemische mikrobieller Enzyme enthaltende pharmazeutische Zubereitungen. Diese neuen pharmazeutischen Zubereitungen sind besonders gut geeignet zur Behandlung und/oder Prophylaxe der Maldigestion bei Säugetieren und Menschen, insbesondere zur Behandlung und/oder Prophylaxe der auf chronischer exokriner Pankreasinsuffizienz beruhenden Maldigestion.
Maldigestion bei Säugetieren und Menschen beruht meist auf einem Mangel an Verdauungsenzymen, insbesondere auf einem Mangel an endogener Lipase, aber auch an Protease und/oder Amylase. Die Ursache für einen solchen Mangel an Verdauungsenzymen liegt häufig in einer Unterfunktion des Pankreas (= Pankreasinsuffizienz) , dem Organ, welches die meisten und wichtigsten endogenen Verdauungsenzyme produziert. Sofern eine krankhafte Pankreasinsuffizienz vorliegt, kann diese angeboren oder erworben sein. Erworbene chronische Pankreasin- suffizienz kann beispielsweise auf Alkoholismus zurückzuführen sein. Angeborene Pankreasinsuffizienz kann beispielsweise auf die angeborene Erkrankung an Mukoviszidose zurückzuführen sein. Die Folgen des Mangels an Verdauungsenzymen können schwere Symptome von Unter- und Mangelernährung sein, welche einhergehen können mit einer erhöhten Anfälligkeit für Sekundärerkrankungen .
Als Therapie des Mangels an endogenen Verdauungsenzymen hat sich die Substitution mit gleichartig wirkenden exogenen Verdauungsenzymen oder Verdauungsenzymgemischen bewährt. Am häufigsten werden heute für diesen Zweck pharmazeutische Zubereitungen (= Präparate) eingesetzt, .welche Schweinepankrea- tin (= Pankreatin) enthalten. Solche aus den Pankreasdrüsen von Schweinen gewonnene Verdauungsenzymgemische können wegen der großen Ähnlichkeit der darin enthaltenen Enzyme und Begleitstoffe mit den im menschlichen Pankreassekret enthaltenen Inhaltsstoffen in nahezu idealer Weise für die Enzym- Substitutionstherapie am Menschen eingesetzt werden. Da einige der Bestandteile von Pankreatin - beispielsweise die Pankreaslipase und die Pankreasamylase - empfindlich gegenüber sauren pH-Werten unter pH 5 sind, sollten für die orale Verabreichung vorgesehene Pankreatinpräparate zum Schutz gegen säureinduzierte Denaturierung im Magen mit magensaftre- sistenten Schutzschichten überzogen sein. Solche Schutzschichten bewahren die säureempfindlichen Pankreatinbestandteile vor irreversibler Zerstörung und geben Ihren Inhalt erst nach der Magenpassage im oberen Dünndarmbereich frei, wo üblicherweise höhere, unschädliche pH-Werte - etwa zwischen pH 5,5 und pH 8 - vorherrschen. Gleichzeitig ist der obere Dünndarmbereich, beispielsweise das Duodenum, der Ort, an dem in der Regel die Hauptmenge der enzymatisch gespaltenen Nahrungsbestandteile vom Körper resorbiert wird.
Da Pankreatin ein Naturprodukt ist, ist für seine Bereitstellung in qualitativ einheitlicher, hochwertiger Form ein recht erheblicher technischer Aufwand nötig. Zudem kann das Angebot an für die Verarbeitung zu Pankreatin geeigneten Rohstoffen Schwankungen unterliegen.
Es hat daher bereits verschiedentlich Versuche gegeben, für die Substitution von körpereigenen Verdauungsenzymen ähnlich gut wie Pankreatin geeignete Verdauungsenzymgemische mit demgegenüber verbesserten Eigenschaften zur Verfügung zu stellen.
Um für die Substitution von Verdauungsenzymen beim Menschen geeignet zu sein, müssen alle Substitutionsenzyme eine Reihe von Anforderungen erfüllen (vgl. z. B. G. Peschke, "Active Components and Galenic Aspects of Enzyme Preparations" in: Pancreatic Enzymes in Health and Disease, Herausgeber: P. G. Lankisch, Springer Verlag Berlin, Heidelberg 1991, Seiten 55 bis 64; im folgenden zitiert als "Peschke"). So sollten diese Substitutionsenzyme u. a. gegenüber Pepsin sowie anderen körpereigenen Proteasen wie Pankreasproteasen stabil sein. Auch in Gegenwart körpereigener Gallensalze sollten Substitutionsenzyme ihre Aktivität beibehalten.
Üblicherweise wird angenommen, daß eine Substitution der z. B. krankheitsbedingt minderproduzierten körpereigenen Lipase den wichtigsten Bestandteil einer Substitutionsthera- pie für Verdauungsenzyme beim Menschen darstellt. Es ist jedoch seit längerem bekannt, daß die gleichzeitige Substitution minderproduzierter Protease und Amylase einen zusätzlichen günstigen Einfluß auf die betroffenen Patienten hat (vgl. z. B. Peschke, Seite 55; WO 96/38170, Seite 6). Pharmazeutische Zubereitungen zur Behandlung und/oder Prophylaxe der Maldigestion bei Säugetieren und Menschen sollten daher neben der lipolytischen auch die proteolytischen und amyloly- tischen Aktivitäten des Körpers weitgehend substituieren. Wichtig ist hierbei, daß die verschiedenen in der pharmazeutischen Zubereitung enthaltenen Substitutionsenzyme (Lipase, Protease, Amylase) ihre Aktivitäten an dem dafür vorgesehenen Wirkort (das ist in der Regel der obere Dünndarmbereich) jeweils in ausreichender Höhe entfalten können. Da unter physiologischen Bedingungen bei oder kurz nach der Nahrungsaufnahme im menschlichen Magen unter anderem meist ein höherer pH-Wert, beispielsweise pH 4-5, vorliegt, als im nüchternen Magen (ca. pH 1-2) und da der physiologische pH-Wert im oberen Dünndarmbereich üblicherweise zwischen 5,5 und 8 liegt, können Verdauungsenzyme, welche über eine gute pH-Stabilität und eine gute pH-Aktivität in diesem pH-Bereich von etwa 4 bis 8 verfügen, als gut geeignet zur Substitution von Verdauungsenzymen beim Menschen angesehen werden. Aus der europäischen Patentanmeldung EP A 0 387 945 sind bereits Zubereitungen bekannt, welche neben einem Säugetier- Pankreasextrakt zusätzlich auch eine mikrobielle Lipase enthalten. Aufgrund des darin noch enthaltenen Anteils an tierischem Pankreatin können solche Zubereitungen aber nicht durch einfach zu standardisierende Laborverfahren in stets gleichbleibender Qualität und beliebiger Menge hergestellt werden.
In der internationalen Patentanmeldung WO 96/38170 werden Zubereitungen beschrieben, welche u. a. eine säurestabile Amylase von Aspergillus niger und gegebenenfalls eine säurestabile Lipase von Rhizopus javanicus enthalten und welche als Verdauungshilfsmittel eingesetzt werden können. Für die Substitution der körpereigenen proteolytischen Aktivität werden in dieser Schrift aber keine konkreten Vorschläge gemacht. Statt dessen wird lediglich darauf verwiesen, daß die Möglichkeit besteht, alle anderen Bestandteile des menschlichen Pankreassekrets außer Lipase und Amylase durch, Schweine- pankreatin zu ersetzen. Dies weist darauf hin, daß die in der WO 96/38170 beschriebenen Zubereitungen nicht für die Totalsubstitution von körpereigenen Verdauungsenzymen vorgesehen oder geeignet sind.
Weiterhin werden in der Dissertation von S. Scheler, Titel : "Multiple unit-Zubereitungen aus Aspergillus oryzae- Enzy en hoher Aktivität mit optimierter digestiver Potenz", Universität Erlangen-Nürnberg, 1995, unter weitgehend gale- nischen Gesichtspunkten eine Kombination der kommerziell erhältlichen Enzyme Lipase von Rhizopus oryzae, Protease von Aspergillus oryzae und Amylase von Aspergillus oryzae untersucht. Jedoch ist beispielsweise die dort eingesetzte Lipase gegenüber körpereigener Pankreasprotease nicht von befriedigender Stabilität.
Aus den vorstehenden Angaben wird deutlich, daß pharmazeutische Zubereitungen, welche zur Totalsubstitution körpereigener Verdauungsenzyme von Säugetieren und Menschen vorge- sehen sind, sorgfältig auf die körpereigenen Bedingungen abgestimmte Substitutionsenzyme bzw. Gemische von Substitutionsenzymen enthalten müssen.
Die Aufgabe der vorliegenden Erfindung bestand daher darin, verbesserte Gemische von Verdauungsenzymen sowie solche Gemische enthaltende pharmazeutische Zubereitungen zur Behandlung und/oder Prophylaxe der Maldigestion bei Säugetieren und Menschen bereitzustellen, welche körpereigene lipoly- tische, proteolytische und amylolytische Enzymaktivitäten substituieren können und welche bei hoher spezifischer Aktivität der darin enthaltenen Substitutionsenzyme verhältnismäßig geringe Dosierungsmengen erlauben. Gleichzeitig sollten die in den Verdauungsenzymgemischen enthaltenen Substitutionsenzyme (Lipase, Protease, Amylase) sowohl einzeln, als auch im Gemisch miteinander alle Anforderungen, welche an zur Therapie beim Menschen vorgesehene Verdauungsenzyme gestellt werden, möglichst gut erfüllen. Beispielsweise sollten die Substitutionsenzyme eine gute pH-Stabilität und eine gute pH- Aktivität in dem an dem jeweiligen physiologischen Wirkort üblicherweise vorherrschenden pH-Bereich aufweisen. Ferner sollten die Substitutionsenzyme mit körpereigenen Wirkstoffen wie Gallensalzen oder körpereigenen Proteasen, beispielsweise Pepsin oder Pankreasproteasen, gut verträglich sein. Eine weitere Aufgabe bestand darin, für den erfindungsgemäßen Zweck solche Substitutionsenzyme auszuwählen, welche durch in bezug auf Verfahrensablauf und Produktmenge einfach standardisierbare Herstellungsverfahren in stets gleichbleibender Qualität und beliebiger Menge erhalten werden können.
Gelöst wird die Aufgabe durch die Bereitstellung eines neuen Gemisches mikrobieller Enzyme, welches
a) eine konzentrierte Lipase von Rhizopus delemar, b) eine neutrale Protease von Aspergillus melleus und c) eine Amylase von Aspergillus oryzae enthält . Erfindungsgemäße Gemische mikrobieller Enzyme können zusammen mit üblichen Hilfs- und/oder ..Trägerstoffen in üblichen pharmazeutischen Zubereitungen enthalten sein. Diese pharmazeutischen Zubereitungen enthalten als Wi-rkstoffe ausschließlich erfindungsgemäße Gemische mikrobieller Enzyme von bestimmten Schimmelpilzen und sind zur Totalsubstitution körpereigener Verdauungsenzyme von Säugetieren und Menschen geeignet. Den in dem erfindungsgemäßen Gemisch mikrobieller Enzyme enthaltenen einzelnen Enzymen (Lipase, Protease, Amylase) ist gemeinsam, daß sie im physiologischen bis pathophy- siologischen pH-Bereich des Verdauungstraktes (etwa pH 4 bis 8) und insbesondere unter den bei oder kurz nach der Nahrungsaufnahme vorherrschenden Bedingungen gute pH-Stabilität und gute pH-Aktivität aufweisen. Die pharmazeutischen Zubereitungen zeichnen sich darüber hinaus durch eine gute Wirksamkeit und gute Verträglichkeit aus.
Die konzentrierte Lipase von Rhizopus delemar hat eine spezifische Aktivität von mindestens 1.800.000 FIP-E/g (= international standardisierte Enzym-Aktivitatseinheiten nach den Vorschriften der "Föderation International Pharma- ceutique", Belgien, bestimmt). Der Stamm Rhizopus delemar wird als Unterart des Stammes Rhizopus oryzae angesehen. Li- pasen von Schimmelpilzen des Stammes Rhizopus delemar sind an sich bekannt und können z. B. nach an sich bekannten Verfahren aus Kulturbrühen des entsprechenden Pilzes erhalten werden. Verfahren zur Fermentation von Schimmelpilzen und zur Isolierung der von diesen Schimmelpilzen gebildeten Enzymprodukte sind dem Fachmann bekannt, beispielsweise aus einschlägigen Lehrbüchern der Biotechnologie (vgl. z.B. H. Diekmann, H. Metz, "Grundlagen und Praxis der Biotechnologie", Gustav Fischer Verlag Stuttgart, New York 1991) oder aus einschlägigen wissenschaftlichen Fachpublikationen. Anschließend können die isolierten Lipasen z. B. auf an sich bekannte Weise von Begleitstoffen befreit und bis zur erfindungsgemäß gewünschten spezifischen Aktivität angereichert bzw. konzentriert werden. Vorzugsweise kann die Lipase (EC-Nr. 3.1.1.3) "Lipase D Amano 2000®" (auch bezeichnet als "Lipase D2®" ) von Rhizopus delemar der Firma Amano Pharmaceuticals, Japan, eingesetzt werden. Diese Lipase weist - wie die natürliche Pankreaslipase - eine 1, 3-Positionsspezifität gegenüber Fett- säureglyceriden auf. Die spezifische Aktivität liegt in Abhängigkeit von der Charge zwischen etwa 1.800.000 FIP-E/g und etwa 2.250.000 FIP-E/g. "Lipase D Amano 2000®" zeichnet sich durch eine hohe Stabilität gegenüber Pankreasprotease aus Pankreatin aus. So liegt die lipolytische Aktivität von "Lipase D Amano 2000®" in einem Laborversuch nach zweistündiger Einwirkung von Pankreasprotease aus Pankreatin in einem pH- Bereich von pH 6 bis 8 noch bei 55 % der Ausgangsaktivitat . Die pH-Stabilität der "Lipase D Amano 2000®" lag in einem Laborversuch in einem pH-Bereich von pH 4 bis 8 bei 37 °C über einen Zeitraum von 120 min. bei mindestens 70 % der Ausgangsaktivität.
Als charakteristische Bestimmungsgröße für eine konzentrierte Lipase von Rhizopus delemar ist beispielsweise deren pH-Profil geeignet. Es wurde daher das pH-Profil der "Lipase D Amano 2000®" als spezifische Aktivität in Abhängigkeit vom pH-Wert bestimmt. Die spezifischen Aktivitäten bei den einzelnen pH-Werten wurden dabei nach einer Abwandlung der FIP- Methoden zur Bestimmung der Aktivität mikrobieller Lipasen gemessen. Zusätzlich wurden auch die pH-Profile in Gegenwart variabler Konzentrationen von Gallensalzen bestimmt.
a) Herstellung der Olivenölemulsion
44 g Gummi arabisch, 115 g Olivenöl und 400 ml Wasser werden 15 min. lang im Elektromixer homogenisiert.
b) Herstellung der Galle-Dispert-I.ös.mαen unterschiedlicher Konzentration ohne Galle: 120 ml Wasser
0,5 mmol/1 Galle: 120 ml Wasser + 200 mg Galle-Dispert
(FIP-Standard) 5 mmol/1 Galle: 120 ml Wasser + 2 g Galle-Dispert 10 mmol/1 Galle: 120 ml Wasser + .4 g Galle-Dispert
c) Herstellung der Substratemulsion 480 ml Olivenölemulsion (vide supra)
160 ml Calciumchloridlösung (28,3 g CaCl2x2 H 0/1 Wasser) und 120 ml Galle-Dispert-Lösung (vide supra) der gewünschten
Konzentration werden gemischt .
d) Herstellung der Enzymlösung
50 mg "Lipase D Amano 2000®" (spezifische Aktivität bestimmt zu 2.230.000 FIP-E/g) werden in 100 ml l%iger Natriumchloridlösung gelöst . Von dieser Stammlösung wird 1 ml entnommen und mit Reinstwasser auf 200 ml verdünnt. Jeweils 1 ml der verdünnten Stammlösung (entsprechend 5,575 FIP-E) wird bei den folgenden Bestimmungen eingesetzt .
Von den vorstehend angegebenen Substratemulsionen, in welchen bestimmte Gallensalzkonzentrationen vorliegen, werden jeweils Proben von 19 ml auf 37° C thermostatisiert . In verschiedenen Proben von Substratemulsionen werden dann durch Zugabe von 0,1 M NaOH bzw. 1 M HCl pH-Werte von 3, 4, 5, 6, 7 und 8 eingestellt. Zu den so vorbereiteten Proben von Sub- stratemulsionen werden anschließend jeweils 1ml der vorstehend angegebenen Enzymlösung zugegeben (Anmerkung: um die optimale Titrationsrate zu bestimmen, kann die geeignete Menge von in der Enzymlösung idealerweise enthaltenen Lipase grundsätzlich auf an sich bekannte Weise durch eine Verdünnungsreihe ermittelt werden) . Nach erfolgter Zugabe wird 10 min. lang eine pH-Stat-Titration mit 0,1 M NaOH durchgeführt. Danach wird innerhalb von 30 sec. eine Endpunktstitration bis auf pH 9 durchgeführt, um freigesetzte Fettsäuren vollständig zu dissoziieren. Der insgesamt benötigte Verbrauch an 0,1 M NaOH wird in Lipase-Aktivitätseinheiten E umgerechnet : eine Lipase-Aktivitätseinheit E entspricht dabei einem Verbrauch von 1 μMol je Minute. Die ermittelten Lipase- Aktivitätseinheiten können durch Bezug auf die jeweils eingesetzte Menge an Trockenenzymen in g umgerechnet werden in Einheiten von E/mg. Zur Erstellung des pH-Profiles werden die Einheiten von E/mg für jeden untersuchten pH-Wert und jede untersuchte Gallensalzkonzentration in Tabelle 1 tabelliert und die tabellierten Werte werden in Fig. 1 graphisch aufgetragen.
Aus dem vorstehend angegebenen pH-Profil läßt sich das pH-Optimum für "Lipase D Amano 2000®" als Maximalwert der Lipaseaktivität bei der FIP-Standardgallensalzkonzentration von 0,5 mmol/1 zu ca. pH 7 bestimmen.
Die neutrale Protease von Aspergillus melleus weist eine spezifische Aktivität von mindestens 7.500 FIP-E/g auf. Ihr pH-Optimum liegt zwischen pH 6 und pH 8. Neutrale Proteasen von Schimmelpilzen des Stammes Aspergillus melleus sind an sich bekannt und können z. B. nach an sich bekannten Verfahren aus Kulturbrühen des entsprechenden Pilzes erhalten werden. Verfahren zur Fermentation von Schimmelpilzen und zur Isolierung der von diesen Schimmelpilzen gebildeten Enzymprodukte sind dem Fachmann bekannt, beispielsweise aus einschlägigen Lehrbüchern der Biotechnologie (vgl. z.B. H. Diekmann, H. Metz, "Grundlagen und Praxis der Biotechnologie", Gustav Fischer Verlag Stuttgart, New York 1991) oder aus einschlägigen wissenschaftlichen Fachpublikationen. Anschließend können die isolierten Proteasen gewünschtenfalls auf an sich bekannte Weise von Begleitstoffen befreit und bis zur erfindungsgemäß gewünschten spezifischen Aktivität angereichert bzw. konzentriert werden.
Vorzugsweise kann die neutrale Protease "Prozyme 6®" (gelegentlich auch als "alkalische Proteinase" bezeichnet, EC-Nr. 3.4.21.63) von Aspergillus melleus der Firma Amano Pharmaceuticals, Japan, eingesetzt werden. Diese mikrobielle Protease hydrolysiert 1, 4-α-D-glucosidische Bindungen von Po- lysacchariden, welche mindestens drei • 1, 4- -D-Glucoseein- heiten enthalten und weist eine spezifische Aktivität von etwa 7.800 FIP-E/g auf. Die pH-Stabilität der Protease "Pro- zy e 6®" in einem pH-Bereich von pH 5 bis 8 bei 37 °C lag ü- ber einem Zeitraum von 120 min. in einem Laborversuch bei mindestens 60 % der Ausgangsaktivität.
Als charakteristische Bestimmungsgröße für eine neutrale Protease von Aspergillus melleus ist beispielsweise deren pH- Profil geeignet. Es wurde daher das pH-Profil der Protease "Prozyme 6®" als spezifische Aktivität in Abhängigkeit vom pH-Wert bestimmt.
Hierzu werden verschiedene Substratlösungen hergestellt, entsprechend den Vorschriften der FIP-Methode zur Aktivitätsbestimmung pankreatischer Proteasen. In Abwandlung der FIP- Vorschriften wird als Substratlδsung eine 4 %ige Hämoglobinlösung anstelle von Casein verwendet. Zusätzlich werden in Abwandlung der FIP-Vorschriften in verschiedenen Substratlösungen durch Zugabe von entsprechenden Mengen IM NaOH bzw. IM HCl verschiedene pH-Werte von jeweils 2, 3, 4, 5, 6, 7 und 8 eingestellt. Zu den Substratlösungen werden Proben von "Prozyme 6®" zugegeben.
Anschließend werden in den Substratlösungen unterschiedlicher pH-Werte die Proteaseaktivitäten der "Prozyme 6®"- Proben entsprechend den vorstehend genannten Vorschriften der FIP bestimmt. Die in den einzelnen Proben gefundenen Enzymaktivitäten werden auf den in dieser Meßreihe gefundenen Maximalwert (= 100 %) normiert. Die für "Prozyme 6®" gefundenen Meßwerte für das pH-Profil sind in Tabelle 2 tabelliert und in Fig. 2 graphisch aufgetragen. "Prozyme 6®" ist somit im physiologischen pH-Bereich optimal wirksam. Aus dem vorstehend angegebenen pH-Profil läßt sich das pH-Optimum für "Prozyme 6®" als Maximalwert der Proteaseak- tivität zu ca. pH 8 bestimmen.
Die erfindungsgemäß eingesetzte Amylase (EC-Nr. 3.21.1.1) von Aspergillus oryzae ist eine α-Amylase und weist eine spezifische Aktivität von mindestens 40.000 FIP-E/g (gemessen bei pH 5,8) auf. Das pH-Optimum liegt im pH-Bereich von pH 4 bis 6,5. Amylasen von Schimmelpilzen des Stammes Aspergillus oryzae sind an sich bekannt und können z. B. nach an sich bekannten Verfahren aus Kulturbrühen des entsprechenden Pilzes erhalten werden. Verfahren zur Fermentation von Schimmelpilzen und zur Isolierung der von diesen Schimmelpilzen gebildeten Enzymprodukte sind dem Fachmann bekannt, beispielsweise aus einschlägigen Lehrbüchern der Biotechnologie (vgl. z.B. H. Diekmann, H. Metz, "Grundlagen und Praxis der Biotechnologie", Gustav Fischer Verlag Stuttgart, New York 1991) oder aus einschlägigen wissenschaftlichen Fachpublikationen. Anschließend können die isolierten Amylasen gewünsch- tenfalls auf an sich bekannte Weise von Begleitstoffen befreit und bis zur erfindungsgemäß gewünschten spezifischen Aktivität angereichert bzw. konzentriert werden. Vorzugsweise können die Amylasen "Amylase AI®" von Aspergillus melleus der Firma Amano Pharmaceuticals, Japan und "Amylase EC®" von Aspergillus melleus der Firma E trakt-Chemie, Deutschland, eingesetzt werden. "Amylase AI®" ist bevorzugt.
Die mikrobielle Amylase "Amylase Al®" weist eine spezifische Aktivität von etwa 52.000 FIP-E/g (gemessen bei pH 5,8) auf. Die pH-Stabilität der "Amylase AI®" in einem pH-Bereich von pH 5 bis 8 bei 37 °C lag über einen Zeitraum von 120 min. in einem Laborversuch bei mindestens 85 % der Ausgangsaktivität. In weiteren Laborversuchen wurden gute Stabilitäten der "Amylase AI®" gegenüber Pankreasprotease aus Pankreatin (gemessen im pH-Bereich pH 6 bis 8) , gegenüber "Prozyme 6®" (gemessen im pH-Bereich pH 4 bis 8) sowie gegenüber Pepsin festgestellt. Als charakteristische Bestimmungsgröße für eine Amylase von Aspergillus oryzae ist beispielsweise deren pH-Profil geeignet. Es wurde daher das pH-Profil der "Amylase AI®" als spezifische Aktivität in Abhängigkeit vom pH-Wert bestimmt.
Es werden verschiedene Substratlösungen hergestellt, entsprechend den Vorschriften der FIP-Methode zur Aktivitätsbestimmung mikrobieller Amylasen. In Abwandlung der FlP-Vor- schriften werden in verschiedenen Substratlösungen durch vorherige Zugabe entsprechender Mengen von 5 M NaOH bzw. 5 M HCl zu dem gemäß FIP-Methode verwendeten Acetatpuffer verschiedene pH-Werte von jeweils 3,25; 4; 5; 6; 6,8 und 7,4 eingestellt. Zu den Substratlösungen werden Proben von "Amylase AI®" zugegeben.
Anschließend werden in Substratlösungen unterschiedlicher pH-Werte die Amylaseaktivitäten der "Amylase Al®"- Proben entsprechend den vorstehend genannten Vorschriften der FIP bestimmt. Die in den einzelnen Proben gefundenen Enzymaktivitäten werden auf den in dieser Meßreihe gefundenen Maximalwert (= 100 %) normiert. Die für "Amylase AI®" gefundenen Meßwerte für das pH-Profil sind in Tabelle 3 tabelliert und in Fig. 3 graphisch aufgetragen.
Aus dem vorstehend angegebenen pH-Profil läßt sich das pH-Optimum für "Amylase AI®" als Maximalwert der Amylaseak- tivität zu ca. pH 5 bestimmen.
Die mikrobielle Amylase "Amylase EC®" weist eine spezifische Aktivität von etwa 42.500 FIP-E/g (gemessen bei pH 5,8) auf. Daneben sind noch geringe Anteile von ß-Amylase nachweisbar. Das pH-Optimum (gemessen nach der vorstehend für Amylase AI®" angegebenen Methode) liegt bei etwa pH 5. Die pH-Stabilität der "Amylase EC®" in einem pH-Bereich von pH 6 bis 8 bei 37 °C lag über einem Zeitraum von 120 min. in einem Laborversuch bei mindestens 80 % der Ausgangsaktivität. In weiteren Laborversuchen wurden gute Stabilitäten der "Amylase EC®" gegenüber Pankreasprotease aus Pankreatin (gemessen im pH-Bereich pH 6 bis 8) , gegenüber "Prozyme 6®" (gemessen im pH-Bereich pH 4 bis 8) sowie gegenüber Pepsin festgestellt.
Für die erfindungsgemäßen pharmazeutischen Zubereitungen können vorzugsweise feste oral applizierbare Dosierungsformen gewählt werden, beispielsweise Pulver, Pellets oder Micro- spheres, welche gewünschtenfalls in Kapseln oder Sachets abgefüllt oder zu Tabletten verpreßt werden können. Auch flüssige pharmazeutische Zubereitungen wie Suspensionen oder Lösungen kommen gegebenenfalls in Frage. Die einzelnen Enzyme Lipase, Protease und Amylase, können dabei gemeinsam oder räumlich voneinander getrennt vorliegen. Sofern die einzelnen Enzyme nicht räumlich voneinander getrennt vorliegen, ist eine trockene Verarbeitung und/oder Lagerung bevorzugt. Die pharmazeutischen Zubereitungen können weiterhin übliche Hilfs- und/oder Trägerstoffe enthalten. Als Hilfs- und/oder Trägerstoffe kommen beispielsweise mikrokristalline Cellulo- sen, Polyethylenglykole, beispielsweise PEG 4000, oder auch niedere Alkohole, insbesondere geradkettige oder verzweigte C1-C4-Alkohole wie 2-Propanol, sowie Wasser in Frage.
Die erfindungsgemäß eingesetzten mikrobiellen Substitutionsenzyme zeichnen sich durch eine gute Stabilität über weite pH-Bereiche aus und können daher ohne weitere Behandlung (wie Befilmung) direkt für die Herstellung oral zu applizierender pharmazeutischer Zubereitungen eingesetzt werden. Zu diesem Zweck können die einzelnen Substitutionsenzyme (Lipase, Protease und Amylase) gemeinsam oder räumlich voneinander getrennt pelletiert werden. Gewünschtenfalls können die einzelnen Substitutionsenzyme mit einer geeigneten, an sich bekannten magensaftresistenten Schicht befilmt werden. Sofern nicht alle Substitutionsenzyme magensaftresistent befilmt werden sollen, ist es zweckmäßig, die einzelnen Sorten von Substitutionsenzymen voneinander getrennt zu pelletieren und die Pellets einer Enzymsorte jeweils getrennt zu befil- men. Insbesondere kann es zweckmäßig sein, die Protease und/oder die Lipase jeweils einzeln zu pelletieren und magensaftresistent zu befilmen. Gewünschtenfalls können auch alle drei im Enzymgemisch vorliegenden Enzyme gemeinsam magensaft- resistent befilmt werden oder es können zwei Enzyme magen- saftresistent befilmt werden, während ein Enzym nicht befilmt wird.
Die hohen spezifischen Aktivitäten der erfindungsgemäß eingesetzten Substitutionsenzyme erlauben es, verhältnismäßig kleine Dosierungsformen mit dennoch hoher Wirksamkeit zur Verfügung zu stellen. Beispielsweise kann in einer Ausfüh- rungsform die pharmazeutische Zubereitung als oral applizierbare Kapsel der Größe 0 vorliegen. Auch in einer solchen Dosierungsform können etwa 10.000-50.000 FIP-E Lipase, 8.000 FIP-E Amylase und 200 FIP-E Protease vorliegen. Zweckmäßigerweise liegen die Substitutionsenzyme Lipase, Amylase und Protease in einem Verhältnis von ca. 50-500 FIP-E: 40-120 FIP-E :1 FIP-E vor.
Die Eignung erfindungsgemäßer pharmazeutischer Zubereitungen zur Behandlung und/oder Prophylaxe der Maldigestion in Säugetieren und Menschen kann mit dem nachfolgend angegebenen in-vitro-Testmodell zur Bestimmung der Fettverdauung belegt werden:
1. Nachweis der Fettverdauung in einer Schweinefuttertestnah- runq
Es wird der Einfluß eines Gemisches erfindungsgemäß einsetzbarer mikrobieller Enzyme auf den Fettabbau in einer auch andere Nahrungsbestandteile enthaltenden Schweinefutter-Testnahrung untersucht. Der Zusatz einer Calciumchlorid-Lösung dient dabei der Ausfällung freigewordener Fettsäuren als Cal- ciumseifen. A) Herstellung der Schweinefuttertestnahrung
Die nachfolgend angegebenen Bestandteile:
64,8 g "Altromin 9021®" -Fertignahrung (Fa. Altromin GmbH, Deutschland, Fettgehalt ca. 2 - 3 %, im wesentlichen bestehend aus geschrotetem Weizen) 3,85 g "Sojamin®" -Proteingemisch (Fa. Lukas Meyer, Deutschland) 24,5 g Gummi Arabisch (Fa. Merck KGaA, Deutschland) 26,7 g Sojaöl (Fa. Roth, Deutschland; Haupt-Fettbestandteil; mittleres Molekulargewicht = 932 g/mol)
wurden mit 265 ml Reinstwasser vermischt und anschließend 15 min. lang im Haushaltsmixer homogenisiert. Das erhaltene Homogenisat wurde mit Reinstwasser bis auf ein Volumen von 450 ml aufgefüllt.
B) Herstellung der Galle-Dispert-Lösung
1,35 g Galle-Dispert (FIP-Standard; Lipase activation ixture) wurden in 50 ml Reinstwasser gelöst.
C) Herstellung der Enzymlösungen
1. Lipaselösung
63,1 mg "Lipase D Amano 2000®" der Fa. Amano Pharmaceuti- cals, Japan (spezifische Aktivität bei pH 7 bestimmt zu 1.888.137 FIP-E/g) wurden in 10 ml Reinstwasser gelöst. Von dieser Stammlösung wurden 250 μl für die nachfolgende Messung eingesetzt. 2. Proteaselösung
319 mg "Prozyme 6®" der Fa. Amano Pharmaceuticals, Japan (spezifische Aktivität bei pH 7,5 bestimmt zu 7.812 FIP-E/g) wurden in 10 ml Reinstwasser gelöst. Von dieser Stammlösung wurden 250 μl für die nachfolgende Messung eingesetzt.
3. Amylaselösung
595 mg "Amylase EC®" der Fa. Extrakt-Chemie, Deutschland (spezifische Aktivität bei pH 5 , 8 bestimmt zu 13.466 FIP-E/g) wurden in 10 ml Reinstwasser gelöst. Von dieser Stammlösung wurden 1.000 μl für die nachfolgende Messung eingesetzt.
D) Vorbereitung der Meßlösung
15,5 ml der vorgenannten Schweinefutter-Testnahrung wurden mit 2 ml der vorgenannten Galle-Dispert-Lösung sowie nacheinander mit den drei vorgenannten Enzymlösungen C)l. bis C)3. versetzt und mit Reinstwasser auf 29 ml aufgefüllt.
E) Durchführung der Messung
Die vorbereitete Meßlösung wurde auf 37 °C temperiert und durch Endpunkttitration mit 1 M NaOH auf pH 7 eingestellt. Unmittelbar nach Zugabe der drei Enzymlösungen wurde eine pH-Stat-Titration für 20 min. gestartet und der Verbrauch an 1 M NaOH wurde alle 10 sec. registriert. Während der Titration wurde 1 ml einer 4 M Calciumchlo- ridlösung in Schritten von 50 μl manuell so zudosiert, daß eine maximale Reaktionsgeschwindigkeit erreicht wurde. F) Ergebnis
Die in der Schweinefutter-Testnahrung enthaltenen Fette (= Fettsäuretriglyceride) waren nach 20 min. Reaktionszeit zu ca. 67 % hydrolisiert worden. Dies entspricht einem über 100%igen Abbau zu den physiologischen Hydrolyseprodukten, den 2-Fettsäuremonoglyceriden (Werte über 100 % sind auf spontane Umlagerung der 2-Fettsäuremono- glyceride zu 1- bzw. 3-Fettsäuremonoglyceriden und nachfolgende lipolytische Spaltung zurückzuführen) .
Die gute Fettverdauungsleistung eines die erfindungsgemäß einsetzbaren Enzyme enthaltenden Verdauungsenzymgemisches kann auch in vitro an einer Olivenöl-Testnahrung belegt werden.
Die besonders gute Eignung der erfindungsgemäßen pharmazeutischen Zubereitungen zur Behandlung und/oder Prophylaxe der Maldigestion in Säugetieren und Menschen, insbesondere der auf Pankreasinsuffizienz beruhenden Maldigestion, kann auch anhand von in-vivo-Tiermodellen, beispielsweise an pankreasinsuffizienten Schweinen, belegt werden:
2. Wirksamkeit eines erfindungsgemäßen Enzymgemisches am pankreasinsuffizienten Schwein in vivo
Die Versuche wurden an neun adulten weiblichen Göttingen Miniaturschweinen der Linie Ellegaard (33-40 kg Körpergewicht) durchgeführt, welchen jeweils eine ileocaecale Umleitungskanüle eingesetzt worden war. Die Umleitungskanüle diente zur Sammlung des Chymus der Versuchstiere. Sechs dieser Tiere wurde darüber hinaus der Pankreasgang ligiert (= Testtiere) . Die übrigen drei Tiere behielten einen intakten Pankreasgang und dienten der Kontrolle der Versuchsergebnisse (= Kontrolltiere) . Der Test wurde mit insgesamt drei verschiedenen Dosierungen eines erfindungsgemäßen Enzymgemi- sches durchgeführt. Es wurden die folgenden Enzymdosierungen verabreicht :
Dosis 1: 111.833 FIP-E/Mahlzeit "Lipase D Amano 2000®" 1.775 FIP-E/Mahlzeit "Prozyme 6®" 89.760 FIP-E/Mahlzeit "Amylase AI®"
Dosis 2: 223.665 FIP-E/Mahlzeit "Lipase D Amano 2000®" 3.551 FIP-E/Mahlzeit "Prozyme 6®" 179.520 FIP-E/Mahlzeit "Amylase AI®"
Dosis 3: 335.498 FIP-E/Mahlzeit "Lipase D Amano 2000®" 5.326 FIP-E/Mahlzeit "Prozyme 6®" 269.280 FIP-E/Mahlzeit "Amylase AI®"
Je Dosis wurden alle Tiere über einen Zeitraum von 22 Tagen täglich zweimal mit je 250 g eines fettreichen Versuchsfut- ters gefüttert, welches 170 g Haltungsfutter für Miniaturschweine (Altromin®, Fa. Lukas Meyer; im wesentlichen doppelt geschroteter Weizen) , 10 g Eiweißkonzentrat (Sojamin 90®, Fa. Lukas Meyer), 70 g Sojaöl (Fa. Roth) und 0,625 g Cr203 (als nicht-resorbierbarer Marker, Fa. Roth) , vermischt mit 1 1 Wasser, enthielt. Dem Futter nur der Testtiere wurden zusätzlich die einzelnen Enzyme des erfindungsgemäßen Enzymgemisches in der entsprechenden Menge kurz vor der Fütterung zugemischt. Zusätzlich wurde mit fünf der Testtiere eine Testreihe durchgeführt, worin deren Versuchsfutter kein Enzymgemisch beigefügt wurde. Die bei dieser Testreihe ermittelten Ergebnisse werden nachfolgend als "Nullwerte" angegeben. Jeweils am 20. bis 22. Tag des UntersuchungsZeitraumes wurden den Versuchstieren über 12 Stunden Chymusproben aus der Umleitungskanüle entnommen und diese wurden auf Ihren Gehalt an Rohfett, Rohprotein und Stärke untersucht. Die Fütterungsversuche und deren Auswertung wurden auf an sich bekannte Weise durchgeführt (vgl. P.C. Gregory, R. Tabeling, J. Kamphues, "Biology of the Pancreas in Growing Animals"; Developments in Animal and Veterinary Sciences 28 (1999) 381-394, Elsevier, Amsterdam; Hrsg.: S.G. Pierzynowski und R. Zabielski) .
Die bei dem vorgenannten in-vivo-Versuch ermittelte scheinbare präcaecale Verdaulichkeit von Rohfett, Rohprotein und Stärke in den Versuchstieren wird in der nachfolgenden Tabelle A jeweils in Prozentwerten, bezogen auf die ursprünglich gefütterte absolute Menge an Fett, Protein bzw. Stärke angegeben. Die als "praecaecale Verdaulichkeit" angegebenen Werte entsprechen der "scheinbaren praecaecalen Verdaulichkeit", welche sich von der tatsächlichen praecaecalen Verdaulichkeit dadurch unterscheiden, daß sie auch noch geringe Mengen an endogenen Anteilen der untersuchten Stoffe, beispielsweise endogene Proteine, beinhalten können. Die präcaecalen Verdaulichkeiten wurden mit Hilfe der nachfolgend angegebenen Formel aus dem Chymus der Versuchstiere nach der Marker-Methode bestimmt:
Praecaecale Verdaulichkeit sV
SV(%) = 100 - ( % Indikator im Futter % Mahrstoff im Chymus 100 ) % Indikator im Chymus % Nährstoff im Futter
Tabelle A:
Bestimmung der präcaecalen Verdaulichkeiten von Rohfett, Rohprotein und Stärke in den Versuchstieren in vivo
Figure imgf000020_0001
Alle Werte sind als Mittelwerte mit Standardabweichungen angegeben. Aus den angegebenen Versuchsergebnissen wird deutlich, das durch Verabreichung eines erfindungsgemäßen Enzymgemisches eine signifikante Verbesserung der Verdaulichkeit von Fetten, Eiweißen und Kohlenhydraten beim pankreasinsuffizienten Schwein erzielt wird und daß diese Verbesserung dosisabhängig ist.
Beispiel I;
Aus 400 g "Lipase D Amano 2000®", 400 g PEG 4000 und 1.200 g Vivapur®" (= mikrokristalline Cellulose) wurden unter Zusatz von wenig 2-Propanol und Wasser auf an sich bekannte Weise Pellets von 0,7 - 1,4 mm Durchmesser hergestellt.
Aus 7.000 g "Amylase AI®", 2.000 g PEG 4000 und 1.000 g "Vivapur®" wurden unter Zusatz von wenig 2-Propanol und Wasser auf an sich bekannte Weise Pellets von 0,7 - 1,7 mm Durchmesser hergestellt.
Aus 1.750 g "Prozyme 6®", 500 g PEG 4000 und 250 g "Vivapur®" wurden unter Zusatz von wenig 2-Propanol und Wasser auf an sich bekannte Weise Pellets von 0,7 - 1,7 mm Durchmesser hergestellt.
Von den vorstehend hergestellten Pellets wurden jeweils 32 mg Lipase-Pellets, 325 mg Amylase-Pellets und 40 mg Protease- Pellets in eine Gelatine-Kapsel der Größe 0 abgefüllt. Man erhielt eine Dosierungsform mit folgenden Aktivitäten pro Kapsel:
Lipase ca. 10.000 FIP-E
Protease ca. 200 FIP-E
Amylase ca. 8.000 FIP-E

Claims

Patentansprüche
1. Enzymgemisch, dadurch gekennzeichnet, daß es a) eine konzentrierte Lipase von Rhizopus delemar, b) eine neutrale Protease von Aspergillus melleus und c) eine Amylase von Aspergillus oryzae enthält.
2. Enzymgemisch nach Anspruch 1, worin die Lipase eine spezifische Aktivität von mindestens 1.800.000 FIP-E/g aufweist .
3. Enzymgemisch nach Anspruch 1, worin die Protease eine spezifische Aktivität von mindestens 7.500 FIP-E/g aufweist.
4. Enzymgemisch nach Anspruch 1, worin die Protease ein pH-Optimum zwischen pH 6 und pH 8 aufweist.
5. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie ein Enzymgemisch nach Anspruch 1 sowie übliche Hilfsund/oder Trägerstoffe enthält.
6. Zubereitung nach Anspruch 5 , welche in Form von Pulver, Pellets, Microspheres, Kapseln, Sachets, Tabletten, als Suspension oder Lösung vorliegt.
7. Zubereitung nach Anspruch 5, worin mindestens eines der Enzyme, ausgewählt aus Lipase, Protease und Amylase, einzeln pelletiert vorliegt.
8. Zubereitung nach einem der Ansprüche 5 bis 7 , worin mindestens eines der Enzyme, ausgewählt aus Lipase, Protease und Amylase, mit einer magensaftresistenten Schicht befilmt ist.
9. Zubereitung nach Anspruch 8, worin Protease und/oder Lipase einzeln pelletiert vorliegen und mit einer magensaft- resistenten Schicht befilmt sind.
10. Zubereitung nach Anspruch 5, worin das Verhältnis der Enzyme Lipase:Amylase: Protease jeweils 50-500 FIP-E:40- 120 FIP-E :1 FIP-E beträgt.
11. Zubereitung nach Anspruch 5, welche pro Dosierungseinheit mindestens 10.000 FIP-E Lipase, 8.000 FIP-E Amylase und 200 FIP-E Protease enthält.
12. Verwendung eines Enzymgemisches nach Anspruch 1 zur Herstellung eines Arzneimittels für die Behandlung und/oder Prophylaxe der Maldigestion in Säugetieren und Menschen.
13. Verwendung nach Anspruch 12, wobei die Maldigestion durch Pankreasinsuffizienz verursacht wird.
1 . Verwendung einer konzentrierten Lipase von Rhizopus delemar, welche eine spezifische Aktivität von mindestens 1.800.000 FIP-E/g aufweist, zur Herstellung eines Arzneimittels für die Behandlung und/oder Prophylaxe der Maldigestion in Säugetieren und Menschen.
PCT/EP2002/000374 2001-01-19 2002-01-16 Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion WO2002060474A2 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
PL02362646A PL362646A1 (en) 2001-01-19 2002-01-16 Novel mixtures of microbial enzymes
JP2002560665A JP2004524838A (ja) 2001-01-19 2002-01-16 微生物酵素の新規混合物
CA002434808A CA2434808A1 (en) 2001-01-19 2002-01-16 Novel mixtures of microbial enzymes
BR0206521-5A BR0206521A (pt) 2001-01-19 2002-01-16 Misturas de enzimas microbianas
MXPA03005960A MXPA03005960A (es) 2001-01-19 2002-01-16 Nuevas mezclas de enzimas microbianas.
SK929-2003A SK9292003A3 (en) 2001-01-19 2002-01-16 Novel mixtures of microbial enzymes
KR10-2003-7009470A KR20030067752A (ko) 2001-01-19 2002-01-16 미생물 효소의 신규 혼합물
EP02716661A EP1381386A2 (de) 2001-01-19 2002-01-16 Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion
IL15700402A IL157004A0 (en) 2001-01-19 2002-01-16 Novel mixtures of microbial enzymes
HU0500560A HUP0500560A3 (en) 2001-01-19 2002-01-16 Mixtures of mushroom enzymes and the use thereof for treating maldigestion
NZ527148A NZ527148A (en) 2001-01-19 2002-01-16 Novel mixtures of microbial enzymes
US10/620,759 US20040057944A1 (en) 2001-01-19 2003-07-17 Microbial enzyme mixtures useful to treat digestive disorders
NO20033261A NO20033261D0 (no) 2001-01-19 2003-07-18 Nye blandinger av mikrobielle enzymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10102495.9 2001-01-19
DE10102495 2001-01-19
DE10144711A DE10144711A1 (de) 2001-01-19 2001-09-11 Neue Gemische mikrobieller Enzyme
DE10144711.6 2001-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/620,759 Continuation US20040057944A1 (en) 2001-01-19 2003-07-17 Microbial enzyme mixtures useful to treat digestive disorders

Publications (2)

Publication Number Publication Date
WO2002060474A2 true WO2002060474A2 (de) 2002-08-08
WO2002060474A3 WO2002060474A3 (de) 2003-10-30

Family

ID=26008287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000374 WO2002060474A2 (de) 2001-01-19 2002-01-16 Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion

Country Status (17)

Country Link
US (1) US20040057944A1 (de)
EP (1) EP1381386A2 (de)
JP (1) JP2004524838A (de)
CN (1) CN1236817C (de)
AR (1) AR032392A1 (de)
BR (1) BR0206521A (de)
CA (1) CA2434808A1 (de)
CZ (1) CZ20031900A3 (de)
HU (1) HUP0500560A3 (de)
IL (1) IL157004A0 (de)
MX (1) MXPA03005960A (de)
NO (1) NO20033261D0 (de)
NZ (1) NZ527148A (de)
PL (1) PL362646A1 (de)
RU (1) RU2003124078A (de)
SK (1) SK9292003A3 (de)
WO (1) WO2002060474A2 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005115445A1 (en) 2004-05-24 2005-12-08 Novozymes A/S Enzymes for pharmaceutical use
WO2006044529A1 (en) * 2004-10-14 2006-04-27 Altus Pharmaceuticals Inc. Compositions containing lipase; protease and amylase for treating pancreatic insufficiency
WO2006136161A2 (en) * 2005-06-24 2006-12-28 Novozymes A/S Amylases for pharmaceutical use
WO2006136159A2 (en) * 2005-06-24 2006-12-28 Novozymes A/S Lipases for pharmaceutical use
WO2008079685A2 (en) * 2006-12-21 2008-07-03 Novozymes A/S Lipase variants for pharmaceutical use
WO2009083607A1 (en) * 2008-01-03 2009-07-09 Solvay Pharmaceuticals Gmbh Pharmaceutical compositions comprising granules of purified microbial lipase and methods for preventing or treating digestive disorders
US7998476B2 (en) 2006-11-22 2011-08-16 Standard Biologics, Inc. Method of treatment using Aspergillus oryzae protease
US8455235B2 (en) 2007-12-04 2013-06-04 Novozymes A/S Protease variants for pharmaceutical use
US8802087B2 (en) 2004-03-22 2014-08-12 Abbott Products Gmbh Pharmaceutical compositions of lipase-containing products, in particular of pancreation
US9198871B2 (en) 2005-08-15 2015-12-01 Abbott Products Gmbh Delayed release pancreatin compositions
WO2016126970A1 (en) 2015-02-04 2016-08-11 Abbvie Inc. Pharmaceutical compositions and methods of use thereof to treat pancreatic enzyme insufficiency
US10072256B2 (en) 2006-05-22 2018-09-11 Abbott Products Gmbh Process for separating and determining the viral load in a pancreatin sample
US10704037B2 (en) 2005-07-29 2020-07-07 Abbott Products Gmbh Processes for the manufacture and use of pancreatin
US11266607B2 (en) 2005-08-15 2022-03-08 AbbVie Pharmaceuticals GmbH Process for the manufacture and use of pancreatin micropellet cores

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632429B1 (en) 1999-12-17 2003-10-14 Joan M. Fallon Methods for treating pervasive development disorders
US20010046493A1 (en) * 2000-02-24 2001-11-29 Alex Margolin Lipase-containing composition and methods of use thereof
US20070053895A1 (en) * 2000-08-14 2007-03-08 Fallon Joan M Method of treating and diagnosing parkinsons disease and related dysautonomic disorders
IT1319655B1 (it) 2000-11-15 2003-10-23 Eurand Int Microsfere di enzimi pancreatici con elevata stabilita' e relativometodo di preparazione.
US8030002B2 (en) 2000-11-16 2011-10-04 Curemark Llc Methods for diagnosing pervasive development disorders, dysautonomia and other neurological conditions
US8100844B2 (en) * 2002-04-25 2012-01-24 Ultraflex Systems, Inc. Ambulating ankle and knee joints with bidirectional dampening and assistance using elastomeric restraint
ES2421538T3 (es) * 2003-10-29 2013-09-03 Cystic Fibrosis Foundation Therapeutics Inc Proteasas no pancreáticas para controlar la concentración de colecistocinina (CCK) en plasma y para tratar el dolor
US20060198838A1 (en) * 2004-09-28 2006-09-07 Fallon Joan M Combination enzyme for cystic fibrosis
AU2006261443A1 (en) * 2005-06-24 2006-12-28 Novozymes A/S Proteases for pharmaceutical use
EP1931317B1 (de) * 2005-08-15 2008-12-24 Solvay Pharmaceuticals GmbH Pankreatin-mikropellets geeignet für magensaftresistente überzüge
US20080058282A1 (en) 2005-08-30 2008-03-06 Fallon Joan M Use of lactulose in the treatment of autism
US20070116695A1 (en) * 2005-09-21 2007-05-24 Fallon Joan M Pharmaceutical preparations for attention deficit disorder, attention deficit hyperactivity disorder and other associated disorders
US20100196344A1 (en) * 2005-10-14 2010-08-05 Cystic Fibrosis Foundation Therapeutics, Inc. Compositions and methods for treating pancreatic insufficiency
WO2007053619A2 (en) * 2005-11-01 2007-05-10 Bio-Cat, Inc. A composition with a fungal (yeast) lipase and method for treating lipid malabsorption in cystic fibrous as well as people suffering from pancreatic lipase insufficiency
US20080081035A1 (en) * 2006-10-03 2008-04-03 National Enzyme Company Therapeutic protease compositions
US20080199448A1 (en) * 2007-02-16 2008-08-21 Ross Mairi R Enzyme composition for improving food digestion
PL2079445T3 (pl) * 2007-02-20 2016-04-29 Allergan Pharmaceuticals Int Ltd Stabilne kompozycje enzymów trawiennych
US20090068174A1 (en) * 2007-09-12 2009-03-12 Kansas University Medical Center Research Institute, Inc. Therapeutic alkaline protease compositions and use in facilitating the transport of agents across the gastrointestinal mucosal lining
US20090130063A1 (en) * 2007-11-15 2009-05-21 Solvay Pharmaceuticals Gmbh Process for separating and determining the viral load in a pancreatin sample
US10087493B2 (en) 2008-03-07 2018-10-02 Aptalis Pharma Canada Ulc Method for detecting infectious parvovirus in pharmaceutical preparations
US8658163B2 (en) 2008-03-13 2014-02-25 Curemark Llc Compositions and use thereof for treating symptoms of preeclampsia
US8084025B2 (en) * 2008-04-18 2011-12-27 Curemark Llc Method for the treatment of the symptoms of drug and alcohol addiction
US9320780B2 (en) * 2008-06-26 2016-04-26 Curemark Llc Methods and compositions for the treatment of symptoms of Williams Syndrome
US20090324730A1 (en) * 2008-06-26 2009-12-31 Fallon Joan M Methods and compositions for the treatment of symptoms of complex regional pain syndrome
US11016104B2 (en) * 2008-07-01 2021-05-25 Curemark, Llc Methods and compositions for the treatment of symptoms of neurological and mental health disorders
US10776453B2 (en) * 2008-08-04 2020-09-15 Galenagen, Llc Systems and methods employing remote data gathering and monitoring for diagnosing, staging, and treatment of Parkinsons disease, movement and neurological disorders, and chronic pain
EP2328566A1 (de) * 2008-09-30 2011-06-08 DSM IP Assets B.V. Enzymzusammensetzung und deren anwendung bei der behandlung von pankreasinsuffizienz
US20100092447A1 (en) 2008-10-03 2010-04-15 Fallon Joan M Methods and compositions for the treatment of symptoms of prion diseases
CA2747703C (en) 2009-01-06 2021-06-15 Curemark Llc Compositions and methods for the treatment or the prevention of infections by e. coli
AU2010203709B2 (en) 2009-01-06 2014-05-22 Galenagen, Llc Compositions and methods for the treatment or prevention of Staphylococcus Aureus infections and for the Eradication or reduction of Staphylococcus Aureus on surfaces
AU2015252099B2 (en) * 2009-01-06 2017-08-10 Galenagen, Llc Compositions and methods for the treatment or prevention of staphylococcus aureus infections and for the eradication or reduction of staphylococcus aureus on surfaces
US9056050B2 (en) 2009-04-13 2015-06-16 Curemark Llc Enzyme delivery systems and methods of preparation and use
US9511125B2 (en) 2009-10-21 2016-12-06 Curemark Llc Methods and compositions for the treatment of influenza
CA2793685A1 (en) * 2010-03-19 2011-09-22 Aptalis Pharma Canada Inc. Gastro-resistant enzyme pharmaceutical compositions
KR101968457B1 (ko) 2010-10-01 2019-04-11 앨러간 파마슈티컬스 인터내셔널 리미티드 장용 코팅된 저 강도 췌장 리파제 제제
ES2673940T3 (es) 2010-12-22 2018-06-26 Novozymes North America, Inc. Proceso para producir productos de fermentación a partir de materiales que contienen almidón
JP5976100B2 (ja) 2011-04-21 2016-08-23 キュアマーク リミテッド ライアビリティ カンパニー 神経精神障害の処置のための化合物
RU2016119726A (ru) 2011-08-08 2018-11-02 Апталис Фарма Лтд. Способ проведения теста на растворение твердых композиций, содержащих пищеварительные ферменты
IN2014CN04905A (de) * 2011-12-02 2015-09-18 Novozymes As
US10350278B2 (en) 2012-05-30 2019-07-16 Curemark, Llc Methods of treating Celiac disease
PL2897604T3 (pl) 2012-09-19 2018-10-31 Grespo Ab Kompozycje do ulepszenia funkcji mózgu
CA2905159C (en) 2013-03-15 2023-01-03 Aptalis Pharma Ltd. Composition containing digestive enzymes and nutrients suitable for enteral administration
US11939552B2 (en) 2013-06-24 2024-03-26 Novozymes A/S Process of recovering oil
CN105339501A (zh) 2013-06-24 2016-02-17 诺维信公司 用于从发酵产物过程中回收油的方法以及用于生产发酵产物的方法
US10184121B2 (en) 2013-06-28 2019-01-22 Allergan Pharmaceuticals International Limited Methods for removing viral contaminants from pancreatic extracts
AU2014304176A1 (en) * 2013-07-22 2016-02-11 Aptalis Pharma Ltd. High potency pancreatin pharmaceutical compositions
WO2015069677A1 (en) * 2013-11-05 2015-05-14 Aptalis Pharma Ltd. High potency pancreatin pharmaceutical compositions
ES2784227T3 (es) 2013-08-09 2020-09-23 Allergan Pharmaceuticals Int Ltd Composición de enzimas digestivos adecuada para la administración entérica
GB201501081D0 (en) 2015-01-22 2015-03-11 Cilian Ag Use of enzymes with a wide pH activity range as medicaments for promoting digestion
US20200291375A1 (en) * 2017-09-24 2020-09-17 Bio-Cat, Inc. Fungal protease mixtures and uses thereof
FR3079146B1 (fr) 2018-03-23 2020-04-17 Karim Ioualalen Formulation gastroprotectrice de complexes d’enzymes permettant de restaurer la fonction digestive.
FR3111559A1 (fr) * 2020-06-18 2021-12-24 Azurrx Biopharma, Inc. Formulations non porcines et leurs procédés
US11541009B2 (en) 2020-09-10 2023-01-03 Curemark, Llc Methods of prophylaxis of coronavirus infection and treatment of coronaviruses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084431A (en) * 1964-05-06 1967-09-20 Analyses Et De Rech S Biolog M Improvements in and relating to lipases
DE2638088A1 (de) * 1976-08-24 1978-03-02 Degussa Verfahren zur herstellung von verbesserten arzneizubereitungen, die lipase nicht-tierischen ursprungs enthalten
DE4332985A1 (de) * 1993-09-28 1995-03-30 Konrad Peter Maria Dr Sommer Arzneimittel zur Behandlung der Dysfunktion des exokrinen Pankreas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3152958B2 (ja) * 1991-06-14 2001-04-03 天野エンザイム株式会社 微生物起源リパーゼの安定化組成物及び安定化法
US5750104A (en) * 1996-05-29 1998-05-12 Digestive Care Inc. High buffer-containing enteric coating digestive enzyme bile acid compositions and method of treating digestive disorders therewith
US6013680A (en) * 1997-10-21 2000-01-11 Amano Pharmaceutical Co., Ltd. Digestive enzyme-containing medicament

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084431A (en) * 1964-05-06 1967-09-20 Analyses Et De Rech S Biolog M Improvements in and relating to lipases
DE2638088A1 (de) * 1976-08-24 1978-03-02 Degussa Verfahren zur herstellung von verbesserten arzneizubereitungen, die lipase nicht-tierischen ursprungs enthalten
DE4332985A1 (de) * 1993-09-28 1995-03-30 Konrad Peter Maria Dr Sommer Arzneimittel zur Behandlung der Dysfunktion des exokrinen Pankreas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 9305 Derwent Publications Ltd., London, GB; Class B04, AN 1993-042580 XP002232576 & JP 04 370096 A (AMANO PHARM KK), 22. Dezember 1992 (1992-12-22) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802087B2 (en) 2004-03-22 2014-08-12 Abbott Products Gmbh Pharmaceutical compositions of lipase-containing products, in particular of pancreation
WO2005115445A1 (en) 2004-05-24 2005-12-08 Novozymes A/S Enzymes for pharmaceutical use
JP2008500055A (ja) * 2004-05-24 2008-01-10 ノボザイムス アクティーゼルスカブ 医薬用途のための酵素
WO2006044529A1 (en) * 2004-10-14 2006-04-27 Altus Pharmaceuticals Inc. Compositions containing lipase; protease and amylase for treating pancreatic insufficiency
CN101068565B (zh) * 2004-10-14 2010-11-17 胞囊纤维化基础治疗公司 治疗胰腺功能不全的包含脂酶、蛋白酶和淀粉酶的组合物
EP2198880A1 (de) * 2004-10-14 2010-06-23 Altus Pharmaceuticals Inc. Zusammensetzung enthaltend Lipase, Protease und Amylase zur Behandlung von Pankreasinsuffizienz
US7718169B2 (en) 2004-10-14 2010-05-18 Cystic Fibrosis Foundations Therapeutics, Inc. Compositions and methods for treating pancreatic insufficiency
WO2006136159A3 (en) * 2005-06-24 2007-04-12 Novozymes As Lipases for pharmaceutical use
WO2006136161A3 (en) * 2005-06-24 2007-07-05 Novozymes As Amylases for pharmaceutical use
WO2006136159A2 (en) * 2005-06-24 2006-12-28 Novozymes A/S Lipases for pharmaceutical use
WO2006136161A2 (en) * 2005-06-24 2006-12-28 Novozymes A/S Amylases for pharmaceutical use
US8017351B2 (en) 2005-06-24 2011-09-13 Novozymes A/S Amylases for pharmaceutical use
US10704037B2 (en) 2005-07-29 2020-07-07 Abbott Products Gmbh Processes for the manufacture and use of pancreatin
US11266607B2 (en) 2005-08-15 2022-03-08 AbbVie Pharmaceuticals GmbH Process for the manufacture and use of pancreatin micropellet cores
US9198871B2 (en) 2005-08-15 2015-12-01 Abbott Products Gmbh Delayed release pancreatin compositions
US10072256B2 (en) 2006-05-22 2018-09-11 Abbott Products Gmbh Process for separating and determining the viral load in a pancreatin sample
US7998476B2 (en) 2006-11-22 2011-08-16 Standard Biologics, Inc. Method of treatment using Aspergillus oryzae protease
WO2008079685A2 (en) * 2006-12-21 2008-07-03 Novozymes A/S Lipase variants for pharmaceutical use
EP2455462A2 (de) 2006-12-21 2012-05-23 Novozymes A/S Lipasevarianten zur pharmazeutischen Verwendung
EP2455461A2 (de) 2006-12-21 2012-05-23 Novozymes A/S Lipasevarianten zur pharmazeutischen Verwendung
US8273348B2 (en) 2006-12-21 2012-09-25 Novozymes A/S Lipase variants for pharmaceutical use
EP2455459A2 (de) 2006-12-21 2012-05-23 Novozymes A/S Lipasevarianten zur pharmazeutischen Verwendung
US9029115B2 (en) 2006-12-21 2015-05-12 Novozymes A/S Lipase variants for pharmaceutical use
EP2455460A2 (de) 2006-12-21 2012-05-23 Novozymes A/S Lipasevarianten zur pharmazeutischen Verwendung
US9539311B2 (en) 2006-12-21 2017-01-10 Novozymes A/S Lipase variants for pharmaceutical use
EP2261328A1 (de) 2006-12-21 2010-12-15 Novozymes A/S Lipase-varianten zur pharmazeutischen Verwendung
WO2008079685A3 (en) * 2006-12-21 2008-11-06 Novozymes As Lipase variants for pharmaceutical use
US8455235B2 (en) 2007-12-04 2013-06-04 Novozymes A/S Protease variants for pharmaceutical use
WO2009083607A1 (en) * 2008-01-03 2009-07-09 Solvay Pharmaceuticals Gmbh Pharmaceutical compositions comprising granules of purified microbial lipase and methods for preventing or treating digestive disorders
WO2016126970A1 (en) 2015-02-04 2016-08-11 Abbvie Inc. Pharmaceutical compositions and methods of use thereof to treat pancreatic enzyme insufficiency

Also Published As

Publication number Publication date
EP1381386A2 (de) 2004-01-21
HUP0500560A3 (en) 2006-06-28
US20040057944A1 (en) 2004-03-25
AR032392A1 (es) 2003-11-05
CN1487837A (zh) 2004-04-07
NO20033261L (no) 2003-07-18
HUP0500560A2 (hu) 2005-09-28
CA2434808A1 (en) 2002-08-08
SK9292003A3 (en) 2003-12-02
MXPA03005960A (es) 2003-09-05
IL157004A0 (en) 2004-02-08
NO20033261D0 (no) 2003-07-18
RU2003124078A (ru) 2005-01-27
WO2002060474A3 (de) 2003-10-30
CN1236817C (zh) 2006-01-18
JP2004524838A (ja) 2004-08-19
BR0206521A (pt) 2004-02-17
NZ527148A (en) 2005-01-28
PL362646A1 (en) 2004-11-02
CZ20031900A3 (cs) 2003-10-15

Similar Documents

Publication Publication Date Title
WO2002060474A2 (de) Gemische von enzymen aus pilzen und deren verwendung zur behandlung der maldigestion
DE69634248T2 (de) Zusammensetzungen zur verbesserung der verdaulichkeit und ausnutzung von nähestoffen
DE2626109C2 (de)
DE502007010071C5 (de) Verwendung einer zusammensetzung aus mineralstoffen und gegebenenfalls acetogenen und/oder butyrogenen bakterien zur vermeidung oder reduzierung von gasbildung im dickdarm eines säugetiers und dadurch bedingter abdominaler beschwerden
EP1162995B1 (de) Enzyme zur behandlung von diabetes mellitus typ i
DE60007001T2 (de) Neurotoxine zur behandlung von pankreatischen krankheiten
EP2391382B1 (de) Pharmazeutisches präparat enthaltend lipase bakteriellen ursprungs
EP2445510B1 (de) Zusammensetzung zur behandlung von degenerativen gelenkerkrankungen
DE60004879T2 (de) Tierfuttermittelzusatz
DE202006021153U1 (de) Stabile, haltbare Granulate mit aktiven Mitteln
DD300405A5 (de) Pharmazeutische rezepturen
EP1858536A2 (de) Arzneimittel aus pflanzenextrakten als lipaseinhibitor
WO2003051345A2 (de) Verwendung von verdauungsenzymgemischen zur behandlung pathologischer bakterieller überwucherung des dünndarms von säugetieren und menschen
DE60304723T2 (de) VERZWEIGTE ALPHA-GLUCANE FüR DAS GEWICHTSMANAGEMENT
WO2002036156A1 (de) Verwendung von aus ciliaten gewonnenen enzymen als verdauungsfördernde arzneimittel
EP3525769B1 (de) Schmelztablette enthaltend burlulipase und daraus hergestellte pharmazeutische zusammensetzung
DE2935546C2 (de) Diätetische Lebensmittel mit Monoglyceriden von Fettsäuren
DE102006036285A1 (de) Fraktionen aus Molkepermeat und deren Verwendung zur Prävention und Therapie des Typ-2 Diabetes und des Metabolischen Syndroms
DE60037197T2 (de) Verwendung funktioneller oraler präparate
DE10144711A1 (de) Neue Gemische mikrobieller Enzyme
EP1687014A1 (de) Verwendung einer zusätzlich fermentierten getreideschlempe zur vorbeugung und/oder behandlung erhähter blutzucker-werte
DE2006514A1 (de) Neue proteolytische enzymatische Produkte, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4236064C2 (de) Selektiv-toxisches Mittel und seine Verwendung
EP0341527A2 (de) Mittel zur Wachstumssteigerung bei Tieren
DE2315006A1 (de) Pankreasenzympraeparat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200304986

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/005960

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002716661

Country of ref document: EP

Ref document number: PV2003-1900

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2434808

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037009470

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 157004

Country of ref document: IL

Ref document number: 1-2003-500631

Country of ref document: PH

Ref document number: 10620759

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 9292003

Country of ref document: SK

Ref document number: 028038894

Country of ref document: CN

Ref document number: 2002560665

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002247634

Country of ref document: AU

Ref document number: 1134/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 527148

Country of ref document: NZ

WWP Wipo information: published in national office

Ref document number: 1020037009470

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2003-1900

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 2002716661

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 527148

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 527148

Country of ref document: NZ

WWW Wipo information: withdrawn in national office

Ref document number: 2002716661

Country of ref document: EP