WO2002000958A1 - Article decoratif comportant une pellicule blanche et procede de production associe - Google Patents

Article decoratif comportant une pellicule blanche et procede de production associe Download PDF

Info

Publication number
WO2002000958A1
WO2002000958A1 PCT/JP2001/005130 JP0105130W WO0200958A1 WO 2002000958 A1 WO2002000958 A1 WO 2002000958A1 JP 0105130 W JP0105130 W JP 0105130W WO 0200958 A1 WO0200958 A1 WO 0200958A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
plating
coating
alloy
tin
Prior art date
Application number
PCT/JP2001/005130
Other languages
English (en)
French (fr)
Inventor
Koichi Naoi
Akiyoshi Takagi
Yukio Miya
Fumio Tase
Kazumi Hamano
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to EP01938693A priority Critical patent/EP1295961B1/en
Priority to US10/069,625 priority patent/US6780527B2/en
Priority to JP2002506266A priority patent/JP4642317B2/ja
Publication of WO2002000958A1 publication Critical patent/WO2002000958A1/ja
Priority to HK03101552.5A priority patent/HK1049355B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/005Coating layers for jewellery
    • A44C27/006Metallic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C3/00Processes, not specifically provided for elsewhere, for producing ornamental structures
    • B44C3/02Superimposing layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12889Au-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • Y10T428/12979Containing more than 10% nonferrous elements [e.g., high alloy, stainless]

Definitions

  • the present invention relates to a decorative article having a white coating and a method for producing the same, and more particularly, to a decorative article made of a metal or an alloy thereof having poor corrosion resistance, in particular, having an inexpensive white color stainless steel coating excellent in long-term corrosion resistance.
  • the present invention relates to low-priced decorative articles and a method of manufacturing the same. Background technology
  • ornaments such as watches, necklaces, pendants, and brooches have often been made of copper alloys due to their workability and material price.
  • This plating film is usually composed of a nickel plating film formed by a wet plating method as a base plating film and an outermost plating film formed on the surface of the coating by a wet plating method.
  • a gold plating film is formed on the surface of the nickel plating film by a wet plating method.
  • a rhodium plating film or the like is formed by a wet plating method. The thickness of these plating films is generally formed in the range of 1 to 5 m. It is.
  • the present invention is intended to solve the problems associated with the prior art as described above.
  • Metals including alloys, especially those made of metals having poor corrosion resistance, are provided with a white color tone that is inexpensive and has excellent long-term corrosion resistance. It is an object of the present invention to provide a low-priced decorative article having a stainless steel film and a method of manufacturing the same. Disclosure of the invention The decorative article having the first white film according to the present invention,
  • a white-toned stainless steel coating formed on at least a part of the substrate surface by a dry plating method
  • the decorative article substrate is usually made of tungsten carbide or tantalum byte.
  • a base material for decorative articles made of non-ferrous metal
  • At least a part of the surface of the undercoat coating film is coated with a white-tone stainless steel coating formed by a dry plating method.
  • the decorative article substrate is usually made of at least one non-ferrous metal selected from the group consisting of copper, copper alloy, aluminum, aluminum alloy, zinc, zinc alloy, magnesium and magnesium alloy.
  • a white-colored noble metal coating having a thickness of 0.04 to 0.3 m is formed on the surface of the stainless steel coating by a dry plating method. May be.
  • the base paint film may have a multilayer structure of at least one paint film formed by a wet plating method and at least one paint film formed by a dry plating method.
  • the base plating film is formed by a wet plating method, such as gold, copper, nickel, chromium, tin, palladium, nickel-phosphorus alloy, nickel Consists of nickel alloys other than Rulin alloy, copper-tin-palladium alloy, copper alloys other than copper-tin-palladium alloy, tin alloys other than copper-tin-tin-palladium alloy, and palladium alloys other than copper-tin-tin-palladium alloy It is desirable that the coating is made of at least one metal selected from the group.
  • the nickel-phosphorus alloy plating film as the base plating film is preferably a hard coating subjected to age hardening treatment.
  • a nickel-less base coating film is preferable.
  • Such undercoat coatings include gold, copper, chromium, tin, palladium, copper-tin-palladium alloys, copper alloys other than copper-tin-tin-palladium alloy, copper-tin-tin-palladium, formed by a wet plating method. It is preferable that at least one kind of coating film composed of a nickel-free metal selected from the group consisting of tin alloys other than alloys and palladium alloys other than copper-tin-tin-palladium alloy is desirable.
  • a coating made of titanium carbide, zirconium carbide or tantalum carbide formed by a dry plating method is preferable.
  • the total thickness of the undercoat coating is usually in the range of 0.2 to 30 ⁇ m.
  • the stainless steel coating having a white color tone is austenitic stainless steel, in particular, carbon of 0.11 to 0.12% by volume, silicon Austenitic stainless steel with a composition of 0.1 to 1.0% by volume, manganese 1.0 to 2.5% by volume, nickel 8 to 22% by volume, and chromium 15 to 26% by volume. It is preferably made of stainless steel.
  • a stainless steel coating having a nickel-free white color is preferable.
  • a white color stainless steel film include nickel-free ferritic stainless steel, among which 0.11-0.12% by volume of carbon, 0.1-1.0% by volume of silicon, and 1% by volume of manganese.
  • a coating made of nickel-free ferrite stainless steel having a composition of 0 to 2.5% by volume, 14 to 20% by volume of chromium, and 0.4 to 2.5% by volume of molybdenum is desirable.
  • the white-tone stainless steel film is formed by a dry plating method, such as a sputtering ring method, an arc method, or an ion plating method.
  • the stainless steel At least one plating film having a different color tone from the film to be coated may be formed by a dry plating method.
  • the plating film different from the stainless steel film is preferably at least one kind of film made of gold, a gold alloy, titanium nitride or zirconium nitride.
  • a first method for producing a decorative article having a white film according to the present invention includes the steps of forming a decorative article base material by machining a metal (including an alloy);
  • the substrate is subjected to a sputtering device, an arc device and an ion Mounting in at least one dry plating device selected from a tinting device, and bombarding the substrate surface in an argon gas atmosphere;
  • the metal used for forming the base material for decorative articles is usually tantalum carbide or tantalum byte.
  • a second method for producing a decorative article having a white film according to the present invention includes a step of forming a decorative article base material by machining non-ferrous metal (including an alloy);
  • the substrate having the base plating film is mounted in at least one dry plating device selected from a sputtering device, an arc device, and an ion plating device, and is formed on the surface of the substrate in an argon gas atmosphere. Bombarding the underlying plating film surface
  • the non-ferrous metal used for forming the decorative base material is usually copper, copper alloy, aluminum, aluminum alloy, zinc, zinc alloy, or magnet. At least one non-ferrous metal selected from the group consisting of shim and magnesium alloy.
  • the method further comprises the step of forming a stainless steel coating having a thickness of 0. 0 4-0.
  • a step of forming a noble metal film having a white color by a dry plating method can be employed.
  • the base paint film is a multilayer having at least one paint film formed on the surface of the base material by a wet plating method, and at least one paint film formed on the surface of the paint film by a dry plating method. It may be a structural coating.
  • the base plating film gold, copper, nickel, chromium, tin, palladium, nickel-phosphorus alloy, nickel alloy other than nickel-phosphorus alloy, copper-tin-palladium alloy, copper other than copper-tin-palladium alloy Alloy, a tin alloy other than copper-tin-palladium alloy, and a palladium alloy other than copper-tin-tin-palladium alloy, it is preferable to form a coating of at least one metal by a wet plating method. .
  • the undercoat plating film is a nickel-phosphorus alloy plating film
  • the nickel-phosphorus alloy plating film is subjected to an age hardening treatment at 200 to 450 ° C. for 20 to 60 minutes, and nickel It is preferable to harden the monophosphorus alloy plating film.
  • gold, copper, chromium, tin, palladium, and copper-tin-palladium are used as the base plating film.
  • the base plating film it is preferable to form a coating made of titanium carbide, zirconium carbide or tantalum carbide by a dry plating method.
  • the overall thickness of the undercoat coating is typically in the range of 0.2 to 30 m.
  • the stainless steel film having a white color tone may be an austenitic stainless steel, among which carbon 0.11 to 0.12 volume. %, Silicon 0.1 to 1.0% by volume, manganese 1.0 to 2.5% by volume, nickel 8 to 22% by volume, chromium 15 to 26% by volume It is preferable that a coating made of stainless steel is formed by a sputtering method, an arc method, or an ion plating method. Further, from the viewpoint of preventing nickel allergy, a stainless steel film having a nickel-free white color is preferable.
  • Nickel-less ferritic stainless steel such as a stainless steel film with a white color tone, has a carbon content of 0.01 to 0.12% by volume, a silicon 0.1 to 1.0% by volume, A nickel-free ferrite stainless steel coating with a composition of manganese 1.0 to 2.5 vol%, chromium 14 to 20 vol%, and molybdenum 0.4 to 2.5 vol% is sputtered. Evening ring method, It is desirable to form by an arc method or an ion plating method.
  • the method comprises the steps of: forming a stainless steel coating having a white color on the surface of the base material or the surface of the base coating film; Applying a masking treatment to the portion, forming a plating film having a color tone different from that of the stainless steel film on the surface of the stainless steel film and the mask by a dry plating method, and then removing at least the mask film and the plating film on the mask.
  • a stainless steel film having a white color tone and at least one plating film having a different color tone from the stainless steel film can be obtained as an outermost plating film (finished plating film).
  • At least one kind of metal selected from gold, gold alloy, titanium nitride, hafnium nitride or zirconium nitride is used as a plating film having a different color tone from the stainless steel film by a sputtering method, an arc method, and an ion plating method. It is desirable to form by at least one dry plating method selected from methods.
  • FIG. 1 is a schematic plan view of a wear tester for explaining a method of a wear resistance test.
  • the decorative article having the first white film according to the present invention is composed of a decorative article base material and a stainless steel film having a white color tone as an outermost layer film (finish plating film).
  • the decorative article having the second white coating according to the present invention is composed of a decorative base material, an undercoat coating, and a stainless steel coating having a white color as the outermost coating (finish coating). I have.
  • the first method for manufacturing a decorative article having a white coating according to the present invention is a method for manufacturing the decorative article having the first white coating according to the present invention, and the decorative method having a white coating according to the present invention.
  • the second method for producing an article is a method for producing a decorative article having the above-described second white coating according to the present invention.
  • a case where the entire outermost layer film is formed of a stainless steel film a case where a part of the surface of the outermost layer film is a stainless steel film, and a portion where the other portion has a color tone different from the stainless steel film. May be formed alone or in combination of two or more.
  • the decorative article base material used in the decorative article having the first white film according to the present invention is usually a base material formed of tungsten carbide or tungsten carbide.
  • the decorative article base material used in the decorative article having the second white coating according to the present invention is usually selected from the group consisting of copper, copper alloy, aluminum, aluminum alloy, zinc, zinc alloy, magnesium, and magnesium alloy. Groups formed from at least one selected non-ferrous metal Material.
  • These decorative base materials are prepared from the above-mentioned metals or non-ferrous metals by conventionally known machining.
  • the decorative articles (including parts) of the present invention include, for example, a watch case, a watch band, a watch crown, a watch back cover, a belt buckle, a ring, a necklace, a bracelet, earrings, a pendant, a brooch, a cufflink, Examples include tie closures, badges, medals, and glasses.
  • a stainless steel coating having a white color is formed directly on the surface of the decorative base material by a dry plating method.
  • a stainless steel film having a white color tone is formed by a dry plating method on the surface of the base paint film formed on the surface of the decorative product base material. .
  • the decorative article base material surface is previously washed and degreased with a conventionally known organic solvent or the like. Is preferred.
  • the base paint film constituting the decorative article having the second white film according to the present invention is a paint film formed by a wet plating method or a dry plating method.
  • the undercoat coating is a multi-layer structure of at least one coating formed by a wet plating method and at least one plating coating formed by a dry plating method. Is also good.
  • a gold plating film formed by a wet plating method Undercoating film with a two-layer structure consisting of a metal plating film and a titanium plating film formed by a dry plating method;
  • An undercoat coating having a three-layer structure including a copper plating coating formed by a wet plating method, a copper-tin plating coating formed by a wet plating method, and a titanium carbide plating coating formed by a dry plating method;
  • a three-layer base plating film comprising a palladium plating coating (flash plating), a titanium plating coating formed by a dry plating method, and a titanium carbon plating coating formed by a dry plating method;
  • a copper-tin alloy plating film formed by a wet plating method, a copper-tin-zinc alloy plating film formed by a wet plating method, a gold strike plating film formed by a wet plating method, and a dry plating method were formed.
  • Base plating film with four layers consisting of titanium plating film; copper-tin alloy plating film formed by wet plating method, copper-tin-zinc alloy plating film formed by wet plating method, and wet plating method An example is a five-layer base plating film composed of a palladium strike plating film, a titanium plating film formed by a dry plating method, and a titanium carbide plating film formed by a dry plating method.
  • the base paint film may be a film having two or more paint films formed on the surface of the decorative product base material by a wet plating method.
  • a two-layer base plating film consisting of a nickel strike plating film (flash plating) and a nickel plating film
  • a two-layer base plating film consisting of a nickel plating film and a nickel-phosphorus alloy plating film
  • a base plating film having a two-layer structure including a copper plating film and a copper-tin-palladium alloy plating film
  • a two-layer undercoat film consisting of a copper-tin-tin alloy plating film and a copper-tin-zinc alloy plating film;
  • a three-layer base plating film consisting of a copper-tin alloy plating film, a copper-tin-palladium alloy plating film, and a gold plating film (flash plating);
  • a three-layer base plating film consisting of a copper-tin alloy plating film, a copper-tin tin-zinc alloy plating film, and a gold strike plating film;
  • a three-layer base plating film consisting of a copper-tin alloy plating film, a copper-tin-zinc alloy plating film, and a palladium strike plating film, a nickel plating film, a nickel-lin alloy plating film, and a palladium plating film.
  • a three-layer base plating film consisting of a nickel alloy plating film;
  • a four-layer base plating film consisting of a nickel strike plating coating (flash plating), a nickel plating coating, a nickel-lin alloy plating coating, and a palladium-nickel alloy plating coating (flash plating);
  • Nickel strike plating coating flash plating
  • nickel plating coating nickel-lin alloy plating coating
  • palladium strike plating coating 4-layer base plating coating
  • 4-layer base plating film consisting of copper plating film, copper-tin alloy plating film, copper-tin-palladium alloy plating film and palladium plating film (flash plating);
  • Examples include a four-layer base plating film composed of a copper plating coating, a copper-tin alloy plating coating, a copper-tin-zinc alloy plating coating, and a palladium strike plating coating.
  • the total thickness of the undercoat coating is usually in the range of 0.2 to 30 m, preferably 0.5 to 30 jLt m, more preferably 5 to 2 Oim.
  • the copper-tin alloy plating film usually has a thickness of 1 to 5 m.
  • the thickness of tin-zinc alloy plating is usually 1 to 5 m.
  • Examples of the base plating film formed by the above wet plating method include gold, copper, nickel, chromium, tin, palladium, nickel-lurin alloy, nickel alloys other than nickel-lin alloy, and copper-tin tin.
  • a light coating is desirable.
  • the nickel-phosphorus alloy plating film is preferably a hard film that has been subjected to age hardening treatment.
  • a nickel-less base coating film formed by a wet plating method is preferable. Specifically, gold, copper, chromium, tin, palladium, copper-tin-palladium alloys, copper alloys other than copper-tin-palladium alloys, and copper-tin-tin-palladium alloys It is preferable to use a plating film made of at least one kind of nickel-free metal selected from the group consisting of tin alloys and palladium alloys other than copper-tin-palladium alloys.
  • the nickel alloy other than the nickel-phosphorus alloy include a nickel-cobalt alloy, a nickel-copper alloy, a nickel-iron alloy, a nickel-palladium alloy, a gold-nickel alloy, and a tin-nickel alloy.
  • copper alloys other than copper-tin-tin-palladium alloy include copper-tin-tin-zinc alloy, copper-tin-tin alloy, copper-gold alloy, copper-silver alloy, copper-gold-silver alloy, etc. .
  • tin alloys other than copper-tin-palladium alloy include copper-tin-tin-zinc alloy, copper-tin alloy, palladium-tin alloy, tin-nickel alloy, tin-gold alloy, and the like.
  • palladium alloys other than copper-tin-palladium alloy include palladium-nickel alloy, palladium-cobalt alloy, palladium-silver alloy, palladium-tin alloy, palladium-iron alloy, palladium-gold alloy, etc. Is mentioned.
  • the base plating film for example, a nickel plating film, is formed on the surface of the base material for decorative article by a wet plating method. Specifically, it can be formed using a plating liquid containing nickel metal ions.
  • Embodiments of the nickel plating film in the present invention include, for example, the following embodiments.
  • nickel plating film of the present invention The wood surface, nickel sulfate (N i S_ ⁇ 4. 6 H 2 0) 1 5 0 ⁇ 40 0 g / 1, most preferably 2 5 0 ⁇ 3 0 0 gZ l, nickel chloride (N i C 1 2 ⁇ 6 H 2O) 2 0 ⁇ 6 0 g / l, most preferably 40 to 5 0 g Bruno 1, boric acid (H 3 B0 3) 1 0 ⁇ 5 0 gZ l, most preferably 3 0 to 40 g / 1 , And brighteners (e.g., brighteners # 61 (standard addition 0.5 m11), # 62 '(standard addition 4 m1 Z1), # 63 (standard addition from Epalauge Light) Commercially available products such as 10 m1 1)] 'and a bright nickel plating film formed by electroplating in a bright nickel plating solution (watt bath).
  • brighteners e.g., brighteners # 61 (
  • the plating solution is an acidic solution having a pH of 4.0 to 4.5, preferably 4.0 to 4.3.
  • the nickel plating film is formed by using the plating solution described above and performing electrical plating at a bath temperature of 40 to 50 ° C and a current density (Dk) of 1 to 3 A dm 2. Can be.
  • nickel sulfate N i S_ ⁇ 4 * 6 H 2 ⁇
  • nickel chloride N i C 1 2 ⁇ 6 H 2O
  • H 3 B0 3 boric acid
  • a semi-brightening agent commercially available, such as the semi-brightening agent armorone A from Nikko Metal Co. (standard addition amount 5 ml Zl)]
  • a semi-bright nickel plating film formed by electroplating in the resulting semi-bright nickel plating solution.
  • the plating solution has a pH of 4.0 to 4.5, preferably 4.0 to 4. 3 is an acidic solution.
  • the nickel plated coating using a main luck liquid as described above, a bath temperature from 40 to 5 0, can be formed by performing an electric plated at a current density (D k) l ⁇ 3 AZd m 2 conditions.
  • chloride Niggeru N i C l 2 '6 H 2 ⁇ 1 5 0 ⁇ 3 0 0 g / 1, most preferably from 200 to 2 Nickel formed by electroplating in a nickel strike plating solution containing 50 gZl and hydrochloric acid (HC1) 100 to 150 g_l, most preferably 125 ⁇ 10 gZl And a paint film.
  • HC1 hydrochloric acid
  • This plating solution is an acidic solution in which 11 is less than 1.0.
  • the Knitting Kerumetsuki coating, using a plated solution as described above can be formed by performing an electric plated at a bath temperature 2 5 Sat ⁇ 2 ° C, the current density (D k) 3 ⁇ 5 AZdm 2 conditions .
  • the base plating film is a nickel-phosphorus alloy plating film
  • the film is formed on the surface of the decorative article base material by a wet plating method.
  • This coating is formed from an amorphous nickel-phosphorus alloy at the time of formation, but becomes crystalline and becomes a hard coating by performing an age hardening treatment described later.
  • This age hardening treatment may be performed simultaneously with the formation of the outermost plating layer (finished plating layer) or after the formation of the outermost plating layer, or after the formation of the nickel-phosphorus alloy plating layer and by ion plating or sputtering. It may be performed in an ion plating or sputtering apparatus before forming the outer plating film.
  • the phosphorus content in the nickel-phosphorus alloy plating film is preferably in the range of 13 to 15% by weight.
  • the nickel-phosphorus alloy plating film for example, the ornament substrate surface, (0 N i S 0 4 * 7H 2)
  • Nickel sulfate 1 0 0 ⁇ 2 00 gZ l most preferably 140 ⁇ 1 60 g / l
  • nickel hydroxide [N ⁇ ( ⁇ _Ita) 2 ⁇ ⁇ 2 ⁇ ] 1 0 to 40 gZ most preferably 2 0 ⁇ 3 0 g / l
  • sodium hypophosphite N a H 2 PO 2 ⁇ H 2 0
  • LO g Z l most preferably.
  • This plating solution is an acidic solution having a pH of 2.8 to 3.2.
  • the nickel-phosphorus alloy plating film is formed using the above-mentioned plating solution, at a bath temperature of 60 to 80 ° C and a current density (Dk) of 1.0 to 3.0 A / dm ⁇ , and most preferably 2. 0 under the condition of ⁇ 0. 2 AZdm 2 can be formed by performing an electric plated.
  • the phosphorus content is determined by selecting the concentration of hypophosphorous acid in the plating solution, the concentration of sodium citrate constituting the plating solution, the pH of the plating solution, and the current density as described above. Of which is 13 to 15% by weight.
  • the above-mentioned sodium hypophosphite and phosphoric acid are used as a reducing agent, and are phosphorus sources that constitute the nickel-phosphorus alloy plating layer.
  • the above nickel hydroxide is used as a pH adjuster, and sodium citrate is used as a complexing agent.
  • a paint film having a white color tone made of titanium carbide, zirconium carbide or tantalum carbide is preferable.
  • a titanium plating film may be formed on the surface of the substrate or the wet plating film by a dry plating method. By forming the titanium plating film, the adhesion between the substrate adjacent to the titanium plating film and the dry plating film or the adhesion between the wet plating film adjacent to the titanium plating film and the dry plating film is improved.
  • the dry plating method include a sputtering method, an arc method, an ion plating method, a physical vapor deposition method (PVD) such as an ion beam, and CVD.
  • a sputtering method, an arc method, and an ion plating method are particularly preferably used.
  • the outermost layer coating constituting the decorative article having the first and second white coatings according to the present invention at least a part of the surface of the decorative article base material or the base coating film has a white color tone.
  • the stainless steel coating is formed by a dry plating method.
  • the decorative material substrate or the decorative material substrate having the base plating film is at least selected from a spattering device, an arc device, and an ion plating device.
  • Argon mounted in one dry plating machine It is preferable that the surface of the base material or the base paint film is bombarded in a gas atmosphere.
  • the stainless steel coating with white color is austenitic stainless steel, especially carbon 0.1-1 to 0.12% by volume, silicon 0.1 to 1.0% by volume, and manganese 1.0 to 2.5% by volume.
  • Austenitic stainless steel for example, SUS310S, SUS304 (JIS standard) having a composition of 8 to 22% by volume of nickel and 15 to 26% by volume of chromium preferable.
  • Nickel-less ferritic stainless steel such as nickel-free ferritic stainless steel, has a carbon content of 0.01 to 0.12% by volume, silicon 0.1 to 0.1%; L. 0% by volume, and manganese.
  • Nickel-free ferritic stainless steel with a composition of 1.0-2.5% by volume, 14-20% by volume of chromium, and 0.4-2.5% by volume of molybdenum (for example, SUS444 (JIS Standard))
  • a plating film consisting of
  • a titanium plating film may be formed on the surface of the base material or the base plating film by a dry plating method.
  • a dry plating method By forming the titanium plating coating, the adhesion between the base material adjacent to the titanium plating coating and the stainless steel coating or the adhesion between the base plating coating adjacent to the titanium plating coating and the stainless steel coating is improved.
  • a dry plating method employed when forming a stainless steel film As a dry plating method employed when forming a stainless steel film, a sputtering method, an arc method, and an ion plating method are preferable. New
  • the thickness of the stainless steel coating having a white color tone is usually 0.1 to 2.0 m, preferably 0.2 to 1.2 m, and more preferably 0.3 to 0.7 m.
  • the decorative coating is formed on the surface of the decorative base material or the base coating by a dry plating method.
  • At least one plating film having a different color tone from the stainless steel film may be formed by a dry plating method, in addition to the white-colored stainless steel film.
  • a decorative article having such a stainless steel film having a white color tone and a plating film having a different color tone as the outermost layer film can be prepared, for example, by the following method.
  • a white color stainless steel film is formed on the surface of the decorative base material or the base coating film, and then a part of the surface of the stainless steel film is subjected to a masking treatment.
  • a paint film having a color tone different from that of the steel film by a dry plating method is formed on the mask.
  • a stainless steel film having a white color tone is obtained. It is possible to obtain an outermost layer coating having two or more colors consisting of a stainless steel film and at least one plating film having a different color tone.
  • the plating film having a different color tone from the stainless steel film is made of a metal selected from gold, a gold alloy, titanium nitride or zirconium nitride. It is desirable that at least one kind of film is formed by at least one dry plating method selected from a sputtering method, an arc method, and an ion plating method.
  • the thickness of the paint film different in color tone from the stainless steel film is usually from 0.1 to 1. ⁇ ⁇ , preferably from 0.2 to 0.5 m.
  • the stainless steel coating surface is coated with a noble metal coating having a white color tone having a thickness of 0.04 to 0.3 m, preferably 0.05 to 0.2 im, by dry plating. It may be formed by a method.
  • the noble metal film is a dry plating film made of a noble metal selected from the group consisting of palladium, platinum, rhodium, a gold alloy, silver, and a silver alloy.
  • the gold alloy examples include a gold-cobalt alloy, a gold-palladium alloy, and a gold-nickel alloy having a white-colored tone and a low gold content.
  • the silver alloy examples include a silver-copper alloy, a silver-tin alloy, and the like.
  • the thickness of the noble metal coating is very small, even if an expensive palladium is used, its amount is small, so that it does not lead to an increase in the cost of decorative articles.
  • a dry plating method employed when forming the noble metal film a sputtering method and an ion plating method are preferable.
  • Age hardening treatment_ The age-hardening treatment of the nickel-phosphorus alloy plating film, which may be used as a base coating film in the present invention, is carried out simultaneously with or simultaneously with the formation of the outermost layer film (a white-colored stainless steel film or a coating film having a different color tone from this film). It may be performed after forming the outermost layer coating, or after forming the nickel-lin alloy plating film and before forming the outermost layer coating by an ion plating method, a sputtering method or an arc method, by ion plating or sputtering. Alternatively, it can be performed in an arc device.
  • the outermost layer film a white-colored stainless steel film or a coating film having a different color tone from this film. It may be performed after forming the outermost layer coating, or after forming the nickel-lin alloy plating film and before forming the outermost layer coating by an ion plating method, a sputtering method or an arc method, by ion
  • the processing temperature in these age hardening treatments is usually from 200 to 450 ° C, preferably from 250 to 43 ° C, more preferably from 300 to 400 ° C, and the processing time Is usually 20 to 60 minutes, preferably 25 to 55 minutes, more preferably 30 to 50 minutes.
  • the conditions for forming the outermost layer coating by ion plating, sputtering or arc method are selected so as to match the heat treatment conditions for the above age hardening treatment, the nickel coating will be formed simultaneously with the formation of the outermost layer coating.
  • Age hardening of the gold plating film can be performed.
  • the conditions for forming the outermost layer coating by a dry plating method such as an ion plating method are selected so as to be lower than the lower limit of the heat treatment conditions for the above-mentioned age hardening treatment, after forming the outermost layer coating, The aging hardening treatment is performed under the above heat treatment conditions.
  • the nickel-phosphorus alloy black coating is subjected to age hardening simultaneously with the formation of the outermost coating.
  • the age hardening treatment is preferably performed in a vacuum state.
  • Amorphous nickel-phosphorus alloy plating film When the age hardening treatment is performed, the amorphous phase in the nickel-phosphorus alloy plating film is crystallized, and the nickel-phosphorus alloy plating film becomes a hard film.
  • a stainless steel film having a white color tone which is inexpensive and has excellent long-term corrosion resistance as an outermost layer film, a low-priced decorative article having a noble metal film having a white color on the surface of the film, and a method for producing the same Can be provided.
  • a plating film made of an expensive noble metal such as gold may be formed as a plating film having a color tone different from that of the stainless steel film. Since the noble metal plating film is formed on a part of the surface of the decorative article, low-priced decorative articles can be obtained.
  • the corrosion resistance test of the plating film in the examples was performed according to the following method.
  • the corrosion resistance test of the paint film was performed in accordance with JISH 8502 (CASS test).
  • the test time was set to 96 hours, and the corrosion resistance evaluation of the test surface was evaluated according to the Rating Nampa Standard Chart. Passed when Ingnanpa was 9.8 or higher.
  • the watch case base material obtained by machining tungsten carbide was washed and degreased with an organic solvent.
  • the substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded in an argon atmosphere.
  • a stainless steel film having a white color tone with a thickness of 0.2 im was formed on the surface of the base material by a sputtering method (magnetron sputtering method) under the following film forming conditions to obtain a watch case.
  • Target power 1.0 to 2.0 kW
  • the watch case base material obtained by machining brass was washed and degreased with an organic solvent.
  • this base material is immersed in a plating solution having the following composition, A nickel strike plating film (flash plating) having a thickness of 0.1 to 0.2 ⁇ m was formed on the surface of the substrate by electric plating under the following plating conditions, and washed with water.
  • a nickel strike plating film flash plating having a thickness of 0.1 to 0.2 ⁇ m was formed on the surface of the substrate by electric plating under the following plating conditions, and washed with water.
  • Liquid temperature ⁇ (Specifically, less than 0-) Liquid temperature ⁇ .
  • the base material for a watch case having the nickel strike plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a nickel paint film having a thickness of 2 m on the surface of the nickel strike plating film. And washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a 0.5 m-thick stainless steel film having a white color tone was formed on the surface of the nickel plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a watch case.
  • Target power 1.0 to 2.0 kW
  • the obtained watch case was subjected to a corrosion resistance test of the plating film according to the above-mentioned method. As a result, the rating was passed with a rating of 9.8 or higher.
  • the wristwatch base material obtained by machining brass was washed and degreased with an organic solvent.
  • this substrate is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a nickel strike plating film (flash plating) having a thickness of 0.1 to 0.2 ⁇ m. Formed on the substrate surface, Washed with water.
  • the base material for a wrist watch having the nickel strike plating film is immersed in a plating solution having the following composition, and subjected to an electric plating under the following plating conditions to form a nickel paint film having a thickness of 2 m on the nickel strike plating film surface. And washed with water.
  • the base material for a wristwatch having the nickel plating film is immersed in a plating solution having the following composition. Formed on the surface and washed with water.
  • the base material for a watch band having the nickel-phosphorus alloy plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to have a thickness of 0.1 to 0.2 xm.
  • a palladium-nickel alloy plating film flash plating was formed on the nickel-phosphorus alloy plating film surface, washed with water, and dried.
  • the substrate was mounted in a sputtering apparatus, and the surface of the substrate was subjected to bumper cleaning in an argon atmosphere.
  • a stainless steel film having a white color tone having a thickness of 0.5 was formed by a sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • the nickel-phosphorus alloy plating film was subjected to heat treatment (age hardening) under the conditions of 250 t and 30 minutes to obtain a wristwatch band.
  • the surface hardness ( ⁇ V; Vickers hardness tester, 25 g, retention time: 10 seconds) of the obtained watch band was 65,0.
  • a stainless steel film having a white color tone with a thickness of 2 m was formed, and a nickel-phosphorus alloy plating film was subjected to a heat treatment under the same conditions as above to obtain a wristwatch band.
  • the surface hardness (HV; Pickers hardness meter, 25 g, retention time: 10 seconds) of the obtained watch band was 65,0.
  • the obtained watchband was subjected to a corrosion resistance test of a black coating according to the method described above. As a result, the rating pick-up was 9.8 or more and passed.
  • the wristwatch base material obtained by machining brass was washed and degreased with an organic solvent.
  • this substrate was immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a 2 m-thick copper-tin alloy plating film on the substrate surface and washed with water. .
  • the base material for a wristwatch band having the copper-tin alloy plating film was immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to a thickness of 2 im.
  • a copper-tin-tin-palladium alloy plating film was formed on the copper-tin-tin alloy plating film surface and washed with water.
  • Liquid temperature 25 ° C
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded in an argon atmosphere.
  • Target power 1.0 to 2.0 kW Bias voltage: Grand to one 300 V
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • a wristwatch base material obtained by machining zinc was washed and degreased with an organic solvent.
  • the watch band base material was immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a copper plating film having a thickness of 8 m on the surface of the substrate and washed with water. .
  • the substrate having the copper plating film is immersed in a plating solution having the following composition, and is electroplated under the following plating conditions to form a copper-tin alloy plating film having a thickness of 2 on the substrate surface. Washed with water.
  • the base material for a wristwatch band having the copper-tin-tin alloy plating film is immersed in a plating solution having the following composition, and is electroplated under the following plating conditions to obtain a copper-tin-palladium alloy plating film having a thickness of 2. Was formed on the copper-tin alloy plating film surface and washed with water.
  • the base material for a wristwatch band having the copper-tin tin-palladium alloy plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to produce a palladium strike plating film having a thickness of 0.2.
  • a film (flash plating) was formed on the surface of the copper-tin-palladium alloy plating film and washed with water.
  • the substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded in an argon atmosphere.
  • a stainless steel film having a thickness of 1.0 and having a white color tone was formed on the surface of the palladium strike film formed on the substrate surface.
  • Target power 1.0 to 2.0 kW
  • the obtained watchband was subjected to a corrosion resistance test of a black coating according to the method described above. As a result, the rating pick-up was 9.8 or higher and passed.
  • the base material for a wristwatch case obtained by mechanically washing the product was washed and degreased with an organic solvent.
  • the watch case base material was immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a copper plating film having a thickness of 8 m on the surface of the substrate and washed with water. .
  • the substrate having the copper plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a copper-tin alloy plating film having a thickness of 2 zm on the substrate surface. And washed with water.
  • the base material for a watch case having the copper-tin alloy plating film was mounted in an ion plating apparatus, and the surface of the base material was subjected to bombard cleaning in an argon atmosphere.
  • a titanium carbide paint film having a white color tone having a thickness of 0 is ion-coated on the copper-tin tin alloy paint film surface formed on the substrate surface.
  • the film was formed by the plating method (hot cathode method) under the following film forming conditions. ⁇ Deposition conditions>
  • Node voltage 40 to 60 V
  • Node voltage 40 to 50 V
  • the base material for machining obtained by machining was washed and degreased with an organic solvent.
  • the base material for earrings was immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a copper plating film having a thickness of 8 m on the surface of the substrate, followed by washing with water.
  • the substrate having the copper plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to obtain a copper / tin-palladium alloy plating film having a thickness of 2 / m. Formed on the surface and washed with water.
  • Film forming speed 0.33 m / min. Then, the substrate was mounted in an ion plating apparatus, and the substrate surface was bombarded and cleaned in an argon atmosphere.
  • a stainless steel film having a white color tone having a thickness of 1.2 was formed on the copper-tin-palladium alloy plating film formed on the substrate surface by an ion plating method under the following film forming conditions. , Got the ringing.
  • Anode voltage 40 to 50 V
  • the obtained coating was subjected to a corrosion resistance test of the paint film according to the above method. As a result, the rating pick-up was 9.8 or more, and passed.
  • the necklace base material obtained by machining brass was washed and degreased with an organic solvent.
  • this substrate was immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to obtain a nickel strike plating film (flash plating) having a thickness of 0.1 to 0.2 im. Formed on the material surface and washed with water.
  • a nickel strike plating film flash plating
  • the base material for a watch case having the nickel strike plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a nickel strike coating film having a thickness of 4 / _im into a nickel strike plating film. Formed on the surface and washed with water.
  • the substrate was mounted in a sputtering apparatus, and the surface of the substrate was subjected to bumper cleaning in an argon atmosphere.
  • a stainless steel film having a white color tone having a thickness of 1.0 ⁇ was formed on the surface of the nickel plating film formed on the surface of the base material by a sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • a masking layer was formed by printing an organic masking agent made of an epoxy resin on a desired portion of the surface of the stainless steel film formed on the surface of the necklace base material.
  • the base material for the necklace on which the masking layer has been formed is washed with isopropyl alcohol, and then placed in a sputtering apparatus.
  • the surface of the stainless steel film formed on the surface of the base material for the neckless and the surface of the masking layer A titanium nitride film having a thickness of 0.2 m was formed by the sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • the necklace was obtained by forming a two-tone outermost layer coating (finished plating layer) consisting of a stainless steel coating having a white color tone and a titanium nitride coating having a golden color tone.
  • finished plating layer consisting of a stainless steel coating having a white color tone and a titanium nitride coating having a golden color tone.
  • a corrosion resistance test of the plating film was performed according to the above method. As a result, the rating pick-up was 9.8 or more, which was a pass.
  • the watch band base material obtained by machining brass was washed and degreased with an organic solvent.
  • this base material is immersed in a plating solution having the following composition, and then subjected to electrical plating under the following plating conditions to form a 0.1-0.2 am thick, regel strike plating coating (flash plating). Was formed on the surface of the substrate and washed with water.
  • the base material for a wristwatch band having the nickel strike plating film is immersed in a plating solution having the following composition.
  • a nickel plating film having a thickness of 2 was formed on the surface of the nickel strike plating film by electric plating under the conditions, and washed with water.
  • the base material for a wristwatch band having the nickel plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a nickel-phosphorus alloy plating film having a thickness of 2 m with a nickel plating film. Formed on the surface and washed with water.
  • the base material for a wristwatch band having the nickel-phosphorus alloy plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to have a thickness of 0.1 to 0.2 m.
  • a palladium nickel alloy plating film flash plating was formed on the nickel-phosphorus alloy plating film surface, washed with water and dried.
  • the substrate was mounted in a sputtering apparatus, and the surface of the substrate was subjected to bombard cleaning in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the surface of the plating film of palladium-nickel alloy formed on the surface of the base material by the sputtering method under the following film forming conditions. ⁇ Deposition conditions>
  • Target power 1.0 to 2.0 kW
  • a titanium carbide plating film having a thickness of 0.4 mm was formed on the surface of the titanium plating film formed on the surface of the base material by a sputtering method under the following film forming conditions.
  • Sputtering evening gas mixed gas of C 2 H 4, CH 4, C 6 H 6
  • Target power 1.0 to 2.0 kW
  • a 0.3 m-thick stainless steel film having a white color tone was formed on the surface of the titanium carbide plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a watch band. .
  • Target power 1.0 to 2.0 kW
  • Bias voltage Grand to -300 V
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • Example 9 a titanium plating film, a titanium carbide plating film and a titanium carbide plating film were formed in the same manner as in Example 9 except that an arc method was used instead of the sputtering method as a method for forming a titanium plating coating, a titanium carbide plating film, and a stainless steel coating.
  • a stainless steel film having a white color tone of 0.3 zm was formed to obtain a wristwatch band.
  • the film forming conditions of these arc methods were as follows.
  • Target current 80 to 100 A
  • Bias voltage — 502 0 V
  • Target current 80 to: L 0 0 A
  • Target current 80 to: L 0 0 A
  • Bias voltage —50 to ⁇ 200 V
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • Example 9 a titanium plating film, a titanium carbide plating film, and a stainless steel plating film were formed in the same manner as in Example 9 except that an ion plating method was used instead of the sputtering method as a method of forming the titanium plating film, the titanium carbide plating film, and the stainless steel film.
  • An ion plating method was used instead of the sputtering method as a method of forming the titanium plating film, the titanium carbide plating film, and the stainless steel film.
  • a 0.3 m thick stainless steel film having a white color tone was formed to obtain a wristwatch band.
  • the film forming conditions of these ion plating methods were as follows. ⁇ Deposition conditions of titanium plating film>
  • Node voltage 40 to 50 V
  • Evaporation source Titanium Gas: CH4 mixed gas of C 2 H 4 and C 6 H 6
  • Evaporation source Austenitic stainless steel S U S 304
  • Node voltage 40 to 50 V
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • the watch case base material obtained by machining brass was washed and degreased with an organic solvent.
  • this substrate was immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to obtain a 0.1 to 0.2 jm thick Erik strike strike plating film (flash plating). Formed on the material surface and washed with water. ⁇ Nickel strike strike ⁇
  • the base material for a wristwatch case having the nickel strike plating film is immersed in a plating solution having the following composition. Formed and washed with water.
  • the base material for a watch case having the nickel plating film is immersed in a plating solution having the following composition. Formed on the surface and washed with water.
  • the base material for a watch case having the nickel-phosphorus alloy plating film is immersed in a plating solution having the following composition, and electroplated under the following plating conditions to form a palladium having a thickness of 0.1 to 0.2.
  • a nickel alloy plating film flash plating was formed on the nickel-phosphorus alloy plating film surface, washed with water and dried.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the palladium-nickel alloy plating film surface formed on the substrate surface by a sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • a stainless steel film having a thickness of 0.3 m and having a white color tone was formed on the surface of the titanium plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a watch case. .
  • Austenitic stainless steel SUS304 Spaghetti gas 7 Lugon gas Film forming pressure: 0.2 to 0.9 Pa
  • Target power 1.0 to 2.0 kW
  • Example 12 a titanium plating film and a 0.3-m thick white film were formed in the same manner as in Example 12, except that an arc method was used instead of the sputtering method as a method for forming a titanium plating film and a stainless steel film. A stainless steel film having a color tone was formed to obtain a watch case.
  • the film forming conditions of these arc methods were as follows. ⁇ Deposition conditions of titanium plating film>
  • Target current 80 to 100 A
  • Bias voltage 150 to -200 V
  • Target current 80 to: L 0 0 A
  • Bias voltage — 500 0 V
  • the obtained watch case was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • Anode voltage 40 to 60 V
  • a wristwatch base material obtained by machining zinc was washed and degreased with an organic solvent.
  • the base material for a wristwatch band having the copper-tin alloy plating film is immersed in a plating solution having the following composition.
  • a 2 m-thick copper-tin-palladium alloy plating film was formed on the surface of the copper-tin-tin alloy plating film and washed with water.
  • the wristwatch base material having the copper-tin-palladium alloy plating film is immersed in a plating solution having the following composition, and electroplated under the following plating conditions to produce a 0.2-m-thick palladium strike plating film.
  • a coating flash plating was formed on the surface of the copper-tin-palladium alloy plating coating and washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the surface of the palladium strike plating film formed on the surface of the base material by a sputtering method under the following film forming conditions.
  • a titanium carbide coating film having a thickness of 0.4 m was formed on the surface of the titanium coating film formed on the surface of the base material by a sputtering method under the following film forming conditions.
  • Titanium Sputter gas mixed gas of C 2 H 4 , CH 4 and C 6 H 6 Deposition pressure: 0.2-0.9 Pa
  • a 0.5 m-thick stainless steel film having a white color tone was formed on the surface of the titanium carbide plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a wristwatch band.
  • Target power 1.0 to 2.0 kW
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating was passed with a rating of 9.8 or higher.
  • a titanium plating film was obtained in the same manner as in Example 15 except that an arc method was used instead of the sputtering method as a method for forming the titanium plating film, the titanium carbide plating film, and the stainless steel film having a white color. Then, a titanium carbide plating film and a stainless steel film having a white color tone of 0.5 tm in thickness were formed to obtain a wristwatch band.
  • the film forming conditions of these arc methods were as follows. ⁇ Deposition conditions of titanium plating film>
  • Titanium Gas mixed gas of C 2 H 4, CH 4, C 6 H 6
  • Target current 80 to 10 O A
  • Target current 80 to: L 0 0 A
  • the obtained watchband was subjected to a corrosion resistance test of a black coating according to the method described above. As a result, the rating was passed with a rating of 9.8 or higher.
  • Example 15 a titanium plating coating, a titanium carbide plating coating A titanium plating film, a titanium carbide plating film, and a thickness of 0.5 m were formed in the same manner as in Example 15 except that an ion plating method was used instead of the sputtering method as a method for forming a stainless steel film. A stainless steel film having a white color tone was formed to obtain a watch band.
  • the film forming conditions of these ion plating methods were as follows.
  • Node voltage 40 to 60 V
  • Node voltage 40 to 60 V
  • Evaporation source Nickel-less ferritic stainless steel S US 444
  • Anode voltage 40 to 50 V
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • the watch case base material obtained by machining zinc was washed and degreased with an organic solvent.
  • the watch case base material is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to form a copper-tin alloy plating film having a thickness of 2 on the surface of the base material, and washed with water. did.
  • the base material for a watch case having the copper-tin-tin alloy plating film is immersed in a plating solution having the following composition, and is electroplated under the following plating conditions to form a 2 m-thick copper-tin-tin palladium alloy plating.
  • a film was formed on the surface of the copper-tin alloy plating film and washed with water.
  • the base material for a watch case having the copper-tin tin-palladium alloy plating film is immersed in a plating solution having the following composition, and is electroplated under the following plating conditions to have a thickness of 0.1 to 0.2 m.
  • a gold strike plating film flash plating was formed on a copper-tin-tin-palladium alloy plating film surface and washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the surface of the gold strike plating film formed on the substrate surface by a sputtering method under the following film forming conditions.
  • Film forming pressure 0.2 to 0.9 Pa
  • Target power 1.0 to 2.0 kW
  • a stainless steel film having a thickness of 0.3 m and having a white color tone was formed on the surface of the titanium plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a watch case.
  • Target power 1.0 to 2.0 kW
  • Example 18 a titanium plating film and a 0.3-m thick white film were formed in the same manner as in Example 18 except that the arc method was used instead of the sputtering method as the method for forming the titanium plating film and the stainless steel film. A stainless steel film having a color tone was formed to obtain a watch case.
  • the film forming conditions of these arc methods were as follows. ⁇ Titanium film formation conditions>
  • Bias voltage — 50 to 200 V
  • Target current 80 to: L 0 0 A
  • Bias voltage — 50 to — 200 V
  • Node voltage 40 to 50 V
  • this substrate was immersed in a plating solution having the following composition, and electroplated under the following plating conditions to form a 3 im-thick copper-tin alloy plating film (alloy ratio: Cu 75% by weight, (Sn 20% by weight, Zn 5% by weight) was formed on the surface of the substrate and washed with water.
  • the copper-tin alloy plating film usually includes a film containing a small amount of zinc.
  • Brightener B (brand name) 1 0 m 1 1
  • the base material for a wristwatch band having the copper-tin alloy plating film is immersed in a plating liquid having the following composition, and subjected to electric plating under the following plating conditions.
  • 2.5m thick copper-tin-zinc alloy plating film (alloy ratio: Cu 50% by weight, Sn 35% by weight, Znl 5% by weight) is formed on the copper-tin-tin alloy plating film surface. Washed with water.
  • Brightener 1 1 1 (brand name) 0.5 m 1/1
  • the base material for a wristwatch band having the copper-tin-zinc alloy plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to a thickness of 0.1 to 0.2 m.
  • a gold strike plating film flash plating was formed on a copper-tin-zinc alloy plating film surface and washed with water.
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • this watch band base material is immersed in a plating solution having the following composition, and is electroplated under the following plating conditions to form a copper plating film having a thickness of 8 ⁇ ⁇ on the surface of the substrate, and washed with water. did.
  • the substrate having the copper plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions to obtain a 3 // m thick copper-tin alloy plating film (alloy ratio: C u 75% by weight, Sn 20% by weight, 115% by weight) was formed on the surface of the substrate, and washed with water.
  • Brightener B (trade name) 10 m 1/1
  • the base material for a watch band having the copper-tin alloy plating film is immersed in a plating solution having the following composition, and subjected to electric plating under the following plating conditions.
  • 2.5 / xm copper-tin-tin-zinc alloy plating film (alloy ratio: Cu 50% by weight, Sn 35% by weight, Znl 5% by weight) formed on the surface of the copper-tin alloy plating film And washed with water.
  • Brightener 1 1 1 (brand name) 0 5 m 1/1
  • Brightener 2 (trade name) 0.5 m 1/1
  • the base material for a wristwatch band having the copper-tin-tin-zinc alloy plating film is immersed in a plating solution having the following composition, and is subjected to electric plating under the following plating conditions to have a 0.2-m-thick palladium strike plating.
  • a coating flash plating was formed on the surface of the copper-tin-palladium alloy plating coating and washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a 1.0 m-thick stainless steel film having a white color tone was formed on the surface of the palladium strike plating film formed on the surface of the base material by the sputtering method under the following film forming conditions to obtain a wristwatch band.
  • Film forming pressure 0.2 to 0.9 Pa
  • Target power 1.0 to 2.0 kW
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating pick-up was 9.8 or higher and passed.
  • the substrate for sealing obtained by machining was washed and degreased with an organic solvent.
  • the base material for earrings was immersed in a plating solution having the following composition, electroplated under the following plating conditions to form a copper plating film having a thickness of 8 ⁇ on the surface of the substrate, and washed with water.
  • a substrate having the copper plating film is coated with a substrate having the following composition.
  • Alloy ratio: Cu 50% by weight, Sn 35% by weight, ⁇ 11 1 (5% by weight) on the surface of the base material and washed with water.
  • Brightener 1 1 1 (brand name) 0.5 m 1/1
  • Brightener 2 (trade name) 0.5 m 1/1
  • this substrate was mounted in an ion plating apparatus, and the surface of the substrate was bombarded in an argon atmosphere.
  • Evaporation source Austenitic stainless steel S U S 310 S Gas: Argon gas
  • Target power 1.0 to 2.0 kW
  • the watch band base material obtained by machining brass was washed and degreased with an organic solvent.
  • this watch band base material is immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to form a 3 m-thick copper-tin alloy plating film (alloy ratio: Cu 75 wt. %, Sn 20% by weight and Zn 5% by weight) were formed on the surface of the substrate and washed with water.
  • Brightener B (brand name) 1 0 m 1 1 (Nippon Shinkin)
  • the base material for a wristwatch band having the copper-tin alloy plating film is immersed in plating liquid having the following composition, and subjected to electric plating under the following plating conditions.
  • 2.5-m thick copper-tin-tin-zinc alloy plating film (alloy ratio: Cu 50% by weight, Sn 35% by weight, Znl 5% by weight) formed on the surface of the copper-tin alloy plating film And washed with water.
  • Brightener 1-1 (brand name) 0.5 m 1/1
  • Brightener 2 (brand name) 0.5 m 1 no 1
  • the wristwatch base material having the copper-tin-zinc alloy plating film is immersed in a plating solution having the following composition, and electroplated under the following plating conditions to have a 0.2-m-thick palladium strike plating.
  • a film (flash plating) was formed on the surface of the copper-tin-tin-zinc alloy plating film and washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the surface of the palladium strike plating film formed on the surface of the base material by a sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • a titanium carbide plating film having a thickness of 0.4 m was formed on the surface of the titanium plating film formed on the surface of the base material by the sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW
  • a 0.5 m-thick stainless steel film having a white color tone was formed on the surface of the titanium carbide plating film formed on the surface of the base material by a sputtering method under the following film forming conditions to obtain a wristwatch band.
  • Target power 1.0 to 2.0 kW
  • the obtained watchband was subjected to a corrosion resistance test of a black coating according to the method described above. As a result, the rating Above, it passed.
  • Example 2 4 a carbide Chitanmetsuki coating when forming a sputtering evening ring method, except for using a mixed gas of argon and CH 4 as a sputtering evening gas, in the same manner as in Example 2 4, the watch band Obtained.
  • the obtained watchband was subjected to a corrosion resistance test of a black coating according to the method described above. As a result, the rating pick-up was 9.8 or more and passed.
  • Example 24 a wristwatch band was formed in the same manner as in Example 24, except that a mixed gas of argon and C 6 H 6 was used as a sputtering gas when forming the titanium carbide plating film by a sputtering method. Obtained.
  • the obtained wristwatch band was subjected to a corrosion resistance test of the plating film according to the above method. As a result, the rating passed with a rating of 9.8 or more.
  • the base material for a watch case obtained by machining zinc was washed and degreased with an organic solvent.
  • this watch case base material is immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to form a copper-tin alloy plating film having a thickness of 3 (alloy ratio: Cu 75% by weight). , Sn 20% by weight and Zn 5% by weight) were formed on the surface of the substrate and washed with water. ⁇ Copper-tin alloy plating ⁇
  • Brightener B (trade name) 10 m 1/1
  • the base material for a watch case having the copper-tin alloy plating film is immersed in a plating liquid having the following composition, and subjected to electric plating under the following plating conditions.
  • a copper-tin-zinc alloy plating film (alloy ratio: Cu 50% by weight, Sn 35% by weight, Znl 5% by weight) with a thickness of 2.5 iim is formed on the copper-tin-tin alloy plating film surface. Washed with water.
  • Brightener 1 1 1 (brand name) 0.5 m 1/1
  • Brightener 2 (trade name) 0.5 m 1/1
  • the base material for a watch case having the copper-tin-zinc alloy plating film is immersed in a plating solution having the following composition, and subjected to electrical plating under the following plating conditions to a thickness of 0.1 to 0.2 ⁇ .
  • a gold strike plating film (flash plating) with a thickness of m was formed on the copper-tin-zinc alloy plating film surface and washed with water.
  • this substrate was mounted in a sputtering apparatus, and the surface of the substrate was bombarded and cleaned in an argon atmosphere.
  • a titanium plating film having a thickness of 0.2 to 0.5 m was formed on the surface of the gold strike plating film formed on the surface of the substrate by a sputtering method under the following film forming conditions.
  • Target power 1.0 to 2.0 kW

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Adornments (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

明糸田書 白色被膜を有する装飾品およびその製造方法 技 術 分 野
本発明は、 白色被膜を有する装飾品およびその製造方法に関し、 さらに詳しくは、 特に耐食性の悪い金属またはその合金からなる装 飾品表面に、 安価で長期耐食性に優れる白色色調のステンレス鋼被 膜を有する低価格品の装飾品、 およびその製造方法に関する。 背 景 技 術
従来、 装飾品である時計、 ネックレス、 ペンダント、 ブローチ等 は、 加工性、 材料価格等により銅合金が多く使用されている。
しかしながら、 この銅合金を素材としで調製された装飾品は、 耐 食性が悪いため基材表面に湿式メツキ法によりメツキ被膜が施され ているのが現状である。 このメツキ被膜は、 通常、 下地メ.ツキ被膜 として湿式メツキ法により形成されるニッケルメツキ被膜と、 その 被膜表面に湿式メッキ法により形成される最外層メツキ被膜とから なっている、 この最外層メツキ被膜は、 最外層を金色にする場合、 ニッケルメツキ被膜表面に金メツキ被膜が湿式メツキ法により形成 され、 また最外層を白色にする場合、 ニッケルメツキ被膜表面にパ ラジウムメツキ被膜、 パラジウム合金メッキ被膜またはロジウムメ ツキ被膜などが湿式メツキ法により形成されている。 また、 これら のメツキ被膜の厚みは、 1〜 5 mの範囲で形成されるのが一般的 である。
しかしながら、 上記のような装飾品においては、 耐食性を得るた め高価な貴金属を含むメツキ被膜を最外層メツキ被膜として形成し ているため、 装飾品の価格が高くなるという、 コスト面での問題が ある。 したがって、 低価格品の装飾品では、 最外層メツキ被膜が薄 くなり、 長期間における耐食性が問題となる。 しかも、 低価格品の 装飾品の製造に際し、 安定した薄い最外層メツキ被膜を得るため、 貴金属メツキ浴の維持管理が作業上の大きな問題となっている。 さ らには、 安定した色調の最外層メツキ被膜を得るためには、 作業者 の熟練度も問題となっている。 また、 ステンレス鋼特有の白色色調 の最外層メツキ膜を有する安価な装飾品は得られていない。
したがって、 金属 (合金を含む) 特に耐食性の悪い金属からなる 装飾品表面に、 安価で長期耐食性に優れる白色色調のステンレス鋼 被膜を有する低価格品の装飾品、 およびその製造方法の出現が望ま れている。 発明の目的
本発明は、 上記のような従来技術に伴う問題を解決しょうとする ものであって、 金属 (合金を含む) 特に耐食性の悪い金属からなる 装飾品表面に、 安価で長期耐食性に優れる白色色調のステンレス鋼 被膜を有する低価格品の装飾品、 およびその製造方法を提供するこ とを目的としている。 発明の開示 本発明に係る第 1の白色被膜を有する装飾品は、
金属からなる装飾品用基材と、
該基材表面の少なく とも一部に乾式メツキ法により形成された白 色色調のステンレス鋼被膜と
から構成されてなることを特徴としている。
前記装飾品用基材は、 通常、 タングステンカーバイ トまたはタン タルカ一バイ 卜からなる。
また、 本発明に係る第 2の白色被膜を有する装飾品は、
非鉄金属からなる装飾品用基材と、
該基材の表面に形成された下地メツキ被膜と、
該下地メツキ被膜表面の少なく とも一部に乾式メツキ法により形 成された白色色調のステンレス鋼被膜と
から構成されてなることを特徴としている。
前記装飾品用基材は、 通常、 銅、 銅合金、 アルミニウム、 アルミ ニゥム合金、 亜鉛、 亜鉛合金、 マグネシウムおよびマグネシウム合 金からなる群から選ばれる少なくとも 1種類の非鉄金属からなる。 本発明に係る第 1および第 2の白色被膜を有する装飾品において、 前記ステンレス鋼被膜表面に、 厚さ 0 . 0 4〜0 . 3 mの白色色 調の貴金属被膜が乾式メツキ法により形成されていてもよい。
前記下地メツキ被膜は、 湿式メツキ法により形成された少なくと も 1層のメツキ被膜と、 乾式メツキ法により形成された少なく とも 1層のメツキ被膜との多層構造にすることができる。
前記下地メツキ被膜は、 湿式メツキ法により形成された、 金、 銅、 ニッケル、 クロム、 錫、 パラジウム、 ニッケル一リン合金、 ニッケ ルーリ ン合金以外のニッケル合金、 銅—錫一パラジウム合金、 銅— 錫一パラジウム合金以外の銅合金、 銅一錫一パラジウム合金以外の 錫合金、 および銅一錫—パラジウム合金以外のパラジウム合金から なる群から選ばれる少なくとも 1種類の金属からなる被膜であるこ とが望ましい。 前記下地メツキ被膜としてのニッケル—リン合金メ ツキ被膜は、 時効硬化処理が施された硬質被膜であることが好まし い。
また、 ニッケルアレルギー防止の面からは、 ニッケルレスの下地 メツキ被膜が好ましい。 このような下地メツキ被膜としては、 湿式 メツキ法により形成された、 金、 銅、 クロム、 錫、 パラジウム、 銅 —錫—パラジウム合金、 銅一錫一パラジウム合金以外の銅合金、 銅 一錫一パラジウム合金以外の錫合金、 および銅一錫一パラジウム合 金以外のパラジゥム合金からなる群から選ばれる少なく とも 1種類 の、 ニッケルを含まない金属からなる被膜が望ましい。
前記下地メツキ被膜としては、 乾式メツキ法により形成された、 炭化チタン、 炭化ジルコニウムまたは炭化タンタルからなる被膜が 好ましい。
前記下地メツキ被膜全体の厚さは、 通常、 0 . 2〜 3 0 ^ mの範 囲内にある。
本発明に係る第 1および第 2の白色被膜を有する装飾品おいて、 前記白色色調のステンレス鋼被膜は、 オーステナイ ト系ステンレス 鋼、 中でも、 炭素 0 . 0 1〜 0 . 1 2容量%、 シリコン 0 . 1〜 1 . 0容量%、 マンガン 1 . 0〜 2 . 5容量%、 ニッケル 8〜 2 2容量 %、 クロム 1 5〜 2 6容量%の組成を有するオーステナイ ト系ステ ンレス鋼からなっていることが好ましい。
また、 ニッケルアレルギー防止の面からは、 ニッケルレスの白色 色調のステンレス鋼被膜が好ましい。 このような白色色調のステン レス鋼被膜としては、 ニッケルレスのフェライ ト系ステンレス鋼、 中でも、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0 容量%、 マンガン 1. 0〜 2. 5容量%、 クロム 1 4〜 2 0容量%、 モリブデン 0. 4〜 2. 5容量%の組成を有するニッケルを含まな いフェライ ト系ステンレス鋼からなる被膜が望ましい。
前記白色色調のステンレス鋼被膜は、 乾式メツキ法であるスパッ 夕リ ング法、 アーク法またはイオンプレーティ ング法により形成さ れている。
本発明に係る第 1もしくは第 2の白色被膜を有する装飾品おいて、 前記基材表面もしくは下地メツキ被膜表面に、 乾式メツキ法により 形成された白色色調のステンレス鋼被膜の他に、 該ステンレス鋼被 膜と色調の異なる少なく とも 1つのメツキ被膜が乾式メツキ法によ り形成されていてもよい。
前記ステンレス鋼被膜と異なるメツキ被膜としては、 金、 金合金、 窒化チタンまたは窒化ジルコニウムからなる少なく とも 1種類の被 膜であることが望ましい。
本発明に係る白色被膜を有する装飾品の第 1の製造方法は、 金属 (合金を含む) の機械加工により装飾品用基材を形成するェ 程と、
該基材表面を洗浄 ·脱脂する工程と、
該基材を、 スパッタリング装置、 アーク装置およびイオンプレー ティ ング装置から選ばれる少なくとも 1つの乾式メツキ装置内に取 り付け、 アルゴンガス雰囲気中で該基材表面をボンバードクリー二 ングする工程と、
該基材表面に白色色調のステンレス鋼被膜を乾式メツキ法により 形成する工程と
を含むことを特徴としている。
前記装飾品用基材の形成に用いられる金属は、 通常、 タンダステ ンカーバイ トまたはタンタル力一バイ トである。
また、 本発明に係る白色被膜を有する装飾品の第 2の製造方法は、 非鉄金属 (合金を含む) の機械加工により装飾品用基材を形成す る工程と、
該基材表面を洗浄 ·脱脂する工程と、
該基材の表面に、 湿式メツキ法または乾式メツキ法で下地メツキ 被膜を形成する工程と、
該下地メツキ被膜を有する基材を、 スパッタリング装置、 アーク 装置およびイオンプレーティ ング装置から選ばれる少なく とも 1つ の乾式メツキ装置内に取り付け、 アルゴンガス雰囲気中で該基材表 面に形成されている下地メッキ被膜表面をボンバードクリーニング する工程と、
前記下地メツキ被膜表面に白色色調のステンレス鋼被膜を乾式メ ツキ法により形成する工程と
を含むことを特徴としている。
前記装飾品用基材の形成に用いられる非鉄金属は、 通常、 銅、 銅 合金、 アルミニウム、 アルミニウム合金、 亜鉛、 亜鉛合金、 マグネ シゥムおよびマグネシウム合金からなる群から選ばれる少なく とも 1種類の非鉄金属である。
本発明に係る白色被膜を有する装飾品の第 1および第 2の製造方 法において、 さらに、 前記の白色色調のステンレス鋼被膜の形成ェ 程の後に、 該ステンレス鋼被膜表面に、 厚さ 0 . 0 4〜 0 .
の白色色調の貴金属被膜を乾式メツキ法により形成する工程を採用 することができる。
前記下地メツキ被膜は、 前記基材表面に湿式メツキ法により形成 された少なくとも 1層のメツキ被膜と、 該メツキ被膜表面に乾式メ ツキ法により形成された少なくとも 1層のメツキ被膜とからなる多 層構造の被膜であってもよい。
前記下地メツキ被膜として、 金、 銅、 ニッケル、 クロム、 錫、 パ ラジウム、 ニッケル—リン合金、 ニッケル一リン合金以外のニッケ ル合金、 銅一錫—パラジウム合金、 銅一錫一パラジウム合金以外の 銅合金、 銅—錫一パラジウム合金以外の錫合金、 および銅一錫ーパ ラジウム合金以外のパラジウム合金からなる群か 選ばれる少なく とも 1種類の金属からなる被膜を湿式メツキ法により形成すること が望ましい。
前記下地メッキ被膜がニッケル一リン合金メツキ被膜である場合 には、 このニッケル一リン合金メッキ被膜に、 2 0 0〜 4 5 0 °Cで 2 0〜 6 0分間の時効硬化処理を施し、 ニッケル一リン合金メッキ 被膜を硬質化させることが好ましい。
また、 ニッケルアレルギー防止の面からは、 前記下地メツキ被膜 として、 金、 銅、 クロム、 錫、 パラジウム、 銅—錫一パラジウム合 金、 銅一錫一パラジウム合金以外の銅合金、 銅一錫一パラジウム合 金以外の錫合金、 および銅—錫ーパラジウム合金以外のパラジウム 合金からなる群から選ばれる少なく とも 1種類の、 ニッケルを含ま ない金属からなる被膜を湿式メツキ法により形成することが望まし い。
前記下地メツキ被膜としては、 炭化チタン、 炭化ジルコニウムま たは炭化タンタルからなる被膜を乾式メツキ法により形成すること が好ましい。
前記下地メツキ被膜全体の厚さは、 通常、 0. 2〜 3 0 mの範 囲内にある。
本発明に係る白色被膜を有する装飾品の第 1および第 2の製造方 法では、 前記白色色調のステンレス鋼被膜として、 オーステナイ ト 系ステンレス鋼、 中でも、 炭素 0. 0 1〜 0. 1 2容量%、 シリコ ン 0. 1〜 1. 0容量%、 マンガン 1. 0〜 2. 5容量%、 ニッケ ル 8〜 2 2容量%、 クロム 1 5〜 2 6容量%の組成を有するオース テナイ ト系ステンレス鋼からなる被膜を、 スパッタリ ング法、 ァ一 ク法またはイオンプレーティ ング法により形成することが好ましい。 また、 ニッケルアレルギ一防止の面からは、 ニッケルレスの白色 色調のステンレス鋼被膜が好ましい。 このような白色色調のステン レス鋼被膜として、 ニッケルレスのフェライ ト系ステンレス鋼、 中 でも、 炭素 0. 0 1〜 0. 1 2容量%、 シリ コン 0. 1〜 1. 0容 量%、 マンガン 1. 0〜 2. 5容量%、 クロム 1 4〜 2 0容量%、 モリブデン 0. 4〜 2. 5容量%の組成を有するニッケルを含まな いフェライ ト系ステンレス鋼からなる被膜を、 スパッ夕リング法、 アーク法またはイオンプレーティ ング法により形成することが望ま しい。
本発明に係る白色被膜を有する装飾品の第 1 もしくは第 2の製造 方法では、 前記基材表面もしくは下地メツキ被膜表面に、 白色色調 のステンレス鋼被膜を形成した後、 該ステンレス鋼被膜表面の一部 にマスキング処理を施し、 該ステンレス鋼被膜およびマスク表面に ステンレス鋼被膜と色調の異なるメツキ被膜を乾式メツキ法で形成 し、 その後、 前記マスクおよびマスクの上のメツキ被膜を除去する 工程を少なく とも 1回行なうことにより、 白色色調のステンレス鋼 被膜と、 該ステンレス鋼被膜と色調の異なる少なく とも 1つのメッ キ被膜とを最外層メツキ被膜 (仕上げメツキ被膜) として得ること ができる。
前記ステンレス鋼被膜と色調の異なるメツキ被膜として、 金、 金 合金、 窆化チタン、 窒化ハフニウムまたは窒化ジルコニウムから選 ばれる金属からなる少なくとも 1種類の被膜を、 スパッ夕リング法、 アーク法およびイオンプレーティング法から選ばれる少なく とも 1 つの乾式メツキ法により形成することが望ましい。 図面の簡単な説明
図 1は、 耐摩耗性試験の方法を説明するための摩耗試験機の模式 平面図である。 発明を実施するための最良の形態
以下、 本発明に係る白色被膜を有する装飾品およびその製造方法 について具体的に説明する。
本発明に係る第 1の白色被膜を有する装飾品は、 装飾品用基材と、 最外層被膜 (仕上げメツキ被膜) として白色色調のステンレス鋼被 膜とから構成されている。
また、 本発明に係る第 2の白色被膜を有する装飾品は、 装飾品用 基材と、 下地メツキ被膜と、 最外層被膜 (仕上げメツキ被膜) とし て白色色調のステンレス鋼被膜とから構成されている。
本発明に係る白色被膜を有する装飾品の第 1の製造方法は、 上記 の本発明に係る第 1の白色被膜を有する装飾品を製造する方法であ り、 本発明に係る白色被膜を有する装飾品の第 2の製造方法は、 上 記の本発明に係る第 2の白色被膜を有する装飾品を製造する方法で ある。
本発明においては、 最外層被膜の全面がステンレス鋼被膜で形成 されている場合と、 最外層被膜表面の一部にステンレス鋼被膜、 他 の部分には、 このステンレス鋼被膜と異なる色調のメツキ被膜が 1 種または 2種以上形成されている場合とがある。
装飾品用基材
本発明に係る第 1の白色被膜を有する装飾品で用いられる装飾品 用基材は、 通常、 タングステンカーバイ トまたはタン夕ルカ一バイ トから形成される基材である。
また、 本発明に係る第 2の白色被膜を有する装飾品で用いられる 装飾品用基材は、 通常、 銅、 銅合金、 アルミニウム、 アルミニウム 合金、 亜鉛、 亜鉛合金、 マグネシウムおよびマグネシウム合金から なる群から選ばれる少なくとも 1種類の非鉄金属から形成される基 材である。
これらの装飾品用基材は、 上記の金属あるいは非鉄金属から従来 公知の機械加工により調製される。
本発明における装飾品 (部品も含む) としては、 たとえば腕時計 ケース、 腕時計バンド、 腕時計のリューズ、 腕時計の裏蓋、 ベルト のバックル、 指輪、 ネックレス、 ブレスレッ ト、 イヤリング、 ペン ダント、 ブローチ、 カフスボタン、 ネクタイ止め、 バッジ、 メダル、 眼鏡などが挙げられる。
本発明に係る第 1の白色被膜を有する装飾品では、 装飾品用基材 表面に、 白色色調のステンレス鋼被膜が直接乾式メツキ法により形 成されている。 また、 本発明に係る第 2の白色被膜を有する装飾品 では、 装飾品用基材表面に形成された下地メツキ被膜の表面に、 白 色色調のステンレス鋼被膜が乾式メツキ法により形成されている。 本発明においては、 装飾品用基材の表面にステンレス鋼被膜ある いは下地メツキ被膜を形成する前に、 予め装飾品用基材表面を従来 公知の有機溶剤等で洗浄 ·脱脂しておくことが好ましい。
下地メツキ被膜
本発明に係る第 2の白色被膜を有する装飾品を構成している下地 メツキ被膜は、 湿式メツキ法または乾式メツキ法により形成される メツキ被膜である。 また、 下地メツキ被膜は、 湿式メツキ法により 形成された少なくとも 1層のメツキ被膜と、 乾式メツキ法により形 成された少なく とも 1層のメツキ被膜とからなる 2層以上の多層構 造であってもよい。
たとえば、 湿式メツキ法により形成した金メッキ被膜 (フラッシ ュメツキ) と、 乾式メツキ法により形成したチタンメツキ被膜とか らなる 2層構造の下地メツキ被膜;
湿式メツキ法により形成した銅メツキ被膜と、 湿式メツキ法によ り形成した銅—錫メツキ被膜と、 乾式メツキ法により形成した炭化 チタンメツキ被膜とからなる 3層構造の下地メツキ被膜 ;
パラジウムメツキ被膜 (フラッシュメツキ) と、 乾式メツキ法に より形成したチタンメツキ被膜と、 乾式メツキ法により形成した炭 化チタンメツキ被膜とからなる 3層構造の下地メツキ被膜;
湿式メツキ法により形成した銅—錫合金メツキ被膜と、 湿式メッ キ法により形成した銅—錫一亜鉛合金メツキ被膜と、 湿式メツキ法 により形成した金ストライクメツキ被膜と、 乾式メツキ法により形 成したチタンメツキ被膜とからなる 4層構造の下地メツキ被膜; 湿式メツキ法により形成した銅—錫合金メツキ被膜と、 湿式メッ キ法により形成した銅一錫一亜鉛合金メツキ被膜と、 湿式メツキ法 により形成したパラジウムス トライクメツキ被膜と、 乾式メツキ法 により形成したチタンメッキ被膜と、 乾式メツキ法により形成した 炭化チタンメッキ被膜とからなる 5層構造の下地メッキ被膜などが 挙げられる。
また、 下地メツキ被膜は、 装飾品用基材表面に湿式メツキ法によ り形成されたメツキ被膜を 2層以上有する被膜であってもよい。 たとえば、 ニッケルストライクメツキ被膜 (フラッシュメツキ) と、 ニッケルメツキ被膜とからなる 2層構造の下地メツキ被膜; ニッケルメッキ被膜と、 ニッケル—リン合金メッキ被膜とからな る 2層構造の下地メツキ被膜; 銅メツキ被膜と、 銅—錫一パラジウム合金メツキ被膜とからなる 2層構造の下地メツキ被膜 ;
銅—錫合金メツキ被膜と、 銅—錫—パラジウム合金メッキ被膜と からなる 2層構造の下地メツキ被膜 ;
銅一錫合金メッキ被膜と、 銅—錫一亜鉛合金メッキ被膜とからな る 2層構造の下地メツキ被膜;
銅—錫合金メッキ被膜と、 銅—錫一パラジウム合金メツキ被膜と、 金メッキ被膜 (フラッシュメツキ) とからなる 3層構造の下地メッ キ被膜;
銅—錫合金メッキ被膜と、 銅一錫—亜鉛合金メッキ被膜と、 金ス トライクメツキ被膜とからなる 3層構造の下地メツキ被膜 ;
銅一錫合金メッキ被膜と、 銅一錫—亜鉛合金メッキ被膜と、 パラ ジゥムス トライクメツキ被膜とからなる 3層構造の下地メツキ被膜 ニッケルメツキ被膜と、 ニッケル—リ ン合金メッキ被膜と、 パラ ジゥム一ニッケル合金メツキ被膜とからなる 3層構造の下地メツキ 被膜 ;
ニッケルス トライクメツキ被膜 (フラッシュメツキ) と、 ニッケ ルメツキ被膜と、 ニッケル一リ ン合金メッキ被膜と、 パラジウム— ニッケル合金メッキ被膜 (フラッシュメツキ) とからなる 4層構造 の下地メツキ被膜 ;
ニッケルス トライクメツキ被膜 (フラッシュメツキ) と、 ニッケ ルメツキ被膜と、 ニッケル—リ ン合金メッキ被膜と、 パラジウムス トライクメツキ被膜とからなる 4層構造の下地メツキ被膜; 銅メツキ被膜と銅—錫合金メッキ被膜と銅一錫—パラジウム合金 メツキ被膜とパラジウムメツキ被膜 (フラッシュメツキ) とからな る 4層構造の下地メツキ被膜 ;
銅メツキ被膜と、 銅—錫合金メッキ被膜と、 銅—錫一亜鉛合金メ ツキ被膜と、 パラジウムス トライクメツキ被膜とからなる 4層構造 の下地メツキ被膜などが挙げられる。
下地メツキ被膜全体の厚さは、 通常、 0 . 2〜 3 0 m、 好まし くは 0 . 5〜 3 0 jLt m、 さらに好ましくは 5〜 2 O ii mの範囲内に ある。 たとえば銅一錫合金メッキ被膜と、 銅一錫—亜鉛合金メッキ 被膜とを含む 2層以上からなる下地メツキ被膜の場合、 銅一錫合金 メツキ被膜の膜厚は通常 1〜 5 mであり、 銅—錫—亜鉛合金メッ キ被膜の膜厚は通常 1〜 5 mである。
上記の湿式メツキ法により形成される下地メツキ被膜としては、 具体的には、 金、 銅、 ニッケル、 クロム、 錫、 パラジウム、 ニッケ ルーリ ン合金、 ニッケル—リ ン合金以外のニッケル合金、 銅一錫一 パラジウム合金、 銅一錫一パラジウム合金以外の銅合金、 銅一錫— パラジウム合金以外の錫合金、 および銅一錫一パラジウム合金以外 のパラジウム合金からなる群から選ばれる少なく とも 1種類の金属 からなるメツキ被膜が望ましい。 ニッケル一リン合金メッキ被膜は、 時効硬化処理が施された硬質被膜であることが好ましい。
また、 ニッケルアレルギー防止の面からは、 湿式メツキ法により 形成されるニッケルレスの下地メツキ被膜が好ましい。 具体的には、 金、 銅、 クロム、 錫、 パラジウム、 銅—錫一パラジウム合金、 銅— 錫一パラジウム合金以外の銅合金、 銅一錫一パラジウム合金以外の 錫合金、 および銅—錫一パラジウム合金以外のパラジウム合金から なる群から選ばれる少なくとも 1種類の、 ニッケルを含まない金属 からなるメッキ被膜が望ましい。
ニッケル—リン合金以外のニッケル合金としては、 具体的には、 ニッケル一コバルト合金、 ニッケル一銅合金、 ニッケル一鉄合金、 ニッケル一パラジウム合金、 金一ニッケル合金、 錫—ニッケル合金 などが挙げられる。
銅一錫一パラジウム合金以外の銅合金としては、 具体的には、 銅 一錫一亜鉛合金、 銅一錫合金、 銅一金合金、 銅一銀合金、 銅—金一 銀合金などが挙げられる。
銅—錫一パラジウム合金以外の錫合金としては、 具体的には、 銅 —錫一亜鉛合金、 銅一錫合金、 パラジウム—錫合金、 錫—ニッケル 合金、 錫一金合金などが挙げられる。
銅—錫一パラジウム合金以外のパラジウム合金としては、 具体的 には、 パラジウム—ニッケル合金、 パラジウム—コバルト合金、 パ ラジウム—銀合金、 パラジウム—錫合金、 パラジウム一鉄合金、 パ ラジウム—金合金などが挙げられる。
下地メツキ被膜、 たとえばニッケルメツキ被膜は、 装飾品用基材 表面に湿式メツキ法によって形成されるが、 具体的には、 ニッケル 金属イオンを含むメツキ液を用いて形成することができる。
本発明におけるニッケルメツキ被膜の態様としては、 たとえば以 下のような態様が挙げられる。
<第 1の態様 >
本発明におけるニッケルメツキ被膜の第 1の態様として、 上記基 材表面に、 硫酸ニッケル (N i S〇4. 6 H 20) 1 5 0〜40 0 g / 1、 最も好ましくは 2 5 0〜3 0 0 gZ l、 塩化ニッケル (N i C 1 2 · 6 H 2O) 2 0〜 6 0 g/ l、 最も好ましくは 40〜 5 0 g ノ 1、 ホウ酸 (H3B03) 1 0〜 5 0 gZ l、 最も好ましくは 3 0 〜40 g/ 1、 および光沢剤 [たとえばェパラユージライ ト社製の 光沢剤 # 6 1 (標準添加量 0. 5 m 1 1 )、 # 6 2' (標準添加量 4 m 1 Z 1 )、 # 6 3 (標準添加量 1 0 m 1ノ 1 ) などの市販品] ' を含有してなる光沢ニッケルメツキ液 (ワッ ト浴) 中で電気メツキ して形成された光沢ニッケルメツキ被膜が挙げられる。
このメツキ液は、 pHが 4. 0〜4. 5、 好ましくは 4. 0〜4. 3の酸性溶液である。 このニッケルメツキ被膜は、 上記のようなメ ツキ液を用い、 浴温 40〜 5 0°C、 電流密度 (D k) 1〜3 Aノ d m 2の条件で電気メツキを行なうことにより形成することができる。
<第 2の態様 >
本発明におけるニッケルメツキ被膜の第 2の態様として、 上記基 材表面に、 硫酸ニッケル (N i S〇4 * 6 H2〇) 1 5 0〜40 0 g Z l、 最も好ましくは 2 5 0〜3 0 0 gZ l、 塩化ニッケル (N i C 1 2 · 6 H 2O) 2 0〜6 0 g/ l、 最も好ましくは 40〜 5 0 g / 1、 ホウ酸 (H3B03) 1 0〜 5 0 gZ l、 最も好ましくは 3 0 〜40 gZ l、 および半光沢剤 [たとえば日鉱メタル社製の半光沢 剤レべノン A (標準添加量 5m l Z l ) などの市販品] を含有して なる半光沢ニッケルメツキ液中で電気メツキして形成された半光沢 ニッケルメツキ被膜が挙げられる。
このメツキ液は、 pHが 4. 0〜4. 5、 好ましくは 4. 0〜4. 3の酸性溶液である。 このニッケルメツキ被膜は、 上記のようなメ ツキ液を用い、 浴温 40〜 5 0 、 電流密度 (D k) l〜 3 AZd m 2の条件で電気メツキを行なうことにより形成することができる。
<第 3の態様 >
本発明におけるニッケルメツキ被膜の第 3の態様として、 上記基 材表面に、 塩化ニッゲル (N i C l 2 ' 6 H2〇) 1 5 0 ~ 3 0 0 g / 1、 最も好ましくは 200〜2 50 gZ l、 および塩酸 (HC 1 ) 1 0 0〜 1 5 0 g_ l、 最も好ましくは 1 2 5 ± 1 0 gZ l を含有 してなるニッケルストライクメツキ液中で電気メツキして形成され たニッケルメツキ被膜が挙げられる。
このメツキ液は、 11が1. 0未満の酸性溶液である。 このニッ ケルメツキ被膜は、 上記のようなメツキ液を用い、 浴温 2 5土〜 2 °C、 電流密度 (D k) 3〜5 AZdm2の条件で電気メツキを行なう ことにより形成することができる。
また、 下地メッキ被膜がニッケル—リン合金メッキ被膜である場 合、 この被膜は装飾品用基材表面に湿式メツキ法によって形成され る。 この被膜は、 形成時にあってはアモルファスのニッケル—リン 合金から形成されているが、 後述する時効硬化処理を行なうことに より、 結晶質化され硬質被膜になる。 この時効硬化処理は、 最外層 メツキ被膜 (仕上げメツキ被膜) 形成と同時あるいは最外層メツキ 被膜形成後に行なってもよいし、 ニッケル—リン合金メツキ被膜形 成後であってイオンプレーティングもしくはスパッタリングによる 最外層メツキ被膜形成前にイオンプレーティ'ングもしくはスパッ夕 リング装置内で行なうこともできる。 ニッケル一リン合金メッキ被膜中のリン含有量は 1 3〜 1 5重量 %の範囲内にあることが好ましい。
ニッケルーリン合金メッキ被膜としては、 たとえば上記装飾品用 基材表面に、 硫酸ニッケル (N i S 04 * 7H20) 1 0 0〜 2 00 gZ l、 最も好ましくは 140〜 1 60 g/ l、 水酸化ニッケル [N ί (〇Η)2 · Η2〇] 1 0〜40 gZし 最も好ましくは 2 0〜 3 0 g/ l、 次亜リン酸ナトリウム(N a H 2 P O 2 · H 20) 1〜: L O g Z l、 最も好ましくは 4〜 6 gノ 1、 リン酸(1^?04) 5 0〜 9 0 m l / l、 最も好ましくは 6 5〜 7 5m l /し およびクェン酸ナ トリウム 5 0〜 1 5 0 g// l、 最も好ましくは 90〜 1 l O g/ 1 を含有してなるメツキ液中で電気メツキして形成されるニッケル— リン合金メッキ被膜などが挙げられる。
このメツキ液は、 pHが 2. 8〜 3. 2の酸性溶液である。 この ニッケルーリン合金メッキ被膜は、 上記のようなメツキ液を用い、 浴温 6 0〜 8 0 °C、 電流密度 (D k) 1. 0〜 3. 0 A/dm\ 最 も好ましくは 2. 0 ± 0. 2 AZdm2の条件で電気メツキを行なう ことにより形成することができる。
本発明においては、 メツキ液中の次亜リン酸濃度、 メツキ液を構 成するクェン酸ナトリウムの濃度、 メツキ液の pH、 および電流密 度等を上記のように選択することにより、 リン含有量が 1 3〜 1 5 重量%であるニッケル—リン合金メッキ被膜を形成することができ る。
上記次亜リン酸ナトリウムおよびリン酸は、 還元剤として用いら れ、 ニッケル一リン合金メツキ被膜層を構成するリン供給源である。 上記水酸化ニッケルは P H調整剤として用いられ、 クェン酸ナト リゥムは錯化剤として用いられる。
上記の乾式メツキ法により形成される下地メツキ被膜としては、 具体的には、 炭化チタン、 炭化ジルコニウムまたは炭化タンタルか らなる白色色調のメツキ被膜が好ましい。 これらのメツキ被膜を形 成する前に、 基材または湿式メツキ被膜の表面に、 チタンメツキ被 膜を乾式メツキ法により形成してもよい。 チタンメツキ被膜を形成 することにより、 このチタンメツキ被膜に隣接する基材と乾式メッ キ被膜との密着性、 またはこのチタンメツキ被膜に隣接する湿式メ ツキ被膜と乾式メツキ被膜との密着性が向上する。
乾式メツキ法としては、 具体的には、 スパッタリング法、 アーク 法、 イオンプレーティング法、 イオンビーム等の物理的蒸着法 (P V D )、 C V Dなどが挙げられる。 中でも、 スパッタリ ング法、 ァ ーク法、 イオンプレーティング法が特に好ましく用いられる。
最外層被膜
[ステンレス鋼被膜]
本発明に係る第 1および第 2の白色被膜を有する装飾品を構成し ている最外層被膜として、 前記装飾品用基材または下地メツキ被膜 の表面の少なく とも一部に、 白色の色調を有するステンレス鋼被膜 が乾式メツキ法により形成されている。
本発明においては、 このステンレス鋼被膜を形成する前に、 装飾 品用基材または下地メツキ被膜を有する装飾品用基材は、 スパッ夕 リング装置、 アーク装置およびイオンプレーティング装置から選ば れる少なく とも 1つの乾式メツキ装置内に取り付けられ、 アルゴン ガス雰囲気中で上記基材または下地メツキ被膜の表面はボンバード クリーニングされていることが好ましい。
白色色調のステンレス鋼被膜は、 オーステナイ ト系ステンレス鋼、 中でも、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0 容量%、 マンガン 1. 0〜 2. 5容量%、 ニッケル 8〜 2 2容量%、 クロム 1 5〜 2 6容量%の組成を有するオーステナイ ト系ステンレ ス鋼 (たとえば S U S 3 1 0 S、 S U S 3 0 4 ( J I S規格)) か らなるメッキ被膜が好ましい。
また、 ニッケルアレルギー防止の面からは、 ニッケルレスの白色 色調のステンレス鋼被膜が好ましい。 このような白色色調のステン レス鋼被膜としては、 ニッケルレスのフェライ ト系ステンレス鋼、 中でも、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜; L . 0 容量%、 マンガン 1. 0〜 2. 5容量%、 クロム 1 4〜 2 0容量%、 モリブデン 0. 4〜 2. 5容量%の組成を有するニッケルを含まな いフェライ ト系ステンレス鋼(たとえば S US 444 ( J I S規格)) からなるメッキ被膜が望ましい。
これらのステンレス鋼被膜を形成する前に、 基材または下地メッ キ被膜の表面に、 チタンメツキ被膜を乾式メツキ法により形成して もよい。 チタンメツキ被膜を形成することにより、 このチタンメッ キ被膜に隣接する基材とステンレス鋼被膜との密着性、 またはこの チタンメツキ被膜に隣接する下地メツキ被膜とステンレス鋼被膜と の密着性が向上する。
ステンレス鋼被膜を形成する際に採用される乾式メツキ法として は、 スパッタリング法、 アーク法、 イオンプレーティ ング法が好ま しい。
白色色調のステンレス鋼被膜の厚みは、 通常 0 . 1〜2 . 0 m、 好ましくは 0 . 2〜 1 . 2 m、 さらに好ましくは 0 . 3〜0 . 7 mである。
[ステンレス鋼被膜と色調の異なるメツキ被膜] 本発明に係る第 1 もしくは第 2の白色被膜を有する装飾品おいて、 装飾品用基材もしくは下地メツキ被膜の表面に、 乾式メッキ法によ り形成された白色色調のステンレス鋼被膜の他に、 このステンレス 鋼被膜と色調の異なる少なく とも 1つのメツキ被膜が乾式メツキ法 により形成されていてもよい。
このような白色色調のステンレス鋼被膜と色調の異なるメツキ被 膜を最外層被膜として有する装飾品は、 たとえば以下のような方法 により調製することができる。
まず、 装飾品用基材もしくは下地メツキ被膜の表面に、 白色色調 のステンレス鋼被膜を形成した後、 このステンレス鋼被膜表面の一 部にマスキング処理を施し、 このステンレス鋼被膜およびマスク表 面にステンレス鋼被膜と色調の異なるメツキ被膜を乾式メツキ法で 形成し、 その後、 このマスクおよびマスクの上のメツキ被膜を除去 する工程を少なく とも 1回行なうことにより、 白色色調のステンレ ス鋼被膜と、 このステンレス鋼被膜と色調の異なる少なくとも 1つ のメツキ被膜とからなる、 2以上の色調を有する最外層被膜を得る ことができる。
上記ステンレス鋼被膜と色調の異なるメツキ被膜として、 金、 金 合金、 窒化チタンまたは窒化ジルコニウムから選ばれる金属からな る少なく とも 1種類の被膜を、 スパッタリング法、 アーク法および イオンプレーティ ング法から選ばれる少なく とも 1つの乾式メツキ 法により形成することが望ましい。
ステンレス鋼被膜と色調の異なるメツキ被膜の厚みは、 通常 0. 1〜 1. Ο ΠΙ、 好ましくは 0. 2〜 0. 5 mである。
[貴金属被膜]
本発明に係る白色被膜を有する装飾品において、 前記ステンレス 鋼被膜表面に、 厚み 0. 0 4〜 0. 3 m、 好ましくは 0. 0 5〜 0. 2 i mの白色色調の貴金属被膜が乾式メツキ法により形成され ていてもよい。
この貴金属被膜は、 パラジウム、 白金、 ロジウム、 金合金、 銀お よび銀合金からなる群から選ばれる貴金属からなる乾式メツキ被膜 である。
金合金としては、 具体的には、 白色色調を呈する金含有量の少な い組成の、 金一コバルト合金、 金—パラジゥム合金、 金一ニッケル 合金などが挙げられる。
また、 銀合金としては、 具体的には、 銀一銅合金、 銀一錫合金な どが挙げられる。
この貴金属被膜は、 厚みが非常に薄いので、 たとえば高価なパラ ジゥムを用いてもその量が少ないので、 装飾品のコストアツプには 繋がらない。
この貴金属被膜を形成する際に採用される乾式メツキ法としては、 スパッ夕リング法、 イオンプレーティング法が好ましい。
時効硬化処理_ 本発明で下地メツキ被膜として用いられることがあるニッケル— リン合金メッキ被膜の時効硬化処理は、 最外層被膜 (白色色調のス テンレス鋼被膜またはこの被膜と色調の異なるメツキ被膜) 形成と 同時あるいはこの最外層被膜形成後に行なってもよいし、 また、 二 ッケル—リ ン合金メッキ被膜形成後であってイオンプレーティング 法、 スパッタリング法もしくはアーク法による最外層被膜形成前に、 イオンプレーティ ング、 スパッタリングもしくはアーク装置内で行 なうこともできる。
これらの時効硬化処理における処理温度は、 通常 2 0 0〜 4 5 0 °C、 好ましくは 2 5 0〜 4 3 0 °C、 さらに好ましくは 3 0 0〜 4 0 0 °Cであり、 処理時間は、 通常 2 0〜 6 0分、 好ましくは 2 5〜 5 5分、 さらに好ましくは 3 0〜 5 0分である。
イオンプレーティ ング法、 スパッタリング法もしくはアーク法に よる最外層被膜の形成条件を、 上記時効硬化処理の熱処理条件と一 致するように選択すれば、 最外層被膜の形成と同時にニッケル一リ ン合金メッキ被膜の時効硬化処理を施すことができる。
また、 イオンプレーティング法等の乾式メツキ法による最外層被 膜の形成条件として、 上記時効硬化処理の熱処理条件の下限値を下 回るような条件を選択する場合には、 最外層被膜形成後に、 時効硬 化処理を上記熱処理条件で行なうことになる。
本発明では、 最外層被膜の形成と同時にニッケル—リン合金メッ キ被膜の時効硬化処理を施すことが生産性の面から好ましい。 また、 時効硬化処理は、 真空状態にして行なうのが好ましい。
アモルファスのニッケル一リン合金メッキ被膜に、 上記のような 時効硬化処理を施すと、 ニッケル一リン合金メッキ被膜中のァモル ファス (非晶質) が結晶質化され、 ニッケル一リン合金メッキ被膜 は硬質被膜になる。 発明の効果
本発明によれば、 最外層被膜として安価で長期耐食性に優れる白 色色調のステンレス鋼被膜、 さらには、 その被膜表面に白色色調を 有する貴金属被膜を有する低価格品の装飾品、 およびその製造方法 を提供することができる。
本発明においては、 最外層被膜として、 安価なステンレス鋼被膜 の他に、 ステンレス鋼被膜と色調の異なるメッキ被膜として金など の高価な貴金属からなるメッキ被膜が形成されることがあるが、 こ の貴金属メツキ被膜は装飾品表面の一部分に形成されるため、 低価 格品の装飾品を得ることができる。 実施例
以下、 本発明を実施例により説明するが、 本発明は、 これら実施 例により何ら限定されるものではない。
なお、 実施例におけるメツキ被膜の耐食性試験は、 下記の方法に 従って行なった。
<メツキ被膜の耐食性試験 >
メツキ被膜の耐食性試験は、 J I S H 8 5 0 2 (キャス (C A S S ) 試験) に従って行なった。 試験時間は 9 6時間とし、 その試 験面の耐食性評価は、 レイティングナンパ標準図表によってレイテ イングナンパが 9. 8以上のとき、 合格とした。
(実施例 1 )
まず、 タングステンカーバイ トを機械加工して得られた腕時計ケ ース用基材を有機溶剤で洗浄 ·脱脂した。
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリ一エングした。
次いで、 この基材表面に、 厚み 0. 2 imの白色色調を有するス テンレス鋼被膜をスパッタリング法 (マグネトロンスパッタリング 方式) により下記の成膜条件で形成し、 腕時計ケースを得た。
また、 上記と同様にして、 基材表面に、 厚み 2 mの白色色調を 有するステンレス鋼被膜を形成し、 腕時計ケースを得た。
<成膜条件 >
ターゲッ ト : ォ一ステナイ ト系ステンレス鋼 S U S 3 0 4 スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜一 3 0 0 V
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 2 )
まず、 黄銅を機械加工して得られた腕時計ケース用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 0. 1〜 0. 2 ^mのニッケ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。
《ニッケルス トライクメツキ》
<メッキ液の組成 >
塩化ニッケル 1 8 0 g/ 1
塩酸 1 0 0 g/ 1
<メツキ条件 >
P H ぐ 1
(具体的には、 0 - 未満) 液温 ώπ.
電流密度 (D k) 3〜 5 A/ dm
時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計ケー ス用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み 2 mのニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
<メツキ液の組成 >
硫酸ニッケル 2 5 0 gZ 1 塩化ニッケル 7 5 gZ 1 ホウ酸 5 0 1 光沢剤 (エバラュ一ジライ ト社製の光沢剤 # 6 1 )
0. 5 m 1 1 <メツキ条件 >
P H 3. 6〜 4. 0
液温 4 0〜 5 00C
電流密度 (D k) 3 A/dm2
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成されたニッケルメツキ被膜表面に、 厚み 0. 5 mの白色色調を有するステンレス鋼被膜をスパッタリ ング法により下記の成膜条件で形成し、 腕時計ケースを得た。
<成膜条件 >
ターゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 04 スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜一 3 0 0 V
得られた腕時計ケ一スについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 3 )
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 0. 1 ~ 0. 2 ^mのニッケ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。
《ニッケルストライクメツキ》
<メツキ液の組成 >
塩化ニッケル 1 8 0 g / 1
塩酸 1 0 0 g / 1
<メツキ条件 >
P H < 1
(具体的には、 0 . 3 未満) 液温 吊 ¾m
電流密度 (D k ) 3〜 5 A / d m
時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計パン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み 2 mのニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
<メツキ液の組成 >
硫酸ニッケル 2 5 0 g / 1 塩化二ッゲル 7 5 gノ 1 ホウ酸 5 0 g / 1 光沢剤 (エバラュ' ジライ 卜社製の光沢剤 # 6 1 )
0 . 5 m 1 / 1 <メツキ条件 >
P H 3 . 6〜 4 . 0 液温 4 0〜 5 0 電流密度 (D k) 3 A/dm2
次いで、 このニッケルメツキ被膜を有する腕時計パンド用基材を 下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電気 メツキして厚さ 2 zmのニッケル一リン合金メッキ被膜をニッケル メツキ被膜表面に形成し、 水洗した。
《ニッケル一リン合金メッキ》
<メツキ液の組成 >
硫酸ニッケル 4 0〜 5 0 g / 1
水酸化ニッケル 1 0〜 2 0 g Z 1
次亜リン酸ナトリゥム 3〜: L 0 g / 1
' リン酸 1 0〜 2 0 m 1 / 1
クェン酸ナトリゥム 3 0〜 5 0 g / 1
<メツキ条件 >
P H 2. 6〜 3. 2
液温 5 5°C
電流密度 (D k) 2 A/ d m2
次いで、 このニッケル一リン合金メッキ被膜を有する腕時計バン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚さ 0. 1〜 0. 2 xmのパラジウム—ニッ ケル合金メッキ被膜 (フラッシュメツキ) をニッケル一リン合金メ ツキ被膜表面に形成し、 水洗、 乾燥した。
《パラジウム一ニッケル合金メッキ》
<メッキ液の組成 > パラジウム 7. 5 g/ 1
ニッケル 1 2. 5 g/ 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 1. 0 AX d m2
比重 (B e ) 1 2. 5
成膜速度 4. 2分/ 1 πι
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンパードクリーニングした。
次いで、 この基材表面に形成されたパラジウム—ニッケル合金メ ツキ被膜表面に、 厚み 0. 5 の白色色調を有するステンレス鋼 被膜をスパッ夕リング法により下記の成膜条件で形成した。
<成膜条件 >
ターゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 0 4 スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイアス電圧: G r a n d〜― 3 0 0 V
次いで、 この装置内で、 上記ニッケル—リン合金メッキ被膜に、 2 5 0 t 、 3 0分の条件で熱処理 (時効硬化処理) を施し、 腕時計 パンドを得た。
得られた腕時計パンドの表面硬度 (Η V ; ビッカース硬度計、 2 5 g、 保持時間 1 0秒) は、 6 5 0であった。 また、 上記と同様にして、 厚み 2 mの白色色調を有するステン レス鋼被膜を形成し、 さらに、 ニッケル一リン合金メッキ被膜に上 記と同じ条件で熱処理を施し、 腕時計バンドを得た。
得られた腕時計バンドの表面硬度 (H V ; ピツカ一ス硬度計、 2 5 g、 保持時間 1 0秒) は、 6 5 0であった。
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9 . 8以 上で、 合格であった。
(実施例 4 )
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 2 mの銅一錫合金メッキ被 膜を基材表面に形成し、 水洗した。
《銅一錫合金メッキ》
<メツキ液の組成 >
銅 1 5 1
錫 1 5 g Z 1
亜鉛 1 / 1
シアン化力リゥム (フリー) 3 0 ± 2 g 1
<メツキ条件 >
P H 1 2 . 7
液温 5 0 °C
電流密度 (D k ) 2 A / d m 2 成膜速度 3分 Z 1 m 次いで、 この銅—錫合金メッキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2 imの銅一錫一パラジウム合金メツキ被膜を銅 一錫合金メッキ被膜表面に形成し、 水洗した。
《銅—錫一パラジウム合金メツキ》
<メツキ液の組成 >
錫酸ナトリウム三水塩 (N a 2S n〇3 · 3 H2〇) 6 0 g/ 1
( S n換算量 2 6. 7 g/ 1 ) シアン化銅 (C u) 2 0 g/ 1
(C u換算量 1 4. 2 g/ 1 ) シアン化パラジウム力リゥム水和物(K2P d (C Ν)4 · 3 Η20)
3 0 g/ 1
(Ρ d換算量 9 3 g / I ) アミ ドスルホン酸 (NH2S〇2H) 1 0 g/ 1 シアン化力リゥム (フリー) 3 0 g/ 1 水酸化力リウム 6 0 g 1 <メツキ条件 >
P H 1 2. 5〜 1 3 液温 5 0〜 5 5
電流密度 (D k) 2 A/dm2
成膜速度 0. 3 3 β m/分 次いで、 この銅一錫—パラジウム合金メツキ被膜を有する腕時計 バンド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメ ツキ条件で電気メツキして厚み 0. 1〜 0. 2 mの金ス トライク メツキ被膜 (フラッシュメツキ) を銅一錫一パラジウム合金メッキ 被膜表面に形成し、 水洗した。
《金ス トライクメツキ》
<メッキ液の組成 >
金 3〜 5 gノ 1
硫酸 1 0 gX 1
<メツキ条件 >
P H <
(具体的には、 0 3 未満) 液温 2 5 °C
電流密度 (D k) 3〜 5 A/ d m2
時間 30秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーエングした。
次いで、 この基材表面に形成された金ス トライクメッキ被膜表面 に、 厚み 0. 5 mの白色色調を有するステンレス鋼被膜をスパッ 夕リング法により下記の成膜条件で形成し、 腕時計バンド得た。 <成膜条件 >
ターゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S U S
444
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜2. 0 k W バイアス電圧: G r a n d〜一 3 0 0 V
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 5 )
まず、 亜鉛を機械加工して得られた腕時計パンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この時計バンド用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 8 mの銅メ ツキ被膜をこの基材表面に形成し、 水洗した。
《銅メツキ》
<メツキ液組成 >
ピロリン酸銅 1 0 0 1
ピロリン酸カリウム 3 40 g / 1
クェン酸アンモニゥム 1 0 g/ 1
アンモニア 3 g/ 1
<メツキ条件 >
P H 8. 5
浴温 5 0 °C
電流密度 (D k) 3 A/ d m2
次いで、 この銅メツキ被膜を有する基材を下記の組成を有するメ ツキ液中に浸漬し、 下記のメツキ条件で電気メツキして厚さ 2 の銅—錫合金メッキ被膜を基材表面に形成し、 水洗した。
《銅一錫合金メツキ》 <メツキ液の組成 >
1 5 g/ 1
1 5 g/ 1
亜鉛 1 / 1
シアン化力リゥム (フリー) 30土 2 g Z 1
<メツキ条件 >
P H 1 2. 7
液温 5 0 °C
電流密度 (D k) 2 A/dm2
成膜速度 3分 / 1 m
次いで、 この銅一錫合金メッキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸潰し、 下記のメツキ条件で電 気メツキして厚み 2 の銅一錫—パラジウム合金メツキ被膜を銅 —錫合金メッキ被膜表面に形成し、 水洗した。
《銅一錫一パラジウム合金メッキ》
<メツキ液の組成 >
錫酸ナトリウム三水塩 (N a 2S n〇3 · 3 H2〇) 6 0 g / 1
(S n換算量 26. 7 g/ 1 ) シアン化銅 (CuCN) 20 g/ 1
(C u換算量 14. 2 g/ 1 ) シアン化パラジウム力リゥム水和物(K 2 P d (CN)4 · 3 H2〇)
3 0 gZ 1 (P d換算量 9. 3 g/ 1 ) アミ ドスルホン酸 (NH2S〇2H) l O gZ l シアン化力リゥム (フリー). 3 0 gZ 1 水酸化力リウム 6 0 g/ 1 <メツキ条件 >
P H 1 2. 5〜 1 3
液温 5 0〜 5 5。C
電流密度 (D k) 2 A/ dm2
成膜速度 0. 3 3 mZ分
次いで、 この銅一錫—パラジウム合金メツキ被膜を有する腕時計 バンド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメ ツキ条件で電気メツキして厚み 0. 2 のパラジウムス トライク メツキ被膜 (フラッシュメツキ) を銅一錫—パラジウム合金メッキ 被膜表面に形成し、 水洗した。
《パラジウムス トライクメツキ》
<メツキ液の組成 >
純パラジウム 3 gZ 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 3〜 5 A, d m
時間 3 0秒
次いで、 この基材をスパッタリ ング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーエングした。
次いで、 この基材表面に形成されたパラジウムス トライクメツキ 被膜表面に、 厚み 1 . 0 の白色色調を有するステンレス鋼被膜 をスパッタリング法により下記の成膜条件で形成し、 腕時計バンド を得た。
<成膜条件 >
ターゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S US
444
スパッタガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイァス電圧 : G r a n d〜― 3 0 0 V
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 6 )
まず亜鉛合金 (組成 : A l = 3. 5〜4. 3 %、 C u = 0. 7 5 〜 1. 2 5 %、 M g = 0. 0 2〜 0. 0 8 %、 残部 Z n ) を機械加 ェして得られた腕時計ケース用基材を有機溶剤で洗浄 · 脱脂した。 次いで、 この時計ケース用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 8 mの銅メ ツキ被膜をこの基材表面に形成し、 水洗した。
《銅メツキ》
<メツキ液組成 >
ピロリン酸銅 1 0 0 g 1
ピロリン酸カリウム 340 gZ l
クェン酸アンモニゥム l O gZ l アンモニア 3 gZ 1
<メツキ条件 >
P H 8. 5
浴温 5 0
電流密度 (D k ) 3 AZ d m
次いで、 この銅メツキ被膜を有する基材を下記の組成を有するメ ツキ液中に浸漬し、 下記のメツキ条件で電気メツキして厚さ 2 z m の銅一錫合金メッキ被膜を基材表面に形成し、 水洗した。
《銅一錫合金メツキ》
<メツキ液の組成 >
銅 1 5 g/ 1
錫 1 5 g/ 1
亜鉛 1 / 1
シアン化力リゥム (フリ一) 3 0 ± 2 g / 1
<メツキ条件 >
P H 1 2. 7
液温 5 0 °C
電流密度 (D k) 2 A/ d m2
成膜速度 3分 Z 1 ΐη
次いで、 この銅一錫合金メツキ被膜を有する腕時計ケース用基材 をイオンプレーティング装置内に取り付け、 アルゴン雰囲気中で基 材表面をボンバードクリーニングした。
次いで、 この基材表面に形成された銅一錫合金メツキ被膜表面に、 厚み 0. の白色色調を有する炭化チタンメツキ被膜をイオン プレーティ ング法 (熱陰極法) により下記の成膜条件で形成した。 <成膜条件 >
蒸発源: チタン
ガス : C 2H4と CH4と C 6H6との混合ガス
成膜圧力 : 0. 1 5〜0. 6 5 P a
ァノード電圧: 40〜 6 0 V
バイァス電圧: G r a n d 2 0 0 V
フィラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2 5〜0. 3 5mA
次いで'、 この基材表面に形成された炭化チタンメツキ被膜表面に、 厚み 0. 3 mの白色色調を有するステンレス鋼被膜をイオンプレ —ティング法により下記の成膜条件で形成し、 腕時計ケースを得た。 <成膜条件 >
蒸発源 : ニッケルレスのフェライ ト系ステンレス鋼 S US
444
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜0. 6 5 P a
ァノード電圧: 40〜 5 0 V
バイァス電圧: G r a n d〜一 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2〜0. 3 mA
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。 (実施例 Ί )
まず、 マグネシウム合金 (組成 : A l = 8. 3〜 : L I . 0 %、 Ζ η = 0. 3〜 1. 0 %、 Μ η = 0. 1 3〜 0. 5 %、 残部 M g) を 機械加工して得られたィャリング用基材を有機溶剤で洗浄 · 脱脂し た。
次いで、 このイヤリング用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 8 mの銅メ ツキ被膜をこの基材表面に形成し、 水洗した。
《銅メツキ》
<メツキ液組成 >
ピ口リン酸銅 1 0 0 g / 1
ピロリン酸カリウム 3 4 0 g / 1
クェン酸アンモニゥム 1 0 g/ 1
アンモニア 3 g/ 1
<メツキ条件 >
P H 8. 5
浴温 5 0 °C
電流密度 (D k) 3 A/ d m2
次いで、 この銅メツキ被膜を有する基材を下記の組成を有するメ ツキ液中に浸漬し、 下記のメツキ条件で電気メツキして厚さ 2 /m の銅—錫—パラジウム合金メッキ被膜を基材表面に形成し、 水洗し た。
《銅一錫一パラジウム合金メッキ》
<メツキ液の組成 > 錫酸ナトリウム三水塩 (N a 2S n〇3 · 3 H2〇) 6 0 g/ 1
(S n換算量 2 6. 7 g/ 1 ) シアン化銅 (C u CN) 2 0 g/ 1
(C u換算量 1 4. 2 g/ 1 ) シアン化パラジウム力リゥム水和物(K 2 P d (C N) 4 · 3 H20)
3 0 g/ 1
(P d換算量 9 3 g/ 1 ) アミ ドスルホン酸 (NH2S〇2H) 1 0 g/ 1 シアン化力リウム (フリ一) 3 0 g/ 1 水酸化力リウム 6 0 g/ 1 <メツキ条件 >
P H 1 2. 5〜 1 3 液温 5 0〜 5 50C
電流密度 (D k) 2 A/ d m2
成膜速度 0. 3 3 m/分 次いで、 この基材をイオンプレーティング装置内に取り付け、 ァ ルゴン雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成された銅—錫—パラジウム合金メッ キ被膜表面に、 厚み 1. 2 の白色色調を有するステンレス鋼被 膜をイオンプレーティ ング法により下記の成膜条件で形成し、 ィャ リングを得た。
<成膜条件 >
蒸発源: ニッケルレスのフェライ ト系ステンレス鋼 S US
444 ガス : アルゴンガス
成膜圧力 : 0. 1 5〜0. 6 5 P a
ァノ一ド電圧: 40〜 5 0 V
バイァス電圧: G r a n d〜一 2 0 0V
フイラメント電流: 5 0 A
EZB : 1 0 k V、 0. 2〜0. 3 mA
得られたィャリングについて、 メツキ被膜の耐食性試験を上記方 法に従って行なった。 .その結果、 レイティ ングナンパが 9. 8以上 で、 合格であった。
(実施例 8)
まず、 黄銅を機械加工して得られたネックレス用基材を有機溶剤 で洗浄 ·脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 0. 1〜 0. 2 imのニッケ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。
《ニッケルストライクメツキ》
<メッキ液の組成 >
塩化ニッケル 1 80 g
塩酸 1 00 g
<メツキ条件 >
ρ H <
(具体的には、 0. 3 未滴) 液温 常温 電流密度 (D k) 3〜 5A/dm2 時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計ケー ス用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み 4 /_imのニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
くメッキ液の組成 >
硫酸ニッケル 2 50 g / 1 塩化ニッケル 7 5 1 ホウ酸 5 0 g Z 1 光沢剤 (ェバラユージライ ト社製の光沢剤 # 6 1 )
0. 5 m 1 / 1
<メツキ条件 >
ρ H 3. 6〜 4. 0 液温 40〜 5 0
電流密度 (D k ) 3 A/ d m2
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンパードクリーニングした。
次いで、 この基材表面に形成されたニッケルメツキ被膜表面に、 厚み 1. 0 μπιの白色色調を有するステンレス鋼被膜をスパッタリ ング法により下記の成膜条件で形成した。
<成膜条件 >
夕一ゲッ ト : オーステナイ ト系ステンレス鋼 SUS 304 スパッ夕ガス : アルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
パイァス電圧 : G r a n d〜一 3 0 0 V
次に、 ネックレス用基材表面に形成されたステンレス鋼被膜表面 の所望の部分に、 エポキシ系樹脂からなる有機マスク剤を印刷して、 マスキング層を形成した。
次いで、 マスキング層を形成したネックレス用基材をイソプロピ ルアルコールで洗浄した後、 スパッタリング装置内に配置し、 ネッ クレス用基材表面に形成されたステンレス鋼被膜の表面、 およびマ スキング層の表面に、 厚み 0. 2 mの窒化チタン被膜をスパッ夕 リング法により下記の成膜条件で形成した。
<成膜条件 >
ターゲッ ト : チタン (T i )
スパッ夕ガス : 窒素ガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイアス電圧: G r a n d〜一 3 0 0 V
次いで、 ェチルメチルケトン (EMK) に蟻酸および過酸化水素 を添加した剥離溶液に浸漬しすることによりマスキング層を膨潤さ せ、 リフ トオフ法により、 マスキング層およびその上に形成された 窒化チタン被膜を剥離し、 白色色調を有するステンレス鋼被膜と金 色色調を有する窒化チタン被膜とからなるツートーンの最外層被膜 (仕上げメツキ被膜) が形成されたネックレスを得た。 得られたネックレスについて、 メツキ被膜の耐食性試験を上記方 法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以上 で、 合格であった。
(実施例 9 )
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 · 脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸潰し、 下 記のメツキ条件で電気メツキして厚さ 0. 1〜 0. 2 a mの二、リゲ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。
《ニッケルストライクメツキ》
<メツキ液の組成 >
塩化ニッケル 1 8 0 g/ 1 塩酸 1 0 0 g/ 1 光沢剤 (ェバラユージライ ト社製の光沢剤 # 6 1 )
0. 5 m 1 / 1
<メツキ条件 >
P H < 1
(具体的には、 0. 3 未満) 液温 rft ¾IIL
電流密度 (D k) 3〜 5 A/ d m2
時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計バン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み 2 のニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
<メツキ液の組成 >
硫酸ニッケル 2 5 0 g Z 1 塩化ニッケル 7 5 g Z 1 ホウ酸 5 0 1 光沢剤 (ェバラユージライ ト社製の光沢剤 # 6 1 )
0 . 5 m 1 / 1
<メツキ条件 >
p H 3 . 6〜 4 . 0 液温 4 0〜 5 0 °C
電流密度 (D k ) 3 A / d m 2
次いで、 このニッケルメツキ被膜を有する腕時計バンド用基材を 下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電気 メツキして厚さ 2 mのニッケル一リン合金メッキ被膜をニッケル メツキ被膜表面に形成し、 水洗した。
《ニッケル一リン合金メッキ》
<メツキ液の組成 >
硫酸ニッケル 4 0〜 5 0 g / 1 水酸化ニッケル 1 0〜 2 0 g / 1 次亜リン酸ナトリゥム 3〜: L 0 g / 1 リン酸 1 0〜 2 0 m 1 1 クェン酸ナトリウム 3 0〜 5 0 g / 1 <メツキ条件 >
P H 2. 6〜 3. 2 液温 5 5 °C
電流密度 (D k) 2 A/ d m2
次いで、 このニッケル—リン合金メツキ被膜を有する腕時計バン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚さ 0. 1〜 0. 2 mのパラジウム一二ッ ケル合金メッキ被膜 (フラッシュメツキ) をニッケル—リン合金メ ツキ被膜表面に形成し、 水洗、 乾燥した。
《パラジウム—ニッケル合金メツキ》
<メツキ液の組成 >
パラジウム 7. 5 g/ 1
ニッケル 1 2. 5 g/ 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 1. 0 A/ d m2
比重 (B e ) 1 2. 5
成膜速度 4. 2分/ 1 urn
次いで、 この基材をスパッタリ ング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンパードクリーニングした。
次いで、 この基材表面に形成されたパラジウム一ニッケル合金メ ツキ被膜表面に、 厚み 0. 2〜 0. 5 mのチタンメツキ被膜をス パッタリング法により下記の成膜条件で形成した。 <成膜条件 >
ターゲッ ト : チタン
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜一 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 4 ΠΙの炭化チタンメッキ被膜をスパッタリング法により下 記の成膜条件で形成した。
<成膜条件 >
タ一ゲッ ト : チタン
スパッ夕ガス : C 2H4と CH4と C 6H6との混合ガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイァス電圧: G r a n d〜一 3 0 0 V
次いで、 この基材表面に形成された炭化チタンメツキ被膜表面に、 厚み 0. 3 mの白色色調を有するステンレス鋼被膜をスパッ夕リ ング法により下記の成膜条件で形成し、 腕時計パンドを得た。
<成膜条件 >
夕一ゲッ ト : ォ一ステナイ ト系ステンレス鋼 S U S 3 04 スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイァス電圧 : G r a n d〜― 3 0 0 V 得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 0 )
実施例 9において、 チタンメツキ被膜、 炭化チタンメツキ被膜お よびステンレス鋼被膜の形成方法としてスパッ夕リ ング法の代わり にアーク法を用いた以外は、 実施例 9 と同様にして、 チタンメツキ 被膜、 炭化チタンメツキ被膜および厚み 0. 3 zmの白色色調を有 するステンレス鋼被膜を形成し、 腕時計バンドを得た。 これらのァ —ク法の成膜条件は下記の通りであった。
<チタンメツキ被膜の成膜条件 >
ターゲッ ト : チタン
ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜 1 0 0 A
バイァス電圧: — 5 0 2 0 0 V
<炭化チタンメツキ被膜の成膜条件 >
タ一ゲッ 卜 : チタン
ガス : CH4 と C 2H4と C 6H6との混合ガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜: L 0 0 A
パイァス電圧: — 5 0〜一 2 0 0 V
鋼被膜の成膜条件 >
ターゲット : オーステナイ ト系ステンレス鋼 S U S 3 04 ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜: L 0 0 A
バイアス電圧 : — 5 0〜― 2 0 0 V
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 1 )
実施例 9において、 チタンメツキ被膜、 炭化チタンメツキ被膜お よびステンレス鋼被膜の形成方法としてスパッタリング法の代わり にイオンプレーティング法を用いた以外は、 実施例 9と同様にして、 チタンメツキ被膜、 炭化チタンメツキ被膜および厚み 0. 3 mの 白色色調を有するステンレス鋼被膜を形成し、 腕時計バンドを得た。 これらのイオンプレーティング法の成膜条件は下記の通りであった。 <チタンメツキ被膜の成膜条件 >
蒸発源: チタン
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノード電圧: 4 0〜 5 0 V
バイァス電圧: G r a n d〜― 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2 5〜 0. 3 5 mA
<炭化チタンメツキ被膜の成膜条件 >
蒸発源: チタン ガス : CH4 と C 2H4と C 6H6との混合ガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
7ノード電圧: 4 0〜 5 0 V
パイァス電圧: G r a n d〜― 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2 5〜 0. 3 5 mA
<ステンレス鋼被膜の成膜条件 >
蒸発源 : オーステナイ ト系ステンレス鋼 S U S 3 0 4
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノード電圧: 4 0〜 5 0 V
バイァス電圧: G r a n d 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2〜 0. 3 mA
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 2 )
まず、 黄銅を機械加工して得られた腕時計ケース用基材を有機溶 剤で洗浄 · 脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 0. 1 ~ 0. 2 j mのエッケ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。 《ニッケルス トライクメツキ》
<メツキ液の組成 >
塩化ニッケル 1 8 0 g / 1
塩酸 1 0 0 g / 1
<メツキ条件 >
H < 1
(具体的には、 0 未滴) 液温 常温
電流密度 (D k ) 3〜 5 A Z d m
時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計ケ一 ス用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み のニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
<メッキ液の組成 >
硫酸ニッケル 2 5 0 g / 1 塩化ニッゲル 7 5 g / 1 ホウ酸 5 0 g / 1 光沢剤 (エバラュ一ジライ ト社製の光沢剤 # 6 1 )
0 . 5 m 1 / 1
<メツキ条件 >
P H 3 . 6〜 4 . 0 液温 4 0〜 5 0。C 電流密度 (D k) 3 A/dm2
次いで、 このニッケルメツキ被膜を有する腕時計ケース用基材を 下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電気 メツキして厚さ 2 mのニッケル一リン合金メッキ被膜をニッケル メツキ被膜表面に形成し、 水洗した。
《ニッケル一リン合金メッキ》
<メツキ液の組成〉
硫酸ニッケル 4 0〜 5 0 g Z 1 水酸化ニッケル 1 0〜 2 0 g/ 1 次亜リン酸ナトリウム 3〜: L 0 g / 1 リン酸 1 0〜 4 0 m 1ハ クェン酸ナトリゥム 3 0〜 5 0 gノ 1 <メツキ条件 >
P H 2. 6〜 3. 2 液温 5 5 °C
電流密度 (D k) 2 A/ d m2
次いで、 このニッケル一リン合金メツキ被膜を有する腕時計ケー ス用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚さ 0. 1〜 0. 2 のパラジウム一二ッ ケル合金メッキ被膜 (フラッシュメツキ) をニッケル一リン合金メ ツキ被膜表面に形成し、 水洗、 乾燥した。
《パラジウム—ニッケル合金メツキ》
<メツキ液の組成〉
パラジウム 7. 5 g / 1 ニッケル 2. 5 g/ 1 <メツキ条件 >
p H 8
液温 3 2 °C
電流密度 (D k) 1. 0 A/ d m2
比重 (B e ) 1 2. 5
成膜速度 4 · 2分 Z 1 rn
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーエングした。
次いで、 この基材表面に形成されたパラジウム—ニッケル合金メ ツキ被膜表面に、 厚み 0. 2〜 0. 5 mのチタンメツキ被膜をス パッ夕リング法により下記の成膜条件で形成した。
<成膜条件 >
ターゲッ ト : チタン
スパッ夕ガス : 7ルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜― 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 3 mの白色色調を有するステンレス鋼被膜をスパッ夕リン グ法により下記の成膜条件で形成し、 腕時計ケースを得た。
ぐ成膜条件 >
夕一ゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 04 スパッ夕ガス : 7ルゴンガス 成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜― 3 0 0 V
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 3 )
実施例 1 2において、 チタンメッキ被膜およびステンレス鋼被膜 の形成方法としてスパッタリング法の代わりにアーク法を用いた以 外は、 実施例 1 2と同様にして、 チタンメツキ被膜および厚み 0. 3 mの白色色調を有するステンレス鋼被膜を形成し、 腕時計ケー スを得た。 これらのアーク法の成膜条件は下記の通りであった。 <チタンメツキ被膜の成膜条件 >
夕一ゲッ 卜 : チタン
ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜 1 0 0 A
バイアス電圧: 一 5 0〜― 2 0 0 V
レス鋼被膜の成膜条件 >
ターゲッ 卜 : オーステナイ ト系ステンレス鋼 S U S 3 04 ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
タ一ゲッ ト電流 : 8 0〜: L 0 0 A
バイアス電圧: — 5 0 2 0 0 V 得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 4 )
実施例 1 2において、 チタンメツキ被膜およびステンレス鋼被膜 の形成方法としてスパッ夕リング法の代わりにイオンプレーティン グ法を用いた以外は、 実施例 1 2と同様にして、 チタンメツキ被膜 および厚み 0. 3 zzmの白色色調を有するステンレス鋼被膜を形成 し、 腕時計ケースを得た。 これらのイオンプレーティ ング法の成膜 条件は下記の通りであった。
<チタンメツキ被膜の成膜条件 >
蒸発源: チタン
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノ一ド電圧: 4 0〜 6 0 V
バイアス電圧: G r a n d 2 0 0 V
フィラメント電流 : 5 0 A
E/B : 1 0 k V, 0. 2 5〜 0. 3 5 mA
岡被膜の成膜条件 >
蒸発源 : オーステナイ ト系ステンレス鋼 S US 3 0 4
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノ一ド電圧: 4 0〜 5 0 V
バイアス電圧: G r a n d 2 0 0 V フイラメント電流: 5 0 A
E/B : 1 0 kV、 0. 2〜0. 3mA
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 5)
まず、 亜鉛を機械加工して得られた腕時計パンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この時計バンド用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 2 mの銅一 錫合金メッキ被膜をこの基材表面に形成し、 水洗した。
《銅一錫合金メツキ》
<メツキ液の組成〉
銅 1 5 g/ 1
錫 1 5 g/ 1
亜鉛 1 gZ 1
シアン化力リウム (フリー) 30 ± 2 g
<メツキ条件 >
P H 1 2. 7
液温 5 0。C
電流密度 (D k) 2 AZdm2
成膜速度 3分ノ 1 m
次いで、 この銅一錫合金メツキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2 mの銅—錫一パラジウム合金メッキ被膜を銅 一錫合金メッキ被膜表面に形成し、 水洗した。
《銅一錫—パラジウム合金メツキ》
くメッキ液の組成 >
錫酸ナトリウム三水塩 (N a 2 S n O 3 · 3 H 2〇) 6 0 g / 1
(S n換算量 2 6. 7 g/ 1 ) シアン化銅 2 0 gZ 1
(C u換算量 1 4. 2 g/ 1 ) シアン化パラジウム力リゥム水和物(K 2 P d (C Ν)4 · 3 H2〇)
3 0 g/ 1
(P d換算量 9 3 g/ 1 ) アミ ドスルホン酸 (NH2S〇2H) 1 0 gZ 1 シアン化カリウム (フリー) 3 0 g/ 1 水酸化力リウム 6 0 g / 1 <メツキ条件 >
p H 1 2 5 3
液温 5 0 5 5 °C
電流密度 (D k) 2 A/dm2
成膜速度 0. 3 3 mZ分
次いで、 この銅—錫—パラジウム合金メツキ被膜を有する腕時計 バンド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメ ツキ条件で電気メツキして厚み 0. 2 mのパラジウムストライク メツキ被膜 (フラッシュメツキ) を銅—錫一パラジウム合金メッキ 被膜表面に形成し、 水洗した。 《パラジウムストライクメツキ》
ぐメツキ液の組成 >
純パラジウム 1〜 3 g Z 1
<メツキ条件 >
PH 8
液温 3 2 °C
電流密度 (D k) 3〜 5 A/ d m
時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成されたパラジウムストライクメツキ 被膜表面に、 厚み 0. 2〜 0. 5 ^ mのチタンメツキ被膜をスパッ 夕リング法により下記の成膜条件で形成した。
<成膜条件 >
夕ーゲッ ト : チタン
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイァス電圧 : G r a n d 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 4 mの炭化チタンメツキ被膜をスパッタリング法により下 記の成膜条件で形成した。
<成膜条件 >
ターゲッ ト : チタン スパッ夕ガス : C2H4と CH4と C 6H6との混合ガス 成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d 3 0 0 V
次いで、 この基材表面に形成された炭化チタンメツキ被膜表面に、 厚み 0. 5 mの白色色調を有するステンレス鋼被膜をスパッタリ ング法により下記の成膜条件で形成し、 腕時計バンドを得た。
く成膜条件 >
夕一ゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S U S
444
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧 : G r a n d 3 0 0 V
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 1 6 )
実施例 1 5において、 チタンメツキ被膜、 炭化チタンメツキ被膜 および白色色調を有するステンレス鋼被膜の形成方法としてスパッ タリ ング法の代わりにアーク法を用いた以外は、 実施例 1 5と同様 にして、 チタンメツキ被膜、 炭化チタンメツキ被膜および厚み 0. 5 t mの白色色調を有するステンレス鋼被膜を形成し、 腕時計バン ドを得た。 これらのアーク法の成膜条件は下記の通りであった。 <チタンメツキ被膜の成膜条件 >
夕一ゲッ ト : チタン
ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜 1 0 0 A
バイアス電圧: ー 5 0 2 0 0 V
<炭化チタンメッキ被膜の成膜条件 >
夕ーゲッ ト : チタン ガス : C 2H4と CH4と C 6H6との混合ガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜 1 0 O A
バイアス電圧: — 5 0 2 0 0 V
<ステンレス鋼被膜の成膜条件 >
ターゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S U S
444
ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流 : 8 0〜: L 0 0 A
パイァス電圧: — 5 0 2 0 0 V
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 1 7 )
実施例 1 5において、 チタンメツキ被膜、 炭化チタンメツキ被膜 およびステンレス鋼被膜の形成方法としてスパッ夕リ ング法の代わ りにイオンプレーティ ング法を用いた以外は、 実施例 1 5 と同様に して、 チタンメツキ被膜、 炭化チタンメツキ被膜および厚み 0. 5 mの白色色調を有するステンレス鋼被膜を形成し、 腕時計パンド を得た。 これらのイオンプレーティ ング法の成膜条件は下記の通り であった。
<チタンメツキ被膜の成膜条件 >
蒸発源 : チタン
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノード電圧 : 4 0〜 6 0 V
バイァス電圧 : G r a n d 2 0 0 V
フイラメント電流 : 5 0 A
E/B : 1 0 kV、 0. 2 5〜 0. 3 5 mA
<炭化チタンメツキ被膜の成膜条件 >
蒸発源 : チタン
ガス : C 2H4と CH4と C 6H6との混合ガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノード電圧 : 4 0〜 6 0 V
バイアス電圧 : G r a n d〜― 2 0 0 V
フィラメント電流 : 5 0 A
E/B : 1 0 k V, 0. 2 5〜 0. 3 5mA
岡被膜の成膜条件 >
蒸発源 : ニッケルレスのフェライ ト系ステンレス鋼 S US 444
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜0. 6 5 P a
ァノ一ド電圧 : 4 0〜 5 0 V
バイァス電圧: G r a n d〜一 2 0 0 V
フィラメント電流 : 5 0 A
E/B : 1 0 k V、 0. 2〜0. 3 mA
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 1 8 )
まず、 亜鉛を機械加工して得られた腕時計ケース用基材を有機溶 剤で洗浄,脱脂した。
次いで、 この時計ケース用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 2 の銅一 錫合金メッキ被膜をこの基材表面に形成し、 水洗した。
《銅一錫合金メッキ》
<メツキ液の組成 >
銅 1 5 gZ 1
錫 1 5 g/ 1
亜鉛 1 gZ 1
シアン化カリウム (フリー) 30 ± 2 g
<メツキ条件 >
P H 2. 7 液温 50 °C
電流密度 (D k) 2 A/ d m2
成膜速度 3分ノ 1 m
次いで、 この銅一錫合金メツキ被膜を有する腕時計ケース用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メッキして厚み 2 mの銅一錫一パラジゥム合金メッキ被膜を銅 一錫合金メッキ被膜表面に形成し、 水洗した。
《銅—錫一パラジウム合金メッキ》
くメツキ液の組成 >
錫酸ナトリウム三水塩 (N a 2S n〇 3 · 3 H2〇) 6 0 g / 1
(S n換算量 26. 7 g/ 1 ) シアン化銅 2 0 gZ 1
(C u換算量 14. 2 g/ 1 ) シアン化パラジウムカリウム水和物(K2P d (C N)4 · 3 H20)
3 0 gZ 1 (P d換算量 9. 3 g/ 1 ) アミ ドスルホン酸 (NH2S〇2H) l O g/ 1 シアン化カリウム (フリー) 3 0 g/ 1 水酸化力リウム 6 0 1
<メツキ条件 >
P H 1 2. 5〜 1 3
液温 5 0〜 5 5 °C
電流密度 (D k) 2 A/ d m2
成膜速度 0. 3 3 m/分 次いで、 この銅一錫—パラジウム合金メツキ被膜を有する腕時計 ケース用基材を下記の組成を有するメツキ液中に浸潰し、 下記のメ ツキ条件で電気メツキして厚み 0 . 1 〜 0 . 2 mの金ス トライク メツキ被膜 (フラッシュメツキ) を銅一錫一パラジウム合金メッキ 被膜表面に形成し、 水洗した。
《金ストライクメツキ》
<メツキ液の組成 >
金 3〜 5 g Z 1
硫酸 1 0 g / 1
<メツキ条件 >
P H 1 <
(具体的には、 0 3 未満) 液温 2 0〜 3 5 0C
電流密度 (D k ) 3〜 5 A / d m
時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成された金ストライクメツキ被膜表面 に、 厚み 0 . 2〜 0 . 5 mのチタンメツキ被膜をスパッタリング 法により下記の成膜条件で形成した。
ぐ成膜条件 >
夕一ゲッ ト : チタン
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0 . 2〜 0 . 9 P a ターゲッ ト電力 : 1. 0〜 2. 0 kW
パイァス電圧: G r a n d〜一 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 3 mの白色色調を有するステンレス鋼被膜をスパッタリン グ法により下記の成膜条件で形成し、 腕時計ケースを得た。
<成膜条件 >
夕一ゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S U S
444
スパッ夕ガス : 7ルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイァス電圧: G r a n d〜一 3 0 0 V
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 1 9 )
実施例 1 8において、 チタンメッキ被膜およびステンレス鋼被膜 の形成方法としてスパッタリング法の代わりにアーク法を用いた以 外は、 実施例 1 8 と同様にして、 チタンメツキ被膜および厚み 0. 3 mの白色色調を有するステンレス鋼被膜を形成し、 腕時計ケー スを得た。 これらのアーク法の成膜条件は下記の通りであった。 <チタン被膜の成膜条件 >
ターゲッ ト : チタン
ガス : アルゴンガス 成膜圧力 : 1. 0〜 3. 0 P a
夕一ゲッ ト電流: 8 0〜 1 0 O A
バイアス電圧: — 5 0〜一 2 0 0 V
レス鋼被膜の成膜条件 >
ターゲッ ト : ニッケルレスのフェライ ト系ステンレス鋼 S U S
444
ガス : アルゴンガス
成膜圧力 : 1. 0〜 3. 0 P a
ターゲッ ト電流: 8 0〜: L 0 0 A
バイアス電圧: — 5 0〜― 2 0 0 V
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 2 0 )
実施例 1 8において、 チタンメツキ被膜およびステンレス鋼被膜 の形成方法としてスパッタリング法の代わりにイオンプレーティン グ法を用いた以外は、 実施例 1 2 と同様にして、 チタンメツキ被膜 および厚み 0. 3 /mの白色色調を有するステンレス鋼被膜を形成 し、 腕時計ケースを得た。 これらのイオンプレーティ ング法の成膜 条件は下記の通りであった。
<チタンメツキ被膜の成膜条件 >
蒸発源 : チタン
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a ァノード電圧: 4 0〜 6 0 V
バイァス電圧: G r a n d〜― 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2 5〜 0. 3 5mA
鋼被膜の成膜条件 >
蒸発源 : ニッケルレスのフェライ ト系ステンレス鋼 S US
444
ガス : アルゴンガス
成膜圧力 : 0. 1 5〜 0. 6 5 P a
ァノード電圧: 4 0〜 5 0 V
バイァス電圧: G r a n d〜― 2 0 0 V
フイラメント電流: 5 0 A
E/B : 1 0 k V、 0. 2〜 0. 3 mA
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 2 1 )
まず、 黄銅を機械加工して得られた腕時計パンド用基材を有機溶 剤で洗浄 · 脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸潰し、 下 記のメツキ条件で電気メツキして厚み 3 i mの銅一錫合金メッキ被 膜 (合金比 : C u 7 5重量%、 S n 2 0重量%、 Z n 5重量%) を 基材表面に形成し、 水洗した。 なお、 銅一錫合金メッキ被膜には、 通常、 少量の亜鉛を含むものも含まれる。 《銅一錫合金メツキ》
<メツキ液の組成 >
シアン化銅 1 5 gノ 1 (C u換算) 錫酸ナトリウム 1 5 g/ 1 (S n換算) シアン化亜鉛 1 g/ 1 (Z n換算) KOH 20 g/ 1
K C N (フリー) 3 0 g / 1
光沢剤 B (商品名) 1 0 m 1 1
(日本新金属社製)
<メツキ条件 >
H 1 2. 5 (at 5 0 °C)
液温 50 °C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 2分
メツキ液の撹拌 力ソードロッカー方式によるラックの回転 次いで、 この銅—錫合金メッキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2. 5 mの銅一錫一亜鉛合金メッキ被膜 (合金 比 : C u 5 0重量%、 S n 3 5重量%、 Z n l 5重量%) を銅一錫 合金メッキ被膜表面に形成し、 水洗した。
《銅一錫一亜鉛合金メツキ》
<メツキ液の組成 >
シアン化銅 8. 5 g/ 1 (C u換算) 錫酸ナトリウム 34. O gZ l (S n換算) シアン化亜鉛 1. 0 g/ 1 (Z n換算) KOH 2 0 g/ 1
K C N (フリー) 5 0 g/ 1
光沢剤 1 一 1 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 社製)
光沢剤 2 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 社製)
<メツキ条件 >
PH 1 3. 0 (at 6 0で)
液温 6 0. 0。C
電流密度 (D k ) 2. 0 A/ d m2
電解時間 1 5分
次いで、 この銅—錫一亜鉛合金メツキ被膜を有する腕時計バンド 用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条 件で電気メツキして厚み 0. 1〜 0. 2 mの金ストライクメツキ 被膜 (フラッシュメツキ) を銅—錫一亜鉛合金メッキ被膜表面に形 成し、 水洗した。
《金ストライクメツキ》
<メツキ液の組成 >
シアン化第 2金カリウム (KAu (CN)4) 2. 0 g/ 1
(Au換算) 硫酸 ( 1 0 %水溶液) 1 0 / 1 <メツキ条件 >
PH 0. 3 液温 室温
電流密度 (D k) 3 AZdm2
電解時間 1 5秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成された金ス トライクメツキ被膜表面 に、 厚み 0. 5 の白色色調を有するステンレス鋼被膜をスパッ 夕リング法により下記の成膜条件で形成し、 腕時計バンド得た。 <成膜条件 >
夕一ゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 1 0 S スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜― 3 0 0 V
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 2 2 )
まず、 亜鉛を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この時計バンド用基材を、 下記の組成を有するメツキ液中 に浸漬し、 下記のメツキ条件で電気メツキして厚み 8 ^πιの銅メッ キ被膜をこの基材表面に形成し、 水洗した。
《銅メツキ》 <メツキ液組成〉
ピロリン酸銅 1 0 0 g/ 1
ピロリン酸カリウム 340 g / 1
クェン酸アンモニゥム 1 0 g/ 1
アンモニア 3 g/ 1
<メツキ条件 >
PH 8. 5
浴温 5 0 °C
電流密度 (D k) 3 A/ d m2
次いで、 この銅メッキ被膜を有する基材を下記の組成を有するメ ツキ液中に浸漬し、 下記のメツキ条件で電気メツキして厚み 3 //m の銅一錫合金メツキ被膜 (合金比 : C u 7 5重量%、 S n 2 0重量 %、 11 5重量%) を基材表面に形成し、 水洗した。
《銅一錫合金メッキ》
くメツキ液の組成 >
シアン化銅 1 5 g/ 1 (C u換算) 錫酸ナ卜リウム 1 5 g/ 1 (S n換算) シアン化亜鉛 1 g/ 1 (Z n換算) KOH 20 g/ 1
K C N (フリー) 30 g/ 1
光沢剤 B (商品名) 1 0 m 1 / 1
(日本新金属社製)
<メツキ条件 >
PH 2. 5 (at 5 0。C) 液温 5 0 °C
電流密度 (D k) 2. 0 A dm2
電解時間 1 2分
メッキ液の撹拌 力ソードロッカー方式によるラックの回転 次いで、 この銅—錫合金メツキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2. 5 /xmの銅一錫一亜鉛合金メッキ被膜 (合金 比 : C u 5 0重量%、 S n 3 5重量%、 Z n l 5重量%) を銅—錫 合金メッキ被膜表面に形成し、 水洗した。
《銅—錫一亜鉛合金メッキ》
<メツキ液の組成 >
シアン化銅 8. 5 gZ 1 (C u換算) 錫酸ナトリゥム 3 4. 0 g/ 1 ( S n換算) シアン化亜鉛 1. 0 g/ 1 (Z n換算) KOH 2 0 g/ 1
K C N (フリー) 5 0 g / 1
光沢剤 1 一 1 (商品名) 0 5 m 1 / 1
(Degussa Japan. Co. Ltd 社製)
光沢剤 2 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 社 )
<メツキ条件 >
p H 1 3. 0 (at 6 0 °C)
液温 6 0. 0 °C
電流密度 (D k) 2. O A/dm2 電解時間 1 5分
次いで、 この銅一錫一亜鉛合金メツキ被膜を有する腕時計バンド 用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条 件で電気メツキして厚み 0 . 2 mのパラジウムストライクメツキ 被膜 (フラッシュメツキ) を銅一錫—パラジウム合金メッキ被膜表 面に形成し、 水洗した。
《パラジウムストライクメツキ》
<メツキ液の組成 >
純パラジウム 3 g / 1
<メツキ条件 >
P H 8
液温 ' 3 2。C
電流密度 (D k ) 3〜 5 A / d m 2
時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成されたパラジウムストライクメツキ 被膜表面に、 厚み 1 . 0 mの白色色調を有するステンレス鋼被膜 をスパッ夕リング法により下記の成膜条件で形成し、 腕時計バンド を得た。
<成膜条件 >
夕一ゲッ ト : オーステナィ ト系ステンレス鋼 S U S 3 1 0 S スパッ夕ガス : ァルゴンガス
成膜圧力 : 0 . 2〜 0 . 9 P a ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイァス電圧: G r a n d〜一 3 0 0 V
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9. 8以 上で、 合格であった。
(実施例 2 3)
まず、 マグネシウム合金 (組成 : A l = 8. 3〜; L 1. 0 %、 Z n = 0. 3〜 1. 0 %、 M n = 0. 1 3〜 0. 5 %、 残部 M g) を 機械加工して得られたィャリング用基材を有機溶剤で洗浄 ·脱脂し た。
次いで、 このイヤリング用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメッキ条件で電気メッキして厚み 8 μπιの銅メ ツキ被膜をこの基材表面に形成し、 水洗した。
《銅メツキ》
<メツキ液組成 >
ピロリン酸銅 1 0 0 g/ 1
ピロリン酸カリウム 3 4 0 g / 1
クェン酸アンモニゥム 1 0 g/ 1
アンモニア 3 g/ 1
<メツキ条件 >
Ρ Η 8. 5
浴温 5 0 °C
電流密度 (D k) 3 A/ d m2
次いで、 この銅メツキ被膜を有する基材を下記の組成を有するメ ツキ液中に浸漬し、 下記のメツキ条件で電気メツキして厚み 2. 5 の銅—錫一亜鉛合金メツキ被膜 (合金比 : C u 5 0重量%、 S n 3 5重量%、 ∑ 11 1 5重量%) を基材表面に形成し、 水洗した。 《銅—錫一亜鉛合金メツキ》
<メッキ液の組成 >
シアン化銅 8. 5 gZ 1 (C u換算) 錫酸ナトリゥム 3 4. 0 g Z 1 (S n換算) シアン化亜鉛 1. 0 g/ 1 (Z n換算) KOH 2 0 g/ 1
K C N (フリー) 5 0 g/ 1
光沢剤 1 一 1 (商品名) 0. 5 m 1 / 1
(Deguss a Japan. Co. Ltd 社製)
光沢剤 2 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 千土製)
<メツキ条件 >
P H 1 3. 0 (at 6 0 °C)
液温 6 0. 0。C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 5分
次いで、 この基材をイオンプレーティ ング装置内に取り付け、 ァ ルゴン雰囲気中で基材表面をボンバードクリーエングした。
次いで、 この基材表面に形成された銅一錫一亜鉛合金メツキ被膜 表面に、 厚み 1. 2 mの白色色調を有するステンレス鋼被膜をス パッ夕リング法により下記の成膜条件で形成し、 イヤリングを得た。 <成膜条件 >
蒸発源: オーステナイ ト系ステンレス鋼 S U S 3 1 0 S ガス : アルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
パイァス電圧: G r a n d〜― 3 0 0 V
得られたィャリングについて、 メツキ被膜の耐食性試験を上記方 法に従って行なった。 その結果、 レイティングナンパが 9. 8以上 で、 合格であった。
(実施例 2 4 )
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 · 脱脂した。
次いで、 この時計バンド用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 3 mの銅— 錫合金メッキ被膜 (合金比 : C u 7 5重量%、 S n 2 0重量%、 Z n 5重量%) をこの基材表面に形成し、 水洗した。
《銅一錫合金メツキ》
<メツキ液の組成 >
シアン化銅 1 5 gZ l (C u換算) 錫酸ナトリウム 1 5 g/ l (S n換算) シアン化亜鉛 1 X 1 ( Z n換算)
KOH 2 0 g / 1
KC N (フリー) 3 0 gZ l
光沢剤 B (商品名) 1 0 m 1 1 (日本新金属社製)
<メツキ条件 >
p H 1 2. 5 (at 5 0 °C)
液温 5 0。C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 2分
メツキ液の撹拌 力ソードロッカー方式によるラックの回転 次いで、 この銅一錫合金メツキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2. 5 2 mの銅一錫一亜鉛合金メッキ被膜 (合金 比 : C u 5 0重量%、 S n 3 5重量%、 Z n l 5重量%) を銅—錫 合金メッキ被膜表面に形成し、 水洗した。
《銅一錫一亜鉛合金メツキ》
<メツキ液の組成 >
シアン化銅 8. 5 g/ 1 (C u換算) 錫酸ナトリウム 3 4. 0 g / 1 (S n換算) シアン化亜鉛 1. 0 g/ 1 ( Z n換算) KOH 2 0 g/ 1
K C N (フリー) 5 0 g/ 1
光沢剤 1― 1 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 社製)
光沢剤 2 (商品名) 0. 5 m 1ノ 1
(Degussa Japan. Co. Ltd 社製)
<メツキ条件 > H 1 3. 0 (at 6 0 °C) 液温 6 0. 0
電流密度 (D k ) 2. 0 A/ dm2 電解時間 1 5分
次いで、 この銅—錫—亜鉛合金メッキ被膜を有する腕時計パンド 用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条 件で電気メッキして厚み 0. 2 mのパラジウムストライクメツキ 被膜 (フラッシュメツキ) を銅一錫一亜鉛合金メッキ被膜表面に形 成し、 水洗した。
《パラジウムストライクメツキ》
<メツキ液の組成 >
純パラジウム 1〜 3 g Z 1 <メツキ条件 >
P H 8 液温 3 2
電流密度 (D k) 3〜 5 A/ dm2 時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成されたパラジウムストライクメツキ 被膜表面に、 厚み 0. 2〜 0. 5 ^ mのチタンメツキ被膜をスパッ 夕リング法により下記の成膜条件で形成した。
<成膜条件 >
夕ーゲッ 卜 : チ夕ン スパッタガス : アルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
パイァス電圧: G r a n d〜一 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 4 mの炭化チタンメツキ被膜をスパッ夕リング法により下 記の成膜条件で形成した。
<成膜条件 >
夕ーゲッ 卜 : チタン
スパッ夕ガス : アルゴンと C 2 H 4との混合ガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイァス電圧: G r a n d 3 0 0 V
次いで、 この基材表面に形成された炭化チタンメツキ被膜表面に、 厚み 0. 5 mの白色色調を有するステンレス鋼被膜をスパッタリ ング法により下記の成膜条件で形成し、 腕時計バンドを得た。
<成膜条件 >
ターゲッ ト : オーステナイ ト系ステンレス鋼 S US 3 1 0 S .スパッ夕ガス : 7ルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d 3 0 0 V
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
(実施例 2 5 )
実施例 2 4において、 炭化チタンメツキ被膜をスパッ夕リング法 により形成する際に、 スパッ夕ガスとしてアルゴンと C H 4との混合 ガスを用いた以外は、 実施例 2 4と同様にして、 腕時計バンドを得 た。
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9 . 8以 上で、 合格であった。
(実施例 2 6 )
実施例 2 4において、 炭化チタンメツキ被膜をスパッタリング法 により形成する際に、 スパッタガスとしてアルゴンと C 6 H 6との混 合ガスを用いた以外は、 実施例 2 4と同様にして、 腕時計バンドを 得た。
得られた腕時計バンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9 . 8以 上で、 合格であった。
(実施例 2 7 )
まず、 亜鉛を機械加工して得られた腕時計ケース用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この時計ケース用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 3 の銅一 錫合金メツキ被膜 (合金比 : C u 7 5重量%、 S n 2 0重量%、 Z n 5重量%) をこの基材表面に形成し、 水洗した。 《銅一錫合金メツキ》
<メツキ液の組成 >
シアン化銅 1 5 g/ 1 (C u換算) 錫酸ナトリゥム 1 5 g/ 1 (S n換算) シアン化亜鉛 1 gZ 1 (Z n換算) KOH 20 g/ 1
K C N (フリー) 3 0 g/ 1
光沢剤 B (商品名) 1 0 m 1 / 1
(日本新金属社製)
<メツキ条件 >
PH 1 2. 5 (at 5 0 °C)
液温 5 0 °C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 2分
メツキ液の撹拌 力ソードロッカー方式によるラックの回転 次いで、 この銅一錫合金メッキ被膜を有する腕時計ケース用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2. 5 iimの銅—錫一亜鉛合金メッキ被膜 (合金 比 : C u 5 0重量%、 S n 3 5重量%、 Z n l 5重量%) を銅一錫 合金メッキ被膜表面に形成し、 水洗した。
《銅—錫一亜鉛合金メッキ》
<メツキ液の組成 >
シアン化銅 8. 5 g/ 1 (C u換算) 錫酸ナトリウム 34. O gZ l (S n換算) シアン化亜鉛 1. 0 g/ 1 (Z n換算) KOH 2 0 1
K C N (フリー) 5 0 gZ 1
光沢剤 1 一 1 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd fc製)
光沢剤 2 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. Ltd 社製)
<メツキ条件 >
p H 1 3. 0 (at 6 0 °C)
液温 6 0. 0 °C
電流密度 (D k) 2. 0 A / d m 2
電解時間 1 5分
次いで、 この銅一錫—亜鉛合金メツキ被膜を有する腕時計ケース 用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条 件で電気メツキして厚み 0. 1〜 0. 2 ^ mの金ス トライクメツキ 被膜 (フラッシュメツキ) を銅—錫—亜鉛合金メッキ被膜表面に形 成し、 水洗した。
《金ストライクメツキ》
<メツキ液の組成 >
シアン化第 2金カリウム (KAu (C N)4) 2. 0 g/ 1
(Au換算) 硫酸 ( 1 0 %水溶液) 1 0 1
<メツキ条件 >
H 0. 3〜丄 液温 室温
電流密度 (D k) 3 A/dm2
電解時間 1 5秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成された金ストライクメッキ被膜表面 に、 厚み 0. 2〜 0. 5 mのチタンメツキ被膜をスパッタリング 法により下記の成膜条件で形成した。
ぐ成膜条件 >
タ一ゲッ ト : チタン
スパッ夕ガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイアス電圧: G r a n d〜― 3 0 0 V
次いで、 この基材表面に形成されたチタンメツキ被膜表面に、 厚 み 0. 3 "mの白色色調を有するステンレス鋼被膜をスパッ夕リン グ法により下記の成膜条件で形成し、 腕時計ケースを得た。
く成膜条件 >
夕ーゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 1 0 S スパッ夕ガス : アルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
バイアス電圧: G r a n d〜― 3 0 0 V
得られた腕時計ケースについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9 . 8以 上で、 合格であった。
(実施例 2 8 )
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 · 脱脂した。
次いで、 この基材を下記の組成を有するメツキ液中に浸漬し、 下 記のメツキ条件で電気メツキして厚さ 0 . 1〜 0 . のエッケ ルストライクメツキ被膜 (フラッシュメツキ) を基材表面に形成し、 水洗した。
《ニッケルストライクメツキ》
くメツキ液の組成〉
塩化二ッケル 1 8 0 g 1
塩酸 1 0 0 g / 1
<メツキ条件 >
P H 0 . 3〜 1
液温 常温
電流密度 (D k ) 3〜 5 A / d
時間 3 0〜 6 0秒
次いで、 このニッケルストライクメツキ被膜を有する腕時計バン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メツキして厚み 2 z mのニッケルメツキ被膜をニッケル ストライクメツキ被膜表面に形成し、 水洗した。
《ニッケルメツキ》
<メツキ液の組成 > 硫酸ニッケル 2 5 0 g / 1 塩化ニッケル 7 5 g/ 1 ホウ酸 5 0 g/ 1 光沢剤 (ェパラユージライ ト社製の光沢剤 # 6 1 )
0. 5 m 1 / 1
<メツキ条件 >
p H 3. 6〜 4. 0
液温 4 0〜 5 0 °C
電流密度 (D k) 3 A/dm2
次いで、 このニッケルメツキ被膜を有する腕時計バンド用基材を 下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電気 メツキして厚さ 2 mのニッケル一リン合金メッキ被膜をニッケル メツキ被膜表面に形成し、 水洗した。
《ニッケルーリン合金メッキ》
<メッキ液の組成 >
硫酸ニッケル 4 0〜 5 0 g / 1
水酸化ニッケル 1 0〜 2 0 g Z 1
次亜リン酸ナトリウム 3〜: L 0 g /" 1
リン酸 1 0〜 2 0 m 1 / 1
クェン酸ナトリウム 3 0〜 5 0 g / 1
<メツキ条件 >
P H 2. 6〜 3. 2
液温 5 5 °C
電流密度 (D k) 2 A/ dm2 次いで、 このニッケル—リン合金メッキ被膜を有する腕時計バン ド用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ 条件で電気メッキして厚さ 0. 2 / mのパラジウムス トライクメッ キ被膜 (フラッシュメツキ) をニッケル一リン合金メッキ被膜表面 に形成し、 水洗、 乾燥した。
《パラジウムストライクメツキ》
<メツキ液の組成 >
純パラジウム 3 g/ 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 3〜 5 A/ dm2
時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバ一ドクリーニングした。
次いで、 この基材表面に形成されたパラジウムストライクメツキ 被膜表面に、 厚み 0. 5 mの白色色調を有するステンレス鋼被膜 をスパッ夕リング法により下記の成膜条件で形成した。
<成膜条件 >
ターゲッ ト : ォ一ステナイ ト系ステンレス鋼 S U S 3 1 0 S スパッタガス : ァルゴンガス
成膜圧力 : 0. 2〜 0. 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 k W
パイァス電圧: G r a n d 3 0 0 V 次いで、 この装置内で、 上記ニッケル—リン合金メッキ被膜に、 2 5 0 °C、 3 0分の条件で熱処理 (時効硬化処理) を施し、 腕時計 バンドを得た。
得られた腕時計パンドの表面硬度 (H V ; ビッカース硬度計、 2 5 g、 保持時間 1 0秒) は、 6 5 0であった。
また、 上記と同様にして、 厚み 2 /i mの白色色調を有するステン レス鋼被膜を形成し、 さらに、 ニッケル一リン合金メッキ被膜に上 記と同じ条件で熱処理を施し、 腕時計バンドを得た。
得られた腕時計バンドの表面硬度 (H V ; ピツカ一ス硬度計、 2 5 g、 保持時間 1 0秒) は、 6 5 0であった。
これらの腕時計バンドを、 下記の組成を有するメツキ液中に浸漬 し、 下記のメツキ条件で電気メツキして厚さ 0 . 2 i mのパラジゥ ムフラッシュメツキ被膜をステンレス鋼被膜表面に形成し、 水洗、 乾燥した。
《パラジウムフラッシュメッキ》
<メッキ液の組成 >
純パラジウム 3 g / 1
<メツキ条件 >
p H 8
液温 3 2 °C
電流密度 (D k ) 3〜 5 A Z d m
時間 3 0秒
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティ ングナンパが 9 . 8以 上で、 合格であった。
(実施例 29)
まず、 黄銅を機械加工して得られた腕時計バンド用基材を有機溶 剤で洗浄 ·脱脂した。
次いで、 この時計バンド用基材を、 下記の組成を有するメツキ液 中に浸漬し、 下記のメツキ条件で電気メツキして厚み 3 /xmの銅— 錫合金メッキ被膜 (合金比 : C u 7 5重量%、 S n 2 0重量%、 Z n 5重量%) を基材表面に形成し、 水洗した。
《銅一錫合金メツキ》
くメツキ液の組成 >
シアン化銅 1 5 g/ 1 (C u換算) 錫酸ナトリゥム 1 5 g/ 1 (S n換算) シアン化亜鉛 1 gX 1 (Z n換算) KOH 2 0 g/ 1
K C N (フリー) 30 g/ 1 ·
光沢剤 B (商品名) 1 0 m 1 / 1
(日本新金属社製)
<メツキ条件 >
PH 1 2. 5 (at 50 )
液温 5 0 °C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 2分
メッキ液の撹拌 カゾードロッカー方式によるラックの回転 次いで、 この銅一錫合金メッキ被膜を有する腕時計バンド用基材 を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条件で電 気メツキして厚み 2. 5 Aimの銅一錫一亜鉛合金メッキ被膜 (合金 比 : C u 5 0重量%、 S n 3 5重量%、 Z n l 5重量%) を銅一錫 合金メッキ被膜表面に形成し、 水洗した。
《銅一錫一亜鉛合金メッキ》
<メツキ液の組成 >
シアン化銅 8. 5 gZ 1 (C u換算) 錫酸ナトリウム 3 4. 0 g/ 1 (S n換算) シアン化亜鉛 1. 0 g/ 1 (Z n換算) KOH 2 0 g/ 1
K C N (フリー) 5 0 g/ 1
光沢剤 1 ― 1 (商品名) 0 5 m 1 / 1
(Deguss a Japan. Co. Ltd t^)
光沢剤 2 (商品名) 0. 5 m 1 / 1
(Degussa Japan. Co. L td 社製)
<メツキ条件 >
P H 1 3. 0 (at 6 0 )
液温 6 0. 0 °C
電流密度 (D k) 2. 0 A/ d m2
電解時間 1 5分
次いで、 この銅一錫一亜鉛合金メツキ被膜を有する腕時計パンド 用基材を下記の組成を有するメツキ液中に浸漬し、 下記のメツキ条 件で電気メッキして厚み 0. 2 ^mのパラジウムストライクメツキ 被膜 (フラッシュメツキ) を銅一錫一パラジウム合金メッキ被膜表 面に形成し、 水洗した。
《パラジウムストライクメツキ》
<メッキ液の組成 >
純パラジウム 1〜 3 g / 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 3〜 5 A/ d m2
時間 3 0秒
次いで、 この基材をスパッタリング装置内に取り付け、 アルゴン 雰囲気中で基材表面をボンバードクリーニングした。
次いで、 この基材表面に形成されたパラジウムストライクメツキ 被膜表面に、 厚み 1. 0 の白色色調を有するステンレス鋼被膜 をスパッ夕リング法により下記の成膜条件で形成し、 腕時計パンド を得た。
<成膜条件 >
ターゲッ ト : オーステナイ ト系ステンレス鋼 S U S 3 1 O S スパッ夕ガス : アルゴンガス
成膜圧力 : 0 · 2〜 0 · 9 P a
ターゲッ ト電力 : 1. 0〜 2. 0 kW
バイアス電圧: G r a n d 3 0 0 V
得られた腕時計バンドを、 下記の組成を有するメツキ液中に浸漬 し、 下記のメツキ条件で電気メツキして厚さ 0 · 2 mのパラジゥ ムフラッシュメツキ被膜をステンレス鋼被膜表面に形成し、 水洗、 乾燥した。
《パラジウムフラッシュメッキ》
<メツキ液の組成 >
純パラジウム 1〜 3 gZ 1
<メツキ条件 >
P H 8
液温 3 2 °C
電流密度 (D k) 3〜 5 A/ dm
時間 3 0秒
得られた腕時計パンドについて、 メツキ被膜の耐食性試験を上記 方法に従って行なった。 その結果、 レイティングナンパが 9. 8以 上で、 合格であった。
なお、 上記実施例 1〜 2 9で得られた装飾品 (本発明品) につい て、 スガ試験機 (株) 製の摩耗試験機 [商品名 NUS— I S O— 2] を用い、 下記の方法に従って耐摩耗試験を行ない、 耐摩耗性を 評価した。
また、 実施例 1〜 2 9で得られた装飾品の耐摩耗性の評価を判定 するために、 従来品で市場でクレームの発生していない装飾品とし て、 研磨仕上げして得られた表面粗さ (R a) が 0. 0 5〜0. 5 mであり、 かつ、 厚みが 1 mmである黄銅基材上に、 下地メツキ 被膜として厚み 3 のニッケルメツキ被膜と厚み 1 mのパラジ ゥム—ニッケル合金メツキ被膜をこの順に形成し、 仕上げメツキ被 膜として厚み 0. 8 mの金—ニッケル合金メッキ被膜と厚み 0. 2 mの金—鉄合金メッキ被膜をこの順に形成したもの (以下、 H G Pと略す) を用いた。
その結果を第 1表に示す。 この摩耗試験の結果、 実施例 1〜 2 9 で得られた装飾品は、 いずれも摩耗回数 2 0 0回でも下地メツキが 露出しなかった。
<耐摩耗試験 >
図 1に示すように、 被膜形成した試験片 1 をその被膜形成面側を 下向きにして、 試験片押さえ板 2と試験片押さえネジ 3とによって、 試験片取付台 4の開口部に固定する。 そして、 摩耗輪 5に研磨紙 (図 示せず) を貼り付ける。 この摩耗輪 5に、 図示しない天枰機構によ つて研磨紙を試験片 1 に押しつけるような上向きの荷重を加える。 そして、 試験片取付台 4を、 図示しないモー夕の回転運動を往復 運動に変換する機構によって往復 動させ、 さらに摩耗輪 5を試験 片取付台 4の 1往復ごとに角度 0 . 9 ° ずつ矢印方向に回転させる。 その回転によって、 試験片 1を摩耗輪 5に貼り付けられた研磨紙の 摩耗していない新しい領域に常に接触することになる。 試験片取付 台 4の往復回数は自動設定することができ、 設定した回数で摩耗試 験機は自動停止する。
さらに、 摩耗輪 5に貼り付ける研磨紙としては、 ラッピングフィ ルム (フィルム表面に粒子径 0 . 5 mの C r 23粒子があるもの) を用い、 この研磨紙と試験片 1 との接触荷重は 5 0 0 gとし、 試験 片取付台 4の往復運動回数は 2 0 0回を条件として、 摩耗試験を行 なった。 摩耗試験において試験片 1の下地メッキが露出した時点を 終点とする。
本発明における耐摩耗性の合否の判定基準は、 従来品で市場でク レームの発生していない HG Pの耐摩耗性レベルと比較して、 本発 明品が同等か、 あるいはそれ以上の耐摩耗性であるかで合格、 不合 格を判定することとした。
第 1表
Figure imgf000097_0001
(註) サンプリング数 =5

Claims

言青求 の 範囲
1 . 金属からなる装飾品用基材と、
該基材表面の少なくとも一部に乾式メツキ法により形成された白 色色調のステンレス鋼被膜と
から構成されてなることを特徴とする白色被膜を有する装飾品。
2 . 非鉄金属からなる装飾品用基材と、
該基材の表面に形成された下地メツキ被膜と、
該下地メツキ被膜表面の少なく とも一部に乾式メツキ法により形 成された白色色調のステンレス鋼被膜と
から構成されてなることを特徴とする白色被膜を有する装飾品。
3 . 前記ステンレス鋼被膜表面に、 厚さ 0 . 0 4〜 0 . 3 ^ mの白 色色調の貴金属被膜が乾式メツキ法により形成されていることを特 徵とする請求項 1または 2に記載の白色被膜を有する装飾品。
4 . 前記装飾品用基材が、 タングステンカーバイ トまたはタンタル カーバイ トからなることを特徴とする請求項 1に記載の白色被膜を 有する装飾品。
5 . 前記装飾品用基材が、 銅、 銅合金、 アルミニウム、 アルミニゥ ム合金、 亜鉛、 亜鉛合金、 マグネシウムおよびマグネシウム合金か らなる群から選ばれる少なくとも 1種類の非鉄金属からなることを 特徴とする請求項 2に記載の白色被膜を有する装飾品。
6 . 前記下地メツキ被膜が、 湿式メツキ法により形成された少なく とも 1層のメツキ被膜と、 乾式メツキ法により形成された少なく と も 1層のメツキ被膜との多層構造であることを特徴とする請求項 2 に記載の白色被膜を有する装飾品。
7 . 前記下地メツキ被膜が、 湿式メツキ法により形成された、 金、 銅、 ニッケル、 クロム、 錫、 パラジウム、 ニッケル—リン合金、 二 ッケルーリン合金以外のニッケル合金、 銅一錫一パラジウム合金、 銅一錫一パラジウム合金以外の銅合金、 銅一錫—パラジウム合金以 外の錫合金、 および銅一錫一パラジウム合金以外のパラジウム合金 からなる群から選ばれる少なくとも 1種類の金属からなる被膜であ ることを特徴とする請求項 2または 6に記載の白色被膜を有する装 飾品。
8 . 前記下地メツキ被膜であるニッケル一リン合金メツキ被膜が、 時効硬化処理が施された硬質被膜であることを特徴とする請求項 7 に記載の白色被膜を有する装飾品。
9 . 前記下地メツキ被膜が、 湿式メツキ法により形成された、 金、 銅、 クロム、 錫、 パラジウム、 銅—錫一パラジウム合金、 銅—錫一 パラジウム合金以外の銅合金、 銅一錫一パラジウム合金以外の錫合 金、 および銅一錫一パラジウム合金以外のパラジウム合金からなる 群から選ばれる少なくとも 1種類の、 ニッケルを含まない金属から なる被膜であることを特徴とする請求項 2または 6に記載の白色被 膜を有する装飾品。
1 0 . 前記下地メツキ被膜が、 乾式メツキ法により形.成された、 炭 化チタン、 炭化ジルコニウムまたは炭化タンタルからなる被膜であ ることを特徴とする請求項 2または 6に記載の白色被膜を有する装 飾品。
1 1 . 前記下地メツキ被膜全体の厚さが 0 · 2〜 3 0 ^ 111の範囲内 にあることを特徴とする請求項 2、 6〜 1 0のいずれかに記載の白 色被膜を有する装飾品。
1 2. 前記白色色調のステンレス鋼被膜が、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0容量%、 マンガン 1. 0〜 2. 5容量%、 ニッケル 8〜 2 2容量%、 クロム 1 5〜 2 6容量%の組 成を有するオーステナィ ト系ステンレス鋼からなることを特徴とす る請求項 1〜 3のいずれかに記載の白色被膜を有する装飾品。
1 3. 前記白色色調のステンレス鋼被膜が、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0容量%、 マンガン 1. 0〜 2. 5容量%、 クロム 1 4〜 2 0容量%、 モリブデン 0. 4〜 2. 5容 量%の組成を有するニッケルを含まないフェライ ト系ステンレス鋼 からなることを特徴とする請求項 1〜 3のいずれかに記載の白色被 膜を有する装飾品。
1 4. 前記白色色調のステンレス鋼被膜が、 乾式メツキ法であるス パッ夕リング法、 アーク法またはイオンプレーティ ング法により形 成されていることを特徵とする請求項 1〜 3、 1 2および 1 3のい ずれかに記載の白色被膜を有する装飾品。
1 5. 前記ステンレス鋼被膜の厚みが 0. 1〜 2. 0 mであるこ とを特徴とする請求項 1〜 1 4のいずれかに記載の白色被膜を有す る装飾品。
1 6. 前記基材表面もしくは下地メツキ被膜表面に、 乾式メツキ法 により形成された白色色調のステンレス鋼被膜の他に、 該ステンレ ス被膜と色調の異なる少なく とも 1つのメツキ被膜が乾式メツキ法 により形成されていることを特徴とする請求項 1〜 1 5のいずれか に記載の白色被膜を有する装飾品。
1 7 . 前記ステンレス鋼被膜と異なるメツキ被膜が、 金、 金合金、 窒化チタンまたは窒化ジルコニウムからなる少なく とも 1種類の被 膜であることを特徴とする請求項 1 6に記載の白色被膜を有する装 飾品。
1 8 . 前記白色色調の貴金属被膜が、 乾式メツキ法により形成され た、 パラジウム、 白金、 ロジウム、 金合金、 銀および銀合金からな る群から選ばれる貴金属からなる被膜であることを特徴とする請求 項 3に記載の白色被膜を有する装飾品。
1 9 . 金属の機械加工により装飾品用基材を形成する工程と、 該基材表面を洗浄 · 脱脂する工程と、
該基材を、 スパッタリング装置、 アーク装置およびイオンプレ一 ティング装置から選ばれる少なく とも 1つの乾式メツキ装置内に取 り付け、 アルゴンガス雰囲気中で該基材表面をボンバードクリー二 ングする工程と、
該基材表面に白色色調のステンレス鋼被膜を乾式メツキ法により 形成する工程と
を含むことを特徴とする白色被膜を有する装飾品の製造方法。
2 0 . 非鉄金属の機械加工により装飾品用基材を形成する工程と、 該基材表面を洗浄 ·脱脂する工程と、
該基材の表面に、 湿式メツキ法または乾式メツキ法で下地メツキ 被膜を形成する工程と、
該下地メツキ被膜を有する基材を、 スパッタリング装置、 アーク 装置およびイオンプレーティ ング装置から選ばれる少なくとも 1つ の乾式メツキ装置内に取り付け、 アルゴンガス雰囲気中で該基材表 面に形成されている下地メッキ被膜表面をボンバードクリーニング する工程と、
前記下地メッキ被膜表面に白色色調のステンレス鋼被膜を乾式メ ツキ法により形成する工程と
を含むことを特徴とする白色被膜を有する装飾品の製造方法。
2 1 . さらに、 前記の白色色調のステンレス鋼被膜の形成工程の後 に、 該ステンレス鋼被膜表面に、 厚さ 0 . 0 4〜 0 . の白色 色調の貴金属被膜を乾式メツキ法により形成する工程を含むことを 特徴とする請求項 1 9または 2 0に記載の白色被膜を有する装飾品 の製造方法。
2 2 . 前記装飾品用基材の形成に用いられる金属が、 タングステン 力一パイ トまたはタンタルカーバイ トであることを特徴とする請求 項 1 9に記載の白色被膜を有する装飾品の製造方法。
2 3 . 前記装飾品用基材の形成に用いられる非鉄金属が、 銅、 銅合 金、 アルミニウム、 アルミニウム合金、 亜鉛、 亜鉛合金、 マグネシ ゥムおよびマグネシウム合金からなる群から選ばれる少なくとも 1 種類の非鉄金属であることを特徴とする請求項 2 0に記載の白色被 膜を有する装飾品の製造方法。
2 4 . 前記下地メツキ被膜が、 前記基材表面に湿式メツキ法により 形成された少なく とも 1層のメツキ被膜と、 該メツキ被膜表面に乾 式メツキ法により形成された少なく とも 1層のメツキ被膜とからな る多層構造の被膜であることを特徴とする請求項 2 0に記載の白色 被膜を有する装飾品の製造方法。
2 5 . 前記下地メツキ被膜として、 金、 銅、 ニッケル、 クロム、 錫、 パラジウム、 ニッケル一リン合金、 ニッケル一リン合金以外のニッ ケル合金、 銅一錫—パラジウム合金、 銅一錫一パラジウム合金以外 の銅合金、 銅—錫—パラジウム合金以外の錫合金、 および銅一錫一 パラジウム合金以外のパラジウム合金からなる群から選ばれる少な くとも 1種類の金属からなる被膜を湿式メツキ法により形成するこ とを特徴とする請求項 2 0または 2 4に記載の白色被膜を有する装 飾品の製造方法。
2 6 . 前記下地メツキ被膜であるニッケル—リン合金メツキ被膜に、 2 0 0 〜 4 5 0 °Cで 2 0〜 6 0分間の時効硬化処理を施し、 ニッケ ル—リン合金メッキ被膜を硬質化させることを特徴とする請求項 2 5に記載の白色被膜を有する装飾品の製造方法。
2 7 . 前記下地メツキ被膜として、 金、 銅、 クロム、 錫、 パラジゥ ム、 銅—錫—パラジウム合金、 銅一錫一パラジウム合金以外の銅合 金、 銅一錫一パラジウム合金以外の錫合金、 および銅一錫—パラジ ゥム合金以外のパラジウム合金からなる群から選ばれる少なく とも 1種類の、 ニッケルを含まない金属からなる被膜を湿式メツキ法に より形成することを特徴とする請求項 2 0または 2 4に記載の白色 被膜を有する装飾品の製造方法。
2 8 . 前記下地メツキ被膜として、 炭化チタン、 炭化ジルコニウム または炭化タンタルからなる被膜を乾式メツキ法により形成するこ とを特徴とする請求項 2 0または 2 4に記載の装飾品の製造方法。
2 9 . 前記下地メツキ被膜全体の厚さが 0 . 2〜 3 0 ^ mの範囲内 にあることを特徴とする請求項 2 0 、 2 4〜 2 8のいずれかに記載 の白色被膜を有する装飾品。
3 0. 前記白色色調のステンレス鋼被膜として、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0容量%、 マンガン 1. 0〜 2. 5容量%、 ニッケル 8〜 2 2容量%、 クロム 1 5〜 2 6容量%の組 成を有するオーステナイ ト系ステンレス鋼からなる被膜を、 スパッ 夕リング法、 アーク法またはイオンプレーティ ング法により形成す ることを特徴とする請求項 1 9〜 2 1のいずれかに記載の白色被膜 を有する装飾品の製造方法。
3 1. 前記白色色調のステンレス鋼被膜として、 炭素 0. 0 1〜 0. 1 2容量%、 シリコン 0. 1〜 1. 0容量%、 マンガン 1. 0〜 2. 5容量%、 クロム 1 4〜 2 0容量%、 モリブデン 0. 4 ~ 2. 5容 量%の組成を有するニッケルを含まないフェライ ト系ステンレス鋼 からなる被膜を、 スパッタリング法、 アーク法またはイオンプレー ティ ング法により形成することを特徴とする請求項 1 9〜 2 1のい ずれかに記載の白色被膜を有する装飾品の製造方法。
3 2. 前記基材表面もしくは下地メツキ被膜表面に、 白色色調のス テンレス鋼被膜を形成した後、 該ステンレス鋼被膜表面の一部にマ スキング処理を施し、 該ステンレス鋼被膜およびマスク表面にステ ンレス鋼被膜と色調の異なるメツキ被膜を乾式メツキ法で形成し、 その後、 前記マスクおよびマスクの上のメツキ被膜を除去する工程 を少なく とも 1回行なうことにより、 白色色調のステンレス鋼被膜 と、 該ステンレス鋼被膜と色調の異なる少なく とも 1つのメツキ被 膜とを最外層メツキ被膜として得ることを特徴とする請求項 1 9、 2 0、 2 2〜 3 1のいずれかに記載の白色被膜を有する装飾品の製 造方法。
3 3 . 前記ステンレス鋼被膜と色調の異なるメツキ被膜として、 金、 金合金、 窒化チタン、 窒化ハフニウムまたは窒化ジルコニウムから 選ばれる金属からなる少なく とも 1種類の被膜を、 スパッタリング 法、 アーク法およびイオンプレーティング法から選ばれる少なく と も 1つの乾式メツキ法により形成することを特徴とする請求項 3 2 に記載の白色被膜を有する装飾品の製造方法。
3 4 . 前記白色色調の貴金属被膜が、 乾式メツキ法により形成され た、 パラジウム、 白金、 ロジウム、 金合金、 銀および銀合金からな る群から選ばれる貴金属からなる被膜であることを特徴とする請求 項 2 1に記載の白色被膜を有する装飾品の製造方法。
PCT/JP2001/005130 2000-06-27 2001-06-15 Article decoratif comportant une pellicule blanche et procede de production associe WO2002000958A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01938693A EP1295961B1 (en) 2000-06-27 2001-06-15 Decorative article having a white film
US10/069,625 US6780527B2 (en) 2000-06-27 2001-06-15 Decorative article having white film and production method therefor
JP2002506266A JP4642317B2 (ja) 2000-06-27 2001-06-15 白色被膜を有する装飾品
HK03101552.5A HK1049355B (zh) 2000-06-27 2003-03-03 有白色鍍層的個人裝飾件及其製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000192077 2000-06-27
JP2000-192077 2000-06-27

Publications (1)

Publication Number Publication Date
WO2002000958A1 true WO2002000958A1 (fr) 2002-01-03

Family

ID=18691258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005130 WO2002000958A1 (fr) 2000-06-27 2001-06-15 Article decoratif comportant une pellicule blanche et procede de production associe

Country Status (8)

Country Link
US (1) US6780527B2 (ja)
EP (1) EP1295961B1 (ja)
JP (1) JP4642317B2 (ja)
KR (1) KR100494820B1 (ja)
CN (1) CN1257996C (ja)
HK (1) HK1049355B (ja)
TW (1) TW589389B (ja)
WO (1) WO2002000958A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622198B2 (en) 2001-12-28 2009-11-24 Citizen Holdings Co., Ltd. Decorative article having white coating and method for manufacture thereof
CN103358614A (zh) * 2013-08-02 2013-10-23 武汉钢铁(集团)公司 含锡镀层钢板及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030159941A1 (en) * 2002-02-11 2003-08-28 Applied Materials, Inc. Additives for electroplating solution
US7296370B2 (en) * 2004-09-24 2007-11-20 Jarden Zinc Products, Inc. Electroplated metals with silvery-white appearance and method of making
US20070071998A1 (en) * 2005-09-27 2007-03-29 Vinay Gupta Preferred copper plated finish and method of making same
US20070204811A1 (en) * 2006-03-06 2007-09-06 Agee George S Therapeutic pet collar
DE102008043125A1 (de) * 2008-10-23 2010-04-29 BSH Bosch und Siemens Hausgeräte GmbH Bedienelement für ein Haushaltsgerät
ITAR20090012A1 (it) * 2009-02-20 2010-08-21 Amom Spa Procedimento di rivestimento di oggetti metallici, particolarmente rivolto al campo della oreficeria, gioielleria e bigiotteria
US9949539B2 (en) 2010-06-03 2018-04-24 Frederick Goldman, Inc. Method of making multi-coated metallic article
WO2012167044A1 (en) * 2011-06-03 2012-12-06 Frederick Goldman, Inc. Coated metallic products and methods for making the same
EP2713802A4 (en) 2011-06-03 2015-03-11 Frederick Goldman Inc MULTILAYERED METALLIC PRODUCTS AND METHOD OF MANUFACTURING THEM
KR101287903B1 (ko) * 2011-06-30 2013-07-19 한국기계연구원 색상을 가지는 표면처리물 및 이의 제조 방법
CN102921760B (zh) * 2012-10-16 2014-12-24 福建省安溪宏源工艺有限公司 一种具有镀层的金属工艺品线材的加工工艺
KR101411981B1 (ko) 2013-07-24 2014-06-26 송광수 혁대용 버클 및 이의 제조방법
US9586381B1 (en) * 2013-10-25 2017-03-07 Steriplate, LLC Metal plated object with biocidal properties
JP6535993B2 (ja) * 2014-08-12 2019-07-03 セイコーエプソン株式会社 時計用バンドおよび時計
EP3081673A1 (en) * 2015-04-16 2016-10-19 COVENTYA S.p.A. Electroplated product having a precious metal finishing layer and improved corrosion resistance, method for its production and uses thereof
EP3150744B1 (en) * 2015-09-30 2020-02-12 COVENTYA S.p.A. Electroplating bath for electrochemical deposition of a cu-sn-zn-pd alloy layer, method for electrochemical deposition of said alloy layer, substrate comprising said alloy layer and uses of the coated substrate
CN106037172A (zh) * 2016-07-26 2016-10-26 张新忠 一种错金银饰品及其制作工艺
PT3312309T (pt) * 2016-10-18 2020-07-28 Coventya S P A Produto galvanizado tendo uma camada de acabamento de metal precioso e resistência à corrosão melhorada, método para a sua produção e suas utilizações
CN106676593A (zh) * 2016-12-13 2017-05-17 上海航天设备制造总厂 不锈钢表面钯铜镍钼合金膜层及其制备方法
CN107645579B (zh) * 2017-09-20 2020-09-15 东莞市鸿茂五金制品有限公司 一种sus444的制备工艺及其在手机支架上的应用
EP3550057A3 (de) * 2018-04-03 2019-11-13 Supro GmbH Mehrschichtige oberflächenbeschichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243757A (ja) * 1989-03-16 1990-09-27 Sumitomo Metal Mining Co Ltd ステンレス合金被膜の形成方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778238A (en) * 1972-04-14 1973-12-11 D Tyler Composite metal article
US4585901A (en) * 1984-02-13 1986-04-29 Pennwalt Corporation EMI/RFI vapor deposited composite shielding panel
DE3428951A1 (de) * 1984-08-06 1986-02-13 Leybold-Heraeus GmbH, 5000 Köln Mit einer deckschicht aus gold oder einem goldhaltigen material ueberzogener dekorativer gebrauchsgegenstand und verfahren zu seiner herstellung
CN1010760B (zh) * 1984-11-13 1990-12-12 三菱电机株式会社 装饰板的制造方法
JPS61119668A (ja) * 1984-11-16 1986-06-06 Seiko Instr & Electronics Ltd 亜鉛合金製携帯時計ケ−スの製造方法
US4646935A (en) * 1985-01-18 1987-03-03 Clad Metals, Inc. Induction cooking utensils
JPH0222452A (ja) * 1987-04-01 1990-01-25 Seiko Epson Corp 装飾部材
JPS63310957A (ja) * 1987-06-10 1988-12-19 Seiko Instr & Electronics Ltd 外装部品
JPH04160145A (ja) * 1990-10-24 1992-06-03 Seiko Epson Corp 腕時計用外装部品
JP2990917B2 (ja) * 1991-07-30 1999-12-13 セイコーエプソン株式会社 時計用外装部品
JPH06272019A (ja) * 1993-03-17 1994-09-27 Seiko Instr Inc 白色めっき装身具
JP3227267B2 (ja) * 1993-04-20 2001-11-12 シチズン時計株式会社 いぶし調装飾部品の加工方法
CN1109126C (zh) * 1993-12-28 2003-05-21 西铁城钟表有限公司 白色覆饰件及其生产方法
DE59407882D1 (de) * 1994-03-18 1999-04-08 Clad Lizenz Ag Mehrschichtiger, kaltverformbarer und tiefziehfähiger Verbundkörper aus Metall
US5879532A (en) * 1997-07-09 1999-03-09 Masco Corporation Of Indiana Process for applying protective and decorative coating on an article
WO1999056950A1 (en) * 1998-05-04 1999-11-11 Clad Metals Llc Copper core five-ply composite for cookware and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243757A (ja) * 1989-03-16 1990-09-27 Sumitomo Metal Mining Co Ltd ステンレス合金被膜の形成方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622198B2 (en) 2001-12-28 2009-11-24 Citizen Holdings Co., Ltd. Decorative article having white coating and method for manufacture thereof
EP2338373A2 (en) 2001-12-28 2011-06-29 Citizen Holdings Co., Ltd. Decorative article having white coating and method for manufacture thereof
US8003225B2 (en) 2001-12-28 2011-08-23 Citizen Holdings Co., Ltd. Decorative article having a white coating
CN103358614A (zh) * 2013-08-02 2013-10-23 武汉钢铁(集团)公司 含锡镀层钢板及其制备方法
CN103358614B (zh) * 2013-08-02 2015-11-04 武汉钢铁(集团)公司 含锡镀层钢板及其制备方法

Also Published As

Publication number Publication date
EP1295961B1 (en) 2012-05-30
EP1295961A1 (en) 2003-03-26
CN1257996C (zh) 2006-05-31
JP4642317B2 (ja) 2011-03-02
KR100494820B1 (ko) 2005-06-14
TW589389B (en) 2004-06-01
US6780527B2 (en) 2004-08-24
KR20020040790A (ko) 2002-05-30
EP1295961A4 (en) 2007-10-31
HK1049355B (zh) 2006-09-15
CN1383460A (zh) 2002-12-04
HK1049355A1 (en) 2003-05-09
US20030059634A1 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
WO2002000958A1 (fr) Article decoratif comportant une pellicule blanche et procede de production associe
EP2338373B1 (en) Decorative article having white coating and method for manufacture thereof
EP0808921B1 (en) Ornamental member
JP4764104B2 (ja) 装飾品およびその製造方法
JP5436569B2 (ja) 装飾物品のための貴金属含有層連続物
JP4072950B2 (ja) 白色被膜を有する装飾品およびその製造方法
KR100366248B1 (ko) 유색 피막을 갖는 장신구 및 그 제조 방법
JP2001355094A (ja) 装飾被膜を有する基材およびその製造方法
JPS6353267A (ja) メツキ方法
JP2004043959A (ja) 白色被膜を有する装飾品及びその製造方法
US3748712A (en) Tarnish resistant plating for silver articles
JP2003268568A (ja) 白色被膜を有する装飾品およびその製造方法
JP2003013282A (ja) 装飾品およびその製造方法
JPH0210876B2 (ja)
JPS5811783A (ja) 装飾用外装部品
JP2005232516A (ja) 装飾品および時計
JP2005146304A (ja) 装飾被膜を有する装飾品およびその製造方法
JP2595168B2 (ja) 時計の外装部品およびその製造方法
JP2004084035A (ja) 表面処理方法、金属部品および時計
JP2000141999A (ja) 装飾部材及びその製造方法
JPH11193493A (ja) ニッケルレスメッキ製品
JP2007162141A (ja) 白色被膜を有する装飾品およびその製造方法
MXPA01001281A (en) Accessory having colored coating and manufacturing method thereof
JPS61253360A (ja) 硬質外装部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 2001938693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018017649

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10069625

Country of ref document: US

Ref document number: 1020027002486

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027002486

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001938693

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027002486

Country of ref document: KR