WO2001064967A1 - Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage - Google Patents

Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage Download PDF

Info

Publication number
WO2001064967A1
WO2001064967A1 PCT/JP2001/001003 JP0101003W WO0164967A1 WO 2001064967 A1 WO2001064967 A1 WO 2001064967A1 JP 0101003 W JP0101003 W JP 0101003W WO 0164967 A1 WO0164967 A1 WO 0164967A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
rolled
sheet
rolling
Prior art date
Application number
PCT/JP2001/001003
Other languages
English (en)
French (fr)
Inventor
Chikara Kami
Akio Tosaka
Kazunori Osawa
Shinjiro Kaneko
Takuya Yamazaki
Kaneharu Okuda
Takashi Ishikawa
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to DE60121266T priority Critical patent/DE60121266T2/de
Priority to EP01904406A priority patent/EP1193322B1/en
Priority to CA002368504A priority patent/CA2368504C/en
Priority to US09/980,513 priority patent/US6702904B2/en
Publication of WO2001064967A1 publication Critical patent/WO2001064967A1/ja
Priority to US10/341,166 priority patent/US6902632B2/en
Priority to US10/341,165 priority patent/US6899771B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-workability high-tensile cold-rolled steel sheet mainly suitable for use in an automobile body, and particularly to a high-tensile cold-rolled steel sheet having a tensile strength (TS) of 440 MPa or more and excellent strain aging hardening properties, and production thereof.
  • TS tensile strength
  • the high-tensile cold-rolled steel sheet of the present invention can be used in a wide range of applications, from those subjected to relatively light processing such as forming into pipes by light bending and roll forming to those subjected to relatively severe drawing. It is suitable for use.
  • the steel sheet in the present invention includes a steel strip.
  • excellent in strain age hardening characteristics means that after pre-deformation with a tensile strain of 5%, aging treatment is performed at a temperature of 170 ° C for 20 minutes after pre-deformation.
  • press forming is performed on steel sheets, but if the strength of the steel sheets is too high,
  • cold rolled steel sheets for outer panel panels are known to use ultra-low carbon steel as a material, and finally control the amount of C remaining in solid solution in an appropriate range. ing.
  • This type of copper sheet is kept soft during press forming, secures shape freezing and ductility, and uses a strain aging hardening phenomenon that occurs in the paint baking process at 170 ° C for about 20 minutes performed after press forming to reduce the yield stress. It seeks to secure the dent resistance by obtaining a rise.
  • C forms a solid solution in the steel during press forming and is soft, but after press forming, solid solution C adheres to dislocations introduced during press forming in the paint baking process. , The yield stress increases.
  • baking hardenability can be improved by using a steel sheet with a further increased bake hardening amount using solid solution N or a composite structure consisting of funilite and martensite. Further improved steel plates have been proposed.
  • JP-A-60-52528 discloses a steel containing C: 0.02 to 0.15%, Mn: 0.8 to 3.5%, P: 0.02 to 0.15%, Al: 0.10% or less, N: 0.005 to 0.025%.
  • a method for producing a high-strength thin steel sheet having both good weldability and spot weldability is disclosed.
  • the steel sheet manufactured by the technique described in Japanese Patent Publication No. 60-52528 has a mixed structure composed of a low-temperature transformation product phase mainly composed of ferrite and martensite, has excellent ductility, and has a positive effect. The purpose is to obtain high strength by using the strain aging during baking of paint with added N.
  • the composition is composed of the balance of Fe and unavoidable impurities, and the structure has a ferrite content of 5% or less.
  • a bake-hardenable high-tensile cold-rolled steel sheet composed of uniform bainite or bainite partially containing martensite is disclosed.
  • the structure is mainly composed of bainite by rapidly cooling the temperature range of 400 to 200 ° C in the cooling process after continuous annealing and then gradually cooling it. The aim is to obtain a higher bake hardening amount than ever before.
  • hot-rolled steel sheets have been proposed, they are heat-treated after press forming to increase not only the yield stress but also the tensile strength.
  • Japanese Patent Publication No. 8-23048 discloses that steel containing C: 0.02-0.13%, Si: 2.0% or less, Mn: 0.6-2.5%, sol.Al: 0.10% or less, 0.0080-0.0250% Less than 1100 ° C Re-heated, hot-rolled to finish rolling at 850 to 900 ° C, then cooled at a cooling rate of 15 ° C / s or more to a temperature of less than 150 ° C, wound, ferrite and martensa
  • a method for producing a hot-rolled copper sheet having a composite structure mainly composed of site In the steel sheet manufactured by the technique described in Japanese Patent Publication No.
  • the present invention overcomes the limitations of the prior art described above, has high moldability and stable quality characteristics, and, after being molded into an automobile part, has sufficient strength as an automobile part and is sufficiently reduced in weight of an automobile body. It is an object of the present invention to provide a high-tensile cold-rolled steel sheet excellent in strain aging hardening characteristics and a manufacturing method capable of industrially manufacturing these steel sheets at low cost without disturbing the shape.
  • the strain age hardening characteristic in the present invention is After pre-deformation with a strain of 5%, the target is to maintain a BH amount of 80MPa or more and an ATS of 40MPa or more under the aging condition in which the temperature is maintained at 170 ° C for 20mm at 5% strain.
  • the present inventors manufactured steel sheets with various compositions and manufacturing conditions, and performed many material evaluation experiments. As a result, it is necessary to use the large strain age hardening phenomenon developed by the action of this strengthening element as N, which has been rarely used so far in fields where high workability is required. As a result, it was found that it is possible to easily achieve both improvement in moldability and high strength after molding.
  • the present inventors consider that the strain age hardening phenomenon due to N is advantageously applied to the baking conditions of automobiles or the heat treatment conditions after molding more positively. It is necessary to combine the hot rolling conditions, cold rolling and cold rolling annealing conditions, and it is effective to control the microstructure of the steel sheet and the amount of solute N within a certain range. Was. We also found that it is important to control the A1 content according to the N content in terms of composition in order to stably develop the strain age hardening phenomenon due to N.
  • the present inventors have found that the microstructure of the steel sheet is mainly composed of frite and the average grain size is not more than ⁇ , thereby preventing the conventional problem of deterioration due to aging at room temperature. Has been found to be able to take full advantage of it.
  • the present inventors can achieve a low yield ratio by setting the microstructure of the copper plate to have a ferrite main phase and a martensite phase having an area ratio of 3% or more as a second phase.
  • the strength after processing can be increased by utilizing the strain age hardening phenomenon exhibited by ⁇ , and the impact resistance as a part property can be improved.
  • the present inventors used N as a strengthening element, controlled the A1 content in an appropriate range according to the N content, and optimized the hot rolling conditions, cold rolling, and cold rolling annealing conditions, By optimizing the visual structure and solid solution N, the formability is much better than conventional solid solution strengthened C-Mn-based steels and precipitation-strengthened steels, and the strain aging is not possible with the conventional steels described above. It has been found that a steel sheet having hardening characteristics can be obtained.
  • the present inventors used N as a strengthening element, controlled the A1 content in an appropriate range according to the N content, and optimized the hot rolling conditions, cold rolling, and cold rolling annealing conditions.
  • solid solution N solid solution N
  • precipitated Nb precipitated Nb
  • the main phase is ferrite, and the remainder is mainly composed of pearlite, but bainite or martensite with an area ratio of 2% or less is acceptable.
  • the amount of precipitated Nb analyzed by the method described later is preferably 0.005% or more.
  • the copper sheet of the present invention has a higher strength after painting and baking treatment by a simple tensile test than conventional steel sheets, and furthermore, has a small variation in strength when plastically deformed according to actual pressing conditions, and has stable component strength. Characteristics are obtained. For example, the part where the plate thickness is reduced due to the large strain tends to be more uniform than the other parts, as the hardening allowance is larger than the other parts (thickness) X (strength). It does.
  • the present invention has been completed by further studies based on the above findings.
  • Ferrite It is a high-tensile cold-rolled steel sheet excellent in strain aging hardening characteristics with a tensile strength of 440 MPa or more, preferably a plate thickness of 3.2 mm or less, characterized by having a structure containing a phase in an area ratio of 50% or more; and
  • a group to d group a group: one or more of Cu, Ni, Cr, and Mo in a mass% of 1.0% or less in total
  • Group b One or more of Nb, Ti, V are 0.1% or less in total
  • Group c B is 0.0030% or less
  • Group d Ca or REM 1 or 2 types in total 0.0010 to 0.010%
  • the above-mentioned high-tensile cold-rolled steel sheet may be subjected to electric plating or fusion plating.
  • N A steel slab containing 0.0050 to 0.0250% and having a composition of not less than 0.3 is heated to a slab heating temperature of 1000 ° C. or more, roughly rolled into a sheet bar, and the sheet bar is subjected to finish rolling. Temperature: Finish rolling at 800 ° C or higher, and after finish rolling, cooling is started preferably within 0.5 seconds. Cooling rate: Rapid cooling at 40 ° CZs or more. Winding temperature: 650 ° C or less.
  • a second aspect of the present invention is a method of manufacturing a cold-rolled rolled high-strength rolled sheet.
  • temper rolling or leveler processing with an elongation percentage of 1.0 to 15% is further performed. It is preferable.
  • the successive sheets between the rough rolling and the finish rolling are formed.
  • the bars are joined together.
  • a sheet bar edge heater for heating a width end of the sheet bar between the rough rolling and the finish rolling, a sheet bar heater for heating a length end of the sheet bar. It is preferable to use either one or both.
  • C 0.15% or less
  • Si 2.0% or less
  • Mn 3.0 ° / mass in mass%.
  • P 0.08% or less
  • S 0.02% or less
  • Al 0.02% or less
  • N 0.0050 to 0.025.
  • Nb 0.007% to 0.04%
  • NZA1 contains 0.3 or more
  • N in solid solution contains 0.0010% or more
  • Nb in the precipitated state contains 0.005% or more, with the balance being Fe and unavoidable impurities.
  • a ferrite phase with an average crystal grain size of 10 ⁇ m or less in an area ratio of 50% or more, and the rest has a structure mainly composed of pearlite.Strain aging at a tensile strength of 440 MPa or more and a yield ratio of 0.7 or more It is a high-yield-ratio type high-tensile cold-rolled steel sheet having excellent hardening characteristics, preferably a plate thickness of 3.2 mm or less. d group
  • Group a 1.0% or less in total of one or more of Cu, Ni, Cr and Mo
  • Group b 0.1% or less of one or two of Ti and V in total
  • Group d Ca or REM 1 or 2 types in total 0.0010 to 0.010%
  • C 0.15% or less and Si: 2.0 in mass%. /. Mn: 3.0% or less, P: 0.08% or less, S: 0.02% or less, Al: 0.02% or less, N: 0.0050 to 0.025%, Nb: 0.007 to 0.004%, and N / A1
  • a steel slab having a composition of 0.3 or more is heated to a slab heating temperature of 1100 ° C or more, and is roughly rolled into a sheet bar, and the sheet bar is subjected to finish rolling at a final rolling final pass reduction of 25% or more.
  • Finish rolling is performed, after the finish rolling, cooling is preferably started within 0.5 seconds, quenched at a cooling rate of 40t / S or more, and wound at a winding temperature of 650 ° C or less.
  • This is a method of manufacturing a high-tensile cold-rolled steel sheet having a tensile strength of 440 MPa or more and a yield ratio of 0.7 or more and excellent in strain aging hardening characteristics, which is characterized by sequentially performing a strip annealing step.
  • temper rolling or leveling at an elongation of 1.5 to 15% is further performed.
  • the successive sheet bars are joined between the rough rolling and the finish rolling. Further, in the fourth invention, between the rough rolling and the finish rolling, a sheet bar edge heater for heating a width end of the sheet bar and a sheet bar heater for heating a length end of the sheet bar are provided. It is preferable to use one or both.
  • % in addition to the above composition, %, It is preferable to include one or more of the following groups e to h.
  • Group f One or more of Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: 0.01 to 0.2%
  • g group 1 or 2 types of Cu: 0.05-1.5%, Ni: 0.05-1.5%
  • Group h One or two of Ca and REM are 0.0010 to 0.010% in total. Further, in the sixth aspect of the present invention, C: 0.15% or less, Mn: 3.0% or less, S: 0.02% or less, A1: 0.02% or less, N: 0.0050 to 0.0250% by mass%, and Mo: One or two of 0.05 to 1.0% and Cr: 0.05 to 1.0%, and the NZA1 is 0.3 or more, or the following groups e to h
  • Group e One or more of Si: 0.05 to 1.5%, P: 0.03 to 0.15%, B: 0.0003 to 0.01%
  • Group f One or more of Nb: 0.01 to 0.1%, Ti: 0.01 to 0.2%, V: 0.01 to 0.2%
  • g-group Cu: 0.05-1.5%, ⁇ : 0 ⁇ 05-1.5% 1 or 2 types
  • Group h Ca,: One or two REMs in total 0.0010 to 0.010%
  • a steel slab having a composition containing one or more groups of the following is heated to a slab heating temperature: 1000 ° C. or more, rough-rolled to a sheet bar, and a finish-rolling exit temperature: 800 to the sheet bar. ° C or higher, and a hot rolling step of forming a rolled hot rolled sheet at a winding temperature of 750 ° C or less, and pickling and cold rolling the hot rolled sheet to form a cold rolled sheet. And then annealing the cold rolled sheet at a temperature of (Acl transformation point) to (Ac3 transformation point) for a holding time of 10 to 120 s, and then an average cooling of 600 to 300 ° C.
  • the speed is the following equation (1) or (2), B ⁇ 0.0003%
  • Excellent in strain age hardening, workability, and impact resistance characterized by successively performing a cold rolled sheet annealing process of cooling at a critical cooling rate CR or more defined in, and tensile strength: 440
  • a method for producing a high-tensile cold-rolled steel sheet having a MPa or higher and in the sixth invention, after the finish rolling, cooling is started within 0.5 s, and the cooling rate is rapidly cooled at 40 ° C / s or higher.
  • the winding is performed.
  • C is an element that increases the strength of the steel sheet, and from the viewpoint of further securing the desired strength in order to achieve an average particle size of ferrite of 10 ⁇ m or less, which is an important constituent element of the present invention, from the viewpoint of securing a desired strength.
  • C was limited to 0.15% or less from the viewpoint of formability and weldability. In addition, it is preferably 0.10% or less, and more preferably 0.08% or less for applications requiring better ductility. For applications requiring the best ductility, the content is preferably 0.05% or less.
  • Si is a useful element that can increase the strength of a steel sheet without significantly reducing the ductility of the steel, and is preferably contained at 0.1% or more.
  • Si is an element that significantly raises the transformation point during hot rolling and makes it difficult to ensure quality and shape, or has an adverse effect on the beauty of the steel sheet surface, such as surface properties and chemical conversion treatment. In the invention, it is limited to 2.0% or less. When the content of Si is 2.0% or less, a remarkable increase in the transformation point can be suppressed by adjusting the amount of Mn added in combination, and good surface properties can be secured. If you want to ensure high ductility with a tensile strength TS500MPa super-class high-strength copper plate, From the viewpoint of the balance between degree and ductility, it is more preferable to contain 0.3% or more of Si.
  • Mn is an effective element for preventing hot cracking due to S, and it is preferable to add it in accordance with the amount of S contained.Mn is used for refining crystal grains, which is an important component of the present invention. There is a great effect on this, and it is preferable to add it positively and use it to improve the material. Further, Mn is an element that improves the hardenability, and is preferably added positively from the viewpoint of stably forming a martensite phase as the second phase. From the viewpoint of stably fixing S and the formation of a martensite phase, Mn is preferably contained at 0.2% or more.
  • Mn is an element that increases the strength of the steel sheet, and it is preferable to contain Mn in an amount of 1.2% or more when the strength is required to exceed TS500 MPa. From the viewpoint of ensuring stable strength, the content is more preferably 1.5% or more. When the Mn content is increased to this level, the variation in the mechanical properties of the steel sheet and the strain aging hardening characteristics due to changes in the manufacturing conditions including the hot rolling conditions are reduced, which is effective in stabilizing the quality.
  • Mn has a function of lowering the transformation point during hot rolling, and by containing it together with Si, the increase in the transformation point due to the inclusion of Si can be offset. Particularly for products with a small thickness, the quality and shape change sensitively due to the change in the transformation point, so it is important to strictly balance the Mn and Si contents. For these reasons, Mn / Si is more preferably 3.0 or more.
  • Mn when Mn is contained in a large amount exceeding 3.0%, the hot deformation resistance of the copper plate tends to increase, and the spot weldability and the formability of the welded portion tend to deteriorate. In addition, since the formation of ferrite is suppressed, the ductility tends to be significantly reduced. For this reason, Mn was limited to 3.0% or less. In applications where good corrosion resistance and formability are required, it is desirable to set the content to 2.5% or less. In applications where better corrosion resistance and formability are required, Mn is desirably 1.5% or less.
  • P 0.08% or less
  • P is a useful element as a solid solution strengthening element for steel, but if it is contained excessively, it embrittles the steel and further reduces the stretch flangeability of the steel sheet. Also, P has a strong tendency to segregate in the steel, which results in embrittlement of the weld. Therefore, P was limited to 0.08% or less.
  • the content is preferably 0.04% or less. The content is more preferably 0.02% or less from the viewpoint of weld toughness.
  • S is an element that exists as an inclusion in the steel sheet and causes deterioration of ductility and corrosion resistance of the steel sheet.
  • S is limited to 0.02% or less.
  • the content is preferably 0.015% or less.
  • S is preferably set to 0.008% or less.
  • A1 is an element that acts as a deoxidizing agent and is effective in improving the cleanliness of steel, and is also an element that refines the structure of a steel sheet.
  • the content of 0.001% or more is desirable.
  • an excessive A1 content deteriorates the surface properties of the copper plate, further reduces the N in the solid solution state, which is an important component of the present invention, and causes a shortage of solid solution N that contributes to the strain age hardening phenomenon.
  • the strain aging hardening characteristic which is a feature of the present invention, tends to vary. Therefore, in the present invention, the A1 content is limited to as low as 0.02% or less. From the viewpoint of material stability, A1 is preferably set to 0.015% or less.
  • N is an element that increases the strength of a steel sheet by solid solution strengthening and strain age hardening, and is the most important element in the present invention.
  • N also has the function of lowering the transformation point of steel, and the inclusion of N is also useful for stabilizing the operation in situations where rolling, which is a thin material and greatly lowers the transformation point, is avoided.
  • it is necessary to control the manufacturing conditions by containing an appropriate amount of N. As a result, a necessary and sufficient amount of N in the solid solution state is ensured for the cold rolled product or the plated product, and thereby the solid solution strengthening and the effect of increasing the strength (YS, TS) by strain age hardening are sufficiently exhibited.
  • the mechanical properties of the steel sheet of the present invention that is, TS440MPa or more, bake hardening amount (BH amount) 80MPa or more, and increase in tensile strength before and after strain aging treatment ATS40MPa or more, can be satisfied stably.
  • N is set in the range of 0.0050 to 0.0250%. From the viewpoints of material stability and yield improvement in consideration of the entire manufacturing process, N is more preferably in the range of 0.0070 to 0.0170%. If the N content is within the range of the present invention, there is no adverse effect on weldability such as spot welding and arc welding.
  • the amount (concentration) of N in solid solution (also called solid solution N) in steel is 0.0010% or more.
  • the amount of solute N is determined by subtracting the amount of precipitated N from the total amount of N in the steel.
  • a method of analyzing the amount of precipitated N according to the results of comparative studies of various analysis methods by the present inventors, it is effective to obtain the amount by the electrolytic extraction analysis method using the potentiostatic electrolysis method.
  • acid decomposition method, halogen method, and electrolysis method as a method for dissolving ground iron used for extraction analysis.
  • the electrolysis method can stably dissolve only ground iron without decomposing extremely unstable precipitates such as carbides and nitrides.
  • Electrolyte at a constant potential using an acetyl * acetone system as the electrolyte.
  • the result of measuring the amount of deposited N by using the potentiostatic electrolysis method shows a correspondence that may have an actual component strength.
  • the residue extracted by the potentiostatic electrolysis method is chemically decomposed to determine the N amount in the residue, and this is defined as the precipitated N amount.
  • the amount of solid solution N should be 0.0020% or more and a higher value. In order to obtain, it is preferable that the content be 0.0030% or more. In order to obtain a higher BH content and ATS, the solute N content is preferably set to 0.0050% or more.
  • N / A1 ratio between N content and A1 content: 0.3 or more
  • the amount of A1 which is an element that strongly fixes N, in order to stably retain solute N of 0.0010% or more in the product state.
  • the amount of A1 was determined to be 0.0010% or more in the cold-rolled product and the plated product. If NZA1 is limited to 0.02% or less, NZA1 must be 0.3 or more. That is, the A1 content is limited to (N content) Z0.3 or less.
  • Group a 1.0% or less in total of one or more of Cu, Ni, Cr and Mo
  • Group b One or more of Nb, Ti, V are 0.1% or less in total
  • Group c B is 0.0030% or less
  • Group d Ca or REM 1 or 2 types in total 0.0010 to 0.010%
  • Group a elements Cu, Ni, Cr and Mo are all elements that contribute to an increase in the strength of the steel sheet, and can be selected singly or in combination as necessary. However, if the content is too large, the hot deformation resistance increases, or the chemical conversion property and the surface treatment characteristics in a broad sense deteriorate, and the welded part is hardened and the welded part formability is deteriorated. For this reason, it is preferable that the total of the elements in group a be 1.0% or less.
  • the reason for containing one or two of Mo 0.05 to 1.0% and Cr: 0.05 to 1.0%.
  • Both Mo and Cr are elements that contribute to the increase in the strength of the steel sheet, further improve the hardenability of the steel, and facilitate the formation of the martensite phase as the second phase.We want to actively obtain the martensite phase In some cases, they are contained alone or in combination.
  • Mo and Cr have the function of finely dispersing the martensite phase, lowering the yield strength and easily realizing a low yield ratio. This has the effect of Such an effect is recognized when the content of both Mo and Cr is 0.05% or more.
  • Mo is contained in excess of 1.0%, workability and surface treatment properties are reduced, and the production cost is increased, which is economically disadvantageous.
  • the content of Cr exceeds 1.0%, the plating wettability decreases.
  • Group b elements Nb, Ti, and V are all elements that contribute to the refinement and uniformity of crystal grains, and can be selected as necessary and contained alone or in combination. However, if the content is too large, the hot deformation resistance increases, and the chemical conversion property and the surface treatment properties in a broad sense deteriorate. For this reason, it is preferable that the total of the elements of group b be 0.1% or less.
  • the reason for containing Nb 0.007 to 0.04%.
  • Nb in order to secure the required amount of solid solution N, it is preferable to limit the Nb amount to 0.04% or less in consideration of other nitride forming elements.
  • Precipitated Nb 0.005% or more
  • the state of Nb present in the steel is also important. That is, it is preferable that Nb existing in a precipitated state (also referred to as precipitated Nb) be present in a fixed amount in order to obtain stable strain age hardening characteristics and to have a yield ratio of not less than 0.01 F. If the amount of Nb added is within the range of the present invention, it is necessary that at least 0.005% or more of precipitated Nb be present. For quantification of Nb, it shall be dissolved and extracted by electrolytic extraction using an acetyl / acetone solvent. Although there are various melting methods, the reason is that the values obtained by this method showed the best correlation with the strain age hardening characteristics of steel.
  • Nb is more associated with C than with N, but details are unknown.
  • Elements of group c B is an element that has the effect of improving the hardenability of copper, and is necessary for increasing the strength of copper by increasing the fraction of low-temperature transformation phases other than the ferrite phase. It can be contained depending on. However, if the amount is too large, the hot deformability decreases, and BN is formed to reduce the solute N. Therefore, B is preferably set to 0.0030% or less.
  • Group d elements: Ca and RE are both elements that are useful for controlling the morphology of inclusions, and if stretch flangeability is required, it is preferable to include them alone or in combination.
  • the above composition may contain one or more of the following groups e to h instead of the above groups a to d.
  • Group e One or more of Cu, Ni, Cr and Mo are 1.0% or less in total
  • Group f One or two of Ti and V in total 0.1% or less
  • g group: B is 0.0030% or less
  • h group Ca or REM 1 or 2 types in total 0.0010 to 0.010%
  • Elements of group e are all elements that contribute to the increase in strength without significant decrease in ductility of the steel sheet. This effect is at least Cu: 0.01% and Ni: 0.01% or more, respectively. , Cr: 0.01% or more, Mo: 0.01% or more, can be selected as necessary and contained singly or in combination. However, if the content is too large, the hot deformation resistance increases, or the chemical conversion property and the surface treatment properties in a broad sense are deteriorated, and the welded part is hardened and the weldability is deteriorated. For this reason, it is preferable that the total of the elements in group a be 1.0% or less.
  • Elements of group f are elements that contribute to the refinement and uniformization of crystal grains. This effect is recognized at Ti: 0.002% or more and V: 0.002% or more. Can be contained alone or in combination. However, if the content is too large, the hot deformation resistance increases, and the chemical conversion property and the surface treatment properties in a broad sense deteriorate. For this reason, it is preferable that the total of the elements of group b be 0.1% or less.
  • B is an element that has the effect of improving the hardenability of steel, and is necessary for increasing the strength of steel by increasing the fraction of low-temperature transformation phases other than the ferrite phase. It can be contained depending on. This effect is observed when B is added at 0.0002% or more. However, if the amount is too large, the hot deformability decreases, and BN is formed to reduce the solute N. Therefore, B is preferably set to 0.0030% or less.
  • Elements of group h are both elements that are useful for controlling the morphology of inclusions, and if stretch flangeability is required, it is preferable to include them alone or in combination.
  • the total of the elements of group d is less than 0.0010%, the effect of controlling the morphology of inclusions is insufficient, while if it exceeds 0.010%, the occurrence of surface defects becomes conspicuous. Therefore, it is preferable that the total of the elements in the d group be in the range of 0.0010 to 0.010%.
  • the cold-rolled steel sheet of the present invention is intended for use in automobile steel sheets and the like that require high workability, and has a structure containing a ferrite phase in an area ratio of 50% or more in order to ensure ductility. If the area ratio of the ferrite phase is less than 50%, it will be difficult to secure the required ductility as an automotive steel sheet that requires high workability. In the case where better ductility is required, the area ratio of the ferrite phase is preferably set to 75% or more.
  • the ferrite referred to in the present invention includes not only ordinary ferrite (polygonal ferrite) but also vanitic ferrite and carbon-free ferrite containing no carbide.
  • the phase other than the funilite phase is preferably a single phase or a mixed phase of bainite and martensite from the viewpoint of increasing the strength not particularly limited.
  • less than 3% of retained austenite may form and appear.
  • the phases other than the funilite phase are mainly made of pearlite in the present invention. It is desirable to have a microstructure including a single phase of pearlite, or a microstructure including bainite or martensite having an area ratio of 2% or less and a balance of parlite.
  • the composition of the steel sheet of the present invention in which the martensite phase is finely dispersed, the yield strength is reduced, and a low yield ratio is easily realized, has a ferrite phase as a main phase and a fine phase containing a martensite phase as a second phase.
  • the visual tissue If the area ratio of the fulite phase exceeds 97%, the effect as a composite structure cannot be expected.
  • Martensite area ratio 3% or more
  • the martensite phase as the second phase exists mainly at the grain boundaries of the ferrite phase, which is the main phase.
  • Martensite is a hard phase and has an effect of increasing the strength of a steel sheet by strengthening the structure.
  • transformation is accompanied by the occurrence of mobile dislocations, it has the effect of improving ductility and lowering the yield ratio of steel sheets.
  • the content of martensite as the second phase is 3% or more and 30% or less, preferably 20% or less.
  • the second phase there is no problem even if 10% or less of bainite is contained in addition to such an amount of martensite.
  • Average grain size of ferrite phase ⁇ ⁇ m or less
  • crystal grain size a value calculated by a quadrature method specified in ASTM from a cross-sectional structure photograph and a nominal particle size obtained by a cutting method specified in ASTM from a cross-sectional structure photograph (for example, Umemoto et al. , 24 (1 984), 334), whichever is greater.
  • the cold-rolled steel sheet of the present invention secures a predetermined amount of solid solution N as a product.
  • the solid solution N amount is kept constant, the average of the phenylite phase is maintained. It has been found that when the crystal grain size exceeds 10 // m, large variations occur in the strain age hardening characteristics. In addition, the deterioration of the mechanical properties when stored at room temperature becomes remarkable.
  • the detailed mechanism is unknown at present, one of the causes of the variation in strain age hardening characteristics is the crystal grain size, and the segregation and precipitation of alloy elements at the crystal grain boundaries, and the processing and thermal effects on these It is presumed to be related to the effects of the treatment.
  • the average crystal grain size of the fluorite phase must be 10 ⁇ m or less.
  • ⁇ ⁇ In order to obtain a further increase in the amount of ATS and the amount of ATS in a stable manner, it is preferable that the average crystal grain size of ferrite be 8 ⁇ m or less.
  • the cold-rolled steel sheet of the present invention having the above-described composition and structure is a cold-rolled steel sheet having a tensile strength TS of 440 MPa or more and excellent strain aging hardening properties, and excellent in workability and impact resistance. is there.
  • TS should be 500MPa or more.
  • excellent in strain aging hardening characteristics means that, as described above, after pre-deformation with a tensile strain of 5%, aging treatment is performed at a temperature of 170 ° C for 20 minutes after pre-deformation.
  • the amount of prestrain (prestrain) is an important factor.
  • the conventional paint baking condition is 170 ° C X 20 min as standard.
  • a strain of 5% or more is applied to the steel sheet of the present invention containing a large amount of solute N, hardening can be achieved even with milder (lower temperature) treatment, in other words, aging conditions can be broadened. It is. Also, generally, in order to increase the amount of curing, do not soften by excessive aging Insofar, it is advantageous to hold at a higher temperature for a longer time.
  • the lower limit of the heating temperature at which hardening becomes significant after pre-deformation is approximately 100 ° C.
  • the heating temperature exceeds 300 ° C, curing hardens, and when the temperature is 400 ° C, it tends to soften slightly, and the occurrence of thermal distortion and temper color becomes conspicuous.
  • the holding time is about 30 s or more when the heating temperature is about 200 ° C., almost sufficient curing can be achieved.
  • the holding time is preferably 60 s or more. However, holding for more than 20 minutes does not allow further hardening, and significantly lowers production efficiency, which is disadvantageous in practical use.
  • the aging treatment conditions were evaluated at 170 ° C., which is the heating temperature under the conventional coating baking treatment conditions, and the holding time at 20 miii. Even under the conditions of low-temperature heating and short-time aging treatment, in which sufficient hardening cannot be achieved with conventional paint-baked steel sheets, large hardening is stably achieved in the steel sheet of the present invention.
  • the method of heating is not particularly limited, and in addition to atmospheric heating using a furnace used for normal coating baking, any method such as induction heating, heating using a non-oxidizing flame, laser, or plasma is preferably used. sell.
  • the strength of automotive components must be able to withstand complex external stress loads. Therefore, not only the strength characteristics in a small strain range but also the strength characteristics in a large strain range are important for a steel sheet.
  • the present inventors set the BH amount of the steel sheet of the present invention, which is to be used as a material for automobile parts, to be 80 MPa or more and the ⁇ TS amount to be 40 MPa or more. More preferably, the amount of BH is lO OMPa or more and ⁇ TS50 MPa or more.
  • the heating temperature and / or the holding time during aging may be set to a higher temperature side.
  • the steel sheet of the present invention does not suffer from aging deterioration (phenomenon in which YS increases and E1 (elongation decreases)) does not occur even after being left at room temperature for a long period of about one year without being formed.
  • aging deterioration phenomenon in which YS increases and E1 (elongation decreases)
  • E1 elongation decreases
  • the effect of the present invention can be exerted even when the product plate thickness is relatively large, but when the product plate thickness exceeds 3.2 mm, a necessary and sufficient cooling rate is secured in the cold rolled sheet annealing process.
  • the strain aging occurs during continuous annealing, making it difficult to obtain the desired strain aging hardening characteristics as a product. Therefore, the steel sheet of the present invention preferably has a thickness of 3.2 mm or less.
  • the present invention there is no problem even if the surface of the above-mentioned cold-rolled steel sheet of the present invention is subjected to electric plating or melting plating.
  • These plated steel sheets also show the same T S, BH, and A T S amounts as before plating.
  • As the type of plating any of electrogalvanizing, hot-dip galvanizing, alloying hot-dip galvanizing, electrotin-plating, electrochromic plating, and electro-nickel plating can be preferably applied.
  • the steel sheet of the present invention is prepared by heating a steel slab having a composition within the above-mentioned range and then roughly rolling the steel slab into a sheet bar, subjecting the sheet bar to finish rolling, cooling after finishing rolling, and coiling hot rolling.
  • the slab used in the production method of the present invention is desirably produced by a continuous production method in order to prevent macroscopic segregation of components, but may be produced by an ingot production method or a thin slab continuous method.
  • the slab is inserted directly into a heating furnace without cooling and then rolled, or after a slight heat retention.
  • Energy saving processes such as direct rolling, which immediately rolls, can be applied without any problems.
  • direct rolling in which the precipitation of N is delayed, is one of the useful techniques for effectively securing N in the solid solution state.
  • the temperature is preferably set to 1 000 ° C or more. It is more preferable that the temperature is set to 110 ° C. or higher to promote the solution treatment of carbonitride, so that solid solution N can be easily ensured, and that uniformity of material can be ensured.
  • the slab heating temperature is preferably set to 1280 ° C. or less from the viewpoint of avoiding an increase in loss due to an increase in oxidation weight.
  • the slab heated under the above conditions is converted into a sheet bar by rough rolling.
  • the conditions for the rough rolling need not be particularly defined, but may be generally determined according to known conditions. However, from the viewpoint of securing the amount of solid solution N, it is desirable to perform the treatment in as short a time as possible.
  • the sheet bar is finish-rolled to obtain a hot-rolled sheet.
  • the sheet bars adjacent to each other be joined between the rough rolling and the finish rolling, and the finish rolling be performed continuously.
  • a joining means it is preferable to use a pressure welding method, a laser welding method, an electron beam welding method, or the like.
  • the proportion of irregular parts (the leading and trailing ends of the material to be treated) that are likely to be disturbed during cooling after finishing rolling is reduced, and the stable pressure is extended (under the same conditions).
  • the continuous length that can be rolled) and the stable cooling length (the continuous length that can be cooled while applying tension) are extended, improving the product's dimensional accuracy and yield.
  • conventional single-shot rolling for each sheet bar has made it difficult to carry out lubricating rolling on thin materials that have been difficult to perform due to problems such as threading properties and penetration.
  • the surface pressure of the roll is reduced and the life of the roll is extended.
  • a sheet bar edge heater for heating the width end of the sheet bar and a sheet bar heater for heating the length end of the sheet bar are provided. It is preferable to use a heat sink to equalize the temperature distribution in the width direction and the longitudinal direction of the sheet par. Thereby, the variation in the material within the steel sheet can be further reduced.
  • the sheet bar edge heater and the sheet bar heater are preferably of an induction heating type. It is desirable to use a sheet bar edge heater to compensate for the temperature difference in the width direction.
  • the heating amount at this time depends on the steel composition and the like, but is preferably set so that the temperature distribution range in the width direction at the finish rolling exit side is approximately 20 ° C. or less.
  • a temperature difference in the longitudinal direction is compensated by a seat bar heater. The heating amount at this time is preferably set so that the temperature at the end of the length is about 20 to 40 ° C higher than the temperature at the center.
  • the final pass of finish rolling is one of the important factors governing the microstructure of the steel sheet.
  • the ferrite By applying a rolling reduction of 25% or more in this pass, the ferrite can be transformed from the unrecrystallized austenite state in which the strain is sufficiently accumulated, and the microstructure of the hot-rolled base plate can be significantly reduced. Is achieved.
  • a ferrite structure having a target average grain size of ⁇ ⁇ or less can be finally obtained.
  • the rolling reduction in the final pass of the final rolling 25% or more not only the microstructure after cold rolling annealing but also the homogenization can be achieved. In other words, the particle size distribution of the ferrite phase does not vary, and the dispersed phase also becomes finer and takes a form in which it is uniformly present. This has the advantage that hole expandability is also improved.
  • Finishing rolling exit side temperature 800 ° C or more
  • the finish-rolling exit temperature FDT is 800 ° C or higher in order to make the structure of the steel sheet uniform and fine. If the FDT is lower than 800 ° C, the structure becomes non-uniform and some of the processed structure remains. Such a residue of the processed structure can be avoided by setting the winding temperature to a high temperature. However, when the winding temperature is increased, coarse crystal grains are generated and the amount of dissolved N is greatly reduced, so that it is difficult to obtain a target tensile strength of TS440 MPa or more. In order to further improve the mechanical properties, it is desirable that the FDT be 820 ° C or higher. After finish rolling, it is desirable to cool the steel sheet as early as possible in order to refine the crystal grains and secure the amount of solute N.
  • Cooling after finish rolling Cooling starts within 0.5 seconds after finishing rolling, rapid cooling of Zs or more at a cooling rate of 40
  • the cooling start time or cooling rate does not satisfy the above conditions, the grain growth is so rapid that it is difficult to reduce the crystal grain size, and the precipitation of A1N due to the strain energy introduced by rolling advances. This increases the possibility that the amount of dissolved N will be deficient. From the viewpoint of ensuring uniformity of the material and shape, it is preferable that the cooling rate is suppressed to 300 ° CZs or less.
  • Winding temperature 750 ° C or less
  • C T is preferably set to 750 ° C. or less
  • the temperature is not higher than ° C. If the CT is lower than 200 ° C, the shape of the steel sheet is likely to be disturbed, and there is a high risk of causing problems in actual operation, and the uniformity of the material tends to decrease. For this reason, CT is desirably 200 ° C or more. When more uniform material is required, CT is preferably set to 300 ° C. or higher. Since the ferrite + pearlite (cementite) is more preferable as the mature rolled sheet structure, the winding temperature is more preferably set to 600 ° C. or higher. This is because the ferrite + pearlite phase is uniformly cold-rolled because the hardness difference between the two phases is smaller than when the second phase is martensite or bainite.
  • lubricating rolling may be performed in finish rolling in order to reduce the hot rolling load.
  • the coefficient of friction during lubrication rolling is preferably in the range of 0.25 to 0.10.
  • the combination of lubrication rolling and continuous rolling further stabilizes the operation of hot rolling.
  • the hot rolled sheet that has been subjected to the above hot rolling step is then subjected to pickling and cold rolling in a cold rolling step to be a cold rolled sheet.
  • the conditions for pickling may be generally known conditions, and are not particularly limited. When the scale of the hot rolled sheet is extremely thin, cold rolling may be performed immediately without performing pickling.
  • the cold rolling conditions may be generally known conditions, and are not particularly limited. It is preferable that the cold rolling reduction is 40% or more from the viewpoint of ensuring the uniformity of the structure.
  • the cold rolled sheet is subjected to a cold rolled sheet annealing step by continuous annealing.
  • Continuous annealing temperature 900 ° C or higher at recrystallization temperature or higher
  • the annealing temperature of the continuous annealing was equal to or higher than the recrystallization temperature.
  • the continuous annealing temperature is preferably set to 700 ° C. or higher.
  • the continuous annealing temperature exceeds 900 ° C, nitrides such as A1N precipitate and the amount of solute N in the product steel sheet becomes insufficient.
  • the continuous annealing temperature is preferably set to 850 ° C. or less from the viewpoints of preventing the structure from being coarsened and reducing the solid solution N loss due to the progress of precipitation.
  • the annealing temperature is preferably set to (Ac 1 transformation point) to (Ac 3 transformation point).
  • Annealing is preferably performed continuously from the viewpoint of productivity.
  • heating is performed to a temperature of (Ac 1 transformation point) to (A c 3 transformation point).
  • it becomes two phases of austenite ( y ) phase and ferrite ( ⁇ ) phase, and C is concentrated in ⁇ phase.
  • y phase transforms to martensite phase, and the second phase becomes It forms a complex structure of ⁇ + martensite. Thereby, ductility and workability are improved, and a low yield ratio is realized.
  • the annealing temperature is lower than the Ac 1 transformation point, a ferrite + pearlite structure is formed.
  • the annealing temperature is higher than the Ac 3 transformation point, the alloying elements in the ⁇ phase are insufficiently concentrated, the ductility is slightly lowered, and the yield ratio is slightly increased. However, the strain aging characteristics are kept high.
  • Holding time at continuous annealing temperature 10 to 120 s
  • the holding time at the continuous annealing temperature is to ensure that the structure is finer and that the amount of solid solution N is higher than desired. It is preferable to set the time as short as possible from the viewpoint of operation, but it is preferable to set it to 10 s or more from the viewpoint of operation stability. If the holding time exceeds 120 s, it becomes difficult to refine the structure and secure the amount of solute N. For this reason, the holding time at the continuous annealing temperature is preferably in the range of 10 to 120 s. The holding time at the continuous annealing temperature is more preferably in the range of 10 to 90 s, and still more preferably in the range of 10 to 60 s.
  • the primary cooling is performed at a cooling rate of 10 to 300 ° C / s up to a temperature range of 500 ° C or less. Cooling after soaking in continuous annealing is important from the viewpoint of refining the structure and securing the amount of solute N.
  • primary cooling is performed at a temperature of 10 to 300 ° CZs up to a temperature range of 500 ° C or less. Cool continuously at the cooling rate. If the cooling rate is less than 10 ° C / s, it becomes difficult to secure a uniform and fine structure and a desired amount of solute N in excess of the desired amount.
  • the uniformity of the material in the width direction of the steel sheet is insufficient.
  • the cooling stop temperature when cooling at a cooling rate of 10 to 300 ° C / s exceeds 500 ° C, the microstructure cannot be refined.
  • the secondary cooling conditions are such that the residence time in the temperature range of 400 ° C or more, which is lower than the cooling stop temperature of primary cooling, is 300 s or less. Secondary cooling after primary cooling is important from the viewpoint of strain age hardening characteristics. Although the detailed mechanism is unknown at present, it is presumed that the amount of dissolved C and N changes depending on the condition of secondary cooling, which affects the strain aging characteristics. In the present invention, it is preferable that the cooling be continued after the primary cooling, so that the residence time in the temperature range of 400 to 400 s in the primary cooling stop temperature is 300 s or less. In the present invention, a so-called overaging treatment may be performed after the continuous annealing.
  • the overaging zone of the continuous annealing furnace is passed through, it is desirable to set the temperature of the overaging zone to an extremely low temperature.
  • the cooling (primary cooling) after holding at the annealing temperature is preferably performed at a cooling rate of 70 ° C / s or less to a temperature range of 600 ° C or less. Cooling after soaking in continuous annealing is important from the viewpoint of refining the structure and securing the amount of dissolved N, and in the present invention, Cool continuously to a temperature range of 600 ° C or less at a cooling rate of 70 ° C / s or less. If the cooling rate exceeds 70 ° C, the yield ratio will decrease, and the uniformity of the material in the width direction of the steel sheet will be insufficient. Preferably, the cooling rate is 5 ° C / s or more to secure TS and YS. If the cooling stop temperature at the time of cooling at such a cooling rate is higher than 600 ° C, the bake hardenability decreases, which is not preferable.
  • a so-called overaging treatment for maintaining the temperature within a predetermined temperature range may be performed, or may not be particularly performed.
  • the heating to the soaking temperature of annealing is preferably performed at a heating rate of 5 ° CZs or more at least between 600 ° C and (Acl transformation point). If it is less than 5 ° CZs, there is a problem in securing the amount of dissolved N. More preferably, it is 5 to 30 ° CZs.
  • Cooling after soaking Average cooling rate between 600 and 300 ° C is critical cooling rate CR or more Cooling after soaking during annealing is important from the viewpoint of microstructural refinement, securing solid solution N content and forming martensite.
  • the average cooling rate between 600 and 300 ° C. is determined by the following equation (1) or (2) according to the alloy element amount.
  • Cooling is performed at a critical cooling rate CR defined by the formula above. Note that in equations (1) and (2), For elements that do not have it, calculation shall be made as 0.
  • the cooling rate after annealing is set so that the average cooling rate between 600 and 300 ° C is not less than CR defined by the formula (1) or (2), preferably not more than 300 ° CZs.
  • the average cooling rate in the temperature range below 300 ° C is preferably 5 ° CZs or more.
  • temper rolling or leveler processing at an elongation of 1.0 to 15% may be further performed.
  • the strain age hardening characteristics such as the BH amount and ATS amount can be stably improved.
  • the total elongation in the temper rolling or leveler processing is preferably 1.0% or more in total. If the elongation is less than 1.0%, the improvement in strain age hardening characteristics is small, while if the elongation exceeds 15%, the ductility of the steel sheet decreases.
  • the inventors of the present invention have confirmed that there is a difference in the processing mode between the temper rolling and the leveler processing, but no significant difference in the effect on the strain aging hardening characteristics of the steel sheet.
  • Molten copper having the composition shown in Table 1 was smelted in a converter and made into a slab by a continuous casting method. These slabs were heated under the conditions shown in Table 2 and rough-rolled to form sheet bars having the thickness shown in Table 2, and then hot-rolled by a hot rolling process in which finish rolling was performed under the conditions shown in Table 2. For some, lubrication rolling was performed by finish rolling.
  • hot-rolled sheets were formed into cold-rolled sheets by a cold rolling process including pickling and cold rolling under the conditions shown in Table 2.
  • the cold rolled sheets were subjected to continuous annealing in a continuous annealing furnace under the conditions shown in Table 2.
  • Some parts were subjected to temper rolling after the cold-rolled sheet annealing step.
  • the annealing temperatures in the continuous annealing were all higher than the recrystallization temperature.
  • the solute N content was determined by subtracting the precipitated N content from the total N content in the steel determined by chemical analysis.
  • the amount of precipitated N was determined by an analytical method using the above-described potentiostatic electrolysis method.
  • a specimen was taken from each cold-rolled annealed plate, and the microstructure of the cross section (C cross section) perpendicular to the rolling direction was imaged using an optical microscope or a scanning electron microscope, and the main structure was imaged using an image analyzer.
  • the structural fraction of ferrite as a phase and the type of the second phase were determined.
  • the crystal grain size of the ferrite, the main phase was calculated from the micrograph of the cross section (C cross section) perpendicular to the rolling direction by the quadrature method specified in ASTM or by the cutting method specified in ASTM. The larger of the nominal particle sizes was adopted.
  • TIS Z 2241 defines the distortion in compliance rate of: 3X 10_ 3 ⁇ in performing a tensile test, yield strength YS, tensile strength TS, growth El was determined.
  • a JIS No. 5 test piece was sampled from each cold-rolled annealed sheet in the rolling direction, a 5% tensile prestrain was given here as a pre-deformation, and a heat treatment equivalent to a paint baking treatment at 170 ° C for 20 min was performed.
  • YS 5 % is the deformation stress when the product plate is pre-deformed by 5%
  • YS BH and TSBH are the yield stress and tensile strength after pre-deformation-paint baking
  • TS is the product plate The tensile strength.
  • Fatigue resistance characteristics Fatigue specimens were taken in the rolling direction from each cold-rolled annealed sheets, in compliance with the provisions of JIS Z 2273, Min Stress and a tensile fatigue test and ompA, fatigue limit (the number of repetitions: 10 7 times) sigma I asked for FL.
  • a 5% tensile prestrain was given as a pre-deformation, followed by a heat treatment equivalent to a paint baking treatment at 170 ° C x 20 mm, and then a similar fatigue test was performed to find the fatigue limit ( ⁇ FL) BH. improvement margin of the fatigue resistance according predeforming one paint baking the ((CJ F L) BH- ⁇ FL) were evaluated.
  • All of the examples of the present invention have excellent ductility and excellent strain aging hardening characteristics, exhibit a remarkably high BH amount and ATS, and also have an improvement in fatigue resistance and impact resistance due to strain aging. large.
  • the characteristics of the plated steel sheets with No. 11 and No. 13 coated with hot-dip zinc were almost the same as those before plating.
  • the zinc plating treatment was performed by immersing the steel plate in a molten zinc plating bath. The immersed copper plate was pulled up, and the weight per unit area was adjusted by gas wiping.
  • the plating conditions were as follows: plate temperature: 475 ° C, plating bath: 0.13% A1-Zn, bath temperature: 475 ° C, immersion time: 3 seconds, weight per unit area: 45 g / iri. Was.
  • a steel having the composition shown in Table 4 was formed into a slab in the same manner as in Example 1, and the slab was heated under the conditions shown in Table 5 and roughly rolled to obtain a sheet having a thickness of 25 mm.
  • a hot rolled sheet was obtained by a hot rolling step of performing finish rolling under the following conditions.
  • the sheet bars that were adjacent to each other on the finishing rolling entry side were joined by a melt pressure welding method and were continuously rolled.
  • the sheet bar temperature was adjusted at the width end and the length direction end of the sheet bar by using an induction heating type sheet bar edge heater and a sheet bar heater.
  • These hot-rolled sheets were cold-rolled to a thickness of 1.6 mm by a cold rolling process including pickling and cold rolling under the conditions shown in Table 5.
  • these cold-rolled sheets were subjected to continuous annealing in a continuous annealing furnace under the conditions shown in Table 5.
  • the annealing temperature of the continuous annealing was set to be equal to or higher than the recrystallization temperature.
  • Example 1 About the obtained cold-rolled annealed sheet, as in Example 1, (1) solid solution N content, (2) microstructure, (3) tensile property, (4) strain age hardening property, (5) fatigue resistance property And (6) Impact resistance characteristics were investigated.
  • All of the examples of the present invention have excellent strain aging hardening characteristics, exhibit a remarkably high BH amount and ATS stably despite fluctuations in manufacturing conditions, and have fatigue resistance characteristics due to strain aging treatment.
  • the improvement in impact resistance is also large.
  • the thickness accuracy and the shape of the product steel sheet were improved by performing the continuous rolling and the temperature adjustment in the longitudinal direction and the width direction of the sheet bar.
  • the strain aging hardening characteristics of the copper plate No. 1 and the comparative example steel plate No. 5 were investigated by changing aging conditions variously. Table 7 shows the results. The test method was the same as in Example 1, except that only the aging temperature and the aging time were changed.
  • the values of BH amount ⁇ 5 MPa and ATS60 Pa were obtained by aging treatment at 170 ° C for 20 min, which is the standard aging condition. However, it can satisfy BH amount of more than SOMPa and ATS of more than 40MPa Was. On the other hand, in the comparative example, even when the aging temperature was changed in the range of 100 to 300 ° C., a large BH amount and ATS as in the present invention example were not shown.
  • the steel sheet of the present invention can ensure a high BH content and ATS even under a wide range of aging conditions.
  • Molten steel having the composition shown in Table 8 was smelted in a converter and made into a slab by a continuous casting method. These slabs were heated under the conditions shown in Table 9 and rough-rolled to obtain sheet bars having the thickness shown in Table 9, and then hot-rolled by a hot rolling process in which finish rolling was performed under the conditions shown in Table 9. For some, lubrication rolling was performed by finish rolling.
  • hot-rolled sheets were formed into cold-rolled sheets by a cold rolling process including pickling and cold rolling under the conditions shown in Table 9.
  • the cold rolled sheets were subjected to continuous annealing in a continuous annealing furnace under the conditions shown in Table 9.
  • temper rolling was performed. The annealing temperatures in the continuous annealing were all higher than the recrystallization temperature.
  • the obtained cold rolled annealed sheet was examined for (1) the amount of solute N, (2) microstructure, (3) tensile properties, and (4) strain age hardening properties in the same manner as in Example 1.
  • Table 10 shows the survey results.
  • a steel plate was prepared by applying hot-dip galvanizing to the surface of the steel plate and various properties were evaluated in the same manner.
  • the zinc plating treatment was performed by immersing the steel sheet in a bath for hot-dip galvanizing, and after raising the infiltrated steel sheet, the weight per unit area was adjusted by gas wiping.
  • the plating conditions were as follows: plate temperature: 475 ° C, plating bath: 0.13% A1-Zn, bath temperature: 475 ° C, immersion time: 3 seconds, and basis weight: 45 g / m.
  • the annealing conditions in the continuous plating line were the same as in the continuous annealing line.
  • Each of the examples of the present invention had excellent ductility, a high yield ratio, and excellent strain aging hardening properties, and exhibited extremely high BH content and ATS.
  • a steel having the composition shown in Table 11 was formed into a slab in the same manner as in Example 3, and the slab was heated under the conditions shown in Table 12, rough-rolled to a sheet bar having a thickness of 25 mm, and then shown in Table 12.
  • a hot rolled sheet was obtained by a hot rolling step of performing finish rolling under the conditions. Note that, after the rough rolling, the sheet bars adjacent to each other on the entry side of the finish rolling were joined by a melt pressure welding method and were continuously rolled. The width of the sheet bar and the end in the length direction of the sheet bar were adjusted using an induction heating type sheet bar edge heater and a sheet bar heater to control the temperature of the sheet bar.
  • These hot-rolled sheets were formed into 1.2 to 1.4 mm-thick cold-rolled sheets by a cold rolling process including pickling and cold rolling under the conditions shown in Table 12.
  • a cold rolling process including pickling and cold rolling under the conditions shown in Table 12.
  • these cold-rolled sheets were subjected to continuous annealing in a continuous annealing furnace under the conditions shown in Table 12.
  • the annealing temperature in continuous annealing was set to be equal to or higher than the recrystallization temperature.
  • the obtained cold rolled annealed sheet was examined for (1) the amount of solute N, (2) microstructure, (3) tensile properties, and (4) strain age hardening properties in the same manner as in Example 1.
  • Each of the examples of the present invention had excellent ductility, a high yield ratio, and excellent strain aging hardening characteristics, and exhibited a remarkably high BH content and ATS regardless of fluctuations in production conditions. Further, in the example of the present invention, by performing continuous rolling and temperature adjustment in the longitudinal direction and the width direction of the sheet bar, the thickness accuracy of the product steel sheet was improved.
  • strain aging hardening characteristics of the copper plate No. 1 of the present invention and the steel plate No. 10 of the comparative example were investigated by changing the aging conditions in various ways.
  • Table 14 shows the results. The test method was the same as in Example 3, and only the aging temperature and the aging time were changed.
  • BH amount of 90 MPa and ATS of 50 MPa were obtained by aging treatment at 170 ° C for 20 min, which is the standard aging condition. However, it was able to satisfy the BH amount of 80MPa or more and ATS of 40MPa or more.
  • the comparative example (steel sheet No. 10)
  • the steel sheet of the present invention can ensure a high BH content and ATS even under a wide range of aging conditions.
  • Molten steel having the composition shown in Table 15 was smelted in a converter and made into a slab by a continuous casting method. These slabs were heated under the conditions shown in Table 16, rough-rolled to form sheet bars having the thickness shown in Table 16, and then formed into hot-rolled sheets by a hot rolling process in which finish rolling was performed under the conditions shown in Table 16. . For some (steel sheets No. 2 and No. 3), lubrication rolling was performed by finish rolling. In addition, a part of the sheet bars, which were adjacent to each other on the entry side of the finish rolling after the rough rolling, were joined by a melt pressure welding method and continuously rolled.
  • the sheet bar temperature was adjusted at the width end and the end in the length direction of the sheet bar using an induction heating type sheet bar edge heater and a sheet bar heater.
  • These hot-rolled sheets were formed into cold-rolled sheets by a cold rolling process including pickling and cold rolling under the conditions shown in Table 16.
  • these cold-rolled sheets were annealed in a continuous annealing furnace (continuous annealing) under the conditions shown in Table 16, and then subjected to a cold-rolled sheet annealing step of cooling under the conditions shown in Table 16 after annealing.
  • Some parts were temper rolled after the cold rolled sheet annealing process.
  • the r value was determined as an index of formability.
  • JIS No. 13B test pieces were collected from each cold-rolled annealed sheet in the rolling direction (L direction), 45 ° direction (D direction), and 90 ° direction (C direction) with respect to the rolling direction.
  • L direction rolling direction
  • D direction 45 ° direction
  • C direction 90 ° direction
  • r L is the r value in the rolling direction (L direction)
  • r D is the r value in the rolling direction (L direction) with respect to the 45 ° direction (D direction)
  • r c is the rolling direction It is the r value in the 90 ° direction (C direction) with respect to (L direction).
  • All of the examples of the present invention show excellent ductility and a low yield ratio, furthermore have excellent strain aging hardening properties, exhibit a remarkably high BH content and ATS, and have improved impact resistance properties by strain aging treatment.
  • the generation is big.
  • a high-strength cold-rolled steel sheet having high strain age hardening characteristics and high formability both of which have a yield stress of 80 MPa or more and a tensile strength of 40 MPa or more by pre-deformation-paint baking treatment, and which both increase. It can be manufactured inexpensively and without disturbing the shape, and has a remarkable industrial effect. Further, when the high-tensile cold-rolled steel sheet of the present invention is applied to automobile parts, the tensile strength is increased together with the yield stress by paint baking treatment and the like, and stable and high component properties can be obtained. For example, it can be reduced from 2.0 mm to 1.6 mm, which also has the effect of reducing the weight of an automobile body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

明 細 書
歪時効硬化特性に優れた高張力冷延鋼板およびその製造方法 技術分野
本発明は、 主として自動車車体用として好適な高加工性高張力冷延鋼板に係 り、 とくに引張強さ(T S ) 440 MPa 以上で歪時効硬化特性に優れた高張力冷延 鋼板、およびその製造方法に関する。本発明の高張力冷延鋼板は、 軽度の曲げ 加工やロールフォーミングによりパイプに成形されるような比較的軽加ェに供される ものから比較的厳しい絞り成形に供されるものまで、広範囲の用途に適するもので ある。なお、本発明における鋼板とは、鋼帯を含むものとする。
また、本発明において、 「歪時効硬化特性に優れた」とは、 引張歪 5 %の予変形 後、 170 °Cの温度に 20min 保持する条件で時効処理したとき、この時効処理前 後の変形応力増加量(B H量と記す; B H量 =時効処理後の降伏応力一時効処 理前の予変形応力)が 80MPa 以上であり、かつ歪時効処理(前記予変形 +前記 時効処理)前後の引張強さ增加量(A TSと記す; A TS =時効処理後の引張強さ 一予変形前の引張強さ)が 40MPa 以上であることを意味する。 背景技術
昨今の地球環境問題からの排出ガス規制に関連し、 自動車における車体重量 の軽減は極めて重要な課題となっている。 自動車の車体を軽くするためには、多量 に使用されている鋼板の強度を増加させ、すなわち高張力鋼板を適用して、使用 する鋼板を薄くすることが有効である。
し力 し、薄肉の高張力鋼板を使用した自動車部品でも、その役割に応じて課さ れるパフォーマンスが必要十分に発揮されねばならない。かかるパフォーマンスとして は、例えば曲げ、 ねじり変形に対する静的強度、耐疲労性、耐衝撃特性などがある。 したがって、 自動車部品に適用される高張力鋼板は、成形加工後にかかる特性に も優れることが必要となる。
また、 自動車部品を作る過程においては、鋼板に対してプレス成形が行われるが、 鋼板の強度が高すぎると、
①形状凍結性が低下する、
②延性が低下するため成形時に割れやネッキングなどの不具合を生ずる、 といった問題が生じ、 自動車車体への高張力銅板の適用拡大を阻んでいた。
これを打開するための手法として、 例えば外板パネル用の冷延鋼板では、極低 炭素鋼を素材とし、最終的に固溶状態で残存する C量を適正範囲に制御した鋼 板が知られている。この種銅板は、プレス成形時には軟質に保たれ、形状凍結性、 延性を確保し、プレス成形後に行われる、 170 °C X 20分程度の塗装焼付工程で 起こる歪時効硬化現象を利用した降伏応力の上昇を得て、耐デント性を確保しよ うとするものである。この種の鋼板では、プレス成形時には Cが鋼中に固溶して軟質 であり、一方、プレス成形後には、塗装焼付工程で、プレス成形時に導入された転 位に固溶 Cが固着して、降伏応力が上昇する。
し力 し、この種の鋼板では、表面欠陥となるストレーッチヤ一ストレインの発生を防 止する観点から、 歪時効硬化による降伏応力上昇量は低く抑えられている。このた め、実際に部品の軽量化に寄与するところは小さいことになる。
すなわち、部品の軽量化には、単に歪時効により降伏応力のみ上昇するのではな く、強度特性の上昇が必要である。言い換えれば、歪時効後の引張強さの上昇に より部品の強度上昇が図られることが望まれている。
—方、外観があまり問題にならない用途に対しては、 固溶 Nを用いて焼付硬化 量をさらに増加させた鋼板や、組織をフニライトとマルテンサイトからなる複合組織と することで焼付硬化性をより一層向上させた鋼板が提案されている。
例えば、 特開昭 60-52528号公報には、 C:0.02〜0.15%、 Mn:0.8 〜3.5 %、 P:0.02~0.15%、 Al:0.10%以下、 N:0.005 〜0.025 %を含む鋼を 550 °C以下 の温度で卷き取る熱間圧延と、冷延後の焼鈍を制御冷却熱処理とする延性およ びスポット溶接性がともに良好な高強度薄鋼板の製造方法が開示されている。特 開昭 60-52528号公報に記載された技術で製造された鋼板は、フェライトとマルテン サイトを主体とする低温変態生成物相からなる混合組織を有し延性に優れるととも に、積極的に添加された Nによる塗装焼付けの際の歪時効を利用して、 高強度を 得ようとするものである。
しかしながら、特開昭 60- 52528号公報に記載された技術では、 歪時効硬化によ る降伏応力 YSの増加量は大きいが引張強さ TSの增加量が少なく、また、降伏応 力 YSの増加量も大きくばらつくなど機械的性質の変動も大きいため、現状で要望 されている自動車部品の軽量化に寄与できるほどの鋼板の薄肉化が期待できな レ、。
また、 特公平 5-24979 号公報には、 C :0.08〜0.20%、 Mn: 1.5 〜3.5 %を含み 残部 Feおよび不可避的不純物からなる成分組成を有し、組織がフェライト量 5%以 下の均一なベイナイトもしくは一部マルテンサイトを含むベイナイトで構成された焼付 硬化性高張力冷延薄鋼板が開示されている。 特公平 5 -24979 号公報に記載さ れた冷延鋼板は、連続焼鈍後の冷却過程で 400 〜200 °Cの温度範囲を急冷とし、 その後を徐冷とすることにより、組織をべイナイト主体の組織として、従来になかった 高い焼付硬化量を得ようとするものである。
しかしながら、特公平 5 -24979 号公報に記載された鋼板では、 塗装焼付け後に 降伏強さが上昇し従来になかった高い焼付け硬化量が得られるものの、 引張強さ までは上昇させることができず、強度部材に適用した場合、成形後の耐疲労特性、 耐衝撃特性の向上が期待できない。このため、 耐疲労特性、耐衝撃性等が強く要 求される用途への適用ができないという問題が残されていた。
プレス成形後に熱処理を施し、 降伏応力のみならず引張強さをも上昇させようと する鋼板が、熱延鋼板ではあるが、提案されている。
例えば、特公平 8— 23048 号公報には、 C :0.02〜0.13%、 Si:2.0 %以下、 Mn: 0.6 〜2.5 %、 sol.Al:0.10%以下、 Ν··0.0080〜0.0250%を含む鋼を、 1100°C以 上に再加熱し、 850 〜900 °Cで仕上圧延を終了する熱間圧延を施し、ついで 15 °C /s以上の冷却速度で 15 0 °C未満の温度まで冷却し卷取り、フェライトとマルテンサ イトを主体とする複合組織とする、熱延銅板の製造方法が提案されている。しかしな がら特公平 8— 23 048 号公報に記載された技術で製造された鋼板では、 歪時効 硬化により降伏応力とともに引張強さが增加するものの、 15 0 °C未満という極めて 低い卷取温度で卷き取るため、機械的特性の変動が大きいという問題があった。ま た、プレス成形一塗装焼付け処理後の降伏応力の増加量のばらつきが大きく、さら いう問題もあった。
また、比較的高い降伏応力を有する高張力銅板としては、 Ti、 Nb、 V等の炭窒化 物形成元素を添加し、それらの微細な析出物によって強化する、いわゆる析出強 化鋼があるが、熱延卷取り後に十分保熱する工程を経る熱延銅板はともかくとして、 冷延鋼板においては、短時間の連続焼鈍工程では十分な析出を進行させることは 困難であり、高い降伏比(引張強さに対する降伏応力の割合: Y S Z TS )を有する 鋼板を製造することは困難であった。特に、溶接性を考慮して低 C化しようとすると、 C量が低い領域では析出物そのものの量が減少するためか、 高降伏比を得るのが 一段と難しくなるという問題もあった。
さらに、上記した従来の鋼板では、 単純な引張試験による塗装焼付処理後の強 度評価では優れているものの、実プレス条件にしたがって、塑性変形させたときの強 度に大きなばらつきが存在し、信頼性が要求される部品に適用するには必ずしも十 分とはいえなかったのである。
本発明は、上記した従来技術の限界を打破し、 高い成形性と、安定した品質 特性を有するうえ、 自動車部品に成形したのちに自動車部品として十分な強度が 得られ自動車車体の軽量化に充分に寄与できる、歪時効硬化特性に優れた高張 カ冷延鋼板およびこれら鋼板を工業的に安価に、かつ形状を乱さずに製造できる 製造方法を提供することを目 的とする。本発明における歪時効硬化特性は、 引張 歪 5 %の予変形後、 1 70 °Cの温度に 20mm 保持する時効条件で、 BH量が 80MP a 以上、 A T Sが 40MPa 以上を目標とする。
さらに、 特に比較的小さな歪を付与される部品へも有利に適用しうるために、原板 状態での降伏応力を高めて部品強度の安定化を狙うべく、 降伏比 0. 7 以上の高 降伏比型高張力冷延鋼板とすることも本発明の目的とする。
発明の開示
本発明者らは、 上記課題を達成するために、組成および製造条件を種々変えて 鋼板を製造し、 多くの材質評価実験を行った。その結果、 高加工性が要求される 分野では従来あまり積極的に利用されることがなかった Nを強化元素として、この強 化元素の作用により発現する大きな歪時効硬化現象を有利に活用することにより、 成形性の向上と成形後の高強度化とを容易に両立させることができることを知見し た。
さらに、本発明者らは、 Nによる歪時効硬化現象を有利に活用するためには、 Nに よる歪時効硬化現象を自動車の塗装焼付け条件、あるいはさらに積極的に成形 後の熱処理条件と有利に結合させる必要があり、そのために、熱延条件や冷延、 冷延焼鈍条件を適正化して、鋼板の微視組織と固溶 N量とをある範囲に制御する ことが有効であることを見いだした。また、 Nによる歪時効硬化現象を安定して発現 させるためには、組成の面で、 特に A1含有量を N含有量に応じて制御することが重 要であることも見いだした。また、本発明者らは、鋼板の微視組織を、フ ライトを主 相とし、平均粒径を Ι Ο μ πι 以下とすることにより、従来問題であった室温時効劣化 の問題もなく、 Νを充分に活用できることを見い出した。
また、さらに本発明者らは、銅板の微視組織をフェライトを主相とし、 第 2相として、 マルテンサイト相を面積率で 3 %以上含む組織とすることにより、低降伏比が達成で き、延性、加工性が向上するとともに、 Νにより発現される歪時効硬化現象を有利 に利用して、加工後の強度が増加し、 部品特性としての耐衝撃特性が改善できる ことを見い出した。 すなわち、本発明者らは、 Nを強化元素として用い、 A1含有量を N含有量に応じ て適正な範囲に制御するとともに、熱延条件や冷延、冷延焼鈍条件を適正化して、 微視組織と固溶 Nを最適化することにより、従来の固溶強化型の C一 Mn系鋼板、 析出強化型鋼板に比べて格段に優れた成形性と、上記した従来の鋼板にない歪 時効硬化特性とを有する鋼板が得られることを見いだしたのである。
また、 さらに本発明者らは、 Nを強化元素として用い、 A1含有量を N含有量に応 じて適正な範囲に制御するとともに、熱延条件や冷延、 冷延焼鈍条件を適正化し て、微視組織と固溶 N (固溶状態の N)、析出 Nb (析出状態の Nb)を最適化するこ とにより、従来の固溶強化型の C一 Mn系鋼板、析出強化型鋼板に比べて格段に 優れた成形性と、 0. 7以上に高位に達する降伏比と、 上記した従来の鋼板にない 歪時効硬化特性とを有する鋼板が得られることを見出したのである。
ここで、 主相はフェライトで、残部はパーライト主体の組織とするが、面積率 2%以 下のベイナイトあるいはマルテンサイトは許容される。また、フェライト相を析出強化す るためには、後述する方法で分析される析出 Nb量が 0.005 %以上であることが好ま しい。
また、本発明の銅板は、 単純な引張試験による塗装焼付処理後の強度が従来 の鋼板よりも高いうえ、さらに実プレス条件にしたがって塑性変形させたときの強度 のばらつきが小さく、安定した部品強度特性が得られる。 例えば、歪が大きく加わり 板厚が減少した部分は、他の部分より硬化代が大きく(板厚) X (強度)という載荷 重能力で評価すると均一化する方向であり、 部品としての強度は安定するのであ る。
本発明は、上記した知見に基づき、さらに検討を加え完成されたものである。
すなわち、第 1の本発明では、 mass%で、 C :0.15%以下、 Si:2.0 %以下、 Mn:3. 0 %以下、 P:0.08%以下、 S : 0.02%以下、 Al:0.02%以下、 N:0.0050〜0.025 0%を含み、かつ NZAIが 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、残部が Feおよび不可避的不純物からなる組成と、 平均結晶粒径 10 /i m以下のフェライト 相を面積率で 50%以上含む組織とを有することを特徴とする引張強さ 440MPa以 上で歪時効硬化特性に優れた、好ましくは板厚 3.2mm 以下の高張力冷延鋼板 であり、また、第 1の本発明では、前記組成に加えてさらに、 mass%で、 次 a群〜 d群 a群: Cu、 Ni、 Cr、 Moの 1種または 2種以上を合計で 1.0 %以下
b群: Nb、 Ti、 Vの 1種または 2種以上を合計で 0.1 %以下
c群: Bを 0.0030%以下
d群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %
の 1群または 2群以上を含むことが好ましい。
また、第 1の本発明では、 上記した高張力冷延鋼板に電気めつきまたは溶融め つきを施してもよい。
また、第 2の本発明では、 mass%で、 C:0.15%以下、 Si:2.0 %以下、 Mn:3.0 % 以下、 P:0.08%以下、 S:0.02%以下、 AI:0.02%以下、 N:0.0050〜0.0250%を 含み、かつ が 0.3 以上である組成を有する鋼スラブを、スラブ加熱温度:100 0°C以上に加熱し、粗圧延してシートバーとし、該シートバーに仕上圧延出側温度: 800 °C以上とする仕上圧延を施し、仕上圧延後、好ましくは 0.5 秒以内に冷却を 開始し冷却速度:40°CZs以上で急冷し、卷取温度: 650 °C以下で巻き取り熱延 板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする 冷間圧延工程と、該冷延板に再結晶温度以上 900 °C以下の温度で保持時間: 1 0~60sとする焼鈍を行い、ついで 500 °C以下の温度域まで冷却速度: 10〜300 °C Zsで冷却する一次冷却と、ついで前記一次冷却の停止温度以下 400 °C以上の 温度域での滞留時間を 300 s以下とする二次冷却とを行う冷延板焼鈍工程とを、 順次施すことを特徴とする引張強さ 440MPa以上で歪時効硬化特性に優れた高張 力冷延銷板の製造方法であり、また、第 2の本発明では、前記冷延板焼鈍工程に 続いてさらに、伸び率:1.0 〜 15%の調質圧延またはレべラー加工を施すことが好 ましい。
また、第 2の本癸明では、前記粗圧延と前記仕上圧延の間で、相前後するシート バー同士を接合することが好ましい。また、第 2の本発明では、 前記粗圧延と前記 仕上圧延の間で、 前記シートバーの幅端部を加熱するシートバーエッジヒータ、前 記シートバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を 使用することが好ましい。
第 3の本発明では、 mass%で、 C:0.15%以下、 Si:2.0 %以下、 Mn:3.0 °/。以下、 P:0.08%以下、 S:0.02%以下、 Al:0.02%以下、 N: 0.0050〜0.025 。に Nb:0.00 7 〜0.04%を含み、かつ NZA1が 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、 さらに析出状態の Nbを 0.005 %以上含有し、残部が Feおよび不可避的不純物か らなる組成と、平均結晶粒径 10μ m以下のフェライト相を面積率で 50%以上含み、 残部はパーライト主体となる組織を有することを特徴とする引張強さ 440MPa以上、 降伏比 0.7 以上で歪時効硬化特性に優れた、好ましくは板厚 3.2mm 以下の高降 伏比型高張力冷延鋼板であり、また、第 3の本発明では、前記組成に加えてさらに、 mass% \次 a群〜 d群
a群: Cu、 Ni、 Cr、 Moの 1種または 2種以上を合計で 1.0 %以下
b群: Ti、 Vの 1種または 2種を合計で 0.1 %以下
。群: Bを 0.0030%以下
d群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %
の 1群または 2群以上を含むことが好ましい。
また、第 4の本発明では、 mass%で、 C:0.15%以下、 Si:2.0 。/。以下、 Mn: 3.0 % 以下、 P:0.08%以下、 S:0.02%以下、 Al:0.02%以下、 N: 0.0050~ 0.025 %、 N b:0.007 〜0·04%を含み、かつ N/A1が 0.3 以上である組成を有する鋼スラブを、 スラブ加熱温度: 1100°C以上に加熱し、粗圧延してシートバーとし、該シートバーに 仕上圧延最終パスの圧下率:25%以上、仕上圧延出側温度: 800 °C以上とする 仕上圧延を施し、仕上圧延後、好ましくは 0.5 秒以内に冷却を開始し冷却速度: 40t/S以上で急冷し、卷取温度:650 °C以下で卷き取り熱延板とする熱間圧延 工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、 該冷延板に再結晶温度以上 900 °C以下の温度で保持時間: 10〜90sとする焼鈍 を行い、 ついで 600 °C以下の温度域まで冷却速度:70°C/s以下で冷却する冷延 板焼鈍工程とを、順次施すことを特徴とする引張強さ 440MPa以上、 降伏比 0.7 以 上で歪時効硬化特性に優れた高張力冷延鋼板の製造方法であり、また、第 4の 本発明では、前記冷延板焼鈍工程に続いてさらに、伸び率: 1.5 〜15%の調質圧 延またはレベラ一加工を施すことが好ましい。
第 4の本発明では、 前記粗圧延と前記仕上圧延の間で、 相前後するシートバー 同士を接合することが好ましい。また、第 4の本発明では、前記粗圧延と前記仕上 圧延の間で、前記シートバーの幅端部を加熱するシートバーエッジヒータ、前記シー トバーの長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用す ることが好ましい。
第 5の本発明では、 mass%で、 C:0.15%以下、 Mn:3.0 %以下、 S:0.02%以下、 A1: 0.02%以下、 N :0.0050~ 0.0250%を含み、 さらに、 Mo: 0.05〜 1.0 %、 Cr:0.0 5〜1.0 %のうちの 1種または 2種を含有し、かつ NZA1が 0.3 以上、 固溶状態の N を 0.0010%以上含有し、残部が Feおよび不可避的不純物からなる組成と、 平均結 晶粒径 10 μ m以下のフェライト相を面積率で 50%以上含み、 さらにマルテンサイト 相を面積率で 3%以上含む組織とを有することを特徴とする歪時効硬化特性、加 ェ性、耐衝撃特性に優れ、 引張強さ 440MPa以上の、好ましくは板厚 3.2mm 以下 の高張力冷延鋼板であり、また、第 5の本発明では、前記組成に加えてさらに、 mas s%で、次 e群〜 h群の 1群または 2群以上を含むことが好ましい。
6群:31:0.05〜1.5%、 ?:0.03〜0.15%、 B: 0.0003〜0.01 %の 1種または 2種以 上
f群: Nb:0.01〜0.1 %、 Ti: 0.01〜0.2 %、 V:0.01〜0.2 %の 1種または 2種以 上
g群: Cu:0.05〜1.5 %、 Ni:0.05〜1.5 %の 1種または 2種
h群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %。 また、第 6の本発明では、 mass%で、 C :0.15%以下、 Mn:3.0 %以下、 S: 0.02% 以下、 A1: 0.02%以下、 N :0.0050〜 0.0250%を含み、さらに、 Mo: 0.05〜 1.0 %、 Cr:0.05〜1.0 %のうちの 1種または 2種を含有し、かつ NZA1が 0.3 以上であり、あ るいはさらに、次 e群〜 h群
e群: Si :0.05 ~ 1.5 %、 P :0.03〜 0.15%、 B: 0.0003〜 0.01 %の 1種または 2種 以上
f群: Nb:0.01〜0.1 %、 Ti:0.01〜0.2 %、 V:0.01〜0.2 %の 1種または 2種以 上
g群: Cu:0.05〜1.5 %、 Νι:0·05〜1.5 %の 1種または 2種
h群: Ca、: REM の 1種または 2種を合計で 0.0010〜 0.010 %
の 1群または 2群以上を含む組成を有する鋼スラブを、スラブ加熱温度: 1000°C以 上に加熱し、粗圧延してシートバーとし、該シ一トバ一に仕上圧延出側温度: 800 °C以上とする仕上圧延を施し、卷取温度: 750 °C以下で卷き取り熱延板とする熱 間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延ェ 程と、該冷延板に、 (Acl変態点)〜(Ac3変態点)の温度で保持時間: 10〜 120s とする焼鈍を行い、ついで 600 〜300 °C間の平均冷却速度を次(1)または(2)式 B< 0.0003%の場合
log CR= - 1.73 [ n + 2.67Mo+ 1.3Cr + 0.26Si + 3.5 P + 0.05 Cu + 0.05 Ni] + 3. 95……(1)
B≥0.0003%の場合
log CR=— 1.73〔Mn + 2.67Mo+ 1.3Cr + 0.26Si + 3.5 P + 0.05 Cu + 0.05Ni] + 3. 40……(2)
(ここに、 CR:冷却速度(°C/s)、 Mn、 Mo、 Cr、 Si、 P、 Cu、 Ni:各元素含有量(mas s%))
で定義される臨界冷却速度 CR以上として冷却を行う冷延板焼鈍工程とを、順次 施すことを特徴とする歪時効硬化性、加工性、耐衝撃特性に優れ、 引張強さ: 440 MPa以上を有する高張力冷延鋼板の製造方法であり、 また、 第 6の本発明では、 前記仕上圧延後、 0.5 s以内に冷却を開始し、 冷却速度:40°C/s以上で急冷し、 前記卷き取りを行うことが好ましい。また、第 6の本発明では、 前記冷延板焼鈍ェ 程に続いてさらに、伸び率: 1.0 〜 15%の調質圧延またはレベラ一加工を施すこと が好ましい。 発明を実施するための最良の形態
まず、本発明鋼板の組成限定理由について説明する。 なお、 mass°/0は、 以下、 単に%と記す。
C: 0.15%以下
Cは、鋼板の強度を増加する元素であり、また本発明の重要な構成要件であるフ エライトの平均粒径 10μ m 以下を達成するため、 さらに所望の強度を確保するとい う観点から、 0.005 %以上含有するのが好ましいが、 0.15%を超えると、鋼板中の 炭化物分率が過大となり、延性が顕著に低下し成形性が劣化するうえ、 さらにスポ ット溶接性、アーク溶接性などが顕著に低下する。このような成形性および溶接性 の観点から Cは 0.15%以下に限定した。なお、好ましくは 0.10%以下、さらに良好な 延性が要求される用途では 0.08%以下とするのが好ましい。最も良好な延性が要 求される用途では 0.05%以下とするのが好ましい。
Si :2.0 %以下
Siは、鋼の延性を顕著に低下させることなく鋼板を高強度化させることができる有 用な元素であり、 0.1 %以上含有するのが好ましい。一方、 Siは、熱間圧延時に変 態点を大きく上昇させて品質、形状の確保を困難にしたり、あるいはまた表面性状、 化成処理性など鋼板表面の美麗性に悪影響を与える元素であり、本発明では 2.0 %以下に限定した。 Siが 2.0 %以下であれば、併合添加する Mnの量を調整するこ とで変態点の顕著な上昇を抑制することができ、 良好な表面性状も確保できる。な お、 引張強さ TS500MPa超級高張力銅板で、 高延性を確保したい場合には、 強 度と延性のバランスの観点から、 Siを 0.3 %以上含有するのがより好ましい。
Mn : 3 .0 %以下
Mnは、 Sによる熱間割れを防止する有効な元素であり、含有する S量に応じて添 加するのが好ましく、また M nは本発明の重要な構成要件である結晶粒の微細化に 対して大きな効果があり、積極的に添加して材質改善に利用するのが好ましい。 また、 Mnは焼入れ性を向上する元素であり、第 2相としてマルテンサイト相を安定し て形成するという観点からは積極的に添加するのが好ましい。 Sを安定して固定す る観点から、およぴマルテンサイト相の形成という観点からは、 Mnは 0.2 %以上含有 するのが好ましい。
また、 Mnは鋼板強度を增加させる元素であり、 TS5 00MPa超の強度要求に対し ては、 1 . 2 %以上含有するのが好ましい。なお、 強度を安定して確保する観点から より好ましくは 1 .5 %以上である。 Mn含有量をこのレベルまで高めると、熱延条件を 含め製造条件の変動に対する鋼板の機械的性質、および歪時効硬化特性のばら つきが小さくなり、 品質安定化に効果的である。
また、 Mnは熱間圧延時に変態点を下げる働きがあり、 Siとともに含有することによ り、 Si含有による変態点の上昇を相殺することができる。とくに板厚が薄い製品では、 変態点の変動によって品質 ·形状が敏感に変わるため、 M nと S iの含有量を厳密に バランスさせることが肝腎となる。このようなことから、 Mn/Si は 3 . 0 以上とするのがよ り好ましい。
一方、 M nを 3 .0 %を超えて多量に含有すると、銅板の熱間変形抵抗が増加す る傾向となるうえ、スポット溶接性、および溶接部の成形性が劣化する傾向となり、さ らに、フェライトの生成が抑制されるため、延性が顕著に低下する傾向となる。このた め、 Mnは 3 .0 %以下に限定した。なお、良好な耐食性と成形性が要求される用途 では、 M i 2.5 %以下とするのが望ましい。より良好な耐食性と成形性が要求され る用途では、 Mnは 1 .5 %以下とするのが望ましい。
P : 0.08 %以下 Pは、鋼の固溶強化元素として有用な元素であるが、過剰に含有すると鋼を脆化 させ、 さらに鋼板の伸びフランジ加工性を低下させる。また、 Pは鋼中で偏析する傾 向が強いためそれに起因した溶接部の脆化をもたらす。このため、 Pは 0. 08 %以下 に限定した。なお、伸びフランジ加工性や溶接部靱性が特に重要視される場合は 0. 04%以下とするのが好ましい。なお、より好ましくは溶接部靱性の観点から 0.02%以 下である。
S : 0.02 %以下
Sは、鋼板中では介在物として存在し、鋼板の延性、さらには耐食性の劣化をも たらす元素であり、本発明では Sは 0.02 %以下に限定した。なお、特に良好な加工 性が要求される用途においては、 0.015 %以下とするのが好ましい。 さらに伸びフラ ンジ性の要求レベルが高い場合は、 Sは 0.008 %以下とするのが好ましい。また、歪 時効硬化特性を安定して高レベルに維持するためには、詳細な機構は不明である 力 Sを 0.008 %以下まで低減するのが好ましい。
Al : 0.02%以下
A1は、脱酸剤として作用し鋼の清浄度を向上させるのに有効な元素であり、さらに 鋼板の組織を微細化する元素でもあり、本発明では 0 .001 %以上の含有が望まし い。一方、過剰の A1含有は、銅板表面性状を悪化させ、さらに本発明の重要な構 成要件である固溶状態の Nを減少させ、歪時効硬化現象に寄与する固溶 Nの不 足を生じ、製造条件がばらついた場合本発明の特徴である歪時効硬化特性にば らつきが生じやすくなる。このため、本発明では、 A1含有量は 0.02 %以下と低く限定 した。なお、材質安定性の観点からは、 A1は 0.015 %以下とするのが好ましい。
N : 0.0050~ 0.0250%
Nは、 固溶強化と歪時効硬化により鋼板の強度を増加させる元素であり、 本発 明において最も重要な元素である。また、 Nには鋼の変態点を下げる働きもあり、 N の含有は薄物で変態点を大きく割り込んだ圧延が忌避される状況下での操業安 定化にも有用である。本発明では、適量の Nを含有して、製造条件を制御すること により、 冷延製品あるいはめっき製品で必要かつ十分な量の固溶状態の Nを確保 し、それによつて固溶強化と歪時効硬化での強度(YS、 TS)上昇効果が十分に発 揮され、 TS440MPa以上、焼付け硬化量(BH量) 80MPa 以上、歪時効処理前後 での引張強さの増加量 ATS40MPa 以上という本発明鋼板の機械的性質要件を 安定して満足することができる。
Nが 0.0050%未満では、上記の強度上昇効果が安定して現れにくい。 一方、 Nが 0.0250%を超えると、鋼板の内部欠陥発生率が高くなるとともに、連続铸造時のス ラブ割れなどが多発するようになる。このため、 Nは 0.0050〜0.0250%の範囲とした。 なお、製造工程全体を考慮した材質の安定性 ·歩留り向上の観点からは、 Nは 0.0 070〜0.0170%の範囲とするのがより好ましい。なお、本発明範囲内の N量であれば、 スポット溶接、アーク溶接等の溶接性への悪影響は全くない。
固溶状態の N: 0.0010%以上
冷延製品で十分な強度が確保され、 さらに Nによる歪時効硬化が十分に発揮さ れるには、鋼中に固溶状態の N (固溶 Nともいう)が 0.0010%以上の量(濃度)で存 在する必要がある。
ここで、 固溶 N量は、鋼中の全 N量から析出 N量を差し引いて求めるものとする。 なお、析出 N量の分析法としては、本発明者らが種々の分析法を比較検討した結 果によれば、定電位電解法を用いた電解抽出分析法により求めるのが有効である。 なお抽出分析に用いる地鉄を溶解する方法として、 酸分解法、 ハロゲン法および 電解法がある。この中で、電解法は炭化物、窒化物などの極めて不安定な析出物 を分解させることなく、安定して地鉄のみを溶解できる。電解液としてはァセチル*ァ セトン系を用いて、 定電位にて電解する。本発明では定電位電解法を用いて析出 N量を測定した結果が、実際の部品強度ともつともよい対応を示した。
このようなことから、本発明では、 定電位電解法により抽出した残渣を化学分解 して残渣中の N量を求め、これを析出 N量とする。
なお、高い BH量、 ATSを得るためには、 固溶 N量は 0.0020%以上、 より高い値 を得るためには、 0.0030%以上とするのが好ましい。 さらに高い BH量、 ATSを得る ためには、 固溶 N量は、 0.0050%以上とするのが好ましい。
N/A1(N含有量と A1含有量の比):0.3 以上
製品状態で、 固溶 Nを 0.0010%以上安定させて残留させるためには、 Nを強力に 固定する元素である A1の量を制限する必要がある。本発明の組成範囲内の N含有 量と A1含有量の組合せを広範囲に変えた鋼板について検討した結果、冷延製品 およびめつき製品での固溶 Nを 0.0010%以上とするには、 A1量を 0.02%以下と低く 限定した場合、 NZA1を 0.3 以上とすることが必要であることがわかった。すなわち、 A1含有量は(N含有量) Z0.3 以下に制限される。
本癸明では、上記した組成に加えてさらに、次 a群〜 d群の 1群または 2群以上を 含有するのが好ましい。
a群: Cu、 Ni、 Cr、 Moの 1種または 2種以上を合計で 1.0 %以下
b群: Nb、 Ti、 Vの 1種または 2種以上を合計で 0.1 %以下
c群: Bを 0.0030%以下
d群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %
a群の元素: Cu、 Ni、 Cr、 Moは、いずれも鋼板の強度上昇に寄与する元素であり、 必要に応じ選択して単独または複合して含有できる。しかし、含有量が多すぎると 熱間変形抵抗が増加し、あるいは化成処理性や広義の表面処理特性が悪化する うえ、溶接部が硬化し溶接部成形性が劣化する。このため、 a群の元素は合計で 1. 0 %以下とするのが好ましい。
特に、 Mo:0.05〜1.0 %、 Cr:0.05〜1.0 %のうちの 1種または 2種を含有させる理 由。
Mo、 Crは、いずれも鋼板の強度上昇に寄与し、さらに鋼の焼入れ性を向上させ、 第 2相としてマルテンサイト相を生成しやすくする元素であり、マルテンサイト相を積 極的に得たい場合に単独または複合して含有する。とくに、 Mo、 Crはマルテンサイト 相を微細に分散する作用を有し、 降伏強さを低下させ低降伏比を容易に実現させ るという効果を有する。このような効果は、 Mo、 Crとも 0.05%以上の含有で認められ る。一方、 Moを 1.0 %超えて含有すると、加工性、表面処理性が低下するうえ、製 造コストが上昇し経済的に不利となる。また、 Crを 1.0 %超えて含有すると、めっき 濡れ性が低下する。このため、 Moは 0.05〜1.0 %、 Crは 0.05〜1.0 %に限定した。 b群の元素: Nb、 Ti、 Vは、 いずれも結晶粒の微細化 .均一化に寄与する元素で あり、必要に応じ選択して単独または複合して含有できる。 し力 し、含有量が多すぎ ると、熱間変形抵抗が増加し、 化成処理性や広義の表面処理特性が悪化する。 このため、 b群の元素は合計で 0.1 %以下とするのが好ましい。
特に、 Nb:0.007 〜0.04%を含有させる理由。
Nbは、本発明では結晶粒を顕著に微細化して YSを上昇させ降伏比(YR = YS ZTS)を 0.7 以上に向上させるとともに Nによる大きな歪時効硬化を発現させる重 要な元素の一つであり、この効果を得るために 0.007 %以上含有することが好まし レ、。一方、本発明では固溶 Nの必要量を確保するために、他の窒化物形成元素と 考え合わせると、 Nb量は 0.04%以下に制限することが好ましい。
析出状態の Nb: 0.005 %以上
本発明の Nb添加においては、 Nbの鋼中における存在状態も重要である。すなわ ち析出状態で存在する Nb (析出 Nbともいう)がー定量存在することが、安定した歪 時効硬化特性を得て、 かつ降伏比を 0.フ以上にするために好ましい。本発明範囲 の Nb添加量であれば、少なくとも 0.005 %以上の析出 Nbが存在することが必要で ある。 Nbの定量は、ァセチル.アセトン系の溶媒を用いた電解抽出法により溶解し、 抽出するものとする。種々の溶解法があるが本法で得た値が鋼の歪時効硬化特性 と最も良い相関を示したことがその理由である。本発明の範囲では、 Nbは Nよりも C とより結びついているものと推定しているが、詳細は不明である。 c群の元素: Bは、銅の焼入れ性を向上させる効果を有する元素であり、フェライト 相以外の低温変態相の分率を增加させて、銅の強度を増加させる目的で必要に 応じ含有することができる。 しかし、 量が多すぎると熱間変形能が低下し、 BNを生成 することで固溶 Nを低減させる。このため、 Bは 0.0030%以下とするが好ましい。 d群の元素: Ca、 RE は、 いずれも介在物の形態制御に役立つ元素であり、特 に伸びフランジ成形性の要求がある場合には、 単独または複合して含有するのが 好ましい。その場合、 d群の元素の合計で、 0.0010%未満では介在物の形態制御 効果が不足し、一方、 0.010 %を超えると表面欠陥の発生が目 立つようになる。こ のため、 d群の元素は合計で 0.0010〜0.010 %の範囲に限定するのが好ましい。 本発明では、 上記組成に、 上記した a群〜 d群の代わりに、次 e群〜 h群の 1群ま たは 2群以上を含有させても良い。
e群: Cu、 Ni、 Cr、 Moの 1種または 2種以上を合計で 1.0 %以下
f群: Ti、 Vの 1種または 2種を合計で 0.1 %以下
g群: Bを 0.0030%以下
h群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %
e群の元素: Cu、 Ni、 Cr、 Moは、いずれも鋼板の大きな延性の低下を伴うことなく 強度上昇に寄与する元素であり、この効果はおのおの Cu: 0.01%以上、 Ni: 0.01% 以上、 Cr :0.01%以上、 Mo :0.01%以上で認められ、必要に応じ選択して単独また は複合して含有できる。 しかし、含有量が多すぎると熱間変形抵抗が増加し、ある いは化成処理性や広義の表面処理特性が悪化するうえ、溶接部が硬化し溶接部 成形性が劣化する。このため、 a群の元素は合計で 1.0 %以下とするのが好ましい。 f群の元素: Ti、 Vは、いずれも結晶粒の微細化,均一化に寄与する元素であり、 この効果は Ti:0.002 %以上、 V:0.002 %以上で認められ、必要に応じ選択して 単独または複合して含有できる。 しかし、含有量が多すぎると、熱間変形抵抗が増 加し、化成処理性や広義の表面処理特性が悪化する。このため、 b群の元素は合 計で 0.1 %以下とするのが好ましい。
g群の元素: Bは、鋼の焼入れ性を向上させる効果を有する元素であり、フェライト 相以外の低温変態相の分率を增加させて、鋼の強度を増加させる目 的で必要に 応じ含有することができる。この効杲は B :0.0002%以上の添加で認めれる。しかし、 量が多すぎると熱間変形能が低下し、 BNを生成することで固溶 Nを低減させる。 こ のため、 Bは 0.0030%以下とするのが好ましい。
h群の元素: Ca、 REM は、いずれも介在物の形態制御に役立つ元素であり、 特 に伸びフランジ成形性の要求がある場合には、 単独または複合して含有するのが 好ましい。その場合、 d群の元素の合計で、 0.0010%未満では介在物の形態制御 効果が不足し、 一方、 0.010 %を超えると表面欠陥の発生が目 立つようになる。こ のため、 d群の元素は合計で 0.0010〜0.010 %の範囲とするのが好ましい。
次に、本発明鋼板の組織について説明する。
フェライト相の面積率:50%以上
本発明の冷延鋼板は、 高度な加工性が要求される自動車用鋼板等の使途を目 的としており、延性を確保するために、 フェライト相を面積率で 50%以上含む組織と する。フェライト相の面積率が 50%未満では、 高度な加工性が要求される自動車用 鋼板として必要な延性を確保することが困難となる。 なお、 さらに良好な延性が要 求される場合は、フェライト相の面積率は 75%以上とするのが好ましい。なお、本発 明でいうフェライトは、 通常の意味のフェライト(ポリゴナルフェライト)のみならず、炭 化物を含まないべィニティックフェライト、ァシキユラ一フェライトをも含むものとする。 なお、フニライト相以外の相は、とくに限定されない力 強度を高める観点からは、 ベイナイト、マルテンサイトの単相あるいは混合相とするのが好ましい。また、本出願 の成分範囲および製造方法においては、残留ォ一ステナイトが 3%未満形成出現 する場合もある。
YSを上昇させ降伏比(YR = YSZTS)を 0.7 以上に向上させるとともに Nによる 大きな歪時効硬化を発現させるには、フニライト相以外の相(第 2相)は、本発明で はパーライトを主体とする組織、すなわち、パーライト単相からなる組織、あるいは面 積率で 2%以下のべイナイトあるいはマルテンサイトを含み残部はパ一ライトからなる 組織とすることが望ましい。 —方、 マルテンサイト相を微細に分散させ、 降伏強さを低下させ低降伏比を容易 に実現させる本発明鋼板の組成は、フェライト相を主相とし、 第 2相としてマルテン サイト相を含む微視組織である。なお、フユライト相の面積率が 97 %を超えると、複 合組織としての効果が期待できなくなる。
マルテンサイト相の面積率:3 %以上
第 2相としてのマルテンサイト相は、 主相であるフェライト相の主として粒界に分散 して存在する。マルテンサイトは硬質相であり、組織強化により鋼板強度を増加させ る作用を有する。さらに、変態時に可動転位の発生を伴うため、延性向上や、鋼板 の降伏比を低下させる作用を有する。これらの効果は、マルテンサイトが 3 %以上存 在したときに顕著となる。なお、 30%を超えて存在すると、延性の低下という問題が ある。このため、第 2相としてのマルテンサイトは 3 %以上 30%以下、好ましくは 20 % 以下とする。なお、第 2相としては、このような量のマルテンサイト以外に、ベイナイトを 1 0%以下含有してもなんら問題はない。
フェライト相の平均結晶粒径: Ι Ο m以下
本発明では結晶粒径として、 断面組織写真から A STMに規定の求積法により算 出した値と、 断面組織写真から ASTMに規定の切断法により求めた公称粒径(例 えば梅本ら:熱処理, 24 ( 1 984 ) , 334 参照)のうち、 いずれか大きい方を採用す る。
本発明の冷延鋼板は、製品として所定量の固溶 Nを確保しているが、本発明者 らの実験 ·検討結果によれば、 固溶 N量を一定に保ってもフニライト相の平均結晶 粒径が 1 0 // mを超えると歪時効硬化特性に大きなばらつきが生じることが判明した。 また、室温で保管した場合の機械的特性の劣化も顕著となる。この詳細な機構は 現在のところ不明であるが、 歪時効硬化特性のばらつきの原因の一つが結晶粒径 にあり、結晶粒界への合金元素の偏析と析出、さらにはこれらに及ぼす加工、熱処 理の影響に関係するものと推定される。 したがって、 歪時効硬化特性の安定化を 図るには、フヱライト相の平均結晶粒径を 1 0 μ m以下とする必要がある。 なお、 Β Η 量および ATS量のさらなる増加を、安定して得るためにはフェライトの平均結晶粒 径は 8μ m以下とするのが好ましい。
上記した組成と組織を有する本発明の冷延鋼板は、 引張強さ TSが 440MPa以上 で、歪時効硬化特性に優れた冷延鋼板であり、加工性、 耐衝撃特性に優れた冷 延鋼板である。
TSが 440MPaを下回る鋼板では、構造部材的な要素をもつ部材に広く適用する ことができない。また、 さらに適用範囲を拡げるには TSは 500MPa以上とするのが望 ましい。
本発明において、 「歪時効硬化特性に優れた」とは、上記したように、 引張歪 5% の予変形後、 170 °Cの温度に 20min 保持する条件で時効処理したとき、この時効 処理前後の変形応力増加量(BH量と記す; BH量 =時効処理後の降伏応力一 時効処理前の予変形応力)が 80MPa 以上であり、かつ歪時効処理(前記予変形 +前記時効処理)前後の引張強さ増加量(ATSと記す; ATS =時効処理後の引 張強さ一予変形前の引張強さ)が 40MPa 以上であることを意味する。
歪時効硬化特性を規定する場合、 予歪(予変形)量が重要な因子となる。本癸 明者らは、 自動車用鋼板に適用される変形様式を想定して、 歪時効硬化特性に 及ぼす予歪量の影響について調査し、その結果、①前記変形様式における変形 応力は、極めて深い絞り加工の場合を除き、概ね 1軸相当歪(引張歪)量で整理 できること、②実部品ではこの 1軸相当歪量が概ね 5%を上回っていること、③部品 強度が、 予歪 5%の歪時効処理後に得られる強度(YSおよび TS)と良く対応する ことを突き止めた。この知見をもとに、本発明では、歪時効処理の予変形を引張歪 5%に定めた。
従来の塗装焼付け処理条件は、 170 °CX20min が標準として採用されている。 なお、 多量の固溶 Nを含む本発明鋼板に 5%以上の歪が加わる場合は、 より緩や かな(低温側の)処理でも硬化が達成され、言い換えれば時効条件をより幅広くとる ことが可能である。また、一般に、硬化量を稼ぐには、過度の時効で軟化させない 限りにおいて、 より高温で、 より長時間保持することが有利である。
具体的に述べると、本発明鋼板では、予変形後に硬化が顕著となる加熱温度の 下限は概ね 1 00 °Cである。一方、加熱温度が 300 °Cを超えると硬化が頭打ちとな り、 4 00 °Cでは逆にやや軟化する傾向が現れるほか、熱歪やテンパーカラ一の発生 が目立つようになる。また、保持時間については、加熱温度 200 °C程度のとき概ね 30s程度以上とすれば略十分な硬化が達成される。さらに大きな安定した硬化を得 るには保持時間 60 s以上とするのが好ましい。 しかし、 20min を超える保持では、さ らなる硬化を望みえないばかりか、生産効率も著しく低下して実用面では不利であ る。
以上のことから、本発明では、時効処理条件として従来の塗装焼付処理条件の 加熱温度である 1 70 °C、保持時間を 20miii で評価すると定めた。従来の塗装焼 付け型鋼板では十分な硬化が達成されない低温加熱 ·短時間保持の時効処理 条件下でも、本発明鋼板では大きな硬化が安定的に達成される。なお、加熱の仕 方はとくに制限されず、通常の塗装焼付けに採用されている炉による雰囲気加熱 のほか、たとえば誘導加熱や、無酸化炎、 レーザ、プラズマなどによる加熱などのい ずれも好ましく用いうる。
自動車用の部品強度は外部からの複雑な応力負荷に抗しうる必要があり、それ ゆえ素材鋼板では小さな歪域での強度特性だけでなく大きな歪域での強度特性も 重要となる。本発明者らはこの点に鑑み、 自動車部品の素材となすべき本発明鋼 板の B H量を 80M P a 以上とするとともに、 Δ T S量を 40M P a 以上とする。なお、より 好ましくは、 B H量 l O OMP a以上、 Δ T S 5 0MP a 以上とする。 B H量と A T S量をより 大きくするには、 時効処理の際の加熱温度をより高温側に、 および/または、保持 時間をより長時間側に、設定すればよい。
また、本発明鋼板は、成形加工されない状態では、室温で 1年程度の長時間放 置されても時効劣化(YSが増加しかつ E1 (伸び)が減少する現象)は起こらないとい う、従来にない利点が備わっている。 ところで、 本発明の効果は製品板厚が比較的厚い場合でも発揮されうるが、製 品板厚が 3 . 2 mm を超える場合には、 冷延板焼鈍工程で必要十分な冷却速度を 確保することができず、連続焼鈍時に歪時効が生じ、製品として目標とする歪時効 硬化特性が得にくくなる。したがって、本発明鋼板の板厚は 3 .2 mm以下とするのが 好ましい。
また、本発明では、 上記した本発明冷延鋼板の表面に電気めつきまたは溶融め つきを施しても何ら問題はない。これらめつき鋼板も、 めっき前と同程度の T S、 BH量, A T S量を示す。 めっきの種類としては、電気亜鉛めつき、溶融亜鉛めつき、合金化 溶融亜鉛めつき、電気錫めつき、電気クロムめつき、電気ニッケルめっき等、いずれ も好ましく適用しうる。
次に、本発明鋼板の製造方法について説明する。
本発明鋼板は、基本的に、上記した範囲内の組成を有する鋼スラブを加熱後粗 圧延してシートバーとし、該シートバーに仕上圧延を施し、仕上圧延後冷却して卷 き取り熱延板とする熱間圧延工程と、該熱延板に酸洗および冷間圧延を行い冷 延板とする冷間圧延工程と、該冷延板に連続焼鈍を行う冷延板焼鈍工程とを、 順次施すことにより製造される。
本発明の製造方法で使用するスラブは、成分のマクロな偏析を防止すべく連続 铸造法で製造することが望ましいが、造塊法、薄スラブ連铸法で製造してもよい。ま た、スラブを製造後いつたん室温まで冷却して再度加熱する通常プロセスのほか、 冷却せず温片のままで加熱炉に挿入したのち圧延する直送圧延、あるいは僅かの 保熱を行った後に直ちに圧延する直接圧延などの省エネルギープロセスも問題なく 適用できる。 とくに、 固溶状態の Nを有効に確保するには、 Nの析出が遅延する直 送圧延は有用な技術の一つである。
まず、熱間圧延工程条件の限定理由について説明する。
スラブ加熱温度: 1 000°C以上
スラブ加熱温度は、初期状態として、必要かつ十分な固溶 N量を確保し、製品で の固溶 N量の目標値(0. 001 0%以上)を満たすために、 1 000°C以上とするのが好ま しい。 より好ましくは 1 1 00°C以上として、炭窒化物の溶体化を促進させた方が固溶 Nを確保しやすく、材質の均一性の確保の面でも好ましい。
なお、酸化重量の増加に伴うロスの増大を避ける観点から、スラブ加熱温度は 128 0°C以下とするのが好ましい。
上記した条件で加熱されたスラブは、粗圧延によりシートバーとされる。なお、粗圧 延の条件はとくに規定する必要はなく、通常公知の条件にしたがって行えばよい。 しかし、 固溶 N量の確保という観点からはできるだけ短時間での処理とするのが望ま しい。
ついで、シートバ一を仕上圧延して熱延板とする。
なお、本発明では、粗圧延と仕上圧延の間で、 相前後するシートバ一同士を接 合し、 連続的に仕上圧延することが好ましい。接合手段としては、圧接法、 レーザ 溶接法、電子ビーム溶接法などを用いるのが好ましい。
これにより、仕上圧延おょぴその後の冷却において形状の乱れを生じやすい非定 常部(被処理材の先端部および後端部)の存在割合が減少し、安定圧延長さ(同 一条件で圧延できる連続長さ)および安定冷却長さ(張力をかけたまま冷却できる 連続長さ)が延長して、製品の形状 '寸法精度および歩留りが向上する。 また、従 来のシートバー毎の単発圧延では通板性ゃ嚙込み性等の問題により実施が難し かった薄物 '広幅に対する潤滑圧延が容易に実施できるようになり、圧延荷重およ び口一ル面圧が低減してロールの寿命が延長する。
また、本発明では、粗圧延と仕上圧延の間で、シートバーの幅端部を加熱するシ —トバーエッジヒータ、シートバーの長さ端部を加熱するシートバーヒータのいずれか 一方または両方を使用して、シートパーの幅方向および長手方向の温度分布を均 —化することが好ましい。これにより、鋼板内の材質ばらつきをさらに小さくすることが できる。シートバ一エッジヒータ、シートバーヒータは誘導加熱方式のものとするのが 好ましい。 使用手順は、 まずシートバーエッジヒータにより幅方向の温度差を補償することが 望ましい。このときの加熱量は、鋼組成などにもよるが、仕上圧延出側での幅方向 温度分布範囲が概ね 20°C以下となるように設定するのが好ましい。次いでシートバ —ヒータにより長手方向の温度差を補償する。このときの加熱量は、長さ端部温度 が中央部温度よりも 20〜40°C程度高くなるように設定するのが好ましい。
仕上圧延最終パスの圧下率: 25 %以上
仕上圧延の最終パスは鋼板の微視組織を支配する重要な因子のひとつである。 このパスで圧下率 25 %以上の圧下を施すことで、十分に歪が蓄積された未再結晶 オーステナイトの状態からフェライト変態させることができ、これにより、熱延母板の頭 著な組織微細化が達成される。これを素材として、冷延、焼鈍を行うことで最終的 に目標とする平均粒径 Ι Ο μ ιη以下のフェライト組織を得ることができる。また、仕上 圧延最終パスの圧下率を 25 %以上とすることで冷延焼鈍後の組織の微細化のみ ならず、均一化が達成される。すなわち、フェライト相の粒度分布はバラツキのないも のとなり、 分散相も微細化し、均一に存在する形態をとる。これにより穴拡げ性など も改善されるという利点がある。
仕上圧延出側温度: 800 °C以上
仕上圧延出側温度 F D Tは、鋼板の組織を均一かつ微細とするために、 800 °C 以上とする。 F DTが 800 °Cを下回ると、組織が不均一となり、 一部に加工組織が 残留したりする。このような加工組織の残留は、 卷取温度を高温とすることにより回 避できる。しかし、卷取温度を高温にすると、粗大結晶粒が発生し、また固溶 N量も 大きく低下するため、 目標の引張強さである TS440MPa以上を得ることが困難となる。 なお、機械的性質をさらに改善させるには、 FDTは 820 °C以上とするのが望ましい。 仕上圧延後は結晶粒の微細化と固溶 N量の確保のため、早期に鋼板を冷却する のが望ましい。
仕上圧延後の冷却:仕上げ圧延終了後 0.5 秒以内に冷却を開始、 冷却速度 4 0で Zs以上の急冷 本発明では、仕上圧延終了後直ちに(0 .5 秒以内に)冷却を開始し、 冷却中の 平均冷却速度を 40°C Z s以上とするのが望ましい。この条件を満足させることにより、 A1N が析出する高温域を急冷でき、 固溶状態の Nを有効に確保できる。この冷却 開始時間または冷却速度が、 上記条件を満足しない場合には、粒成長が進みす ぎて結晶粒径の微細化が達成しにくいうえ、圧延で導入された歪エネルギーによる A1N の析出が進みすぎて固溶 N量が欠乏する恐れが増大する。なお、材質 .形状 の均一性を確保する観点からは、冷却速度は 300 °C Z s以下に抑えるのが好まし レ、。
卷取温度:75 0 °C以下
卷取温度 C Tの低下につれて、鋼板強度が増加する傾向を示す。 目標の引張強 さ T S440M P a以上を確保するためには、 C Tは 75 0 °C以下とするのが好ましく、 65 0
°C以下とするのがさらに好ましい。なお、 C Tが 200 °C未満では鋼板形状が乱れや すくなり、実操業上、 不具合を生じる危険性が高く、材質の均一性が低下する傾 向を示す。このため、 C Tは 200°C以上とするのが望ましい。なお、より材質の均一性 が要求される場合には、 C Tは 300 °C以上とするのが好ましい。なお、熟延板組織と してはフェライト +パーライト(セメンタイト)の方が好ましいので、 卷取温度は 600 °C 以上とするのがより好ましい。フェライト +パ一ライト相の方が、 2相間の硬度差が第 2 相をマルテンサイトやべイナイトとする場合よりも小さいので均一に冷延されるからで ある。
また、本発明では、仕上圧延において、熱間圧延荷重を低減するために、潤滑 圧延を行ってもよい。潤滑圧延を行うことにより、熱延板の形状 .材質がより均一化 されるという効果がある。なお、潤滑圧延の際の摩擦係数は 0.25〜0. 1 0の範囲とす るのが好ましい。また、潤滑圧延と連続圧延とを組み合わせることによりさらに、熱間 圧延の操業が安定する。
上記した熱間圧延工程を施された熱延板は、 ついで、 冷間圧延工程により、 酸 洗および冷間圧延を施されて冷延板となる。 酸洗の条件は通常公知の条件でよく、とくに限定されない。なお、熱延板のスケー ルが極めて薄い場合には、酸洗を施すことなく直ちに冷間圧延を行ってもよい。 また、冷間圧延条件は、通常公知の条件でよく、 とくに限定されない。なお、組織 の均一性確保という観点から冷間圧下率は 40 %以上とするのが好ましい。 ついで、 冷延板は、連続焼鈍による冷延板焼鈍工程を施される。
連続焼鈍温度:再結晶温度以上で 900 °C以下
連続焼鈍の焼鈍温度は再結晶温度以上とした。
連続焼鈍温度が再結晶温度未満では、 再結晶が完了せず、 強度は目標を満 足するものの延性が低く、そのため成形性が低下し自動車用鋼板としては適用でき ない。なお、成形性をより一層向上させるためには、連続焼鈍温度は 700 °C以上と するのが好ましい。 一方、連続焼鈍温度が 900 °Cを超えると、 A1N 等の窒化物が 析出し、製品である鋼板の固溶 N量が不足する。このため、連続焼鈍温度は再結 晶温度以上で 900 °C以下とするのが好ましい。 また、 特に高い降伏比を指向する 場合は、組織粗大化の防止、析出進行による固溶 Nロスの低減といった観点から、 焼鈍温度は 85 0 °C以下とするのが好ましい。
第 6の本発明においては焼鈍温度を(Ac 1変態点)〜(Ac 3変態点)とするのが好まし レ、。焼鈍は、生産性の観点から連続焼鈍とするのが好ましい。焼鈍処理では、 (Ac 1変態点)〜(A c 3変態点)の温度に加熱する。 この温度域に加熱することにより、 オーステナイト( y )相とフェライト(α )相の 2相となり γ相に Cが濃化して、 冷却中に y相がマルテンサイト相へ変態し、第 2相を形成して α +マルテンサイトの複合組織 となる。これにより、延性、加工性が向上し、低降伏比が実現する。
一方、焼鈍温度 Ac l変態点未満では、フェライト +パーライト組織となり、 Ac 3変 態点超えでは、 γ相への合金元素濃化が不十分となり、延性がやや低下し、 降伏 比がやや上昇するが、歪み時効特性は高位に保たれる。
連続焼鈍温度での保持時間: 1 0〜1 20 s
連続焼鈍温度での保持時間は、組織の微細化、所望以上の固溶 N量を確保す る観点から、 できるだけ短時間とするのが好ましいが、 操業の安定性からは 10s以上 とするのが望ましい。保持時間が 120sを超えると、組織の微細化、 固溶 N量の確保 が困難となる。このため、連続焼鈍温度における保持時間は 10〜 120sの範囲とす るのが好ましい。連続焼鈍温度における保持時間は 10〜90sの範囲とするのがより 好ましく、 10〜60sの範囲とするのが更に好ましい。
第 2の本発明において一次冷却は 500 °C以下の温度域まで冷却速度を 10〜30 0 °C/sとする。 連続焼鈍における均熱後の冷却は、組織の微細化、 固溶 N量の 確保の観点から重要であり、本発明では一次冷却として、 500 °C以下の温度域ま で 10〜300 °CZsの冷却速度で連続冷却する。冷却速度が 10°C/s未満では、均 一で微細な組織と所望量以上の固溶 Nの確保が困難となる。一方、冷却速度が 3 00 =C/sを超えると、鋼板の幅方向での材質の均一性が不足する。 10〜300 °C/ sの冷却速度で冷却した際の冷却停止温度が、 500 °C超えの温度では、組織の 微細化が達成できない。
二次冷却条件は、一次冷却の冷却停止温度以下 400 °C以上の温度域での 滞留時間を 300 s以下とするものである。一次冷却後の二次冷却が、歪時効硬化 特性の観点から重要となる。詳細な機構については、 現在のところ不明であるが、 二次冷却の条件によって、 固溶 C、 N量が変化し歪時効特性に影響しているものと 推察される。本発明では、 一次冷却に続いて、 冷却を継続し、 一次冷却の停止温 度以下 400 で以上の温度域での滞留時間を 300 s以下とする冷却を行うことが好 ましい。本発明では、連続焼鈍後の、 いわゆる過時効処理を行ってもよいが、過時 効処理を行うと歪時効硬化特性が低下する。 したがって、本発明では、連続焼鈍 炉の過時効帯を通板させる場合には、過時効帯の温度を極めて低い温度として行 うことが望ましい。
第 4の本発明においては焼鈍温度に保持後の冷却(1次冷却)は 600 °C以下の 温度域までの冷却速度 70°C/s以下とすることが好ましい。 連続焼鈍における均熱 後の冷却は、組織の微細化、 固溶 N量の確保の観点から重要であり、本発明では、 600 °C以下の温度域まで 70°C/s以下の冷却速度で連続的に冷却する。冷却速 度が 70°C を超えると降伏比が低下し、さらに、鋼板の幅方向での材質の均一性 が不足する。なお好ましくは冷却速度は TS, YSの確保のため 5°C/s以上とする。こ のような冷却速度で冷却した際の冷却停止温度が、 600 °C超の温度では、焼付け 硬化性が低下し、好ましくない。
上記 1次冷却を終えた後は、所定の温度範囲で保持するいわゆる過時効処理 を行ってもよいし、特に行わなくてもよい。ただし、材質とくに延性をさらに良くする観 点からは、 固溶 Cをできるだけ減らして常温時効硬化を小さくし、歪時効硬化特性 への固溶 Nの影響力をさらに顕在化させることが望ましく、それには、 350 〜450 °C の温度範囲で 120 s以下の時間保持するという過時効処理を行うことが好ましい。 第 6の本発明においては、焼鈍の均熱温度までの加熱は、 少なくとも 600 °C〜(A cl変態点)間を 5°CZs以上の加熱速度とするのが好ましい。 5°CZs未満では、 固 溶 N量の確保の面で問題がある。より好ましくは 5〜30°CZsである。
均熱後の冷却: 600 -300 °C間の平均冷却速度を臨界冷却速度 CR以上 焼鈍における均熱後の冷却は、組織の微細化、 固溶 N量の確保およびマルテン サイト形成の観点から重要であり、本発明では、 600 〜300 °C間の平均冷却速度 を、合金元素量に応じた次(1) または(2)式
Bく 0.0003%の場合
log CR = - 1.73 [Mn + 2.67Mo+ 1.3Cr + 0.26Si + 3.5 P + 0.05 Cu + 0.05Ni] +3. 95……(1)
B≥0.0003%の場合
log CR=-1.73[Mn + 2.67Mo+1.3Cr + 0.26Si + 3.5 P + 0.05 Cu + 0.05Ni +3. 40…… (2)
(ここに、 CR:冷却速度(°CZs)、 Mn、 Mo, Cr、 Si、 P、 Cu、 Ni:各元素含有量(mas s%))
で定義される臨界冷却速度 CR以上として冷却を行う。なお、 (1)、 (2)式では、含 有しない元素については 0として計算するものとする。
合金元素量に応じ、 (1)または(2)式のうちのいずれかの臨界冷却速度 CR以上 の平均冷却速度で冷却することにより、冷却中でのパーライトの析出を防止できる。 上記各式で定義される CRrCZs)未満の冷却速度で冷却すると、第 2相をマルテ ンサイト M (—部べイナイト Bを含む場合もある)とすることが困難となり、製品板の組 織を α + Μ( + Β)からなる複合組織とすることができない。なお、 平均冷却速度が 3 00°CZsを超えると、鋼板の幅方向での材質均一性が不足する。このため、焼鈍後 の冷却は、 600 〜300 °C間の平均冷却速度が(1)または(2)式で定義される CR 以上、好ましくは 300°CZs以下とする。なお、 300 °C未満の温度領域での平均冷 却速度は 5°CZs以上とするのが好ましい。
さらに、本発明では、 冷延板焼鈍工程に続いてさらに、伸ぴ率:1.0 〜15%の調 質圧延またはレべラー加工を施すしてもよい。冷延板焼鈍工程後に調質圧延また はレベラ一加工を施すことにより、 BH量、 ATS量といった歪時効硬化特性を安定 して向上することができる。調質圧延またはレベラ一加工における伸び率は合計で 1. 0 %以上とするのが好ましい。伸び率が 1.0 %未満では歪時効硬化特性の向上 が少なく、 一方、伸び率が 15%を超えると、鋼板の延性が低下する。なお、本発明 者らは、調質圧延とレベラ一加工ではその加工様式が相違するが鋼板の歪時効硬 化特性に対する効果には大きな相違がないことを確認している。
実施例 1
表 1に示す組成の溶銅を転炉で溶製し、連続铸造法でスラブとした。これらスラ ブを表 2に示す条件で加熱し、粗圧延して表 2に示す厚さのシートバ一とし、 ついで 表 2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、一部 については、仕上圧延で潤滑圧延を行った。
これら熱延板を酸洗および表 2に示す条件の冷間圧延からなる冷間圧延工程に より冷延板とした。ついで、これら冷延板に表 2に示す条件で連続焼鈍炉による連 続焼鈍を行った。一部について、冷延板焼鈍工程につづいて、調質圧延を施した。 なお、連続焼鈍の焼鈍温度はいずれも再結晶温度以上であった。
得られた冷延焼鈍板について、 固溶 N量、微視組織、 引張特性、歪時効硬化特 性、耐疲労特性および耐衝撃特性を調査した。
(1)固溶 N量の調査
固溶 N量は、 化学分析により求めた鋼中の全 N量から析出 N量を差し引いて求 めた。析出 N量は、 上記した定電位電解法を用いた分析法により求めた。
(2)微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に直交する断面(C断面)につい て、光学顕微鏡あるいは走査型電子顕微鏡を用いて微視組織を撮像し、画像解 析装置を用いて主相であるフェライトの組織分率および第 2相の種類を求めた。 ま た、主相であるフェライトの結晶粒径は、圧延方向に直交する断面(C断面)につい ての組織写真から ASTMに規定の求積法により算出した値または ASTMに規定 の切断法により求めた公称粒径のうち、いずれか大きい方を採用した。
(3)引張特性
各冷延焼鈍板から JIS 5号試験片を圧延方向に採取し、; TIS Z 2241の規定に 準拠して歪速度: 3X 10_3 ^で引張試験を実施し、 降伏強さ YS、 引張強さ TS、 伸び Elを求めた。
(4)歪時効硬化特性
各冷延焼鈍板から JIS 5号試験片を圧延方向に採取し、 予変形としてここでは 5%の引張予歪を与えて、ついで 170 °C X 20min の塗装焼付処理相当の熱処理 を施したのち、 歪速度: 3X l0_3Zsで引張試験を実施し、 予変形—塗装焼付処 理後の引張特性(降伏応力 YSBH、 引張強さ TS)を求め、 BH量 =YSBH— YSs%、 A TS = TSBH_TSを算出した。なお、 YS5%は、製品板を 5%予変形したときの変 形応力であり、 YSBH、 TSBHは予変形一塗装焼付処理後の降伏応力、 引張強さ であり、 TSは製品板の引張強さである。
(5)耐疲労特性 各冷延焼鈍板から疲労試験片を圧延方向に採取し、 JIS Z 2273の規定に準拠 して、 最小応力 :OMPa とする引張疲労試験を実施し、疲労限(繰り返し数: 107 回) σ FLを求めた。また、予変形として 5%の引張予歪を与えて、ついで 170 °C X20 mm の塗装焼付処理相当の熱処理を施したのち、 同様の疲労試験を実施し疲労 限( σ FL)BHを求め、予変形一塗装焼付処理による耐疲労特性の向上代(( CJ F L) BH- σ FL)を評価した。
(6)耐衝撃特性
各冷延焼鈍板から衝撃試験片を圧延方向に採取し、 Journal of the Society of Materials Science Japan, 10(1 98), p 1058」に記載された高速引張試験 方法に準拠して、 歪速度: 2X 103 /sで高速引張試験を実施し、応力一歪曲線 を測定した。 得られた応力一歪曲線を用いて、応力を歪 0〜 30%の範囲で積分し て吸収エネルギー Eを求めた。また、 予変形として 5%の引張予歪を与えて、 ついで 170 °C x20min の塗装焼付処理相当の熱処理を施したのち、 同様の衝撃試験を 実施し、吸収エネルギー EBHを求め、予変形—塗装焼付処理による耐衝撃特性の 向上代 EBHZEを評価した。
なお、 No. l l、 No. 13の鋼板表面に、溶融亜鉛めつきを施しめつき鋼板とし、 同 様に各種特性を評価した。
これらの結果を表 3に示す。
本発明例では、 いずれも優れた延性と、優れた歪時効硬化特性を有し、格段に 高い BH量、 A TSを呈し、また、歪時効処理による耐疲労特性、 耐衝撃特性の向 上代も大きい。
なお、 No. 11、 No. 13の鋼板表面に、 溶融亜鉛めつきを施しためっき鋼板の特 性は、めっき前の特性と殆ど変化はなかった。亜鉛めつき処理は、 溶融亜鉛めつ き浴に鋼鈑を浸漬して行い、 浸漬した銅鈑を引き上げたのちガスワイ ピン グによ り 目付量を調整した。 めっ き処理の条件は、 板温度 : 475°C、 めつ き浴 : 0. 13%A1-Zn, 浴温 : 475°C、 浸漬時間 : 3秒、 目付量 : 45g/iriと し た。
実施例 2
表 4に示す組成になる鋼を、実施例 1と同様の方法でスラブとなし、該スラブを表 5 に示す条件で加熱し、粗圧延して 25mm厚のシ一トバ一とし、ついで表 5に示す条件 の仕上圧延を施す熱間圧延工程により熱延板とした。なお、粗圧延後で仕上圧延 入側で相前後するシートバー同士を溶融圧接法で接合して連続圧延した。また、 シートバーの幅端部、長さ方向端部を誘導加熱方式のシートバーエッジヒータ、シ —トバ一ヒータを使用してシートバーの温度を調節した。
これら熱延板を酸洗および表 5に示す条件の冷間圧延からなる冷間圧延工程 により 1.6 mm厚の冷延板とした。ついで、これら冷延板に表 5に示す条件で連続焼 鈍炉による連続焼鈍を行った。なお、連続焼鈍の焼鈍温度はいずれも再結晶温度 以上とした。
得られた冷延焼鈍板について、実施例 1と同様に(1)固溶 N量、 (2)微視組織、 (3)引張特性、 (4)歪時効硬化特性、 (5)耐疲労特性および(6)耐衝撃特性を 調査した。
それらの結果を表 6に示す。
本発明例は、いずれも優れた歪時効硬化特性を有し、製造条件の変動にもかか わらず、安定して格段に高い BH量、 ATSを呈し、また、歪時効処理による耐疲労 特性、耐衝撃特性の向上代も大きい。また、本発明例では、連続圧延とシートバー の長手方向、幅方向温度調整を実施することにより、製品鋼板の板厚精度および 形状が向上した。また、本発明例では銅板 No.1と比較例である鋼板 No.5について、 時効条件を種々変更して歪時効硬化特性を調査した。その結果を表 7に示す。な お、試験方法は実施例 1と同様とし、 時効温度、 時効時間のみを変更した。
本発明例である鋼板 No.1では、標準の時効条件である 170 °C X 20min の時効 処理で BH量 Π5 MPa 、 ATS60 Pa という値を得たが、表 7に示すような広範囲 の時効処理条件でも BH量 SOMPa 以上、 ATS40MPa 以上を満足することができ た。一方、比較例では 100 〜300 °Cまでの範囲で時効温度を変えても、本発明例 におけるような大きな BH量、 A TSを示すことはなかった。
すなわち本発明の鋼板は広範囲の時効処理条件でも高い BH量、 ATSを確保 できる。
実施例 3
表 8に示す組成の溶鋼を転炉で溶製し、連続錄造法でスラブとした。これらスラブ を表 9に示す条件で加熱し、粗圧延して表 9に示す厚さのシートバーとし、 ついで表 9に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、 一部に ついては、仕上圧延で潤滑圧延を行った。
これら熱延板を酸洗および表 9に示す条件の冷間圧延からなる冷間圧延工程に より冷延板とした。ついで、 これら冷延板に表 9に示す条件で連続焼鈍炉による連 続焼鈍を行った。また、冷延板焼鈍工程につづいて、調質圧延を施した。なお、連 続焼鈍の焼鈍温度はいずれも再結晶温度以上であった。
得られた冷延焼鈍板について、実施例 1と同様に(1)固溶 N量、 (2)微視組織、 (3)引張特性、 (4)歪時効硬化特性を調査した。調査結果を表 10に示す。
なお、 No.7の鋼(銅板 No.9)については、鋼板表面に溶融亜鉛めつきを施しめ つき鋼板としたものも製造し、 同様に各種特性を評価した。亜鉛めつ き処理は、溶 融亜鉛めつき浴に鋼鈑を浸漬して行い、 浸清した鋼鈑を引き上げたのちガ スワイ ビングによ り 目付量を調整した。 めっき処理の条件は、 板温度 : 47 5°C、 めっき浴 : 0.13%A1- Zn、 浴温 : 475°C、 浸漬時間 : 3秒、 目付量 : 45 g/m と した。なお、連続めつきラインでの焼鈍条件は連続焼鈍ラインと同等とした。 本発明例では、 いずれも優れた延性と、 高い降伏比と、優れた歪時効硬化特性 を有し、格段に高い BH量、 ATSを呈した。
なお、 No.7の鋼(鋼板 No.9)に対し溶融亜鉛めつきを施しためっき鋼板の引張特 性は、 めっき無の引張特性と比べてやや TSが低下する傾向を示すが、 強度と伸び のバランスを考えればほぼ同等の特性が得られる。 実施例 4
表 11に示す組成になる鋼を、実施例 3と同様の方法でスラブとなし、該スラブを表 12に示す条件で加熱し、粗圧延して 25mm厚のシートバ一とし、ついで表 12に示す 条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、粗圧延後で仕上 圧延入側で相前後するシートバー同士を溶融圧接法で接合して連続圧延した。ま た、シートバーの幅端部、長さ方向端部を誘導加熱方式のシートバーエッジヒータ、 シートバ一ヒータを使用してシートバーの温度を調節した。
これら熱延板を酸洗および表 12に示す条件の冷間圧延からなる冷間圧延工程 により 1.2〜 1.4 mm厚の冷延板とした。ついで、これら冷延板に表 12に示す条件で 連続焼鈍炉による連続焼鈍を行った。なお、連続焼鈍の焼鈍温度はいずれも再結 晶温度以上とした。
得られた冷延焼鈍板について、実施例 1と同様に(1)固溶 N量、 (2)微視組織、 (3)引張特性、 (4)歪時効硬化特性を調査した。
それらの結果を表 13に示す。
本発明例は、いずれも優れた延性と、 高い降伏比と、優れた歪時効硬化特性を 有し、製造条件の変動にもかかわらず、安定して格段に高い BH量、 ATSを呈した。 また、本発明例では、連続圧延とシートバーの長手方向、幅方向温度調整を実施 することにより、製品鋼板の板厚精度おょぴ形状が向上した。
また、本発明例である銅板 No.1と比較例である鋼板 No.10について、 時効条件 を種々変更して歪時効硬化特性を調査した。その結果を表 14に示す。なお、試験 方法は実施例 3と同様とし、 時効温度、 時効時間のみを変更した。
本発明例(鋼板 No.1)では、標準の時効条件である 170 °C X 20min の時効処 理で BH量 90MPa 、 ATS50MPa という値を得たが、表 14に示すような広範囲の時 効処理条件でも BH量 80MPa 以上、 ATS40MPa 以上を満足することができた。 一方、比較例(鋼板 No.10)では 100 〜300 °Cまでの範囲で時効温度を変えても、 本発明例におけるような大きな BH量、 ATSを示すことはなかった。 すなわち本発明の鋼板は広範囲の時効処理条件でも高い BH量、 ATSを確保 できる。
実施例 5
表 15に示す組成の溶鋼を転炉で溶製し、連続錶造法でスラブとした。これらスラ ブを表 16に示す条件で加熱し、粗圧延して表 16に示す厚さのシートバーとし、つい で表 16に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。なお、一 部については(鋼板 No.2、 No.3)、仕上圧延で潤滑圧延を行った。また一部につい ては、粗圧延後で仕上圧延入側で相前後するシートバー同士を溶融圧接法で接 合して連続圧延した。また、シートバーの幅端部、長さ方向端部を誘導加熱方式 のシートバーエッジヒータ、シートバーヒータを使用してシートバーの温度を調節した。 これら熱延板を酸洗および表 16に示す条件の冷間圧延からなる冷間圧延工程 により冷延板とした。ついで、これら冷延板に表 16に示す条件で連続焼鈍炉による 焼鈍(連続焼鈍)を行い、焼鈍後さらに表 16に示す条件で冷却する冷延板焼鈍 工程を施した。一部について、 冷延板焼鈍工程につづいて、調質圧延を施した。 得られた冷延焼鈍板について、実施例 1と同様に(1)固溶 N量、 (2)微視組織、 (3)引張特性、 (4)歪時効硬化特性、 (5)耐衝撃特性を調査した。さらに(6)成 形性についても調査した。
(6)成形性
成形性の指標として r値を求めた。
各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し 45° 方向(D方向)、圧延 方向に対し 90° 方向(C方向)から、 JIS 13B 号試験片を採取した。これら試験片 に 15%の単軸引張予歪を付与した時の各試験片の幅歪と板厚歪を求め、 幅歪と 板厚歪の比、
r =ln (w/ wo ) / In (t/ to )
(ここで、 wo 、 to は試験前の試験片の幅おょぴ板厚であり、 W、 tは試験後の試験 片の幅および板厚である。) 力 ら各方向の r値を求め、次式
rmean= (TL + 2 ΓΟ +rC ) / 4
により平均 r値 rmeanを求めた。ここで、 rL は、圧延方向(L方向)の r値であり、 rD は、 圧延方向 (L方向)に対し 45° 方向(D方向)の r値であり、 rc は、圧延方向 (L方 向)に対し 90° 方向(C方向)の r値である。
これらの結果を表 17に示す。
本発明例では、いずれも優れた延性と低い降伏比を示し、 さらに優れた歪時効硬 化特性を有し、 格段に高い BH量、 ATSを呈し、また、 歪時効処理による耐衝撃 特性の向上代も大きい。 産業上の利用可能性
本発明によれば、予変形—塗装焼付け処理により降伏応力が 80MPa 以上およ び引張強さが 40MPa 以上と、 ともに増加する高い歪時効硬化特性と高い成形性 とを有する高張力冷延鋼板を、安価にかつ形状を乱さずに製造でき、産業上格段 の効果を奏する。 さらに本発明の高張力冷延鋼板を自動車部品に適用した場合、 塗装焼付け処理などにより降伏応力とともに引張強さも増加して安定した高い部 品特性を得ることができ、使用する鋼板の板厚を、 例えば 2.0mmから 1.6 mmに低 減することを可能とし、 自動車車体を軽量化できるという効果もある。
i
Q X 表 2
CO
00
Figure imgf000040_0001
*) 潤滑圧延実施
**) 一次冷却の冷却停止温度以下 400 以上
表 3
CO CD
Figure imgf000041_0001
M :マルテンサイ ト、 B :ベイナイ ト、 P :パーライ ト
0
¾4
Figure imgf000042_0001
€0010/10<lf/13d 表 5
Figure imgf000043_0001
*) シートバ一ヒータ、 エッジヒータ使用 **) 一次冷却の冷却停止温度以下 400 ¾以上
表 6
Figure imgf000044_0001
: マルテンサイ ト、 B :べィナイ ト、 P :パーライ ト
表 7
Figure imgf000045_0001
CO
表 8
鋼 化 学 成 分 (質量%)
No.
C Si n P s Al N Nb その他 N/Al Mn/Si
1 0.08 0.05 1.80 0.01 0.003 0.010 0.0120 0.016 1.2 36
2 0.08 0.15 1.50 0.01 0.001 0.007 0.0095 0.012 1.4 10
3 0.05 0.20 1.80 0.01 0.002 0.010 0.0180 0. Oil Mo/0.10 1.8 9
4 0.08 0.05 2.00 0.01 0.001 0.008 0.0150 0.015 Ti/0.010 1.9 40 5 0.08 0.25 1.80 0.01 0.001 0.008 0.0098 0.010 V/0.08 Ca/0.0080 1.2 7
6 0.08 0.25 1.85 0.04 0.001 0.012 0.0155 0.025 B/0.0010 1.3 7
7 0.08 0.01 1.70 0.02 0.001 0.010 0.0160 0.012 Cu/0.15 Ni/0.10 1.6 170 8 0.08 0.01 1.75 0.01 0.001 0.065 0.0030 0.005 0.05 175
9 0.15 0.02 1.55 0.01 0.001 0.012 0.0150 0.010 B/0.0015 REM/0.0090 1.3 78
10 0.05 0.01 1.20 0.01 0.003 0.010 0.0120 0.022 1.2 120
表 9
^
α
Figure imgf000047_0001
*) 潤滑圧延実施 **) 350 450 の温度域での滞留時間
表 1 0
^
Figure imgf000048_0001
Ρ :パーライ ト, Β :べィナイ
Figure imgf000049_0001
表 12
00
Figure imgf000050_0001
* シー 一ヒータ . ■ッジヒータ使用 **) 350〜450 での温度域での滞留時間
表 1 3
Figure imgf000051_0001
P :パーライ ト, B : ベイナイ ト
CD
表 1 4
Figure imgf000052_0001
ο
表 1 5
鋼 化 学 成 分 (質量%) Ac, Ac3
Να
c Si Mn p s M M /Al Un ·て?■の ί TΗUiι V °C
A 0.032 0.01 1.70 0.010 0.004 0.010 0.0120 1.2 0.20 0.01 705 841
Β 0.034 0.01 1.16 0.010 0.005 0.011 0.0150 1.4 0.15 0.98 727 844
C 0.050 0.05 1.20 0.011 0.005 0.015 0.0160 1.1 0.15 0.01 ― 712 850
D 0.065 0.06 1.21 0.011 0.004 0.013 0.0175 1.3 0.01 0.52 一 721 832
Ε 0.082 0.35 1.69 0.008 0.005 0.011 0.0150 1.4 0.01 0.06 Ni:0.30,Cu:0.50 711 812
0.030 0.56 1.72 0.005 0.003 0.014 0.0180 1.3 0.06 0.01 Ca: 0.0020 I I ouU
G 0.060 0.29 1.62 0.005 0.012 0.009 0.0145 1.6 0.01 0.32 Ti:0.015 719 834
Η 0.071 0.47 1.21 0.013 0.003 0.010 0.0145 1.5 0.01 0.96 740 844 αι
I 0.069 0.02 2.00 0.012 0.003 0.010 0.0135 1.4 0.15 0.01 702 815
J 0.040 0.02 0.95 0.050 0.005 0.010 0.0145 1.5 0.01 0.30 Nb:0.015 718 894
Κ 0.034 0.01 1.16 0.010 0.005 0.011 0.0130 1.2 0.15 0.98 Ni:0.50,Cu:l.0 719 816
L 0.035 0.01 1.21 0.010 0.002 0.011 0.0125 1.1 0.01 0.52 B:0.0010 719 843
Μ 0.060 0.01 0.65 0.010 0.002 0.011 0.0140 1.3 0.01 0.75 RE :0.002 721 851
Ν 0.061 0.01 1.30 0.010 0.004 0.012 0.0020 0.2 0.01 0.52 718 828
表 16
CJ1
t
Figure imgf000054_0001
*) シートバーヒータ、 エッジヒータ使用
**) 600° (:〜 ACl変態点までの加熱温度
***) 600〜300 t間の平均冷却速度
****) ① logCR-— 1.73 [Mn + 2.67 o + 1.3Cr +0.26Si + 3.5P + 0.05 (Cu +Ni) 〕 +3.95 B< 0.0003
② logCR=—1.73 [Mn + 2.67Mo+l.3Cr +0.26Si + 3.5P+0.05(Cu +Ni) ] +3.40 B≥ 0.0003
表 1 7 αι
Figure imgf000055_0001
*) F : フェライ ト、 M :マルテンサイ ト、 B :ベイナイ ト

Claims

請 求 の 範 囲
1. mass%で、
C: 0.15%以下、
Si:2.0 %以下、
Mn:3.0 %以下、
P: 0.08%以下、
S :0.02%以下、
Al:0.02%以下、
N:0.0050~0.0250%
を含み、かつ NZA1が 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、残部が Fe および不可避的不純物からなる組成からなることを特徴とする
歪時効硬化特性に優れた高張力冷延鋼板。
2. mass%で、
C: 0.15%以下、
Si: 2.0 %以下、
Mn:3.0 %以下、
P: 0.08%以下、
S: 0.02%以下、
Al:0.02%以下、
N:0.0050~0.0250%
を含み、かつ が 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、残部が Fe および不可避的不純物からなる組成と、
平均結晶粒径 10/ m以下のフェライト相を面積率で 50%以上含む組織とを有する ことを特徴とする
引張強さ 440MPa以上で歪時効硬化特性に優れた高張力冷延鋼板。
3. 請求項 2に記載の組成に加えてさらに、 mass%で、 下記 a群〜 d群の 1群また は 2群以上を含むことを特徴とする高張力冷延鋼板。
a群: Cu、 Ni、 Cr、 Moの 1種または 2種以上を合計で 1.0 %以下
b群: Nb、 Ti、 Vの 1種または 2種以上を合計で 0.1 %以下
c群: Bを 0.0030%以下
d群: Ca、 REM の 1種または 2種を合計で 0.0010~0.010 %
4. 前記高張力冷延鋼板が板厚 3.2 mm以下のものである請求項 2または 3に記 載の鋼板。
5. 請求項 2〜4のいずれかに記載の高張力冷延銅板に電気めつきまたは溶融め つきを施してなる高張力冷延めっき鋼板。
6. mass%で、
C: 0.15%以下、
Si: 2.0 %以下、
n:3.0 %以下、
P :0.08%以下、
S:0.02%以下、
A1: 0.02%以下、
N:0.0050〜0.0250%
を含み、かつ NZA1が 0.3 以上である組成を有する鋼スラブを、スラブ加熱温度: 10 00°C以上に加熱し、粗圧延してシートバーとし、
該シートバーに仕上圧延出側温度:800 °C以上とする仕上圧延を施し、卷取温 度: 650 で以下で卷き取り熱延板とする熱間圧延工程と、
該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、 該冷延板に再結晶温度以上 900 で以下の温度で保持時間:10〜60sとする焼鈍 を行い、
ついで 500 で以下の温度域まで冷却速度: 10~300 で 5で冷却する一次冷却 と、 ついで前記一次冷却の停止温度以下 400 °C以上の温度域での滞留時間を 3 00 s以下とする二次冷却とを行う冷延板焼鈍工程とを、順次施すことを特徴とする 引張強さ 440MPa以上で歪時効硬化特性に優れた高張力冷延銅板の製造方 法。
7. 前記仕上圧延後、 0.5 秒以内に冷却を開始し冷却速度 40°CZs以上で急 冷し、前記卷き取りを行うことを特徴とする請求項 6に記載の高張力冷延鋼板の製 造方法。
8. 前記冷延板焼鈍工程に続いてさらに、伸び率: 1.0 〜15%の調質圧延または レべラー加工を施すことを特徴とする請求項 6または 7に記載の高張力冷延鋼板の 製造方法。
9. 前記粗圧延と前記仕上圧延の間で、相前後するシートバー同士を接合するこ とを特徴とする請求項 6ないし 8のいずれかに記載の高張力冷延鋼板の製造方 法。
10. 前記粗圧延と前記仕上圧延の間で、前記シートバーの幅端部を加熱するシ —トバ一エッジヒータ、 前記シ一トバ一の長さ端部を加熱するシ一トバ一ヒータのいず れか一方または両方を使用することを特徴とする請求項 6ないし 9のいずれかに記 載の高張力冷延鋼板の製造方法。
11. mass %で、
C :0.15%以下、
Si :2.0 %以下、
Mn:3.0 %以下、
P :0.08%以下、
S: 0.02%以下、
Al: 0.02%以下、
N:0.0050~0.025 %、
Nb: 0.007 〜0.04%
を含み、
かつ NZA1が 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、
さらに析出状態の Nbを 0.005 %以上含有し、
残部が Feおよび不可避的不純物からなる組成と、
平均結晶粒径 10 μ m以下のフェライト相を面積率で 50%以上含み、
残部はパーライト主体となる組織を有することを特徴とする
引張強さ 440MPa以上、 降伏比 0.7 以上で歪時効硬化特性に優れた高降伏比型 高張力冷延銷板。
12. 請求項 11に記載の組成に加えてさらに、 mass%で、 下記 a群〜 d群の 1群ま たは 2群以上を含むことを特徴とする高張力冷延鋼板。
a群: Cu、 Ni、 Ci、 Moの 1種または 2種以上を合計で 1.0 %以下
b群: Ti、 Vの 1種または 2種を合計で 0.1 %以下
c群: Bを 0.0030%以下
d群: Ca、 REM の 1種または 2種を合計で 0.0010〜0.010 %
13. mass%で、
C:0.15%以下、
Si: 2.0 %以下、
n:3.0 %以下、
P:0.08%以下、
S: 0.02%以下、
Al: 0.02%以下、
N:0.0050~0.025 %、
Nb:0.007 〜0.04%
を含み、
かつ NZAlが 0.3 以上である組成を有する鋼スラブを、
スラブ加熱温度: 1100°C以上に加熱し、
粗圧延してシートバーとし、
該シートバーに仕上圧延最終パスの圧下率:25%以上、仕上圧延出側温度: 800
°C以上とする仕上圧延を施し、
卷取温度: 650 °C以下で巻き取り熱延板とする熱間圧延工程と、
該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、
該冷延板に再結晶温度以上 900 °C以下の温度で保持時間:10~90sとする焼鈍 を行い、
ついで 600 で以下の温度域まで冷却速度:70°C/s以下で冷却する冷延板焼鈍ェ 程とを、順次施すことを特徴とする引張強さ 440MPa以上、 降伏比 0.7 以上で歪時 効硬化特性に優れた高降伏比型高張力冷延鋼板の製造方法。
14. mass %で、
C:0.15%以下、 Mn:3.0 %以下、
S: 0.02%以下、
Al: 0.02%以下、
N:0.0050~0.0250%
を含み、さらに、
Mo:0.05〜1.0 %、 Cr:0.05〜1.0 %のうちの 1種または 2種を含有し、
かつ NZA1が 0.3 以上、 固溶状態の Nを 0.0010%以上含有し、残部が Feおよぴ不 可避的不純物からなる組成と、
平均結晶粒径 10/ m以下のフェライト相を面積率で 50%以上含み、さらにマルテン サイト相を面積率で 3%以上含む組織とを有することを特徴とする、
歪時効硬化特性、加工性、耐衝撃特性に優れた引張強さ 440MPa以上の高張力 冷延銅板。
15. 請求項 14に記載の組成に加えてさらに、 niass%で、下記 e群〜 h群のうちの 1群または 2群以上を含むことを特徴とする高張力冷延鋼板。
e群: Si :0.05〜 1.5 %、 P: 0.03 ~ 0.15 %、 B: 0.0003 ~ 0.01 %の 1種または 2種 以上
f群: Nb:0.01〜0.1 %、 Ti: 0.01〜0.2 %、 V:0.01〜0.2 %の 1種または 2種以 上
g群: Cu:0.05~1.5 %、 Ni:0.05〜1.5 %の 1種または 2種
h群: Ca、 REM の 1種または 2種を合計で 0.0010〜 0.010 %
16. mass%で、
C: 0.15%以下、
Mn:3.0 %以下、 S: 0.02%以下、
AI: 0.02%以下、
N: 0.0050~0.0250%
を含み、さらに、
Mo:0.05〜1.0 %、 Cr:0.05〜1.0 %のうちの 1種または 2種を含有し、
かつ NZA1が 0.3 以上であり、
あるいはさらに下記 e群〜 h群のうちから選ばれた 1群または 2群以上を含む組成の 鋼スラブを、スラブ加熱温度: 1000°C以上に加熱し、粗圧延してシートバーとし、 該シートバーに仕上圧延出側温度:800 °C以上とする仕上圧延を施し、 卷取温度:750 °C以下で卷き取り熱延板とする熱間圧延工程と、
該熱延板に酸洗および冷間圧延を行い冷延板とする冷間圧延工程と、 該冷延板に、 (Acl変態点)〜(Ac3変態点)の温度で保持時間:10〜120 sとする 焼鈍を施し、
ついで 600 〜300 °C間の平均冷却速度を下記(1)または(2)式で定義される臨界 冷却速度 CR以上として冷却を行う冷延板焼鈍工程とを、順次施すことを特徴とす る歪時効硬化性、加工性、耐衝撃特性に優れ、 引張強さ: 440MPa以上を有する 高張力冷延鋼板の製造方法。
e群: Si :0.05〜 1.5 %、?:0.03〜0.15%、;6:0.0003〜0.01%の1種または2種 以上
ί群: Nb:0.01〜0.1 %、 Ti:0.01〜0.2 %、 V:0.01〜0.2 %の 1種または 2種以 上
g群: Cu:0.05〜1.5 %、 Ni:0.05〜1.5 %の 1種または 2種
h群: Ca、 REM の 1種または 2種を合計で 0.0010〜 0.010 %
B< 0.0003%の場合 log CR= - 1.73 [ n+2.67Mo+ 1.3Cr + 0.26Si + 3.5 P + 0.05 Cu + 0.05Ni] + 3. 95……(1)
B≥0.0003%の場合
log CR = - 1.73 [Mn+2.67 o+ 1.3Cr + 0.26Si + 3.5P + 0.05 Cu + 0.05Ni] + 3. 40……(2)
ここに、 CR:冷却速度(°CZs)
Mn、 Mo、 Cr、 Si、 P、 Cu、 Ni:各元素含有量(mass%)
17. 前記仕上圧延後、 0.5 s以内に冷却を開始し、冷却速度:40で/ s以上で急 冷し、前記卷き取りを行うことを特徴とする請求項 16に記載の高張力冷延鋼板の 製造方法。
6
PCT/JP2001/001003 2000-02-29 2001-02-14 Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage WO2001064967A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60121266T DE60121266T2 (de) 2000-02-29 2001-02-14 Hochfestes warmgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaften
EP01904406A EP1193322B1 (en) 2000-02-29 2001-02-14 High tensile cold-rolled steel sheet having excellent strain aging hardening properties
CA002368504A CA2368504C (en) 2000-02-29 2001-02-14 High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
US09/980,513 US6702904B2 (en) 2000-02-29 2001-02-14 High tensile cold-rolled steel sheet having excellent strain aging hardening properties
US10/341,166 US6902632B2 (en) 2000-02-29 2003-01-13 High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
US10/341,165 US6899771B2 (en) 2000-02-29 2003-01-13 High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000053923 2000-02-29
JP2000-53923 2000-02-29
JP2000151170 2000-05-23
JP2000-151170 2000-05-23
JP2000-162497 2000-05-31
JP2000162497 2000-05-31

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/980,513 A-371-Of-International US6702904B2 (en) 2000-02-29 2001-02-14 High tensile cold-rolled steel sheet having excellent strain aging hardening properties
US10/341,166 Division US6902632B2 (en) 2000-02-29 2003-01-13 High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof
US10/341,165 Division US6899771B2 (en) 2000-02-29 2003-01-13 High tensile strength cold rolled steel sheet having excellent strain age hardening characteristics and the production thereof

Publications (1)

Publication Number Publication Date
WO2001064967A1 true WO2001064967A1 (fr) 2001-09-07

Family

ID=27342519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001003 WO2001064967A1 (fr) 2000-02-29 2001-02-14 Tole d'acier laminee a froid a haute resistance presentant d'excellentes proprietes de durcissement par vieillissement par l'ecrouissage

Country Status (8)

Country Link
US (3) US6702904B2 (ja)
EP (3) EP1571230B1 (ja)
KR (1) KR100595946B1 (ja)
CN (1) CN1145709C (ja)
CA (1) CA2368504C (ja)
DE (3) DE60127879T2 (ja)
TW (1) TW550296B (ja)
WO (1) WO2001064967A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830260A1 (fr) * 2001-10-03 2003-04-04 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
WO2006080670A1 (en) * 2004-09-30 2006-08-03 Posco High strength cold rolled steel sheet having excellent shape freezability, and method for manufacturing the same
KR100742949B1 (ko) * 2005-05-03 2007-07-25 주식회사 포스코 가공성이 우수한 소부경화형 냉연강판과 그 제조방법
WO2017169871A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW558569B (en) * 2000-02-23 2003-10-21 Kawasaki Steel Co High tensile hot-rolled steel sheet having excellent strain aging hardening properties and method for producing the same
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
CA2469022C (en) * 2002-06-25 2008-08-26 Jfe Steel Corporation High-strength cold rolled steel sheet and method for manufacturing the same
US7192551B2 (en) * 2002-07-25 2007-03-20 Philip Morris Usa Inc. Inductive heating process control of continuous cast metallic sheets
FR2844281B1 (fr) 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
KR100958025B1 (ko) * 2002-11-07 2010-05-17 주식회사 포스코 리징성이 개선된 페라이트계 스테인레스강의 제조방법
US20050167006A1 (en) * 2003-01-06 2005-08-04 Jfe Steel Corporation Steel sheet for high strength heat shrink band for cathode-ray tube and high strength heat shrink band
FR2850671B1 (fr) * 2003-02-05 2006-05-19 Usinor Procede de fabrication d'une bande d'acier dual-phase a structure ferrito-martensitique, laminee a froid et bande obtenue
EP1659191B1 (en) * 2003-08-26 2014-07-30 JFE Steel Corporation High tensile strength cold-rolled steel sheet and method for production thereof
JP4635525B2 (ja) 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
JP3934604B2 (ja) * 2003-12-25 2007-06-20 株式会社神戸製鋼所 塗膜密着性に優れた高強度冷延鋼板
DE102004044022A1 (de) * 2004-09-09 2006-03-16 Salzgitter Flachstahl Gmbh Beruhigter, unlegierter oder mikrolegierter Walzstahl mit Bake-hardening-Effekt und Verfahren zu seiner Herstellung
US7442268B2 (en) * 2004-11-24 2008-10-28 Nucor Corporation Method of manufacturing cold rolled dual-phase steel sheet
US7959747B2 (en) * 2004-11-24 2011-06-14 Nucor Corporation Method of making cold rolled dual phase steel sheet
US8337643B2 (en) 2004-11-24 2012-12-25 Nucor Corporation Hot rolled dual phase steel sheet
US7717976B2 (en) * 2004-12-14 2010-05-18 L&P Property Management Company Method for making strain aging resistant steel
WO2006118423A1 (en) * 2005-05-03 2006-11-09 Posco Cold rolled steel sheet having superior formability , process for producing the same
KR100716342B1 (ko) 2005-06-18 2007-05-11 현대자동차주식회사 마르텐사이트형 초고강도 냉연강판 조성물 및 이의 제조방법
CN104264075B (zh) * 2005-12-09 2018-01-30 Posco公司 具有优异成形性和涂覆特性的高强度冷轧钢板,由其制成的锌基金属镀钢板及制造方法
CN100554479C (zh) * 2006-02-23 2009-10-28 株式会社神户制钢所 加工性优异的高强度钢板
JP5095958B2 (ja) * 2006-06-01 2012-12-12 本田技研工業株式会社 高強度鋼板およびその製造方法
US7608155B2 (en) 2006-09-27 2009-10-27 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
US11155902B2 (en) 2006-09-27 2021-10-26 Nucor Corporation High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
KR100782760B1 (ko) 2006-12-19 2007-12-05 주식회사 포스코 고 항복비형 고강도 냉연강판 및 도금강판의 제조방법
KR100782759B1 (ko) 2006-12-19 2007-12-05 주식회사 포스코 고 항복비형 고강도 냉연강판 및 도금강판의 제조방법
JP5058769B2 (ja) * 2007-01-09 2012-10-24 新日本製鐵株式会社 化成処理性に優れた高強度冷延鋼板の製造方法および製造設備
US8721809B2 (en) 2007-02-23 2014-05-13 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
JP5162924B2 (ja) 2007-02-28 2013-03-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2008110670A1 (fr) * 2007-03-14 2008-09-18 Arcelormittal France Acier pour formage a chaud ou trempe sous outil a ductilite amelioree
MX2008012239A (es) * 2007-03-30 2008-11-28 Sumitomo Metal Ind Accesorio tubular para tubos octg para expansion en pozos y metodo de fabricacion del mismo.
JP5425770B2 (ja) * 2007-07-19 2014-02-26 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 長さ方向において厚さが変化する鋼ストリップ
HUE037930T2 (hu) * 2007-07-19 2018-09-28 Muhr & Bender Kg Hosszirányban változó vastagságú acélszalag lágyítására szolgáló eljárás
CN101376944B (zh) * 2007-08-28 2011-02-09 宝山钢铁股份有限公司 一种高强度高屈强比冷轧钢板及其制造方法
BRPI0818530A2 (pt) 2007-10-10 2015-06-16 Nucor Corp Aço laminado a frio de estrutura metalográfica complexa e método de fabricar uma chapa de aço de estrutura metalográfica complexa
DE102007061475B3 (de) 2007-12-20 2009-09-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Verfahren zum Herstellen umgeformter Bauteile aus hochfesten und ultra-hochfesten Stählen
BRPI0909191A2 (pt) * 2008-03-19 2016-11-01 Nucor Corp aparelho para fundição de tira com posicionamento do rolete de fundição
US20090236068A1 (en) 2008-03-19 2009-09-24 Nucor Corporation Strip casting apparatus for rapid set and change of casting rolls
US20090235718A1 (en) * 2008-03-21 2009-09-24 Fox Michael J Puncture-Resistant Containers and Testing Methods
US20110076177A1 (en) * 2008-04-03 2011-03-31 Jfe Steel Corporation High-strength steel sheet for cans and method for manufacturing the same
JP5434212B2 (ja) * 2008-04-11 2014-03-05 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法
JP5201625B2 (ja) * 2008-05-13 2013-06-05 株式会社日本製鋼所 耐高圧水素環境脆化特性に優れた高強度低合金鋼およびその製造方法
US20090288798A1 (en) * 2008-05-23 2009-11-26 Nucor Corporation Method and apparatus for controlling temperature of thin cast strip
JP5753781B2 (ja) * 2008-07-11 2015-07-22 アクティエボラゲット・エスコーエッフ 鋼構成部品を製造する方法、溶接線、溶接された鋼構成部品、および軸受構成部品
WO2010013848A1 (ja) 2008-07-31 2010-02-04 Jfeスチール株式会社 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
US8128762B2 (en) * 2008-08-12 2012-03-06 Kobe Steel, Ltd. High-strength steel sheet superior in formability
JP5418168B2 (ja) * 2008-11-28 2014-02-19 Jfeスチール株式会社 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
US8784577B2 (en) 2009-01-30 2014-07-22 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
RU2478123C1 (ru) 2009-01-30 2013-03-27 ДжФЕ СТИЛ КОРПОРЕЙШН Толстостенный высокопрочный горячекатаный стальной лист с высокой стойкостью к индуцируемому водородом растрескиванию и способ его производства
KR101149117B1 (ko) * 2009-06-26 2012-05-25 현대제철 주식회사 저항복비 특성이 우수한 고강도 강판 및 그 제조방법
JP5786318B2 (ja) * 2010-01-22 2015-09-30 Jfeスチール株式会社 疲労特性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP4998757B2 (ja) * 2010-03-26 2012-08-15 Jfeスチール株式会社 深絞り性に優れた高強度鋼板の製造方法
JP5765116B2 (ja) * 2010-09-29 2015-08-19 Jfeスチール株式会社 深絞り性および伸びフランジ性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN102011081B (zh) * 2010-10-26 2012-08-29 常州大学 一种连续热浸镀锌铝中体外循环静置降温除铁的方法
CN102455662B (zh) * 2010-10-26 2013-09-25 宝山钢铁股份有限公司 热轧板带矫直机矫直参数优化设定方法及系统
EP2650396B1 (en) * 2010-12-06 2018-11-07 Nippon Steel & Sumitomo Metal Corporation Steel sheet for bottom covers of aerosol cans and method for producing same
KR101033401B1 (ko) * 2011-01-04 2011-05-09 현대하이스코 주식회사 일반재용 냉연강판의 상자소둔 열처리 방법
KR101033412B1 (ko) * 2011-01-04 2011-05-11 현대하이스코 주식회사 드럼재용 냉연강판의 상자소둔 열처리 방법
JP5182386B2 (ja) * 2011-01-31 2013-04-17 Jfeスチール株式会社 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
RU2478729C2 (ru) * 2011-05-20 2013-04-10 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Способ производства стальной полосы (варианты)
CN103562428B (zh) 2011-05-25 2015-11-25 新日铁住金株式会社 冷轧钢板及其制造方法
MX363038B (es) * 2011-07-06 2019-03-01 Nippon Steel & Sumitomo Metal Corp Metodo para producir hoja de acero laminada en frio.
EP2738274B1 (en) * 2011-07-27 2018-12-19 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same
JP5338873B2 (ja) * 2011-08-05 2013-11-13 Jfeスチール株式会社 引張強度440MPa以上の加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013060644A (ja) * 2011-09-14 2013-04-04 Jfe Steel Corp 加工性に優れた薄鋼板、めっき薄鋼板及びそれらの製造方法
JP2013064169A (ja) * 2011-09-15 2013-04-11 Jfe Steel Corp 焼付硬化性及び成形性に優れた高強度薄鋼板、めっき薄鋼板並びにそれらの製造方法
JP2013072110A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 成形後の表面品質に優れる高張力冷延鋼板及びその製造方法
JP2013072107A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 成形後の表面品質に優れる焼付け硬化型冷延鋼板およびその製造方法
JP5365673B2 (ja) 2011-09-29 2013-12-11 Jfeスチール株式会社 材質均一性に優れた熱延鋼板およびその製造方法
JP2013076132A (ja) * 2011-09-30 2013-04-25 Jfe Steel Corp 焼付硬化性と成形性に優れた高強度薄鋼板およびその製造方法
KR101316320B1 (ko) * 2011-12-06 2013-10-08 주식회사 포스코 항복강도 및 연신율이 우수한 강판 및 그 제조방법
JP5316634B2 (ja) * 2011-12-19 2013-10-16 Jfeスチール株式会社 加工性に優れた高強度鋼板およびその製造方法
KR20140099544A (ko) * 2011-12-26 2014-08-12 제이에프이 스틸 가부시키가이샤 고강도 박강판 및 그의 제조 방법
US10301698B2 (en) 2012-01-31 2019-05-28 Jfe Steel Corporation Hot-rolled steel sheet for generator rim and method for manufacturing the same
JP2013224477A (ja) * 2012-03-22 2013-10-31 Jfe Steel Corp 加工性に優れた高強度薄鋼板及びその製造方法
JP2013209728A (ja) * 2012-03-30 2013-10-10 Jfe Steel Corp 耐時効性に優れた冷延鋼板およびその製造方法
JP2013209725A (ja) * 2012-03-30 2013-10-10 Jfe Steel Corp 曲げ加工性に優れた冷延鋼板及びその製造方法
PT2834383T (pt) 2012-04-05 2021-09-29 Tata Steel Ijmuiden Bv Tira de aço com um baixo teor de si
JP2013231216A (ja) * 2012-04-27 2013-11-14 Jfe Steel Corp 化成処理性に優れる高強度冷延鋼板およびその製造方法
JP2013237877A (ja) * 2012-05-11 2013-11-28 Jfe Steel Corp 高降伏比型高強度鋼板、高降伏比型高強度冷延鋼板、高降伏比型高強度亜鉛めっき鋼板、高降伏比型高強度溶融亜鉛めっき鋼板、高降伏比型高強度合金化溶融亜鉛めっき鋼板、高降伏比型高強度冷延鋼板の製造方法、高降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および高降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2013241636A (ja) * 2012-05-18 2013-12-05 Jfe Steel Corp 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
KR101443442B1 (ko) * 2012-06-28 2014-09-24 현대제철 주식회사 고강도 냉연강판 및 그 제조 방법
JP2014015651A (ja) * 2012-07-06 2014-01-30 Jfe Steel Corp 深絞り加工性に優れた高強度冷延鋼板及びその製造方法
JP2014019928A (ja) * 2012-07-20 2014-02-03 Jfe Steel Corp 高強度冷延鋼板および高強度冷延鋼板の製造方法
KR101744429B1 (ko) 2012-12-11 2017-06-07 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법
EP2987886B1 (en) * 2013-04-15 2018-06-06 JFE Steel Corporation High strength hot rolled steel sheet and method for producing same
CN103290312B (zh) * 2013-06-05 2015-01-21 首钢总公司 提高440MPa级碳素结构钢加工硬化值的生产方法
DE102013013067A1 (de) * 2013-07-30 2015-02-05 Salzgitter Flachstahl Gmbh Siliziumhaltiger, mikrolegierter hochfester Mehrphasenstahl mit einer Mindestzugfestigkeit von 750 MPa und verbesserten Eigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
JP5817805B2 (ja) * 2013-10-22 2015-11-18 Jfeスチール株式会社 伸びの面内異方性が小さい高強度鋼板およびその製造方法
SG11201604636QA (en) * 2013-12-18 2016-07-28 Tata Steel Uk Ltd High strength hot-finished steel hollow sections with low carbon equivalent for improved welding
KR101568547B1 (ko) 2013-12-25 2015-11-11 주식회사 포스코 스트립의 연속소둔 장치 및 그 연속소둔 방법
WO2015177582A1 (fr) * 2014-05-20 2015-11-26 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier doublement recuite à hautes caractéristiques mécaniques de résistance et ductilité, procédé de fabrication et utilisation de telles tôles
DE102014017274A1 (de) * 2014-11-18 2016-05-19 Salzgitter Flachstahl Gmbh Höchstfester lufthärtender Mehrphasenstahl mit hervorragenden Verarbeitungseigenschaften und Verfahren zur Herstellung eines Bandes aus diesem Stahl
KR101657845B1 (ko) * 2014-12-26 2016-09-20 주식회사 포스코 박슬라브 표면 품질이 우수한 고강도 냉연강판 및 그 제조방법
KR101989372B1 (ko) * 2015-03-25 2019-06-14 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그의 제조 방법
RU2604081C1 (ru) * 2015-08-05 2016-12-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства непрерывно отожженного нестареющего холоднокатаного проката ультра глубокой вытяжки
US10174398B2 (en) * 2016-02-22 2019-01-08 Nucor Corporation Weathering steel
CN107794357B (zh) 2017-10-26 2018-09-14 北京科技大学 超快速加热工艺生产超高强度马氏体冷轧钢板的方法
US11491581B2 (en) * 2017-11-02 2022-11-08 Cleveland-Cliffs Steel Properties Inc. Press hardened steel with tailored properties
CN117966037A (zh) * 2018-01-12 2024-05-03 浦项股份有限公司 各方向的材质偏差少的析出硬化型钢板及其制造方法
CN110117756B (zh) * 2019-05-21 2020-11-24 安徽工业大学 一种Cu合金化深冲双相钢板及其制备方法
DE102022121780A1 (de) 2022-08-29 2024-02-29 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510718A2 (en) * 1991-04-26 1992-10-28 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-agin property at room temperature and suitable for drawing and method of producing the same
JPH04365814A (ja) * 1991-06-11 1992-12-17 Nippon Steel Corp 焼付硬化性に優れた高強度冷延鋼板の製造方法
JPH06116682A (ja) * 1992-10-06 1994-04-26 Kawasaki Steel Corp 焼付け硬化性を有する高強度缶用薄鋼板及びその製造方法
JPH06116648A (ja) * 1992-10-02 1994-04-26 Nippon Steel Corp 焼付硬化性と非時効性とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板の製造方法
EP0612857A1 (en) * 1992-09-14 1994-08-31 Nippon Steel Corporation Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
JPH0835039A (ja) * 1994-07-21 1996-02-06 Kawasaki Steel Corp 焼付け硬化性及び耐時効性に優れた高強度高加工性製缶用鋼板及びその製造方法
JPH08157969A (ja) * 1994-12-06 1996-06-18 Kobe Steel Ltd 耐孔あき腐食性にすぐれる冷間圧延鋼板の製造方法
JPH09296252A (ja) * 1996-05-02 1997-11-18 Kawasaki Steel Corp 成形性に優れる薄物熱延鋼板およびその製造方法
JPH1180919A (ja) * 1997-09-11 1999-03-26 Sumitomo Metal Ind Ltd 曲げ性に優れる高張力合金化溶融亜鉛めっき鋼板の製法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3673009A (en) * 1969-12-17 1972-06-27 Inland Steel Co Method for producing a part from steel sheet
US3988173A (en) * 1972-04-03 1976-10-26 Nippon Steel Corporation Cold rolled steel sheet having excellent workability and method thereof
JPS5849627B2 (ja) * 1979-02-27 1983-11-05 川崎製鉄株式会社 非時交性冷延鋼板の製造方法
JPS55141526A (en) * 1979-04-18 1980-11-05 Kawasaki Steel Corp Production of high tension cold-rolled steel plate for deep drawing
JPS583922A (ja) * 1981-06-29 1983-01-10 Kawasaki Steel Corp 時効性に優れるt−3級ぶりき板の製造方法
JPS6052528A (ja) * 1983-09-02 1985-03-25 Kawasaki Steel Corp 延性およびスポツト溶接性の良好な高強度薄鋼板の製造方法
JPS60145355A (ja) * 1984-01-06 1985-07-31 Kawasaki Steel Corp 延性が良好で時効劣化のない低降伏比高張力熱延鋼板とその製造方法
US4578124A (en) * 1984-01-20 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho High strength low carbon steels, steel articles thereof and method for manufacturing the steels
JPS61104031A (ja) * 1984-10-25 1986-05-22 Kawasaki Steel Corp 焼付硬化性に優れた高強度冷延鋼板の製造方法
JPS61272323A (ja) * 1985-05-28 1986-12-02 Kawasaki Steel Corp 連続焼鈍による表面処理用原板の製造方法
JPH0823048B2 (ja) 1990-07-18 1996-03-06 住友金属工業株式会社 焼付硬化性と加工性に優れた熱延鋼板の製造方法
US5123969A (en) * 1991-02-01 1992-06-23 China Steel Corp. Ltd. Bake-hardening cold-rolled steel sheet having dual-phase structure and process for manufacturing it
GB2266805A (en) 1992-04-03 1993-11-10 Ibm Disc data storage device with cooling fins.
WO1994000615A1 (en) * 1992-06-22 1994-01-06 Nippon Steel Corporation Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
JP3458416B2 (ja) * 1993-09-21 2003-10-20 Jfeスチール株式会社 耐衝撃性に優れた冷延薄鋼板およびその製造方法
JPH08325670A (ja) * 1995-03-29 1996-12-10 Kawasaki Steel Corp 製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板及びその製造方法
EP0943696A4 (en) * 1997-09-04 2000-04-19 Kawasaki Steel Co STEEL PLATES FOR DRUMS, MANUFACTURING METHOD AND DRUM
DE69937481T2 (de) * 1998-04-08 2008-08-21 Jfe Steel Corp. Stahlblech für eine dose und herstellungsverfahren dafür
CA2380377C (en) * 2000-05-31 2007-01-09 Kawasaki Steel Corporation Cold-rolled steel sheets with superior strain-aging hardenability

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510718A2 (en) * 1991-04-26 1992-10-28 Kawasaki Steel Corporation High strength cold rolled steel sheet having excellent non-agin property at room temperature and suitable for drawing and method of producing the same
JPH04365814A (ja) * 1991-06-11 1992-12-17 Nippon Steel Corp 焼付硬化性に優れた高強度冷延鋼板の製造方法
EP0612857A1 (en) * 1992-09-14 1994-08-31 Nippon Steel Corporation Ferrite single phase cold rolled steel sheet or fused zinc plated steel sheet for cold non-ageing deep drawing and method for manufacturing the same
JPH06116648A (ja) * 1992-10-02 1994-04-26 Nippon Steel Corp 焼付硬化性と非時効性とに優れた冷延鋼板あるいは溶融亜鉛メッキ冷延鋼板の製造方法
JPH06116682A (ja) * 1992-10-06 1994-04-26 Kawasaki Steel Corp 焼付け硬化性を有する高強度缶用薄鋼板及びその製造方法
JPH0835039A (ja) * 1994-07-21 1996-02-06 Kawasaki Steel Corp 焼付け硬化性及び耐時効性に優れた高強度高加工性製缶用鋼板及びその製造方法
JPH08157969A (ja) * 1994-12-06 1996-06-18 Kobe Steel Ltd 耐孔あき腐食性にすぐれる冷間圧延鋼板の製造方法
JPH09296252A (ja) * 1996-05-02 1997-11-18 Kawasaki Steel Corp 成形性に優れる薄物熱延鋼板およびその製造方法
JPH1180919A (ja) * 1997-09-11 1999-03-26 Sumitomo Metal Ind Ltd 曲げ性に優れる高張力合金化溶融亜鉛めっき鋼板の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1193322A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2830260A1 (fr) * 2001-10-03 2003-04-04 Kobe Steel Ltd Tole d'acier a double phase a excellente formabilite de bords par etirage et procede de fabrication de celle-ci
US7553380B2 (en) 2001-10-03 2009-06-30 Kobe Steel, Ltd. Dual-phase steel sheet excellent in stretch flange formability and production method thereof
WO2006080670A1 (en) * 2004-09-30 2006-08-03 Posco High strength cold rolled steel sheet having excellent shape freezability, and method for manufacturing the same
KR100742949B1 (ko) * 2005-05-03 2007-07-25 주식회사 포스코 가공성이 우수한 소부경화형 냉연강판과 그 제조방법
WO2017169871A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
WO2017169869A1 (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6278161B1 (ja) * 2016-03-31 2018-02-14 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
JP6278162B1 (ja) * 2016-03-31 2018-02-14 Jfeスチール株式会社 薄鋼板およびめっき鋼板、並びに熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法
US11060157B2 (en) 2016-03-31 2021-07-13 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet
US11254995B2 (en) 2016-03-31 2022-02-22 Jfe Steel Corporation Steel sheet, coated steel sheet, method for producing hot-rolled steel sheet, method for producing full hard cold-rolled steel sheet, method for producing steel sheet, and method for producing coated steel sheet

Also Published As

Publication number Publication date
EP1193322A4 (en) 2004-06-30
EP1193322B1 (en) 2006-07-05
US6899771B2 (en) 2005-05-31
EP1571230B1 (en) 2006-12-13
DE60127879D1 (de) 2007-05-24
EP1193322A1 (en) 2002-04-03
EP1571230A1 (en) 2005-09-07
CA2368504C (en) 2007-12-18
CN1145709C (zh) 2004-04-14
US20030188811A1 (en) 2003-10-09
CA2368504A1 (en) 2001-09-07
DE60121266T2 (de) 2006-11-09
US6902632B2 (en) 2005-06-07
DE60127879T2 (de) 2007-09-06
DE60125253T2 (de) 2007-04-05
KR100595946B1 (ko) 2006-07-03
KR20010112947A (ko) 2001-12-22
DE60121266D1 (de) 2006-08-17
EP1571229B1 (en) 2007-04-11
US20030047256A1 (en) 2003-03-13
US6702904B2 (en) 2004-03-09
US20030145920A1 (en) 2003-08-07
TW550296B (en) 2003-09-01
EP1571229A1 (en) 2005-09-07
CN1366559A (zh) 2002-08-28
DE60125253D1 (de) 2007-01-25

Similar Documents

Publication Publication Date Title
CN113444977B (zh) 高强度和高可成形性钢板及制造方法
CN109642288B (zh) 高强度钢板及其制造方法
WO2001064967A1 (fr) Tole d&#39;acier laminee a froid a haute resistance presentant d&#39;excellentes proprietes de durcissement par vieillissement par l&#39;ecrouissage
JP4265545B2 (ja) 歪時効硬化特性に優れた高張力冷延鋼板およびその製造方法
JP5163356B2 (ja) 歪時効硬化特性に優れた高張力熱延鋼板およびその製造方法
CN107075627B (zh) 高强度钢板及其制造方法、以及高强度镀锌钢板的制造方法
KR101528080B1 (ko) 성형성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
KR100611541B1 (ko) 변형시효 경화특성이 우수한 냉연강판 및 그 제조방법
JP4524850B2 (ja) 延性および歪時効硬化特性に優れた高張力冷延鋼板および高張力冷延鋼板の製造方法
WO2018147400A1 (ja) 高強度鋼板およびその製造方法
JP3846206B2 (ja) 歪時効硬化特性に優れた高張力冷延鋼板およびその製造方法
EP3178955A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP2243852A1 (en) High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof
EP3178953A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP3812279B2 (ja) 加工性および歪時効硬化特性に優れた高降伏比型高張力溶融亜鉛めっき鋼板およびその製造方法
KR20190073469A (ko) 고강도 강판 및 그 제조 방법
JP4206642B2 (ja) 歪時効硬化特性に優れた高張力熱延鋼板およびその製造方法
JP4752522B2 (ja) 深絞り用高強度複合組織型冷延鋼板の製造方法
JP4839527B2 (ja) 歪時効硬化特性に優れた冷延鋼板およびその製造方法
JP4665302B2 (ja) 高r値と優れた歪時効硬化特性および常温非時効性を有する高張力冷延鋼板およびその製造方法
JP4362948B2 (ja) 高張力溶融亜鉛めっき鋼板およびその製造方法
JP4556348B2 (ja) 歪時効硬化特性に優れた超高強度熱延鋼板およびその製造方法
JP5035268B2 (ja) 高張力冷延鋼板
JP4519373B2 (ja) 成形性、歪時効硬化特性および耐常温時効性に優れた高張力冷延鋼板およびその製造方法
JP4292986B2 (ja) 高張力冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01801125.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref document number: 2368504

Country of ref document: CA

Ref document number: 2368504

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001904406

Country of ref document: EP

Ref document number: 09980513

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020017013657

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001904406

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001904406

Country of ref document: EP