WO2001056085A1 - Tranche a semi-conducteurs et son procede de production - Google Patents

Tranche a semi-conducteurs et son procede de production Download PDF

Info

Publication number
WO2001056085A1
WO2001056085A1 PCT/JP2001/000331 JP0100331W WO0156085A1 WO 2001056085 A1 WO2001056085 A1 WO 2001056085A1 JP 0100331 W JP0100331 W JP 0100331W WO 0156085 A1 WO0156085 A1 WO 0156085A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
wafer
bonded
layer
implanted
Prior art date
Application number
PCT/JP2001/000331
Other languages
English (en)
French (fr)
Inventor
Takao Abe
Takashi Matsuura
Junichi Murota
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US09/926,190 priority Critical patent/US6770507B2/en
Priority to EP01901450A priority patent/EP1174926A1/en
Publication of WO2001056085A1 publication Critical patent/WO2001056085A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76243Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using silicon implanted buried insulating layers, e.g. oxide layers, i.e. SIMOX techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26533Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically inactive species in silicon to make buried insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to a novel bonded semiconductor wafer having a laminated structure in which semiconductor layers and insulating layers are alternately and periodically laminated for two or more periods, and a novel manufacturing method thereof.
  • One of the S 0 I wafer fabrication techniques is a wafer bonding method. Further, as a technique using this bonding method, a so-called ion implantation delamination method (also referred to as a smart cut (registered trademark) method) described in Japanese Patent Application Laid-Open No. 5-221128 has been developed.
  • a so-called ion implantation delamination method also referred to as a smart cut (registered trademark) method described in Japanese Patent Application Laid-Open No. 5-221128 has been developed.
  • an oxide film is formed on at least one of two silicon wafers, and hydrogen ions or rare gas ions are implanted from the upper surface of one of the silicon wafers, and microbubbles enter the inside of the silicon wafer.
  • the ion-implanted surface is brought into close contact with the other wafer via an oxide film, and then heat treatment (separation heat treatment) is applied to make the microbubble layer a cleavage surface (separation surface).
  • the wafer is peeled into a thin film and subjected to a heat treatment (bonding heat treatment) to form a S 0 I wafer that is firmly bonded to the wafer.
  • the peeled surface is a good mirror surface, and the S 01 Extreme sex
  • a high SOI wafer can be obtained relatively easily, and one of the peeled wafers can be reused, so that the material can be used effectively.
  • this method can directly bond silicon wafers without interposing an oxide film, and not only when bonding silicon wafers, but also by ion-implanting silicon wafers with quartz, silicon carbide, Bonded wafers with these thin films can also be manufactured by bonding to insulating wafers with different thermal expansion coefficients, such as alumina, or by selecting a material other than silicon as the wafer for ion implantation. .
  • the problem of film thickness uniformity which was the biggest problem of bonded semiconductor wafers, was solved, and the standard deviation of the SOI layer thickness within the wafer surface was 1 nm or less.
  • the bonded S0I wafer having uniform film thickness can be manufactured.
  • the bonded S0I wafer can be used not only for conventional BiCMOS and power ICs, but also for LSIs that use ultra-thin SOI layers and CMOS that requires excellent film thickness uniformity. Also became applicable.
  • the SOI wafer used for these applications has a structure in which the SOI layer formed on the buried oxide film is a single layer. 1 1 — 3 1 6 1 5 4), the above-mentioned ion implantation separation method was applied to periodically stack two or more layers with different refractive indices such as a S0I layer and a buried oxide film for two or more periods. We proposed to fabricate a bonded semiconductor wafer and use it for optical functional devices.
  • FIG. 4 is a flowchart showing an example of a conventional method for manufacturing a bonded semiconductor wafer.
  • FIG. 5 is a flowchart showing another example of a conventional method for manufacturing a bonded semiconductor wafer.
  • a semiconductor wafer A having an insulating film or an insulating layer 10a on its surface and a semiconductor wafer B having no insulating film are prepared.
  • Hydrogen ions or rare gas ions
  • the wafer A is bonded to the wafer B via the insulating film 10a at room temperature to produce a bonded wafer 15.
  • the wafer A When the bonded wafer 15 is heat-treated, the wafer A is cracked by strain from the microbubble layer 12a, and the SOI having a one-period structure in which the insulating layer 10a and the semiconductor layer 14a are formed on B is formed. Wafer 16 is produced. A wafer C having an insulating film or an insulating layer 1 Ob on the surface is further prepared for the S 0 I layer 16 having the one-cycle laminated structure formed thereon, and hydrogen (or rare gas ion) is added thereto. ) To form a microbubble layer 12 b inside the wafer C. The wafer C is bonded to the SOI wafer 16 via the insulating film 10b at room temperature to produce a bonded wafer 11.
  • a one-cycle laminated structure is formed on the substrate B, and an insulating film or an insulating film is formed on the surface of the S 0 I substrate 16.
  • the same procedure is followed until a further wafer C having layer 1 Ob is prepared.
  • the ion implantation of hydrogen ions (or noble gas ions) is performed on the SOI wafer 16 and the microbubble layer 12 c is formed in the SOI wafer 16. It is different from the case of Fig. 4.
  • the S0I wafer 16 is bonded at room temperature to the wafer C via the insulating film 10b to produce a bonded wafer 17.
  • a crack is generated in the wafer C due to the strain from the microbubble layer 12c, and a one-period laminated structure (insulating layer 10a, semiconductor layer 14 In addition to a), an insulating layer 10b and a semiconductor layer 14c are further formed to complete an S0I wafer 18 having a two-layer laminated structure.
  • the present inventors have developed a bonded semiconductor wafer having such a periodic laminated structure of a semiconductor layer and an insulating layer, and in particular, of the two-period structure having the simplest structure and the highest utility value among the laminated structures. Manufacturing of bonded semiconductor wafers that is simpler and that reduces the frequency of defects As a result of intensive studies on the method, the present inventors have completed the present invention based on the idea that the number of times of bonding can be reduced by using an oxide film layer formed by oxygen ion implantation as an insulating layer.
  • the present invention has been made in view of the above-described problems, and provides a semiconductor wafer having a laminated structure in which semiconductor layers and insulating layers are alternately and periodically laminated for two or more cycles and manufactured by a bonding method.
  • a new bonded semiconductor wafer which is an insulating layer formed by ion-implanted oxygen at least one of which is a new bonded semiconductor wafer, and an ion-implanted peeling method, which simplifies the manufacturing process and improves the bonding process. It is an object of the present invention to provide a novel method of manufacturing a bonded semiconductor wafer which can reduce the defects of the semiconductor wafer.
  • a bonded semiconductor wafer of the present invention is manufactured using a bonding method, and has a stacked structure in which a semiconductor layer and an insulating layer are alternately and periodically stacked in two or more cycles.
  • the semiconductor layer is silicon
  • the insulating layer is a silicon oxide film
  • the cycle of the laminated structure is two cycles.
  • first and second semiconductor wafers each having an insulating film formed on one or both of them are prepared, and one surface of the first semiconductor wafer is provided on one surface.
  • oxygen ion implantation and hydrogen ion or rare gas ion implantation the surface of the first semiconductor wafer where ion implantation is performed and the surface of the second semiconductor wafer are bonded together via the insulating film.
  • the first semiconductor wafer is bonded to the microbubble layer formed by the injection of hydrogen ions or rare gas ions. It is characterized by peeling.
  • the implantation depth of hydrogen ions or rare gas ions needs to be deeper than the implantation depth of oxygen ions, but there is no particular limitation on which ion implantation is performed first. .
  • a second aspect of the method for manufacturing a bonded semiconductor wafer of the present invention is to prepare first and second semiconductor wafers each having an insulating film formed on one or both of them.
  • Oxygen ions are implanted, and hydrogen ions or rare gas ions are implanted into one surface of the second semiconductor wafer.
  • the ion implantation surfaces of the first semiconductor wafer and the second semiconductor wafer are insulated from each other as described above.
  • a bonded semiconductor wafer is manufactured by bonding through a film, and the bonded semiconductor wafer is subjected to a heat treatment, so that the second semiconductor is formed in the microbubble layer formed by implanting the hydrogen ions or the rare gas ions.
  • the wafer is peeled off.
  • a third aspect of the method for manufacturing a bonded semiconductor wafer of the present invention is to prepare first and second semiconductor wafers each having an insulating film formed on one or both of them.
  • the first semiconductor wafer is subjected to a heat treatment to make the oxygen ion implanted layer a high-quality film.
  • hydrogen ions or rare gas ions are implanted into one surface of the first semiconductor wafer.
  • the surface of the first semiconductor wafer into which the ion has been implanted and the surface of the second semiconductor wafer are bonded together via the insulating film to produce a semiconductor wafer.
  • the first semiconductor wafer is separated from the microbubble layer formed by implanting the hydrogen ions or the rare gas ions by performing a heat treatment on the first semiconductor wafer.
  • This third embodiment is a modification of the first embodiment described above. After once producing an S 0 I wafer by the so-called SIM 0X (Separation by IMplanted Oxgen) method, hydrogen ions are applied to this SOI wafer. Injection and subsequent steps Is what you do. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a flowchart showing a first embodiment of the method for manufacturing a bonded semiconductor wafer according to the present invention.
  • FIG. 2 is a flowchart showing a second embodiment of the method for manufacturing a bonded semiconductor wafer according to the present invention.
  • FIG. 3 is a flowchart showing a third embodiment of the method for manufacturing a bonded semiconductor wafer according to the present invention.
  • FIG. 4 is a flowchart showing one example of a conventional method for manufacturing a bonded semiconductor wafer.
  • FIG. 5 is a flowchart showing another example of a conventional method for manufacturing a bonded semiconductor wafer.
  • FIG. 1 is a flowchart showing a first embodiment of a method for manufacturing a bonded semiconductor wafer according to the present invention.
  • FIG. 2 is a flowchart showing a second embodiment of a method for manufacturing a bonded semiconductor wafer according to the present invention. is there.
  • FIG. 3 is a flowchart showing a third embodiment of the method for manufacturing a bonded semiconductor device according to the present invention.
  • a first semiconductor wafer A eg, a silicon wafer
  • Second semiconductor wafer B having b (Eg, a silicon wafer).
  • Two types of ion implantation are performed on wafer A: oxygen ion implantation and hydrogen ion (or rare gas ion) implantation.
  • oxygen ion implantation oxygen ion implantation and hydrogen ion (or rare gas ion) implantation.
  • an oxygen ion implanted layer 20a and a hydrogen ion implanted layer (microbubble layer) 22a are formed inside the wafer A.
  • the implantation depth of hydrogen ions (or rare gas ions) needs to be deeper than the implantation depth of oxygen ions, but there is no particular limitation on which ion implantation is performed first.
  • the wafer A into which the ions have been implanted is bonded to the wafer B via the insulating film 2 Ob to produce a bonded wafer 26.
  • This bonding step may be performed at room temperature in a clean atmosphere.
  • heat treatment is performed on the bonded wafer 26.
  • the oxygen ion-implanted layer 20a is turned into an oxide film layer, that is, an insulating layer 20c, and a portion A of the hydrogen ion-implanted layer (microbubble layer) 22a is peeled off.
  • a two-periodic structure (insulating layer 20 b, semiconductor layer 24 a, insulating layer 20 c, semiconductor layer 24 b) bonded semiconductor wafer, that is, a two-period structure SOI wafer 28 is produced. Is done.
  • a low-temperature heat treatment of about 400 to 600 ° C. may be used as long as the heat treatment is only for peeling of the first wafer A.
  • a heat treatment of 130C or more is usually required. Therefore, the heat treatment for improving the film quality and the heat treatment for peeling can be performed by such high-temperature heat treatment by omitting the low-temperature peeling heat treatment.
  • FIG. 1 the case where the oxygen ion implanted layer 20a is turned into an oxide film layer (insulating layer) 20c by heat treatment is shown.
  • a first semiconductor wafer A for example, a silicon wafer having no insulating film and an insulating film or an insulating layer are formed.
  • a second semiconductor wafer B for example, a silicon wafer having 2 Ob is prepared.
  • An oxygen ion is implanted into the wafer A to form an oxygen ion implanted layer 20a inside the wafer A.
  • a hydrogen ion (or a rare gas ion) is implanted into the wafer B and a hydrogen ion implanted layer (fine A bubble layer is formed.
  • the wafer A into which the oxygen ions have been implanted is bonded to the wafer B into which the hydrogen ions have been implanted via the insulating film 2 Ob to produce a bonded wafer 26.
  • heat treatment is performed on the bonded wafer 26.
  • the wafer B is peeled off from the oxygen ion implanted layer 20a together with the oxide film layer, that is, the insulating layer 20c, in the hydrogen ion implanted layer (microbubble layer) 22b.
  • a semiconductor wafer bonded to a two-periodic structure (insulating layer 20c, semiconductor layer 24a, insulating layer 20b, semiconductor layer 24b), that is, a two-periodic structure S0I wafer 2 8 is produced.
  • the third embodiment of the present invention shown in FIG. 3 is a modified example of the first embodiment of FIG. 1, and like the case of FIG. 1, first, a first semiconductor having no insulating film A wafer A (for example, a silicon wafer) and a second semiconductor layer B (for example, a silicon wafer) having an insulating film or an insulating layer (for example, an oxide film) 20b are prepared. Oxygen ions are implanted into wafer A, and acid is After forming the element ion-implanted layer 20a, a high-temperature heat treatment is performed to produce an SOI layer 25 of a one-cycle laminated structure (insulating layer 20c, semiconductor layer 24a). That is, once an S0I wafer is produced by the so-called SIMOX (Separation by IMplanted OXygen) method, hydrogen ions are injected into the S0I wafer and the following steps are performed.
  • SIMOX Separatation by IMplanted OXygen
  • Hydrogen ions (or noble gas ions) are implanted into the S0I ⁇ ⁇ 25 formed with the one-cycle laminated structure to form a hydrogen ion implanted layer (microbubble layer) 22c therein. I do. Then, the S 01 wafer 25 into which the hydrogen ions have been implanted is bonded to the wafer B via the insulating film 2 Ob to produce a bonded wafer 26.
  • a heat treatment is performed on the bonded wafer 26, whereby the wafer A portion is separated from the hydrogen ion implanted layer (microbubble layer) 22c.
  • a two-periodic structure (insulating layer 20b, semiconductor layer 24a, insulating layer 20c, semiconductor layer 24b) is bonded to the semiconductor wafer, that is, a two-periodic S0I wafer 28 Is produced.
  • FIGS. 1 to 3 show an example in which the insulating film or the insulating layer (for example, an oxide film) 20 b before bonding is formed on the wafer B. It may be formed on any of the surfaces, or may be formed on both.
  • the insulating film or the insulating layer for example, an oxide film
  • a hydrogen ion-implanted wafer (a wafer in FIG. 2) prepared separately on the surface of the S0I wafer 28 having a two-cycle structure obtained by the manufacturing method in FIGS. Wafers (same as B) and heat treatment for delamination are performed sequentially, or a multi-period SOI It can be obtained by bonding the surfaces of the wafers together via an insulating film.
  • the semiconductor layer and the insulating layer are alternately formed.
  • a semiconductor wafer having a laminated structure that is periodically laminated for a period or more and manufactured by a bonding method at least one of the insulating layers is a new bonding layer formed by ion-implanted oxygen.
  • a combined semiconductor wafer can be provided. Further, according to the method for manufacturing a bonded semiconductor wafer of the present invention, it has become possible to simplify the manufacturing process and reduce defects in the bonding step by using the ion implantation separation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Element Separation (AREA)

Description

明 細 半導体ウェハ及びその製作法 技術分野
本発明は、 半導体層と絶縁層とが交互に二周期以上周期的に積層され た積層構造を有する新規な貼り合わせ半導体ウェハ及びその新規な製作 法に関する。 背景技術
近年、 L S I (大規模集積回路) デバイスの微細化が進む中で、 よ り 完全な素子間分離、 動作速度のさらなる高速化、 高性能化が追求されて お り 、 これ ら の要求を満たす材料 と して、 S O I ( Si l i con-0n- Insul ator) ウェハが注目されている。
S 0 I ウェハの作製技術の一つにウェハ貼り合わせ法がある。 また、 この貼り合わせ法を利用した技術として、 特開平 5— 2 1 1 1 2 8号に 記載されたいわゆるイオン注入剥離法 (スマートカツ ト (登録商標) 法 とも呼ばれる) が開発された。
このィオン注入剥離法は、 二枚のシリコンウェハのうち少なく とも一 方に酸化膜を形成するとともに、 一方のシリコンウェハの上面から水素 イオンまたは希ガスイオンを注入し、 該シリコンウェハ内部に微小気泡 層 (封入層) を形成させた後、 該イオン注入面を酸化膜を介して他方の ウェハと密着させ、 その後熱処理 (剥離熱処理) を加えて微小気泡層を 劈開面 (剥離面) として一方のウェハを薄膜状に剥離し、 さらに熱処理 (結合熱処理) を加えて強固に結合して S 0 I ウェハとする技術である この方法では、 剥離面は良好な鏡面であり、 S 0 1層の均一性が極め て高い S O Iウェハが比較的容易に得られる上、 剥離した一方のウェハ を再利用できるので、 材料を有効に使用できるという利点も有する。 ま た、 この方法は、 酸化膜を介さずに直接シリコンウェハ同士を結合する こともできる し、 シリコンウェハ同士を結合する場合だけでなく、 シリ コンゥヱ八にイオン注入して、 石英、 炭化珪素、 アルミナ等の熱膨張係 数の異なる絶縁性ウェハと結合したり、 イオン注入するウェハと してシ リコン以外の材料を選ぶことによ り、 これらの薄膜を有する貼り合わせ ウェハを作製することもできる。
このィオン注入剥離法の出現によ り、 貼り合わせ半導体ウェハの最大 の問題点であった膜厚均一性の問題が解決され、 S O I層のウェハ面内 の膜厚標準偏差が 1 nm以下の優れた膜厚均一性を有する貼り合わせ S 0 Iウェハが作製可能となった。 これにより、 貼り合わせ S 0 Iウェハ は、 従来の B i CMO Sやパワー I Cとしての用途に加え、 S O I層の 超薄膜及び優れた膜厚均一性が要求される CMO Sを主流とした L S I にも適用可能となった。
通常、 これらの用途に用いられる S 0 Iウェハは、 埋め込み酸化膜上 に形成された S 0 1層が単層である構造を有するものであるが、 本出願 人は、 先の出願 (特開平 1 1 — 3 1 6 1 5 4号) において、 上記イオン 注入剥離法を応用して S 0 I層と埋め込み酸化膜のような屈折率の異な る二つの層を二周期以上周期的に積層させた貼り合わせ半導体ウェハを 作製し、 光機能素子に用いることを提案した。
この技術は、 貼り合わせ半導体ウェハを、 導波路、 光通信変調器又は 光検出器、 レーザーなどの光機能素子として用いるという分野を開拓す るものであり、 非常に有益な技術である。 特に、 この積層構造の中で最 も単純な二周期構造の S 0 I ウェハの場合は、 上部の S 0 I層を L S I 作製用に用い、 下部の S O I層を光のウェーブガイ ドや配線層と して用 いることができ、 立体的な配線が容易になるという利点を有している。 イオン注入剥離法を用いて二周期構造の貼り合わせ半導体ウェハを作 製する従来の工程例を図 4及び図 5に基づいて説明する。 図 4は従来の 貼り合わせ半導体ウェハの製作法の 1例を示すフローチャー トである。 図 5は従来の貼り合わせ半導体ウェハの製作法の他の例を示すフローチ ャ一 トである。
図 4において、 まず、 表面に絶縁膜又は絶縁層 1 0 aを有する半導体 ウェハ A及び絶縁膜を有しない半導体ウェハ Bを用意する。 ウェハ Aに 水素イオン (又は希ガスイオン) をイオン注入し、 ゥヱハ A内部に微小 気泡層 1 2 aを形成させる。 このウェハ Aを絶縁膜 1 0 aを介してゥェ ハ Bと室温で貼り合わせて貼り合わせウェハ 1 5を作製する。
この貼り合わせウェハ 1 5を熱処理すると、 微小気泡層 1 2 aから歪 によってウェハ Aに割れが生じ、 ゥヱハ B上に絶縁層 1 0 a及び半導体 層 1 4 aが形成された一周期構造の S O I ウェハ 1 6が作製される。 こ の一周期の積層構造を形成した S 0 I ゥヱハ 1 6に対して、 表面に絶縁 膜又は絶縁層 1 O bを有するウェハ Cをさらに用意し、 これに水素ィォ ン (又は希ガスイオン) をイオン注入し、 ウェハ C内部に微小気泡層 1 2 bを形成される。 このウェハ Cを絶縁膜 1 0 bを介して S O I ウェハ 1 6 と室温で貼り合わせて貼り合わせウェハ 1 1を作製する。
この貼り合わせウェハ 1 7を熱処理すると、 微小気泡層 1 2 bから歪 によってウェハ Cに割れが生じ、 S O I ウエノ、 1 6上の一周期の積層構 造 (絶縁層 1 0 a、 半導体層 1 4 a ) の上に二周期目の積層構造である 絶縁層 1 0 b及び半導体層 1 4 bが形成され二周期構造の S 0 I ウェハ 1 8が作製される。
図 5に示した従来法の他の例においては、 ゥヱハ B上に一周期の積層 構造を形成し、 この S 0 I ゥヱハ 1 6に対して、 表面に絶縁膜又は絶縁 層 1 O bを有するウェハ Cをさらに用意するまでは同一手順である。 水 素イオン (又は希ガスイオン) のイオン注入を S O I ウェハ 1 6に対し て行い、 S 0 I ウェハ 1 6内に微小気泡層 1 2 cを形成させる点が、 ゥ ェハ Cにイオン注入する図 4の場合と異なる。
次に、 S 0 I ウェハ 1 6を絶縁膜 1 0 bを介してウェハ Cと室温で貼 り合わせて貼り合わせウェハ 1 7を作製する。 この貼り合わせウェハ 1 7を熱処理すると、 微小気泡層 1 2 cから歪によってウェハ Cに割れが 生じ、 S 0 I ゥヱハ 1 6上の一周期の積層構造 (絶縁層 1 0 a、 半導体 層 1 4 a ) の他にさらに絶縁層 1 0 b及び半導体層 1 4 cが形成され二 周期の積層構造の S 0 Iウェハ 1 8が完成する。
上述したように、 図 4及び図 5のいずれの製作法においても、 水素ィ オン (又は希ガスイオン) のイオン注入工程及び貼り合わせ工程をそれ ぞれ 2回ずつ行う必要がある。 また、 熱処理工程としては、 剥離熱処理 として少なく とも 2回の熱処理が必要であり、 剥離熱処理と結合熱処理 を分けて行う場合には、 さらに熱処理工程が追加される。
しかしながら、 このような積層構造を有する貼り合わせ半導体ウェハ を作製するためには、 その製造歩留を向上させるために最も厳しい工程 管理が必要とされる貼り合わせ工程を繰り返し行わなければならないた め、 その製造方法は簡便なものではなく、 貼り合わせ工程における不良 が発生する頻度も多かった。 発明の開示
そこで、 本発明者らは、 このような半導体層と絶縁層の周期的な積層 構造を有する貼り合わせ半導体ウェハ、 特に、 この積層構造の中でも、 最も単純な構造かつ利用価値の高い二周期構造の貼り合わせ半導体ゥェ ハを、 よ り簡便で、 しかも不良の発生頻度を低減することのできる製造 方法について鋭意検討した結果、 絶縁層として酸素イオン注入による酸 化膜層を利用することによ り貼り合わせ回数を低減できることを発想し- 本発明を完成させたものである。
本発明は、 上記した問題点に鑑みなされたもので、 半導体層と絶縁層 とが交互に二周期以上周期的に積層された積層構造を有しかつ貼り合わ せ法で製作される半導体ウェハにおいて、 絶縁層の少なく とも一層がィ オン注入された酸素によ り形成された絶縁層である新規な貼り合わせ半 導体ウェハ及びイオン注入剥離法を用い、 かつ製造プロセスの簡略化、 貼り合わせ工程での不良を低減することを可能と した貼り合わせ半導体 ウェハの新規な製作法を提供することを目的とする。
上記課題を解決するために、 本発明の貼り合わせ半導体ウェハは、 貼 り合わせ法を用いて製作され、 半導体層と絶縁層とが交互に二周期以上 周期的に積層された積層構造を有する半導体ウェハであって、 前記絶縁 層の少なく とも 1層がイオン注入された酸素によ り形成されたものであ ることを特徴とする。
上記半導体層がシリコンであり、 上記絶縁層がシリコン酸化膜であり、 上記積層構造の周期が二周期であるのが好適である。
本発明の貼り合わせ半導体ウェハの製作法の第 1の態様は、 いずれか 一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ウェハを用意し、 第 1の半導体ウェハの一方の表面に酸素ィオンの注入および水素ィオン または希ガスイオンの注入を行った後、 第 1の半導体ウェハのィオン注 入を行った表面と第 2の半導体ウェハの表面とを上記絶縁膜を介して貼 り合わせて貼り合わせ半導体ウェハを作製し、 該貼り合わせ半導体ゥェ 八に熱処理を行うことによ り、 前記水素ィオンまたは希ガスイオンの注 入により形成された微小気泡層において前記第 1の半導体ウェハを剥離 することを特徴とする。 この第 1の態様においては、 酸素イオンの注入深さよ りも水素イオン または希ガスィオンの注入深さを深く する必要があるが、 いずれのィォ ン注入を先に行うかについては特に限定はない。
本発明の貼り合わせ半導体ウェハの製作法の第 2の態様は、 いずれか 一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ウェハを用意し. 第 1の半導体ウェハの一方の表面に酸素ィオンの注入を行い、 第 2の半 導体ウェハの一方の表面に水素イオンまたは希ガスイオンの注入を行い. 前記第 1の半導体ウェハと前記第 2の半導体ウェハのィオン注入面同士 を上記絶縁膜を介して貼り合わせて貼り合わせ半導体ウェハを作製し、 該貼り合わせ半導体ウェハに熱処理を行うことにより、 前記水素イオン または希ガスィオンの注入によ り形成された微小気泡層において前記第 2の半導体ウェハを剥離することを特徴とする。
本発明の貼り合わせ半導体ウェハの製作法の第 3の態様は、 いずれか 一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ウェハを用意し. 第 1の半導体ウェハの一方の表面に酸素イオンの注入を行った後、 第 1 の半導体ウェハに熱処理を行って酸素イオン注入層を良質な膜とし、 さ らに第 1の半導体ゥェハの一方の表面に水素イオンまたは希ガスイオン の注入を行った後、 第 1の半導体ウェハのィオン注入を行った表面と第 2の半導体ウェハの表面とを上記絶縁膜を介して貼り合わせて貼り合わ せ半導体ウェハを作製し、 該貼り合わせ半導体ウェハに熱処理を行うこ とにより、 前記水素イオンまたは希ガスイオンの注入によ り形成された 微小気泡層において前記第 1の半導体ウェハを剥離することを特徴とす る。
この第 3の態様は上記した第 1の態様の変形例であるが、 いわゆる S I M 0 X ( Separation by IMpl anted Oxgen ) 法による S 0 I ウェハを一 旦作製した後、 この S O I ウェハに水素イオンを注入してその後の工程 を行うものである。 図面の簡単な説明
図 1は、 本発明の貼り合わせ半導体ウェハの製作法の第 1の実施の形 態を示すフローチャートである。
図 2は、 本発明の貼り合わせ半導体ウェハの製作法の第 2の実施の形 態を示すフローチャートである。
図 3は、 本発明の貼り合わせ半導体ウェハの製作法の第 3の実施の形 態を示すフローチヤ一トである。
図 4は、 従来の貼り合わせ半導体ウェハの製作法の 1例を示すフロー チャートである。
図 5は、 従来の貼り合わせ半導体ウェハの製作法の他の例を示すフロ —チヤ一トである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 二周期構造の貼り合わせ S 0 I ウェハを例にと り添付図面中、 図 1〜図 3に基づいて説明するが、 図示 例は例示的に示されるもので、 本発明の技術思想から逸脱しない限り 種々の変形が可能なことはいうまでもない。 図 1は本発明の貼り合わせ 半導体ウェハの製作法の第 1の実施の形態を示すフローチャートである , 図 2は本発明の貼り合わせ半導体ウェハの製作法の第 2の実施の形態を 示すフローチャートである。 図 3は本発明の貼り合わせ半導体ゥヱハの 製作法の第 3の実施の形態を示すフローチャートである。
図 1に示した本発明の第 1の実施の形態においては、 まず、 絶縁膜を 有しない第 1の半導体ウェハ A (例えば、 シリコンウェハ) 及び絶縁膜 又は絶縁層 (例えば、 酸化膜) 2 O bを有する第 2の半導体ウェハ B (例えば、 シリコンウェハ) を用意する。 ウェハ Aに酸素イオンの注入 及び水素イオン (又は希ガスイオン) の注入の 2種類のイオン注入を行 う。 このイオン注入によって、 ウェハ A内部に酸素イオン注入層 2 0 a 及び水素イオン注入層 (微小気泡層) 2 2 aを形成する。 この場合、 酸 素イオンの注入深さよ りも水素イオン (又は希ガスイオン) の注入深さ を深くする必要があるが、 いずれのイオン注入を先に行うかについては 特に限定はない。
そして、 このィオン注入されたゥェハ Aを絶縁膜 2 O bを介してゥェ ハ Bと貼り合わせて、 貼り合わせウェハ 2 6を作製する。 この貼り合わ せ工程は清浄な雰囲気下において、 室温で行えばよい。 次いで、 この貼 り合わせウェハ 2 6に対して熱処理を行う。 この熱処理によって、 酸素 イオン注入層 2 0 aを酸化膜層、 即ち絶縁層 2 0 c とするとともに水素 イオン注入層 (微小気泡層) 2 2 aにおいてゥヱハ A部分を剥離する。 この剥離によって、 二周期構造 (絶縁層 2 0 b、 半導体層 2 4 a、 絶縁 層 2 0 c、 半導体層 2 4 b ) の貼り合わせ半導体ウェハ、 即ち、 二周期 構造の S O I ウェハ 2 8が作製される。
上記した貼り合わせウェハ 2 6の熱処理を行う場合、 第 1のウェハ A の剥離のみを目的とする熱処理であれば 4 0 0〜 6 0 0 °C程度の低温熱 処理でよいが、 酸素イオン注入層 2 0 aやこれに隣接した S 0 I層を良 質な膜とするためには、 1 3 0 0 C以上の熱処理が必要とされるのが通 常である。 従って、 低温の剥離熱処理を省略してこのような高温熱処理 により膜質の改善熱処理と剥離熱処理とを兼ねて行うことができる。 図 1の例では、 酸素イオン注入層 2 0 aを熱処理によって酸化膜層 (絶縁 層) 2 0 cとした場合を示した。
図 1に示した本発明の第 1の実施の形態によれば、 図 4及び図 5に示 した従来法に比較して、 貼り合わせ工程は 1回のみで済み、 かつ熱処理 工程も少なくするこ とができるので、 製造プロセスが簡略化され、 貼り 合わせ工程での不良を低減できる。
図 2に示した本発明の第 2の実施の形態においては、 図 1の場合と同 様に、 まず絶縁膜を有しない第 1の半導体ウェハ A (例えば、 シリコン ウェハ) 及び絶縁膜又は絶縁層 (例えば、 酸化膜) 2 O bを有する第 2 の半導体ウェハ B (例えば、 シリコンウェハ) を用意する。 ウェハ Aに 酸素ィオンを注入して、 その内部に酸素ィオン注入層 2 0 aを形成する , ウェハ Bには水素イオン (又は希ガスイオン) を注入してその内部に水 素イオン注入層 (微小気泡層) 2 2 aを形成する。
そして、 この酸素イオンを注入されたゥヱハ Aを水素イオンを注入さ れたウェハ Bと絶縁膜 2 O bを介して貼り合わせて、 貼り合わせウェハ 2 6を作製する。 次いで、 この貼り合わせウェハ 2 6に対して熱処理を 行う。 この熱処理によって、 酸素イオン注入層 2 0 aを酸化膜層、 即ち 絶縁層 2 0 c とともに水素ィオン注入層 (微小気泡層) 2 2 bにおいて ウェハ B部分を剥離する。 この剥離によって、 二周期構造 (絶縁層 2 0 c、 半導体層 2 4 a、 絶縁層 2 0 b、 半導体層 2 4 b ) の貼り合わせ半 導体ウェハ、 即ち、 二周期構造の S 0 I ウェハ 2 8が作製される。
図 2に示した本発明の第 2の実施の形態においても、 貼り合わせ工程 は 1回のみで済み、 かつ熱処理工程も少なくすることができるので、 製 造プロセスの簡略化及び貼り合わせ工程での不良低減を図ることができ る。
図 3に示した本発明の第 3の実施の形態は、 図 1の第 1の実施の形態 の変形例であり、 図 1の場合と同様に、 まず、 絶縁膜を有しない第 1の 半導体ウェハ A (例えば、 シリコンウェハ) 及び絶縁膜又は絶縁層 (例 えば、 酸化膜) 2 0 bを有する第 2の半導体ゥヱハ B (例えば、 シリコ ンウェハ) を用意する。 ウェハ Aに酸素イオンを注入し、 その内部に酸 素イオン注入層 2 0 aを形成した後、 高温熱処理して、 一周期の積層構 造 (絶縁層 2 0 c、 半導体層 2 4 a ) の S O I ゥヱハ 2 5を作製する。 すなわち、 いわゆる S I M O X (Separation by IMplanted OXygen) 法 による S 0 I ゥェハを一旦作製した後、 この S 0 I ゥェハに水素ィォン を注入して以下の工程を行うものである。
この一周期の積層構造を形成した S 0 I ゥヱハ 2 5に対して、 水素ィ オン (又は希ガスイオン) を注入してその内部に水素イオン注入層 (微 小気泡層) 2 2 cを形成する。 そして、 この水素イオンを注入された S 0 1 ウェハ 2 5をウェハ Bを絶縁膜 2 O bを介して貼り合わせて、 貼り 合わせウェハ 2 6を作製する。
次いで、 この貼り合わせウェハ 2 6に対して熱処理を行い、 これによ つて水素イオン注入層 (微小気泡層) 2 2 cにおいてウェハ A部分を剥 離する。 この剥離によって、 二周期構造 (絶縁層 2 0 b、 半導体層 2 4 a、 絶縁層 2 0 c、 半導体層 2 4 b ) の貼り合わせ半導体ゥヱハ、 即ち、 二周期構造の S 0 Iウェハ 2 8が作製される。
図 3に示した本発明の第 3の実施の形態においては、 貼り合わせ工程 は 1回のみで済むので、 製造プロセスの簡略化及び貼り合わせ工程での 不良低減を同様に図ることができる。
尚、 図 1〜図 3においては、 貼り合わせ前の絶縁膜又は絶縁層 (例え ば、 酸化膜) 2 0 bは、 いずれもウェハ Bに形成した例を示したが、 ゥ ェハ A, Bのいずれの表面に形成してもよいし、 又、 双方に形成してお くことも可能である。
また、 三周期以上の構造については、 例えば、 図 1〜図 3の製造方法 で得られた二周期構造の S 0 I ウェハ 2 8の表面に、 別途用意した水素 イオン注入ウェハ (図 2のウェハ Bと同様のウェハ) を貼り合わせて剥 離熱処理を加える工程を順次行ったり、 あるいは、 多周期構造の S O I ウェハの表面同士を絶縁膜を介して貼り合わせることによって得ること ができる。
実施例
以下に本発明の実施例をあげて説明するが、 これらの実施例は限定的 に解釈すべきものでないことはいうまでもない。
(実施例 1 )
直径 2 0 O m m , 結晶方位 < 1 0 0 >のシリコンウェハを 2枚用意し, 図 2に示したフローチャート及び表 1に示した作製条件に従って二周期 構造の貼り合わせ半導体ウェハを作製し、 その作製結果を表 1にあわせ て示した。 表 1の作製結果に示されるように良好な性能の二周期構造の 貼り合わせ半導体ウェハを作製することができた。
表 1
Figure imgf000013_0001
また、 図 1及び図 3に示したフローチャートに従って同様に二周期構 造の貼り合わせ半導体ウェハを作製したところ、 同様に良好な性能を示 す貼り合わせ半導体を得ることができた。 産業上の利用可能性
以上述べたごと く、 本発明によれば、 半導体層と絶縁層とが交互に二 周期以上周期的に積層された積層構造を有しかつ貼り合わせ法で製作さ れる半導体ウェハにおいて、 絶縁層の少なく とも一層がィオン注入され た酸素によ り形成された絶縁層である新規な貼り合わせ半導体ウェハを 提供することができる。 また、 本発明の貼り合わせ半導体ウェハの製作 法によれば、 イオン注入剥離法を用いかつ製造プロセスの簡略化、 貼り 合わせ工程での不良低減を図ることが可能となった。

Claims

請 求 の 範 囲
1 . 貼り合わせ法を用いて製作され、 半導体層と絶縁層とが交互に二周 期以上周期的に積層された積層構造を有する半導体ウェハであって、 前 記絶縁層の少なく とも 1層がィオン注入された酸素により形成されたも のであることを特徴とする貼り合わせ半導体ウェハ。
2 . 前記半導体層がシリコンであり、 前記絶縁層がシリコン酸化膜であ り、 前記積層構造の周期が二周期であることを特徴とする請求項 1 に記 載された貼り合わせ半導体ウェハ。
3 . いずれか一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ゥ ェハを用意し、 第 1の半導体ウェハの一方の表面に酸素イオンの注入お よび水素イオンまたは希ガスイオンの注入を行った後、 第 1の半導体ゥ ェハのイオン注入を行った表面と第 2の半導体ゥェハの表面とを上記絶 縁膜を介して貼り合わせて貼り合わせ半導体ウェハを作製し、 該貼り合 わせ半導体ウェハに熱処理を行うことによ り、 前記水素イオンまたは希 ガスイオンの注入により形成された微小気泡層において前記第 1の半導 体ウェハを剥離することを特徴とする貼り合わせ半導体ウェハの製作法 <
4 . いずれか一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ゥ ェハを用意し、 第 1の半導体ゥェハの一方の表面に酸素イオンの注入を 行い、 第 2の半導体ウェハの一方の表面に水素イオンまたは希ガスィォ ンの注入を行い、 前記第 1の半導体ウェハと前記第 2の半導体ウェハの イオン注入面同士を上記絶縁膜を介して貼り合わせて貼り合わせ半導体 ウェハを作製し、 該貼り合わせ半導体ウェハに熱処理を行うことによ り、 前記水素ィオンまたは希ガスィオンの注入によ り形成された微小気泡層 において前記第 2の半導体ウェハを剥離することを特徴とする貼り合わ せ半導体ウェハの製作法。
5 . いずれか一方又は双方に絶縁膜を形成した第 1及び第 2の半導体ゥ ェハを用意し、 第 1の半導体ウェハの一方の表面に酸素ィオンの注入を 行った後、 第 1の半導体ウェハに熱処理を行って酸素ィオン注入層を良 質な膜とし、 さらに第 1の半導体ウェハの一方の表面に水素イオンまた は希ガスイオンの注入を行った後、 第 1の半導体ゥ工ハのイオン注入を 行った表面と第 2の半導体ウェハの表面とを上記絶縁膜を介して貼り合 わせて貼り合わせ半導体ウェハを作製し、 該貼り合わせ半導体ウェハに 熱処理を行うことによ り、 前記水素ィオンまたは希ガスィオンの注入に より形成された微小気泡層において前記第 1の半導体ウェハを剥離する ことを特徴とする貼り合わせ半導体ウェハの製作法。
PCT/JP2001/000331 2000-01-25 2001-01-19 Tranche a semi-conducteurs et son procede de production WO2001056085A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/926,190 US6770507B2 (en) 2000-01-25 2001-01-19 Semiconductor wafer and method for producing the same
EP01901450A EP1174926A1 (en) 2000-01-25 2001-01-19 Semiconductor wafer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-15756 2000-01-25
JP2000015756A JP3975634B2 (ja) 2000-01-25 2000-01-25 半導体ウェハの製作法

Publications (1)

Publication Number Publication Date
WO2001056085A1 true WO2001056085A1 (fr) 2001-08-02

Family

ID=18542999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000331 WO2001056085A1 (fr) 2000-01-25 2001-01-19 Tranche a semi-conducteurs et son procede de production

Country Status (4)

Country Link
US (1) US6770507B2 (ja)
EP (1) EP1174926A1 (ja)
JP (1) JP3975634B2 (ja)
WO (1) WO2001056085A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979930B1 (ko) * 2005-09-08 2010-09-03 에스. 오. 이. 떼끄 씰리꽁 오 냉쉴라또흐 떼끄놀로지 반도체-온-절연체 이종접합 구조체의 제조방법

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
FR2811807B1 (fr) * 2000-07-12 2003-07-04 Commissariat Energie Atomique Procede de decoupage d'un bloc de materiau et de formation d'un film mince
FR2830983B1 (fr) * 2001-10-11 2004-05-14 Commissariat Energie Atomique Procede de fabrication de couches minces contenant des microcomposants
WO2004010505A1 (ja) * 2002-07-18 2004-01-29 Shin-Etsu Handotai Co.,Ltd. Soiウェーハおよびその製造方法
US7176108B2 (en) * 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
FR2847075B1 (fr) * 2002-11-07 2005-02-18 Commissariat Energie Atomique Procede de formation d'une zone fragile dans un substrat par co-implantation
FR2848336B1 (fr) * 2002-12-09 2005-10-28 Commissariat Energie Atomique Procede de realisation d'une structure contrainte destinee a etre dissociee
FR2855909B1 (fr) 2003-06-06 2005-08-26 Soitec Silicon On Insulator Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
FR2855910B1 (fr) * 2003-06-06 2005-07-15 Commissariat Energie Atomique Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque
US7967829B2 (en) * 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
US7772087B2 (en) * 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
JP4539098B2 (ja) * 2004-01-29 2010-09-08 株式会社Sumco 貼り合わせ基板の製造方法
JP4814498B2 (ja) 2004-06-18 2011-11-16 シャープ株式会社 半導体基板の製造方法
US7560361B2 (en) * 2004-08-12 2009-07-14 International Business Machines Corporation Method of forming gate stack for semiconductor electronic device
US7179719B2 (en) * 2004-09-28 2007-02-20 Sharp Laboratories Of America, Inc. System and method for hydrogen exfoliation
DE102004057764B4 (de) * 2004-11-30 2013-05-16 Advanced Micro Devices, Inc. Verfahren zur Herstellung eines Substrats mit kristallinen Halbleitergebieten mit unterschiedlichen Eigenschaften, die über einem kristallinen Vollsubstrat angeordnet sind und damit hergestelltes Halbleiterbauelement
JP2006173568A (ja) * 2004-12-14 2006-06-29 Korea Electronics Telecommun Soi基板の製造方法
US7276430B2 (en) * 2004-12-14 2007-10-02 Electronics And Telecommunications Research Institute Manufacturing method of silicon on insulator wafer
WO2006075444A1 (ja) * 2005-01-12 2006-07-20 Sharp Kabushiki Kaisha 半導体装置の製造方法、及び半導体装置
US7344957B2 (en) * 2005-01-19 2008-03-18 Texas Instruments Incorporated SOI wafer with cooling channels and a method of manufacture thereof
EP1894234B1 (en) * 2005-02-28 2021-11-03 Silicon Genesis Corporation Substrate stiffening method and system for a layer transfer.
JP2008535232A (ja) * 2005-03-29 2008-08-28 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 完全ハイブリッドsoi型多層構造
JP2006294957A (ja) * 2005-04-13 2006-10-26 Shin Etsu Handotai Co Ltd 貼り合わせsoiウエーハの製造方法及び貼り合わせsoiウエーハ
FR2886051B1 (fr) 2005-05-20 2007-08-10 Commissariat Energie Atomique Procede de detachement d'un film mince
FR2889887B1 (fr) 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
JP5124931B2 (ja) * 2005-10-14 2013-01-23 信越半導体株式会社 多層soiウエーハの製造方法
FR2899378B1 (fr) * 2006-03-29 2008-06-27 Commissariat Energie Atomique Procede de detachement d'un film mince par fusion de precipites
KR101340004B1 (ko) * 2006-04-24 2013-12-11 신에쯔 한도타이 가부시키가이샤 Soi 웨이퍼의 제조방법
JP5082299B2 (ja) * 2006-05-25 2012-11-28 株式会社Sumco 半導体基板の製造方法
JP2008153411A (ja) * 2006-12-18 2008-07-03 Shin Etsu Chem Co Ltd Soi基板の製造方法
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
US7820492B2 (en) * 2007-05-25 2010-10-26 Kabushiki Kaisha Toshiba Electrical fuse with metal silicide pipe under gate electrode
US7939424B2 (en) 2007-09-21 2011-05-10 Varian Semiconductor Equipment Associates, Inc. Wafer bonding activated by ion implantation
FR2925221B1 (fr) 2007-12-17 2010-02-19 Commissariat Energie Atomique Procede de transfert d'une couche mince
US7820527B2 (en) * 2008-02-20 2010-10-26 Varian Semiconductor Equipment Associates, Inc. Cleave initiation using varying ion implant dose
FR2933234B1 (fr) * 2008-06-30 2016-09-23 S O I Tec Silicon On Insulator Tech Substrat bon marche a structure double et procede de fabrication associe
FR2935538B1 (fr) * 2008-09-01 2010-12-24 Commissariat Energie Atomique Substrat pour composant electronique ou electromecanique et nanoelements.
SG160310A1 (en) * 2008-10-02 2010-04-29 Semiconductor Energy Lab Manufacturing method of semiconductor substrate and semiconductor device
US8679942B2 (en) * 2008-11-26 2014-03-25 Soitec Strain engineered composite semiconductor substrates and methods of forming same
FR2942073B1 (fr) * 2009-02-10 2011-04-29 Soitec Silicon On Insulator Procede de realisation d'une couche de cavites
FR2947098A1 (fr) * 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
US8269931B2 (en) * 2009-09-14 2012-09-18 The Aerospace Corporation Systems and methods for preparing films using sequential ion implantation, and films formed using same
US8314018B2 (en) * 2009-10-15 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
SG173283A1 (en) * 2010-01-26 2011-08-29 Semiconductor Energy Lab Method for manufacturing soi substrate
JP5634836B2 (ja) * 2010-11-22 2014-12-03 浜松ホトニクス株式会社 分光センサの製造方法
JP5707107B2 (ja) 2010-11-22 2015-04-22 浜松ホトニクス株式会社 分光センサ
US8946864B2 (en) 2011-03-16 2015-02-03 The Aerospace Corporation Systems and methods for preparing films comprising metal using sequential ion implantation, and films formed using same
JP5802436B2 (ja) * 2011-05-30 2015-10-28 信越半導体株式会社 貼り合わせウェーハの製造方法
JP5757835B2 (ja) * 2011-10-04 2015-08-05 浜松ホトニクス株式会社 分光センサの製造方法
US9324579B2 (en) 2013-03-14 2016-04-26 The Aerospace Corporation Metal structures and methods of using same for transporting or gettering materials disposed within semiconductor substrates
US10168475B2 (en) * 2017-01-18 2019-01-01 Juniper Networks, Inc. Atomic layer deposition bonding for heterogeneous integration of photonics and electronics
DE102019111377A1 (de) * 2018-05-28 2019-11-28 Infineon Technologies Ag Verfahren zum Verarbeiten eines Siliziumkarbid-Wafers und ein Siliziumkarbid-Halbleiterbauelement
JP2020144294A (ja) 2019-03-08 2020-09-10 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US11848197B2 (en) 2020-11-30 2023-12-19 Thinsic Inc. Integrated method for low-cost wide band gap semiconductor device manufacturing
FR3132383A1 (fr) * 2022-01-31 2023-08-04 Soitec Procédé de fabrication d’une structure de type double semi-conducteur sur isolant
FR3132380A1 (fr) * 2022-01-31 2023-08-04 Soitec Procédé de fabrication d’une structure de type double semi-conducteur sur isolant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299345A (ja) * 1992-04-23 1993-11-12 Nippon Steel Corp 電子素子用基板及びその製造方法
US5494846A (en) * 1993-12-17 1996-02-27 Nec Corporation Method of manufacturing semiconductor device
US5953622A (en) * 1996-11-23 1999-09-14 Hyundai Electronics Industries Co., Ltd. Method for fabricating semiconductor wafers
EP0953853A2 (en) * 1998-05-01 1999-11-03 Shin-Etsu Handotai Company Limited Stacked material and optical function device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013681A (en) * 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
TW211621B (ja) * 1991-07-31 1993-08-21 Canon Kk
JP3237888B2 (ja) * 1992-01-31 2001-12-10 キヤノン株式会社 半導体基体及びその作製方法
JP3214631B2 (ja) * 1992-01-31 2001-10-02 キヤノン株式会社 半導体基体及びその作製方法
US5360752A (en) * 1993-10-28 1994-11-01 Loral Federal Systems Company Method to radiation harden the buried oxide in silicon-on-insulator structures
US6090689A (en) * 1998-03-04 2000-07-18 International Business Machines Corporation Method of forming buried oxide layers in silicon
SG63832A1 (en) * 1997-03-26 1999-03-30 Canon Kk Substrate and production method thereof
US6251754B1 (en) * 1997-05-09 2001-06-26 Denso Corporation Semiconductor substrate manufacturing method
US6159825A (en) * 1997-05-12 2000-12-12 Silicon Genesis Corporation Controlled cleavage thin film separation process using a reusable substrate
JP2998724B2 (ja) * 1997-11-10 2000-01-11 日本電気株式会社 張り合わせsoi基板の製造方法
JPH11307747A (ja) * 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
JPH11307472A (ja) * 1998-04-23 1999-11-05 Shin Etsu Handotai Co Ltd 水素イオン剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ
JP3395661B2 (ja) * 1998-07-07 2003-04-14 信越半導体株式会社 Soiウエーハの製造方法
JP2000124092A (ja) * 1998-10-16 2000-04-28 Shin Etsu Handotai Co Ltd 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6368938B1 (en) * 1999-10-05 2002-04-09 Silicon Wafer Technologies, Inc. Process for manufacturing a silicon-on-insulator substrate and semiconductor devices on said substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299345A (ja) * 1992-04-23 1993-11-12 Nippon Steel Corp 電子素子用基板及びその製造方法
US5494846A (en) * 1993-12-17 1996-02-27 Nec Corporation Method of manufacturing semiconductor device
US5953622A (en) * 1996-11-23 1999-09-14 Hyundai Electronics Industries Co., Ltd. Method for fabricating semiconductor wafers
EP0953853A2 (en) * 1998-05-01 1999-11-03 Shin-Etsu Handotai Company Limited Stacked material and optical function device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. RICKMAN ET AL.: "Low-loss planar optical waveguides fabricated in SIMOX material", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 4, no. 6, June 1992 (1992-06-01), pages 633 - 635, XP002938918 *
T.W. ANG ET AL.: "o. 15dB/cm loss in unibond SOI wavelength", ELECTRONICS LETTERS, vol. 35, no. 12, 10 June 1999 (1999-06-10), pages 977 - 978, XP002938919 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979930B1 (ko) * 2005-09-08 2010-09-03 에스. 오. 이. 떼끄 씰리꽁 오 냉쉴라또흐 떼끄놀로지 반도체-온-절연체 이종접합 구조체의 제조방법

Also Published As

Publication number Publication date
JP3975634B2 (ja) 2007-09-12
EP1174926A1 (en) 2002-01-23
US6770507B2 (en) 2004-08-03
US20020182827A1 (en) 2002-12-05
JP2001210810A (ja) 2001-08-03

Similar Documents

Publication Publication Date Title
WO2001056085A1 (fr) Tranche a semi-conducteurs et son procede de production
KR101057140B1 (ko) 미세 매립 절연층을 가지는 실리콘-온-절연물 기판들
JP2856030B2 (ja) 結合ウエーハの製造方法
US6992025B2 (en) Strained silicon on insulator from film transfer and relaxation by hydrogen implantation
JP3395661B2 (ja) Soiウエーハの製造方法
JP3112121B2 (ja) 半導体基材の作製方法および半導体部材
CN108365083B (zh) 用于声表面波器件的复合压电衬底的制造方法
US5344524A (en) SOI substrate fabrication
TW200416813A (en) Method of producing SOI wafer and SOI wafer
JP2002231910A (ja) Soiウェハの製造方法及びsoiウェハ
JP2008521229A (ja) SOI基板材料、及び互いに異なる配向をもつSi含有SOIと下部基板とを形成する方法
EP1170801B1 (en) Bonded wafer producing method
JP2007073768A (ja) 貼り合わせsoiウェーハの製造方法
JPH0799295A (ja) 半導体基体の作成方法及び半導体基体
JP2007149789A (ja) 半導体基板、半導体装置および半導体基板の製造方法
US6420243B1 (en) Method for producing SOI wafers by delamination
WO2003046992A1 (fr) Procede de production d&#39;une tranche de soi
KR20090105910A (ko) 거친 계면을 생성하고 조절하는 방법
JPH0964319A (ja) Soi基板およびその製造方法
JP2004096044A (ja) 基板及びその製造方法
JP2770808B2 (ja) 半導体基板及びその製造方法
JP2981673B2 (ja) 半導体基板の製造方法
JP2005347301A (ja) 基板の作製方法
JPH1050824A (ja) Soi基板の製造方法
CN116779419A (zh) 复合薄膜及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09926190

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001901450

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001901450

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001901450

Country of ref document: EP