WO2001002453A1 - Polymere d'oxymethylene a faible poids moleculaire et composition de ce polymere - Google Patents

Polymere d'oxymethylene a faible poids moleculaire et composition de ce polymere Download PDF

Info

Publication number
WO2001002453A1
WO2001002453A1 PCT/JP2000/004290 JP0004290W WO0102453A1 WO 2001002453 A1 WO2001002453 A1 WO 2001002453A1 JP 0004290 W JP0004290 W JP 0004290W WO 0102453 A1 WO0102453 A1 WO 0102453A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molecular
oxymethylene
molecular weight
polymer
Prior art date
Application number
PCT/JP2000/004290
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yokoyama
Yukihiro Ban
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2001508239A priority Critical patent/JP4560260B2/ja
Priority to DE10082068A priority patent/DE10082068C5/de
Priority to DE10082068T priority patent/DE10082068T1/de
Priority to US09/786,168 priority patent/US6388049B1/en
Publication of WO2001002453A1 publication Critical patent/WO2001002453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/10Polymerisation of cyclic oligomers of formaldehyde
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • C08G2/38Block or graft polymers prepared by polymerisation of aldehydes or ketones on to macromolecular compounds

Definitions

  • the present invention relates to a polyoxymethylene resin modifier for greatly improving the mechanical properties of a molded article, and a polyoxymethylene resin composition using the same.
  • the polyoxymethylene resin composition of the present invention has high mechanical properties, in particular, flexural modulus, lip hardness, weldability, and can easily provide a molded article excellent in chemical resistance and appearance. It can be used in a wide variety of fields such as parts for equipment, electric equipment, electronic equipment, and automobiles.
  • Polyoxymethylene resin has well-balanced excellent mechanical properties, fatigue resistance, friction and abrasion resistance, chemical resistance and moldability, and is used in automobiles, electric and electronic equipment, other precision machinery, and building material piping. Widely used for etc.
  • compositions containing reinforcing materials such as glass fiber, carbon fiber, alumina fiber, glass flake, and talc have been proposed for the purpose of further improving mechanical properties (for example, JP-A-62). — 9 1 5 5 1, US— A—4, 806, 586).
  • the reinforced oxymethylene polymer resin to which the above-mentioned reinforcing material is added significantly lowers the fluidity of the melt as compared with the oxymethylene polymer resin alone, so that when molded at high temperature and high injection pressure, the resin is thermally degraded.
  • the appearance of the molded article is deteriorated due to discoloration or discoloration, and furthermore, the orientation of the added reinforcing material lowers the weld property of the molded article or increases the warpage.
  • the present inventors have conducted various studies in order to solve the above-mentioned problems, and as a result, while the number average molecular weight is in the range of 1000 to 800 °, the molecular weight distribution (M (w / Mn) is in the range of 1.0 to 3.0, and is a polymer obtained by blending a linear low molecular weight oxymethylene polymer (A) having an unprecedented sharp molecular weight distribution.
  • the oxymethylene resin composition has various mechanical properties, such as a high degree of mechanical elasticity, in particular, a flexural modulus, a knuckle hardness, and a ⁇ eld characteristic, and can easily produce molded articles having excellent chemical resistance and appearance. It has been found that excellent characteristics are simultaneously exhibited, and the present invention has been completed.
  • Examples of the production of low-molecular-weight oxymethylene polymers have been disclosed in JP-B-55-39182, JP-A-6-172726, EP-A-708123. However, these documents do not describe a production method for making the molecular weight distribution (Mw / Mn) smaller than 3.0. In these examples, a large amount of a chain transfer agent was used to obtain a low-molecular-weight oxymethylene polymer, and a batch polymerization machine or a polymerization catalyst was used to compensate for the resulting decrease in polymerizability. It is presumed that a large amount of was used. However, these methods can produce only those having a molecular weight distribution (MwZMn) exceeding 3.0, and do not have the effects of high mechanical properties, excellent chemical resistance and excellent appearance as described above.
  • MwZMn molecular weight distribution
  • JP-B-45-35 188 discloses a method for obtaining a low-molecular-weight oxymethylene polymer using paraform as a raw material.
  • Mw / Mn molecular weight distribution
  • JP-A-2-55712 and US-A-5,248,762 have a number-average molecular weight in the range of 500 to 5000, but also have a molecular weight distribution (Mw / Mn) of 1.0. Although cyclic oxymethylene polymers having a molecular weight range of from 1.5 to 1.5 are disclosed, the above-mentioned effects could not be obtained because they are different from the linear molecular skeleton of the present invention.
  • the present invention is intended to solve the above-mentioned problems, and significantly improves the mechanical properties, particularly the flexural modulus, without using a reinforcing material, and further improves the fluidity and heat of the melt. Because of its excellent stability, it is easy to produce molded products with excellent appearance without sacrificing the eel or warp characteristics of molded products.
  • An object is to provide a polymer resin composition.
  • the present inventors have conducted various studies in order to solve the above problems, and as a result, the number average molecular weight is from 1,000 to 8,000, and the molecular weight distribution (Mw / Mn) is from 1.0 to 3.0.
  • a low-molecular-weight oxymethylene polymer (A) characterized by containing a comonomer component in the range of 0 to 3 Omo 1%, a high-molecular-weight oxymethylene polymer having a number-average molecular weight of 15,000 to 100,000.
  • the polyoxymethylene resin composition which is uniformly mixed in an amount of 1 to 500 parts by weight with respect to 100 parts by weight of the polyoxymethylene resin (B), can provide mechanical properties without using a reinforcing material, particularly flexural modulus. Significantly improves the flowability and thermal stability of the molten material, so that the critical residence time until silver streak is generated is long, and molded products with excellent appearance can be easily manufactured. Without deteriorating the eel characteristics and warpage of the product. It is found to have improved surprising effect with regard Rokkuueru hardness Ya chemical resistance of the molded article, and completed the present invention.
  • a monomer or a mixture of a monomer and a comonomer, and 0.1 to 1 mol of a molecular weight modifier per kg of the mixture of the monomer or the monomer and the comonomer are used as raw materials.
  • ⁇ 0. The low molecular weight oxymethylene polymer according to any one of the above (1) to (3), which is produced by a continuous bulk polymerization reaction using a cationic initiator of OOO lmol as a polymerization catalyst,
  • (B) a polyoxymethylene resin composition comprising 100 parts by weight of a high molecular weight polyoxymethylene resin having
  • At least two continuous bulk polymerization machines connected in parallel, followed by an extruder, are used to obtain a low molecular weight oxymethylene polymer (A) crude polymer and a high molecular weight polyoxymethylene resin (B )
  • a low molecular weight oxymethylene polymer (A) crude polymer and a high molecular weight polyoxymethylene resin (B ) Were simultaneously produced in separate polymerization machines described above, and 100 parts by weight of a crude polymer of a high molecular weight polyoxymethylene resin (B) and 1 to 500 parts by weight of a crude polymer of a low molecular weight oxymethylene polymer (A) were produced.
  • (5) to (8) comprising a step of deactivating the polymerization catalyst while blending the above, followed by continuously performing uniform melt mixing while performing terminal stabilization treatment on the crude polymer by the extruder.
  • a monomer or a mixture of a monomer and a comonomer, and a molecular weight regulator are polymerized using a group or a series of at least two continuous bulk polymerizers, using a cationic initiator as a polymerization catalyst. Then, a monomer or a mixture of a monomer and a comonomer and a molecular weight regulator are added to the obtained polymerization product without deactivating the cation initiator, and the obtained low-molecular-weight oxymethylene polymer has a high-molecular-weight polyoxygen.
  • the polyoxymethylene resin according to any one of the above (5) to (8), further comprising adding 1 to 500 parts by weight of the methylene resin to 100 parts by weight to carry out polymerization.
  • the polymerization catalyst was inactivated and removed while blending 1 to 500 parts by weight of the crude polymer of the low-molecular-weight oxymethylene polymer (A), and the unstable terminal of the obtained polymer was blocked.
  • Office automation equipment obtained by molding the polyoxymethylene resin composition according to any one of (5) to (8) above, music, video or information equipment, communication equipment, Electrical equipment, electronic equipment, toys, sports equipment, furniture, housing equipment, or automobile parts,
  • FIG. 1 shows the relationship between the comonomer content and the melting point of the low-molecular-weight oxymethylene polymer of the present invention.
  • the line segment HI has a comonomer of the same type and content as the low-molecular-weight oxymethylene polymer (A) of the present invention, and has a number-average molecular weight of 300 to 1 produced by the same production method. It shows the melting point with respect to the comonomer content of the 0000 methylene polymer (C).
  • the line segment DG is obtained by translating the line segment HI by 0.055 ° C in the vertical axis direction toward the low melting point
  • the line segment EF is obtained by lowering the line segment HI by 30 ° C in the vertical axis direction. It is translated to the melting point side.
  • the preferred range in the present invention exists in a region surrounded by DEFG.
  • the low-molecular-weight oxymethylene polymer (A) of the present invention is substantially composed of an oxymethylene unit produced from a cyclic oligomer such as formaldehyde or its trimer, trioxane or tetramer, tetraoxane. Len homopolymer, and
  • the above-mentioned raw materials and ethylene oxide, propylene oxide, 1,3-dioxolan, 1,3-propanediolone honoremal, 1,4-butanediol honoremal, 1,5-pentanediol formal, 1,6-hexanediol formal Includes a comonomer component selected from the group consisting of cyclic ethers having oxyalkylene units having 2 or more carbon atoms in the molecule, such as diethylene glycol formal, 1,3,5-trioxepane, 1,3,6-trioxocan, and mixtures thereof Oxymethylene copolymers,
  • It has a linear structure in which the terminal of the molecule is blocked by an ester group or an ether group.
  • the thermal stability of the low-molecular-weight oxymethylene polymer (A) is further improved by containing the comonomer component, if the content is excessive, the original effect of improving the mechanical properties is reduced.
  • the content of the comonomer component is defined as the molar ratio of the oxyalkylene unit having 2 or more carbon atoms to the methylene oxide unit
  • the comonomer content needs to be in the range of 0 to 30 mol%, preferably 0 to 30 mol%.
  • the low-molecular-weight oxymethylene polymer (A) of the present invention preferably has a comonomer content and a melting point in a region surrounded by DEFG in FIG.
  • the horizontal axis of FIG. 1 represents the comonomer content of the oxymethylene polymer, and the vertical axis represents the melting point of the oxymethylene polymer.
  • FIG. 1 shows data in the case where 1,3-dioxolane is used as a comonomer. In the present invention, the region surrounded by DEFG in FIG. 1 can be applied to other comonomers.
  • the line segment HI has a comonomer of the same type and content as the low-molecular-weight oxymethylene polymer (A) of the present invention, and has a number-average molecular weight of 30,000 to 100,000 produced by the same production method. It shows the melting point of C) with respect to the comonomer content.
  • Line segment DG is obtained by translating line segment HI in the vertical axis direction by 0.005 ° C to the lower melting point side
  • line segment EF is moving line segment HI by 30 ° C in the vertical axis direction to the lower melting point side. It has been translated.
  • the melting point relative to the comonomer content of the low-molecular-weight oxymethylene polymer (A) is higher than the line segment DG, it is highly possible that the comonomer is not randomly copolymerized, and the low-molecular-weight oxymethylene polymer (A) Is not preferred due to thermal stability problems.
  • Melt ratio of comonomer in low molecular weight oxymethylene polymer (A) If the point is on the lower temperature side than the line segment EF, the effect of improving the mechanical properties, which is the original purpose, is unfavorably reduced.
  • the low-molecular-weight oxymethylene polymer (A) of the present invention preferably has a melting point of 126 to 175 ° C.
  • the number average molecular weight needs to be in the range of 1,000 to 8,000. If it is larger than 8,000, the effect of increasing the crystallinity when an oxymethylene polymer is used as a modifier is not obtained, and therefore it is not preferable as a modifier. If it is smaller than 1,000, the mechanical properties of the molded article, especially the elongation, are reduced.
  • a more preferred number average molecular weight is 1500 to 7000, more preferably 2000 to 6000, and most preferably 2500 to 5000.
  • the molecular weight distribution (MwZMn) needs to be in the range of 1.0 to 3.0.
  • the activity of the polymerization catalyst is lower than that of a normal oxymethylene polymer because a larger amount of a molecular weight regulator is used than usual.
  • the polymerization system tends to be non-uniform, and it is difficult to produce a polymer having a molecular weight distribution (Mw / Mn) of 3.0 or less. It is.
  • a low-molecular-weight oxymethylene polymer having a molecular weight distribution (Mw / Mn) of more than 3.0 is not preferred because it has poor thermal stability upon melting and impairs the mechanical properties and appearance of a molded product.
  • JP-B-55-391182 describes a low-molecular-weight oxymethylene polymer with a melt index of around 300, which is produced by batch bulk polymerization. Only a low-molecular-weight oxymethylene polymer having a molecular weight distribution (MwZ Mn) of 3.3 to 3.6 was obtained, and this was mixed with a high-molecular-weight polyoxymethylene resin (B) to obtain polyoxymethylene.
  • the resin composition is not preferred because not only does it not exhibit the effect of improving the mechanical properties of the molded article as in the present invention, but also has poor heat stability upon melting and impairs the appearance of the molded article.
  • the more preferred molecular weight distribution (MwZMn) is from 1.0 to 2.7, more preferably from 1.0 to 2.5, and most preferably from 1.0 to 2.3.
  • a cyclic oxymethylene polymer having a number average molecular weight of 500 to 500 and a molecular weight distribution (Mw / Mn) of 1.0 to 2.0 and a method for producing the same have been known.
  • the low molecular weight oxymethylene polymer (A) of the present invention can be produced by subjecting a monomer and, if necessary, a comonomer to a continuous bulk polymerization reaction together with a cationic initiator and a molecular weight regulator.
  • a monomer and, if necessary, a comonomer to a continuous bulk polymerization reaction together with a cationic initiator and a molecular weight regulator.
  • Mw / Mn molecular weight distribution
  • the production method is not particularly limited, but a cationic initiator is used as a polymerization catalyst, and a mixture of a monomer and a comonomer, and a molecular weight modifier in a range of 0.1 to 1 mol per 1 kg of the mixture are used as raw materials.
  • the most preferred method is to use a continuous mass polymerization apparatus for production.
  • Examples of the cationic initiator include Lewis acids, especially boric acid, tin, titanium, phosphorus, arsenic, antimony and other halides, for example, boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, phosphorus pentafluoride, Compounds such as arsenic pentafluoride and antimony pentafluoride and their complex compounds or salts; protic acid, for example, trifluoromethanesulfonic acid, perchloric acid; esters of protonic acid, especially perchloric acid and lower aliphatic alcohols Anhydrides of protic acid, especially mixed anhydrides of perchloric acid and lower aliphatic carboxylic acids; or isopolyacids, heteropolyacids, triethyloxo dimethylhexafluorophosphato, triphenylmethylhexafluoro Arsenate and acetylhex
  • a preferred example is to use boron trifluoride getyl ether or boron trifluoride di-n-butyl ether at a concentration of 0.001 to 0.001 mol per mol of the polymerization raw material. be able to. If the amount of the cationic initiator is too small, the polymerization yield decreases and the economy is reduced. If the molecular weight distribution is too high, the molecular weight distribution (Mw / Mn) may exceed 3.0 when producing the low-molecular-weight oxymethylene polymer (A), which is not preferable.
  • the amount used is more preferably 0.0001 to 0.0008 mol, and still more preferably 0.001 mol. 0000 1 to 0.000 05 mo 1.
  • the molecular weight regulator a low molecular weight compound acting as a chain transfer agent for cationic polymerization is used.
  • the alkyl group is a lower aliphatic alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, etc., a dialkyl acetal of formaldehyde and its oligomer, a polyalkylene glycol such as polyethylene glycol having a molecular weight of 3,000 or less, and polypropylene glycol.
  • lower aliphatic alcohols such as methanol, ethanol, propanol, isopropanol and butanol are preferably used.
  • the molecular weight regulator is used in an amount of 0.1 to 1 mol per 18 of the mixture of monomer and comonomer.
  • the purity of the molecular weight regulator is preferably 93% or more, more preferably 95% or more, further preferably 97% or more, still more preferably 98% or more, and most preferably 99% or more. Further, when methylal is used as a molecular weight regulator, the content of methyl formate needs to be ⁇ % or less, preferably 5% or less, more preferably 3% or less, and still more preferably Is 2% or less, and most preferably 1% or less.
  • Examples of polymerization equipment used for performing a continuous bulk polymerization reaction include a co-kneader, a twin-screw type continuous extrusion kneader, a twin-screw paddle type continuous mixer, and other self-cleaning type extrusion mixers, and other proposals.
  • a continuous polymerization apparatus for trioxane and the like can be used.
  • the deactivation of the polymerization catalyst contained in the crude oxymethylene polymer obtained by the continuous bulk polymerization reaction using a cationic initiator includes amines such as ammonia, triethylamine and tri-n-butylamine, quaternary ammonium compounds, and alkali metals.
  • amines such as ammonia, triethylamine and tri-n-butylamine, quaternary ammonium compounds, and alkali metals.
  • a catalyst neutralizing deactivator such as an alkali earth metal hydroxide, inorganic acid salt, or organic acid salt
  • the quaternary ammonium compound can be used alone as the catalyst neutralizing deactivator, or it can be used in combination with the other catalyst deactivating agents described above, so that the catalyst can be neutralized more effectively.
  • This is the preferred method.
  • a method in which the catalyst is deactivated by bringing the crude oxymethylene polymer into contact with a mixer is also feasible.
  • a method for stabilizing the terminal of the crude oxymethylene polymer after the deactivation of the polymerization catalyst for example, (1) a step of injecting a basic substance into a polymer in a molten state, followed by kneading, and (2) a step of injecting the basic substance Volatile components are melted from the molten oxymethylene polymer by a twin-screw extruder, etc., which can continuously perform operations for end stabilization consisting of at least two stages of releasing the vapor and free formaldehyde of the substance.
  • the above basic substance include nitrogen compounds such as ammonia, triethylamine, tributylamine, and quaternary ammonium represented by the following formula (1).
  • water may be present together with the basic substance.
  • RR 2 , R 3, and R 4 are each independently an unsubstituted alkyl group or substituted alkyl group having 1 to 30 carbon atoms; an aryl group having 6 to 20 carbon atoms; An aralkyl group in which 0 unsubstituted alkyl groups or substituted alkyl groups are substituted with at least one aryl group having 6 to 20 carbon atoms; or an aryl group having 6 to 20 carbon atoms having at least one carbon atom Substituted with 1 to 30 unsubstituted alkyl groups or substituted alkyl groups Represents an alkylaryl group, and the unsubstituted or substituted alkyl group is linear, branched, or cyclic.
  • the substituent of the substituted alkyl group is a halogen, a hydroxyl group, an aldehyde group, a carboxyl group, an amino group or an amide group.
  • a hydrogen atom may be substituted with a halogen.
  • n represents an integer of 1 to 3.
  • X represents a hydroxyl group or a carboxylic acid having 1 to 20 carbon atoms, a hydrogen acid other than hydrogen halide, an oxo acid, an inorganic thioacid, or an acid residue of an organic thioacid having 1 to 20 carbon atoms.
  • the quaternary ammonium compound is not particularly limited as long as it is represented by the general formula (1), but RR 2 , 1 ⁇ 3 and 1 ⁇ 4 in the general formula (1) are each independently preferably hydroxycarboxylic alkyl groups der Rukoto 2-4 alkyl group or a C1-5 carbon, of which, furthermore, RR ", at least one of R 3 and R 4, are human Dorokishechiru group Particularly preferred are tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetran-butylammonium, cetyltrimethylammonium, tetradecyltrimethylammonium, 1,6- Xamethylenebis (trimethylammonium), decamethylene-bis- (trimethylammonium), trimethyl-13-chloro-12-hydroxyl.
  • carboxylic acid salt is preferred.
  • carboxylates formates, acetates and propionates are particularly preferred.
  • amines such as ammonia-triethylamine, which is a known accelerator for decomposing an unstable terminal, may be used in combination.
  • the onium salt polymerization catalyst is represented by the following general formula (2).
  • Ri, R 2 , R 3 and R 4 each independently represent an alkyl group, M represents an element having a lone pair of electrons, and X represents a nucleophilic group.
  • quaternary ammonium salt-based compounds and quaternary phosphonium salt-based compounds are preferably used. More preferably, tetramethylammonium bromide, dimethyldistearylammonium acetate, tetraethylphosphonamide, and tributylethylphosphonamide are used.
  • a method for blocking the terminal of the polymer with an ether group there is a method described in JP-B-63-452 and the like.
  • a method for blocking with an acetyl group a method described in US-A-3,459,709 is described. There are two methods: a method using a large amount of acid anhydride and a slurry, and a method using a gas of an acid anhydride described in USA-3,172,736 in the gas phase. It is not specified.
  • Etherifying agents used for blocking with ether groups include orthoesters, usually aliphatic or aromatic acids.
  • Orthoesters with aliphatic, cycloaliphatic or aromatic alcohols such as methyl or ethyl orthoformate, methyl or ethyl orthoacetate and methyl or ethyl orthobenzoate, and onolecarbonate
  • a Lewis acid type catalyst such as p-toluenesulfonic acid, medium strength organic acids such as acetic acid and hydrobromic acid, and medium strength mineral acids such as dimethyl and getyl sulfate. It is advisable to introduce 0.001 to 0.02 parts by weight per part.
  • Preferred solvents for the etherification reaction are low boiling aliphatic, alicyclic and aromatic hydrocarbons such as pentane, hexane, cyclohexane and benzene, halogenated lower fats such as methylene chloride, chloroform and carbon tetrachloride. Organic solvents such as group compounds.
  • the organic acid anhydride used for the esterification includes an organic acid anhydride represented by the following general formula (3).
  • organic acid anhydrides represented by the general formula (3) propionic anhydride, benzoic anhydride, acetic anhydride, succinic anhydride, maleic anhydride, dartalic anhydride, phthalic anhydride, and the like are preferable.
  • Acetic anhydride is particularly preferred.
  • One type of organic acid anhydride may be used, but two or more types may be used.
  • the ester group is blocked in the gas phase, if the onium salt-based polymerization catalyst remains in the polymer resin, the polymer is decomposed by the onium salt-based polymerization catalyst when the terminal is blocked. Is promoted to significantly reduce the polymer yield in the stabilization reaction, and the problem of coloring the polymer is particularly prominent. Therefore, the method described in JP-A-111-92542 is used. It is particularly preferable to carry out terminal block after removing the oxidized salt-based polymerization catalyst.
  • the terminal of the polymer is preferably blocked with an ether group and a Z or ester group, so that the concentration of terminal hydroxyl groups is reduced to 1% or less. If the concentration of the terminal hydroxyl group is more than 1 mol%, the thermal stability is impaired, and the molded article of the resin composition of the present invention does not sufficiently exhibit the elimination performance and the chemical resistance. More preferably, the concentration of terminal hydroxyl groups is 0.99 mo 1% or less, more preferably 0.9 mol. It is 8 mol% or less, most preferably 0-97 mol% or less.
  • the low-molecular-weight oxymethylene polymer (A) of the present invention is used in an amount of 1 to 500 parts by weight based on 100 parts by weight of a high-molecular-weight polyoxymethylene resin (B) having a number average molecular weight in the range of 15,000 to 100,000.
  • the polyoxymethylene resin composition mixed in the above range greatly improves the mechanical strength, particularly the flexural modulus, without using a reinforcing material, and is excellent in the fluidity and thermal stability of the melt.
  • a molded article having excellent appearance can be easily molded.
  • the molecular structure of the high-molecular-weight polyoxymethylene resin (B) is not particularly limited, and may be oxymethylene homopolymer resin (B-1), oxymethylene copolymer resin (B-2), oxymethylene block copolymer. It is selected from the group consisting of resin (B-3), and a mixture thereof.
  • the oxymethylene homopolymer resin (B-1) refers to a polymer having an oxymethylene group in the main chain and having both ends of the polymer chain blocked by an ester group or an ether group.
  • Formaldehyde and a known molecular weight regulator Using a known onium salt-based polymerization catalyst as a raw material and a hydrocarbon or the like as a solvent, a known slurry method, for example, a polymerization method described in JP-B-47-6420 or JP-B-47-10059 Obtainable.
  • a dimethyl salt-based polymerization catalyst used for producing the oxymethylene homopolymer resin (B-1), a method for blocking the terminal of the polymer with an ether group, and a method for blocking the terminal of the polymer with an ester group For the method, a method based on the method for producing the low-molecular-weight oxymethylene polymer (A) described above can be used.
  • the oxymethylene copolymer resin (B-2) is produced according to a conventionally known method such as US-A-2998409.
  • the oxymethylene copolymer resin (B-2) is mainly composed of a cyclic oligomer such as formaldehyde or its trimer, trioxane or tetramer, tetraoxane, and a comonomer copolymerizable therewith.
  • Cyclic ether compounds having an oxyalkylene unit having 2 or more carbon atoms such as ethylene oxide, propylene oxide, 1,3-dioxolan, 1,3-propanediol formal, and 1,4-butanediol Nore, 1,5-pentanedionolenorrenomale, 1,6-hexanediene-norrehonoremar, diethyleneglycol-monolehonoremanore, 1,3,5_trioxepane, It is obtained by using one or a mixture of two or more selected from 1,3,6-triocan and a mono- or gidalycidyl compound capable of forming a branched or cross-linked structure in a molecule.
  • the content of the comonomer is defined as the molar ratio of the oxyalkylene unit having 2 or more carbon atoms to the methylene oxide unit
  • the comonomer content needs to be in the range of 0.1 to 3 O mo 1%, and is preferably It is 0.2-5 mol%, more preferably 0.3-2 mol 1%, most preferably 0.3-0.8 mol 1%.
  • the melting point of the oxymethylene copolymer resin (B-2) is preferably 150 to 173 ° C, more preferably 162 to: 171 ° C, and most preferably 167 to 171. ° C and can be adjusted by the comonomer content.
  • the alkyl group is a lower aliphatic alkyl group such as methyl, ethyl, propyl, isopropyl, and butyl.
  • the oxymethylene block copolymer resin (B-3) is a linear polymer consisting of repeating oxymethylene units described in JPA-3-79618, one end of which is blocked with an alkylene oxide compound.
  • A-b or a-b-a polyacetal block composed of a polyacetal polymer and a polyoxymethylene segment (a) and a polymethylene segment (b) described in JP-A-4-306621 Represents a copolymer, and a mixture thereof.
  • the oxymethylene block copolymer resin (B-3) may be used alone, or a known lubricant may be added.
  • Examples of the lubricant that can be added include alcohols, ethers, alkylene oxide adducts of alcohol, alkylene oxide adducts of carboxylic acid, terminal ethers of polyalkylene oxide, and diesters of polyalkylene oxide and carboxylic acid.
  • Examples include diester oils such as polyalkylene glycol oil, 1,4-butanediol laurate and diisodecyl adipate, polyolefin oils such as liquid low-molecular-weight polyolefins and hydroxypolyolefins, silicone oils, and fluorine oils.
  • the number average molecular weight of the high molecular weight polyoxymethylene resin (B) needs to be in the range of 15,000 to 1,000,000. If the number average molecular weight is less than 15,000, the mechanical properties of the molded article, particularly the elongation, are undesirably reduced. On the other hand, if the number average molecular weight is more than 10,000 ° C., the difference in melt viscosity from the low molecular weight oxymethylene polymer (A) is large, and it becomes difficult to mix both uniformly.
  • the preferred number average molecular weight is from 200,000 to 500,000, more preferably from 30,000 to 200,000.
  • the mixing ratio of the low molecular weight oxymethylene polymer (A) to 100 parts by weight of the high molecular weight polyoxymethylene resin (B) is 1 to 500 parts by weight. If this ratio is less than 1% by weight, the effect as a modifier is small, and if it is more than 500 parts by weight, the mechanical properties, especially elongation, of the molded product are undesirably reduced.
  • the preferred mixing ratio is 5 to 300 parts by weight, more preferably 10 to 200 parts by weight, and most preferably 10 to 100 parts by weight.
  • each has a number average molecular weight in the range of 1,000 to 8000, and the molecular weight distribution When (Mw / Mn) is in the range of 1.0 to 2.5, two or more low-molecular-weight oxymethylene polymers (A) having different number average molecular weights and molecular weight distributions (MwZMn) are simultaneously polymerized at a high molecular weight. It can be used by mixing with the polyoxymethylene resin (B).
  • the timing of mixing the low molecular weight oxymethylene polymer (A) and the high molecular weight polyoxymethylene resin (B) is not particularly limited. That is, after polymerization, after terminal stabilization, after pelletization, mixing in a molding apparatus, and mixing at any other stage are possible.
  • a masterbatch obtained by previously mixing a low-molecular-weight oxymethylene polymer (A) and a high-molecular-weight polyoxymethylene resin (B) is further mixed with a low-molecular-weight oxymethylene polymer (A) or a high-molecular-weight polyoxymethylene resin (B).
  • the low molecular weight oxymethylene polymer (A) and the high molecular weight polyoxymethylene resin (B) are uniformly mixed.
  • the uniformity of mixing can be confirmed by analyzing the melting behavior of the polyoxymethylene resin composition with a differential calorimeter and confirming that the peak of the melting point is a single peak.
  • the low-molecular-weight oxymethylene polymer (A) and the high-molecular-weight polyoxymethylene resin (B) are mixed, both may be mixed after deactivating the polymerization catalyst in advance.
  • the polymerization catalyst may be deactivated after the two are mixed together as a crude polymer.
  • At least two continuous bulk polymerization machines connected in parallel, and an equipment comprising an extruder following these, are used.
  • a crude polymer of low molecular weight oxymethylene polymer (A) and a crude polymer of high molecular weight polyoxymethylene resin (B) were simultaneously produced by the above-mentioned separate polymerization machines, and a crude polymer of high molecular weight polyoxymethylene resin (B) was produced.
  • the polymerization catalyst was deactivated while blending 100 parts by weight and 1 to 500 parts by weight of a crude polymer of the low-molecular-weight oxymethylene polymer (A), and then the extruder was used to deactivate the crude polymer.
  • a continuous bulk polymerization machine is used to polymerize a monomer or a mixture of a monomer and a comonomer, a molecular weight regulator, and a cationic initiator.
  • the polymerization is carried out using a catalyst, and then the resulting polymerization product is treated with a monomer or a mixture of a monomer and a comonomer and a molecular weight regulator in a state where the cationic initiator is not deactivated, to obtain a low-molecular-weight oxymethylene polymer.
  • a ratio of the amount of the initially polymerized monomer or the mixture of the monomer and the comonomer and the molecular weight modifier to the amount of the added monomer or the mixture of the monomer and the comonomer and the molecular weight modifier the low molecular weight oxymethylene is obtained.
  • the ratio of the crude polymer of the polymer (A) and the crude polymer of the high-molecular-weight polyoxymethylene resin (B) can be changed.
  • the polymerization equipment may be composed of two or more continuous bulk polymerization machines connected in series to sequentially add a monomer or a mixture of a monomer and a comonomer and a molecular weight modifier. It is also possible to add a monomer or a mixture of a monomer and a comonomer and a molecular weight modifier midway in a self-cleaning-type extrusion mixer such as an axial screw-type extrusion mixer or a twin-screw paddle-type continuous mixer.
  • a self-cleaning-type extrusion mixer such as an axial screw-type extrusion mixer or a twin-screw paddle-type continuous mixer.
  • Still another method for continuously producing the polyoxymethylene resin composition of the present invention is to use two or more slurry polymerization machines connected in series or in parallel, followed by an end stabilization equipment and an extruder.
  • a known low-molecular-weight oxymethylene polymer (A) and a high-molecular-weight polyoxymethylene resin (B) were separated using a known ionic salt-based polymerization catalyst and a hydrocarbon as a solvent.
  • the low molecular weight oxymethylene polymer (A) and the high molecular weight By mixing the ethylene resin (B) at the stage of the crude polymer, there is no need to perform the subsequent steps such as deactivation and removal of the polymerization catalyst and stabilization of the terminal, and the low-molecular-weight oxymethylene polymer (A ) This is advantageous because the load on the equipment can be reduced as compared with the case where a simple substance and a high molecular weight polyoxymethylene resin (B) alone are treated with an extruder.
  • the polyoxymethylene resin composition obtained by mixing the low-molecular-weight oxymethylene polymer (A) and the high-molecular-weight polyoxymethylene resin (B) according to the present invention comprises lppn!
  • a nucleating agent in the range of 1000 ppm, the mechanical strength and dimensional accuracy of the molded product can be further greatly improved.
  • the type of the nucleating agent is not particularly limited, and conventionally known nucleating agents such as alumina, talc, myrite, nitrides such as boron nitride, and inorganic materials such as boric acid compounds can be used.
  • the added amount of the nucleating agent is less than 1 ppm, the improvement effect of the nucleating agent is not confirmed, and if it is more than 100 ppm, the thermal stability of the polyoxymethylene resin composition is impaired, which is preferable. Absent.
  • a more preferred amount of the crystal nucleating agent is 10 to 500 ppm, and still more preferably 50 to: L000 ppm.
  • the polyoxymethylene resin yarn of the present invention may contain, if desired, a known additive such as an antioxidant, a formaldehyde-reactive nitrogen-containing polymer or compound, or formic acid. Supplements, weather (light) stabilizers, mold release (lubricating) agents, reinforcing agents, conductive agents, thermoplastics, thermoplastic elastomers, pigments, plasticizers, peroxide decomposers, basic adjuvants, antistatic It is also possible to mix agents, flame retardants, dyes, fillers and the like. Further, the polymer of the present invention can be blended with another polymer as long as its physical properties are not impaired. The mixing ratio of these compounding agents can be determined as appropriate.
  • Hindered phenol-based antioxidants are preferred as antioxidants. Specifically, for example, n-octadecyl-3- (3'-5'-di-t-butyl-4'-hydroxyphenyl) -propionate, n-octadecyl-3- (3'-methyl-1-5'-t-butyl 1'4'-Hydroxyphenyl) 1-propionate, n-tetradecyl-3- (3, 5,1-di-t-butyl- 4'-Hydroxyphenyl) -butionionate, 1,6-hexanediol-bis-1 [3- (3,5-di-t-butyl -4- 4-hydroxyphenyl) -propionate], 1,4-butanediol-bis [3- (3,5-di-t-butyl-1-4-butyl) Droxyphenyl) Benzoate], triethylene glycol-bis- [3- (3-t-but
  • triethylene glycol-bis- [3- (3-t-butyl-5-methyl-14-hydroxyphenyl) -probionate] and tetrakis [methylene-13- (3,, 5′-di-t) Butyl-14'-hydroxyphenyl) propionate] is methane.
  • antioxidants may be used alone or in combination of two or more.
  • polymers or compounds containing formaldehyde-reactive nitrogen include polyamides such as nylon 4-6, nylon 6, nylon 6-6, nylon 6-10, nylon 6-12, nylon 12, and the like. And nylon 6 / 6—6 / 6-10, nylon 6 / 6—12, and the like.
  • copolymers of acrylamide and its derivatives, acrylamide and its derivatives with other vinyl monomers for example, polymerization of acrylamide and its derivatives with other vinyl monomers in the presence of metal alcoholate
  • the obtained poly-1-alanine copolymer can be mentioned.
  • These polymers containing a formaldehyde-reactive nitrogen atom may be used alone or in combination of two or more.
  • Examples of compounds containing a formaldehyde-reactive nitrogen atom having an amino substituent include 2,4-diamino-sym-triazine and 2,4,6-triamino.
  • Examples of formic acid scavengers include polycondensates of the above-mentioned amino-substituted triazines and aminoaldehydes, for example, melamine-formaldehyde polycondensates.
  • Other formic acid supplements include alkali metal or alkaline earth metal hydroxides, mineral salts, carboxylates or alkoxides. For example, hydroxides such as sodium, potassium, magnesium, calcium or barium, and carbonates, phosphates, silicates, borates, and carboxylates of the above metals.
  • the carboxylic acid of the carboxylate is preferably a saturated or unsaturated aliphatic carboxylic acid having 10 to 36 carbon atoms, and these carboxylic acids may be substituted with a hydroxyl group.
  • Aliphatic carboxylic acids include chlorophyllic acid, pentadecylic acid, lactic acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, araquinic acid, behenic acid, liglyceric acid, Cerotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, pendecilenic acid, oleic acid, elaidic acid, setreic acid, eric acid, brassic acid Acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid, propiolic acid, stearol
  • carboxylate examples include calcium dimyristate, calcium dipalmitate, calcium distearate, calcium (myristate-palmitate), calcium (myristate-stearate), and calcium (palmitate-stearate).
  • Calcium of which calcium dipalmitate and calcium distearate are preferred.
  • two or more formic acid supplements may be added simultaneously.
  • weather (light) stabilizer one or more selected from benzotriazole-based and oxalic acid-based ultraviolet absorbers and hinderedamine-based light stabilizers are preferable.
  • benzotriazole UV absorbers examples include 2- (2'-hydroxy-5'-methyl-phenyl) benzotriazole, 2- (2'-hydroxy-1,3,5'-dibutylbutenyl ) Benzotriazole, 2- [2, -hydroxyl 3 ', 5'-bis ( ⁇ , ⁇ -dimethylbenzyl) pheninole] benzotriazole, 2- (2,1-hydroxyl 3', 5) '-Di-t-aminorefenyl) benzotriazole, 2- (2'-hydroxy-1,3,5'-diisoamylophenyl) benzotriazole, 2 -— [2,1-hydroxy-1,3,5, Monobis ((a, dimethylbenzyl) phenyl) _2H-benzotriazole, 2- (2, -hydroxy-14'-octoxyphenyl) benzotriazole and the like.
  • oxalic acid ultraviolet absorbers examples include 2-ethoxy-1 2'-ethyl oxalic acid bisanilide, 2-ethoxy-5-t-butyl-2'-ethyl oxalic acid. Bisanilide, 2-ethoxy-1,3-dodecyloxalic acid bisanilide and the like. These ultraviolet absorbers may be used alone or in combination of two or more.
  • hindered amine light stabilizers include 4-acetoxy 2,2,6,6 -Tetramethylpiperidine, 4-stearoyloxy-1,2,2,6,6-tetramethylbiperidine, 4-acryloyloxy-1,2,2,6,6-tetramethylpiperidine, 4- (phenylacetoxy) 1-2 , 2,6,6-tetramethylpiperidine, 4-benzoinoleoxy-2,2,6,6-tetramethinolebiperidine, 41-methoxy-1,2,2,6,6-tetramethylpiperidine 1,4-stearyloxy-1,2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-1,2,2,6,6-tetramethinolebiperidine, 4-benzyloxy 2,2,6,6 —Tetramethylpiperidine, 4-phenoxy-1,2,2,6,6-tetramethylpiberidine, 4- (ethylcanolebamoinoleoxy) -1,2,2,6,6-te
  • preferred weathering agents are 2- [2, -hydroxy 3 ', 5'-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] benzotriazole and 2- (2'-hydroxy 3', 5,- Di-t-butylphenyl) benzotriazole, 2- (2, -hydroxy-1- 3 ', 5'-di-t-amino-lepheninole) benzotriazole, bis (1,2,2,6,6-pentamethyl) 1,4-piberidinyl) sebacate, bis- (N-methyl-1,2,2,6,6-tetramethyl-4-piperidinyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, 1,2,3 , 4 -butanetetracarboxylic acid and 1,2,2,6,6_pentamethyl-14-piberidinol and / 3, ⁇ , ⁇ ', ⁇ ', tetramethyl-1,3,9— [
  • alcohols, fatty acids and their fatty acid esters, polyoxyalkylene dalycols, olefin compounds having an average degree of polymerization of 10 to 500, and silicones are preferably used.
  • Reinforcing agents include inorganic fillers, glass fibers, glass beads, and carbon fibers.
  • Examples of the conductive material include conductive carbon black, metal powder, and fiber.
  • thermoplastic resin examples include polyolefin resin, acrylic resin, styrene resin, polycarbonate resin, and uncured epoxy resin. Also, these modified products are included.
  • thermoplastic elastomers include polyurethane-based elastomers, polyester-based elastomers, polystyrene-based elastomers, and polyamide-based elastomers.
  • the pigment used in the present invention is used in the range of 0 to 5 parts by weight. If it exceeds 5 parts by weight, the thermal stability decreases, which is not preferable.
  • the pigment include an inorganic pigment and an organic pigment.
  • Inorganic pigments are those commonly used for coloring resins, For example, dumbbell sulfide, titanium oxide, barium sulfate, titanium yellow, cobalt blue, etc.
  • Organic pigments include pigments of the condensed azo type, the inone type, the frothocyanin type and the monoazo type.
  • the resin composition using the polyoxymethylene resin modifier of the present invention can greatly improve the mechanical strength without using a reinforcing material, and has excellent fluidity and thermal stability of the melt.
  • a molded article having an excellent appearance can be easily molded by a conventionally known method such as injection molding, extrusion molding, blow molding, or pressure molding. It is also possible to perform cutting after forming.
  • Such molded products include gears, cams, sliders, levers, arms, clutches, phenolic clutches, idler gears, pulleys, mouth rollers, rollers, key stems, key tops, shutters, reels, shafts, joints, shafts, bearings and the like.
  • Mechanical parts such as guys,
  • Switches and clips as well as mechanical pencil nibs and shears
  • Mechanical parts for inserting and removing the core of the pencil, wash basin, drain port and drain cock opening / closing mechanism parts, vending machine opening / closing part lock mechanism and product discharging mechanism parts, clothing code stoppers, adjusters and buttons, watering nozzles and Representatives include sprinkling hose connection joints, stair railing and flooring support, construction supplies, disposable cameras, toys, fasteners, chains, conveyors, buckles, sports equipment, vending machines, furniture, musical instruments, and household equipment. It can be suitably used as an industrial part.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the proton nuclear magnetic resonance spectrum was measured by the method described in JP-A-6-34583, and the amount of copolymer component inserted was quantified from the observed peak area of the predetermined signal. It is shown as a molar ratio of ethylene oxide units to methylene oxide units.
  • a sample that has been precisely weighed is heated in a constant temperature bath at 220 ° C under a reduced pressure of 2 mmHg for 50 minutes, and then cooled to take out the sample.
  • the concentration (mo 1%) of the terminal hydroxyl group with respect to all the terminal groups was determined.
  • Bending elastic modulus> Using an IS-8 OA injection molding machine manufactured by Toshiba Corporation, test specimens were prepared at a cylinder temperature of 200 ° C, an injection pressure of 6 MPa, an injection time of 15 seconds, a cooling time of 25 seconds, and a mold temperature of 70 ° C. And measured according to ASTM D790.
  • Crystallinity of Production Example A 5 mg sample obtained by polymerization was kept at 200 ° C for 1 minute using a differential calorimeter (manufactured by PerkinElmer Inc., DSC-7), and then 200 ° C / min.
  • the heat of fusion ⁇ (j Zg.) was determined from the exothermic peak generated during the process of cooling to 70 ° C at a rapid rate and heating to 200 ° C at a rate of 5 ° CZ.
  • Crystallinity of the example 1 Omg of resin cut from the center of the above-mentioned test piece for measuring the bending elastic modulus was measured at a rate of 5 ° CZ for 20 minutes using the same equipment as the crystallinity of the production example. It was calculated from the heat of fusion generated in the process of raising the temperature to 0 ° C.
  • Specimens were prepared using the same injection molding machine and injection conditions as for preparing the test pieces for measuring the flexural modulus. After the molding was completed, the pressure was reduced to 2 mmHg or less, and the test piece was dried for 5 hours using a vacuum dryer set at 100 ° C., and the weight (W1) at this time was measured. Next, the test piece was immersed in a container filled with acetone or closed form adjusted to a temperature of 23 ° C. and kept for 7 days. After the immersion treatment, the chemicals adhering to the specimen surface were wiped off, and the weight (W2) of the specimen was measured. From these results, the weight increase rate (%) was determined according to the following equation.
  • Weight increase rate (%) ⁇ (W2—W1) / W1 ⁇ X100 The smaller the value, the better the chemical resistance.
  • Weld strength retention (%) (weld strength / non-weld strength) XI 00
  • Weld elongation retention (%) (weld elongation / non-weld elongation) XI 00 The closer each value is to 100%, the lower the eld Excellent elongation retention performance.
  • hydroxycholine formate (trimethyl-1-hydroxyammonium formate) 1 part by weight of the aqueous solution was added, mixed uniformly, and dried at 120 ° C.
  • the amount of hydroxycholine formate added was 20 ppm in terms of the amount of nitrogen.
  • the amount of added choline hydroxide was adjusted by adjusting the concentration of choline hydroxide in the aqueous solution containing the added choline hydroxide.
  • To 100 parts by weight of the dried oxymethylene copolymer 0.3 parts by weight of 2,2′-methylenebis- (4-methyl-t-butylphenol) as an antioxidant was added, and a vented biaxial It was supplied to a screw-type extruder.
  • Table 1 shows the number average molecular weight and the molecular weight distribution (Mw / Mn) of the obtained low-molecular-weight oxymethylene copolymer.
  • a 5-liter kneader with two jacketed stirring blades through which a heat medium can pass was adjusted to 80 ° C under normal pressure, and 2 kg of trioxane and 1,3-dioxolane as a comonomer were added.
  • g (0.042 to 1 mole of trioxane Nore) and 52.2 g of methylal as a molecular weight regulator were added and mixed.
  • boron trifluoride 1. 5 X 1 0- 5 so that the mole of boron trifluoride di one n- butyl etherate 1 by weight relative to trioxane 1 mol. /.
  • the mixture was added, mixed uniformly, and dried at 120 ° C.
  • the amount of added choline hydroxide was 20 ppm in terms of nitrogen.
  • the amount of the added choline hydroxide was adjusted by adjusting the concentration of the choline hydroxide in the aqueous solution containing the added choline hydroxide.
  • To 100 parts by weight of the dried oxymethylene copolymer 0.3 parts by weight of 2,2′-methylenebis- (4-methyl-t-butylphenol) as an antioxidant was added, and a vented 2 The mixture was fed to a screw extruder.
  • Table 1 shows the number average molecular weight and the molecular weight distribution (Mw / Mn) of the obtained low-molecular-weight oxymethylene copolymer.
  • the polymer after the reaction was collected by filtration, the pressure was reduced to 2 mmHg or less, and the polymer was dried for 3 hours using a vacuum dryer set at 80 ° C.
  • the terminal hydroxyl group concentration with respect to all terminal groups of the obtained low molecular weight oxymethylene polymer was 0.5 mol%. Further, the number average molecular weight and molecular weight distribution (Mw / Mn) were evaluated and are shown in Table 1.
  • the resin composition was melt-kneaded under the condition of kg / hr to form pellets.
  • the low molecular weight polyoxymethylene obtained in Production Example 1 has a number average molecular weight of 400 100 commercially available oxymethylene homopolymer resin (Tenac 510: manufactured by Asahi Kasei Kogyo Co., Ltd.) The same as in Example 1 except that it was added in an amount of 30 parts by weight to 100 parts by weight. An experiment was performed. The results are summarized in Table 2.
  • the low-molecular-weight polyoxymethylene obtained in Production Examples 3 and 4 was converted to a commercially available oxymethylene copolymer resin having a number-average molecular weight of 500 (Tenac 450/20: manufactured by Asahi Kasei Corporation).
  • Tenac 450/20 manufactured by Asahi Kasei Corporation.
  • the same experiment as in Example 1 was performed, except that each part was added at 3 ° parts by weight with respect to parts by weight.
  • Table 2 The results are summarized in Table 2.
  • a commercially available oxymethylene copolymer resin having a number average molecular weight of 700,000 (Tenac 35010: manufactured by Asahi Kasei Kogyo Co., Ltd.) 100 parts by weight of the low molecular weight poly obtained by Production Example 1
  • the same experiment as in Example 1 was carried out except that 30 parts by weight of oxymethylene and 500 ppm of boron nitride as a crystal nucleating agent were added.
  • the results are summarized in Table 2.
  • a commercially available oxymethylene copolymer resin having a number-average molecular weight of 700,000 (Tenac 35010: manufactured by Asahi Kasei Kogyo Co., Ltd.) 100 parts by weight of the low molecular weight polymer obtained in Production Example 9
  • oxymethylene was added at a ratio of 30 parts by weight. The results are summarized in Table 2.
  • Production Example 9 and Production Example 11 The low molecular weight polyoxymethylene obtained by Production Example 1 and Production Example 1 was obtained by Production Example 1 °, having a melting point of 169.5 ° C and a number average molecular weight of 8200. The same experiment as in Example 1 was carried out except that each of the oxymethylene copolymer resin was added in an amount of 30 parts by weight to 100 parts by weight. Table 2 summarizes the results Show.
  • a pellet of a commercially available oxymethylene polymer resin (Tenac 3510, 4520, 5010: manufactured by Asahi Kasei Kogyo Co., Ltd.) and an oxymethylene copolymer resin having a number average molecular weight of 200,000 obtained in Production Example 7 are dried at 80 ° C for 3 hours. After that, a dumbbell compliant with ASTM-D-638 was injected at a resin temperature of 200 ° C and a mold temperature of 70 ° C, and the flexural modulus, Rockwell hardness, chemical resistance, and weld property were measured. Thermal stability was also measured. The results are summarized in Table 2.
  • Example 2 The same experiment as in Example 1 was performed, except that only boron nitride (500 ppm) was added as a crystal nucleating agent to a commercially available oxymethylene copolymer resin (Tenac 3510: manufactured by Asahi Kasei Kogyo Co., Ltd.). The results are summarized in Table 2.
  • Comparative Example 1-1 Commercially available talc (Nihon Talc Co., Ltd., MS Talc) is commercially available oxymethylene copolymer resin having a number average molecular weight of 500.000 (Tenac 450.20: manufactured by Asahi Kasei Corporation) 100 weight The same experiment as in Example 1 was performed, except that 25 parts by weight was added to the parts. The results are summarized in Table 2.
  • the pellet of the oxymethylene copolymer resin obtained in Production Example 10 was 80. After drying at C for 3 hours, dumbbells conforming to ASTM-D-638 are injected at a resin temperature of 200 ° C and a mold temperature of 70 ° C, and the flexural modulus, Rockwell hardness, and chemical resistance Properties and elliptic properties were measured. Thermal stability was also measured. The results are summarized in Table 2.
  • Example 15
  • the low-molecular-weight polyoxymethylene obtained in Production Example 21 was replaced with a commercially available oxymethylene homopolymer resin having a number average molecular weight of 550 (Tenac 210: manufactured by Asahi Kasei Kogyo Co., Ltd.) 100 parts by weight
  • a commercially available oxymethylene homopolymer resin having a number average molecular weight of 550 (Tenac 210: manufactured by Asahi Kasei Kogyo Co., Ltd.) 100 parts by weight
  • the same experiment as in Example 1 was performed, except that the amount was added in a proportion of 44 parts by weight.
  • Table 2 The results are summarized in Table 2.
  • the low-molecular-weight polyols obtained by Production Example 19, Production Example 21 and Production Example 22 were converted to a commercially available oxymethylene homopolymer resin having a number average molecular weight of 550 (Tenac 210,000). : Manufactured by Asahi Kasei Kogyo Co., Ltd.) 100 parts by weight were added in proportions of 44 parts by weight, and 1 part by weight of acrylamide was added as a formaldehyde-reactive nitrogen compound. An experiment similar to 1 was performed. The results are summarized in Table 2.
  • the low-molecular-weight polyoxymethylene obtained in Production Example 21 is obtained by mixing the polyoxymethylene having a number-average molecular weight of 1000 obtained by Production Example 24 and a commercially available oxymethylene having a number-average molecular weight of 700 Copolymer resin (Tenac 3510: manufactured by Asahi Kasei Kogyo Co., Ltd.) and commercially available oxymethylene block copolymer resin having a number average molecular weight of 3400 (Tenak LA540: Asahi Kasei Kogyo ( The same experiment as in Example 1 was carried out except that each was added at a ratio of 44 parts by weight to 100 parts by weight. Table 2 summarizes the results.
  • the low-molecular-weight polyoxymethylene obtained in Production Example 13 was converted to 30 parts by weight based on 100 parts by weight of the oxymethylene copolymer resin having a melting point of 169.5 ° C. and a number average molecular weight of 82,000 obtained in Production Example 10.
  • the same experiment as in Example 1 was performed except that the ratio was added.
  • the results are summarized in Table 2.
  • the low-molecular-weight polyoxymethylene obtained in Production Examples 20 and 23 was mixed with 100 parts by weight of a commercially available oxymethylene homopolymer resin having a number average molecular weight of 55,000 (Tenac 2010: manufactured by Asahi Chemical Industry Co., Ltd.). The same experiment as in Example 1 was performed, except that 1 part by weight of acrylamide was added as a formaldehyde-reactive nitrogen compound in addition to 1 part by weight of formaldehyde. The results are summarized in Table 2.
  • the oxymethylene copolymer discharged from the continuous polymerization machine was charged into a 0.1% aqueous solution of triethylamine to deactivate the polymerization catalyst.
  • the deactivated oxymethylene copolymer was filtered with a centrifuge.
  • the crude yield here was 84%.
  • This crude polymer was subjected to a terminal stabilization treatment in the same manner as in Production Example 1, and the number average molecular weight and the molecular weight distribution (Mw / Mn) were evaluated.
  • the oxymethylene copolymer discharged from these two continuous polymerization machines was stirred and mixed with a 0.1% aqueous solution of triethylamine in a bath with a stirrer, The polymerization catalyst was deactivated. The mixture of the inactivated oxymethylene copolymer was filtered with a centrifuge. An aqueous solution containing 100 parts by weight of the oxymethylene copolymer mixture after the filtration, as a quaternary ammonium compound, a hydroxycorinyl formate (trimethyl-2-hydroxyxethylammonium formate). One part by weight was added, mixed uniformly, and dried at 120 ° C.
  • the amount of hydroxycholine formate added was 20 ppm in terms of the amount of nitrogen. Adjustment of the amount of added choline hydroxide formate was performed by adjusting the concentration of choline hydroxide in the aqueous solution containing the added choline hydroxide. To 100 parts by weight of the dried oxymethylene copolymer mixture, 0.3 parts by weight of 2,2′-methylenebis (4-methyl-1-t-butylphenol) was added as an antioxidant. Then, the mixture was fed to a vented twin screw extruder.
  • 0.1 parts by weight of calcium distearate, 0.05 part by weight of calcium dipalmitate, 0.05 part by weight of nylon 66, and 0.05 part by weight of ethylene glycol distearate were added to 100 parts by weight of the pellet.
  • 0.25 parts by weight of ethylene glycol dipalmitate was mixed with 0.05 part by weight, and the mixture was melt-mixed with a vented single-screw extruder to obtain a final pellet.
  • -Dioxolane 143 g / Hr (0.014 mol per 1 mol of trioxane) and methylal 14 gZHr as a molecular weight regulator were continuously added.
  • boron trifluoride di- n- butyl ether solution of 1% by weight of hexane solution was used so that boron trifluoride would be 1.5 x 10 mol per mol of trioxane.
  • 39.6 g / Hr was added continuously to carry out polymerization.
  • Hr (0.014 mol per mol of trioxane) and 136 g / Hr of methylal as a molecular weight regulator were continuously added for polymerization.
  • the oxymethylene copolymer discharged from the continuous polymerization machine is converted to triethylamine 0.1
  • the polymerization catalyst was deactivated.
  • the deactivated oxymethylene copolymer was filtered with a centrifuge. The crude yield here was 88%.
  • To 100 parts by weight of the oxymethylene copolymer after filtration 1 part by weight of an aqueous solution containing hydroxycholine formate (trimethyl-2-hydroxyshethylammoniumformate) as a quaternary ammonium compound was added. Then, the mixture was uniformly mixed and dried at 120 ° C. The amount of added choline hydroxide was 20 ppm in terms of nitrogen.
  • Adjustment of the amount of added choline hydroxide was performed by adjusting the concentration of choline hydroxide in the aqueous solution containing the added choline hydroxide.
  • concentration of choline hydroxide in the aqueous solution containing the added choline hydroxide was adjusted to 100 parts by weight of the dried oxymethylene copolymer.
  • 2,2′-methylenebis (4-methyl-t-butylphenol) was added as an antioxidant, and a biaxial screw type with a vent was added. It was fed to an extruder.
  • 0.5 parts by weight of water was added to 100 parts by weight of the molten oxymethylene copolymer in the extruder, and the extruder set temperature was 20. Decomposition of the unstable terminal was carried out at 0 ° C and a residence time of 5 minutes in the extruder.
  • the degraded oxymethylene copolymer at the unstable terminal was devolatilized under the condition of a vent vacuum of 2 Torr, and was extruded from an extruder die into a cold water bath to be pelletized.
  • 0.1 part by weight of calcium distearate, 0.05 part by weight of calcium dipalmitate, 0.05 part by weight of nylon 66, and 0.025 part by weight of ethylene glycol distearate Parts by weight and 0.005 parts by weight of ethylene glycol dipalmitate were mixed and melt-blended by a vented single-screw extruder to obtain a final pellet. 80 for this pellet.
  • boron trifluoride is added to 1 mole of trioxane per 1. 5 X 1 0- 5 so that the mole of boron trifluoride di n- butyl etherate 1 wt. / Hexanes 3 9 0 to cycloalkyl.
  • the 6 g / H r continuously added and polymerization was carried out.
  • the oxymethylene copolymer discharged from the continuous polymerization machine was charged into a 0.1% aqueous solution of triethylamine to deactivate the polymerization catalyst.
  • the deactivated oxymethylene copolymer was filtered with a centrifuge.
  • the crude yield here was 86%.
  • This crude polymer was further subjected to a terminal stabilization treatment in the same manner as in Production Example 1, and the number average molecular weight and the molecular weight distribution (Mw / Mn) were evaluated.
  • the oxymethylene copolymer discharged from the continuous polymerization machine was charged into a 0.1% aqueous solution of triethylamine to deactivate the polymerization catalyst.
  • the deactivated oxymethylene copolymer was filtered with a centrifuge.
  • the crude yield here was 84%.
  • This crude polymer was subjected to a terminal stabilization treatment in the same manner as in Production Example 1, and the number average molecular weight and the molecular weight distribution (MwZM n) were evaluated.
  • the oxymethylene copolymer discharged from these two continuous polymerization units was stirred and mixed with a 1% aqueous solution of triethylamine in a bath with a stirrer to effect polymerization.
  • the catalyst was deactivated.
  • the mixture of the inactivated oxymethylene copolymer was filtered with a centrifuge. 1 part by weight of an aqueous solution containing choline hydroxide formate (trimethyl-2-hydroxyhexyl ammonium formate) as a quaternary ammonium compound per 100 parts by weight of the mixture of the oxymethylene copolymer after filtration. was added and mixed uniformly, and then dried at 120 ° C.
  • the amount of hydroxycholine formate added was 20 ppm in terms of nitrogen.
  • the amount of the added choline hydroxide was adjusted by adjusting the concentration of the hydroxy choline formate in the aqueous solution containing the added choline hydroxide.
  • 2,2′-methylene was used as an antioxidant.
  • Lenbis (4-methyl-t-butynolephenol) was added in an amount of 0.3 part by weight and fed to a twin-screw extruder with a vent.
  • ethylene glycol dipalmitate (0.005 parts by weight) was melt-mixed with a vented single-screw extruder to obtain a final pellet. After drying this pellet at 80 ° C for 3 hours, dumbbells conforming to ASTM D-638 are injected at a resin temperature of 200 ° C and a mold temperature of 70 ° C, and the flexural modulus, Rockwell hardness, chemical resistance The properties, weld characteristics and thermal stability were evaluated. Table 3 summarizes these results.
  • One of the two jacketed 5 L tank polymerization machines capable of passing the heat medium, 600 g / hr of dehydrated formaldehyde gas and dimethyl distaryl ammonium acetate acetate as a catalyst ⁇ 001 1 mol / Polymerization was carried out at 58 ° C. while continuously feeding 0.6 g / hr of acetic anhydride as a molecular weight regulator.
  • the crude yield here was 80%.
  • This crude polymer was subjected to a terminal stabilization treatment in the same manner as in Production Example 18 to evaluate the number average molecular weight and the molecular weight distribution (Mw / Mn).
  • the other polymerization machine was continuously fed with dehydrated formaldehyde gas 260 g / hr, dimethyl distearyl ammonium acetate 0.0005 mol / hr as catalyst, and acetic anhydride 17.5 g / hr as molecular weight regulator.
  • the polymerization was carried out at 58 ° C. while feeding.
  • the crude yield here was 82%.
  • This crude polymer was subjected to a terminal stabilization treatment in the same manner as in Production Example 17 to evaluate the number average molecular weight and the molecular weight distribution (Mw / Mn).
  • the ozone discharged from these two The xylene was polymerized with a 1: 1 mixture of hexane and acetic anhydride in a bath equipped with a stirrer while reacting at 140 ° C. for 2 hours to acetylate the molecular terminals.
  • the polymer after the reaction was collected by filtration, reduced in pressure to 2 mmHg or less, and dried in a vacuum dryer set at 80 ° C for 3 hours.
  • Two 5-liter tank polymerization machines with a jacket through which a heat medium can pass are connected in series, and 600 g / hr of dehydrated formaldehyde gas is fed to the previous polymerization machine, and dimethyl distearyl ammonium acetate is used as a catalyst.
  • the polymerization was carried out at 58 ° C. while continuously feeding 0.61 g / hr of acetic anhydride as a molecular weight regulator with 0.0011 mol of Zr.
  • the copolymer component is inserted by the molar ratio of ethylene oxide unit (or butylene oxide unit) to methylene oxide unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 低分子量ォキシメチレン重合体及びその組成物 技術分野
本発明は成形品の機械物性を大幅に改良するためのポリオキシメチレン樹脂用 改質剤及びこれを用いたポリオキシメチレン樹脂組成物に関する。 本発明のポリ ォキシメチレン樹脂組成物は高度の機械的物性、 特に曲げ弾性率や口ックゥエル 硬度、 ウエルド特性を有し、 また耐薬品性及び外観に優れた成形品を容易に提供 するので、 オフィスオートメーション機器用、 電気機器用、 電子機器用、 自動車 用の部品など幅広レ、分野で使用することができる。
背景技術
ポリォキシメチレン樹脂はバランスの取れた優れた機械的特性、 耐疲労性、 耐 摩擦 ·磨耗性、 耐薬品性及び成形性を有し、 自動車、 電気 ·電子機器、 その他の 精密機械、 建材配管等に広く利用されている。 一方、 用途によってはさらに機械 物性を向上させる目的で、 ガラス繊維、 炭素繊維、 アルミナ繊維、 ガラスフレー ク、 タルク等の強化材を添加した組成物が提案されている (例えば J P— A— 6 2— 9 1 5 5 1、 U S— A— 4, 8 0 6 , 5 8 6 ) 。 しかしながら上記のような 強化材を添加した強化ォキシメチレン重合体樹脂は、 ォキシメチレン重合体樹脂 単独に比較して溶融物の流動性が著しく低下するため、 高温 ·高射出圧力で成形 すると、 樹脂の熱劣化や変色により成形品の外観が悪くなり、 さらに添加された 強化材が配向することにより成形品のゥエルド特性が低下したり、 そりが大きく なるという問題がある。
また、 無機の結晶核剤をォキシメチレン重合体に添加することにより、 機械物 性を改良した組成物が提案されているが (例えば J P - A - 4 7 - 1 1 1 3 6 ) 、 強化材を添加した組成物に比べて機械的物性の改良の程度が小さく、 要求される 物性を必ずしも満足できないという問題があつた。
本発明者らは、 上記のような問題点を解決するために種々検討を行った結果、 数平均分子量が 1 0 0 0〜8 0 0◦の範囲にありながら、 同時に分子量分布 (M w/Mn) が 1. 0〜3. 0の範囲にあるという、 今までにないシャープな分子 量分布を有する直鎖状の低分子量ォキシメチレン重合体 (A) を配合することに よって得られるポリオキシメチレン樹脂組成物が、 高度の機械物性、 特に曲げ弾 性率や口ックゥエル硬度、 ゥエルド特性を有し、 耐薬品性及び外観に優れた成形 品を容易に製造することができるなどの種々の優れた特性を同時に発現すること を見出し、 本発明を完成させた。
これまでに低分子量のォキシメチレン重合体を製造した例としては、 J P— B — 55— 39 1 82、 J P— A— 6— 1 726 1 2、 EP— A— 708 1 23に 開示されているが、 これらには分子量分布 (Mw/Mn) を 3.. 0よりも小さく するための製造方法は記載されていない。 これらの例では、 低分子量のォキシメ チレン重合体を得る目的で多量の連鎖移動剤を使用しており、 その結果引起され る重合性の低下を補うために、 バッチ重合機を用いたり、 重合触媒を多量に用い たものと推測される。 しかしながら、 これらの方法では分子量分布 (MwZM n) は 3. 0を超えたものしか製造できず、 上述の如き高度の機械物性、 優れた 耐薬品性及び優れた外観といった効果は得られない。
また、 J P— B— 45— 35 1 88には、 パラホルムを原料として低分子量の ォキシメチレン重合体を得る方法が開示されているが、 やはり分子量分布 (Mw /Mn) が 3. 0を超えるために上述の如き効果は得られない。
また、 J P— A— 2— 557 1 2及び US— A— 5, 248, 762には数平 均分子量が 500〜5000の範囲にありながら、 同時に分子量分布 (Mw/M n) が 1. 0〜1. 5の範囲にある環状のォキシメチレン重合体が開示されてい るが、 本発明の直鎖状の分子骨格とは異なるために、 やはり上述の如き効果を得 ることはできなかった。
発明の開示
本発明は、 上記のような問題点を解決しょうとするものであって、 強化材を使 用することなく機械的物性、 特に曲げ弾性率を大幅に改良し、 また溶融物の流動 性及び熱安定性が優れているために、 外観にも優れた成形品を容易に製造するこ とができ、 成形品のゥエルド特性やそり特性を損なうこともないォ:
重合体樹脂組成物を提供することを目的とする。 本発明者らは、 上記の如き問題点を解決するために種々検討を行った結果、 数 平均分子量が 1 000〜8000であり、 分子量分布 (Mw/Mn) が 1. 0〜 3. 0であり、 0〜3 Omo 1 %の範囲のコモノマー成分を含有することを特徴 とする直鎖状の低分子量ォキシメチレン重合体 (A) を、 数平均分子量が 1 50 00から 1 000000である高分子量のポリオキシメチレン樹脂 (B) 100 重量部に対し、 1〜500重量部の量で均一に混合してなるポリオキシメチレン 樹脂組成物が、 強化材を使用することなく機械的物性、 特に曲げ弾性率を大幅に 改良し、 溶融物の流動性及び熱安定性に優れているためにシルバーストリークの 発生するまでの限界滞留時間が長く、 外観に優れた成形品を容易に製造すること ができ、 成形品のゥエルド特性やそり性を損なうことがなく、 さらには成形品の ロックゥエル硬度ゃ耐薬品性に関しても驚くべき改善効果を有することを見出し、 本発明を完成させた。
即ち、 本発明は、
( 1 ) 直鎖状であり、 数平均分子量が 1000〜 8000であり、 分子量分 布 (Mw/Mn) が 1. 0〜3. 0であり、 0〜 30 m o 1 %のコモノマー成分 を含有する低分子量ォキシメチレン重合体、
(2) コモノマー成分の含有率が 0〜0. 8 mo 1 %である上記 (1) 記載 の低分子量ォキシメチレン重合体、
(3) 図 1の DE FGで囲まれた領域内にあるコモノマー成分含有率と融点 とを有する上記 (1) 又は (2) 記載の低分子量ォキシメチレン重合体、
(4) モノマー又はモノマーとコモノマーの混合物、 及び該モノマー又はモ ノマーとコモノマーの混合物の 1 k g当たり 0. 1〜 1モルの分子量調節剤を原 料とし、 該原料: L mo 1当たり 0. 00001〜0. O O O lmo lのカチオン 開始剤を重合触媒として用いて連続塊状重合反応によって製造される上記 (1) 〜 (3) のいずれか一つに記載の低分子量ォキシメチレン重合体、
(5) 上記 (1) 〜 (4) のいずれか一つに記載の低分子量ォキシメチレン 重合体 (A) 1〜500重量部、 及びォキシメチレン単独重合体樹脂 (B— 1) 、 ォキシメチレン共重合体樹脂 (B— 2) 、 ォキシメチレンブロック共重合体樹脂
(B- 3) 及びこれらの混合物からなる群から選ばれる、 数平均分子量が 1 50 00〜1 000000である高分子量ポリオキシメチレン樹脂 (B) 1 00重量 部を含むポリオキシメチレン樹脂組成物、
(6) 前記低分子量ォキシメチレン重合体 (A) の含有量が 1 0〜1 00重 量部である上記 (5) に記載のポリオキシメチレン樹脂組成物、
(7) 前記高分子量ポリオキシメチレン樹脂 (B) 力 1 67〜1 71°Cの 融点を有するォキシメチレン共重合体樹脂 (B— 2) である上記 (5) 又は (6) に記載のポリオキシメチレン樹脂組成物、
(8) 前記ポリオキシメチレン樹脂組成物が 1 p pm〜1 0000 p pmの 結晶核剤を含有する、 上記 (5) 〜 (7) のいずれか一つに記載のポリオキシメ チレン樹脂組成物、
(9) 並列に連結された少なくとも二基の連続塊状重合機と、 これらに続く 押出機からなる設備を用いて、 低分子量ォキシメチレン重合体 (A) の粗重合体 及び高分子量ポリオキシメチレン樹脂 (B) の粗重合体を別々の上記重合機で同 時に製造し、 高分子量ポリオキシメチレン樹脂 (B) の粗重合体 1 00重量部と 低分子量ォキシメチレン重合体 (A) の粗重合体 1〜500重量部とを配合しな がら重合触媒を失活させ、 続いて前記押出機によって該粗重合体に末端安定化処 理を施しながら連続的に均一溶融混合を行う工程を含む、 上記 (5) 〜 (8) の いずれか一つに記載のポリオキシメチレン樹脂組成物を連続的に製造する方法、
(1 0) —基又は直列に連結された少なくとも二基の連続塊状重合機を用い て、 モノマー又はモノマーとコモノマーの混合物、 及び分子量調節剤を、 カチォ ン開始剤を重合触媒として用いて重合させ、 次いで得られた重合生成物に、 該カ チオン開始剤を失活させない状態で、 モノマー又はモノマーとコモノマーの混合 物、 及び分子量調節剤を、 得られる低分子量ォキシメチレン重合体が高分子量ポ リオキシメチレン樹脂 1 00重量部に対して 1〜500重量部となるように更に 添加して重合を行うことを含む、 上記 (5) 〜 (8) のいずれか一つに記載のポ リオキシメチレン樹脂組成物を連続的に製造する方法、
(1 1) 直列又は並列に連結された少なくとも二基のスラリー重合機と、 こ れらに続く末端安定化装置と、 押出機とからなる一連の設備において、 ホルムァ ルデヒ ド及び分子量調節剤を原料とし、 ォニゥム塩系重合触媒を用いて低分子量 ォキシメチレン重合体 (A) の粗重合体及び高分子量ポリオキシメチレン樹脂 ( B ) の粗重合体を別々の上記重合機で同時に製造し、 高分子量ポリオキシメチ レン樹脂 (B ) の粗重合体 1 0 0重量部と低分子量ォキシメチレン重合体 (A) の粗重合体 1 〜 5 0 0重量部とを配合しながら重合触媒を失活させ除去し、 得ら れる重合体の不安定末端を封鎖し、 続いて押出機によって連続的に均一溶融混合 を行う工程を含む、 上記 (5 ) 〜 (8 ) のいずれか一つに記載のポリオキシメチ レン樹脂組成物を連続的に製造する方法、 並びに
( 1 2 ) 上記 (5 ) 〜 (8 ) のいずれか一つに記載のポリオキシメチレン樹 脂組成物を成形して得られるオフィスオートメーション機器、.音楽、 映像若しく は情報機器、 通信機器、 電気機器、 電子機器、 玩具、 スポーツ用品、 家具、 住宅 設備機器、 又は自動車用の部品、
を提供するものである。
図面の簡単な説明
図 1は、 本発明の低分子量ォキシメチレン重合体のコモノマ一含有率と融点と の関係を示す。 線分 H Iは、 本発明の低分子量ォキシメチレン重合体 (A) と同 じ種類及び含有率のコモノマーを有し、 且つ同じ製造方法で製造された数平均分 子量が 3 0 0 0 0〜 1 0 0 0 0 0のォキシメチレン重合体 (C ) の、 コモノマー 含有率に対する融点を表している。 線分 D Gは線分 H Iを縦軸方向に 0 . 0 0 5 °Cだけ低融点側に平行移動させたものであり、 線分 E Fは線分 H Iを縦軸方向に 3 0 °Cだけ低融点側に平行移動させたものである。 本発明において好ましい範囲 が D E F Gで囲まれた領域内に存在する。
発明を実施するための最良の形態
本発明の低分子量ォキシメチレン重合体 (A) は、 ホルムアルデヒ ド又はその 3量体であるトリオキサン若しくは 4量体であるテトラォキサン等の環状オリゴ マーを原料として製造された、 実質的にォキシメチレン単位からなるォキシメチ レン単独重合体、 及び
上記原料成分とエチレンォキシド、 プロピレンォキシド、 1 , 3—ジォキソラ ン、 1 , 3—プロパンジォーノレホノレマーノレ、 1 , 4一ブタンジオールホノレマール、 1 , 5—ペンタンジオールホルマール、 1 , 6—へキサンジオールホルマール、 ジエチレングリコールホルマール、 1, 3, 5—トリオキセパン、 1, 3, 6— トリオキォカン等の分子中に炭素数 2以上のォキシアルキレン単位を有する環状 エーテル及びこれらの混合物からなる群から選ばれるコモノマー成分を含むォキ シメチレン共重合体を包含し、
分子の末端がエステル基又はエーテル基により封鎖された直鎖状の構造を有す る。
コモノマー成分を含有することにより低分子量ォキシメチレン重合体 (A) の 熱安定性は一層改良されるものの、 含有量が過大であると本来の目的である機械 物性の改良効果が低減する。
コモノマー成分の含有量を、 メチレンォキシド単位に対する炭素数 2以上のォ キシアルキレン単位のモル比と定義すると、 コモノマー含有量は 0〜 30 mo 1 %の範囲であることが必要であり、 好ましくは 0〜 1 Omo 1 %、 より好ましく は 0〜 6 m o 1 %、 更に好ましくは 0〜 3 m o 1 %、 更により好ましくは 0〜: L . 9mo 1 %、 最も好ましくは 0〜0. 8 mo 1 %である。
本発明の低分子量ォキシメチレン重合体 (A) は、 そのコモノマー含有率と融 点とが図 1の DEFGで囲まれた領域内にあることが好ましい。 図 1の横軸はォ キシメチレン重合体のコモノマー含有率を表し、 縦軸はォキシメチレン重合体の 融点を表す。 図 1はコモノマーとして 1, 3—ジォキソランを用いた場合のデー タを示しているが、 本発明においては他のコモノマーについても図 1の DEFG で囲まれた領域を適用することができる。 線分 H Iは、 本発明の低分子量ォキシ メチレン重合体 (A) と同じ種類及び含有率のコモノマーを有し、 且つ同じ製造 方法で製造された数平均分子量が 30000〜 1 00000のォキシメチレン重 合体 (C) の、 コモノマー含有率に対する融点を表している。 線分 DGは線分 H Iを縦軸方向に 0. 005°Cだけ低融点側に平行移動させたものであり、 線分 E Fは線分 H Iを縦軸方向に 30°Cだけ低融点側に平行移動させたものである。 低 分子量ォキシメチレン重合体 (A) のコモノマー含有率に対する融点が線分 DG よりも高温側にある場合には、 コモノマーがランダムに共重合していない可能性 が高く、 低分子量ォキシメチレン重合体 (A) の熱安定性に問題があるため好ま しくない。 低分子量ォキシメチレン重合体 (A) のコモノマー含有率に対する融 点が線分 E Fよりも低温側にある場合には、— 本来の目的である機械物性の改良効 果が低減するため好ましくない。
本発明の低分子量ォキシメチレン重合体 (A) の融点は、 1 26〜1 75°Cで あることが好ましレ、。
本発明の低分子量ォキシメチレン重合体 (A) は、 上記条件の他に、 数平均分 子量と分子量分布 (MwZMn) とが共に特定の範囲内にあることが必要である。 まず数平均分子量は、 1 000〜8000の範囲にあることが必要である。 8 000より大きいと、 ォキシメチレン重合体を改質剤としたときに結晶化度を増 大させる効果が得られないために、 改質剤として好ましくない。 1 000より小 さいと、 却って成形品の機械物性、 特に伸度が低下する。 より好ましい数平均分 子量は 1 500〜 7000であり、 さらに好ましくは 2000〜 6000であり、 最も好ましくは 2500〜 5000である。
次に、 分子量分布 (MwZMn) は、 1. 0〜3. 0の範囲にあることが必要 である。 本発明の如き低分子量のォキシメチレン重合体 (A) の製造においては、 通常よりも多量の分子量調節剤を用いるので、 重合触媒の活性が通常のォキシメ チレン重合体の場合よりも低下する。 特にバッチ式の塊状重合装置で低分子量の ォキシメチレン重合体の製造を試みた場合、 重合系が不均一になり易く、 分子量 分布 (Mw/Mn) が 3. 0以下のものを製造することは困難である。 分子量分 布 (Mw/Mn) が 3. 0を超えた低分子量のォキシメチレン重合体は、 溶融時 の熱安定性に劣るうえ、 成形品の機械的物性や外観が損なわれるので好ましくな い。 例えば、 J P— B— 55— 39 1 82にメルトインデックス 300前後の低 分子量ォキシメチレン重合体の記載があるが、 これはバッチ式の塊状重合によつ て製造されたものであり、 この記載に従って追試を行っても分子量分布 (MwZ Mn) が 3. 3〜3. 6の低分子量ォキシメチレン重合体しか得られず、 これを 高分子量のポリオキシメチレン樹脂 (B) と混合して得たポリオキシメチレン樹 脂組成物は、 本発明品の如き成形品の機械物性の改良効果が発現しないだけでな く、 溶融時の熱安定性に劣り成形品の外観が損なわれるので好ましくない。 より 好ましい分子量分布 (MwZMn) は 1. 0〜2. 7であり、 さらに好ましくは 1. 0〜2. 5であり、 最も好ましくは 1. 0〜2. 3である。 なお、 数平均分子量が 5 0 0〜5 0 0 0であり、 分子量分布 (M w/M n ) が 1 . 0〜2 . 0である環状ォキシメチレン重合体及びその製造方法がこれまでに 知られている (例えば、 J P— A— 2— 5 5 7 1 2 ) 、 これを追試して得た環 状ォキシメチレン重合体を高分子量のポリオキシメチレン樹脂 (B ) と混合して 得たポリオキシメチレン樹脂組成物は、 本発明品の如き成形品の機械物性の改良 効果が発現しなかった。 この原因としては環状ォキシメチレン重合体の場合、 分 子骨格が高分子量のポリオキシメチレン樹脂 (B ) と異なるために、 両者の混合 が不均一であったり、 成形品の結晶化度を損なっているなどと推測されるが、 詳 細はまだ不明である。
本発明の低分子量ォキシメチレン重合体 (A) は、 モノマー及び必要に応じて コモノマーを、 カチオン開始剤及び分子量調節剤と共に連続塊状重合反応に付す ことにより製造することができる。 もっとも、 数平均分子量が 1 0 0 0から 8 0 0 0の範囲にあることと、 分子量分布 (Mw/M n ) が 1 . 0カゝら 3 . 0の範囲 にあることを同時に満たすことが可能であれば、 製造方法に特に制限はないが、 カチオン開始剤を重合触媒とし、 モノマーとコモノマーの混合物、 及び該混合物 の 1 k g当たり 0 . 1〜 1モルの範囲の分子量調節剤を原料として用いて連続塊 状重合装置によって製造する方法が最も好ましい。
カチオン開始剤としては、 ルイス酸、 特にホウ酸、 スズ、 チタン、 リン、 ヒ素 及びアンチモン等のハロゲン化物、 例えば三フッ化ホウ素、 四塩化スズ、 四塩化 チタン、 五塩化リン、 五フッ化リン、 五フッ化ヒ素及び五フッ化アンチモン及び その錯化合物等又は塩等の化合物;プロ トン酸、 例えばトリフルォロメタンスル ホン酸、 パークロル酸;プロ トン酸のエステル、 特にパークロル酸と低級脂肪族 アルコールとのエステル; プロ トン酸の無水物、 特にパークロル酸と低級脂肪族 カルボン酸との混合無水物;又はイソポリ酸、 ヘテロポリ酸、 トリェチルォキソ ニゥムへキサフルォロホスフアート、 トリフエニルメチルへキサフルォロアルゼ ナート、 ァセチルへキサフルォロボラート等が挙げられる。 中でも三フッ化ホウ 素ジェチルエーテル又は三フッ化ホウ素ジー n—ブチルエーテルを、 重合原料 1 m o lに対し 0 . 0 0 0 0 1〜0 . 0 0 0 1 m o 1で用いることを好適例として 挙げることができる。 カチオン開始剤の量が少なすぎると重合収率が低下し経済 的でなく、 また多すぎると、 低分子量ォキシメチレン重合体 (A) を製造する場 合には分子量分布 (Mw/Mn) が 3. 0を超える場合があり、 好ましくない。 力チオン開始剤として三フッ化ホゥ素ジェチルエーテル又は三フッ化ホウ素ジー n—ブチルエーテルを用いる場合、 その使用量はより好ましくは 0. 0000 1 〜0. 00008mo lであり、 さらに好ましくは 0. 0000 1〜0. 000 05 m o 1である。
分子量調節剤としては、 カチオン重合の連鎖移動剤として作用する低分子量の 化合物が用いられる。 例えば、 アルキル基がメチル、 ェチル、 プロピル、 イソプ 口ピル、 ブチル等の低級脂肪族アルキル基である、 ホルムアルデヒ ドのジアルキ ルァセタールとそのオリゴマー、 分子量 3 000以下のポリエチレングリコール、 ポリプロピレングリコール等のポリアルキレングリコール、 及びメタノール、 ェ タノール、 プロパノール、 イソプロパノール、 ブタノール等の低級脂肪族アルコ —ルが好ましく用いられる。 分子量調節剤は、 モノマーとコモノマーの混合物の 1 8当たり 0. 1〜 1モルの量で使用される。
分子量調節剤の純度は、 好ましくは 9 3 %以上、 より好ましくは 9 5 %以上、 更に好ましくは 9 7%以上、 更により好ましくは 98%以上、 最も好ましくは 9 9%以上である。 さらに、 分子量調節剤としてメチラールを使用する場合には、 含有されるギ酸メチルが Ί %以下であることが必要であり、 好ましくは 5 %以下 であり、 より好ましくは 3%以下であり、 さらに好ましくは 2%以下であり、 最 も好ましくは 1 %以下である。
連続塊状重合反応を行うのに用いられる重合装置としては、 コニーダー、 二軸 スクリユー式連続押し出し混練機、 ニ軸パドル型連続混合機等のセルフクリ一二 ング型押し出し混合機、 その他これまでに提案されているトリオキサン等のため の連続重合装置が使用可能である。 これらの連続塊状重合装置を上記のカチオン 開始剤及び分子量調節剤と組み合わせて使用することにより、 初めて数平均分子 量が 1 000から 8000の範囲にあり、 且つ、 分子量分布 (MwZMn) が 1. 0〜3. 0の低分子量ォキシメチレン重合体 (A) を製造することが可能になつ た。 本製造方法が多量の分子量調節剤を用いているにもかかわらず、 重合系が均 一であり、 分子量分布 (MwZMn) が 1. 0〜3. 0の低分子量ォキシメチレ ン重合体 (A) が製造できるのは、 連続重合装置の高い攪拌能力に起因する可能 性があるが、 詳細はまだ明確ではなレ、。
カチオン開始剤を用いた連続塊状重合反応によって得られた粗ォキシメチレン 重合体に含まれる重合触媒の失活は、 アンモニア、 トリェチルァミン、 トリ— n 一プチルァミン等のアミン類、 第 4級アンモニゥム化合物、 アルカリ金属又はァ ルカリ土類金属の水酸化物、 無機酸塩、 有機酸塩等の触媒中和失活剤を含む水溶 液及び/又は有機溶剤中に粗ォキシメチレン重合体を投入した後、 濾過乾燥する ことにより行われる。 この場合、 触媒中和失活剤として第 4級アンモニゥム化合 物を単独で用いるか、 又は他の上記触媒失活剤と併用することも可能で、 触媒の 中和がより効果的に行われるため好ましい方法である。 また、 アンモニア、 トリ ェチルァミン等の蒸気と粗ォキシメチレン重合体を接触させて触媒を失活させる 方法や、 ヒンダードアミン類、 トリフエニルホスフィン、 水酸化カルシウム、 又 は第 4級アンモニゥム化合物等の少なくとも 1種と粗ォキシメチレン重合体とを 混合機で接触させて触媒を失活させる方法も実施可能である。
重合触媒失活後の粗ォキシメチレン重合体の末端安定化処理方法として、 例え ば (1 ) 溶融状態のポリマーに塩基性物質を注入し、 次いで混練する工程、 及び ( 2 ) 注入された上記塩基性物質の蒸気及び遊離のホルムアルデヒ ドを開放する 工程という少なくとも 2段階の工程からなる末端安定化のための操作を連続的に 実施できる 2軸スクリユー押し出し機等によって、 溶融したォキシメチレン重合 体から揮発成分を除去するといつた方法を挙げることができる。 上記の塩基性物 質としてはアンモニア、 トリェチルァミン、 トリブチルァミン、 下記 ( 1 ) 式で 示される第 4級アンモニゥム等の窒素化合物が挙げられる。 また、 塩基性物質と 共に水が存在していてもよい。
[ R 1 R 2 R " R 4 N + ] n X一11 ( 1 )
(式中、 R R 2、 R 3及び R 4は、 各々独立して、 炭素数 1 〜 3 0の非置換 アルキル基又は置換アルキル基;炭素数 6〜 2 0のァリール基;炭素数 1 〜 3 0 の非置換アルキル基又は置換アルキル基が少なくとも 1個の炭素数 6〜 2 0のァ リール基で置換されたァラルキル基;又は炭素数 6〜 2 0のァリール基が少なく とも 1個の炭素数 1 〜 3 0の非置換アルキル基又は置換アルキル基で置換された アルキルァリール基を表し、 非置換アルキル基又は置換アルキル基は直鎖状、 分 岐状、 又は環状である。 上記置換アルキル基の置換基はハロゲン、 水酸基、 アル デヒド基、 カルボキシル基、 アミノ基又はアミ ド基である。 また、 上記非置換ァ ルキル基、 ァリール基、 ァラルキル基、 アルキルァリール基は水素原子がハロゲ ンで置換されていてもよい。 nは 1〜3の整数を表す。 Xは水酸基、 又は炭素数 1〜2 0のカルボン酸、 ハロゲン化水素以外の水素酸、 ォキソ酸、 無機チォ酸若 しくは炭素数 1〜 2 0の有機チォ酸の酸残基を表す。 )
第 4級アンモニゥム化合物は、 上記一般式 (1 ) で表わされるものであれば特 に制限はないが、 一般式 (1 ) における R R 2、 1^ 3及び1^ 4が、 各々独立 して、 炭素数 1〜5のアルキル基又は炭素数 2〜4のヒ ドロキシアルキル基であ ることが好ましく、 このうち、 更に、 R R " , R 3及び R 4の少なくとも 1 つが、 ヒ ドロキシェチル基であるものが特に好ましい。 具体的には、 テトラメチ ルアンモニゥム、 テトラエチルアンモニゥム、 テトラプロピルアンモニゥム、 テ トラー n—ブチルアンモニゥム、 セチルトリメチルアンモニゥム、 テトラデシル トリメチルアンモニゥム、 1, 6—へキサメチレンビス (トリメチルアンモニゥ ム) 、 デカメチレン一ビス一 (トリメチルアンモニゥム) 、 トリメチル一 3—ク ロロ一 2—ヒ ドロキシフ。口ピノレアンモニゥム、 ト リメチノレ ( 2—ヒ ドロキシェチ ノレ) アンモニゥム、 トリェチル (2—ヒ ドロキシェチル) アンモニゥム、 トリプ 口ピル (2—ヒ ドロキシェチル) アンモニゥム、 トリー n—ブチル (2—ヒ ドロ キシェチノレ) アンモニゥム、 トリメチノレべンジノレアンモニゥム、 トリェチノレベン ジルアンモニゥム、 トリプロピルべンジルアンモニゥム、 トリ— n—ブチルベン ジルアンモニゥム、 トリメチルフエ二ルアンモニゥム、 トリェチルフエ二ルアン モニゥム、 トリメチルー 2—ォキシェチルアンモニゥム、 モノメチルトリ ヒ ドロ キシェチルアンモニゥム、 モノェチノレトリ ヒ ドロキシェチルアンモニゥム、 ォク タデシルトリ (2—ヒ ドロキシェチル) アンモニゥム、 テトラキス (ヒ ドロキシ ェチル) アンモニゥム等の、 水酸化物;塩酸、 臭化水素酸、 フッ化水素酸などと の水素酸塩;硫酸、 硝酸、 リン酸、 炭酸、 ホウ酸、 塩素酸、 ヨウ素酸、 ケィ酸、 過塩素酸、 亜塩素酸、 次亜塩素酸、 クロ口硫酸、 アミ ド硫酸、 二硫酸、 トリポリ リン酸などとのォキソ酸塩;チォ硫酸などとのチォ酸塩;ギ酸、 酢酸、 プロピオ ン酸、 ブタン酸、 イソ酪酸、 ペンタン酸、 カプロン酸、 力プリル酸、 力プリン酸、 安息香酸、 シユウ酸などとのカルボン酸塩等が挙げられる。 中でも、 水酸化物
(OH一) 、 硫酸塩 (HS〇4—、 S04 ―) 、 炭酸塩 (HC03—、
C〇3 2— ) 、 ホウ酸塩 (B (OH) 4一) 、 カルボン酸塩が好ましい。 カルボン 酸塩のうち、 ギ酸塩、 酢酸塩、 プロピオン酸塩が特に好ましい。 これら第 4級ァ ンモニゥム化合物は、 単独で用いてもよいし、 また 2種以上を組み合わせて用い てもよい。 また、 上記第 4級アンモニゥム化合物に加えて、 公知の不安定末端部 の分解促進剤であるアンモニアゃトリエチルァミン等のアミン類等を併用しても 何ら差し支えない。
本発明の低分子量ォキシメチレン重合体 (A) を製造するもう一つの方法とし ては、 ホルムアルデヒ ド及び公知の分子量調節剤を原料とし、 公知のォニゥム塩 系重合触媒とし、 炭化水素等を溶媒として用いる公知のスラリー法、 例えば J P — B— 47— 6420や J P— B— 47— 1 0059に記載の重合方法が挙げら れる。
ォニゥム塩系重合触媒は下記一般式 (2) で表される。
[R x R 2 R3 R4M] +X— (2)
(式中、 Ri、 R2、 R 3及び R4は各々独立にアルキル基を示し、 Mは孤立 電子対を持つ元素、 Xは求核性基を示す。 )
上記一般式 (2) で表されるォニゥム塩系重合触媒のなかでも、 第 4級アンモ 二ゥム塩系化合物や第 4級ホスホニゥム塩系化合物が好ましく用いられる。 さら に好ましくはテトラメチルアンモニゥムブロミ ド、 ジメチルジステアリルアンモ ニゥムァセタート、 テトラェチルホスホニゥムョ一ジド、 トリブチルェチルホス ホニゥムョージドが用いられる。
該重合体の末端をエーテル基で封鎖する方法としては、 J P— B— 63— 45 2等に記載の方法があり、 ァセチル基で封鎖する方法としては、 US— A— 3, 459, 709記載の、 大量の酸無水物を用い、 スラリー状態で行う方法と、 U S-A- 3, 1 72, 736に記載の酸無水物のガスを用いて気相で行う方法が あるが、 本発明においては特に規定されるものではない。 エーテル基で封鎖する のに用いるエーテル化剤としては、 オルトエステル、 通常は脂肪族又は芳香族酸 と脂肪族、 脂環式族又は芳香族アルコールとのオルトエステル、 例えばメチル又 はェチルオルトホルメ一ト、 メチル又はェチルオルトァセテ一ト及びメチル又は ェチルオルトベンゾエート、 並びにォノレトカーボネート、 例えばェチルオノレトカ ーボネートから選択する。 エーテル化反応は p— トルエンスルホン酸、 酢酸及び 臭化水素酸のような中強度有機酸、 ジメチル及びジェチルスルフェートのような 中強度鉱酸等のルイス酸型の触媒をエーテル化剤 1重量部に対して 0 . 0 0 1〜 0 . 0 2重量部導入して行うとよい。 エーテル化反応の好ましい溶媒はペンタン、 へキサン、 シクロへキサン及びベンゼン等の低沸点脂肪族、 脂環式族及び芳香族 炭化水素、 塩化メチレン、 クロ口ホルム及び四塩化炭素等のハロゲン化低級脂肪 族化合物等の有機溶媒である。 一方、 重合体の末端をエステル基で封鎖する場合、 エステル化に用いられる有機酸無水物としては、 下記一般式 (3 ) で表される有 機酸無水物が挙げられる。
R 5 C O O C O R 6 ( 3 )
(式中、 尺5及び1^ 6は、 各々独立にアルキル基を示す。 尺5及び! 6は、 同じ であっても異なっていてもよい。 )
上記一般式 (3 ) で表される有機酸無水物の中でも、 無水プロピオン酸、 無水安 息香酸、 無水酢酸、 無水コハク酸、 無水マレイン酸、 無水ダルタル酸、 無水フタ ル酸等が好ましく、 無水酢酸が特に好ましい。 有機酸無水物は 1種でもよいが 2 種以上を用いることも可能である。 また、 気相でエステル基封鎖を行う方法にお いては、 重合体樹脂中にォニゥム塩系重合触媒が残留していると、 末端封鎖する 際に、 ォニゥム塩系重合触媒が重合体の分解反応を促進して安定化反応における ポリマー収率を著しく低下すると共に、 重合体を着色させるレ、う問題が特に顕著 に現れることから、 J P - A - 1 1— 9 2 5 4 2記載の方法によってォニゥム塩 系重合触媒を除去した後に末端封鎖を行うことが特に好ましい。
重合体の末端はエーテル基及び Z又はエステル基で封鎖することにより、 末端 水酸基の濃度が l m o 1 %以下に低減されることが好ましい。 末端水酸基の濃度 が 1 m o 1 %より多いと熱安定性が損なわれ、 本発明の樹脂組成物の成形体のゥ エルド性能ゃ耐薬品性能なども充分発揮されないので好ましくない。 より好まし くは末端水酸基の濃度は 0 . 9 9 m o 1 %以下であり、 さらに好ましくは 0 . 9 8mo l %以下であり、 最も好ましくは 0.— 97mo l %以下である。
本発明の低分子量ォキシメチレン重合体 (A) を、 数平均分子量が 1 5000 から 1 000000の範囲である高分子量のポリオキシメチレン樹脂 (B) 1 0 0重量部に対し、 1〜500重量部の範囲で混合してなるポリオキシメチレン樹 脂組成物は、 強化材を使用することなく機械的強度、 特に曲げ弾性率を大幅に改 良し、 溶融物の流動性及び熱安定性に優れるために、 外観にも優れた成形品を容 易に成形することができる。
高分子量ポリオキシメチレン樹脂 (B) の分子構造は特に限定されるものでは なく、 ォキシメチレン単独重合体樹脂 (B— 1) 、 ォキシメチレン共重合体樹脂 (B- 2) 、 ォキシメチレンブロック共重合体樹脂 (B— 3) 、 及びこれらの混 合物からなる群から選ばれる。
ォキシメチレン単独重合体樹脂 (B— 1) とは、 ォキシメチレン基を主鎖に有 し、 重合体連鎖の両末端がエステル基又はエーテル基により封鎖された重合体を 表し、 ホルムアルデヒド及び公知の分子量調節剤を原料とし、 公知のォニゥム塩 系重合触媒を用い、 炭化水素等を溶媒として用いて、 公知のスラリー法、 例えば J P— B— 47— 6420や J P— B— 47— 10059に記載の重合方法で得 ることができる。 該ォキシメチレン単独重合体樹脂 (B— 1) の製造に用いるォ 二ゥム塩系重合触媒、 該重合体の末端をエーテル基で封鎖する方法、 及び該重合 体の末端をエステル基で封鎖する方法については、 上記の低分子量ォキシメチレ ン重合体 (A) の製造方法に準拠した方法を用いることができる。
ォキシメチレン共重合体樹脂 (B— 2) は、 例えば US— A— 2998409 等の従来公知の方法に準拠して製造される。 ォキシメチレン共重合体樹脂 (B— 2) は、 ホルムアルデヒ ド又はその 3量体であるトリオキサン若しくは 4量体で あるテトラォキサン等の環状オリゴマーを主体モノマ一とし、 これと共重合しう るコモノマーとして、 分子中に炭素数 2以上のォキシアルキレンユニットを有す る環状エーテル化合物、 例えばエチレンォキシド、 プロピレンォキシド、 1, 3 —ジォキソラン、 1, 3 _プロパンジオールホルマール、 1, 4一ブタンジォー ノレホノレマーノレ、 1, 5—ペンタンジォーノレホノレマ一ノレ、 1, 6—へキサンジ才ー ノレホノレマール、 ジエチレングリコ一ノレホノレマーノレ、 1, 3, 5_トリオキセパン、 1 , 3, 6—トリオキォカン、 及び分子に分岐又は架橋構造を形成しうるモノー 又はジーダリシジル化合物、 から選ばれる 1種又は 2種以上の混合物を用いて得 られるものである。 コモノマーの含有量を、 メチレンォキシド単位に対する炭素 数 2以上のォキシアルキレン単位のモル比と定義すると、 コモノマー含有率は 0 . 1 〜 3 O m o 1 %の範囲にあることが必要であり、 好ましくは 0 . 2〜 5 m o l %、 より好ましくは 0 . 3〜 2 m o 1 %、 最も好ましくは 0 . 3〜 0 . 8 m o 1 %である。
ォキシメチレン共重合体樹脂 (B— 2 ) の融点は、 好ましくは 1 5 0〜 1 7 3 °C、 より好ましくは 1 6 2〜: 1 7 1 °C、 最も好ましくは 1 6 7〜 1 7 1 °Cであり、 コモノマー含有量によって調節することができる。
該ォキシメチレン共重合体樹脂 (B— 2 ) の製造においては、 上記原料の他に 公知の分子量調節剤、 例えばアルキル基がメチル、 ェチル、 プロピル、 イソプロ ピル、 ブチル等の低級脂肪族アルキル基である、 ホルムアルデヒ ドのジアルキル ァセタールとそのオリゴマー、 メタノーノレ、 エタノール、 プロパノール、 イソプ ロパノール、 ブタノール等の低級脂肪族アルコール等、 及び、 公知の重合触媒、 例えばルイス酸、 特にホウ酸、 スズ、 チタン、 リン、 ヒ素及びアンチモン等のハ ロゲン化物、 例えば三フッ化ホウ素、 四塩化スズ、 四塩化チタン、 五塩化リン、 五フッ化リン、 五フッ化ヒ素及び五フッ化アンチモン及びその錯化合物等又は塩 の如き化合物;プロ トン酸、 例えばトリフルォロメタンスルホン酸、 パークロル 酸;プロトン酸のエステル、 特にパークロル酸と低級脂肪族アルコールとのエス テル;プロトン酸の無水物、 特にパークロル酸と低級脂肪族カルボン酸との混合 無水物;又はイソポリ酸、 ヘテロポリ酸、 トリェチルォキソニゥムへキサフルォ 口ホスファート、 トリフエニルメチルへキサフルォロアルゼナ一ト、 ァセチルへ キサフルォロボラート等を原料として用いて、 バッチ式の攪拌機付き反応槽、 及 び連続式のコニーダー、 二軸スクリュー式連続押し出し混練機、 二軸パドル型連 続混合機等のセルフクリーニング型押し出し混合機、 その他、 これまでに提案さ れているトリォキサン等のための重合装置を使用して製造することができる。 粗ォキシメチレン共重合体に含まれる重合触媒の失活、 及び失活後の粗ォキシ ;重合体の末端安定化処理については、 上述の低分子量ォ: 重合体 (A) の製造方法に準拠した方法を用いることができる。
ォキシメチレンブロック共重合体樹脂 (B—3) とは、 J P A—3— 796 1 8に記載されたォキシメチレン単位の繰り返しからなる線状重合体であつて、 片末端がアルキレンォキシド化合物で封鎖されたポリアセタール重合体、 及び J P— A— 4— 30621 5に記載されたポリオキシメチレンセグメント (a) と ポリメチレンセグメント (b) から構成される a— b、 又は a— b—aポリアセ タールブロック共重合体、 及びこれらの混合物を表す。 ォキシメチレンブロック 共重合体樹脂 (B— 3) は、 それ単独で用いてもよく、 また公知の潤滑剤を添加 してもよい。 添加し得る潤滑剤としては例えばアルコール、 エーテル、 アルコー ルのアルキレンォキシド付加物、 カルボン酸のアルキレンォキシド付加物、 ポリ アルキレンォキシドの末端エーテル体、 ポリアルキレンォキシドとカルボン酸の ジエステル等のポリアルキレングリコール油、 1, 4 ブタンジオールラウレー ト、 ジイソデシルアジペート等のジエステル油、 液状の低分子量ポリオレフイン、 ヒドロキシポリオレフイン等のポリオレフイン油、 シリコーン油、 フッ素油等が 挙げられる。
本発明において、 高分子量のポリオキシメチレン樹脂 (B) の数平均分子量は、 1 5000〜 1000000の範囲であることが必要である。 数平均分子量が 1 5000より小さいと、 成形品の機械物性、 特に伸度が低下するため好ましくな レ、。 また、 数平均分子量が 1 0000◦ 0より大きいと、 低分子量ォキシメチレ ン重合体 (A) との溶融粘性の差が大きく、 両者を均一に混合するのが困難にな る。 好ましい数平均分子量は 20◦ 00〜500000であり、 より好ましくは 30000〜200000である。
本発明において、 高分子量のポリオキシメチレン樹脂 (B) 1 00重量部に対 し、 低分子量ォキシメチレン重合体 (A) を混合する割合は 1〜500重量部で ある。 この割合が 1重量%より少ないと改質剤としての効果が少なく、 500重 量部より多いと成形品の機械物性、 特に伸度が低下するため好ましくない。 好ま しい混合の割合は 5〜 300重量部であり、 さらに好ましくは 1 0〜200重量 部であり、 最も好ましくは 10〜1 00重量部である。
また、 各々が数平均分子量が 1 000〜8000の範囲にあり、 分子量分布 (Mw/M n ) が 1 . 0〜2 . 5の範囲にあれば、 異なる数平均分子量及び分子 量分布 (MwZM n ) を有する 2種以上の低分子量ォキシメチレン重合体 (A) を同時に高分子量のポリオキシメチレン樹脂 (B ) に混合して用いることもでき る。
本発明の実施において、 低分子量ォキシメチレン重合体 (A) と、 高分子量の ポリオキシメチレン樹脂 (B ) の混合の時期は特に限定されない。 即ち、 重合後、 末端安定化処理後、 ペレッ ト造粒後、 成形装置内での混合、 その他のいずれの段 階においても混合が可能である。 また、 低分子量ォキシメチレン重合体 (A) と、 高分子量ポリオキシメチレン樹脂 (B ) を予め混合してなるマスターバッチを、 さらに低分子量ォキシメチレン重合体 (A) 又は高分子量のポリオキシメチレン 樹脂 (B ) と混合することにより、 所定の混合の割合に調整する方法も用いるこ とができる。
本発明のポリォキシメチレン樹脂組成物において、 低分子量ォキシメチレン重 合体 (A) と高分子量ポリオキシメチレン樹脂 (B ) とは均一に混合されている ことが必要である。 混合の均一性は、 該ポリオキシメチレン樹脂組成物の融解挙 動を示差熱量計で解析し、 融点のピークが単一ピークであることにより確認でき る。
本発明において、 低分子量ォキシメチレン重合体 (A) と高分子量ポリオキシ メチレン樹脂 (B ) とを混合する場合は、 あらかじめ重合触媒を失活させてから 両者を混合してもよいし、 また後述のように両者を粗重合体のままで混合してか ら重合触媒を失活させてもよい。
また本発明のポリオキシメチレン樹脂組成物を連続的に製造する一つの方法と して、 並列に連結された少なくとも二基の連続塊状重合機と、 これらに続く押出 機からなる設備を用いて、 低分子量ォキシメチレン重合体 (A) の粗重合体と高 分子量ポリオキシメチレン樹脂 (B ) の粗重合体を別々の上記重合機で同時に製 造し、 高分子量ポリオキシメチレン樹月旨 (B ) の粗重合体 1 0 0重量部と低分子 量ォキシメチレン重合体 (A) の粗重合体 1〜5 0 0重量部とを配合しながら重 合触媒を失活させ、 続いて前記押出機によつて該粗重合体に末端安定化処理を施 しながら連続的に均一溶融混合を行うことにより、 安定した品質の樹脂組成物を 得ることができる。
本発明のポリオキシメチレン樹脂組成物を連続的に製造するもう 1つの方法と して、 連続塊状重合機を用いて、 モノマー又はモノマーとコモノマーの混合物及 び分子量調節剤を、 カチオン開始剤を重合触媒として用いて重合させ、 次いで得 られた重合生成物に、 該カチオン開始剤を失活させない状態で、 モノマー又はモ ノマーとコモノマーの混合物及び分子量調節剤を、 得られる低分子量ォキシメチ レン重合体が高分子量ポリオキシメチレン樹脂 1 ◦ 0重量部に対して 1 5 0 0 重量部となるように更に添加して重合を行うことによって、 連続的にポリオキシ メチレン樹脂組成物を製造する方法がある。 ここで、 初期に重合させたモノマー 又はモノマーとコモノマーの混合物及び分子量調節剤の量と、 追添したモノマー 又はモノマーとコモノマーの混合物及び分子量調節剤の量との比率を変えること によって、 低分子量ォキシメチレン重合体 (A) の粗重合体と高分子量のポリオ キシメチレン樹脂 (B ) の粗重合体の比率を変えることができる。 このときの重 合設備としては、 二基以上の連続塊状重合機を直列に連結して逐次的にモノマー 又はモノマーとコモノマーの混合物及び分子量調節剤を追添することもできるし、 一基の 2軸スクリ 式押出混合機又は 2軸パドル型連続混合機などのセルフク リーユング型押出混合機の途中からモノマー又はモノマーとコモノマーの混合物 及び分子量調節剤を追添することも可能である。
本発明のポリオキシメチレン樹脂組成物を連続的に製造するさらにもう 1つの 方法として、 直列又は並列に連結された二基以上のスラリー重合機と、 これらに 続く末端安定化設備と押出機とからなる一連の設備において、 公知のォニゥム塩 系重合触媒を用い、 炭化水素等を溶媒として、 低分子量ォキシメチレン重合体 ( A) の粗重合体及び高分子量のポリオキシメチレン樹脂 (B ) の粗重合体を別 々の上記重合機で同時に製造し、 高分子量のポリオキシメチレン樹脂 (B ) の粗 重合体 1 0 0重量部と低分子量ォキシメチレン重合体 (A) の粗重合体 1 5 0 0重量部とを配合しながら重合触媒を失活させ除去し、 得られる重合体の不安定 末端を封鎖し、 続いて押出機によって連続的に均一溶融混合を行うことにより安 定した品質の樹脂組成物を得ることができる。
上記のように低分子量ォキシメチレン重合体 (A) と高分子量のポリオキシメ チレン樹脂 (B ) を粗重合体の段階で混合すれば、 これ以降の重合触媒の失活除 去や末端安定化などの工程を重複して行う必要がなく、 さらに低分子量ォキシメ チレン重合体 (A) 単体及び、 高分子量のポリオキシメチレン榭脂 (B ) 単体を 押出機で処理する場合に比べて、 設備にかかる負荷を低減できるので有利である。 本発明の低分子量ォキシメチレン重合体 (A) と高分子量のポリオキシメチレ ン樹脂 (B ) を混合してなるポリオキシメチレン樹脂組成物に、 l p p n!〜 1 0 0 0 0 p p mの範囲の結晶核剤を添加することによって、 成形品の機械的強度及 び、 寸法精度はさらに大幅に改良される。 核剤の種類は特に限定されるものでは なく、 アルミナ、 タルク、 マイ力、 窒化ホウ素等の窒化物、 ホウ酸化合物等の無 機物等、 従来公知の核剤を用いることができる。 結晶核剤の添加量が 1 p p mよ り少ないと、 結晶核剤による改善効果は確認されず、 1 0 0 0 0 p p mよりも多 いとポリオキシメチレン樹脂組成物の熱安定性が損なわれるため好ましくない。 より好ましい結晶核剤の添加量は 1 0〜5 0 0 0 p p m、 さらに好ましくは 5 0 〜: L 0 0 0 p p mである。
本発明のポリォキシメチレン樹脂糸且成物には前記必須成分の他に所望に応じて 通常用いられる公知の添加剤である酸化防止剤、 ホルムアルデヒ ド反応性窒素含 有重合体又は化合物、 ギ酸補足剤、 耐候 (光) 安定剤、 離型 (潤滑) 剤、 補強剤、 導電剤、 熱可塑性樹脂、 熱可塑性エラストマ一、 顔料、 可塑剤、 過酸化物分解剤、 塩基性補助剤、 帯電防止剤、 難燃剤、 染料、 充填剤等を配合することも可能であ る。 更に本発明の組成物には、 その物性を損なわない範囲で他の重合体を配合す ることも可能である。 これらの配合剤の配合割合は適宜決めることができる。 酸化防止剤としてはヒンダードフ ノール系酸化防止剤が好ましレ、。 具体的に は、 例えば n—ォクタデシル一 3— ( 3 ' —5 ' —ジ一 t—ブチルー 4 ' —ヒ ド ロキシフエニル) 一プロピオネート、 n—ォクタデシルー 3— ( 3 ' ーメチル一 5 ' — t一ブチル一4 ' —ヒ ドロキシフエニル) 一プロピオネート、 n—テトラ デシル— 3— ( 3, , 5, 一ジ一 t—ブチルー 4 ' —ヒ ドロキシフエニル) —プ 口ピオネート、 1, 6—へキサンジオール一ビス一 [ 3— ( 3, 5—ジ一 t—ブ チル _ 4—ヒ ドロキシフエニル) 一プロピオネート] 、 1, 4一ブタンジオール —ビス一 [ 3— (3, 5—ジ一 t一ブチル一 4—ヒ ドロキシフエニル) 一プロピ ォネート] 、 トリエチレングリコール一ビス一 [3— (3— t一ブチル一5—メ チルー 4—ヒ ドロキシフエニル) 一プロピオネート] 、 テトラキス [メチレン一 3— (3 ' , 5 ' —ジー t—ブチル一4' —ヒ ドロキシフエニル) プロピオネー ト] メタン、 3, 9—ビス [2— { 3— (3 - t—ブチルー 4—ヒ ドロキシ一 5 一メチルフエニル) プロピオ二ルォキシ} - 1 , 1ージメチルェチル] 2, 4, 8, 1 0—テトラオキサスピロ (5, 5) ゥンデカン、 N, N' —ビス一 3— (3 ' , 5 ' —ジ一 tーブチルー 4' —ヒ ドロキシフエニル) プロピオ二ルへキ サメチレンジァミン、 N, N' —テトラメチレン一ビス一 3— (3, 一メチル一 5 ' — t—ブチノレー 4' —ヒ ドロキシフエノール) プロピオ ルジァミン、 N, N' —ビス一 [3— (3, 5—ジ一 t一ブチル一4—ヒ ドロキシフエノール) プ 口ピオニル] ヒ ドラジン、 N_サリチロイルー N' —サリチリデンヒ ドラジン、 3— (N—サリチロイル) ァミノ一 1, 2, 4—トリァゾール、 N, N' —ビス [2— { 3 - (3, 5—ジー t—ブチル一 4ーヒ ドロキシフエニル) プロピオ二 ルォキシ} ェチル] ォキシアミ ド等がある。 好ましくは、 トリエチレングリコー ル一ビス一 [3— (3— t—ブチルー 5—メチル一4ーヒ ドロキシフエニル) 一 プロビオネ一ト] 及びテトラキス [メチレン一 3— (3, , 5 ' ージ一 tーブチ ル一4' —ヒ ドロキシフエニル) プロピオネート] メタンである。 これらの酸化 防止剤は 1種類で用いてもよいし、 2種類以上を組み合わせて用いてもよレ、。 ホルムアルデヒ ド反応性窒素を含む重合体又は化合物の例としては、 ナイロン 4— 6、 ナイロン 6、 ナイロン 6— 6、 ナイロン 6— 1 0、 ナイロン 6— 1 2、 ナイロン 1 2等のポリアミ ド及びこれらの共重合体、 例えば、 ナイロン 6/6— 6/6- 10, ナイロン 6/6— 1 2等を挙げることができる。 また、 アクリル アミ ド及びその誘導体、 アクリルアミ ド及びその誘導体と他のビニルモノマーと の共重合体、 例えば、 アクリルアミ ド及びその誘導体と他のビュルモノマーとを 金属アルコラートの存在下で重合して得られたポリ一 |3—ァラニン共重合体を挙 げることができる。 これらのホルムアルデヒ ド反応性窒素原子を含む重合体は、 1種類で用いてもよいし、 2種類以上を組み合わせてもよい。
また、 ァミノ置換基を有するホルムアルデヒド反応性窒素原子を含む化合物の 例としては、 2, 4ージァミノ一 s ym—トリアジン、 2, 4, 6—トリアミノ — s y m—トリアジン、 N—ブチノレメラミン、 N—フエ二ノレメラミン、 N, N— ジフエニルメラミン、 N, N—ジァリルメラミン、 N, N ' , N' 一トリフエ二 ノレメラミン、 メレム、 メロン、 メラム、 ベンゾグアナミン (2, 4—ジァミノー 6 —フエ二ルー s y m—トリアジン) 、 ァセトグアナミン (2, 4ージァミノ一 6 —メチル一 s y m—トリアジン) 、 2, 4 —ジァミノ一 6 —ブチル一 s y m— トリァジン、 2, 4 —ジァミノー 6 —ベンジルォキシ一 s y m—トリアジン、 2, 4 —ジァミノー 6 —ブトキシ一 s y m—トリアジン、 2, 4—ジァミノー 6—シ クロへキシルー s y m—トリアジン、 2, 4ージアミノー 6 —クロロー s y m— トリアジン、 2, 4ージアミノー 6 —メルカプト一 s y m—トリアジン、 2, 4 —ジォキシー 6 —アミノー s y m—トリアジン、 2—ォキシ一 4, 6—ジァミノ 一 s y m—トリアジン、 N, N, N ' , Ν—テトラシァノエチルベンゾグァナミ ン、 サクシノグアナミン、 エチレンジメラミン、 トリグアナミン、 メラミンシァ ヌレート、 エチレンジメラミンシァヌレート、 トリグアナミンシァヌレート、 ァ ンメリン、 ァセトグアナミン等である。 これらのトリアジン誘導体は 1種類で用 いてもよいし、 2種類以上を組み合せて用いてもよい。
ギ酸補足剤としては、 上記のァミノ置換トリアジンゃァミノ置換トリアジンと ホルムアルデヒ ドとの重縮合物、 例えばメラミン一ホルムアルデヒ ド重縮合物等 を挙げることができる。 他のギ酸補足剤としては、 アルカリ金属又はアルカリ土 類金属の水酸化物、 無機酸塩、 カルボン酸塩又はアルコキシドが挙げられる。 例 えば、 ナトリウム、 カリウム、 マグネシウム、 カルシウム又はバリウムなどの水 酸化物、 上記金属の炭酸塩、 リン酸塩、 ケィ酸塩、 ホウ酸塩、 カルボン酸塩であ る。
前記カルボン酸塩のカルボン酸としては、 1 0〜3 6個の炭素原子を有する飽 和又は不飽和脂肪族カルボン酸が好ましく、 これらのカルボン酸は水酸基で置換 されていてもよい。 脂肪族カルボン酸としては、 力プリン酸、 ゥンデシル酸、 ラ ゥリン酸、 トリデシル酸、 ミリスチン酸、 ペンタデシル酸、 パルミチン酸、 ヘプ タデシル酸、 ステアリン酸、 ノナデカン酸、 ァラキン酸、 ベヘン酸、 リグリセリ ン酸、 セロチン酸、 ヘプタコサン酸、 モンタン酸、 メリシン酸、 ラクセル酸、 ゥ ンデシレン酸、 ォレイン酸、 エライジン酸、 セトレイン酸、 エル力酸、 ブラシジ ン酸、 ソルビン酸、 リノール酸、 リノレン酸、 ァラキドン酸、 プロピオ一ル酸、 ステアロール酸、 1 2—ヒ ドロキシドデカン酸、 3—ヒ ドロキシデカン酸、 1 6 —ヒ ドロキシへキサデカン酸、 1 0—ヒ ドロキシへキサデカン酸、 1 2—ヒ ドロ キシォクタデカン酸、 1 0—ヒ ドロキシ一 8—ォクタデカン酸、 d l —エリス口 — 9, 1 0—ジヒ ドロキシォクタデカン酸等が挙げられる。
前記カルボン酸塩の具体的な例としては、 ジミ リスチン酸カルシウム、 ジパル ミチン酸カルシウム、 ジステアリン酸カルシウム、 (ミリスチン酸—パルミチン 酸) カルシウム、 (ミリスチン酸—ステアリン酸) カルシウム、 (パルミチン酸 —ステアリン酸) カルシウムが挙げられ、 中でも好ましくは、.ジパルミチン酸力 ルシゥム、 ジステアリン酸カルシウムである。
本発明においては、 2種以上のギ酸補足剤を同時に添加してもよい。
耐候 (光) 安定剤は、 ベンゾトリアゾール系及びシユウ酸ァニリ ド系紫外線吸 収剤及びヒンダ一ドアミン系光安定剤の中から選ばれる 1種又は 2種以上が好ま しい。
ベンゾトリアゾール系紫外線吸収剤の例としては、 2— ( 2 ' —ヒ ドロキシ一 5 ' —メチルーフエニル) ベンゾトリァゾール、 2— ( 2 ' —ヒ ドロキシ一 3, 5 ' —ジ一 tーブチルーフエニル) ベンゾトリアゾール、 2— [ 2, ーヒ ドロキ シ一 3 ' , 5 ' —ビス (α, α—ジメチルベンジル) フエ二ノレ]ベンゾトリアゾ ール、 2— ( 2, 一ヒ ドロキシ一 3 ' , 5 ' —ジー t —アミノレフエニル) ベンゾ トリァゾール、 2— ( 2 ' —ヒ ドロキシ一 3, 5 ' —ジ一イ ソアミルーフエ二 ノレ) ベンゾトリァゾール、 2— [ 2, 一ヒ ドロキシ一 3 , 5, 一ビス一 (ひ、 a —ジメチルベンジル) フエニル] _ 2 H—ベンゾトリァゾール、 2— ( 2, ーヒ ドロキシ一4 ' —ォク トキシフエニル) ベンゾトリアゾール等が挙げられる。 シュゥ酸ァ二リ ド系紫外線吸収剤の例としては、 2—エトキシ一 2 ' —ェチル ォキザリックアシッドビスァニリ ド、 2 —エトキシー 5— t —ブチルー 2 ' —ェ チルォキザリックァシッドビスァニリ ド、 2—ェトキシ一 3, 一ドデシルォキザ リックアシッドビスァニリ ド等が挙げられる。 これらの紫外線吸収剤はそれぞれ 単独で用いてもよいし、 2種類以上を組み合わせて用いてもよい。
ヒンダードアミン系光安定剤の例としては、 4ーァセトキシー 2, 2 , 6 , 6 ーテトラメチルピペリジン、 4—ステアロイルォキシ一 2, 2, 6, 6—テトラ メチルビペリジン、 4—ァクリロイルォキシ一 2, 2, 6, 6—テトラメチルピ ペリジン、 4— (フエ二ルァセトキシ) 一 2, 2, 6, 6—テトラメチルピペリ ジン、 4—ベンゾイノレオキシー 2, 2, 6, 6—テトラメチノレビペリジン、 4一 メ トキシ一 2, 2, 6, 6—テトラメチルピペリジン、 4—ステアリルォキシ一 2, 2, 6, 6—テトラメチルピペリジン、 4—シクロへキシルォキシ一 2, 2, 6, 6—テトラメチノレビペリジン、 4一ベンジルォキシー 2, 2, 6, 6—テト ラメチルピペリジン、 4—フエノキシ一 2, 2, 6, 6—テトラメチルピベリジ ン、 4— (ェチルカノレバモイノレオキシ) 一 2, 2, 6, 6—テトラメチルピペリ ジン、 4— (シクロへキシルカルバモイルォキシ) 一 2, 2, 6, 6—テトラメ チルピペリジン、 4一 (フエ二ルカルバモイルォキシ) 一 2, 2, 6, 6—テト ラメチルピペリジン、 ビス (2, 2, 6, 6—テトラメチル一 4ーピペリジル) 一カーボネート、 ビス (2, 2, 6, 6—テトラメチル一 4—ピペリジル) ーォ キサレート、 ビス (2, 2, 6, 6—テトラメチル一 4—ピペリジル) 一マロネ ート、 ビス (2, 2, 6, 6—テトラメチルー 4ーピペリジル) 一セバケート、 ビス ( 2, 2 , 6, 6—テトラメチル一 4一ピぺリジル) 一ァジぺート、 ビス (2, 2, 6, 6—テトラメチル一 4—ピペリジル) 一テレフタレート、 1, 2 —ビス (2, 2, 6, 6—テトラメチル一 4—ピペリジルォキシ) 一ェタン、 ct、 α ' —ビス (2, 2, 6, 6—テトラメチル一 4—ピペリジルォキシ) 一 ρ—キ シレン、 ビス (2, 2, 6, 6—テトラメチル一 4ーピペリジルトリ レン _ 2, 4ージカルバメート、 ビス (2, 2, 6, 6—テトラメチル一 4ーピペリジル) —へキサメチレン一 1, 6—ジカルバメート、 トリス (2, 2, 6, 6—テトラ メチルー 4—ピペリジル) 一ベンゼン一 1, 3, 5— トリカルボキシレート、 ト リス (2, 2, 6, 6—テトラメチノレ一 4—ピペリジル) 一ベンゼン一 1, 3, 4一 トリカルボキシレート、 1— [2— { 3 - (3, 5—ジ一 t—ブチル一4— ヒ ドロキシフエニル) プロピオ二ルォキシ} ブチル] —4— [3— (3, 5—ジ — t一ブチル一 4—ヒ ドロキシフエニル) プロピオニルォキシ] 2, 2, 6 , 6 —テトラメチルピペリジン、 1, 2, 3, 4—ブタンテトラカルボン酸と 1, 2, 2, 6, 6—ペンタメチルー 4ーピベリジノールと ]3, β , β, , β ' —テトラ メチルー 3, 9一 [ 2 , 4, 8, 1 0—テトラオキサスピロ (5, 5 ) ゥンデ力 ン] ジエタノールとの縮合物等が挙げられる。 上記ヒンダードアミン系光安定剤 はそれぞれ単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。
中でも好ましい耐候剤は、 2— [ 2, ーヒ ドロキシー 3 ' , 5 ' —ビス (α, α—ジメチルベンジル) フエニル]ベンゾトリァゾール、 2 - ( 2 ' —ヒ ドロキ シー 3 ' , 5, ージ一 t —ブチルフエニル) ベンゾトリァゾール、 2— ( 2, - ヒ ドロキシ一 3 ' , 5 ' —ジ一 t 一アミノレフエ二ノレ) ベンゾトリァゾール、 ビス ( 1 , 2 , 2 , 6 , 6—ペンタメチル一 4—ピベリジニル) セバケート、 ビス一 ( N—メチル一 2, 2 , 6, 6—テトラメチルー 4ーピペリジニル) セバケート、 ビス (2, 2, 6, 6—テトラメチルー 4—ピペリジニル) セバケート、 1 , 2, 3, 4一ブタンテトラカルボン酸と 1, 2 , 2, 6, 6 _ペンタメチル一 4ーピ ベリジノールと /3, β, β ' , β ' , ーテトラメチル一 3, 9— [ 2, 4, 8, 1 0—テトラオキサスピロ (5, 5 ) ゥンデカン] ジエタノールとの縮合物であ る。
離型剤としては、 アルコール、 脂肪酸及びそれらの脂肪酸エステル、 ポリオキ シアルキレンダリコール、 平均重合度が 1 0〜5 0 0であるォレフィン化合物、 シリコーンが好ましく使用される。
補強剤としては、 無機フィラー、 ガラス繊維、 ガラスビーズ、 カーボン繊維が 挙げられる。 また、 導電材としては、 導電性カーボンブラック、 金属粉末又は繊 維が挙げられる。
熱可塑性樹脂としては、 ポリオレフイン樹脂、 アクリル樹脂、 スチレン樹脂、 ポリカーネート樹脂、 未硬化のエポキシ樹脂が挙げられる。 また、 これらの変性 物も含まれる。
熱可塑性エラストマ一の代表例としては、 ポリウレタン系エラストマ一、 ポリ エステル系エラストマ一、 ポリスチレン系エラス トマ一、 ポリアミ ド系エラス ト マーが挙げられる。
本発明で用いられる顔料は 0〜 5重量部の範囲で使用される。 5重量部を超え ると熱安定性が低下し好ましくない。 顔料としては、 無機顔料及び有機顔料が挙 げられる。 無機顔料とは樹脂の着色用として一般的に使用されているものを言い、 例えば、 硫化亜鈴、 酸化チタン、 硫酸バリウム、 チタンイェロー、 コバルトブル 一等を言う。 有機顔料とは縮合ゥゾ系、 イノン系、 フロタシァニン系、 モノァゾ 系等の顔料である。
本発明のポリォキシメチレン樹脂用改質剤を用いた樹脂組成物は、 強化材を使 用することなく機械的強度を大幅に改良し、 溶融物の流動性及び熱安定性が優れ るために、 外観も優れた成形品を従来公知の射出成形、 押出成形、 ブロー成形、 又は加圧成形等の方法で容易に成形することができる。 またこれらの成形後、 切 削加工することも可能である。
かかる成形品は、 ギア、 カム、 スライダー、 レバー、 アーム、 クラッチ、 フエ ノレトクラツチ、 アイドラギア一、 プーリー、 口一ラー、 コロ、 キ一ステム、 キー トップ、 シャッター、 リール、 シャフト、 関節、 軸、 軸受け及びガイ 等に代表 される機構部品、
アウトサート成形の樹脂部品、 インサート成形の樹脂部品、 シャーシ、 トレー、 側板、 プリンター及び複写機に代表されるオフィスオートメーション機器用部品、 VTR (ビデオテープレコーダー) 、 ビデオムービー、 デジタルビデオカメラ、 カメラ及びデジタルカメラに代表されるカメラ、 又はビデオ機器用部品、 カセッ トプレイヤー、 DAT、 LD (レーザーディスク) 、 MD (ミニディスク) 、 C D (コンパク トディスク) (CD— ROM、 CD-R, CD— RWを含む) 、 D VD (デジタルビデオディスク) (DVD— ROM、 DVD— R、 DVD— RW、 DVD-RAM (ランダムアクセスメモリー) 、 D VD—オーディオを含む) 、 その他光ディスク ドライブ、 MFD、 MO、 ナビゲーシヨンシステム及びモバイ ルパーソナルコンピュータに代表される音楽、 映像又は情報機器、 携帯電話及び ファクシミ リに代表される通信機器用部品、 電気機器用部品、 電子機器用部品、 自動車用の部品として、 ガソリンタンク、 フユエルポンプモジュール、 バルブ 類、 ガソリンタンクフランジ等に代表される燃料廻り部品、 ドアロック、 ドアハ ンドル、 ウィンドウレギユレータ、 スピーカーグリル等に代表されるドア廻り部 品、 シ一トベルト用スリップリング、 プレスボタン等に代表されるシートベルト 周辺部品、 コンビスィッチ部品、
スィツチ類及びクリップ類の部品、 更にシャープペンシルのペン先及びシヤー プペンシルの芯を出し入れする機構部品、 洗面台及び排水口及び排水栓開閉機構 部品、 自動販売機の開閉部ロック機構及び商品排出機構部品、 衣料用のコードス トッパー、 アジヤスター及びボタン、 散水用のノズル及び散水ホース接続ジョイ ント、 階段手すり部及び床材の支持具である建築用品、 使い捨てカメラ、 玩具、 ファスナー、 チェーン、 コンベア、 バックル、 スポーツ用品、 自動販売機、 家具、 楽器及び住宅設備機器に代表される工業部品として好適に使用できる。
以下に本発明の実施例を示すが、 本発明はこれらによって何ら限定されるもの ではない。 なお、 実施例及び比較例中の用語及び測定法は以下の通りである。
<数平均分子量及び分子量分布 (Mw/Mn) >
GPC (ゲルパーミエーシヨンクロマトグラフィー) (溶媒:へキサフルォロ イソプロパノール) 装置 (東ソ一社製 HLC— 8 1 20) を用い、 数平均分子量 (Mn) と重量平均分子量 (Mw) を低角度レーザー光散乱検出器で検出し、 ポ リオキシメチレン単分子重合体の標準サンプルから得られた検量線を用いて求め た。
<共重合成分の挿入量 >
J P- A- 6 - 34583に記載された方法によりプロ トン核磁気共鳴スぺク トルを測定して、 観測された所定のシグナルのピーク面積から、 共重合成分の挿 入量を定量した。 メチレンォキシド単位に対するエチレンォキシド単位のモル比 で示す。
ぐ末端水酸基濃度〉
あらかじめ精秤したサンプルを 220°Cの恒温槽中、 2mmHgの減圧下で 5 0分間加熱した後、 冷却してサンプルを取り出し、 サンプルの分解量と数平均分 子量から、 低分子量ォキシメチレン重合体の全末端基に対する末端水酸基の濃度 (mo 1 %) を求めた。
<融点 (°C) >
示差熱量計 (パーキンエルマ一社製, DSC-2 C) を用い、 一旦 200°Cま で昇温し融解させた試料を 100°Cまで冷却し、 再度 2. 5°C/分の速度にて昇 温する過程で発生する発熱ピークのピーク トップ温度を融点とした。
く曲げ弾性率 > 東芝 (株) 製 I S— 8 OA射出成形機を用い、 シリンダー温度 200°C、 射出 圧力 6 MP a、 射出時間 1 5秒、 冷却時間 25秒、 金型温度 70°Cにて試験片を 作成し、 ASTMD 790にしたがって測定した。
ぐ結晶化度〉
製造例の結晶化度:重合して得た 5 m gの試料を示差熱量計 (パーキンエルマ 一社製、 DSC— 7) を用いて 200°Cで 1分間保持した後、 200°C/分の速 度で 70°Cまで冷却し、 5°CZ分の速度にて 200°Cまで昇温させる過程で発生 する発熱ピークから融解熱 ΔΗ (j Zg.) を求め、 これと文献 (1 96 1 J o u r n a 1 o f Re s e a r c h : Ho f f ma n, L a u r i t z e n) に記載された結晶化度 1 00%の値 (ΔΗ f = 222 J/g) とを用いて、 以下 の式により計算した。
結晶化度 (%) =ΔΗ/ΔΗ f X 1 00
実施例の結晶化度:上述の曲げ弾性率測定用試験片の中心部から削り出した 1 Omgの樹脂を製造例の結晶化度と同様の機器を用いて 5 °CZ分の速度にて 20 0 °Cまで昇温させる過程で発生する融解熱から計算した。
<口ックウエル硬度〉
東芝 (株) 製 I S— 8 OA射出成形機を用いて 48. OmmO>X 3. Omm, 重量 22. 9 X 0. 1 gの円形の試験片を作成し、 東洋精機 (株) 製ロックゥ エル試験機 (型式: FR— 1) を用いて ASTMD 786 (Mスケール) にした がって測定した。
<耐薬品性 >
曲げ弾性率測定用試験片作成と全く同じ射出成形機、 射出条件で試験片を作成 した。 成形完了後 2 mmHg以下に減圧し、 1 00 °Cに設定した減圧乾燥機で 5 時間かけて試験片を乾燥しこのときの重量 (W1) を測定した。 次いでこの試験 片を 23°Cに温度調節したァセトン又はクロ口ホルムを満たした容器中に浸漬し 7日間保持した。 浸漬処理後、 試験片表面に付着した薬品を拭き取り、 試験片の 重量 (W2) を測定した。 これらの結果から次式に従い重量増加率 (%) を求め た。
重量増加率 (%) = { (W2— W 1 ) /W 1 } X 100 この値が小さい程耐薬品性に優れる。
<熱安定性 >
試料をシリンダー温度 240°Cに設定した 3オンス成形機で試験片を成形する 際、 試験片表面にシルバーストリークの発生するまでの限界滞留時間を示した。 くウエルド強伸度保持率 >
東芝 (株) 製 I S— 8 OA射出成形機を用い、 シリンダー温度 200°C、 射出 圧力 6 MP a、 射出時間 1 5秒、 冷却時間 25秒、 金型温度 70°Cにてゲートを 両端に持つ、 又はゲートを一端だけに持つ以外は同じ形状の試験片を作成し、 A STMD 638に準じて引張強伸度を測定し次式に従いウエルド強伸度保持率
(%) を求めた。
ウエルド強度保持率 (%) = (ウエルド強度/非ウエルド強度) X I 00 ウエルド伸度保持率 (%) = (ウエルド伸度ノ非ウエルド伸度) X I 00 それぞれの値が 1 00%に近い程ゥエルド強伸度保持性能が優れている。
<%、 p p m>
特に断らない限り、 全て重量基準である。
製造例 1
熱媒を通すことができるジャケット付きの 2軸パドル型連続重合機 (スクリュ 一径 3インチ、 L/D= 10) を 80°Cに調整し、 1 2 k gZH rのトリオキサ ンと、 コモノマーとして 1, 3—ジォキソラン 414 gZH r (トリオキサン 1 モルに対して 0. 042モル) と、 分子量調節剤として純度 98 %、 ギ酸メチル 含有量が 1. 1 %のメチラール 31 3 gZH rとを連続的に添カ卩した。 さらに、 重合触媒として、 三フッ化ホウ素が、 トリオキサン 1モルに対して 1. 5 X 1 0—"モルになるように、 三フッ化ホウ素ジ一 n—ブチルエーテラート 1重量0 /0 のシクロへキサン溶液 39. 6 g/H rを連続的に添加し重合を行った。 連続重 合機から排出されたォキシメチレン共重合体をトリエチルァミン 0. 1%水溶液 中に投入し重合触媒を失活させた。 失活されたォキシメチレン共重合体を遠心分 離機でろ過した。 ここでの粗収率は 86%であった。 ろ過後のォキシメチレン共 重合体 1 00重量部に対して、 第 4級アンモニゥム化合物として水酸化コリン蟻 酸塩 (トリメチル一 2—ヒ ドロキシェチルアンモニゥムフオルメート) を含有し た水溶液 1重量部を添加して、 均一に混合した後 1 2 0 °Cで乾燥した。 水酸化コ リン蟻酸塩の添加量は窒素の量に換算して 2 0 p p mとした。 水酸化コリン蟻酸 塩の添加量は、 添加する水酸化コリン蟻酸塩を含有した水溶液中の水酸化コリン 蟻酸塩の濃度を調整することにより行った。 この乾燥後のォキシメチレン共重合 体 1 0 0重量部に対して、 酸化防止剤として、 2, 2 ' ーメチレンビス一 (4— メチルー t一ブチルフエノール) を 0 . 3重量部添加し、 ベント付き 2軸スクリ ユー式押出機に供給した。 押出機中の溶融しているォキシメチレン共重合体 1 0 0重量部に対して水を 0 . 5重量部添加し、 押出機設定温度 2 0 0 °C、 押出機に おける滞留時間 5分で不安定末端部の分解を行った。 不安定末端部の分解された ォキシメチレン共重合体はベント真空度 2 0 T o r rの条件下に脱揮され、 押出 機ダイス部から冷水浴中に押出してフレーク状の低分子量ォキシメチレン共重合 体を得た。
得られた低分子量ォキシメチレン共重合体の、 数平均分子量及び分子量分布 (Mw/M n ) を表 1にまとめて示す。
製造例 2〜: 1 3
製造例 2〜 7としては、 重合に用いる分子量調節剤の量を表 1に示すように変 えて製造例 1と同様の実験を行った。 製造例 8としては、 重合触媒として、 三フ ッ化ホウ素がトリオキサン 1モルに対して 2 . 0 X 1 0— 4モルであるほかは製 造例 1と同様の実験を行った。 製造例 9〜 1 3としては、 1 , 3—ジォキソラン の量と分子量調節剤の量を表 1に示すように変えて製造例 1と同様の実験を行つ た。 結果を表 1にまとめて示す。
製造例 1 4〜: 1 6
製造例 1 4〜 1 6としては、 コモノマーとして 1 , 4一ブタンジオールホルマ ールを使用し、 分子量調節剤の量を表 1に示すように変えて製造例 1と同様の実 験を行った。 結果を表 1にまとめて示す。
製造例 1 7
熱媒を通すことができるジャケット付きの 2枚の攪拌羽根を有する 5リツトル 容ニーダーを常圧下で 8 0 °Cに調整し、 2 k gのトリオキサンと、 コモノマーと して 1 , 3—ジォキソラン 6 9 g (トリオキサン 1モルに対して 0 . 0 4 2モ ノレ) と、 分子量調節剤としてメチラール 5 2 . 2 gとを添加し、 混合した。 さら に、 重合触媒として、 三フッ化ホウ素が、 トリオキサン 1モルに対して 1 . 5 X 1 0— 5モルになるように、 三フッ化ホウ素ジ一 n—ブチルエーテラート 1重 量。 /。のシク口へキサン溶液 6 . 6 gを添加し重合を行った。 3 0分間重合反応を 行った後、 ニーダ一へトリブチルァミンの 0 . 1 %水溶液を 2 L加えて触媒を失 活させ、 反応を停止した。 ニーダ一の内容物を濾取し、 洗浄後乾燥して求めた粗 収率は 8 7 %であった。 得られたォキシメチレン共重合体 1 0 0重量部に対して、 第 4級アンモニゥム化合物として水酸化コリン蟻酸塩 (トリメチルー 2—ヒ ドロ キシェチルアンモニゥムフォルメート) を含有した水溶液 1重量部を添加して、 均一に混合した後 1 2 0 °Cで乾燥した。 水酸化コリン蟻酸塩の添加量は窒素の量 に換算して 2 0 p p mとした。 水酸化コリン蟻酸塩の添加量の調節は、 添加する 水酸化コリン蟻酸塩を含有した水溶液中の水酸化コリン蟻酸塩の濃度を調整する ことにより行った。 この乾燥後のォキシメチレン共重合体 1 0 0重量部に対して、 酸化防止剤として、 2, 2 ' —メチレンビス一 (4ーメチルー t —ブチルフエノ —ル) を 0 . 3重量部添加し、 ベント付き 2軸スクリュー式押出機に供給した。 押出機中の溶融しているォキシメチレン共重合体 1 0 0重量部に対して水を 0 . 5重量部添加し、 押出機設定温度 2 0 0 °C、 押出機における滞留時間 5分で不安 定末端部の分解を行った。 不安定末端部の分解されたォキシメチレン共重合体は ベント真空度 2 0 T o r rの条件下に脱揮され、 押出機ダイス部から冷水浴中に 押出してフレーク状の低分子量ォキシメチレン共重合体を得た。
得られた低分子量ォキシメチレン共重合体の、 数平均分子量及び分子量分布 (Mw/M n ) を表 1にまとめて示す。
製造例 1 8
重合に用いる分子量調節剤の量と重合触媒の使用量を表 1に示すように変えて 製造例 1 7と同様の実験を行った。 結果を表 1にまとめて示す。 分子量調節剤の 量が少ないと、 製造例 1 7に比べて分子量分布 (MwZM n ) が改良される傾向 にある。 製造例 1 7に比べて重合系がより均一であるためと推測される。
製造例 1 9
熱媒を通すことができるジャケッ ト付きの 5 Lのタンクに脱水したホルムアル デヒ ドガス 600 gZh r、 触媒としてジメチルジステアリルアンモニゥムァセ テート 0. 001 1 mo 1 /h r、 分子量調節剤として無水酢酸 40. 8 g/ h rを連続的にフィードしながら、 58°Cで重合を行った。 得られた粗重合物を へキサンと無水酢酸の 1対 1混合物中で 1 40°CX 2時間反応させることによ り分子末端をァセチル化した。 反応後のポリマーを濾取し、 2mmHg以下に減 圧し、 80°Cに設定した減圧乾燥機で 3時間かけて乾燥を行った。 得られた低分 子量ォキシメチレン重合体の全末端基に対する末端水酸基濃度は 0. 5mo 1 % であった。 さらに数平均分子量及び分子量分布 (Mw/Mn) を評価して表 1に まとめて示す。
製造例 20〜 24
製造例 20〜 24は重合に用いる分子量調節剤の量を表 1に示すように変えて 製造例 1 9と同様の実験を行った。 結果を表 1にまとめて示す。
実施例 1〜 3
製造例 1によって得た低分子量ポリオキシメチレンを、 数平均分子量が 700 00の市販のォキシメチレン共重合体樹脂 (テナック 3 5 1 0 :旭化成工業 (株) 製) 1 00重量部に対し、 それぞれ 1 0重量部、 30重量部、 及び 50重 量部の割合で加え、 21 0°Cに設定された LZD= 25のベント付き二軸押出機 を用い、 スクリュー回転数 1 00 r pm、 吐出量 5 k g / h rの条件下で溶融混 練して樹脂組成物をぺレット化した。 このペレットを 80 °Cで 3時間乾燥した後、 樹脂温度 200°C、 金型温度 70°じで八3丁^ —0— 638に準拠するダンベル を射出し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 ウエルド特性を測定した。 また、 熱安定性も測定した。 結果を表 2にまとめて示す。
実施例 4〜 5
製造例 1によつて得た低分子量ポリオキシメチレンを、 製造例 7によつて得た 数平均分子量が 200000のォキシメチレン共重合体樹脂 100重量部に対し、 それぞれ 100重量部及び 400重量部の割合で加えたほかは、 実施例 1と同様 の実験を行った。 結果を表 2にまとめて示す。
実施例 6
製造例 1によって得た低分子量ポリオキシメチレンを、 数平均分子量が 400 0 0の市販のォキシメチレン単独重合体樹脂 (テナック 5 0 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 3 0重量部の割合で加えたほかは、 実施例 1と 同様の実験を行った。 結果を表 2にまとめて示す。
実施例 7〜 8
製造例 3及び 4によって得た低分子量ポリオキシメチレンを、 数平均分子量が 5 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 4 5 2 0 :旭化成ェ 業 (株) 製) 1 0 0重量部に対し、 それぞれ 3◦重量部の割合で加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて示す。
実施例 9
数平均分子量が 7 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 3 5 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 製造例 1によって得た低分 子量ポリオキシメチレンを 3 0重量部、 結晶核剤として窒化ホウ素を 5 0 0 p p m加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて示 す。
実施例 1 0
数平均分子量が 7 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 3 5 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 製造例 1 5によって得た低 分子量ポリオキシメチレンを 1 0重量部の割合で加えたほかは、 実施例 1と同様 の実験を行った。 結果を表 2にまとめて示す。
実施例 1 1
数平均分子量が 7 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 3 5 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 製造例 9によって得た低分 子量ポリオキシメチレンを 3 0重量部の割合で加えたほかは、 実施例 1と同様の 実験を行った。 結果を表 2にまとめて示す。
実施例 1 2〜; 1 4
製造例 9及び製造例 1 1及び製造例 1によつて得た低分子量ポリオキシメチレ ンを、 製造例 1◦によって得た、 融点が 1 6 9 . 5 °Cであり数平均分子量が 8 2 0 0 0のォキシメチレン共重合体樹脂 1 0 0重量部に対し、 それぞれ 3 0重量部 の割合で加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて 示す。
比較例 1〜 3
製造例 2及び製造例 5及び製造例 1 7によつて得た低分子量ポリオキシメチレ ンを、 数平均分子量が 50000の市販のォキシメチレン共重合体樹脂 (テナツ ク 4520 :旭化成工業 (株) 製) 1 00重量部に対し、 それぞれ 30重量部の 割合で加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて示 す。
比較例 4〜 7
市販のォキシメチレン重合体樹脂 (テナック 35 10、 4520、 5010 : 旭化成工業 (株) 製) 及び製造例 7によって得た数平均分子量が 200000の ォキシメチレン共重合体樹脂のペレツトを 80°Cで 3時間乾燥した後、 樹脂温度 200°C、 金型温度 70°Cで AS TM— D— 638に準拠するダンベルを射出し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 及びウエルド特性を測定した。 また、 熱安定性も測定した。 結果を表 2にまとめて示す。
比較例 8
市販のォキシメチレン共重合体樹脂 (テナック 35 1 0 :旭化成工業 (株) 製) に対し、 結晶核剤として窒化硼素 500 p pmのみを加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて示す。
比較例 9
製造例 1 2によって得た低分子量ポリオキシメチレンを、 数平均分子量が 70 000の市販のォキシメチレン共重合体樹脂 (テナック 35 1 0 :旭化成工業 (株) 製) 100重量部に対し、 30重量部の割合で加えたほかは、 実施例 1と 同様の実験を行った。 結果を表 2にまとめて示す。
比較例 1 0
製造例 14によって得た低分子量ポリオキシメチレンを、 数平均分子量が 70 000の市販のォキシメチレン共重合体樹脂 (テナック 35 1 0 :旭化成工業 (株) 製) 100重量部に対し、 10重量部の割合で加えたほかは、 実施例 1と 同様の実験を行った。 結果を表 2にまとめて示す。
比較例 1—1 市販のタルク (日本タルク (株) 、 M Sタルク) を、 数平均分子量が 5 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 4 5 2 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 2 5重量部の割合で加えたほかは、 実施例 1と同様の 実験を行った。 結果を表 2にまとめて示す。
比較例 1 2
製造例 1 0によって得たォキシメチレン共重合体樹脂のペレツトを 8 0。Cで 3 時間乾燥した後、 樹脂温度 2 0 0 °C、 金型温度 7 0 °Cで A S TM— D— 6 3 8に 準拠するダンベルを射出し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 ゥエル ド特性を測定した。 また、 熱安定性も測定した。 結果を表 2にまとめて示す。 実施例 1 5
製造例 2 1によって得た低分子量ポリオキシメチレンを、 数平均分子量が 5 5 0 0 0の市販のォキシメチレン単独重合体樹脂 (テナック 2 0 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 4 4重量部の割合で加えたほかは、 実施例 1と 同様の実験を行った。 結果を表 2にまとめて示す。
実施例 1 6〜: I 8
製造例 1 9、 製造例 2 1及び製造例 2 2によつて得た低分子量ポリォ: レンを、 数平均分子量が 5 5 0 0 0の市販のォキシメチレン単独重合体樹脂 (テ ナック 2 0 1 0 :旭化成工業 (株) 製) 1 0 0重量部に対し、 それぞれ 4 4重量 部の割合で加え、 さらにホルムアルデヒ ド反応性窒素化合物としてアクリルアミ ドをそれぞれ 1重量部ずつ加えたほかは、 実施例 1と同様の実験を行った。 結果 を表 2にまとめて示す。
実施例 1 9〜 2 1
製造例 2 1によって得た低分子量ポリオキシメチレンを、 製造例 2 4によって 得た数平均分子量が 1 0 0 0 0 0のポリオキシメチレン、 及び数平均分子量が 7 0 0 0 0の市販のォキシメチレン共重合体樹脂 (テナック 3 5 1 0 :旭化成工業 (株) 製) 、 及び数平均分子量が 3 4 0 0 0の市販のォキシメチレンブロック共 重合体樹脂 (テナック L A 5 4 1 :旭化成工業 (株) 製) 1 0 0重量部に対し、 それぞれ 4 4重量部の割合で加えたほかは、 実施例 1と同様の実験を行った。 結 果を表 2にまとめて示す。 実施例 22
製造例 13によって得た低分子量ポリオキシメチレンを、 製造例 10によって 得た、 融点が 169. 5 °Cであり数平均分子量が 82000のォキシメチレン共 重合体樹脂 100重量部に対し、 30重量部の割合で加えたほかは、 実施例 1と 同様の実験を行った。 結果を表 2にまとめて示す。
比較例 13〜: 14
製造例 20及び製造例 23によって得た低分子量ポリオキシメチレンを、 数平 均分子量が 55000の市販のォキシメチレン単独重合体樹脂 (テナック 201 0 :旭化成工業 (株) 製) 100重量部に対し、 44重量部の割合で加え、 さら にホルムアルデヒ ド反応性窒素化合物としてァクリルァミ ドをそれぞれ 1重量部 ずつ加えたほかは、 実施例 1と同様の実験を行った。 結果を表 2にまとめて示す。 実施例 23
熱媒を通すことができる 2基のジャケット付きの 2軸パドル型連続重合機 (ス クリュー径 3インチ、 L/D= 10) をそれぞれ 80°Cに調整し、 1方の重合機 では 12 k gZH rのトリオキサンと、 コモノマーとして 1, 3—ジォキソラン 143 g/H r (トリオキサン 1モルに対して 0. 014モル) と、 分子量調節 剤としてメチラール 14 g/H rとを連続的に添加した。 さらに、 重合触媒とし て、 三フッ化ホウ素が、 トリオキサン 1モルに対して 1. 5 X 10— 5モルにな るように、 三フッ化ホウ素ジ一 n—ブチルェ一テラート 1重量0 /。のシクロへキサ ン溶液 39. 6 g/H rを連続的に添加し重合を行った。 連続重合機から排出さ れたォキシメチレン共重合体をトリエチルァミン 0. 1%水溶液中に投入し重合 触媒を失活させた。 失活されたォキシメチレン共重合体を遠心分離機でろ過した。 ここでの粗収率は 85 %であった。 この粗重合体はさらに製造例 1と同様の方法 で末端安定化処理を行い、 数平均分子量及び分子量分布 (MwZMn) を評価し た。
同時にもう 1方の重合機では 5. 2 k gZH rのトリオキサンと、 コモノマー として 1, 3—ジォキソラン 62 g/H r (トリオキサン 1モルに対して 0. 0 14モル) と、 分子量調節剤としてメチラール 136 g/H rとを連続的に添加 した。 さらに、 重合触媒として、 三フッ化ホウ素が、 トリオキサン 1モルに対し て 1 . 5 X 1 0一 5モルになるように、 三フッ化ホウ素ジ— n—ブチルエーテラ ート 1重量%のシクロへキサン溶液 1 7 . 2 g ZH rを連続的に添加し重合を行 つた。 連続重合機から排出されたォキシメチレン共重合体をトリェチルァミン 0 . 1 %水溶液中に投入し重合触媒を失活させた。 失活されたォキシメチレン共重合 体を遠心分離機でろ過した。 ここでの粗収率は 8 4 %であった。 この粗重合体は さらに製造例 1と同様の方法で末端安定化処理を行い、 数平均分子量及び分子量 分布 (Mw/M n ) を評価した。
個々の重合機での粗収率を評価した後、 これら 2基の連続重合機から排出され るォキシメチレン共重合体を、 攪拌装置付きの浴槽中でトリェチルァミン 0 . 1 %水溶液中とともに攪拌混合し、 重合触媒を失活させた。 失活されたォキシメチ レン共重合体の混合物を遠心分離機でろ過した。 ろ過後のォキシメチレン共重合 体の混合物 1 0 0重量部に対して、 第 4級アンモニゥム化合物として水酸化コリ ン蟻酸塩 (トリメチル— 2—ヒ ドロキシェチルアンモニゥムフオルメート) を含 有した水溶液 1重量部を添加して、 均一に混合した後 1 2 0 °Cで乾燥した。 水酸 化コリン蟻酸塩の添加量は窒素の量に換算して 2 0 p p mとした。 水酸化コリン 蟻酸塩の添加量の調整は、 添加する水酸化コリン蟻酸塩を含有した水溶液中の水 酸化コリン蟻酸塩の濃度を調整することにより行った。 この乾燥後のォキシメチ レン共重合体の混合物 1 0 0重量部に対して、 酸化防止剤として、 2 , 2 ' ーメ チレンビス一 (4—メチル一 t—ブチルフエノール) を 0 . 3重量部添加し、 ベ ント付き 2軸スクリュー式押出機に供給した。 押出機中の溶融しているォキシメ チレン共重合体の混合物 1 0 0重量部に対して水を 0 . 5重量部添加し、 押出機 設定温度 2 0 0 °C、 押出機における滞留時間 5分で不安定末端部の分解を行った。 不安定末端部の分解されたォキシメチレン共重合体の混合物はベント真空度 2 0 T o r rの条件下に脱揮され、 押出機ダイス部より冷水浴中に押出してペレツト ィ匕した。 このペレット 1 0 0重量部にさらに、 ジステアリン酸カルシウムを 0 . 1重量部、 ジパルミチン酸カルシウムを 0 . 0 5重量部、 ナイロン 6 6を 0 . 0 5重量部、 エチレングリコールジステアレートを 0 . 0 2 5重量部、 エチレング リコ一ルジパルミテートを 0 . 0 0 5重量部混合し、 ベント付き単軸押出機で溶 融混鍊することにより、 最終のぺレッ トを得た。 このペレッ トを 8 0 °Cで 3時間 乾燥した後、 樹脂温度 200°C、 金型温度 70°〇で八≤丁1^—0—638に準拠 するダンベルを射出し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 ウエルド特 性及び、 熱安定性を評価した。 これらの結果を表 3にまとめて示す。
実施例 24
熱媒を通すことができるジャケット付きの 2軸パドル型連続重合機 (スクリュ 一径 3インチ、 LZD= 10) を 80°Cに調整し、 12 k gZH rのトリオキサ ンと、 コモノマーとして 1, 3—ジォキソラン 143 g/H r (トリオキサン 1 モルに対して 0. 014モル) と、 分子量調節剤としてメチラール 14 gZH r とを連続的に添加した。 さらに、 重合触媒として、 三フッ化ホウ素が、 トリオキ サン 1モルに対して 1. 5 X 10 モルになるように、 三フッ化ホウ素ジ一 n —プチルエーテラート 1重量%のシク口へキサン溶液 39. 6 g/H rを連続的 に添加し重合を行った。 重合反応開始後、 重合機の中央 (原料投入口から LZD =5の距離) に設けた原料追添口から 5. 2 k g/H rのトリオキサンと、 コモ ノマーとして 1, 3—ジォキソラン 62 g/H r (トリオキサン 1モルに対して 0. 014モル) と、 分子量調節剤としてメチラール 136 g/H rとを連続的 に追添して重合を行った。
連続重合機から排出されたォキシメチレン共重合体をトリェチルァミン 0. 1
%水溶液中に投入し重合触媒を失活させた。 失活されたォキシメチレン共重合体 を遠心分離機でろ過した。 ここでの粗収率は 88%であった。 ろ過後のォキシメ チレン共重合体 100重量部に対して、 第 4級アンモニゥム化合物として水酸化 コリン蟻酸塩 (トリメチル— 2—ヒ ドロキシェチルアンモニゥムフオルメート) を含有した水溶液 1重量部を添加して、 均一に混合した後 120 °Cで乾燥した。 水酸化コリン蟻酸塩の添加量は窒素の量に換算して 20 p p mとした。 水酸化コ リン蟻酸塩の添加量の調整は、 添加する水酸化コリン蟻酸塩を含有した水溶液中 の水酸化コリン蟻酸塩の濃度を調整することにより行った。 この乾燥後のォキシ メチレン共重合体 100重量部に対して、 酸化防止剤として、 2, 2 ' ーメチレ ンビス一 (4 メチルー t ブチルフエノール) を 0. 3重量部添加し、 ベント 付き 2軸スクリユー式押出機に供給した。 押出機中の溶融しているォキシメチレ ン共重合体 100重量部に対して水を 0. 5重量部添加し、 押出機設定温度 20 0°C、 押出機における滞留時間 5分で不安定末端部の分解を行った。 不安定末端 部の分解されたォキシメチレン共重合体はベント真空度 2 OT o r rの条件下に 脱揮され、 押出機ダイス部より冷水浴中に押出してペレッ ト化した。 このペレツ ト 1 00重量部にさらに、 ジステアリン酸カルシウムを 0. 1重量部、 ジパルミ チン酸カルシウムを 0. 05重量部、 ナイロン 6 6を 0. 05重量部、 エチレン グリコールジステアレートを 0. 025重量部、 エチレングリコールジパルミテ ートを 0. 00 5重量部混合し、 ベント付き単軸押出機で溶融混鍊することによ り、 最終のペレッ トを得た。 このペレッ トを 80。Cで 3時間乾燥した後、 樹脂温 度 200°C、 金型温度 7 0°CでASTM—D—6 3 8に準拠するダンベルを射出 し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 ウエルド特性及び熱安定性を評 価した。 またペレットから数平均分子量及び分子量分布 (MwZMn) も評価し た。 これらの結果を表 3にまとめて示す。
実施例 25
熱媒を通すことができる 2基のジャケット付きの 2軸パドル型連続重合機 (ス クリュー径 3インチ、 LZD= 1 0) をそれぞれ 80°Cに調整し、 1方の重合機 では 1 2 k gZH rのトリオキサンと、 コモノマーとして 1, 3—ジォキソラン 1 43 g/H r (トリオキサン 1モルに対して 0. 0 1 4モル) と、 分子量調節 剤としてメチラール 1 3. 5 g/H r及び、 下記式で表される 2 3°C、 1気圧下 で液状の、 両末端がヒドロキシェチル化された水素添加ポリブタジエン 1 2 gZ H rとを連続的に添加した。
H CH2CH3 H
HO- (C) 2 (CHCH2) m— (CH2CH2CH2CH2) n (C) 2— OH
H H
(式中、 m= 80mo l %、 n = 2 0mo l %、 nは mに対してランダムに存在 する。 数平均分子量は 2 3 90、 ョゥ素価 1 8 g— I 2/1 00 g、 Mw/Mn = 1. 5)
さらに、 重合触媒として、 三フッ化ホウ素が、 トリオキサン 1モルに对して 1. 5 X 1 0— 5モルになるように、 三フッ化ホウ素ジー n—ブチルエーテラート 1 重量。 /0のシクロへキサン溶液 3 9 . 6 g /H rを連続的に添加し重合を行った。 連続重合機から排出されたォキシメチレン共重合体をトリェチルァミン 0 . 1 % 水溶液中に投入し重合触媒を失活させた。 失活されたォキシメチレン共重合体を 遠心分離機でろ過した。 ここでの粗収率は 8 6 %であった。 この粗重合体はさら に製造例 1と同様の方法で末端安定化処理を行い、 数平均分子量及び分子量分布 (Mw/M n ) を評価した。
同時にもう 1方の重合機では 5 . 2 k g ,H rのトリオキサンと、 コモノマー として 1 , 3—ジォキソラン 6 2 g ZH r (トリオキサン 1モルに対して 0 . 0 1 4モル) と、 分子量調節剤としてメチラール 1 3 6 g /H rとを連続的に添カロ した。 さらに、 重合触媒として、 三フッ化ホウ素が、 トリオキサン 1モルに対し て 1 . 5 X 1 0— 5モルになるように、 三フッ化ホウ素ジ一 n—ブチルエーテラ ート 1重量。 /。のシクロへキサン溶液 1 7 . 2 g ZH rを連続的に添加し重合を行 つた。 連続重合機から排出されたォキシメチレン共重合体をトリェチルァミン 0 . 1 %水溶液中に投入し重合触媒を失活させた。 失活されたォキシメチレン共重合 体を遠心分離機でろ過した。 ここでの粗収率は 8 4 %であった。 この粗重合体は さらに製造例 1と同様の方法で末端安定化処理を行い、 数平均分子量及び分子量 分布 (MwZM n ) を評価した。
個々の重合機での粗収率を評価した後、 これら 2基の連続重合機から排出され るォキシメチレン共重合体を、 攪拌装置付きの浴槽中でトリェチルァミン◦. 1 %水溶液中とともに攪拌混合し重合触媒を失活させた。 失活されたォキシメチレ ン共重合体の混合物を遠心分離機でろ過した。 ろ過後のォキシメチレン共重合体 の混合物 1 0 0重量部に対して、 第 4級アンモニゥム化合物として水酸化コリン 蟻酸塩 (トリメチルー 2—ヒ ドロキシェチルアンモニゥムフオルメート) を含有 した水溶液 1重量部を添加して、 均一に混合した後 1 2 0 °Cで乾燥した。 水酸化 コリン蟻酸塩の添加量は窒素の量に換算して 2 0 p p mとした。 水酸化コリン蟻 酸塩の添加量の調整は、 添加する水酸化コリン蟻酸塩を含有した水溶液中の水酸 化コリン蟻酸塩の濃度を調整することにより行った。 この乾燥後のォキシメチレ ン共重合体の混合物 1 0 0重量部に対して、 酸化防止剤として、 2, 2 ' ーメチ レンビス一 (4ーメチルー t—ブチノレフエノール) を 0. 3重量部添加し、 ベン ト付き 2軸スクリユー式押出機に供給した。 押出機中の溶融しているォキシメチ レン共重合体の混合物 100重量部に対して水を 0. 5重量部添加し、 押出機設 定温度 200°C、 押出機における滞留時間 5分で不安定末端部の分解を行った。 不安定末端部の分解されたォキシメチレン共重合体の混合物はベント真空度 20 To r rの条件下に脱揮され、 押出機ダイス部より冷水浴中に押出してペレツト ィ匕した。 このペレット 1 00重量部にさらに、 ジステアリン酸カルシウムを 0. 1重量部、 ジパルミチン酸カルシウムを 0. 05重量部、 ナイロン 66を 0. 0 5重量部、 エチレングリコールジステアレートを 0. 025重量部、 エチレング リコールジパルミテートを 0. 005重量部混合し、 ベント付き単軸押出機で溶 融混鍊することにより、 最終のぺレッ トを得た。 このペレッ トを 80 °Cで 3時間 乾燥した後、 樹脂温度 200°C、 金型温度 70°Cで ASTM— D— 638に準拠 するダンベルを射出し、 曲げ弾性率、 ロックウェル硬度、 耐薬品性、 ウエルド特 性及び、 熱安定性を評価した。 これらの結果を表 3にまとめて示す。
実施例 26
熱媒を通すことができる 2基のジャケット付きの 5 Lのタンク重合機のうち 1 方に、 脱水したホルムアルデヒ ドガス 600 g/h r、 触媒としてジメチルジス テアリルアンモニゥムァセテート◦. 001 1mo l/h r、 分子量調節剤とし て無水酢酸 0. 6 g/h rを連続的にフィードしながら、 58°Cで重合を行った。 ここでの粗収率は 80 %であった。 この粗重合体はさらに製造例 1 8と同様の方 法で末端安定化処理を行い、 数平均分子量及び分子量分布 (Mw/Mn) を評価 した。
同時にもう 1方の重合機では脱水したホルムアルデヒ ドガス 260 g/h r、 触媒としてジメチルジステアリルアンモニゥムァセテート 0. 0005mo l/ h r、 分子量調節剤として無水酢酸 1 7. 5 g/h rを連続的にフィ一ドしなが ら、 58°Cで重合を行った。 ここでの粗収率は 82%であった。 この粗重合体は さらに製造例 1 7と同様の方法で末端安定化処理を行い数平均分子量及び分子量 分布 (Mw/Mn) を評価した。
個々の重合機での粗収率を評価した後、 これら 2基の重合機から排出されるォ キシメチレン重合体を、 攪拌装置付きの浴槽中でへキサンと無水酢酸の 1対 1混 合物とともに攪拌混合しながら 1 40°CX 2時間反応させることで分子末端を ァセチル化した。 反応後のポリマーを濾取し 2mmHg以下に減圧し、 80°Cに 設定した減圧乾燥機で 3時間かけて乾燥を行った。 これを 210°Cに設定した L /D= 25のベント付き二軸押出機を用い、 スクリュー回転数 100 r pm、 吐 出量 5 k gZh rの条件下で溶融混練して樹脂組成物をペレツトイヒした。 このべ レッ トを 80 °Cで 3時間乾燥した後、 樹脂温度 200 °C、 金型温度 70 °Cで A S TM-D- 638に準拠するダンベルを射出し、 曲げ弾性率、 ロックゥエル硬度、 耐薬品性、 ウエルド特性を測定した。 また、 熱安定性も測定した。 結果を表 2に まとめて示す。
実施例 27
熱媒を通すことができる 2基のジャケット付きの 5 Lのタンク重合機を直列に 接続し、 前段の重合機に脱水したホルムアルデヒ ドガス 600 g/h r、 触媒と してジメチルジステアリルアンモニゥムァセテート 0. 00 1 1 mo l Zh r、 分子量調節剤として無水酢酸 0. 6 g/h rを連続的にフィードしながら、 58 °Cで重合を行った。 ここでの粗重合体を後段の重合機に連続的に移送しながら、 後段の重合機で脱水したホルムアルデヒドガス 260 gZh r、 触媒としてジメ チルジステアリルアンモニゥムァセテート 0. 0005mo l Zh r、 分子量調 節剤として無水酢酸 1 7. 5 g/h rを連続的に追添フィードしながら、 58°C で重合を行った。 後段の重合機から排出されたォキシメチレン重合体は、 攪拌装 置付きの浴槽中でへキサンと無水酢酸の 1対 1混合物とともに攪拌混合しながら 140 °C X 2時間反応させることにより分子末端をァセチル化した。 反応後の ポリマーを濾取し、 2mmHg以下に減圧し、 80 °Cに設定した減圧乾燥機で 3 時間かけて乾燥を行った。 トータルの収率は 81 %であった。 これを 210°Cに 設定した L/D= 25のベント付き二軸押出機を用い、 スクリュー回転数 1 00 r pm、 吐出量 5 k g/h rの条件下で溶融混練して樹脂組成物をペレツト化し た。 このペレッ トを 80 °Cで 3時間乾燥した後、 樹脂温度 200 °C、 金型温度 7 0°Cで ASTM— D— 638に準拠するダンベルを射出し、 曲げ弾性率、 ロック ゥエル硬度、 耐薬品性、 ウエルド特性を測定した。 また、 熱安定性も測定した。 結果を表 2にまとめて示す。
表 1
Figure imgf000044_0001
(*)共重合成分の挿入置は、メチレンォキシド単位に対するエチレンォキシド単位 (あるいはブチレンォキシド単位)のモル比でしめす。
to t
O Or 表 2
Figure imgf000045_0001
o o 表 3
低分子量才キシメチレン 高分子量才キシメチレン 酎薬品性 ウエルド特性 重合本 (A) 合'本 (B) 曲げ弾性率 ぉ晶化 ffi<クウ Iル硬度 (重量増加率 (%)) 熱安定性 数平均分子量 分子量分布 数平均分子量 分子量分布 (GPa) (%) (Mスケール) ァセ卜ン クロ口ホルム 伸度保持率強度保持率 (分) ( n) (Mw/Mn) (Mn) (Mw/Mn) (%) (%) 実施例 23 3400 1.7 82000 1.8 4.4 77 98 0. 11 0.60 97.9 65.6 145 実施例 24 3600 1.8 82000 2.0 4.5 77 99 0. 13 0.62 98.4 64.6 144 実施例 25 3400 1.7 82000 1.9 4.5 72 99 0. 10 0.57 99. 1 67.5 150 実施例 26 1500 2.5 106000 2.6 4.6 77 117 0.05 0.31 98.5 64.5 87 実施例 27 1600 2.6 102000 2.7 4.6 77 118 0.04 0.27 97.8 66.5 86
産業上の利用可能性
本発明によれば、 強化材を使用することなく機械的物性を大幅に改良し、 溶融. 物の流動性及び熱安定性が優れるためにシルバース トリークの発生するまでの限 界滞留時間が長く、 外観に優れた成形品を容易に成形することができ、 成形品の ゥエルド特性やそり性を損なうことがなく、 さらには成形品の口ックゥエル硬度 ゃ耐薬品性に関しても驚くべき改善効果を有するォキシメチレン重合体樹脂組成 物を提供する。

Claims

請求の範囲
1. 直鎖状であり、 数平均分子量が 1 000〜 8000であり、 分子量分布 (Mw/Mn) が 1. 0〜3. 0であり、 0〜 30 m o 1 %のコモノマー成分を 含有する低分子量ォキシメチレン重合体。
2. コモノマー成分含有率が 0〜 0. 8 m o 1 %である請求項 1記載の低分子 量ォキシメチレン重合体。
3. 図 1の DEFGで囲まれた領域内にあるコモノマー成分含有率と融点とを 有する請求項 1又は 2記載の低分子量ォキシメチレン重合体。.
4. モノマー又はモノマーとコモノマーの混合物、 及び該モノマー又はモノマ 一とコモノマーの混合物の 1 k g当たり 0. 1〜1モルの分子量調節剤を原料と し、 該原料 1 mo 1当たり 0. 00001〜0. 0001 m o 1のカチオン開始 剤を重合触媒として用いて連続塊状重合反応によって製造される請求項 1〜3の いずれか一項記載の低分子量ォキシメチレン重合体。
5. 請求項 1〜4のいずれか一項記載の低分子量ォキシメチレン重合体 (A) 1〜500重量部、 及びォキシメチレン単独重合体樹月旨 (B— 1) 、 ォキシメチ レン共重合体樹脂 (B— 2) 、 ォキシメチレンブロック共重合体樹脂 (B— 3) 及びこれらの混合物からなる群から選ばれる、 数平均分子量が 1 5000〜1 0 00000である高分子量ポリオキシメチレン樹脂 (B) 100重量部を含むポ リオキシメチレン樹脂組成物。
6. 前記低分子量ォキシメチレン重合体 (A) の含有量が 10〜 100重量部 である請求項 5記載のポリオキシメチレン樹脂組成物。
7. 前記高分子量ポリオキシメチレン樹脂 (B) 、 1 67〜1 7 1°Cの融点 を有するォキシメチレン共重合体樹脂 (B— 2) である請求項 5又は 6記載のポ リオキシメチレン樹脂組成物。
8. 前記ポリォキシメチレン樹脂組成物が l p pm〜1 0000 p p mの結晶 核剤を含有する、 請求項 5〜 7のいずれか一項記載のポリォキシメチレン樹脂組 成物。
9. 並列に連結された少なくとも二基の連続塊状重合機と、 これらに続く押出 機からなる設備を用いて、 低分子量ォキシメチレン重合体 (A) の粗重合体と高 分子量ポリオキシメチレン樹脂 (B ) の粗重合体を別々の上記重合機で同時に製 造し、 高分子量ポリオキシメチレン樹脂 (B ) の粗重合体 1 0 0重量部と低分子 量ォキシメチレン重合体 (A) の粗重合体 1〜5 0 0重量部とを配合しながら重 合触媒を失活させ、 続いて前記押出機によって該粗重合体に末端安定化処理を施 しながら連続的に均一溶融混合を行う工程を含む、 請求項 5〜 8のいずれか一項 記載のポリォキシメチレン樹脂組成物を連続的に製造する方法。
10. 一基又は直列に連結された少なくとも二基の連続塊状重合機を用いて、 モ ノマー又はモノマーとコモノマーの混合物及び分子量調節剤を、 カチオン開始剤 を重合触媒として用いて重合させ、 次いで得られた重合生成物に、 該カチオン開 始剤を失活させない状態で、 モノマー又はモノマーとコモノマーの混合物、 及び 分子量調節剤を、 得られる低分子量ォキシメチレン重合体が高分子量ポリオキシ メチレン樹脂 1 0 0重量部に対して 1〜5 0 0重量部となるように更に添加して 重合を行うことを含む、 請求項 5〜 8のいずれか一項記載のポリオキシメチレン 樹脂組成物を連続的に製造する方法。
11. 直列又は並列に連結された少なくとも二基のスラリー重合機と、 これらに 続く末端安定化装置と、 押出機とからなる一連の設備において、 ホルムアルデヒ ド及び分子量調節剤を原料とし、 ォニゥム塩系重合触媒を用いて低分子量ォキシ メチレン重合体 (A) の粗重合体及び高分子量ポリオキシメチレン樹脂 (B ) の 粗重合体を別々の上記重合機で同時に製造し、 高分子量ポリオキシメチレン樹脂 ( B ) の粗重合体 1 0 0重量部と低分子量ォキシメチレン重合体 (A) の粗重合 体 1〜5 0 0重量部とを配合しながら重合触媒を失活させ除去し、 得られる重合 体の不安定末端を封鎖し、 続レ、て押出機によつて連続的に均一溶融混合を行うェ 程を含む、 請求項 5〜 8のいずれか一項記載のポリォキシメチレン樹脂組成物を 連続的に製造する方法。
12. 請求項 5〜 8のいずれか一項記載のポリォキシメチレン樹脂組成物を成形 して得られるオフィスオートメーション機器、 音楽、 映像若しくは情報機器、 通 信機器、 電気機器、 電子機器、 玩具、—スポーツ用品、 家具、 住宅設備機器、 又は 自動車用の部品。
PCT/JP2000/004290 1999-07-01 2000-06-29 Polymere d'oxymethylene a faible poids moleculaire et composition de ce polymere WO2001002453A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001508239A JP4560260B2 (ja) 1999-07-01 2000-06-29 低分子量オキシメチレン重合体及びその組成物
DE10082068A DE10082068C5 (de) 1999-07-01 2000-06-29 Niedermolekulares Oxymethylen-Polymeres und Zusammensetzung mit einem Gehalt an diesem Polymeren und Verfahren zur Herstellung
DE10082068T DE10082068T1 (de) 1999-07-01 2000-06-29 Niedermolekulares Oxymethylen-Polymeres und Zusammensetzung mit einem Gehalt an diesem Polymeren
US09/786,168 US6388049B1 (en) 1999-07-01 2000-06-29 Low-molecular weight oxymethylene polymer and composition thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/187380 1999-07-01
JP18738099 1999-07-01

Publications (1)

Publication Number Publication Date
WO2001002453A1 true WO2001002453A1 (fr) 2001-01-11

Family

ID=16205009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004290 WO2001002453A1 (fr) 1999-07-01 2000-06-29 Polymere d'oxymethylene a faible poids moleculaire et composition de ce polymere

Country Status (5)

Country Link
US (1) US6388049B1 (ja)
JP (1) JP4560260B2 (ja)
CN (1) CN1144824C (ja)
DE (2) DE10082068T1 (ja)
WO (1) WO2001002453A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038136A (ja) * 2006-07-11 2008-02-21 Soken Chem & Eng Co Ltd 被スタンパー部材用熱可塑性樹脂組成物及びその成形体
AU2004278408B2 (en) * 2003-10-01 2009-12-03 Surmodics Ivd, Inc. Attachment of molecules to surfaces
US20130190260A1 (en) * 2000-12-01 2013-07-25 Bayer Cropscience Ag Active agent combinations
JP5317312B2 (ja) * 2003-10-24 2013-10-16 旭化成ケミカルズ株式会社 ポリアセタール樹脂組成物及びその成形品
JP2016089069A (ja) * 2014-11-06 2016-05-23 旭化成ケミカルズ株式会社 ポリアセタール樹脂ペレット及び成形体
JP2020041133A (ja) * 2018-09-05 2020-03-19 旭化成株式会社 ポリアセタール樹脂組成物及び金属樹脂組成物

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060252912A1 (en) * 2005-04-15 2006-11-09 Ticona Gmbh Process for preparing polyoxymethylene homo- and copolymers and apparatus suitable for this purpose
US20090048385A1 (en) * 2005-09-16 2009-02-19 Asahi Kasei Chemicals Corporation Masterbatch and composition containing the same
KR100663500B1 (ko) * 2005-11-07 2007-01-02 삼성전자주식회사 휴대용 단말기의 슬라이딩 모듈
US20080161488A1 (en) * 2006-12-27 2008-07-03 Ramabhadra Ratnagiri Polyoxymethylene blends
JP2009215340A (ja) * 2008-03-07 2009-09-24 Polyplastics Co 安定化ポリアセタール共重合体の製造方法
DE102008018967A1 (de) * 2008-04-16 2009-10-22 Ticona Gmbh Oxymethylenpolymere, Verfahren zu deren Herstellung und deren Verwendung
DE102008018966A1 (de) * 2008-04-16 2009-10-22 Ticona Gmbh Verfahren zur Herstellung von Oxymethylen-Polymeren und dafür geeignete Vorrichtung
DE102008018968A1 (de) * 2008-04-16 2009-10-22 Ticona Gmbh Polyoxymethylen-Formmassen und Formkörper und deren Verwendung
DE102008018965A1 (de) 2008-04-16 2009-10-22 Ticona Gmbh Oxymethylen-Copolymere und deren Verwendung sowie Verfahren zur Herstellung von Oxymethylen-Copolymeren
US8840976B2 (en) 2010-10-14 2014-09-23 Ticona Llc VOC or compressed gas containment device made from a polyoxymethylene polymer
EP2505609B1 (en) 2011-04-01 2015-01-21 Ticona GmbH High impact resistant polyoxymethylene for extrusion blow molding
EP2546272A1 (en) 2011-07-15 2013-01-16 Ticona GmbH Process for producing oxymethylene polymers
US8968858B2 (en) 2011-12-30 2015-03-03 Ticona Llc Printable molded articles made from a polyoxymethylene polymer composition
WO2013113879A1 (de) 2012-02-02 2013-08-08 Basf Se Polyoxymethylencopolymere
KR20140121473A (ko) 2012-02-02 2014-10-15 바스프 에스이 열가소성 pom 조성물
JP6054988B2 (ja) * 2012-11-27 2016-12-27 旭化成株式会社 ポリアセタール樹脂組成物及びその成形体
US9062183B2 (en) * 2012-12-20 2015-06-23 Ticona Gmbh Fiber reinforced polyoxymethylene composition with improved thermal properties
US9745467B2 (en) 2012-12-27 2017-08-29 Ticona, Llc Impact modified polyoxymethylene composition and articles made therefrom that are stable when exposed to ultraviolet light
US20140182484A1 (en) * 2012-12-31 2014-07-03 Ticona Gmbh Process For Producing Polyoxymethylene Polymers With Long-Chain Alkyl End Groups, and Polymers Made Therefrom
TW201500443A (zh) 2013-04-18 2015-01-01 Basf Se 聚甲醛共聚物及熱塑性pom組成物
US10961384B2 (en) * 2014-05-21 2021-03-30 Basf Se Process for improving the flexural toughness of moldings
CN106660119B (zh) * 2014-06-02 2019-02-05 巴斯夫欧洲公司 生产烧结模制品的方法
US20160177091A1 (en) * 2014-12-17 2016-06-23 Ticona Gmbh Polyoxymethylene copolymer suited for use in liquid systems
JP6905515B2 (ja) 2015-09-30 2021-07-21 セラニーズ・セールス・ジャーマニー・ゲーエムベーハー 低摩擦できしり音のないアセンブリ
EP3571237A1 (en) * 2017-01-19 2019-11-27 Basf Se Process for making an oxymethylene polymer
EP4036167A1 (en) * 2019-12-24 2022-08-03 Kolon Plastics, Inc. Binder composition for metal powder injection molding
CN111732699A (zh) * 2020-06-01 2020-10-02 湖北三里枫香科技有限公司 一种聚甲醛生产工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255712A (ja) * 1988-08-22 1990-02-26 Polyplastics Co 新規環状アセタール重合体の製造方法
WO1992003487A1 (fr) * 1990-08-21 1992-03-05 Polyplastics Co., Ltd. Procede de production de polyoxymethylene cyclique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538954A1 (de) * 1975-09-02 1977-03-10 Hoechst Ag Verfahren zur herstellung von oxymethylenpolymeren
US4117033A (en) * 1976-12-10 1978-09-26 E. I. Du Pont De Nemours And Company Polyoxymethylene/copolyether-ester blends
JPS5539182A (en) 1978-09-13 1980-03-18 Matsushita Electric Works Ltd Device for protecting square type hook sealing from detaching
US5286807A (en) * 1983-02-07 1994-02-15 E. I. Du Pont De Nemours And Company Impact resistant polyoxymethylene compositions
US4804716A (en) * 1983-02-07 1989-02-14 E. I. Du Pont De Nemours And Company Toughened polyoxymethylene compositions
JP3110788B2 (ja) * 1991-04-03 2000-11-20 旭化成工業株式会社 潤滑特性に優れたポリアセタールブロック共重合体及びその製法
ZA933926B (en) * 1992-06-17 1994-01-03 Amgen Inc Polyoxymethylene-oxyethylene copolymers in conjuction with blomolecules
JPH06172612A (ja) 1992-12-08 1994-06-21 Mitsubishi Gas Chem Co Inc 強化ポリアセタール樹脂組成物
JPH0987477A (ja) * 1995-07-19 1997-03-31 Asahi Chem Ind Co Ltd 熱可塑性重合体組成物
JPH09203487A (ja) 1996-01-25 1997-08-05 Sango Co Ltd 排気管継手
JP3208377B2 (ja) * 1997-08-22 2001-09-10 ポリプラスチックス株式会社 ポリアセタール樹脂の連続製造方法
JP3850546B2 (ja) * 1998-03-09 2006-11-29 ポリプラスチックス株式会社 ポリアセタール樹脂の連続製造方法
JP2000169668A (ja) * 1998-12-02 2000-06-20 Polyplastics Co ポリアセタール樹脂組成物ならびにそれからなる成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255712A (ja) * 1988-08-22 1990-02-26 Polyplastics Co 新規環状アセタール重合体の製造方法
WO1992003487A1 (fr) * 1990-08-21 1992-03-05 Polyplastics Co., Ltd. Procede de production de polyoxymethylene cyclique
US5248762A (en) * 1990-08-21 1993-09-28 Polyplastics Co., Ltd. Process for preparing cyclic polyoxymethylene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130190260A1 (en) * 2000-12-01 2013-07-25 Bayer Cropscience Ag Active agent combinations
AU2004278408B2 (en) * 2003-10-01 2009-12-03 Surmodics Ivd, Inc. Attachment of molecules to surfaces
JP5317312B2 (ja) * 2003-10-24 2013-10-16 旭化成ケミカルズ株式会社 ポリアセタール樹脂組成物及びその成形品
JP2008038136A (ja) * 2006-07-11 2008-02-21 Soken Chem & Eng Co Ltd 被スタンパー部材用熱可塑性樹脂組成物及びその成形体
KR101382442B1 (ko) * 2006-07-11 2014-04-08 소켄 케미칼 앤드 엔지니어링 캄파니, 리미티드 피스탬퍼 부재용 열가소성 수지 조성물 및 그 성형체
JP2016089069A (ja) * 2014-11-06 2016-05-23 旭化成ケミカルズ株式会社 ポリアセタール樹脂ペレット及び成形体
JP2020041133A (ja) * 2018-09-05 2020-03-19 旭化成株式会社 ポリアセタール樹脂組成物及び金属樹脂組成物
JP7301664B2 (ja) 2018-09-05 2023-07-03 旭化成株式会社 ポリアセタール樹脂組成物及び金属樹脂組成物

Also Published As

Publication number Publication date
DE10082068B4 (de) 2006-05-04
DE10082068C5 (de) 2009-02-05
DE10082068T1 (de) 2001-07-26
JP4560260B2 (ja) 2010-10-13
CN1315972A (zh) 2001-10-03
US6388049B1 (en) 2002-05-14
CN1144824C (zh) 2004-04-07

Similar Documents

Publication Publication Date Title
WO2001002453A1 (fr) Polymere d&#39;oxymethylene a faible poids moleculaire et composition de ce polymere
US6506850B1 (en) Polyoxymethylene copolymer and composition thereof
US6384179B2 (en) Polyacetal resin composition
JP5317312B2 (ja) ポリアセタール樹脂組成物及びその成形品
JP5371897B2 (ja) ポリアセタールコポリマーの製造方法
JP4270787B2 (ja) ポリオキシメチレン樹脂組成物
US8765850B2 (en) Polyacetal resin composition and preparation process thereof
JP4931275B2 (ja) ポリアセタール樹脂組成物
JP4624963B2 (ja) 分岐ポリオキシメチレン共重合体の製造方法
JP4387619B2 (ja) 分岐ポリオキシメチレン共重合体及びその樹脂組成物
JP5031196B2 (ja) 不安定末端基分解処理剤を用いた、安定化ポリアセタール樹脂の製造方法
JP4248712B2 (ja) ポリオキシメチレン樹脂改質剤及びこれを用いたポリオキシメチレン樹脂組成物
JP2017160332A (ja) ポリアセタールコポリマー、ポリアセタールコポリマーの製造方法、およびポリアセタール樹脂組成物
JP5281541B2 (ja) ポリアセタール樹脂組成物
JP2017160333A (ja) ポリアセタールコポリマー、コポリマーの製造方法、およびポリアセタール樹脂組成物
JP2001172345A (ja) ポリオキシメチレン樹脂改質剤及びこれを用いた樹脂組成物及び成形体
JP2000159850A (ja) ポリアセタールコポリマー及びその組成物
CN109721943B (zh) 聚缩醛树脂组合物
JP2005232404A (ja) ポリアセタール樹脂組成物
JP2007238875A (ja) ポリアセタール重合体
JP2007262107A (ja) ポリアセタール共重合体の製造方法
JP4889157B2 (ja) ポリオキシメチレン樹脂組成物
JP2007211193A (ja) 新規なポリオキシメチレン重合体
JP2002363233A (ja) オキシメチレンコポリマの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801309.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP SG US

WWE Wipo information: entry into national phase

Ref document number: 09786168

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10082068

Country of ref document: DE

Date of ref document: 20010726

WWE Wipo information: entry into national phase

Ref document number: 10082068

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607