WO2000014604A1 - Composition-precurseur de resine photosensible positive et procede de fabrication correspondant - Google Patents

Composition-precurseur de resine photosensible positive et procede de fabrication correspondant Download PDF

Info

Publication number
WO2000014604A1
WO2000014604A1 PCT/JP1999/004849 JP9904849W WO0014604A1 WO 2000014604 A1 WO2000014604 A1 WO 2000014604A1 JP 9904849 W JP9904849 W JP 9904849W WO 0014604 A1 WO0014604 A1 WO 0014604A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
organic group
photosensitive resin
carbon atoms
represented
Prior art date
Application number
PCT/JP1999/004849
Other languages
English (en)
French (fr)
Inventor
Masao Tomikawa
Naoyo Okamoto
Satoshi Yoshida
Ryoji Okuda
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29048198A external-priority patent/JP4026246B2/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP99940701A priority Critical patent/EP1037112B1/en
Priority to DE69922155T priority patent/DE69922155T2/de
Priority to KR1020007004957A priority patent/KR100605414B1/ko
Publication of WO2000014604A1 publication Critical patent/WO2000014604A1/ja
Priority to US09/567,106 priority patent/US6723484B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1025Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds

Definitions

  • the present invention can be used for an interlayer insulating film, a buffer coat film, an ⁇ -ray shielding film, etc. of a semiconductor device, etc., and is exposed to actinic radiation.
  • the present invention relates to a photosensitive resin composition capable of forming a pattern by dissolving an exposed portion in an aqueous alkaline solution.
  • Heat-resistant resins such as polyimide are used in the semiconductor field to form interlayer insulation films, buffer coat films, ⁇ -ray shielding films, and the like. In order to use polyimide for these applications, it is necessary to pattern the polyimide film for the purpose of forming through holes.
  • a solution of a polyamic acid as a polyimide precursor is applied to a substrate, and is converted into polyimide by heat treatment. Then, a relief pattern of a positive photoresist is formed on the polyimide film, and this is used as a mask. The pattern is processed by selectively etching the polyimide film with a hydrazine-based etching agent.
  • the above-described method has a problem that the process is complicated because it includes steps such as application and stripping of a photoresist, and that a decrease in dimensional accuracy is reduced due to side etching. For these reasons, a photosensitive resin composition which is a heat-resistant resin or a precursor which can be converted into a heat-resistant resin by heat treatment or the like and which itself can be patterned has been examined.
  • the photosensitive resin composition Since the photosensitive resin composition has a pattern accuracy that can be adapted to the pattern formation of the passivation film, the photosensitive resin precursor composition is first subjected to pattern processing and curing on the passivation film before pattern formation. Next, a method of performing dry etching of the underlying passivation film using this pattern as a mask has been examined (lump hole method). According to this method, the process required for forming the pattern of the passive film is omitted. Can lead to cost reductions.
  • the photosensitive resin composition When the photosensitive resin composition is used, it is usually applied to a substrate in a solution state and dried, and irradiated with actinic rays through a mask.
  • the negative photosensitive resin precursor composition in which the exposed portion remains after development includes a carbon-carbon double bond and an amino group or a quaternized salt thereof that can be dimerized or polymerized by actinic radiation with a polyamic acid.
  • Japanese Patent Publication No. 59-52882 Japanese Patent Publication No. 59-52882
  • polyamide acid and acrylamides Japanese Patent Application Laid-Open No.
  • Examples of the positive photosensitive resin composition in which the exposed portion is dissolved by development with an aqueous solution include a polyimide precursor introduced by an o-nitrobenzyl group ester bond (Japanese Patent Application Laid-Open No. 60-37555). ), A mixture of a polyamic acid ester and an o-quinonediazide compound (Japanese Patent Application Laid-Open No. 2-181149), a method of converting an o-quinonediazide into a polyamic acid or a polyamic acid ester having a phenolic hydroxyl group. Compound (Japanese Patent Application Laid-Open No.
  • the polyimide precursor in which the o-hydroxyl benzyl group is introduced by an ester bond has a problem in that the photosensitive wavelength is mainly at most 300 nm and the sensitivity is low.
  • a mixture of a polyamic acid ester and an o-quinonediazide compound has a problem in that the sensitivity is low and the development time is long because the dissolution rate in an alkali developing solution is low.
  • a mixture of a polyamic acid or a polyimide having a phenolic hydroxyl group and an O-quinonediazide compound improved the dissolution rate in an alkaline developing solution, but it was difficult to control the dissolution rate. was there.
  • the dissolution rate of the mixture of polyhydroxyamide and o-quinonediazide compound in an alkaline developer was improved, but the problem was that the polymer composition had to be changed in order to further control the dissolution rate. there were.
  • the present invention has been made in view of the above-mentioned drawbacks of the prior art, and has as its object the ability to adjust the dissolution time in an aqueous alkaline solution, and the high transparency and high sensitivity of the polymer at the wavelength to be exposed.
  • the present invention comprises (a) a polymer having a structural unit whose structural unit is represented by the general formula (1) as a main component, and (b) a photoacid generator. And positive patterning, characterized in that all carboxyl groups contained in the self-polymer 19 are at least 0.02 mmol and not more than 2.0 mmoI. It is a resin composition.
  • the polymer represented by the general formula (1) may be a polymer having an imide ring, an oxazole ring, or another polymer having a cyclic structure by heating or an appropriate catalyst.
  • the polymer mainly composed of the structural unit represented by the general formula (1) preferably has a hydroxyl group.
  • the solubility in an aqueous alkali solution becomes better than that of a polyamic acid having no hydroxyl group.
  • phenolic hydroxyl groups are preferred from the viewpoint of solubility in an aqueous alkaline solution.
  • the residue forming R ′ represents an acid-like component.
  • the acid component contains an aromatic ring and has 1 to 4 hydroxyl groups.
  • a trivalent to octavalent group of numbers 2 to 60 is preferred. ⁇ that R 'does not include a hydroxyl group, it is desirable that R 2 component contains 4 hydroxyl groups from one.
  • Such an example is shown in general formula (6).
  • R 7 and R 9 each represent a trivalent to tetravalent organic group selected from 2 to 20 carbon atoms
  • R 8 represents a trivalent to hexavalent organic group having a hydroxyl group selected from 3 to 20 carbon atoms
  • R 1 ° and R 11 each represent hydrogen or a monovalent organic group having 1 to 10 carbon atoms
  • R 1 D and R 11 all represent a hydrogen atom or 1 to 1 carbon atoms It is not a monovalent organic group up to 0.
  • r and t represent an integer of 1 or 2
  • s represents an integer of 1 to 4.
  • hydroxyl group is preferably located at a position adjacent to the amide bond.
  • examples of such a structure include those as shown in the following (10), but the present invention is not limited thereto.
  • the (R is a hydrogen atom or a monovalent organic group having from 1 to 20 carbon atoms), a residue containing R 1, tetracarboxylic acid having no hydroxyl group, Torigatana Rubonic acid and dicarboxylic acid can also be used.
  • examples thereof include aromatic tetrafluorocarboxylic acids such as pyromellitic acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, diphenylethertetracarboxylic acid, and diphenyl: Lnylsulfonetetracarboxylic acid.
  • Diester compounds in which two acids or their carboxyl groups are converted to methyl or ethyl groups Diester compounds in which two acids or their carboxyl groups are converted to methyl or ethyl groups, aliphatic tetracarboxylic acids such as butanetetracarboxylic acid and cyclopentanetetracarboxylic acid, and two carboxyl groups thereof to methyl or ethyl groups
  • aromatic tricarboxylic acids such as trimellitic acid, trimesic acid, naphthalene tricarboxylic acid and the like can be mentioned.
  • the residue constituting R 2 represents a diamine amine structural component.
  • preferred examples of R 2 are those having an aromatic property and having 1 to 4 hydroxyl groups from the viewpoint of heat resistance of the obtained polymer.
  • the R ′ component preferably contains 1 to 4 hydroxyl groups. Further, the hydroxyl group is preferably located at a position adjacent to the amide bond.
  • Specific examples include compounds such as bis (aminohydroxyphenyl) hexafluropropane, diaminodihydroxypyrimidine, diaminodihydroxypyridine, hydroxydiaminovirimidine, diaminophenol, and dihydroxybenzene, as shown below. There are various things.
  • R 2 components more preferable are those represented by the general formula (7), Compounds having a structure as shown in (8) and (9) can be mentioned. Among them, specific examples of the preferred structure are exemplified by the general formulas (11), (12) and (13).
  • R 12 and R 14 each represent a trivalent to tetravalent organic group having a hydroxyl group selected from 2 to 20 carbon atoms, and R 13 represents a divalent organic group selected from 2 to 30 carbon atoms.
  • U, and V represent integers of 1 or 2.
  • R 15, R 17 represents a divalent organic group selected from 2 to 30 carbon atoms
  • R 16 represents a hexavalent organic group trivalent having a hydroxyl group selected from the carbon number 2 20.
  • w represents an integer from 1 to 4.
  • R and 8 each represent a divalent organic group selected from 2 to 30 carbon atoms
  • R 19 represents a trivalent to hexavalent organic group having a hydroxyl group selected from 2 to 20 carbon atoms. Indicates an integer from ⁇ to 4
  • a diamine containing no hydroxyl group can be used.
  • examples include phenylenediamine, diaminodiphenyl ether, aminophenyloxybenzene, diaminodiphenylmethane, diaminodiphenylsulfone, bis (trifluromethyl) benzidine, bis (aminophenyloxyphenyl) propane, bis (aminophenol).
  • These diamine compounds are used alone or in combination of two or more. These are preferably used in an amount of 40 mol% or less of the diamine component. If the copolymerization is at least 40 mol%, the heat resistance of the obtained polymer will decrease.
  • a diamine compound having a siloxane structure can be used as long as the heat resistance is not reduced.
  • Jia with Siloxane Kajizo As the mine compound, for example, bis (3-aminopropyl) tetramethyldisiloxane, bis (3-aminopropyl) tetraphenyldisiloxane, bis (4-aminopropyl: Lnyl) tetramethyldisiloxane and the like are used. Is done.
  • R 3 in the general formula (1) represents hydrogen or an organic group having 20 to 20 carbon atoms. If the carbon number of R 3 exceeds 20, it will not be dissolved in the aqueous alkali solution.
  • R 3 is preferably an organic group from the viewpoint of the stability of the obtained photosensitive resin solution, but is preferably hydrogen in view of the solubility of the aqueous alkali solution. That is, it is not preferable that R 3 be all hydrogen or all organic groups.
  • the carboxyl group in the polymer be contained in an amount of from 0.02 mmol to 2.0 mmol in 1 g of the polymer. More preferably, it is not less than 0.05 mmo I and not more than 1.5 mmo I. If it is less than 0.05 mmol, the solubility in the developing solution will be too low, and if it is more than 2.Ommol, there will be little difference in the dissolution rate between exposed and unexposed areas.
  • m represents 1 or 2
  • p and q are integers from 0 to 4 and P + q> 0. When P is 5 or more, the properties of the obtained heat-resistant resin film deteriorate.
  • the amount of residual carboxyl groups by imidizing some of the carboxyl groups.
  • the imidation method any known method may be used as long as it can be imidized.
  • the ratio of imidization is preferably 1% or more and 50% or less. If the imidization ratio exceeds 50%, the absorption of the polymer by actinic radiation used for exposure increases, and the sensitivity decreases.
  • the polymer represented by the general formula ( ⁇ ) is as transparent as possible to the actinic radiation to be exposed. Therefore, the absorbance of the polymer at 365 nm is preferably 0.1 or less per 1 ⁇ m of the film thickness. More preferably, it is 0.08 or less. Exceeding 0.1 reduces the sensitivity to exposure to 365 nm actinic radiation.
  • the positive photosensitive resin composition of the present invention may be composed of only structural units represented by the general formula (1), or may be a copolymer or a blend with other structural units. Is also good. In this case, it is preferable that the content of the structural unit represented by the general formula (1) is 90 mol% or more. Type and amount of structural units used for copolymerization or blending It is preferable to select a value within a range that does not impair the heat resistance of the polyimide-based polymer obtained by the final heat treatment film.
  • R 1 is a trivalent to octavalent organic group having at least 2 or more carbon atoms
  • R 2 is a divalent to hexavalent organic group having at least 2 or more carbon atoms.
  • M is an integer of 1 or 2
  • P is an integer of 0 to 4, and p + q> 0.
  • the polymer having the structural unit represented by the general formula (2) of the present invention as a main component is synthesized by a known method. For example, a method of reacting tetracarboxylic dianhydride with a diamine compound at a low temperature (CE Sroog et al., Journal Polymer S It can be synthesized in cience magazine, PartA-3, 1373 (1965)).
  • R 4 and R 5 each represent a hydrogen atom, or a monovalent organic group having 1 or more carbon atoms, a nitrogen-containing organic group, or an oxygen-containing organic group. R 4 and R 5 may be the same or different.
  • R 6 represents a monovalent organic group having 1 or more carbon atoms.
  • R 4 represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms
  • R 5 represents a hydrogen atom or a monovalent organic group having 1 or more carbon atoms, a nitrogen-containing organic group, and an oxygen-containing organic group.
  • R 6 in the general formulas (3) and (4) represents a divalent organic group having 1 or more carbon atoms
  • R 7 represents a divalent organic group having 1 or more carbon atoms
  • R 7 represents a cyclic divalent organic group.
  • Preferred examples of the compound represented by the general formula (4) include N-methylpyrrolidone dimethyl acetal, N-methylpyrrolidone decyl acetal, N-methylpyrrolidone dipropylacetyl, and N-methylpyrrolidone dibutyl acetate. Cetal, abutyrolactone dimethyl acetal, gabethylolactone dimethyl acetal and the like can be mentioned.
  • Specific examples of the compound represented by the general formula (5) are methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, cyclohexyl vinyl ether But not limited thereto. .
  • tert-butyl vinyl ether, cyclohexyl vinyl ether, and isopropyl butyl ether are used.
  • an imidization reaction proceeds as a side reaction, but the esterification reaction
  • the ratio of the imidization reaction with respect to can be suppressed by selecting the reaction conditions, that is, by selecting the reaction solvent, the reaction temperature, and the like.
  • Reaction solvents include N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidozolidinone, hexamethylphospho Non-protonic polar solvents such as loamide and butyrolactone are preferred, and N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, N-dimethylacetamide are more preferred.
  • Other solvents include ketone solvents such as acetone and methyl ethyl ketone, alcohol solvents such as methanol and ethanol, and ester solvents such as propylene glycol monomethyl ether acetate and ethyl lactate.
  • the esterification reaction temperature ranges from 0 to 150, preferably from 20 to 100 ° C, and more preferably from 30 to 80. If the reaction temperature is lower than 0, the time required for the reaction to be completed is long, which is not practical. On the other hand, when the reaction temperature exceeds 150 ° C., the ratio of the imidization reaction becomes high ⁇ , causing problems such as a decrease in the transparency of the polymer and generation of a gel component.
  • an acid compound may be added as a catalyst for accelerating the reaction. good.
  • Such an acid compound can be used in an amount of 0.01 to 10 mol% based on the carboxyl group for the purpose of selectively promoting the reaction.
  • Specific examples of the acid catalyst include, but are not limited to, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, and oxalic acid.
  • phosphoric acid or oxalic acid having a large pKa value is used.
  • an acid catalyst with a higher PK a value generates a counteraniline with higher nucleophilicity, This is considered to suppress the polymerization reaction.
  • acids such as trifluroic acid, p-toluenesulfonic acid and methanesulfonic acid, and bases such as triethylamine and pyridine are used in the range of 0.01 to 10 mol%. You can also.
  • the amount of the compound represented by the general formula (3), (4) or (5) can be determined by the concentration of the carboxyl group in the polymer represented by the general formula (2).
  • carboxylic acid As other esterification of carboxy. Group, it is also possible to use carboxylic acid as a metal salt, react with alkyl halide, react with diazomethane, react with dialkyl sulfate, etc. .
  • reaction solvent examples include N-methyl-12-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolidinone, and hexane.
  • NMP N-methyl-12-pyrrolidone
  • An aprotic polar solvent such as methylphosphoramide and butyrolactone is preferred, and N-methyl-2-pyrrolidone, N, N-dimethylformamide and N, N-dimethylacetamide are more preferred.
  • Reaction temperatures range from 110 to 150, preferably from 0 to 80 ° C, and more preferably ⁇ 10 to 60. If the reaction temperature is lower than 100, the time until the reaction is completed becomes longer, which is not practical. Further, when the reaction temperature exceeds 150, problems such as a decrease in polymer transparency, generation of a gel component, and a decrease in physical properties of a cured film are likely to occur due to a reaction such as an imidization
  • the treatment of the polymer represented by the general formula (2) with the compound represented by the general formulas (3), (4) and (5) is performed by dissolving the general formula (2) in an organic solvent. (3), (4), (5) and, if necessary, by mixing and stirring an acid catalyst.
  • the solvent used when synthesizing the polymer of the general formula (2) and the polymer are treated with the compound of the general formula (3) and the acid catalyst compound, the solvent after the polymerization has the same general formula ( The treatment can be carried out by mixing and stirring the compounds of 3), (4) and (5).
  • Examples of the photoacid generator used in the present invention include diazonium salts, diazoquinonesulfonic acid amides, diazoquinonesulfonic acid esters, diazoquinonesulfonic acid salts, and nitrobenzene.
  • Compounds that decompose upon irradiation with light to generate an acid such as benzyl ester, sodium salt, halide, halogenated isocyanate, halogenated triazine, bisarylsulfonyldiazomethane and disulfone.
  • an O-quinonediazide compound is desirable because it has the effect of suppressing the water solubility of unexposed areas.
  • Such compounds include 1,2-benzoquinone-12-azido-4-sulfonic acid ester or sulfonamide, 1,2-naphthoquinone-12-diazido-5-sulfonic acid ester or sulfonamide, 1,2- Naphthoquinone-2-diazido 4-sulfonic acid ester or sulfonic acid amide.
  • O-Quinonediazidosulfonyl chlorides and a polyhydroxy compound or a polyamine compound can be obtained by a condensation reaction in the presence of a dehydrochlorination catalyst.
  • polyhydroxy compounds examples include hydroquinone, resorcinol, pyrogallol, bisphenol A, bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) hexafluropropane, 2, 3, 41 Trihydroxybenzophenone, 2,3,4,4'-tetrahydroxybenzophenone, 2,2 ', 4,4'tetrahydroxybenzophenone, tris (4-hydroxyphenyl) methane, 1,1,1-tris (4-hydroxyphenyl) ethane, 1-1 [4- (4-hydroxyphenyl) isopropyl] 1-141 [1,1,1-bis (4-hydroxyphenyl) ethyl] benzene, gallic And methyl gallate and the like.
  • Polyamine compounds include 1,4-phenylenediamine, 1,3-phenylene diamine, 4,4′-diaminodiphenyl ether, 4,4 ′ diaminodiphenylmethane, and 4,4 ′ diaminodiphenylsulfone , 4,4 'diaminodiphenyl sulfide and the like.
  • polyhydroxypolyamine compounds examples include 2,2-bis (3-amino-4-hydroxyphenyl) hexafluropropane, 3,3′-dihydroxybenzidine and the like.
  • the o-quinonediazide compound is used in an amount of preferably 5 to 100 parts by weight, more preferably 10 to 40 parts by weight, per 100 parts by weight of the polymer represented by the general formula (1). It is compounded by. If the amount is less than 5 parts by weight, sufficient sensitivity cannot be obtained, and if it exceeds 100 parts by weight, the heat resistance of the resin composition may be reduced.
  • the positive photosensitive resin composition of the present invention has a general formula obtained by treating a polymer represented by the general formula (2) with a compound represented by the general formula (3), (4) or (5). It is preferable that the polymer represented by (1) and the photoacid generator are dissolved in a solvent and used in a solution state.
  • Solvents include N-methyl-1-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidozolidinone, hexamethylphosphoramide,
  • Non-protonic polar solvents such as ptyrrolactone are used alone or in combination of two or more. However, other solvents may be used as long as they dissolve the polymer represented by the general formula (1) and the photosensitizer. I can do it.
  • the above-mentioned surfactants esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ethanol for the purpose of improving the coating property between the photosensitive precursor composition and the substrate.
  • Alcohols ketones such as cyclohexanone and methyl isobutyl ketone, and ethers such as tetrahydrofuran and dioxane may be mixed.
  • inorganic particles such as silicon dioxide and titanium dioxide, or powder of polyimide can also be added.
  • a silane coupling agent, a titanium chelating agent, or the like is added to the varnish of the photosensitive resin composition in an amount of 0.5 to 10 parts by weight. It can also be pre-treated with such a chemical solution.
  • a silane coupling agent such as methyl methacryloxydimethoxysilane, 3-aminopropylvirtrimethoxysilane, a titanium chelating agent, or an aluminum chelating agent is added to the polymer in the varnish. Added.
  • the above-mentioned coupling agent is mixed with a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl teracetate, propylene glycol monomethyl ether, ethyl lactate, or getyl adipate.
  • a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl teracetate, propylene glycol monomethyl ether, ethyl lactate, or getyl adipate.
  • Surface treatment is performed by spin-coating, dipping, spray-coating, or steaming the solution in which 0.5 to 20 parts by weight are dissolved.
  • the substrate is then allowed to react with the force coupling agent by applying a temperature from 50 to 300 ° C. To progress.
  • the photosensitive resin composition of the present invention is applied on a substrate.
  • a silicon wafer, ceramics, gallium arsenide, or the like is used, but is not limited thereto.
  • a coating method there are methods such as spin coating using a spinner, spray coating, and mouth coating.
  • the thickness of the coating varies depending on the coating method, the solid content concentration of the composition, the viscosity, and the like, but the coating is usually applied so that the thickness after drying is from 0.1 to 150 m.
  • the substrate coated with the photosensitive resin composition is dried to obtain a photosensitive resin composition film. Drying is preferably performed using an oven, a hot plate, infrared rays, etc., at a temperature of 50 ° C to 150 ° C for 1 minute to several hours.
  • the film is irradiated with actinic radiation through a mask having a desired pattern to expose the film.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays.
  • the formation of the heat-resistant resin pattern is achieved by removing the exposed portion using a developer after exposure.
  • the developing solution include an aqueous solution of tetramethylammonium, diethanolamine, getylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, getylamine, methylamine, dimethylamine, and dimethyl acetate.
  • Aqueous solutions of compounds exhibiting alkalinity such as aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine are preferred.
  • polar aqueous solutions such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, arbutyrolactone, and dimethylacrylamide may be added to these aqueous alkali solutions.
  • Solvents alcohols such as methanol, ethanol, and isopropanol; esters such as ethyl lactate and propylene glycol monomethyl ether acetate; ketones such as cyclobennone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone
  • ketones such as cyclobennone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone
  • rinsing treatment may be performed by adding alcohols such as ethanol and isopropyl alcohol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and acids such as carbon dioxide, hydrochloric acid and acetic acid to water.
  • alcohols such as ethanol and isopropyl alcohol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • acids such as carbon dioxide, hydrochloric acid and acetic acid
  • a heat-resistant resin film After development, it is converted to a heat-resistant resin film by applying a temperature of 200 ° C to 500 ° C. This heat treatment is carried out for 5 minutes to 5 hours while selecting the temperature and increasing the temperature stepwise, or while selecting a certain temperature range and continuously increasing the temperature. As an example, heat-treat at 30 ° C, 200 ° C and 350 ° C for 30 minutes each. Alternatively, the temperature may be raised linearly from room temperature to 400 ° C over 2 hours.
  • the heat-resistant resin film formed by the photosensitive resin composition according to the present invention is used for applications such as a passivation film of a semiconductor, a protective film of a semiconductor element, and an interlayer insulating film of a multilayer wiring for high-density mounting. Examples Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. How to measure properties
  • T2ZT 1 X 100 will be 70% or less. Is large, which is not preferable. It is more preferably at least 80%.
  • the polymer solution was applied on a 4-inch silicon wafer on a hot plate so that the film thickness after prebaking would be 7 m, and prebaked at 120 ° C for 3 minutes.
  • a knock ground measurement was performed using a 4-inch silicon wafer to which no polymer solution was applied as a reference.
  • the infrared absorption spectrum of this film was measured using FT-720 manufactured by Horiba, Ltd.
  • heat-treat at 200 for 30 minutes then heat up at 350 for 1 hour, heat-treat at 350 for 1 hour, complete Was subjected to imidization.
  • the infrared absorption spectrum of this sample was measured, and the imidization ratio was determined from the ratio of the peak (1380 cm- 1 ) of the C—N stretching vibration derived from the imidic bond before and after the imidization treatment. That is, 3 when 50 processes 1 380 cm- 1 peak value before and the 1 380 cm- 1 of the peak value of A, 350 ° C after treatment sample B, the imidization ratio I is
  • a polymer solution of about 100 mI was dropped into 5 I of pure water to precipitate a polymer, which was dried under reduced pressure at 80 ° C. for 48 hours using a vacuum drier.
  • 0.5 g of the dried polymer is dissolved in 40 mI of N-methyl-2-pyrrolidone (NMP) and 1 OmI of methanol, and using Shibata Scientific Instrument Engineering Model F702, 1/1/10 normal tetrabutylammonium.
  • NMP N-methyl-2-pyrrolidone
  • OmI N-methyl-2-pyrrolidone
  • the free lipoxyl groups in the polymer were titrated with a solution of hydroxymethanol to determine the content.
  • the carboxyl groups per 1 g of the polymer can be calculated as xm I of a 1Z10 normal tetrabutylammonium hydroxide solution required to reach the neutralization point in this titration.
  • the molar amount of tetrabutylammonium hydroxide required for this neutralization was calculated as X
  • the pre-baked film formed on the silicon wafer was exposed through a mask with various widths, and when developed, the resolution was defined as the minimum width where the pattern of the exposed portion after development was completely dissolved. Therefore, as the width is smaller, a more precise pattern can be obtained, and it can be determined that the resolution is better. Measurement of residual sodium, potassium and iron ions
  • the solid collected by recrystallization was dissolved in 10 OmI of ethanol and 30 OmI of tetrahydrofuran, 2 g of 5% palladium-carbon was added, and the mixture was vigorously searched.
  • hydrogen was introduced with a balloon, and the reduction reaction was performed at room temperature. After about 2 hours, the reaction was terminated after confirming that the balloon did not further collapse.
  • the mixture was filtered to remove the palladium compound as a catalyst, and concentrated by a single evaporator to obtain a diamine compound. This is shown below.
  • the obtained solid was used for the reaction as it was.
  • the melting point was determined to be 3 18 at a heating rate of 10 / min using a Shimadzu Differential Thermal Analyzer DSC-50.
  • 1,2,2-tri (3,5-dimethyl-4-hydroxyphenyl) propane 20.2 g (0.05 mol) and 5-naphthoquinonediazidosulfonyl chloride 40.3 g (0 (1.5 mol) was dissolved in 400 g of 1,4-dioxane and heated to 40 ° C.
  • 15.2 g (0.15 mol) of triethylamine mixed with 40 g of 1,4-dioxane was added dropwise so that the temperature in the system did not become 45 ° C or more. After the addition, the mixture was stirred at 40 for 2 hours.
  • the by-product triethylamine hydrochloride was filtered, and the filtrate was poured into 1% hydrochloric acid 3I. Thereafter, the deposited precipitate was collected by filtration. This precipitate was repeatedly washed twice with 10 I of water and dried in a vacuum dryer at 50 ° C for 20 hours to obtain a naphthoquinonediazide compound.
  • the structure of the obtained compound is shown below.
  • the film thickness of the unexposed portion after the development was 5.6 m, and the reduction in film thickness by the development was 1. Further, the minimum light irradiation amount at the time of pattern formation was as small as 300 mJ / cm 2, and the sensitivity was good. Furthermore, when the cross section of the pattern was observed with an electron microscope, the lines and spaces of 5> um were well resolved.
  • Example 3 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 50 seconds. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after the development was 5.8 m, and the film thickness by the development was as good as 1.2> am. Moreover, the light irradiation amount of time of pattern formation was highly sensitive and 250 m JZc m 2. Further, when the cross section of the pattern was observed with an electron microscope, it was found that the 1 Oyum line was well resolved.
  • Example 3 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 50 seconds. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after the development was 5.8 m, and the film thickness by the development was as good as 1.2> am. Moreover, the light irradiation amount of time of pattern formation was highly sensitive and 250 m JZc m 2. Further, when the cross section of the pattern was observed with an electron microscope, it was found that the 1
  • Example 1 the composition of diamine was changed to 2'2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane (BAHF) 18.3 g (50 mmol) 4,4 'diaminodiphenyl ether 8.0 g (40 mmo I), 1, 3-bis (3-aminopropyl) tetramethyldisiloxane 2.5 g (1 Ommo I) 9
  • Example 4 The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 6.0 m, and the film thickness by development was as good as 1.0 m. The light irradiation amount at the time of pattern formation was as high as 250 mJ / cm 2 . Further, when the pattern cross section was observed with an electron microscope, it was found that lines and spaces of 10> m were well resolved. Example 4
  • Example 5 30 g of this polymer was dissolved in 70 g of GBL, 6 g of the quinonediazide compound 4 NT-300 used in Example 1 was dissolved to obtain a solution of the photosensitive resin composition, which was evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 5.5> um, and the film loss due to development was 1 ⁇ . In addition, the amount of light irradiation for forming the pattern was 300 mJZcm, which was high sensitivity, and the cross section of the pattern was observed with an electron microscope.
  • Example 5 30 g of this polymer was dissolved in 70 g of GBL, 6 g of the quinonediazide compound 4 NT-300 used in Example 1 was dissolved to obtain a solution of the photosensitive resin composition, which was evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 5.5> um, and the
  • Example 2 The mixture was stirred at 50 ° C. for 5 hours with the same composition as in Example 1 to obtain a partially esterified polymer solution.
  • the lipoxyl group in 1 g of this polymer was 0.28 mm 0, the imidation ratio was 8%, and the absorbance at 365 nm was 0.088 per 1 zm.
  • the same photosensitive solution as in Example 1 was prepared using this polymer.
  • Example 6 The evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 5.5 m, and the thickness of the film after development was 1.5 yum. Moreover, the light irradiation amount of time of pattern formation was 300m JZc m 2. When the pattern cross section was observed with an electron microscope, it was found that the 5 m line and space were well resolved.
  • the polymer precipitate was collected by filtration.
  • the polymer was dried in a vacuum dryer at 80 ⁇ for 20 hours.
  • the cal ⁇ 'xyl group in 1 g of this polymer was 0.12 mmo, the imidation ratio was 12%, and the absorbance at 365 nm was 0.066 per m.
  • Example 2 The evaluation was performed in the same manner as in Example 1 except that the developing time was set to 70 seconds. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 5.5> m, and the film loss by development was as good as 1. Further, the light irradiation amount at the time of pattern formation was as high as 250 mJ / cm 2 . In addition, the cross section of the pattern is observed with an electron microscope rep
  • Example 2 The evaluation was performed in the same manner as in Example 1 except that the developing time was 90 seconds. The results are shown in Table 1. As a result, the film thickness of the unexposed portion after development was 5 ⁇ , and the film thickness by development was as good as 1. The light irradiation amount during pattern formation was 450 mJZcm. Further, when the cross section of the pattern was observed by an electron microscope, line 1 was well resolved.
  • a solution of a photosensitive resin precursor was obtained in the same manner as in Example 1 except that N, N-dimethylformamide dimethyl acetal was not added.
  • the carboxyl group in 1 g of this polymer was 2.3 mmol, the imidation ratio was 7%, and the absorbance at 365 nm was 0.083 per 1 ⁇ m.
  • the obtained chloride was dissolved in GBL6Og, and added dropwise to a solution of 36.62 g (100 mmoI) of BAHF and 50 ml of pyridine dissolved in 200 ml of NMP kept at 0 ° C. After continuing stirring at 0 ° C. for 3 hours, the mixture was further stirred for 3 hours (TC for 3 hours. After filtering off insolubles, the filtrate was poured into 5 liters of water to precipitate a polymer.
  • the carboxyl group in 1 g was 0 mmo I, the imidization ratio was 4%, and the absorbance at 365 nm was 0.072 per 1.
  • the residual chlorine ion concentration of this polymer was 100 PP It is problematic for use in semiconductor applications, and the residual sodium, potassium and iron ions were all less than 10 PP m.
  • a light-sensitive resin precursor solution was obtained in the same manner as in Example 1, except that the polymerization and the esterification reaction were performed at 180 ° C.
  • the carboxyl group in 0.1 g of this polymer was 0.1 mmol, the imidation ratio was 65%, and the absorbance at 365 nm was 0.153 per m.
  • the reaction was carried out at 20 for 1 hour and then at 50 ° C for 4 hours. After further cooling to 20, 24.0 g (240 mmol) of tert-butylvinyl ether was added, and the mixture was stirred with 2 O) for 24 hours to obtain a partially esterified polymer solution.
  • the carboxyl group in 1 g of this polymer was 0.38 mmol I, the imidation ratio was 20%, and the absorbance at 365 nm was 0.084 per m.
  • Example 9 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 60 seconds. As a result, the film thickness of the unexposed area after the development was 5.6 m, and the reduction in film thickness by the development was as good as 1.4 m. The minimum light dose for pattern formation was as small as 350 mJ / cm, indicating good sensitivity. Further, when the pattern cross section was observed with an electron microscope, it was found that 1 Ovum lines and spaces were well resolved. Example 9
  • the absorbance at 365 nm was 0.065 per m. Furthermore, the residual sodium, potassium and zirconium concentrations of this polymer were as good as 10 P Pm or less. In addition, the residual chlorine concentration was a good value of 10 P Pm or less.
  • Example 10 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 50 seconds. As a result, the film thickness of the unexposed portion after the development was 5.about., And the film thickness by the development was as good as 1.3 m. Also, no. The light irradiation amount for forming the turn was 400 mJZcm. Further, when the cross section of the pattern was observed by an electron microscope, the l Ovum line was well resolved.
  • Example 10 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 50 seconds. As a result, the film thickness of the unexposed portion after the development was 5.about., And the film thickness by the development was as good as 1.3 m. Also, no. The light irradiation amount for forming the turn was 400 mJZcm. Further, when the cross section of the pattern was observed by an electron microscope, the l Ovum line was well resolved.
  • Example 1 the composition of diamine was changed to 2,2-bis (3-amino-4-hydroxyphenyl) hexafluropropane lopropane (BA HF) 18.3 g (50 mm o I) 4,4 'diamino diphenyl ether
  • the polymer was polymerized in the same manner except that 8.0 g (40 mmol) 1,3-bis (3-aminopropyl) tetramethyldisiloxane was used in an amount of 2.5 g (1 OmmoI).
  • 1 g of this polymer had a carboxyl group of 0.21 mmoI, an imidation ratio of 20%, and an absorbance at 365 nm of 1> um.
  • 30 g of this polymer was dissolved in 70 g of GBL, and 6 g of the quinonediazide compound 4 NT-300 used in Example 1 was dissolved to obtain a solution of the photosensitive resin composition.
  • Example 1 1 The evaluation was performed in the same manner as in Example 1. As a result, the film thickness of the unexposed portion after the development was 6. j m, and the film thickness by the development was as good as 1.0> am. The light irradiation amount for pattern formation was 350 mJZcm, which was high sensitivity. In addition, when the cross section of the pattern was observed with an electron microscope, the lines and spaces of 10 m were well resolved.
  • Example 2 With the same composition as in Example 1, the reaction was carried out until the N, N-dimethylformamide dimethyl acetal was allowed to act to polymerize the polymer. Then, after cooling to 20, 24.0 g (240 mmoI) of tert-butyl vinyl ether was added, and 0.72 g (5.52 mmoI) of phosphoric acid was added dropwise. After stirring at 20 ° C for 24 hours, the polymer solution is poured into pure water to precipitate a polymer and dried in a vacuum dryer at 80 ° C for 24 hours. I let it. The carboxyl group of 1 g of this polymer was 0.08 mmoI, the imidization ratio was 10%, and the absorbance at 365 nm was 0.042 per m. 30 g of this polymer was dissolved in 70 g of GBL, and 6 g of the quinonediazide compound 4NT-1300 used in Example 1 was dissolved to obtain a solution of the photosensitive resin composition.
  • Example 1 2 The evaluation was performed in the same manner as in Example 1. As a result, the film thickness of the unexposed portion after the development was 6.4 jm, and the film thickness by the development was as good as 0.6 um. Moreover, the light irradiation amount on the occasion pattern formation was a 2 50 m JZc m 2 high sensitivity. Furthermore, when the cross section of the pattern was observed with an electron microscope, it was found that the 5 m line and space were well resolved.
  • Example 1 2 The evaluation was performed in the same manner as in Example 1. As a result, the film thickness of the unexposed portion after the development was 6.4 jm, and the film thickness by the development was as good as 0.6 um. Moreover, the light irradiation amount on the occasion pattern formation was a 2 50 m JZc m 2 high sensitivity. Furthermore, when the cross section of the pattern was observed with an electron microscope, it was found that the 5 m line and space were well resolved.
  • Example 13 The evaluation was performed in the same manner as in Example 1. As a result, the film thickness of the unexposed portion after the development was 6.2 m, and the film thickness by the development was as good as 0.8 m. Moreover, the light irradiation amount on the occasion pattern formation was 300 m JZc m 2. Further, when the pattern cross section was observed with an electron microscope, the line and space of 5> am were well resolved. Example 13
  • the carboxyl group in 1 g of this polymer was 0.43 mmoI, the imidation ratio was 11%, and the absorbance at 365 nm was 0.075 per m.
  • a solution of the photosensitive resin composition was obtained.
  • Example 14 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 70 seconds. The results are shown in Table 1. As a result, the film thickness of the unexposed area after the development was 5.8 m, and the film thickness by the development was as good as 1.2> um. In addition, the amount of light irradiation for pattern formation was as high as 350 mJ / cm 2 . Furthermore, when the cross section of the pattern was observed with an electron microscope, lines and spaces of 10> m were well resolved. Example 14
  • the temperature of the solution was kept at 50 ° C, 23.8 g of N, N-dimethylformamide dimethyl acetal (a solution obtained by diluting 200 mmo I with 80 g of NMP) was added, and stirring was continued at 5 O for 2 hours. Then raise the temperature of the solution to 3 The temperature was lowered to 0 ° C, 24 g (400 mmoI) of acetic acid was added together with 30 g of NMP, and the mixture was stirred at 30 for 1 hour to decompose excess acetal compound. After completion of the reaction, the polymer solution was poured into water 10 I to obtain a polymer precipitate. This was collected by filtration and dried in a ventilated oven at 80 for 24 hours. The residual sodium, potassium and iron ion concentrations of this polymer were as good as 10 PPm or less. In addition, the residual chlorine concentration was a good value of 10 ppm or less.
  • the carboxyl group in 1 g of this polymer was 0.44 mmoI, the imidation ratio was 11%, and the absorbance at 365 nm was 0.055 per 1 // m.
  • 30 g of this polymer was dissolved in 70 g of NMP, and 6 g of a naphthoquinonediazide compound MG-300 was dissolved to obtain a solution of a photosensitive resin composition.
  • the carboxyl groups in 1 g of this polymer were as in Example 150.60 mmol, the imidization ratio was 9%, and the absorbance at 365 nm was 0.044 per m, Example 16 0.47 mmol I, imide The imidation rate was 9%, the absorbance at 365 nm was 0.044 per m, Example 1 7 0.41 mmo, the imidation rate was 11%, and the absorbance at 365 nm was 0 per 1 ⁇ m. 045).
  • Example 15 The evaluation was performed in the same manner as in Example 1 except that the development time was changed to 50 seconds (Example 15), 70 seconds (Example 16), and 90 seconds (Example 17).
  • the results are shown in Table 1.
  • the film burrs due to the current image were as good as 1.2 m or less.
  • the light irradiation amount during pattern formation was as high as 25 Om JZcm 2 to 30 Om J / cm 2 . Further, when the cross section of the pattern was observed with an electron microscope, it was found that the 5 m line and the space were well resolved.
  • INDUSTRIAL APPLICABILITY According to the present invention, it is possible to adjust the dissolution rate in an alkaline aqueous solution, and to obtain a highly sensitive photosensitive resin composition having high transparency at an exposure wavelength. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

明細書 ポジ型感光性樹脂前駆体組成物及びその製造方法 技術分野 本発明は、 半導体素子等の層間絶縁膜、 バッファ一コ一卜膜、 α線遮蔽膜などに 利用でき、 化学線で露光することによリ露光した部分がアルカリ水溶液に溶解して パターンを形成できる感光性樹脂組成物に関するものである。 景技術 ポリイミドをはじめとする耐熱性樹脂は、 半導体分野において、 層間絶緣膜、 バ ッファーコート膜、 α線遮蔽膜などの形成に利用されている。 ポリイミドをこれら 用途に用いるは、 スルーホールの形成などの目的でポリイミド膜をパターン加工す る必要がある。 たとえば、 ポリイミド前駆体であるポリアミド酸の溶液を基板に塗 布し、 熱処理によってポリイミドに变換した後、 そのポリイミド膜上にポジ型のフ ォ卜レジストのレリーフパターンを形成し、 これをマスクにしてヒドラジン系エツ チング剤によってポリイミド膜を選択的にエッチングすることによって、 パターン 加工される。 しかし、 上記方法は、 フォ トレジストの塗布や剥離などの工程が含ま れるためにプロセスが複雑である他に、 サイドエツチのために寸法精度が低下が低 下するという問題があった。 これらの理由から、 耐熱性樹脂、 または熱処理などに よって耐熱樹脂に変換可能な前駆体であって、 さらに、 それ自身がパターン加工可 能な感光性樹脂組成物が検肘されてきた。
感光性樹脂組成物はパッシベ一ション膜のパターン 成に適応可能なパターン精 度を有するため、 まずパターン形成前のパッシベ一シヨン膜上に感光性樹脂前駆体 組成物のパターン加工、 キュアを実施し、 つぎにこのパターンをマスクにして下地 のパッシベーション膜のドライエッチを行う方法が検肘されている(一括開孔法)。 この方法によればパッシベ一シヨン膜のパターン形成に要していたプロセスを省略 することができ、 コストダウンにつながる。
感光性樹脂組成物の使用に際しては、 通常、 溶液状態で基板に塗布乾燥し、 マス クを介して活性光線を照射する。 露光した部分が現像により残るネガ型の感光性樹 脂前駆体組成物としては、 ポリアミ ド酸に化学線により 2量化又は重合可能な炭素 一炭素二重結合およびアミノ基叉はその四級化塩を添加したもの (特公昭 5 9— 5 2 8 2 2号公報) 、 ポリアミ ド酸にアクリルアミド類を添加したもの (特開平 3— 1 7 0 5 5 5号公報) 、 炭素一炭素二重結合基を有するポリイミド前駆体と、 特定 の才キシ厶化合物と、 増感剤を含有したもの (特開昭 6 1— 1 1 8 4 2 3号公報) などが知られている。 しかし、 従来のポジ型フォトレジストを使用した非感光性樹 脂組成物のパタ一ン加工プロセスから、 ネガ型感光性樹脂組成物を使用するプロセ スに切り替える場合には、 露光装置のマスクの変更や現像設備の変更などが必要と なる問題があった。 また、 これらのネガ型感光性樹脂組成物は現像に有機溶媒が使 用されるが、 環境汚染防止や作業環境改善の観点から、 有機系現像液に代わり、 水 系現像液で現像できる感光材料が望まれていた。 これらの理由からアルカリ現像可 能なポジ型感光性樹脂組成物が検忖されている。
露光した部分がアル力リ水溶液による現像により溶解するポジ型の感光性樹脂組 成物としては、 ο—二トロベンジル基 エステル結合によって導入したポリイミド 前駆体(特開昭 6 0— 3 7 5 5 0号公報) 、 ポリアミド酸エステルに o—キノンジ アジド化合物を混合したもの (特開平 2— 1 8 1 1 4 9号公報) 、 フヱノール性水 酸基を有するポリアミド酸あるいはポリアミド酸エステルに o—キノンジアジド化 合物を混合したもの (特開平 3— 1 1 5 4 6 1号公報) 、 フヱノール性水酸基を有 するポリイミドに o—キノンジアジド化合物を混合したもの (特開平 3— 1 7 7 4 5 5号公報) 、 ポリヒドロキシアミドに o—キノンジアジド化合物を混合したもの (特公平 1一 4 6 8 6 2号公報) などが知られている。
しかし、 o—二卜口ベンジル基をエステル結合によって導入したポリイミド前駆体 は、感光する波長が主に 3 0 0 n m以下であること、感度が低い点に問題があった。 ポリアミド酸エステルに o—キノンジアジド化合物を混合したものは、 アルカリ現 像液に対する溶解速度が小さいために、 感度が低い点、 現像時間が長い点に問題が あった。 フ: Eノール性水酸基を有するポリアミド酸に o—キノンジアジド化合物を 混合したものは、 アルカリ現像液に対する溶解性が大きすぎるために、 希薄な現像 液にしか適用できない点、 未露光部が現像液によって膨潤するために、 微細なパ夕 —ン加工が困難である点に問題があった。 フエノール性水酸基を有するポリアミド 酸あるいはポリイミドに O—キノンジアジド化合物を混合したものは、 アル力リ現 像液に対する溶解速度は改良されたが、 さらに溶解速度を調節することが困難であ る点に問題があった。 ポリヒドロキシアミドに o—キノンジアジド化合物を混合し たものも、 アルカリ現像液に対する溶解速度は改良されたが、 さらに溶解速度を調 節するためにはポリマ一組成の変更が必要である点に問題があった。 本発明はかか る従来技術の諸欠点に鑑み創案されたもので、 その目的は、 アルカリ水溶液による 溶解時間の調整が可能であり、 かつ露光する波長でのポリマーの透明性が高く、 高 感度の感光性樹脂組成物を提供することにある。 発明の開示 本発明は ( a )構造単位間の結合が一般式( 1 ) で表されるような構造単位を主 成分とするポリマーと ( b ) 光酸発生剤を含有しており、 光照射及びそれにつづく 現像によってパターン形成可能であり、 上 S己ポリマー 1 9中に含まれる全カルボキ シル基が、 0. O 2mmo l以上 2. 0 m m o I以下であることを特徴とするポジ 型感光性樹脂組成物である。
(OH) p 一 [CO— R 1— CON H— R2— NH] n— ( 1 )
I I
(COOR3) m (OH ) q
( R 'は少なくとも 2個以上の炭素原子を有する 3価から 8価の有機基、 R2は、 少なくとも 2個以上の炭素原子を有する 2価から 6価の有機基、 R3は水素、 また は炭素数 1から 20までの有機基であるが、 すべて水素であることはない。 πは 3 から 1 00000までの整数、 mは 1 または 2、 P、 qは 0から 4までの整数、 か つ P + q>0である。 ) 発明を実施するための最良の形態 本発明において、 一般式( 1 ) で表されるポリマ一は、 加熱あるいは適当な触媒 により、 イミド環、 才キサゾ一ル環、 その他の環状搆造を有するポリマ一となり得 るものが好ましい。 環構造となることで、 耐熱性、 耐溶剤性が飛躍的に向上する。 上記一般式( 1 ) で表される様造単位を主成分とするポリマ一は、 水酸基を有する ことが好ましい。この塌合、この水酸基の存在のために、 アルカリ水溶液に対する溶 解性が水酸基を有さないポリアミド酸よりも良好になる。 特に、 水酸基の中でもフ Xノール性の水酸基がアルカリ水溶液に対する溶解性の観点よリ好ましい。
一般式( 1 ) 中、 R 'を樣成する残基は酸の様造成分を表しており、 この酸成分 は芳香族環を含有し、 かつ、 水酸基を 1個から 4個有した、 炭素数 2〜60の 3価 から 8価の基が好ましい。 R 'が水酸基を含まない塌合、 R2成分が水酸基を 1個 から 4個含むことが望ましい。 このような例を一般式(6 ) に示す。
一 R 7— C ON H— R8— N H C 0— R9— ( 6 )
(COOR '°) r (OH) s (COOR 1 1 ) t
( R7、 R9は炭素数 2から 20より選ばれる 3価から 4価の有機基を示し、 R8は 炭素数 3から 20より選ばれる水酸基を有した 3価から 6価の有機基を示し、 R 1 °, R 1 1は水素、 炭素数 1から 1 0までの 1価の有機基のいずれかを示す。 R 1 D、 R 1 1は全てが水素原子、 あるいは炭素数 1から 1 0までの 1価の有機基ではない。 r、 tは 1あるいは 2の整数を示し、 sは 1から 4までの整数を示す。 )
さらに、 水酸基はアミド結合と隣り合った位置にあることが好ましい。 このよう な例として、 下記( 1 0 ) に示すような樣造のものがあげられるが、 本発明はこれ に限定されない。
Figure imgf000007_0001
( 1 0 )
( Rは水素原子または炭素数 1から 20までの 1価の有機基) また、 R 1を含む残基として、 水酸基を有していないテトラカルボン酸、 トリ刀 ルボン酸、 ジカルボン酸を使用することもできる。 これらの例としては、 ピロメリ ッ卜酸、 ベンゾフヱノンテトラカルボン酸、 ビフヱニルテトラカルボン酸、 ジフエ ニルエーテルテトラカルボン酸、 ジフ: Lニルスルホンテトラカルボン酸などの芳香 族テ卜ラ力ルボン酸やその力ルボキシル基 2個をメチル基やェチル基にしたジエス テル化合物、 ブタンテトラカルボン酸、 シクロペンタンテトラカルボン酸などの脂 肪族のテトラカルボン酸やそのカルボキシル基 2個をメチル基やェチル基にしたジ エステル化合物、 トリメリッ卜酸、 卜リメシン酸、 ナフタレン卜リカルボン酸など の芳香族卜リカルボン酸などを挙げることができる。
一般式 ( 1 ) 中、 R 2を構成する残基はジァミンの搆造成分を表している。 この 中で、 R2の好ましい例としては、 得られるポリマーの耐熱性より芳香族を有し、 かつ、水酸基を 1個から 4個有するものが好ましい。 R 2が水酸基を含まない場合、 R '成分が水酸基を 1個から 4個含むことが望ましい。 さらに、 水酸基はアミ ド結 合と隣り合った位置にあることが好ましい。
具体的な例としてはビス(アミノヒドロキシフエニル)へキサフル才ロプロパン、 ジアミノジヒドロキシピリミジン、 ジアミノジヒドロキシピリジン、 ヒドロキシジ アミノビリミジン、 ジァミノフエノール、 ジヒドロキシベンゼンなどの化合物や下 S己に示すような様造のものがあげられる。
Figure imgf000008_0001
( iは 1から 4の整数、 j、 kは 0から 4の整数であり、 j +kは 1以上である。 ) このような R 2成分の中でさらに好ましいのは一般式 ( 7 ) 、 (8) 、 ( 9 ) に 示されたような樣造を有した化合物を挙げることができる。 その中でさらに好まし ぃ搆造の具体的な例を一般式( 1 1 ) 、 ( 1 2 ) 、 ( 1 3) に例示する。 一 R 12— NHCO— R 13— CONH— R 14
I I (7 )
(OH) u (OH ) v
( R 12、 R 14は炭素数 2から 20より選ばれる水酸基を有した 3価から 4価の有 機基を示し、 R 13は炭素数 2から 30より選ばれる 2価の有機基を示す。 、 u、 Vは 1あるいは 2の整数を示す。 )
-R 15-CONH-R '6-NHCO-R '7-
I (8)
(OH ) w
( R 15、 R 17は炭素数 2から 30より選ばれる 2価の有機基を示し、 R 16は、 炭 素数 2から 20より選ばれる水酸基を有した 3価から 6価の有機基を示す。 wは 1 から 4までの整数を示す。 ) 一 R '8— CONH— R,9
I (9 )
(OH) X
(R,8は炭素数 2から 30より選ばれる 2価の有機基を示し、 R 19は、 炭素数 2 から 20より選ばれる水酸基を有した 3価から 6価の有機基を示す。 Xは〗から 4 までの整数を示す
( I I )
Figure imgf000010_0001
0/66df/丄; 3d H)9W/00 OM ( 2 1 )
Figure imgf000011_0001
Figure imgf000011_0002
6^8IO/66df/13d
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
( 1 3 )
また、 一般式( 1 ) の R 2を含む残基として水酸基を含まないジァミンを使用す ることも出来る。 このような例として、 フエ二レンジァミン、 ジアミノジフエ ニルエーテル、 アミノフヱノキシベンゼン、 ジアミノジフエニルメタン、 ジァミノ ジフエニルスルホン、 ビス (トリフル才ロメチル)ベンチジン、 ビス (ァミノフエ ノキシフエニル)プロパン、 ビス (ァミノフエノキシフエニル) スルホンあるいは これらの芳香族環にアルキル基やハロゲン原子で置換した化合物など、 脂肪族のシ クロへキジルジァミン、 メチレンビスシクロへキシルァミンなどが挙げられる。 こ れらのジァミン化合物は、単独又は 2種以上を組み合わせて使用される。 これらは、 ジァミン成分の 4 0モル%以下の使用が好ましい。 4 0モル%以上共重合すると得 られるポリマーの耐熱性が低下する。
基板との接着性を向上させる目的で、 耐熱性を低下させない範囲でシロキサン樣 造を有するジァミン化合物を使用することもできる。 シロキサン楫造を有するジァ ミン化合物としては、 例えば、 ビス ( 3—ァミノプロピル) テトラメチルジシロキ サン、 ビス ( 3—ァミノプロピル) テトラフエニルジシロキサン、 ビス (4一アミ ノフ: Lニル) テ卜ラメチルジシロキサン等が使用される。
一般式 ( 1 ) の R 3は水素、 あるいは炭素数 〜 20の有機基を表している。 R 3の炭素数が 20を越えるとアルカリ水溶液に溶解しなくなる。 得られる感光性樹 脂溶液の安定性からは R 3は有機基が好ましいが、 アルカリ水溶液の溶解性よリ見 ると水素が好ましい。 つまり、 R3はすべて水素であることやすべて有機基である ことは好まし〈ない。 この R3の水素と有機基の量を制御することで、 アルカリ水 溶液に対する溶解速度が変化するので、 この調整により適度な溶解速度を有した感 光性樹脂組成物を得ることが出来る。 このことからポリマ一中のカルボキシル基は ポリマ一 1 g中に 0. 02 mmo l以上 2. 0 m m o I以下含まれることが好まし い。 より好ましくは 0. 05mmo I以上 1 . 5mmo I以下である。 0. 05m mo I より小さいと現像液に対する溶解性が小さくなりすぎ、 2. Ommo l より 大きいと露光部及び未露光部の溶解速度の差がつきにくくなる。 mは 1 または 2 をあらわしており、 p、 qは 0から 4までの整数でかつ P + q>0である。 Pが 5 以上になると、 得られる耐熱性樹脂膜の特性が低下する。
また、 カルボキシル基の一部をイミド化することによって残存カルボキシル基の 量を調節することも可能である。 イミド化の方法としては、 イミド化できれば公知 の方法を用いても特に樣わない。 このときのイミド化の割合は 1 %以上 50%以下 が妤ましい。 イミド化率が 50%を超えると露光に使用する化学線でのポリマーの 吸収が大きくなり、 感度が低下する。
一般式( 〗 ) で表されるポリマ一は露光する化学線に対してできるだけ透明であ ることが望ましい。 そのため、 365 n mにおけるポリマーの吸光度は膜厚 1 um あたり 0. 1以下であることが好ましい。 より好ましくは 0. 08以下である。 0. 1 を超えると 365 n mの化学線での露光に対する感度が低下する。
本発明のポジ型感光性樹脂組成物は、 一般式( 1 ) で表される様造単位のみから なるものであっても良いし、 他の構造単位との共重合体あるいはブレンド体であつ ても良い。 その際、 一般式( 1 ) で表される構造単位を 90モル%以上含有してい ることが好ましい。 共重合あるいはプレンドに用いられる構造単位の種類および量 は最終加熱処理膜によって得られるポリイミ ド系ポリマ一の耐熱性を損なわない範 囲で選択することが好ましい。
一般式( 1 ) で表されるポリマーは一般式( 2 ) で表されるポリマ一中のカルボ キシル基を一般式( 3 ) 、 (4 ) 、 ( 5 ) で表される化合物によって処理すること で得ることができる。
(OH ) p
[C0— Rに CON H— R2— NH] ( 2 ) (COOH) m (OH ) q
( R 1は少なくとも 2個以上の炭素原子を有する 3価から 8価の有機基、 R2は、 少なくとも 2個以上の炭素原子を有する 2価から 6価の有機基である。 nは 3から 1 00000までの整数であり、 mは 1または 2、 P、 qは 0から 4までの整数、 かつ p+q>0である。
R5
R4— C一 OR ( 3 )
〇 R
R7 C一 OR (4 )
OR
H,C=CH-0R ( 5 ) 本発明の一般式( 2 ) で表される構造単位を主成分とするポリマ一は公知の方法 により合成される。 例えば、 低温中でテ卜ラカルボン酸 2無水物とジァミン化合物 を反応させる方法 (C. E. S r o o gら、 J o u r n a l P o l yme r S c i e n c e誌、 P a r tA— 3、 1 373 ( 1 965 ) ) などで合成することが できる。
—般式 ( 3 ) において、 R4、 R 5は水素原子または炭素数 1以上の 1価の有機 基、 含窒素有機基、 含酸素有機基のいずれかを表している。 R4と R5は同一であ つても、 異なっていてもよい。 R6は炭素数 1以上の 1価の有機基を表している。 一般式 ( 3 ) の R 4は水素原子または炭素数 1以上の 1価の有機基を示し、 R5 は水素原子または炭素数 1以上の 1価の有機基、 含窒素有機基、 含酸素有機基のい ずれかを示し、 一般式 ( 3 ) や一般式 (4 ) の R 6は炭素数 1以上の〗価の有機基 を示し、 R 7は炭素数 1以上の 2価の有機基、 含窒素有機基、 含酸素有機基のいず れかを示す。 具体的には、 一般式( 3 ) で表される化合物の場合、 N, N—ジメチ ルホル厶アミドジメチルァセ夕一ル、 N, N—ジメチルホル厶アミドジェチルァセ タール、 N, N—ジメチルホルムアミドジプロピルァセタール、 N, N—ジメチル ホルムアミドジブチルァセタール、 N, N—ジメチルホルムアミドジベンジルァセ タール、 N , N—ジメチルホルムアミドビス [2— (トリメチルシリル) ェチル] ァセタール、 N, N—ジメチルァセ卜アミドジェチルァセタール、 オルトギ酸トリ メチル、 オルトギ酸トリエチル、 オル卜酢酸トリメチル、 才ルト酢酸トリェチル、 才ル卜賂酸卜リメチル、 オルト酪酸トリェチル、 オルト安息香酸トリメチル、 才ル ト安息香酸卜リエチル、 1 , 3—ジメチルイミドゾリジノンジアルキルァセタール、 炭酸エチレンジアルキルァセタール、 炭酸プロピレンジアルキルァセ夕一ル等が挙 げられ、 好ましくは N, N—ジメチルホルムアミドジメチルァセタール、 N, N— ジメチルホル厶アミ ドジェチルァセタール、 N, N—ジメチルホルムアミドジプロ ピルァセタール、 N , N—ジメチルホル厶アミドジ: 7"チルァセタール、 N, N—ジ メチルホル厶ァミドジベンジルァセ夕一ルある。
一般式 (4 ) で表される化合物の例としては、 R7は環状となる 2価の有機基を 表している。 一般式(4 ) で表される化合物として好ましいものとしては N—メチ ルピロリ ドンジメチルァセタール、 N—メチルピロリドンジェチルァセタール、 N 一メチルピロリ ドンジプロピルァセ夕一ル、 N—メチルピロリドンジブチルァセタ ール、 ァ一ブチロラクトンジメチルァセタール、 ゲーブチロラク卜ンジェチルァセ タールなどを挙げることができる。 一般式( 5 ) で表せる化合物として、 具体的に は、 メチルビ二ルェ一テル、 ェチルビ二ルェ一テル、 n —プロピルビニルエーテル、 イソプロピルビニルエーテル、 n—プチルビ二ルェ一テル、 イソブチルビニルエー テル、 t er t—ブチルビ二ルェ一テル、 シクロへキシルビ二ルェ一テルなどが挙げら れるが、 これらに限定されない。 。 好まし〈は、 t e r t—ブチルビ二ルェ一テル、 シ クロへキシルビニルエーテル、 イソプロピルビュルエーテルが用いられる。
一般式( 2 )で表されるポリマ一の一般式( 3 )、一般式( 4 )または一般式( 5 ) によるエステル化処理の際、 副反応としてイミド化反応も進行するが、 エステル化 反応に対するイミド化反応の割合は、 反応条件の選択、 すなわち、 反応溶媒や反応 温度等を選択することによって抑えることが可能である。
反応溶媒としては、 N—メチルー 2—ピロリ ドン ( N M P ) 、 N , N—ジメチル ホル厶アミド、 N, N—ジメチルァセトアミド、 ジメチルスルホキシド、 1 , 3— ジメチルイミドゾリジノン、 へキサメチルホスホロアミド、 ープチロラクトン等 の非プロトン性極性溶媒が好ましく、 N—メチルー 2—ピロリドン、 N, N—ジメ チルホルムアミド、 N , N—ジメチルァセ卜アミドがより好ましい。 これら以外の 溶媒として、 アセトン、 メチルェチルケトンなどのケトン系溶媒、 メタノール、 ェ 夕ノールなどのアルコール系溶媒、 :'ロピレングリコールモノメチルエーテルァセ テート、 乳酸ェチルなどのエステル系の溶媒を全量または一部使用することもでき る。 エステル化反応温度は、 0でから 1 5 0での範囲であり、 好ましくは 2 0でか ら 1 0 0 °Cであり、 より好ましくは 3 0でから 8 0でである。 反応温度が 0でより も低いと、 反応が完結するまでの時間が長くなリ実用的でなくなる。 また、 反応温 度が 1 5 0 °Cを超えるとイミド化反応の割合が高〈なり、 ポリマーの透明性が低下 したり、 ゲル成分が発生するなど問題が生じゃすい。
一般式( 2 ) で表されるポリマ一を一般式( 3 ) 、 (4 ) 、 ( 5 ) で表される化 合物で反応させるときに、 反応を促進する触媒として酸化合物を加えても良い。 こ のような酸化合物の添加量は、 反応を選択的に促進することを目的として、 カルボ キシル基に対して 0 . 0 1〜1 0モル%の範囲で使用することができる。 酸触媒の 具体例としては、 塩酸、 硫酸、 硝酸、 リン酸、 シユウ酸などが挙げられるが、 これ らに限定されない。 好ましくは、 p K a値が大きいリン酸、 シユウ酸が用いられる。 これは P K a値が高い酸触媒ほど求核性の高いカウンターァニ才ンを生成し、 カチ 才ン重合反応を抑制するためと考えられる。 さらに、 これら以外の触媒として、 ト リフル才ロ舴酸、 p—トルエンスルホン酸、 メタンスルホン酸などの酸、 卜リエチ ルァミン、 ピリジンなどの塩基を 0. 01から 1 0モル%の範囲で使用することも できる。
一般式( 3 ) 、 (4) 、 ( 5 ) で表される化合物の添加量は一般式( 2 ) で表さ れるポリマ一中のカルボキシル基の濃度により決めることが出来る。
—般式( 3 ) 、 (4) 、 ( 5 ) で表される化合物は、 単独で用いても良いが、 複 数種を混合して用いても良い。
これ以外のカルボキシ.ル基のエステル化として、 カルボン酸を金属塩とし、 ここ にハロゲン化アルキルを作用する方法、 ジァゾメタンを作用させる方法、 硫酸ジァ ルキルによる反応などを併用することも可能である。
反応溶媒としては、 N—メチル一 2—ピロリ ドン (NMP ) 、 N, N—ジメチル ホル厶アミド、 N, N—ジメチルァセトアミ ド、 ジメチルスルホキシド、 1 , 3— ジメチルイミドゾリジノン、 へキサメチルホスホロアミド、 ープチロラクトン等 の非プロトン性極性溶媒が好ましく、 N—メチルー 2—ピロリドン、 N, N—ジメ チルホルムアミド、 N, N—ジメチルァセトアミドがより好ましい。 反応温度は、 一 1 0でから 1 50での範囲であり、 好ましくは 0でから 80°Cであり、 より好ま し〈は 1 0でから 60でである。 反応温度が一〗 0でよりも低いと、 反応が完結す るまでの時間が長くなり実用的でな〈なる。 また、 反応温度が 1 50でを超えると イミド化反応などの反応のため、 ポリマーの透明性の低下、 ゲル成分の発生、 キュ ァ膜物性の低下するなどの問題が生じやすい。
一般式( 2 ) で表されるポリマーの一般式 ( 3) 、 (4) 、 ( 5) で表される化 合物による処理は、 一般式( 2 ) を有機溶剤に溶解した溶液に一般式( 3 )、 (4 )、 ( 5) および必要に応じて酸触媒を混合攪拌することによって実施される。 一般式 ( 2 ) のポリマーの合成時に使用する溶剤と該ポリマ一を、 一般式( 3 ) および酸 触媒の化合物で処理するときの溶剤が共通の場合には、重合後の溶液に一般式( 3 )、 (4) 、 ( 5) の化合物を混合攪拌することによって処理が実施できる。
本発明で用いる光酸発生剤としては、 ジァゾニゥ厶塩、 ジァゾキノンスルホン酸 アミド、 ジァゾキノンスルホン酸エステル、 ジァゾキノンスルホン酸塩、 ニトロべ ンジルエステル、 才ニゥ厶塩、 ハロゲン化物、 ハロゲン化イソシァネート、 ハロゲ ン化トリアジン、 ビスァリ一ルスルホニルジァゾメタン、 ジスルホン等の光照射に より分解し酸を発生する化合物があげられる。 特に O—キノンジアジド化合物は未 露光部の水溶性を抑制する効果を有するために望ましい。 このような化合物として は、 1, 2—ベンゾキノン一 2—アジドー 4—スルホン酸エステル又はスルホン酸 アミド、 1, 2—ナフトキノン一 2—ジアジドー 5—スルホン酸エステル又はスル ホン酸アミド、 1, 2—ナフトキノンー2—ジアジドー 4ースルホン酸エステル又 はスルホン酸アミ ド等がある。 これらは、 例えば、 1, 2—べンゾキノン一 2—ァ ジドー 4ースルホニルクロリド、 1 , 2—ナフトキノン一 2—ジアジドー 5—スル ホニルクロリ ド、 1, 2—ナフトキノンー2—ジアジドー 4ースルホニルクロリ ド 等の o—キノンジアジドスルホニルクロリド類とポリヒドロキシ化合物叉はポリア ミン化合物を脱塩酸触媒の存在下で縮合反応することによって得ることができる。 ポリヒドロキシ化合物としては、 ヒドロキノン、 レゾルシノール、 ピロガロール、 ビスフエノール A、 ビス (4ーヒドロキシフエニル) メタン、 2, 2—ビス (4一 ヒドロキシフヱニル)へキサフル才ロプロパン、 2 , 3, 4一トリヒドロキシベン ゾフエノン、 2 , 3, 4 , 4 ' ーテトラヒドロキシベンゾフエノン、 2 , 2 ' , 4 , 4 ' ーテ卜ラヒドロキシベンゾフエノン、 卜リス (4ーヒドロキシフエニル) メタ ン、 1 , 1 , 1一卜リス (4ーヒドロキシフエニル) ェタン、 1一 [ 1一 (4ーヒ ドロキシフエニル) イソプロピル] 一 4一 [ 1 , 1一ビス (4ーヒドロキシフエ二 ル) ェチル]ベンゼン、 没食子酸メチル、 没食子酸ェチル等が挙げられる。
ポリアミン化合物としては、 1, 4一フヱニレンジァミン、 1, 3—フヱニレン ジァミン、 4, 4 ' —ジアミノジフエニルエーテル、 4 , 4 ' ージアミノジフエ二 ルメタン、 4, 4 ' ージアミノジフエニルスルホン、 4 , 4 ' ージアミノジフエ二 ルスルフィ ド等が挙げられる。
また、 ポリヒドロキシポリアミン化合物としては、 2, 2—ビス ( 3—アミノー 4ーヒドロキシフエニル)へキサフル才ロプロパン、 3, 3 ' —ジヒドロキシベン ジジン等が挙げられる。
o—キノンジアジド化合物は、 一般式( 1 ) で表されるポリマ一 1 0 0重量部に 対して好ましくは 5から 1 0 0重量部、 より好ましくは 1 0から 4 0重量部の範囲 で配合される。 配合量が 5重量部未満では十分な感度が得られず、 また、 1 0 0重 量部を超えると樹脂組成物の耐熱性が低下する可能性がある。
本発明のポジ型感光性樹脂組成物は、 一般式( 2 ) で表されるポリマーを一般式 ( 3 ) 、 (4 ) 、 ( 5 ) で表される化合物で処理することで得られる一般式( 1 ) で表されるポリマーと光酸発生剤を溶剤に溶解して、 溶液状態で使用することが好 ましい。 溶剤としては、 N—メチル一2—ピロリ ドン、 N, N—ジメチルホル厶ァ ミド、 N, N—ジメチルァセトアミド、 ジメチルスルホキシド、 1 , 3—ジメチル イミドゾリジノン、 へキサメチルホスホロアミド、 ゲ一プチロラクトン等の非プロ トン性極性溶剤が単独又は 2種以上併用して使用されるが、 これら以外の溶媒でも 一般式( 1 ) で表されるポリマー、 感光剤を溶解させるものであれば使用すること が出来る。
また、 必要に応じて上記、 感光性前駆体組成物と基板との塗布性を向上させる目 的で界面活性剤、 乳酸ェチルやプロピレングリコ一ルモノメチルエーテルァセテ一 卜などのエステル類、 エタノールなどのアルコール類、 シクロへキサノン、 メチル イソブチルケトンなどのケ卜ン類、 テトラヒドロフラン、 ジ才キサンなどのエーテ ル類を混合しても良い。 また、 2酸化ケィ素、 2酸化チタンなどの無機粒子、 ある いはポリイミドの粉末などを添加することもできる。
さらにシリコンウェハーなどの下地基板との接着性を高めるために、 シランカツ プリング剤、 チタンキレ一卜剤などを感光性樹脂組成物のワニスに 0 . 5から 1 0 重量部添加したり、 下地基板をこのような薬液で前処理したりすることもできる。 ワニスに添加する場合、 メチルメタクリロキシジメトキシシラン、 3—アミノプ 口ビルトリメ卜キシシランなどのシランカップリング剤、 チタンキレート剤、 アル ミキレート剤をワニス中のポリマ一に対して 0 . 5から 1 0重量部添加する。
基板を処理する場合、 上記で述べたカップリング剤をイソプロパノール、 ェタノ ール、 メタノール、 水、 テトラヒドロフラン、 プロピレングリコールモノメチルェ —テルアセテート、 プロピレングリコールモノメチルエーテル、 乳酸ェチル、 アジ ピン酸ジェチルなどの溶媒に 0 . 5から 2 0重量部溶解させた溶液をスピンコート、 浸漬、 スプレー塗布、 蒸気処理などで表面処理をする。 場合によっては、 その後 5 0でから 3 0 0 °Cまでの温度をかけることで、 基板と上記力ップリング剤との反応 を進行させる。
次に、 本発明の感光性樹脂組成物を用いて耐熱性樹脂ノ \°夕一ンを形成する方法に ついて説明する。
本発明の感光性樹脂組成物を基板上に塗布する。基板としてはシリコンウェハー、 セラミックス類、 ガリウムヒ素などが用いられるが、 これらに限定されない。 塗布 方法としてはスピンナを用いた回転塗布、 スプレー塗布、 口一ルコ一ティングなど の方法がある。 また、 塗布膜厚は、 塗布手法、 組成物の固形分濃度、 粘度などによ つて異なるが通常、 乾燥後の膜厚が、 0 . 1から, 1 5 0 mになるように塗布され る。
次に感光性樹脂組成物を塗布した基板を乾燥して、感光性樹脂組成物皮膜を得る。 乾燥はオーブン、 ホットプレート、 赤外線などを使用し、 5 0 °Cから 1 5 0 °Cの範 囲で 1分から数時間行うのが好ましい。
次に、 この皮膜上に所望のパターンを有するマスクを通して化学線を照射し、 露 光する。 露光に用いられる化学線としては紫外線、 可視光線、 電子線、 X線などが あるが、 本発明では水銀灯の i線( 3 6 5 n m ) 、 h線(4 0 5 n m ) 、 g線(4 3 6 n m ) を用いるのが好ましい。
耐熱性樹脂のパターンを形成するには、 露光後、 現像液を用いて露光部を除去す ることによって達成される。現像液としては、テトラメチルアンモニゥ厶の水溶液、 ジエタノールァミン、 ジェチルァミノエタノール、 水酸化ナトリウム、 水酸化カリ ゥ厶、 炭酸ナトリウム、 炭酸カリウム、 トリェチルァミン、 ジェチルァミン、 メチ ルァミン、 ジメチルァミン、 酢酸ジメチルアミノエチル、 ジメチルアミノエタノ一 ル、 ジメチルアミノエチルメタクリレート、 シクロへキシルァミン、 エチレンジァ ミン、へキサメチレンジァミンなどのアルカリ性を示す化合物の水溶液が好ましい。 また場合によっては、 これらのアルカリ水溶液に N—メチルー 2—ピロリ ドン、 N, N—ジメチルホルムアミド、 N , N—ジメチルァセトアミド、 ジメチルスルホキシ ド、 ァーブチロラクロン、 ジメチルアクリルアミドなどの極性溶媒、 メタノール、 エタノール、 イソプロパノールなどのアルコール類、 乳酸ェチル、 プロピレングリ コールモノメチルエーテルアセテートなどのエステル類、 シクロベン夕ノン、 シク 口へキサノン、 イソブチルケトン、 メチルイソプチルケトンなどのケ卜ン類などを 単独あるいは数種を組み合わせたものを添加してもよい。 現像後は水にてリンス処 理をする。 ここでもエタノール、 イソプロピルアルコールなどのアルコール類、 乳 酸ェチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、 炭酸ガス、 塩酸、 酢酸などの酸などを水に加えてリンス処理をしても良い。
現像後、 200°Cから 500°Cの温度を加えて耐熱性樹脂皮膜に変換する。 この 加熱処理は温度を選び、 段階的に昇温するか、 ある温度範囲を選び連続的に昇温し ながら 5分から 5時間実施する。 一例としては、 1 30°C、 200°C、 350Όで 各 30分づっ熱処理する。 あるいは室温より 400°Cまで 2時間かけて直線的に昇 温するなどの方法が挙げられる。
本発明による感光性樹脂組成物により形成した耐熱性樹脂皮膜は、 半導体のパッ シベーシヨン膜、 半導体素子の保護膜、 高密度実装用多層配線の層間絶緣膜などの 用途に用いられる。 実施例 以下発明をより詳細に説明するために、 実施例で説明するが、 本発明はこれらの 実施例に限定されない。 特性の測定方法
膜厚の測定
大日本スクリーン製造社製ラムダエース STM— 602を使用し、 屈折率 1. 64 で測定を行った。 これにより現像前の膜厚を T 1、 現像後の未露光部の膜厚を T 2 とすると T2ZT 1 X 1 00が 70%以下、 あるいは現像での膜減り量が 2 m以 上となると現像での膜減り量が大きく、 好ましくない。 より好ましくは 80%以上 である。
この時、 同時に現像により全てが溶解した露光量を測定した。 この値が 500 mJZcm2より大きいと、 感度が低いことになり好ましくない。 吸光度の測定 ポリマ一溶液を 5 c mX 5 c mで厚さ 1 . 2 mmのガラス基板(松浪ガラス製 #7059 ) にプリべ一ク後の膜厚がおよそ 1 Ομηηになるように塗布、 1 20°C で 3分間ホットプレート上でプリベ一クした。島津製作所製 UV— 240を使用し、 ポリマ一溶液を塗布していない同じガラス板をリファレンスとしてこの膜の 365 n mの吸光度を測定し、 実際の膜厚で除する膜厚 1 nnあたりの吸光度を求めた。 ィミド化率の測定
ポリマー溶液を 4インチシリコンウェハ一にプリべーク後の膜厚が 7 mになる ようにホットプレート上で塗布、 1 20°Cで 3分間プリべークした。 まず、 ポリマ —溶液を塗布していない 4ィンチシリコンウェハ一をリファレンスとしてノ ックグ ランド測定を行った。 続いて、 この膜の赤外線吸収スペクトルを堀場製作所製 FT 一 720を用いて測定した。 その後、 光洋リンドバーグ社製イナ一卜オーブン I N H— 2 1 C Dを用いて、 200でで 30分の熱処理後、 350でに 1時間かけて昇 湿し、 350でで1時間熱処理を行ぃ、 完全にイミド化を行った。 この試料の赤外 吸収スぺクトルを測定し、 ィミド化処理前後におけるィミド結合由来の C一 N伸縮 振動のピーク ( 1 380 c m—1 ) の比よリイミド化率を求めた。 すなわち、 3 50 処理前の 1 380 c m— 1のピーク値を A、 350°C処理後試料の 1 380 c m—1のピークの値を Bとすると、 イミド化率 Iは、
I AZB X 100
と表される。 ポリマ一中カルボキシル基の定量
約 1 00m Iのポリマ一溶液を純水 5 Iに滴下してポリマーを沈殿させ、 80°C の真空乾燥機で 48時間、 減圧乾燥させた。 乾燥ポリマー 0. 5 gを 40m Iの N ーメチルー 2—ピロリドン (NMP) 、 1 Om Iのメタノールに溶解し、 柴田科学 器械工学製 F 702型を使用して 1 / 1 0規定テトラプチルアンモニゥ厶ヒドロキ シドメタノ一ル溶液でポリマ一中の遊離力ルポキシル基を滴定して含有量を求めた。 ポリマ一 1 gあたりのカルボキシル基は、 この滴定で中和点にまで要する 1Z1 0 規定のテトラプチルアンモニゥ厶ヒドロキシドメ夕ノール溶液を xm I とすると、 この中和で必要なテ卜ラブチルアンモニゥ厶ヒドロキシドのモル量を求めると、 X
/\ Ommo I となる。 このモル量は、 ポリマー 0. 5 gあたりのカルボキシル基 量に等しいので、 ポリマ一 1 gあたりのカルボキシル基は 0. 5で除することで得 られる。 すなわち、 xZ5 ( mmo I ) となる。
シリコンウェハ一上に形成したプリべ一ク膜を様々な幅を持つマスクを通して露 光し、 現像したときに、 現像後の露光部分のパターンが完全に溶解している最小幅 をもって解像度とした。 従って、 その幅が小さ〈なるほど、 より緻密なパターンを 得ることができ、 解像度は良好であるという判断ができる。 残存ナトリウム、 カリウム、 鉄イオン量の測定
乾燥させた試料 2 gを計り、 NMP 25m I希釈した溶液を日立製作所製 Z 80 00 Z e e r ma n原子吸光光度計を用いて測定した。 濃度の校正は、 各イオン の標準濃度液を用いた。 これらの金属イオンが 1 0 P P m以上になると、 コ一ティ ング剤として使用した際、 腐食の恐れがあり問題になる。 残存塩素イオン濃度の測定
乾燥させた試料 1 OOmgを計り、 水 20m Iに分散させ、 超音波洗浄機(BR ANAON社製 B 20H ) を用いて 2時間超音波を加え、 塩素イオンを抽出した。 これを堀塌製作所製イオンメータ一 N— 8Mを用い、 塩素イオン電極(堀場製作所 製 8002 ) にて測定した。 塩素イオンの濃度の校正は、 濃度敢知の塩化カリウム 水溶液を用いた。 塩素イオンが 30 p p m以上となるとコーティング剤などとして 使用すると、 腐食の恐れがあり問題になる。 合成例 1 ヒドロキシル基含有酸無水物の合成
乾燥窒素気流下、 2, 2—ビス ( 3—アミノー 4ーヒドロキシフ ニル)へキサ フル才ロプロパン (BAHF ) 18. 3 g (0. 05モル) とァリルグリシジルェ 一テル 34. 2 g (0. 3モル) をガンマプチロラクトン (GBL) 1 00 gに溶 解させ、 一 1 5。Cに冷却した。 ここに G B L 50 gに溶解させた無水トリメリット 酸クロリ ド 22. 1 g ( 0. 1 1モル) を反応液の温度が 0°Cを越えないように滴 下した。 滴下終了後、 0°Cで 4時間反応させた。
この溶液を口一タリ一エバポレー夕一で濃縮して、 トルエン 1 I に投入して酸無 水物を得た。 これを下記に示す。 得られた物質は 350でまでに明確な融点が見ら れなかった。
Figure imgf000024_0001
合成例 2 ヒドロキシル基含有ジァミン化合物 ( 1 ) の合成
BAH F 18. 3 g ( 0. 05モル) をアセトン 1 00m l 、 プロピレン才キシ ド 1 7. 4 g ( 0. 3モル) に溶解させ、 一 1 5°Cに冷却した。 ここに 3—ニトロ ベンゾイルクロリド 20. 4 g ( 0. 1 1モル) をアセトン 1 00m I に溶解させ た溶液を滴下した。滴下終了後、 一 1 5°Cで 4時間反応させ、 その後室温に戻した。 溶液をロータリ一エバポレー夕一で濃縮し、 得られた固体をテトラヒドロフランと ェタノ一ルの溶液で再結晶した。
再結晶して集めた固体をエタノール 1 0 Om I とテトラヒドロフラン 30 Om I に溶解させて、 5%パラジウム一炭素を 2 g加えて、 激し〈搜拌させた。 ここに水 素を風船で導入して、 還元反応を室温で行った。 約 2時間後、 風船がこれ以上しぼ まないことを確認して反応を終了させた。 反応終了後、 ろ過して触媒であるパラジ ゥ厶化合物を除き、 口一タリ一エバポレーターで濃縮し、 ジァミン化合物を得た。 これを下記に示す。 得られた固体をそのまま反応に使用した。 融点を島津製示差熱 分析装置 D SC— 50を用いて、 昇温速度 1 0で/分で測定したところ、 3 1 8で であった。
Figure imgf000025_0001
合成例 3 ヒドロキシル基含有ジァミン ( 2 ) の合成
2—アミノー 4—ニトロフエノール 30. 8 g ( 0. 2モル) をアセトン 200 m I、 プロピレン才キシド 60 g (0. 68モル) に溶解させ、 一 1 5°Cに冷却し た。 ここにイソフタル酸クロリ ド 22. 4 g ( 0. 1 1モル) をアセトン 200 m Iに溶解させた溶液を徐々に滴下した。滴下終了後、 一 1 5 Cで 4時間反応させた。 その後、 室温に戻して生成している沈殿をろ過で集めた。
乾燥させた沈殿 30 gと 5%パラジウム一炭素 3 gを 500m Iの才一トクレ一 ブにメチルセ口ソルブ 40 Om I とともに加えた。 ここに水素にて内圧が 8 k g f Zcm2となるように加圧し、 80^で 2時間攒拌した。 その後、 溶液の温度が 5 0°C以下になったところで、 放圧し、 ろ過して沈殿物を除いた。 ろ液をロータリ一 エバポレー夕一で濃縮し、 生成する固体を集めた。 これを 50での真空乾燥機で 2 0時間乾燥させた。 下記にその構造を示した。
Figure imgf000025_0002
合成例 4 ヒドロキシル基含有ジァミン ( 3 ) の合成
2—アミノー 4一二トロフエノール 1 5. 4 g ( 0. 1モル) をアセトン 80m I . プロピレン才キシド 30 g (0. 34モル) に溶解させ、 一 1 5°Cに冷却した。 ここに 3—二トロべンゾイルクロリ ド 1 9. 5 g ( 0. 1 05モル) をアセトン 8 0m I に溶解させた溶液を徐々に滴下した。 滴下終了後、 一 1 5°Cで 4時間反応さ せた。 その後、 室温に戻して生成している沈殿をろ過で集めた。
乾燥させた固体を 25 gと 5%パラジウム一炭素 2 gを 500 m Iの才一トクレ ーブにメチルセ口ソルブ 300m I とともに加えた。 以下、 合成例 3と同様にして 目的物の沈殿を得た。 これを 50 °Cの真空乾燥機で 20時間乾燥させた。 下記にそ の構造を示した。
Figure imgf000026_0001
合成例 5 ナフトキノンジアジド化合物の合成
乾燥窒素気流下、 1, 1, 2—トリ ( 3, 5—ジメチルー 4—ヒドロキシフエ二 ル)プロパン 20. 2 g (0. 05モル) と 5—ナフトキノンジアジドスルホニル 酸クロリド 40. 3 g ( 0. 1 5モル) を 1 , 4一ジ才キサン 400 gに溶解させ、 40°Cに加熱した。 ここに、 1, 4一ジ才キサン 40 gと混合させた卜リエチルァ ミン 1 5. 2 g (0. 1 5モル) を系内の温度が 45°C以上にならないように滴下 した。 滴下後 40でで 2時間攒拌した。 副生した卜リエチルァミンの塩酸塩を濾過 し、 ろ液を 1 %塩酸 3 I に投入した。 その後、 析出した沈殿をろ過で集めた。 水 1 0 Iでこの沈殿を 2回洗浄を繰り返し、 50°Cの真空乾燥機で 20時間乾燥させ、 ナフトキノンジアジド化合物を得た。 得られた化合物の構造を下記に示す。
Figure imgf000027_0001
実施例 1
乾燥窒素気流下、 1 Iの 4つ口フラスコに 4, ' ージアミノジフエ二ルェ一テ ル 20. 0 g ( 1 00mmo l ) を N—メチルー 2—ピロリ ドン (NMP) 350 gに溶解させた。 ここに合成例 1で合成した酸無水物 7 1 . 4 g ( 1 0 Ommo I ) を GBL40 gとともに加えて、 20°Cで 1時間反応させ、 次いで 50°Cで 4時間 反応させた。 さらに N, N—ジメチルホルムアミドジメチルァセタール 23. 8 g ( 200mmo I ) を加え、 50°Cで 5時間撹拌し、 部分エステル化したポリマ一 溶液を得た。 このポリマー 1 g中のカルボキシル基は 0 · 07mmo I、 イミド化 率は 1 0%であり、 365 n mの吸光度は 1 mあたり 0. 083であった。
得られた溶液 1 00 gにキノンジアジド化合物 4NT— 300 ( 2, 3, 4, 4' —テトラヒドロキシビンゾフエノン 1モルに対して 1 ,.2-ナフトキノン一 2—ジ アジド一5—スルホニルクロリ ド 3モルを反応させて得られたエステル:東洋合成 工業株式会社製) 5. 5 gを加えて感光性樹脂組成物の溶液を得た。
6インチシリコンウェハ一上に、 上記溶液をプリベーク後の膜厚が 7 mとなる ように塗布し、 ついでホットプレート (大日本スクリーン社製 S KW— 636 ) を 用いて、 1 20°Cで 3分プリべークすることにより、 感光性耐熱性樹脂前駆体膜を 得た。 ついで、 露光機(ニコン社製 i線ステッパー N S R— 1 755— i 7 A)に、 パターンの切られたレチクルをセットし、 露光量を 1 00m JZc m 2から 800 m JZc m 2まで 50 m J/c m 2きざみで i線露光を行った。 その後、 NMD— 3 (テ卜ラメチルアンモニゥ厶ヒドロキシド 2. 38%水溶液:東京応化工業株式 „―
PCT/JP99/04849
会社製) に 1 00秒間浸潰し、 さらに 20秒間水洗することによってパターンを形 成した。
表 1に示したように、 現像後の未露光部の膜厚は 5. 6 mであり、 現像による 膜減りは 1 . であった。 また、 パターン形成に際しての最低光照射量は、 3 00m J/c m 2と小さく感度がよかった。 さらに、 電子顕微鏡によってパターン 断面を観察したところ、 5>umのラインとスペースが良好に解像されていた。 実施例 2
乾燥窒素気流下、 1 Iの 4つ口フラスコに合成例 2で合成したヒドロキシル基含 有ジァミン化合物( 1 ) 24. 2 g (40mmo l ) を NMP I OO gに溶解させ、 3, 3 ' , 4, 4 ' —ビフエニルテトラカルボン酸二無水物 1 1 . 8 g (40mm o I ) を加えて 80。Cで 3時間撹拌した。 さらに N, N—ジメチルホルムアミドジ ェチルァセタール 8. 8 g ( 6 Ommo I ) を加え、 80°Cで 2時間撹拌し、 部分 エステル化したポリマー溶液を得た。 このポリマー 1 g中のカルボキシル基は 0. 55mmo l、 イミド化率は 35%であり、 365 n mの吸光度は 1 ^umあたり 0. 066であった。
このポリマ一溶液 1 00 gと実施例 1で用いたキノンジアジド化合物 4 NT— 3 00を 3. 5 gを混合して感光性樹脂組成物の溶液を得た。
評価は現像時間を 50秒間とした他は実施例 1 と同様に行った。 結果を表 1に示 した。 その結果、 現像後の未露光部の膜厚は 5. 8 mであり、 現像による膜ベリ は 1 . 2>amと良好であった。 また、 パターン形成に際しての光照射量は、 250 m JZc m 2と高感度であった。 さらに、 電子顕微鏡によってパターン断面を観察 したところ、 1 Oyumのラインが良好に解像されていた。 実施例 3
実施例 1においてジァミンの組成を 2 ' 2—ビス ( 3—アミノー 4—ヒドロキシ フエニル)へキサフルォロプロパン ( BAH F ) 1 8. 3 g ( 50mmo l ) 4, 4' ージアミノジフエニルエーテル 8. 0 g (40mmo I ) , 1、 3—ビス ( 3 —ァミノプロピル)テトラメチルジシロキサン 2. 5 g ( 1 Ommo I ) にした他 9
は同様にしてポリマーを重合した。 このポリマ一 1 g中のカルボキシル基は 0 · 3 5 mm o I、 イミド化率は 14%であり、 365 n mの吸光度は 1 zmあたり 0. 045であった。 このポリマー 30 gを GB L了 0 gに溶解し、 実施例 1で用いた キノンジアジド化合物 4 NT— 300を 6 g溶解させて感光性樹脂組成物の溶液を 得た。
評価は実施例 1 と同様に行った。 結果を表 1に示した。 その結果、 現像後の未露 光部の膜厚は 6. 0 mであり、 現像による膜ベリは 1. 0 mと良好であった。 また、パターン形成に際しての光照射量は、 250m J/cm2と高感度であった。 さらに、 電子顕微鏡によってパターン断面を観察したところ、 1 0> mのラインと スペースが良好に解像されていた。 実施例 4
実施 < (列 1 と同様の組成で、 N, N—ジメチルホルムアミドジメチルァセタールを 作用させる前までの反応を行い、 ポリマーを重合した。 その後、 カリウム一 tーブ トキシド 22. 4g ( 2 OOmmo I ) を加えて 2時間撹拌した後、 ヨウ化工チル 34. 3 g ( 220mmo I ) を滴下した。 2時間後、 ポリマ一溶液を純水に投入 しポリマーを析出、 乾燥させた。 このポリマー 1 g中のカルボキシル基は 1 · 2m mo I、 イミド化率は 20%であり、 365 n mの吸光度は 1 mあたり 0. 08 8であった。 このポリマ一 30 gを GB L 70 gに溶解し、 実施例 1で用いたキノ ンジアジド化合物 4 NT— 300を 6 g溶解させて感光性樹脂組成物の溶液を得た。 評価は実施例 1 と同様に行った。 結果を表 1に示した。 その結果、 現像後の未露 光部の膜厚は 5. 5>umであり、 現像による膜べりは 1 · であった。 また、 バタ一ン形成に際しての光照射量は、 300m JZcm と高感度であった。 さら に、 電子顕微鏡によってパターン断面を観察したところ、 1 O mのラインとスぺ —スが良好に解像されていた。 実施例 5
N , N—ジメチルホル厶ァミドジメチルァセタールのかわりに N—メチルー 2— ピロリドンジェチルァセタール 29. 45 g ( 200mmo l ) を用いた他は、 実 „
PCT/JP99/04849
施例 1 と同様の組成で 50°Cで 5時間撹拌し、 部分エステル化したポリマ一溶液を 得た。このポリマ一 1 g中の力ルポキシル基は 0. 28 mm o しイミド化率は 8% であり、 365 n mの吸光度は 1 zmあたり 0. 088であった。 このポリマーを 用いて実施例 1 と同様の感光性溶液を調整した。
評価は実施例 1 と同様に行った。 結果を表 1に示した。 その結果、 現像後の未露 光部の膜厚は 5. 5 mであり、 現像による膜ベリは 1 · 5yumであった。 また、 パターン形成に際しての光照射量は、 300m JZc m 2であった。 さらに、 電子 顕微鏡によってパターン断面を観察したところ、 5 mのラインとスペースが良好 に解像されていた。 実施例 6
乾燥窒素気流下、 1 Iの 4つ口フラスコに合成例 3で合成したヒドロキシル基含 有ジァミン化合物 ( 2 ) 1 3. 6 g ( 36mmo I ) . 1 , 3—ビス ( 3—ァミノ プロピル)テトラメチルジシロキサン 0 · 99 g (4mmo l ) を NMP I OO g に溶解させ、 3, 3' , 4, 4' ージフヱニルエーテルテトラカルボン酸二無水物
1 2. 4 g (40mmo I ) を加えて 80°Cで 3時間撹拌した。 さらに N, N—ジ メチルホルムアミ ドジメチルァセタール 9. 5 g (8 Ommo I ) を加え、 50で で 2時間撹拌し、 その後酢酸 5 g (83mmo I ) を加えて残余したァセタール化 合物を分解し、 部分エステル化したポリマー溶液を得た。 このポリマ一溶液を水 5
Iに投入して、 ポリマーの沈殿をろ過で集めた。 このポリマーを 80^の真空乾燥 機で 20時間乾燥させた。 このポリマ一 1 g中のカル^'キシル基は 0. 1 2mmo し イミド化率は 1 2%であり、 365 n mの吸光度は 1 mあたり 0. 066で めった。
このポリマ一 1 0 gと合成例 5で合成したナフトキノンジアジド化合物 2 gを N MP 5 g, GBL 25 gに混合して感光性樹脂組成物の溶液を得た。
評価は現像時間を 70秒間とした他は実施例 1 と同様に行った。 結果を表 1に示 した。 その結果、 現像後の未露光部の膜厚は 5. 5> mであり、 現像による膜べり は 1 . と良好であった。 また、 パターン形成に際しての光照射量は、 250 m J/c m 2と高感度であった。 さらに、 電子顕微鏡によってパターン断面を観察 „
PCT/JP99/04849
したところ、 1 0> mのラインが良好に解像されていた。 実施例 7
乾燥窒素気流下、 1 Iの 4つ口フラスコに合成例 2で合成したヒドロキシル基含 有ジァミン化合物 ( 3) 8. 75 g ( 36mmo l ) , 1 , 3—ビス ( 3—ァミノ フ。口ピル) テトラメチルジシロキサン 0. 99 g (4mmo l ) を NMP I O O g に溶解させ、 3, 3 ' , 4, 4 ' 一ベンゾフ: tノンテ卜ラカルボン酸二無水物 1 2. 9 g (40mmo I ) を加えて 50。Cで 3時間撹拌した。 さらに N, N—ジメチル ホルムアミドジメチルァセ夕一ル 1 0. 7 g ( 90 mm o I ) を加え、 50°Cで 2 時間撹拌し、 部分エステル化したポリマ一溶液を得た。 このポリマー 1 g中のカル ボキシル基は 0. 08mm o I、 イミ ド化率は 1 1 %であり、 365 n mの吸光度 は あたり 0. 086であった。
このポリマ一溶液 1 00 gと実施例 1で用いたキノンジアジド化合物 4 NT— 3 00を 3. 5 g混合して感光性樹脂組成物の溶液を得た。
評価は現像時間を 90秒間とした他は実施例 1 と同様に行った。 結果を表 1に示 した。 その結果、 現像後の未露光部の膜厚は 5 · であり、 現像による膜ベリ は 1. と良好であった。 また、 パターン形成に際しての光照射量は、 450 mJZcm であった。 さらに、 電子顕微鏡によってパターン断面を観察したとこ ろ、 1 のラインが良好に解像されていた。
'
比較例 1
N, N—ジメチルホルムアミドジメチルァセタールを添加しないこと以外は実施 例 1 と同様にして感光性樹脂前駆体の溶液を得た。 このポリマー 1 g中のカルボキ シル基は 2. 3mmo し イミド化率は 7%であり、 365 n mの吸光度は 1 >um あたり 0. 083であった。
評価は実施例 1 と同様に行ったが、 膜はすべて溶解してしまった。 比較例 2
ピロメリット酸ニ無水物 50 gとエタノール 300m l を 500m lのフラスコ に入れ、 ピリジン 0. 2m I を加えて窒素雰囲気下 30 Cで 1 0時間攪拌した。 過 剰のエタノ一ルを減圧下で留去し、 残留物を真空乾燥することによってピロメリッ 卜酸ジェチルエステルを得た。
得られたピロメリット酸ジェチルエステル 3 1 . 4 g ( 1 0 Ommo I ) , 塩化 チ才ニル 1 00m l をフラスコに入れ室温で 1時間攪拌した後、 3時間還流した。 ァスピレ一ターによって過剰の塩化チ才ニルを除去し、 塩化物を得た。
得られた塩化物を GB L6 O gに溶解し、 0°Cに保持した B A H F 36. 62 g ( 1 00 mm o I ) とピリジン 50m l を NMP 200m l に溶解した溶液に滴下 した。 0°Cで 3時間搜拌を続けた後、 さらに 3 (TCで 3時間攪拌した。 不溶物を濾 過した後、 濾液を 5リットルの水に投入し、 ポリマ一を析出させた。 このポリマ一 1 g中のカルボキシル基は 0 mm o I 、 イミド化率は 4%であり、 365 n mの吸 光度は あたり 0. 072であった。 また、 このポリマーの残存塩素イオン濃 度は 1 00 P P mと大きく、半導体用途への使用には問題がある。残存ナトリウム、 カリウム、 鉄イオンについては全て 1 0 P P m以下であった。
得られたポリアミド酸ジェチルエステル 20 gを GBL 60 gに溶解し、 実施例 1で用いたキノンジアジド化合物 4 NT— 300を 5 g溶解して感光性樹脂組成物 の溶液を得た。
評価は実施例 1 と同様に行ったが、 5分以上現像液に浸積しても露光部が完全に 溶解せず、 500m JZc m2露光した部分の膜厚は 5. l /^mであり、 未露光部 の膜厚は 7 mのままであった。 比較例 3
重合及びエステル化反応を 1 80°Cで行ったこと以外は実施例 1 と同様にして感 光性樹脂前駆体の溶液を得た。 このポリマー 1 g中のカルボキシル基は 0· 0 1 m mo I、 イミド化率は 65%であり、 365 n mの吸光度は 1 mあたり 0. 1 5 3であった。
評価は実施例 1 と同様に行った。 その結果、 現像後の未露光部の膜厚は 5. ju mであり、 現像による膜べりは 1 . であったが、 パターン形成に際しての光 照射量が、 Ί 50m J/c m 2以上必要と非常に感度が悪いものであった。 実施例 8
乾燥窒素気流下、 1 Iの 4つ口フラスコに 4, 4 ' —ジァミノジフヱ二ルェ一テ ル 20. 0 g ( 1 00mmo l ) を N M P 350 gに溶解させた。 ここに合成例 1 で合成した酸無水物 71. 4 g ( 1 00mmo l )を G B L 40 gとともに加えて、
20でで 1時間反応させ、 次いで 50°Cで 4時間反応させた。 さらに、 20 まで 冷却した後、 t e r t—プチルビ二ルェ一テル 24. 0 g ( 240mmo l ) を加 え、 2 O )で 24時間撹袢し、 部分エステル化したポリマー溶液を得た。 このポリ マ一 1 g中のカルボキシル基は 0. 38mmo I、 イミド化率は 20%であり、 3 65 n mの吸光度は 1 mあたり 0. 084であった。
得られた溶液 1 009に41^丁ー300を5. 5 g加えて感光性樹脂組成物の溶 液を得た。
評価は現像時間を 60秒とした以外は実施例 1と同様に行った。 その結果、 現像 後の未露光部の膜厚は 5. 6 mであり、 現像による膜減りは 1. 4 mと良好で あった。 また、 パターン形成に際しての最低光照射量は、 350mJ/c m と小 さく感度がよかった。 さらに、電子顕微鏡によってパターン断面を観察したところ、 1 Ovumのラインとスペースが良好に解像されていた。 実施例 9
乾燥窒素気流下、 1 Iの 4つ口フラスコに合成例 2で合成したジアミン化合物 2 4. 2 g (40mmo l ) を NMP 1 00 gに溶解させ、 3, 3' , 4, 4' ービ フエニルテトラカルボン酸二無水物 1 1. 8 g (4 Ommo I ) を加えて 80でで 3時間撹拌した。 さらにシクロへキシルビニルエーテル 9. 2 g ( 72 mmo I ) を加え、 20。Cで 24時間 il^半し、 部分エステル化したポリマー溶液を得た。 この ポリマー 1 gのカルボキシル基は 0. 40mmo l、 イミド化率は 36 %であり、
365 n mの吸光度は 1 mあたり 0. 065であった。 さらにこのポリマ一の残 存ナトリウム、 カリウム、 铁イオン濃度は 1 0 P P m以下と良好な値であった。 ま た、 残存塩素濃度も 10 P P m以下と良好な値であった。
このポリマ一溶液 100 gと実施例 1で用いたキノンジアジド化合物 4NT—3 00を 3. 5 g混合して感光性樹脂組成物の溶液を得た。
評価は現像時間を 50秒間とした他は実施例 1 と同様に行った。 その結果、 現像 後の未露光部の膜厚は 5. ァ であり、 現像による膜ベリは 1 . 3 mと良好で あった。 また、 ノ、。ターン形成に際しての光照射量は、 400 m JZcm であった。 さらに、 電子顕微鏡によってパターン断面を観察したところ、 l Ovumのラインが 良好に解像されていた。 実施例 1 0
実施例 1においてジァミンの組成を 2, 2—ビス ( 3—アミノー 4·—ヒドロキシ フエニル)へキサフル才ロプロパン (BA H F ) 1 8. 3 g ( 50mm o I ) 4 , 4 ' ージァミノジフヱ二ルェ一テル 8. 0 g (40 mmo l ) 1、 3—ビス ( 3 ーァミノプロピル) テトラメチルジシロキサン 2 · 5 g ( 1 Ommo I ) にした他 は同様にしてポリマーを重合した。 このポリマ一 1 gのカルボキシル基は 0. 2 1 mmo I 、 イミド化率は 20%であり、 365 n mの吸光度は 1 >umあたリ 0 · 0 56であった。 このポリマ一 30 gを GB L 70 gに溶解し、 実施例 1で用いたキ ノンジアジド化合物 4 NT— 300を 6 g溶解させて感光性樹脂組成物の溶液を得 た。
評価は実施例 1 と同様に行った。 その結果、 現像後の未露光部の膜厚は 6. j mであり、 現像による膜ベリは 1 . 0>amと良好であった。 また、 パターン形成に 際しての光照射量は、 350 m JZc m と高感度であった。 さらに、 電子顕微鏡 によってパターン断面を観察したところ、 1 0 mのラインとスペースが良好に解 像されていた。 実施例 1 1
実施例 1 と同様の組成で、 N, N—ジメチルホル厶アミドジメチルァセタールを 作用させる前までの反応を行い、 ポリマ一を重合した。 その後、 20でまで冷却し た後、 t e r t—ブチルビニルエーテル 24. 0 g ( 240 m m o I ) を加え、 リ ン酸 0. 72 g ( 5. 52 mm o I ) を滴下した。 20°Cで 24時間撹拌した後、 ポリマー溶液を純水に投入しポリマ一を析出、 80°Cの真空乾燥機で 24時間乾燥 させた。 このポリマ一 1 gのカルボキシル基は 0. 08 mm o I、 イミ ド化率は 1 0%であり、 36 5 n mの吸光度は 1 mあたり 0■ 042であった。 このポリマ 一 30 gを GB L 70 gに溶解し、 実施例 1で用いたキノンジアジド化合物 4 NT 一 300を 6 g溶解させて感光性樹脂組成物の溶液を得た。
評価は実施例 1 と同様に行った。 その結果、 現像後の未露光部の膜厚は 6 · 4j mであり、 現像による膜ベリは 0. 6 umと良好であった。 また、 パターン形成に 際しての光照射量は、 2 50 m JZc m 2と高感度であった。 さらに、 電子顕微鏡 によってパターン断面を観察したところ、 5 mのラインとスペースが良好に解像 されていた。 実施例 1 2
実施例 1 と同様の組成で、 N, N—ジメチルホルムアミドジメチルァセタールを 作用させる前までの反応を行い、 ポリマーを重合した。 その後、 イソプロピルビ 二ルェ一テル 20. 9 g ( 240 mm o l ) を加え、 リン酸 0. 72 g ( 5. 52 mm o I ) を滴下した。 25 で 20時間撹拌して、 部分エステル化したポリマ一 溶液を得た。 このポリマ一 1 gのカルボキシル基は 0. 1 2 mm o I、 イミド化率 は 1 2%であり、 365 n mの吸光度は 1 mあたり 0. 083であった。
評価は実施例 1 と同様に行った。 その結果、 現像後の未露光部の膜厚は 6. 2 mであり、 現像による膜ベリは 0. 8 mと良好であった。 また、 パターン形成に 際しての光照射量は、 300 m JZc m 2であった。 さらに、 電子顕微鏡によって パターン断面を観察したところ、 5>amのラインとスペースが良好に解像されてい た。 実施例 1 3
合成例 3で合成したヒドロキシル基含有ジァミン ( 2 ) 1 8. 9 g ( 50 m m o 、 B A H F 1 6. 5 g (45 mmo I ) , 1、 3—ビス ( 3—ァミノプロピル) テトラメチルジシロキサン 1 . 24 g ( 5 mm o l ) を NMP 250 gに溶解させ、 30°Cにした。 ここに 3、 3 ' 、 4、 4 ' —ジフエ二ルェ一テルテ卜ラカルボン酸 二無水物 3 1 . 0 g ( 1 00 mm o l ) をNM P 50 gとともに加え、 30°Cで 1 „
PCT/JP99/04849
時間、 その後 50でで 2時間攒拌した。 この後溶液温度を 50 °Cに保ち N, N—ジ メチルホルムアミドジメチルァセタール 23. 8 g ( 200 mm o I ) を NMP8 0 gで希釈した溶液を加え、 50 で 2時間攪拌を続けた。 その後、 溶液の温度を 30 Cにして酢酸 60 g ( 1モル) を NMP80 gとともに加え、 30でで 1時間 攪拌し、 過剰のァセ夕一ル化合物を分解させた。 反応終了後、 ポリマ一溶液を水 1 0 Iに投入し、 ポリマーの沈殿を得た。 これをろ過で集め、 8CTCの通風才一プン で 24時間乾燥した。 このポリマーの残存ナトリウム、 カリウム、 鉄イオン濃度は 1 0 p P m以下と良好な値であった。 また、 残存塩素濃度も 1 0 p P m以下と良好 な値であった。
このポリマ一 1 g中のカルボキシル基は 0. 43 mm o I、 イミド化率は 1 1 % であり、 365 n mの吸光度は 1 mあたり 0· 075であった。 このポリマ一 1 O gを NMP70 gに溶解し、 没食子酸メチル 1モルに 5—ナフ卜キノンジアジド スルホン酸クロリ ド 3モルを反応させた感光剤 (MG— 300 東洋合成製) 2 g を溶解させて感光性樹脂組成物の溶液を得た。
評価は現像時間を 70秒とした以外は実施例 1 と同様に行った。 結果を表 1に示 した。 その結果、 現像後の未露光部の膜厚は 5. 8 mであり、 現像による膜ベリ は 1. 2>umと良好であった。 また、 パターン形成に際しての光照 *ί量は、 350 m J/c m2と高感度であった。 さらに、 電子顕微鏡によってパターン断面を観察 したところ、 1 0> mのラインとスペースが良好に解像されていた。 実施例 14
合成例 4で合成したヒドロキシル基含有ジァミン ( 3 ) 1 2. 2 g ( 50 m m o l ) 、 BAHF 1 6. 5 g (45mmo I ) , 1、 3—ビス ( 3—ァミノプロピル) テトラメチルジシロキサン 1. 24 g ( 5mmo l )を NMP 180 gに溶解させ、 30°Cにした。 ここに 3、 3 ' 、 4、 4 ' ージフエ二ルェ一テルテトラカルボン酸 二無水物 31. O g ( I OOmmo l ) を N M P 50 gとともに加え、 30でで 1 時間、 その後 50°Cで 2時間携拌した。 この後溶液温度を 50°Cに保ち N, N—ジ メチルホルムアミ ドジメチルァセタール 23. 8 g ( 200 mmo I を NMP80 gで希釈した溶液を加え、 5 O で 2時間攒拌を続けた。 その後、 溶液の温度を 3 0°Cに低下させ、 酢酸 24 g (400 mm o I ) を NMP 30 gとともに加え、 3 0でで 1時間攒拌し、 過剰のァセタール化合物を分解させた。 反応終了後、 ポリマ —溶液を水 1 0 I に投入し、 ポリマーの沈殿を得た。 これをろ過で集め、 80での 通風オーブンで 24時間乾燥した。 このポリマーの残存ナトリウム、 カリウム、 鉄 イオン濃度は 1 0 P P m以下と良好な値であった。 また、 残存塩素濃度も 1 0 p p m以下と良好な値であった。
このポリマー 1 g中のカルボキシル基は 0. 44mmo I、 イミド化率は 1 1 % であり、 365 n mの吸光度は 1 //mあたり 0 · 055であった。 このポリマ一 3 0 gを NMP 70 gに溶解し、 ナフ卜キノンジアジド化合物 MG— 300 6 gを 溶解させて感光性樹脂組成物の溶液を得た。
評価は現像時間を 60秒とした以外は実施例 1 と同様に行った。 結果を表 1に示 した。 その結果、 現像後の未露光部の膜厚は 6. Oy mであり、 現像による膜べり は 1. 0 umと良好であった。 また、 パターン形成に際しての光照射量は、 350 m JZc m2と高感度あった。 さらに、 電子顕微鏡によってパターン断面を観察し たところ、 1 Oyumのラインとスペースが良好に解像されていた。 実施例 1 5〜1 7
合成例 2で合成したヒドロキシル基含有ジァミン ( 1 ) 57· 4 g ( 95mmo 1 ) 、 1、 3—ビス ( 3—ァミノプロピル) テトラメチルジシロキサン 1 . 24 g ( 5mmo l ) を NMP 1 80 gに溶解させ、 30°Cにした。 ここに 3、 3' 、 4、 4 ' ージフヱニルエーテルテ卜ラカルボン酸二無水物 3 1 . 0 g ( 1 00 mmo I ) を NMP 30 gとともに加え、 30°Cで 1時間、 その後 50°Cで 2時間攪拌した。 この後溶液温度を 50°Cに保ち N, N—ジメチルホルムアミ ドジメチルァセタール を以下に示した所定の量を NMP 1 00 gとともに加えた (実施例 1 5 : 20. 2 g ( 1 7 Ommo I ) , 実施例 1 6 22. 6 g ( 1 90mmo l ) 、 実施例 1 7 25. 0 g ( 2 1 0mmo l ) ) 。 この後、 50でで 2時間搜拌を続けた。 この 後溶液の温度を 30Όとし、 酢酸 24 g (40 Ommo I ) を加え、 30でで 1時 間攪拌して過剰のァセタール化合物を分解した。 反応終了後、 ポリマー溶液を水 1 0 I に投入し、 ポリマーの沈殿を得た。 これをろ過で集め、 80での通風オープン で 24時間乾燥した。 これらのポリマーの残存ナトリウム、 カリウム、 鉄イオン濃 度は 1 0 p P m以下と良好な値であった。 また、 残存塩素濃度も 1 0 P P m以下と 良好な値であった。
このポリマー 1 g中のカルボキシル基は実施例 1 5 0. 60mmo l、 イミ ド 化率は 9%であり、 365 n mの吸光度は 1 mあたり 0. 044、 実施例 1 6 0. 47mmo I、 イミド化率は 9%であり、 365 n mの吸光度は 1 mあたり 0. 044、 実施例 1 7 0. 4 1 mmo し イミド化率は 1 1 %であり、 365 n mの吸光度は 1 >umあたり 0. 045 ) であった。 これらのポリマー 30 gをそ れぞれ G B L 35 g、 NMP 35 gに溶解し、 合成例 5で合成したナフトキノンジ アジド化合物 6 gを溶解させて感光性樹脂組成物の溶液を得た。
評価は現像時間を 50秒(実施例 1 5 ) 、 70秒(実施例 1 6 ) 、 90秒(実施 例 1 7) とした以外は実施例 1 と同様に行った。 結果を表 1に示した。 いずれも現 像による膜ベリは 1 . 2 m以下と良好であった。 また、 パターン形成に際しての 光照射量は、 25 Om JZc m2から 30 Om J/c m2と高感度であった。 さら に、 電子顕微鏡によってパターン断面を観察したところ、 5 mのラインとスべ一 スが良好に解像されていた。 産業上の利用の可能性 本発明によれば、 アルカリ水溶液に対する溶解速度を調整することができ、 かつ 露光波長での透明性が高く、 高感度の感光性樹脂組成物を得ることができるもので ある。
表 1
Figure imgf000039_0001
ノ ージアミノジフエニルエーテル
DMFDMA N, N' ージメチルホルムアミドジメチルァセタール
BPDA: 3 3' , 4, 4'一ビフヱ二ルテ卜ラカルボン酸二無水物
DMFDEA N, N—ジメチルホルムアミドジェチルァセタール
BAHF : 2 2—ビス ( 3—アミノー 4ーヒドロキシフエニル〉へキサフルォロプロパン S i D A : 1 , 3—ビス (3—ァミノプロピル)テトラメチルジシロキサン
NMPDMA Nメチルー 2—ビロリドンジェチルァセタール
BTDA 3、 3 '、 4、 4' 一べンゾフエノンテトラカルボン酸二無水物
TBVE t e r t一プチルビニルエーテル
I PVE イソプロビルビニルエーテル
DEDA 3、 3'、 4、 4' ージフエニルエーテルテトラカルボン酸二無水物
P DA 無水ピロメリット酸
七一 B u OK カリウム一 t一ブトキシド 表 1 (続き)
特性 カルボキシル基 ィミド化率 最低照射量 mm. エステル化反応条件 吸光度
( mm o 1 Zg ) {%) ( ) (mJ/cm ) その他備考
50で 5Β#Γ日, 0. 07 1 0 0. 083 80 300 5
80で 3B#¾1 0. 55 35 0. 066 83 250 1 0
50Ό 5Β#Κ1 0. 35 14 0. 045 86 250 1 0
30で 1. 2 20 0. 088 79 300 1 0
50Ό 5時間 0. 28 8 0. 082 79 300 5
80Ό 3時間 0. 1 2 1 2 0. 066 79 250 1 0
50で 2Β#¾] 0. 08 1 1 0. 066 83 450 1 0
20Ό 24時間 0. 1 8 20 0. 084 80 350 1 0
20 24時間 0. 40 36 0. 065 8 1 400 5
50 5 日, 0. 2 1 20 0. 056 86 350 1 0
20Ό 24Β#Κ1 0. 08 1 0 0. 042 93 250 5
25 20時間 0. 1 2 1 2 0. 083 81 300 5
50Ό 2Β Γ日, 0. 43 1 1 0. 075 83 350 1 0
50Ό 2Β#Γ日, 0. 44 1 1 0. 055 86 350 1 0
50Ό 2Β Ρ日, 0. 60 9 0. 044 86 250 5
50Ό 2Β#ΓΒ1 0. 47 8 0. 044 86 250 5
50 2Β#¾1 0. 4 1 1 0 0. 045 90 300 5 なし 2. 3 7 0. 083 全溶解
30で 1 0時間 0 4 0. 072 不溶
180Ό 5時間 0. 0 1 6. 5 0. 1 1 3 79 750 1 0

Claims

請求の範囲
1. ( 3 )—般式( 1 )で表されるような樣造単位を主成分とするポリマーと( b ) 光酸発生剤を含有し、 上記ポリマ一中に含まれる全力ルポキシル基が、 0. 02-2. Ommo I / gであることを特徴とするポジ型感光性樹脂前駆体 組成物。
(OH ) p 一 [CO— R 1— CON H— R2— NH] n— ( 1 )
(COOR3) m (OH ) q
(R 1は少なくとも 2個以上の炭素原子を有する 3価から 8価の有機基、 R 2は、 少なくとも 2個以上の炭素原子を有する 2価から 6価の有機基、 R3 は水素、 または炭素数 1から 1 0までの 1価の有機基であるが、 すべて水素 または全て炭素数 1から 1 0までの 1価の有機基であることはない。 nは 3 から 1 00000までの整数、 mは 1または 2、 P、 qは 0から 4までの整 数、 かつ p + q>0である。 )
2. 上記光酸発生剤がキノンジアジド化合物であることを特徴とする請求項 1記 載のポジ型感光性樹脂前駆体組成物。
3. 一般式( 1 ) で表されるポリマーのカルボキシル基の一部が隣接するアミド 基と反応してイミド化しており、 そのイミド化率が 1 %以上 50%以下であ ることを特徴とする請求項 1記載のポジ型感光性樹脂組成物。
4. 一般式( 〗 ) で表されるポリマーの 365 n mにおける吸光度が膜厚 1 m あたリ 0. 1以下であることを特徴とする請求項に記載のポジ型感光性樹脂 組成物。
5. 一般式( 1 ) の R ' ( C 00 R 3 ) m ( 0 H ) pが、 下記一般式( 6 ) で表 されることを特徴とする請求項 1記載のポジ型感光性樹脂前駆体組成物。
一 R7— C0NH— R8— NHC0 - R9— ( 6 )
I I I
(COOR 10) r (OH) s (COOR 1 1 ) t
(R7、 R 9は炭素数 2から 20より選ばれる 3価から 4価の有機基を示し、 R8は炭素数 3から 20より選ばれる水酸基を有した 3価から 6価の有機基 を示し、 R 10、 R 1 1は水素、 炭素数 1から 1 0までの 1価の有機基のいず れかを示す。 R 1 Q、 R 1 'は全てが水素原子、 あるいは炭素数 1から 1 0ま での 1価の有機基ではない。 r、 tは 1あるいは 2の整数を示し、 sは 1か ら 4までの整数を示す。 )
6. 一般式( 1 ) の R 2 (OH ) qが、 下杞一般式(7 ) で表されることを特徴 とする請求項 1記載のポジ型感光性樹脂前駆体組成物。
-R '2-NHCO-R 13-CONH-R '4-
I 1 (7 ) (OH) u (OH) v
(R 12、 R '4は炭素数 2から 20より選ばれる水酸基を有した 3価から 4 価の有機基を示し、 R 13は炭素数 2から 30より選ばれる 2価の有機基を 示す。 、 u、 Vは 1あるいは 2の整数を示す。 )
7. 一般式( 1 ) の R 2 (OH ) qが、 下記一般式(8 ) で表されることを特徴 とする請求項 7記載のポジ型感光性樹脂前駆体組成物。
-R 15-CON H-R l 6-N HCO-R 17-
I (8) (OH) w
( R 15、 R '7は炭素数 2から 30より選ばれる 2価の有機基を示し、 R 16 は、 炭素数 2から 20より選ばれる水酸基を有した 3価から 6価の有機基を 示す。 wは 1から 4までの整数を示す。 )
8. 一般式 ( 1 ) の R 2 (OH ) qが、 一般式 ( 9 ) で表されることを特徴とす る請求項 1記載のポジ型感光性樹脂前駆体組成物。
— R 18— CON H— R 19
I (9 )
(OH ) X
( R '8は炭素数 2から 30より選ばれる 2価の有機基を示し、 R 19は、 炭 素数 2から 20より選ばれる水酸基を有した 3価から 6価の有機基を示す。
Xは 1から 4までの整数を示す。 )
9. 一般式( 1 ) で表されるポリマーにおいて、 R 1 (COOR 3 ) m (OH ) Pの 50%以上が、 一般式( 6 ) で表される基であり、 R2で表される基が 水酸基を含まない 2価のジァミン化合物の残基であることを特徴とする請求 項 1記載のポジ型感光性樹脂前駆体組成物。
10. —般式( 1 ) において、 R2 (OH ) qの 50%以上がが一般式 ( 7 ) で表 される基であリ、 R 'で表される基がテトラカルボン酸の残基であることを 特徴とする請求項 1記載のポジ型感光性樹脂前駆体組成物。
11. 一般式( 1 ) において、 R2 (OH ) qの 50%以上がが一般式 (8) で表 される基であり、 R 'で表される基がテトラ力ルボン酸の残基であることを 特徴とする請求項 1記載のポジ型感光性樹脂前駆体組成物。
12. 一般式 ( 1 ) において、 R2 ( OH ) qの 50%以上が一般式 ( 9 ) で表さ れる基であり、 R 1で表される基がテトラカルボン酸の残基であることを特 徴とする請求項 1記載のポジ型感光性樹脂前駆体組成物。
13. 一般式( 2 ) で表される搆造単位を主成分とするポリマ一を一般式( 3 ) 、 (4) 、 ( 5 ) で示される少な〈とも 1種の化合物で処理することにより、 一般式( 1 ) で表される化合物とすることを特徴とする請求項 1記載のポジ 型感光性樹脂前駆体組成物の製造方法。
(OH ) p 一 [C 0 - R 1—C ON H— R2— N H ] n— ( 2 )
I I
(COOH) m (OH ) q
( R,は少なくとも 2個以上の炭素原子を有する 3価から 8価の有機基、 R 2は、少なくとも 2個以上の炭素原子を有する 2価から 6価の有機基である。 nは 3から 1 00000までの整数であり、 mは 1または 2、 P、 qは 0か ら 4までの整数、 かつ p + q>0である。
R5
R4—C— OR6 ( 3)
OR
R 7 C一 OR (4)
OR
H2C=CH-OR6 ( 5 )
( R4、 R 5は水素原子、 炭素数 1以上の 1価の有機基、 含窒素有機基、 含 酸素有機基のいずれかを示す。 R 6は炭素数 1以上の 1価の有機基を示す。 R 7は炭素数 1以上の 2価の有機基、 含窒素有機基、 含酸素有機基を示す。 )
14. —般式( 3 ) で表される化合物が N、 N—ジメチルホルミアミ ドジアルキル ァセタールであることを特徴とする請求項 1 3記載のポジ型感光性樹脂前駆 体組成物の製造方法。
15. 一般式( 5 ) で表される化合物がシクロへキシルビ二ルェ一テルであること を特徴とする請求項 1 3記載のポジ型感光性樹脂前駆体組成物の製造方法。
PCT/JP1999/004849 1998-09-09 1999-09-07 Composition-precurseur de resine photosensible positive et procede de fabrication correspondant WO2000014604A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP99940701A EP1037112B1 (en) 1998-09-09 1999-09-07 Positive photosensitive resin precursor composition and process for producing the same
DE69922155T DE69922155T2 (de) 1998-09-09 1999-09-07 Vorläufer einer photoempfindlichen harzzusammensetzung und verfahren zu dessen herstellung
KR1020007004957A KR100605414B1 (ko) 1998-09-09 1999-09-07 포지형 감광성 수지 전구체 조성물 및 그의 제조 방법
US09/567,106 US6723484B1 (en) 1998-09-09 2000-05-08 Positive-working photosensitive resin precursor composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP25535698 1998-09-09
JP10/255356 1998-09-09
JP29048198A JP4026246B2 (ja) 1998-10-13 1998-10-13 ポジ型感光性樹脂組成物の製造方法
JP10/290481 1998-10-13
JP31599098 1998-11-06
JP10/315990 1998-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/567,106 Continuation US6723484B1 (en) 1998-09-09 2000-05-08 Positive-working photosensitive resin precursor composition

Publications (1)

Publication Number Publication Date
WO2000014604A1 true WO2000014604A1 (fr) 2000-03-16

Family

ID=27334425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004849 WO2000014604A1 (fr) 1998-09-09 1999-09-07 Composition-precurseur de resine photosensible positive et procede de fabrication correspondant

Country Status (7)

Country Link
US (2) US6723484B1 (ja)
EP (1) EP1037112B1 (ja)
KR (1) KR100605414B1 (ja)
CN (1) CN1246738C (ja)
DE (1) DE69922155T2 (ja)
TW (1) TWI226353B (ja)
WO (1) WO2000014604A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069041A1 (fr) * 2001-02-26 2002-09-06 Toray Industries, Inc. Composition precurseur de resine photosensible positive et affichage fabrique au moyen de cette composition
EP1296540A1 (en) * 2000-06-28 2003-03-26 Toray Industries, Inc. Display

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100801785B1 (ko) * 2002-01-31 2008-02-05 스미토모 베이클리트 컴퍼니 리미티드 양성형 감광성 수지조성물
JP4665333B2 (ja) 2000-11-27 2011-04-06 東レ株式会社 ポジ型感光性樹脂前駆体組成物
JP3895945B2 (ja) * 2001-04-24 2007-03-22 ソニーケミカル&インフォメーションデバイス株式会社 樹脂組成物及び樹脂組成物製造方法
JP3882817B2 (ja) 2001-09-26 2007-02-21 日産化学工業株式会社 ポジ型感光性ポリイミド樹脂組成物
CN100336137C (zh) * 2002-01-28 2007-09-05 捷时雅株式会社 形成电介体的光敏组合物以及利用该组合物的电介体
DE602004024846D1 (de) * 2003-04-07 2010-02-11 Toray Industries Zusammensetzung von photoempfindlichem Harz des Positivtyps
JP4386454B2 (ja) * 2006-08-22 2009-12-16 信越化学工業株式会社 アルカリ水溶液に可溶な感光性ポリイミド樹脂、該樹脂を含む組成物、及び該組成物から得られる膜
WO2009078365A1 (ja) * 2007-12-14 2009-06-25 Nissan Chemical Industries, Ltd. ポリヒドロキシイミドの製造方法並びに該製造方法より得られたポリヒドロキシイミドを含有するポジ型感光性樹脂組成物
KR20170125352A (ko) * 2015-03-06 2017-11-14 도레이 카부시키가이샤 감광성 수지 조성물 및 전자 부품
KR20180095228A (ko) 2017-02-17 2018-08-27 동우 화인켐 주식회사 네가티브형 감광성 수지 조성물
TWI678596B (zh) * 2018-09-13 2019-12-01 新應材股份有限公司 正型光阻組成物及圖案化聚醯亞胺層之形成方法
WO2023022472A1 (ko) * 2021-08-20 2023-02-23 주식회사 동진쎄미켐 감광성 수지 조성물 및 이를 포함하는 표시 장치
CN114621437B (zh) * 2022-04-01 2023-08-18 吉林奥来德光电材料股份有限公司 用于制备感光树脂薄膜的化合物、其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153656A (ja) * 1990-10-18 1992-05-27 Toyo Gosei Kogyo Kk ポジ型ホトレジスト組成物及び該組成物を用いたパターン形成方法
JPH10153857A (ja) * 1996-11-22 1998-06-09 Nippon Zeon Co Ltd ポジ型フォトレジスト組成物
JPH10186664A (ja) * 1996-12-20 1998-07-14 Asahi Chem Ind Co Ltd ポジ型感光性耐熱材料
JPH1124270A (ja) * 1997-05-07 1999-01-29 Toray Ind Inc 感光性組成物
JPH11174679A (ja) * 1997-12-10 1999-07-02 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物及びレリーフパターンの製造法
JPH11223940A (ja) * 1997-12-01 1999-08-17 Toray Ind Inc 感光性耐熱性樹脂前駆体組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115461A (ja) 1989-09-29 1991-05-16 Toshiba Corp 感光性樹脂組成物
US5288588A (en) * 1989-10-27 1994-02-22 Nissan Chemical Industries Ltd. Positive photosensitive polyimide resin composition comprising an o-quinone diazide as a photosensitive compound
EP0478321B1 (en) * 1990-09-28 1997-11-12 Kabushiki Kaisha Toshiba Photosenstive resin composition for forming polyimide film pattern and method of forming polyimide film pattern
JP2890213B2 (ja) * 1991-02-25 1999-05-10 チッソ株式会社 感光性重合体組成物及びパターンの形成方法
US5302489A (en) * 1991-10-29 1994-04-12 E. I. Du Pont De Nemours And Company Positive photoresist compositions containing base polymer which is substantially insoluble at pH between 7 and 10, quinonediazide acid generator and silanol solubility enhancer
KR0134753B1 (ko) * 1993-02-26 1998-04-18 사토 후미오 폴리아미드산 조성물
JP3115461B2 (ja) 1993-12-06 2000-12-04 松下電器産業株式会社 パネル一体型タブレット
JPH10186658A (ja) 1996-12-24 1998-07-14 Hitachi Ltd ポジ型感光性樹脂組成物とそれを用いた大規模集積回路の製法
JPH10307394A (ja) 1997-05-09 1998-11-17 Hitachi Ltd ポジ型感光性樹脂組成物とそれを用いたパターン形成方法並びに電子装置の製法
JP3440832B2 (ja) * 1997-07-14 2003-08-25 東レ株式会社 感光性ポリイミド前駆体組成物
JP3890699B2 (ja) 1997-09-29 2007-03-07 東レ株式会社 ポジ型感光性樹脂組成物とその製造方法
JPH11106651A (ja) * 1997-10-01 1999-04-20 Toray Ind Inc 感光性耐熱性樹脂前駆体組成物
JP3509612B2 (ja) * 1998-05-29 2004-03-22 日立化成デュポンマイクロシステムズ株式会社 感光性重合体組成物、レリーフパターンの製造法及び電子部品
JP2000075478A (ja) * 1998-08-31 2000-03-14 Toray Ind Inc ポジ型感光性樹脂前駆体組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04153656A (ja) * 1990-10-18 1992-05-27 Toyo Gosei Kogyo Kk ポジ型ホトレジスト組成物及び該組成物を用いたパターン形成方法
JPH10153857A (ja) * 1996-11-22 1998-06-09 Nippon Zeon Co Ltd ポジ型フォトレジスト組成物
JPH10186664A (ja) * 1996-12-20 1998-07-14 Asahi Chem Ind Co Ltd ポジ型感光性耐熱材料
JPH1124270A (ja) * 1997-05-07 1999-01-29 Toray Ind Inc 感光性組成物
JPH11223940A (ja) * 1997-12-01 1999-08-17 Toray Ind Inc 感光性耐熱性樹脂前駆体組成物
JPH11174679A (ja) * 1997-12-10 1999-07-02 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物及びレリーフパターンの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1037112A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1296540A1 (en) * 2000-06-28 2003-03-26 Toray Industries, Inc. Display
EP1296540A4 (en) * 2000-06-28 2007-02-21 Toray Industries DISPLAY
WO2002069041A1 (fr) * 2001-02-26 2002-09-06 Toray Industries, Inc. Composition precurseur de resine photosensible positive et affichage fabrique au moyen de cette composition
KR100840472B1 (ko) * 2001-02-26 2008-06-20 도레이 가부시끼가이샤 포지티브형 감광성 수지 전구체 조성물 및 그것을 이용한표시장치

Also Published As

Publication number Publication date
US20040170914A1 (en) 2004-09-02
CN1471659A (zh) 2004-01-28
KR100605414B1 (ko) 2006-08-02
KR20010031874A (ko) 2001-04-16
US6723484B1 (en) 2004-04-20
EP1037112B1 (en) 2004-11-24
CN1246738C (zh) 2006-03-22
DE69922155T2 (de) 2005-12-08
TWI226353B (en) 2005-01-11
EP1037112A4 (en) 2002-12-18
EP1037112A1 (en) 2000-09-20
DE69922155D1 (de) 2004-12-30

Similar Documents

Publication Publication Date Title
JP3262108B2 (ja) ポジ型感光性樹脂組成物
JP4780586B2 (ja) ポジ型感光性樹脂組成物
WO2000014604A1 (fr) Composition-precurseur de resine photosensible positive et procede de fabrication correspondant
JP2000187321A (ja) 感光性樹脂組成物、レリーフパターンの製造法及び電子部品
JP2011013644A (ja) 感光性樹脂組成物
JPH11202489A (ja) 感光性耐熱性樹脂前駆体組成物
JP4337389B2 (ja) 耐熱性樹脂前駆体組成物の製造方法
JP2001139806A (ja) 耐熱性感光性樹脂組成物
JPH11338157A (ja) ポジ型感光性樹脂組成物及びレリーフパターンの製造法
JP5547933B2 (ja) アルコキシメチル化合物
JP2001312051A (ja) 感光性重合体組成物及びパターンの製造方法並びに電子部品
JP2000187317A (ja) 感光性樹脂前駆体組成物
JP2002012761A (ja) 耐熱性樹脂組成物
JP4627030B2 (ja) ポジ型感光性樹脂組成物
JP2005309215A (ja) 感光性重合体組成物及びそれを用いたレリ−フパターンの製造法、電子部品。
JPH11174679A (ja) ポジ型感光性樹脂組成物及びレリーフパターンの製造法
JPH03115461A (ja) 感光性樹脂組成物
JP4836607B2 (ja) ポジ型感光性樹脂組成物
JP4560247B2 (ja) ポジ型感光性樹脂組成物
JP2000231192A (ja) ポジ型感光性樹脂組成物、レリーフパターンの製造法及び電子部品
JP4207658B2 (ja) 感光性耐熱性樹脂前駆体組成物の製造方法
JP2007271897A (ja) ポジ型感光性樹脂組成物の製造方法
JPH11217434A (ja) 耐熱性樹脂前駆体組成物および感光性耐熱性樹脂前駆体組成物の製造方法
JP3436673B2 (ja) レリーフパターンの製造法
JP4744318B2 (ja) ポジ型感光性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99801861.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09567106

Country of ref document: US

Ref document number: 1020007004957

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999940701

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999940701

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007004957

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999940701

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007004957

Country of ref document: KR