WO1999067437A1 - Tige en fil d'acier et procede de fabrication de l'acier destine a ce fil - Google Patents

Tige en fil d'acier et procede de fabrication de l'acier destine a ce fil Download PDF

Info

Publication number
WO1999067437A1
WO1999067437A1 PCT/JP1999/003307 JP9903307W WO9967437A1 WO 1999067437 A1 WO1999067437 A1 WO 1999067437A1 JP 9903307 W JP9903307 W JP 9903307W WO 9967437 A1 WO9967437 A1 WO 9967437A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
wire
steel wire
average composition
Prior art date
Application number
PCT/JP1999/003307
Other languages
English (en)
French (fr)
Inventor
Takanari Hamada
Yusuke Nakano
Yukio Ishizaka
Takayuki Nishi
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to KR1020007001761A priority Critical patent/KR100353322B1/ko
Priority to JP2000556076A priority patent/JP3440937B2/ja
Priority to CA002300992A priority patent/CA2300992C/en
Priority to EP99957184A priority patent/EP1018565A4/en
Priority to AU42894/99A priority patent/AU736258B2/en
Publication of WO1999067437A1 publication Critical patent/WO1999067437A1/ja
Priority to US09/503,713 priority patent/US6277220B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0075Treating in a ladle furnace, e.g. up-/reheating of molten steel within the ladle
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a method for manufacturing a steel wire, a steel for a steel wire, and a method for manufacturing an ultrafine steel wire. More specifically, such as wire ropes, valve springs, suspension springs, PC steel wire, steel cord, etc., have excellent fatigue resistance properties and excellent cold workability (for example, wire drawing, rolling workability, Steel wire suitable for use in products that require high workability), a method of producing steel having high cleanliness and being a material steel of the steel wire, and a method of manufacturing a fine steel wire using the steel wire as a material. It relates to a manufacturing method. Background art
  • wire ropes, valve springs, suspension springs, and PC steel wires are produced by hot-rolling steel wires (hereinafter, “steel wires” are simply referred to as “wires”), wire drawing, and cold rolling. It is manufactured by cold working and then by tempering or quenching and tempering.
  • ultra-fine steel wire for steel cord used as a reinforcing material for automotive radial tires is firstly drawn and patented into a wire rod with a diameter of about 5.5 mm that has been adjusted and cooled after hot rolling. It is manufactured by processing, secondary wire drawing, and final patenting, followed by brass plating, and final wet wire drawing. The ultra-fine steel wire obtained in this manner is further burned to form a twisted steel wire by burning a plurality of the wires to form a steel cord.
  • wire rods belonging to the above technical fields are strong at the time of wire drawing or cold rolling, especially when manufacturing steel cord. It is strongly required not to break during wet wire drawing in which cold working is performed at a high temperature. Similarly, it is required that there be no breakage in the burning process where multiple ultra-fine steel wires are burned.
  • inclusions non-metallic inclusions (hereinafter simply referred to as inclusions) were added during hot rolling. There is disclosed a technology for rendering harmless as ductile inclusions by controlling the plastic deformation to a ternary low melting point composition region.
  • Japanese Patent Application Laid-Open No. Sho 62-99436 discloses that the ratio of the length (L) to the width (d) of inclusions is limited to that of LZd ⁇ 5 having a small stretchability, and the average composition of the inclusions is as follows: S i 0 2: 20 ⁇ 60% , M n 0: to 1 0 ⁇ 80%, C A_ ⁇ : 5 0% or less, M g O: 1 5% or less of one or steel containing both disclose I have.
  • the ratio of the length (L) to the width (d) of inclusions is limited to those having a small stretchability of LZd ⁇ 5, and the average composition of the inclusions Is S i 02: 35 to 75%, Al 2 ⁇ 3 : 30% or less, C a :: 50% or less, A steel consisting of less than 25% MgO is disclosed.
  • inclusions have very low interfacial energy. For this reason, inclusions tend to agglomerate and grow during secondary smelting, such as in a gas publishing or arc-type heating system, during secondary scouring, etc., and during construction, and tend to remain as giant inclusions at the single stage. .
  • the frequency of crystallization of a heterogeneous phase increases during the solidification process within the same inclusion, as shown in Fig. 1, even if the average composition of the inclusions is the same there is a possibility .
  • the hatched portion indicates a heterogeneous phase.
  • the inclusion composition proposed in each of the above publications that is, the average composition of the inclusions
  • the inclusions having a large and heterogeneous composition crystallize, the inclusions among the huge inclusions
  • the region within the composition proposed in the publication is soft, it is reduced in size by hot rolling, cold rolling or wire drawing, but the region outside the composition proposed in the publication may remain as a large size.
  • Japanese Patent Application Laid-Open Nos. 9-125195 and 9-12520 disclose techniques for specifying the size and number of hard inclusions that affect the cold workability and also the fatigue resistance.
  • the technology proposed in these publications is, for example, to dissolve a test material collected from a 5.5 mm diameter wire rod obtained by hot rolling with a prescribed solution.
  • oxides hard oxide inclusions
  • it By measuring the size and number of hard oxide inclusions (hereinafter simply referred to as oxides) that are the residues, and by satisfying the specified conditions, it can be identified as steel or steel with high cleanliness for the first time. It is. For this reason, if the equipment for smelting steel is different or the chemical composition of steel is different, it is not always possible to stably obtain steel and steel materials with the desired high cleanliness.
  • An object of the present invention is to provide a wire rod suitable for applications such as a wire rope, a valve spring, a suspension spring, a PC steel wire, a steel cord, etc., which require excellent fatigue resistance and excellent cold workability, and a high cleanliness. It is an object of the present invention to provide a method for producing a steel having properties and being a material steel of the wire, and a method for producing an ultrafine steel wire using the wire as a material.
  • the gist of the present invention is as follows.
  • a method for producing an ultra-fine steel wire comprising subjecting the wire according to (1) to cold working and then subjecting the wire to final heat treatment, plating, and wet drawing in this order.
  • the “longitudinal longitudinal section” (of the wire) (hereinafter referred to as “L section”) in the present invention refers to a plane cut in parallel with the rolling direction of the wire and passing through the center line thereof.
  • the “width” of an oxide refers to the maximum length in the width direction of each oxide in the L section. The same definition applies when the oxide form is granular.
  • C A_ ⁇ + A l 2 ⁇ 3 refers to the total amount of C a 0 and A 1 2 ⁇ a.
  • wire refers to steel that has been hot-rolled into a rod and is coiled and includes a so-called “burn-in coil”.
  • “Secondary refining” refers to “scrubbing methods outside the converter for cleaning”, such as a refining method using gas publishing or an arc heating method, or a refining method using a vacuum processing device. Out-of-pile scouring.
  • Step wire refers to a wire that has been cold worked and coiled.
  • ⁇ two-roll rolling mill Including cold rolling using “3 roll rolling mill” and “4 roll rolling mill”.
  • “Final heat treatment” refers to the final patenting process.
  • “plating treatment” is used to reduce the drawing resistance in the next wet drawing process, such as brass plating, Cu plating, and Ni plating, and to use rubber with rubber in steel cord applications. It is used for the purpose of improving adhesion.
  • Figure 1 shows that when large inclusions with a heterogeneous composition crystallize, the soft parts of the large inclusions are reduced in size by hot rolling, cold rolling or wire drawing, while the hard parts are large. It is a conceptual diagram showing that it remains as it is. The hatched portion indicates a heterogeneous phase.
  • (a), (b) and (c) show inclusions in a piece, a wire and a steel wire, respectively.
  • the present inventors have found applications in ropes, valve springs, suspension springs, PC steel wires, steel cords, etc., where excellent fatigue resistance and excellent cold workability are required.
  • Various investigations and researches were conducted to obtain suitable wire rods. That is, we investigated and studied the relationship between oxides in the wire and fatigue resistance and cold workability (drawability and burnability). As a result, first, the following findings (a) and (b) were obtained.
  • the average composition of the oxide having a width of 2 m or more in the L section of the wire is S i 0 2 : 70% or more in weight%; Ca O + Al 2 ⁇ ⁇ ⁇ ⁇ 3 : less than 20% and ZrO 2 : 0.1 to 10% may be included.
  • the present invention has been completed based on the above findings.
  • the “%” display of the content of each element and oxide means “% by weight”.
  • the effect of oxides with a width of less than 2 m on the L section of the wire on fatigue resistance and cold workability is small. Furthermore, since the above oxides with a width of less than 2 m are very small, if the composition analysis is performed by a physical analysis method such as the EPMA method, the matrix part may be included, and the measurement is performed accurately. It is difficult to do. Therefore, the width of the oxide in the L section of the wire was set to 2 m or more.
  • the average composition of the width least 2 m of the oxide in the L section of the wire rod (hereinafter referred to simply as "average composition") is 70% or more of S i ⁇ 2, less than 2 0% C a 0 + a 1 2 ⁇ 3, is Rukoto contain from 0.1 to 1 0% of Z R_ ⁇ 2 is important.
  • Z r O 2 is also dispersed finely in addition to S i O 2 of hard to disperse finely, adversely affect cold workability Ya fatigue resistance Disappears.
  • Z R_ ⁇ 2 inclusions referred to here "Z r 0 2 inclusions” also " Like the S i 0 2 inclusions ", Z R_ ⁇ not only 2 refers to a compound inclusions containing Z R_ ⁇ 2) disconnection origin during drawing in some of the coarse and rigid inclusions And the starting point of fatigue failure.
  • Z R_ ⁇ 2 contained in the "average composition” is less than 1% 0.
  • Z R_ ⁇ 2 contained in the "average composition” is 0.5% or more, more preferably equal to 1.0% or more.
  • average composition is S i 0 2: 7 0% or more, C a 0 + A 1 2 O 3: less than 20%, Z R_ ⁇ 2: 0. 1 to those containing 1 0% You only have to do it. Therefore, oxides other than S i ⁇ 2 , C aO, A 12 O 3, and Z r O 2 (eg, Mg 0, M n ⁇ , T i ⁇ 2 , N a 2 ⁇ , C r 2 ratio, etc. o 3) is contained in the "average composition" is not particularly necessary to define. However, as described in the Examples below, for example, S i O 2 oxide over put that width 2 m to L section of the wire, C a O, A l 2 ⁇ 3, M g O, M n
  • a test piece taken from a wire rod is mirror-polished, and the polished surface is used as a test surface and analyzed with an EPMA apparatus.
  • the wire rod targeted by the present invention which is suitable for applications such as wire ropes, valve springs, suspension springs, PC steel wires, and steel cords, which require excellent fatigue resistance and excellent cold workability, is made of a material steel.
  • the specific chemical composition of the steel to be formed and the method of producing the steel need not be particularly limited.
  • the fatigue resistance and the cold workability vary greatly depending on the chemical composition of the steel used as the material steel of the wire.
  • the chemical composition of the steel used as the material steel of the wire rod may be specified as follows. (C) Chemical composition of steel
  • C is an element effective for securing strength.
  • the content is less than 0.45%, it is difficult to impart high strength to final products such as springs and steel cords.
  • the content of C is preferably set to 0.45 to 1.1%.
  • Si is an element effective for deoxidation, and its effect cannot be exhibited if its content is less than 0.1%. On the other hand, the excess Doing so reduces the ductility of the ferrite phase in perlite. In springs, "sag resistance" is important, and Si has the effect of enhancing "sag resistance", but its effect is saturated even if it exceeds 2.5%. This increases the cost and promotes decarburization. Therefore, the Si content is preferably set to 0.1 to 2.5%.
  • Mn is an element effective for deoxidation, and if its content is less than 0.1%, this effect cannot be exerted. On the other hand, when the content exceeds 1.0%, segregation is apt to occur, and the cold workability and the fatigue resistance are deteriorated. Therefore, the content of Mn should be 0.1 to 1.0%.
  • the Zr may not be added. If added, the average composition of the oxides described above can be adjusted relatively easily to a desired range, and in addition, it has the effect of refining o-stenite crystal grains and increasing ductility and toughness. . However, not only effect the of the content exceeds 1% 0. is saturated, the cold workability Ya fatigue resistance beyond Z r 0 2 ranges contained in the average composition of oxides wherein Deterioration may be caused. Therefore, the Zr content is preferably set to 0.1% or less. The lower limit of Z r content is a value when the amount of Z r 0 2 contained in the average composition of the oxide is 1% 0.1.
  • the steel used as the raw material steel for the wire rod may further contain the following elements.
  • Cu need not be added. When added, it has the effect of increasing corrosion resistance. To ensure this effect, it is desirable that the content of Cu be 0.1% or more. However, when Cu is contained in an amount exceeding 0.5%, the grain boundaries are biased, and cracks and flaws are remarkably generated during the ingot rolling of the steel ingot and the hot rolling of the wire. Therefore, the content of Cu should be 0-0.5% Is good.
  • Ni need not be added. When added, it has the effect of forming a solid solution in the filament and increasing the toughness of the filament. In order to ensure this effect, it is preferable that the content of Ni is 0.05% or more. However, if the content exceeds 1.5%, the hardenability becomes too high, so that martensite is easily formed and the cold workability deteriorates. Therefore, the content of Ni is preferably set to 0 to 1.5%.
  • Cr need not be added. Cr has the effect of reducing the lamella spacing of pearlite and increasing the strength after hot rolling and after patenting. Furthermore, since it also has the effect of increasing the work hardening rate during cold working, high strength can be obtained even at a relatively low work rate by adding Cr. Cr also has the effect of increasing corrosion resistance. To ensure such effects, the content of Cr is preferably 0.1% or more. However, if the content exceeds 1.5%, the hardenability against the pearlite transformation becomes too high, and the patenting treatment becomes difficult. Therefore, the content of Cr is preferably set to 0 to 1.5%.
  • M 0 may not be added. If added, it has the effect of increasing the strength and fatigue resistance by precipitating as fine carbides by heat treatment. To ensure this effect, it is preferable that the content of Mo be 0.1% or more. On the other hand, if the content exceeds 0.5%, the above effect is saturated and the cost is increased. Therefore, the content of Mo is preferably set to 0 to 0.5%.
  • W need not be added. If added, it has the effect of significantly increasing the rate of heat hardening during cold working, like Cr. To ensure this effect, W The content is preferably 0.1% or more. However, if the content exceeds 0.5%, the hardenability of the steel becomes too high, and the patenting treatment becomes difficult. Therefore, the content of W is preferably set to 0 to 0.5% Co: 0 to 2.0%
  • C 0 may not be added. When added, it has the effect of suppressing the precipitation of pro-eutectoid cementite. To ensure this effect, the content of Co is preferably 0.1% or more. However, even if the content exceeds 2.0%, the above effect is saturated and the cost is only increased. Therefore, the content of C 0 is preferably set to 0 to 2.0%.
  • the content of B is preferably 0.0005% or more. However, if the content exceeds 0.0030%, cracks are likely to occur during warm or hot application. Therefore, the content of B is preferably set to 0 to 0.0030%.
  • V need not be added. When added, it has the effect of making austenite crystal grains finer and increasing ductility and toughness. In order to ensure this effect, it is preferable that the content of V is 0.05% or more. However, even if the content exceeds 0.5%, the above effect is saturated and the cost is increased. Therefore, the content of V is preferably set to 0 to 0.5%.
  • Nb may not be added. When added, it has the effect of reducing the size of austenite grains and increasing ductility and toughness. In order to ensure this effect, it is preferable that the content of Nb is 0.01% or more. But, Even if the content exceeds 0.1%, the above effect is saturated and the cost is increased. Therefore, the content of Nb is preferably set to 0 to 0.1%.
  • Ti need not be added. When added, it has the effect of reducing the size of austenite grains and increasing ductility and toughness. In order to surely obtain this effect, the content of T i is preferably set to 0.05% or more. However, even if the content exceeds 0.1%, the above-mentioned effect is saturated and the cost increases. Therefore, the content of D1 should be 0-0.1%. P, S, Al, N and ⁇ (oxygen) as impurity elements should have the following contents. Good.
  • the content of P as an impurity is preferably set to 0.020% or less.
  • the content of S as an impurity is preferably set to 0.020% or less.
  • A1 0.005% or less
  • a 1 is an element that mainly forms oxides, and degrades fatigue resistance and cold workability. In particular, if the content exceeds 0.005%, the deterioration of the fatigue resistance becomes large. Therefore, the content of A 1 as an impurity is preferably 0.0005% or less, and more preferably 0.004% or less.
  • N 0.005% or less
  • N is an element that becomes a nitride, and adversely affects ductility and toughness due to strain aging. In particular, if the content exceeds 0.005%, the adverse effects become significant. Therefore, the content of N as an impurity is preferably 0.005% or less, and more preferably 0.0035% or less.
  • the content of 0 as an impurity is preferably set to 0.0025% or less, and more preferably set to 0.020% or less.
  • the chemical components of the material steel particularly suitable for use in springs and steel cords are as follows.
  • the chemical composition of steel is% by weight, C: 0.45 to 0.70%, Si: 0.1 to 2.5%, Mn: 0.1 to 1. 0%, Zr: 0.1% or less, Cu: 0 to 0.5%, Ni: 0 to 1.5%, Cr: 0 to 1.5%, Mo: 0 To 0.5%, W: 0 to 0.5%, Co: 0 to 1.0%, B: 0 to 0.03 0%, V: 0 to 0.5%, Nb: 0 0.1 to 0.1%, Ti: 0 to 0.1%, the balance consists of Fe and unavoidable impurities, P in impurities is 0.020% or less, and S is 0.020% %, Less than 0.005%, less than 0.05% N, and less than 0.0025% ⁇ (oxygen).
  • a spring after heat treatment can easily have a tensile strength of 160 MPa or more.
  • the chemical composition of steel is% by weight, C: 0.60 to 1. 1%, Si: 0 .:! To 1.0%, Mn: 0.1 to 0%. 7%, Zr: 0.1% or less, Cu: 0-0.5%, Ni: 0-1.5%, Cr: 0-l.5%, Mo: 0-0.2%, W: 0-0.5%, Co: 0-2.0%, B: 0-0.00.30%, V: 0-0.5% , Nb: 0 to 0.1%, Ti: 0 to 0.1%, the balance consists of Fe and unavoidable impurities, P in impurities is 0.020% or less, and S is 0 0.20% or less, 81 is 0.005% or less, N is 0.005% or less, and 0 (oxygen) is preferably 0.025% or less.
  • a large tensile strength of more than 320 OMPa can be imparted to a steel wire wet-drawn to 0.15 to 0.35 mm.
  • the specific method of manufacturing steel it is not necessary to specifically limit the specific method of manufacturing steel to be the material steel of the wire having excellent fatigue resistance and cold workability.
  • the chemical composition of the steel, particularly the content of impurities varies depending on the method of smelting and forging of steel, and the cost of producing a steel ingot also varies depending on the method of forging.
  • the method of manufacturing the steel used as the raw material steel of the wire rod, in particular, the smelting method and the forging method may be specified as follows.
  • the steel to be used as the raw material steel for the wire rod is preferably formed into a steel ingot through the steps of primary refining by the converter, secondary refining outside the converter, and continuous forming.
  • the term “steel ingot” as used herein includes “pieces” as defined as JIS terms.
  • secondary purification refers to ladle refining methods that use a gas bubble-work heating method, etc., and refining methods that use vacuum processing equipment. The method usually referred to as “out-of-pile refining” in the “refining method”.
  • the “mixed A 1 amount” When the "mixed A 1 amount” is more than 1 0 g / ton, A 1 2 0 in an amount of 3 increases "average composition" in C a 0 + A 1 2 ⁇ amount of 3 2 0% or more included S i ⁇ 2 inclusions in addition to become possible to in some cases you deterioration Natsute, cold workability are not finely dispersed. Therefore, it is preferable that the “mixed A 1 amount” be 10 g / ton or less. It is more preferable that the “mixed A 1 amount” is 5 g ton or less, and it is extremely preferable that the amount is 3 gZ ton or less.
  • Z r 0 2 quantity, such as medium solvent is less than 1%
  • less than the amount of Z r 0 2 contained in the "average composition” is a 0.1% defined, S i ⁇ 2 based inclusions
  • the object may become coarse and hard inclusions, resulting in frequent wire breakage during cold working.
  • the “amount of Zr 02 in the solvent” exceeds 95%, the refractory becomes brittle and peels or breaks and remains in the molten steel, or the “average” described in the above section (B).
  • the amount of Z R_ ⁇ 2 contained in the composition "becomes Z R_ ⁇ 2 inclusions exceed 1 0% of the coarse and rigid inclusions, breakage during cold working may frequently.
  • the upper limit of the above “amount of ZrO 2 such as a solvent” is preferably 80%.
  • adding the Z r 0 2 to S i 0 2 based inclusions by adding a metal Z r in the molten steel may be a method for finely dispersing the S i 0 2 inclusions, in this case
  • manufacturing costs are high and economics may be lacking.
  • the “final C a OZS i C ⁇ ratio” exceeds 2.0, hard oxides such as subinel-alumina may appear and the cleanliness of the steel may decrease. Therefore, high steel material having a cleanliness to produce stably, and the "final C A_ ⁇ / S i ⁇ 2 ratio" 2. preferably set to 0 or less.
  • the “final Ca ⁇ Si 0 2 ratio” is preferably 0.3 or more, with 2.0 as the upper limit, and more preferably 0.6 or more. Further, a value of 0.8 or more is extremely preferable.
  • the C a 0 S i 0 2 ratio may be kept constant without changing the ratio at each stage of the refinement, or may be a low value. Or from a high value, the “final C a 0 / S i O 2 ratio” may be adjusted to 2.0 or less.
  • the Ca OZS i O 2 ratio can be adjusted by appropriately selecting the solvent to be blown into the molten steel.
  • the value of the Ca OZS i O 2 ratio of the slag in the slide By adjusting the Ca 0 / S i O 2 ratio from a low value to a ⁇ final Ca OZS i ⁇ 2 ratio '' of 2.0 or less by injecting a higher solvent medium into the molten steel to achieve uniformity Can be.
  • the hot rolling method for turning the steel produced through the steps of refining and forging described in the above (D) into a wire does not need to be particularly specified.
  • a normal hot rolling method for a wire is used. Is fine.
  • (F) Cold working of wire, final heat treatment, plating and wet wire drawing Cold working of wire obtained by hot rolling is performed by wire drawing using hole dies and roller dies.
  • the conventional cold working method such as the wire drawing used, that is, the cold rolling using a so-called “2 roll rolling mill”, “3 roll rolling mill” or “4 roll rolling mill” may be used.
  • the final patenting process that is the “final heat treatment” may be, for example, a commonly performed patenting process.
  • the plating process for the purpose of reducing the drawing resistance in the subsequent wet drawing process and increasing the adhesion to rubber, such as in steel cord applications, does not need to be special. Normal brass plating, Cu plating, Ni plating, etc. may be used. In addition, wet wire drawing may be one that is usually performed.
  • the ultrafine steel wire produced by subjecting the wire to cold working, final heat treatment, plating, and wet drawing may be processed into a predetermined final product.
  • a steel cord is formed by further burning a plurality of the ultrafine steel wires by burning to form a stranded steel wire.
  • Steels A to W having the chemical compositions shown in Table 1 were produced by a primary purification process using a converter, a secondary purification process using an external furnace, and a continuous production process. In other words, it is melted in a 70-ton converter, deoxidized with Si and Mn at tapping, then “out-of-furnace scouring” to adjust the components (chemical composition) and to purify it.
  • Table 1 shows the “mixed A 1 amount” during converter melting and “out-of-furnace refining” (that is, the amount of metal A charged into the molten steel from the converter to the continuous production process or the unavoidable amount).
  • A1 amount of metal mixed as impurities into the steel “Al 2 ⁇ 3 amount of medium solvent” (that is, A 1 2 in refractories and medium solvents that come into contact with molten steel) 0 3 content), “Z r O 2 amount of such medium solvent” (that is, the amount of Z R_ ⁇ 2 included in one or more of the refractory and Nakadachi ⁇ agent), blowing medium solvent into the molten steel whether, C a ozs i O 2 ratio of taking base medium slag in seminal ⁇ and “final C A_ ⁇ _ZS i ⁇ 2 ratio" (that is, when in contact with molten steel in the secondary rectification ⁇ and subsequent steps Ribe The details of the final C a OZS i ⁇ 2 ratio of the medium slag are also shown.
  • the medium solvent blown into the molten steel is specifically a Ca0 powder or a mixed powder of CaO and Si02.
  • Table 1 Steels A to W in Table 1 correspond to JIS SWR S82 A, which is generally used as a material steel for steel cord.
  • Table 1 also shows the contents of Al, N, and ⁇ (oxygen) as impurity elements in addition to C, Si, Mn, P, and S, which are JIS standard chemical components.
  • Each of the steels thus continuously formed was hot-rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate in a usual manner.
  • These wires were subjected to primary drawing (finished diameter: 2.8 mm), primary patenting, and secondary drawing (finished diameter: 1.2 mm). After this, a final patterning process (austenitic temperature of 950 to 150 ° C, lead bath temperature of 560 to 60 ° C) is performed, and brazing is continued.
  • Wet wire drawing (finished diameter: 0.2 mm) was performed at a wire drawing speed of 550 mZ.
  • Table 2 shows that the L section of the 5.5 mm diameter wire was mirror-polished, and the polished surface was analyzed with an EPMA device to measure the composition of oxides with a width of 2 m or more.
  • the results and the breakage index (number of breaks per ton of steel wire (turn tons)) when a 1.2 mm diameter steel wire is wet drawn to a 0.2 mm diameter steel wire are shown.
  • the “average composition” in Table 2 refers to the average composition of the oxide having a width of 2 m or more in the L section of the wire, and is the same in the following examples.
  • the asterisk indicates that the condition is out of the conditions specified in the present invention. From Table 2, it can be seen that, for the test rods Nos. 1 to 16, that is, for the wires made from the steels A to P manufactured by the method described in Table 1, the average composition satisfies the conditions specified in the present invention, the steel wire It is clear that the breaking index is low and the wire drawing workability is excellent. On the other hand, the average composition of the wire rods using steels Q to W of test numbers 17 to 23 as the material steels is out of the conditions specified in the present invention, and the breaking index of the steel wire is high, and the drawability is high. Was inferior.
  • Steels A1 to A15 shown in Table 3 were produced by a primary purification process using a converter, a secondary purification process using an external furnace, and a continuous production process. In other words, they are melted in a converter, deoxidized with Si and Mn at the time of tapping, then “out-of-furnace” to adjust the components (chemical composition) and to purify them.
  • Each of the steels thus continuously formed was hot-rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate in a usual manner.
  • These wires were subjected to primary drawing (finished diameter 2.8 mm), primary patenting, and secondary drawing (finished diameter 1.2 mm). After this, a final patenting treatment (austenitic temperature of 950 to 100 ° C, lead bath temperature of 560 to 610 ° C) is further performed, followed by brass plating.
  • Wet wire drawing (finished diameter: 0.2 mm) was performed at a drawing speed of 550 mZ.
  • Table 4 shows the results of measuring the composition of oxides with a width of 2 m or more by mirror-polishing the L cross section of a 5.5 mm diameter wire rod and analyzing the polished surface as a test surface with an EPMA device. The figure also shows the breaking index when a 1.2 mm diameter steel wire is wet drawn to a 0.2 mm diameter steel wire.
  • Steel 17 with the chemical composition shown in Table 5 was produced by a primary purification process using a converter, a secondary purification process using an external furnace, and a continuous production process. In other words, it is melted in a converter, deoxidized with SiMn when tapping steel, then “outside the furnace” to adjust the components (chemical composition) and to purify it. Up to 5 g Z ton As well as adjusted to the "A 1 2 ⁇ 3 of such medium solvent” and 1 0% or less, and 80% 1 to "Z r 0 2 quantity, such as medium solvent", "final C a 0 / adjust the S i 0 2 ratio "in the range of 0.8 to 2.0, and then continuously ⁇ .
  • Each of the steels thus continuously formed was rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate by a usual method.
  • These wires were subjected to primary drawing (finished diameter: 2.8 mm), primary patenting, and secondary drawing (finished diameter: 1.2 mm).
  • a final patterning treatment (austenitic temperature of 950 to 150 ° C, lead bath temperature of 560 to 61 ° C) is performed, followed by brass polishing.
  • wet drawing at a drawing speed of 550 m / min final diameter 0.2 mm to ⁇ .
  • Table 6 shows the results of measuring the composition of oxides with a width of 2 m or more by mirror-polishing the L cross section of a 5.5 mm diameter wire and analyzing the polished surface as a test surface with an EPMA device.
  • the figure shows the tensile strength and fatigue strength of a 0.2 mm steel wire, and the number of breaks when a 1.2 mm diameter steel wire is wet drawn to a 0.2 mm diameter steel wire.
  • the fatigue strength is the result when the temperature is 1 0 7 cycle test using a 2 0 to 2 5 ° C, humidity rotation Hunter bending under the conditions of 5 0-6 0% Fatigue Tester is there.
  • Steels 8 to 14 having the chemical compositions shown in Table 7 were produced by a primary refining process using a converter, a secondary refining process using out-of-pile refining, and a continuous production process. In other words, it is melted in a converter, deoxidized with S i and Mn at tapping, then “out-of-furnace” to adjust the components (chemical composition) and to purify it. 5 with gZ tons adjusted to below, the "a 1 2 ⁇ 3 of such medium solvent” and 1 0% or less, and, the "Z R_ ⁇ 2 of such medium solvent” 1-8 0% The “final C a OZS i O 2 ratio” was adjusted to a range of 0.8 to 2.0, and then a continuous production was performed.
  • Each of the steels thus continuously formed was rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate by a usual method.
  • These wires were subjected to primary drawing (finished diameter 2.8 mm), primary patenting, and secondary drawing (finished diameter 1.2 mm). After this, a final patterning treatment (austenitic temperature of 950 to 150 ° C, lead bath temperature of 560 to 61 ° C) is performed, and brazing is continued.
  • Wet wire drawing (finished diameter: 0.2 mm) was performed under the condition of a speed of 550 mZ.
  • Table 8 shows the results of measuring the composition of oxides with a width of 2 m or more by mirror-polishing the L cross section of a 5.5 mm diameter wire rod and analyzing the polished surface as a test surface with an EPMA device.
  • the figure shows the tensile strength and fatigue strength of a 0.2 mm steel wire, and the number of breaks when a 1.2 mm diameter steel wire is wet drawn to a 0.2 mm diameter steel wire.
  • Fatigue strength is the result of when the temperature 1 0 7 cycle test using a 2 0 ⁇ 2 5 ° C, fatigue tester rotary bending Hunter under the conditions of humidity 5 0-6 0%.
  • a steel having the chemical composition shown in Table 9 is melted in a test furnace, deoxidized with Si and Mn, then subjected to secondary scouring, and the metal A1 is introduced into the molten steel from the test furnace to the continuous manufacturing process.
  • Amount of metal A1 or the amount of metal A1 inevitably mixed as impurities (hereinafter, these A1 amounts are also simply referred to as “mixed A1 amount”), A12 ⁇ 3 the amount (hereinafter, this a l 2 Rei_3 amount referred to simply as "medium solvent in which a l 2 ⁇ 3 amount”), the refractory and the amount of Z r ⁇ 2 that is part of the one or more medium solvent (hereinafter the Z r 0 2 amount to simply as "Z r O 2 amount of such medium solvent”), further, “the final C A_ ⁇ _ZS i ⁇ 2 ratio" (that is, the molten steel in the secondary Sei ⁇ and subsequent steps Upon contact, the final C a OZS
  • the A 1 2 ⁇ 3 of such medium solvent 1 0% or less, Z r such medium solvent 0 2 amount is from 1 to 80%, further, the final C a O / S I_ ⁇ 2 ratio was adjusted to a range of 0.8 to 2.0, and then continuously ⁇ .
  • mixed A 1 weight, A 1 2 0 3 amount of such medium solvents, Z r 0 2 quantity, such as medium solvents, final C a 0 / S i 0 is varied any one or more of the 2 ratios.
  • steel 21 has a final Ca 0 / S i ⁇ 2 ratio of 2.2.
  • Steel 22 was the Z R_ ⁇ 2 of such medium solvent and 0.9%.
  • Steel 23 the Z R_ ⁇ 2 of such medium solvent and 8% 0., further, was 0.6 the final C a ozs i ⁇ 2 ratio.
  • Steel 24 the Z R_ ⁇ 2 of such medium solvent and 8% 0., further, the final C a 0 Bruno S i ⁇ 2 ratio 2.
  • Steel 25 had a ZrO 2 content of 81%, such as a solvent medium, and a final Ca 0 / S iO 2 ratio of 2.3.
  • Steel 26 mixed A 1 amount of 7 g / ton, the A l 2 ⁇ 3 of such medium solvent and 1 1% addition, the final C A_ ⁇ _ZS i 0 2 ratio 2. was 1. Steel 15 and steel 21, steel 16 and steel 22, steel 17 and steel 23, steel 18 and steel 24, steel 19 and steel 25, and steel 20 and steel 26 have almost the same chemistry. It was adjusted so as to have a composition.
  • each steel After continuously forming each steel as described above, it was hot-rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate by a usual method.
  • These wires were subjected to primary drawing (finished diameter 2.8 mm), primary patenting, and secondary drawing (finished diameter 1.2 mm).
  • a final patenting treatment (austenitic temperature of 950 to 150 ° C, lead bath temperature of 560 to 60 ° C) is performed, and brazing is continued.
  • wet drawing (finished diameter: 0.2 mm) was performed at a drawing speed of 550 mZ.
  • Table 9 shows the results of a mirror-polished L section of a 5.5 mm diameter wire rod, analysis of the polished surface as a test surface with an EPMA apparatus, and measurement of the composition of oxides with a width of 2 ym or more.
  • the tensile strength and fatigue strength of 0.2 mm steel wire are also shown.
  • the fatigue strength is the result of when the temperature 1 0 7 cycle test using a 2 0 ⁇ 2 5 ° C, fatigue tester rotating bending Hunter humidity in conditions under 60% 50.
  • Table 10 shows the breakage index of each of the above steels when a 1.2 mm diameter steel wire was wet drawn to a 0.2 mm diameter steel wire (number of breaks per ton of steel wire (times) Ton))).
  • Table 1 1 a steel having a chemical composition shown in smelted in a test furnace, S i, and secondary Sei ⁇ after deoxidation M n, "contaminating A 1 amount", A 1 2 ⁇ 3, such as “medium solvent amount ", by changing the" Z r 0 2 quantity, such as medium solvent “and” final C a oZS i O 2 ratio ", the composition of the oxide to various changes so, then having conducted a continuous ⁇ .
  • the amount of mixed A1 was 5 g W 99/67437 as well as adjusted below tons, the A 1 2 0 3 amount of such medium solvent 1 0% or less, and the Z r O 2 amount of such medium solvent 1 and 80%, further, final C a
  • the 0 / Si02 ratio was adjusted in the range of 0.8 to 2.0, and then the structure was continuously manufactured.
  • mixed A 1 weight, A 1 2 O 3 amount, such Nakadachi ⁇ agent, Z r 0 2 quantity, such as medium solvents, final C a 0 / At least one of the S i O 2 ratios was changed.
  • the steel 33 is the final C a O / S i 0 2 ratio 2.
  • Steel 34 was the Z R_ ⁇ 2 of such medium solvent 8% 0.1.
  • Steel 3 5 a Z r 0 2 quantity, such as medium solvent and 0.7%, further, the final C a O // S i ⁇ 2 ratio was 0.6.
  • Steel 36 had a ZrO 2 content of 0.8%, such as a solvent, of 0.8%, and a final C a 0 to S i O 2 ratio of 2.2.
  • Steel 3 7 the Z R_ ⁇ 2 of such medium solvent and 81%, more, final C A_ ⁇ "S i to O 2 ratio 2 was 2.
  • Steel 38 is mixed A 1 amount of 7 g / tons, which a 1 2 0 3 amount of medium solvent and 1 2%, more, the final C a oZS i Oz ratio 2. was 1. It should be noted that steel 2 7 and the steel 3 3, and steel 2 8 Steel 34, steel 29, steel 35, steel 30 and steel 36, steel 31 and steel 37, and steel 32 and steel 38 were adjusted to have almost the same chemical composition.
  • the asterisk indicates that the condition is outside the conditions specified in the present invention.
  • each steel After continuously forming each steel as described above, it was hot-rolled into a wire having a diameter of 5.5 mm while adjusting a rolling temperature and a cooling rate by a usual method.
  • These wires were subjected to primary drawing (finished diameter 2.8 mm), primary patenting, and secondary drawing (finished diameter 1.2 mm). After this, a final patenting process (austenitizing temperature of 950 to 150 ° C, lead bath temperature of 560 to 60 ° C) is performed, and brass plating is continued. After that, wet drawing (finished diameter: 0.2 mm) was performed at a drawing speed of 550 m / min.
  • Table 11 shows that the L section of the 5.5 mm diameter wire was mirror-polished, and the polished surface was used as the surface to be tested, analyzed with an EPMA device, and the composition of oxides with a width of 2 m or more was measured. The tensile strength and fatigue strength of 0.2 mm and 0.2 mm steel wires are also shown.
  • the wire of the L, S i O 2 widths least 2 m of the oxide in the cross-section C A_ ⁇ , A l 2 ⁇ 3, Mg O, Mn O, identifies the Z r 0 2 That is, assuming that the sum of the “average composition” of the above six-component oxide was 100%, the “average composition” was investigated. Fatigue strength at temperature 2 0-2 5, the results of the case where the humidity is 1 0 7 cycle test using a Hunter type rotating bending fatigue tester under the conditions of 5 0-6 0%.
  • Products that require excellent fatigue resistance and excellent cold workability such as wire ropes, valve springs, suspension springs, PC steel wires, and steel cords, have high productivity using the wires of the present invention as materials. Can be provided below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

明細書 鋼線材及び鋼線材用鋼の製造方法 技術分野
本発明は、 鋼線材、 鋼線材用鋼の製造方法及び極細鋼線の製造方法に 関する。 より詳しく は、 ワイヤロープ、 弁ばね、 懸架ばね、 P C鋼線、 スチールコー ドのような、 優れた耐疲労特性や優れた冷間加工性 (例え ば、 伸線加工性、 圧延加工性や燃り加工性) が要求される製品の用途に 好適な鋼線材と、 高い清浄性を有し前記鋼線材の素材鋼となる鋼を製造 する方法、 及び前記鋼線材を素材とする極細鋼線の製造方法に関する。 背景技術
ワイ ヤロープ、 弁ばね、 懸架ばね、 P C鋼線は、 一般に、 熱間圧延し て得た鋼線材 (以下、 「鋼線材」 を単に 「線材」 という) に、 伸線加工 や冷間圧延加工といった冷間加工を施し、 更に、 焼入れ焼戻しの調質処 理、 あるいはブル一イ ング処理を施して製造される。 又、 自動車のラジ アルタイアの補強材と して用いられるスチールコー ド用極細鋼線は、 熱 間圧延後調整冷却した直径が約 5 . 5 m mの線材に、 1次伸線加工、 パ テンティ ング処理、 2次伸線加工、 最終パテンティ ング処理を行い、 次 いで、 ブラスメ ツキ処理を施し、 更に最終湿式伸線加工を施すことによ つて製造されている。 このようにして得られた極細鋼線を、 更に燃り加 ェで複数本燃り合わせて撚鋼線とすることでスチールコー ドが成形され る。
一般に、 線材を鋼線に加工する際に断線が生ずると、 生産性と歩留り が大きく低下してしまう。 したがって、 上記技術分野に属する線材は、 伸線加工時や冷間圧延加工時、 特にスチールコー ドを製造する場合は強 度の冷間加工が行われる湿式伸線加工時に断線しないことが強く要求さ れる。 同様に、 極細鋼線を複数本燃り合わせる燃り加工の際にも断線し ないことが要求される。
近年、 コ ス ト合理化や地球環境問題などを背景に前記したワイ ヤロー プ、 弁ばね、 懸架ばね、 P C鋼線やスチールコー ドなど各種製品の軽量 化に対する要望がますます高まっており、 高強度化への取り組みが活発 に行われている。 しかし、 一般に鋼材はその強度が高く なるほど延性と 靭性が低下して伸線加工性、 冷間圧延加工性及び撚り加工性が劣化する し、 疲労破壊に対する感受性も大きく なる。 このため、 前記した各種製 品の素材となる線材に対しては、 特にその内部性状の優れたものが要求 されるようになっている。
このため、 線材の伸線加工性と冷間圧延加工性を高めるとともに鋼線 の撚り加工性を高め、 更に、 製品の耐疲労特性を高めるこ とを目的に、 鋼の清浄性に着目 した技術が開示されている。 なお、 以下の説明におい ては簡単のために、 線材の伸線加工性と冷間圧延加工性及び鋼線の燃り 加工性をまとめて 「冷間加工性」 という場合もある。
例えば、 第 1 2 6回 · 第 1 2 7回西山記念技術講座の第 1 4 8〜 1 5 0ページには、 非金属介在物 (以下、 単に介在物という ことにする) を 熱間圧延時に塑性変形しゃすい三元系の低融点組成領域に制御すること で、 延性介在物と して無害化を図る技術が示されている。
特開昭 6 2— 9 9436号公報には、 介在物の長さ (L) と幅 (d) の 比が LZd^ 5の延伸性の小さいものに限定し、 介在物の平均的組成が、 S i 02 : 20〜 60 %、 M n 0 : 1 0〜 80 %に、 C a〇 : 5 0 %以 下、 M g O : 1 5 %以下の一方又は両方を含む鋼が開示されている。 特開昭 6 2— 9 94 3 7号公報には、 介在物の長さ (L) と幅 (d) の 比が LZd≤ 5の延伸性の小さいものに限定し、 介在物の平均的組成が S i 02 : 3 5〜 7 5 %、 A l 23 : 3 0 %以下、 C a〇 : 5 0 %以下、 M g O : 2 5 %以下からなる鋼が開示されている。
上記の特開昭 6 2— 9 94 3 6号公報と特開昭 62— 9943 7号公 報に開示された技術は、 基本的には介在物の低融点化を図るという技術 思想において前記の西山記念技術講座で報告された技術内容と同一であ る。 この 2つの公報で提案された技術の場合は、 M n Oや Mg Oを含め た多元系介在物の組成制御を行って低融点化を図り、 熱間圧延時に介在 物を十分延伸させるとともに、 冷間圧延あるいは伸線によつて介在物を 破枠させて微細に分散させ、 冷間加工性及び耐疲労特性を高めようとす るものである。
しかしながら、 介在物は界面エネルギーが微小である。 このため、 介 在物はガスパブリ ングやアーク式加熱方式を有すると りべ精鍊などの二 次精練時から铸造時において凝集肥大化しやすく、 铸片段階で巨大介在 物と して残存する傾向がある。 いったん巨大介在物が生じると、 仮に介 在物と しての平均組成は同じであっても、 図 1 に示すように同一介在物 内の凝固過程において不均一相を晶出する頻度が高く なる可能性がある 。 なお、 図 1 において斜線をつけた部分が不均一相を示す。 したがって 、 上記各公報で提案された介在物組成、 つま り介在物の平均組成に制御 した場合であっても、 巨大で不均一組成の介在物が晶出すると、 その巨 大介在物のうちで公報で提案された組成内の領域は軟質なため熱間圧延 及び冷間圧延や伸線で小型化するが、 公報で提案された組成から外れる 領域は大型のまま残存して しまうことがあって、 冷間加工性及び耐疲労 特性を向上させるには限界がある。
一方、 冷間加工性、 更には耐疲労特性に影響を及ぼす硬質介在物のサ ィズと個数を規定した技術が特開平 9 - 1 2 5 1 9 9号公報、 特開平 9 - 1 2 520 0号公報ゃ特開平 9— 2 0 9 0 7 5号公報に開示されてい る。 しかし、 これらの公報で提案された技術は、 例えば、 熱間圧延して 得た直径 5. 5 mmの線材から採取した試験材を規定の溶液で溶解させ 、 その残渣である硬質の酸化物介在物 (以下、 単に酸化物という) のサ ィ ズと個数を測定し、 規定の条件を満たすことで初めて高い清浄性を有 する鋼や鋼材と特定できるものである。 このため、 鋼を溶製するための 設備が異なったり、 鋼の化学組成が異なるような場合には、 必ずしも安 定して所望の高い清浄性を有する鋼や鋼材が得られるというものではな かった。 発明の開示
本発明の目的は、 優れた耐疲労特性や優れた冷間加工性が要求される ワイヤロープ、 弁ばね、 懸架ばね、 P C鋼線、 スチールコー ドなどの用 途に好適な線材と、 高い清浄性を有し前記線材の素材鋼となる鋼を製造 する方法、 及び前記線材を素材とする極細鋼線の製造方法を提供するこ とである。
本発明の要旨は以下のとおりである。
( 1 ) 長手方向縦断面における幅 2 m以上の酸化物の平均組成が、 重 量%で、 S i 〇 2 : 7 0 %以上、 C a O + A l 23 : 20 %未満、 Z r O 2 : 0. 1〜 1 0 %を含む線材。
( 2 ) 線材に用いる鋼の製造方法であって、 転炉による一次精鍊、 転炉 外での二次精鍊の後、 連続铸造する上記 ( 1 ) に記載の線材に用いる鋼 の製造方法。
(3 ) 上記 ( 1 ) に記載の線材を冷間加工した後、 最終の熱処理、 めつ き処理及び湿式伸線加工をこの順に施す極細鋼線の製造方法。
なお、 本発明でいう (線材の) 「長手方向縦断面」 (以下 「L断面」 という) とは、 線材の圧延方向に平行に、 その中心線を通って切断した 面をいう。 又、 酸化物の 「幅」 とは、 L断面における個々の酸化物の幅 方向の最大長さのことをいう。 酸化物形態が粒形であった場合も、 同一 定義とする。 「C a〇 + A l 23」 は、 C a 0と A 1 2〇 aの合計量を指す。
「線材」 とは、 棒状に熱間圧延された鋼で、 コイル状に巻かれた鋼材 を指し、 所謂 「バーイ ンコイル」 を含むものである。
「二次精鍊」 とは、 ガスパブリ ングやアーク式加熱方式などを有する と りべ精鍊法、 真空処理装置を使用する精鍊法といった 「清浄化のため の転炉外での精練法」 で通常 「炉外精練」 と称されるものを指す。
「鋼線」 とは、 線材を冷間加工してコイル状に巻いたものを指す。 線 材を鋼線に加工するための冷間加工には、 通常の穴ダイ スを用いた伸線 加工だけでなく、 口一ラダイ スを用いた伸線加工、 所謂 「 2ロール圧延 機」 、 「 3 ロール圧延機」 や 「 4 ロール圧延機」 を用いた冷間圧延加工 を含む。
「最終の熱処理」 とは、 最終のパテンティ ング処理を指す。 又、 「め つき処理」 は、 ブラスめつき、 C uめっき、 N i めっきなどのように、 次の湿式伸線の過程における引き抜き抵抗の低減や、 スチールコー ド用 途におけるようなゴムとの密着性を高めることなどを目的に施されるも のをいう。 図面の簡単な説明
図 1 は、 巨大で不均一組成の介在物が晶出すると、 その巨大介在物の うちで軟質な部分は熱間圧延及び冷間圧延や伸線で小型化するが、 硬質 の部分は大型のまま残存して しまう ことを示す概念図である。 なお、 斜 線をつけた部分が不均一相を示す。 図において ( a ) 、 (b ) 及び ( c ) はそれぞれ铸片中、 線材中及び鋼線中の介在物を示す。 発明を実施するための最良の形態
本発明者らは、 優れた耐疲労特性や優れた冷間加工性が要求されるヮ ィャロープ、 弁ばね、 懸架ばね、 P C鋼線、 スチールコー ドなどの用途 に好適な線材を得るために、 種々の調査 · 研究を行った。 すなわち、 線 材中の酸化物と耐疲労特性及び冷間加工性 (伸線加工性や燃り加工性) との関係について調査 · 研究を重ねた。 その結果、 先ず、 下記 ( a ) 及 び (b) の知見を得た。
(a ) 従来、 冷間加工性及び耐疲労特性に悪影響を及ぼす 「硬質介在物 」 と して避けられてきた高融点の S i 〇 2 系介在物は、 これに適正量の Z r 02 が複合されると、 溶鋼中での S i O2 系介在物の界面張力が上 昇して微細分散化し、 冷間加工性及び耐疲労特性に影響を及ぼさなく な る。 なお、 上記の 「 S i 〇 2 系介在物」 とは S i 02 だけではなく 、 S i O 2 を含む複合介在物を指す。
( b ) 耐疲労特性及び冷間加工性を高めるためには、 線材の L断面にお ける幅 2 m以上の酸化物の平均組成が、 重量%で、 S i 02 : 7 0 % 以上、 C a O + A l 23 : 2 0 %未満、 Z r O2 : 0. 1〜 1 0 %を含 むものであれば良い。
そこで次に、 酸化物の種類と組成を上記 (b) のようにするための鋼 の製造方法について調査 · 研究を重ね、 下記の知見を得た。
( c ) 転炉による一次精鍊、 転炉外での二次精練の工程は、 鋼中の不純 物元素の低減に極めて有効であり、 しかも、 この後連続铸造して鋼塊に すれば製造コス トを比較的低く抑えることができる。
(d) 転炉による一次精鍊、 転炉外での二次精鍊、 連続铸造の工程で鋼 を製造する際に、 転炉から連続铸造の工程までに溶鋼中に投入する金属 A 1 量又は不可避的に不純物と して混入する金属 A 1量 (以下、 これら の金属 A 1量を単に 「混入 A 1量」 という) 、 溶鋼と接触する耐火物及 び媒溶剤中の A 1 203量 (以下、 単に 「媒溶剤などの A 1 23量」 とい う) 、 前記耐火物及び媒溶剤の 1種以上に含まれる Z r〇2 の量 (以下 、 単に 「媒溶剤などの Z r〇 2 量」 という) 、 更に、 二次精鍊及びそれ 以降の工程で溶鋼と接触すると りべ中スラグの最終 C a〇/S i O 2 比 (以下、 単に 「最終 C a 0ノ S i O 2 比」 という) を適正に制御すれば 、 前記 (b) の酸化物 (つま り、 線材の L断面における幅 2 m以上の 酸化物の平均組成が、 重量%で、 S i 〇2 : 7 0 %以上、 C a O + A l 23 : 20 %未満、 Z r O2 : 0. 1〜 1 0 %を含むもの) にすること ができる。
本発明は、 上記の知見に基づいて完成されたものである。
以下、 本発明の各要件について詳しく説明する。 なお、 各元素と酸化 物の含有量の 「%」 表示は 「重量%」 を意味する。
( A) 酸化物の幅
線材の L断面における幅 2 m未満の酸化物が耐疲労特性及び冷間加 ェ性に及ぼす影響は小さい。 更に、 上記した幅 2 m未満の酸化物は微 小であるため、 E P M A法など物理的な分析方法で組成分析を行う とマ . ト リ ックス部が含まれてしまう場合があり、 精度よく測定を行うことが 困難である。 したがって、 線材の L断面における酸化物の幅を 2 m以 上と した。
(B) 線材の L断面における幅 2 m以上の酸化物の平均組成
本発明においては、 線材の L断面における幅 2 m以上の酸化物の平 均組成 (以下、 単に 「平均組成」 という) が、 7 0 %以上の S i 〇2 、 2 0 %未満の C a 0 + A 1 23、 0. 1〜 1 0 %の Z r〇2 を含んでい ることが重要である。 これは、 「平均組成」 において、 S i 〇2 、 C a 〇、 A 1 203を一定範囲の Z r O 2 と共存させれば、 酸化物の大きさが 微細になるとともに介在物組成 (酸化物の組成) が均一化し、 従来提案 されている技術のように低融点化を図らなく とも、 伸線加工時の断線起 点や疲労破壊の起点となる酸化物を極めて小さ くすることができるから である。
Z r 02 はこれが単独で存在すると、 硬質な介在物と して伸線加工時 の断線起点や疲労破壊の起点となる。 しかし、 「平均組成」 において、 0. 1〜 1 0 %の量の Z r〇 2 を前記した量の S i O 2 及び C a O、 A
1 203と複合して存在させると、 硬質の S i O 2 が微細に分散すること に加えて Z r O2 も微細に分散するので、 冷間加工性ゃ耐疲労特性に影 響を及ぼさなく なる。 換言すれば、 「平均組成」 に含まれる Z r 02 の 量が 1 0 %を超える場合には、 Z r〇2 系介在物 (こ こでいう 「Z r 0 2 系介在物」 も 「S i 02 系介在物」 と同様に、 Z r〇2 だけではなく 、 Z r〇2 を含む複合介在物を指す) が粗大且つ硬質な介在物となるの で伸線加工時の断線起点や疲労破壊の起点となってしまう。 一方、 「平 均組成」 に含まれる Z r〇2 の量が 0. 1 %を下回る場合には、 Z r O 2 の S i 02 系介在物を微細分散化させる効果が得難いので、 S i 02 系介在物は従来指摘されてきたように硬質な介在物となり、 伸線加工時 の断線起点や疲労破壊の起点となって しまう。
したがって、 「平均組成」 に含まれる Z r〇 2 を 0. 1〜 1 0 %と し た。 なお、 「平均組成」 に含まれる Z r〇2 は 0. 5 %以上であること が好ま しく、 1. 0 %以上であれば一層好ましい。
「平均組成」 に含まれる S i 〇2 が 7 0 %未満で、 且つ C a O + A l 2〇 3が 20 %以上であると、 鋼の凝固過程において不均一相が晶出する 頻度が高く なるので、 冷間加工性ゃ耐疲労特性が劣化する。 したがって 、 「平均組成」 に含まれる S i 02 を 7 0 %以上で、 且つ、 C a O + A 1 23を 2 0 %未満と した。
なお、 「平均組成」 に含まれる S i 02 は 7 5 %を超えて 95 %以下 であることが好ま しく 、 C a〇 + A 1 23は 1 %以上 1 5 %未満である ことが好ま しい。
本発明においては前記 「平均組成」 が S i 02 : 7 0 %以上、 C a 0 + A 1 2O 3 : 20 %未満、 Z r〇2 : 0. 1〜 1 0 %を含むものであり さえすればよい。 したがって、 S i 〇2 、 C a O、 A 1 2 O 3 , Z r O 2 以外の酸化物 (例えば、 M g 0、 M n〇、 T i 〇 2 、 N a 2 〇、 C r 2 o 3など) が 「平均組成」 に含まれる割合は特に規定する必要はない。 しかし、 後述の実施例で述べるように、 例えば、 線材の L断面におけ る幅 2 m以上の酸化物を S i O2 、 C a O、 A l 23、 M g O、 M n
〇、 Z r 02 に特定して、 つまり、 上記 6元系の酸化物の 「平均組成」 の総和を 1 0 0 %と して、 その 「平均組成」 において 0. 1〜 : 1 0 %の 量の Z r 02 を 7 0 %以上の量の S i 〇 2 及び 2 0 %未満の量の C a O
+ A 1 203と複合して存在させることと してもよい。
酸化物の組成を精度よく短時間で容易に測定するためには、 例えば、 線材から採取した試験片を鏡面研磨し、 その研磨面を被検面と して E P M A装置で分析すればよい。
優れた耐疲労特性や優れた冷間加工性が要求されるワイヤロープ、 弁 ばね、 懸架ばね、 P C鋼線、 スチールコー ドなどの用途に好適な本発明 が目標とする線材は、 その素材鋼となる鋼の具体的な化学成分や鋼の製 造方法は特に限定する必要はない。 しかし、 耐疲労特性や冷間加工性は 、 線材の素材鋼となる鋼の化学成分によっても大きく変化する。 このた め、 線材の素材鋼となる鋼の化学成分を下記のとおり規定してもよい。 (C) 鋼の化学成分
C : 0. 4 5〜 1. 1 %
Cは、 強度を確保するのに有効な元素である。 しかし、 その含有量が 0. 4 5 %未満の場合には、 ばねやスチールコー ドなどの最終製品に高 い強度を付与させることが困難である。 一方、 その含有量が 1. 1 %を 超えると熱間圧延後の冷却過程中に初析セメ ンタイ トが生成して、 冷間 加工性が著しく劣化する。 したがって、 Cの含有量は 0. 4 5〜 1. 1 %とするのがよい。
S i : 0. 1 〜 2. 5 %
S i は、 脱酸に有効な元素であり、 その含有量が 0. 1 %未満ではそ の効果を発揮させることができない。 一方、 2. 5 %を超えて過剰に含 有させると、 パーライ ト中のフ ェ ライ ト相の延性が低下してしまう。 な お、 ばねにおいては、 「耐へたり特性」 が重要で、 S i には 「耐へたり 特性」 を高める作用もあるが、 2. 5 %を超えて含有させてもその効果 は飽和してコス トが嵩むし、 脱炭を助長してしまう。 したがって、 S i 含有量は 0. 1〜 2. 5 %とするのがよい。
M n : 0. 1 ~ 1. 0 %
Mnは、 脱酸に有効な元素であり、 その含有量が 0. 1 %未満ではこ の効果を発揮させることができない。 一方、 1. 0%を超えて過多に含 有させると、 偏析を生じやすく なり冷間加工性及び耐疲労特性が劣化し てしまう。 したがって、 Mnの含有量は 0. 1〜 1. 0 %とするのがよ い。
Z r : 0. 1 %以下
Z rは添加しなくてもよい。 添加すれば、 既に述べた酸化物の平均組 成を比較的容易に所望の範囲に調整することができることに加えて、 ォ —ステナイ ト結晶粒を微細化させ、 延性及び靱性を高める作用を有する 。 しかし、 0. 1 %を超えて含有させても前記の効果が飽和するばかり か、 前記した酸化物の平均組成に含まれる Z r 02 の範囲を超えて冷間 加工性ゃ耐疲労特性の劣化を招く場合がある。 したがって、 Z rの含有 量は 0. 1 %以下とするのがよい。 なお、 Z r含有量の下限は、 酸化物 の平均組成に含まれる Z r 02 の量が 0. 1 %となる場合の値である。 線材の素材鋼となる鋼は、 更に下記の元素を含有してもよい。
C u : 0〜 0. 5 %
C uは添加しなく てもよい。 添加すれば、 耐食性を高める効果を発揮 する。 この効果を確実に得るには、 C uは 0. 1 %以上の含有量とする ことが望ま しい。 しかし、 C uを 0. 5 %を超えて含有させると、 結晶 粒界に偏祈し、 鋼塊の分塊圧延時や線材の熱間圧延時における割れゃ疵 の発生が顕著になる。 したがって、 C uの含有量は 0〜 0. 5 %とする のがよい。
N i : 0〜 1. 5 %
N i は添加しなく てもよい。 添加すれば、 フ ヱライ ト中に固溶してフ ヱライ トの靱性を高める作用を有する。 この効果を確実に得るには、 N i は 0. 0 5 %以上の含有量とすることが好ま しい。 しかし、 その含有 量が 1. 5 %を超えると、 焼入れ性が高く なりすぎてマルテンサイ 卜が 生成しやすく なり冷間加工性が劣化する。 したがって、 N i の含有量は 0〜 1. 5 %とするのがよい。
C r : 0〜 1. 5 %
C rは添加しなく てもよい。 C rはパーライ トのラメラ間隔を小さ く して熱間圧延後及びパテンティ ング後の強度を高める作用を有する。 更 に、 冷間加工時における加工硬化率を高める作用も有しているので、 C rの添加によって比較的低い加工率でも高い強度を得ることができる。 C rには耐食性を高める作用もある。 こう した効果を確実に得るには、 C rは 0. 1 %以上の含有量とすることが好ま しい。 しかし、 その含有 量が 1. 5 %を超えると、 パーライ ト変態に対する焼入れ性が高く なり 過ぎてパテンティ ング処理が困難になる。 したがって、 C rの含有量は 0〜 1. 5 %とするのがよい。
M 0 : 0〜 0. 5 %
M 0は添加しなく てもよい。 添加すれば、 熱処理で微細な炭化物と し て析出し強度と耐疲労特性を高める作用がある。 この効果を確実に得る には、 M oは 0. 1 %以上の含有量とすることが好ま しい。 一方、 0. 5 %を超えて含有させても前記の効果は飽和し、 コス トが嵩むばかりで ある。 したがって、 M oの含有量は 0〜 0. 5 %とするのがよい。
W : 0〜 0. 5 %
Wは添加しなく てもよい。 添加すれば、 C r と同様に冷間加工時の加 ェ硬化率を顕著に高める作用がある。 この効果を確実に得るには、 Wは 0. 1 %以上の含有量とすることが好ま しい。 しかし、 その含有量が 0 . 5 %を超えると鋼の焼入れ性が高ぐなりすぎて、 パテンティ ング処理 が困難になる。 したがって、 Wの含有量は 0〜 0. 5 %とするのがよい C o : 0〜 2. 0 %
C 0は添加しなく てもよい。 添加すれば、 初析セメ ンタイ トの析出を 抑制する効果を有する。 この効果を確実に得るには、 C oは 0. 1 %以 上の含有量とすることが好ま しい。 しかし、 2. 0 %を超えて含有させ ても前記の効果は飽和し、 コス トが嵩むばかりである。 したがって、 C 0の含有量は 0〜 2. 0 %とするのがよい。
B : 0〜 0. 0 03 0 %
Bは添加しなく てもよい。 添加すれば、 パーライ ト中のセメ ンタイ ト の成長を促進させて、 線材の延性を高める作用を有する。 この効果を確 実に得るには、 Bは 0. 00 0 5 %以上の含有量とすることが好ま しい 。 しかし、 その含有量が 0. 0 0 3 0 %を超えると、 温間や熱間での加 ェ時に割れが生じやすく なる。 したがって、 Bの含有量は 0〜 0. 00 30 %とするのがよい。
V : 0〜 0. 5 %
Vは添加しなく てもよい。 添加すれば、 オーステナイ ト結晶粒を微細 化させ、 延性及び靱性を高める作用を有する。 この効果を確実に得るに は、 Vは 0. 0 5 %以上の含有量とすることが好ま しい。 しかし、 0. 5 %を超えて含有させても前記の効果は飽和し、 コス 卜が嵩むばかりで ある。 したがって、 Vの含有量は 0〜 0. 5 %とするのがよい。
N b : 0〜 0. 1 %
N bは添加しなくてもよい。 添加すれば、 オーステナイ ト結晶粒を微 細化させ、 延性及び靱性を高める作用を有する。 この効果を確実に得る には、 N bは 0. 0 1 %以上の含有量とすることが好ま しい。 しかし、 0. 1 %を超えて含有させても前記の効果は飽和し、 コス トが嵩むばか りである。 したがって、 N bの含有量は 0〜 0. 1 %とするのがよい。
T i : 0〜 0. 1 %
T i は添加しなく てもよい。 添加すれば、 オーステナイ ト結晶粒を微 細化させ、 延性及び靱性を高める作用を有する。 この効果を確実に得る には、 T i は 0. 0 0 5 %以上の含有量とすることが好ま しい。 しかし 、 0. 1 %を超えて含有させても前記の効果は飽和し、 コス トが嵩むば かりである。 したがって、 丁 1 の含有量は 0〜 0. 1 %とするのがよい 不純物元素と しての P、 S、 A l 、 N及び〇 (酸素) はその含有量を 下記のとおりにするのがよい。
P : 0. 02 0 %以下
Pは冷間加工時、 なかでも伸線加工時における断線を誘発する。 特に 、 その含有量が 0. 0 2 0 %を超えると伸線加工時に断線が多く なる。 したがって、 不純物と しての Pの含有量は 0. 0 20 %以下とするのが よい。
S : 0. 0 20 %以下
Sは冷間加工時、 なかでも伸線加工時における断線を誘発する。 特に 、 その含有量が 0. 0 2 0 %を超えると伸線加工時に断線が多く なる。 したがって、 不純物と しての Sの含有量は 0. 0 2 0 %以下とするのが よい。
A 1 : 0. 0 05 %以下
A 1 は、 酸化物の生成主体となる元素で、 耐疲労特性及び冷間加工性 を劣化させる。 特に、 その含有量が 0. 0 0 5 %を超えると耐疲労特性 の劣化が大きく なる。 したがって、 不純物と しての A 1 の含有量は 0. 00 5 %以下とするのがよく、 0. 004 %以下とすれば一層よい。
N : 0. 00 5 %以下 Nは、 窒化物となる元素であり、 又、 歪時効によって延性及び靱性に 悪影響を及ぼす。 特に、 その含有量が 0. 00 5 %を超えると弊害が顕 著になる。 したがって、 不純物と しての Nの含有量は 0. 005 %以下 とするのがよく、 0. 00 3 5 %以下とすれば一層よい。
〇 (酸素) : 0. 0 0 2 5 %以下
0の含有量が 0. 0 0 2 5 %を超えると酸化物の数と幅が増大し、 耐 疲労特性が著しく劣化する。 このため、 不純物と しての 0の含有量は 0 . 0 0 2 5 %以下とするのがよく、 0. 0 0 2 0 %以下とすれば一層よ い。
なお、 前記の化学成分を有する素材鋼のうち、 特に、 ばね及びスチー ルコー ドの用途に好適な素材鋼の化学成分は次に示すものである。
ばねの用途に対しては、 鋼の化学成分が重量%で、 C : 0. 45〜 0 . 7 0 %, S i : 0. 1〜 2. 5 %, M n : 0. 1〜 1. 0 %、 Z r : 0. 1 %以下を含み、 更に、 C u : 0〜 0. 5 %、 N i : 0〜 1. 5 % 、 C r : 0〜 l . 5 %、 M o : 0〜 0. 5 %、 W : 0〜 0. 5 %、 C o : 0〜 1. 0 %、 B : 0〜 0. 0 0 3 0 %、 V : 0〜 0. 5 %、 N b : 0〜 0. 1 %、 T i : 0〜 0. 1 %を含有し、 残部は F e及び不可避不 純物からなり、 不純物中の Pは 0. 0 2 0 %以下、 Sは 0. 02 0 %以 下、 八 1 は 0. 0 05 %以下、 Nは 0. 0 05 %以下、 〇 (酸素) は 0 . 0 0 2 5 %以下のものがよい。
上記した鋼の化学成分の場合、 熱処理後のばねに容易に 1 6 0 0 MP a以上の引張強度を付与できる。
スチールコー ドの用途に対しては、 鋼の化学成分が重量%で、 C : 0 . 60〜 1. l %、 S i : 0. :!〜 1. 0 %、 Mn : 0. 1〜 0. 7 % 、 Z r : 0. 1 %以下を含み、 更に、 C u : 0〜 0. 5 %、 N i : 0〜 1. 5 %、 C r : 0〜 l . 5%、 M o : 0〜 0. 2%、 W : 0〜 0. 5 %、 C o : 0〜 2. 0 %、 B : 0〜 0. 0 0 3 0 %、 V : 0〜 0. 5 % 、 N b : 0〜 0. l %、 T i : 0〜 0. 1 %を含有し、 残部は F e及び 不可避不純物からなり、 不純物中の Pは 0. 0 2 0 %以下、 Sは 0. 0 2 0 %以下、 八 1 は 0. 00 5 %以下、 Nは 0. 0 0 5 %以下、 0 (酸 素) 〖ま 0. 0 0 2 5 %以下のものがよい。
上記した鋼の化学成分の場合、 0. 1 5〜 0. 35 mmまで湿式伸線 された鋼線に 3 2 0 O MP a以上の大きな引張強度を付与できる。
上記の耐疲労特性及び冷間加工性に優れた線材の素材鋼となる鋼の具 体的な製造方法は特に限定する必要はない。 しかし、 鋼の溶製方法及び 铸造方法によって鋼の化学成分、 特に不純物の含有量が変化する し、 铸 造方法によって鋼塊の製造コス ト も変化する。 このため、 線材の素材鋼 となる鋼の製造方法、 なかでも溶製方法及び铸造方法を下記のとおり規 定してもよい。
(D) 鋼の精鍊と铸造の工程
転炉精鍊、 転炉外での二次精練の工程は、 鋼中の不純物元素の低減に 極めて有効であるため高い清浄性を有する鋼の製造に適しており、 更に 、 連続铸造して鋼塊にすることで製造コス ト を比較的低く抑えることが できる。 したがって、 線材の素材鋼となる鋼は、 転炉による一次精鍊、 転炉外での二次精鍊、 連続铸造の工程を順に経て鋼塊にするのがよい。 なお、 ここでいう 「鋼塊」 とは J I S用語と して規定されているように 「铸片」 を含むものである。 「二次精鍊」 とは、 既に述べたように、 ガ スバブリ ングゃァ一ク式加熱方式などを有するとりべ精鍊法、 真空処理 装置を使用する精鍊法といった 「清浄化のための転炉外での精鍊法」 で 通常 「炉外精鍊」 と称されるものを指す。
転炉による一次精鍊、 転炉外での二次精鍊、 連続铸造の工程をこの順 に経て、 しかも既に述べた 「混入 A 1量」 、 「媒溶剤などの A 1 23量 」 、 「媒溶剤などの Z r〇2 量」 、 「最終 C a OZS i O 2 比」 を適正 に制御すれば、 前記 「平均組成」 を比較的容易に、 重量%で、 S i 〇 2 : 7 0 %以上、 C a〇 + A l 23 : 2 0 %未満、 Z r 02 : 0. 1〜 1 0 %を含むものにすることができる。
「混入 A 1量」 が 1 0 g /ト ンを超えると、 A 1 203の量が増えて 「 平均組成」 に含まれる C a 0 + A 1 23の量が 2 0 %以上になることに 加えて S i 〇2 系介在物が微細分散しなく なつて、 冷間加工性が劣化す る場合がある。 したがって、 「混入 A 1量」 を 1 0 g /ト ン以下とする のがよい。 なお、 上記の 「混入 A 1量」 は 5 g ト ン以下とすることが 一層好ま しく、 3 gZト ン以下とすれば極めて好ま しい。
「媒溶剤などの A 1 23量」 が 2 0 %を超えると、 耐火物ゃ媒溶剤と 平衡する溶鋼中の A 1量が上昇するため、 前記の 「混入 A 1量」 が 1 0 g/ト ンを超える場合と同様な酸化物の組成変化が生じ、 冷間加工性が 劣化する場合がある。 したがって、 「媒溶剤などの A 1 23量」 を 2 0 %以下とするのがよい。 なお、 「媒溶剤などの A 1 23量」 は 1 0 %以 下とすることが一層好ま しい。
「媒溶剤などの Z r 02 量」 が 1 %未満の場合には、 「平均組成」 に 含まれる Z r 02 の量が規定の 0. 1 %を下回って、 S i 〇2 系介在物 が粗大且つ硬質な介在物となつて冷間加工時に断線が多発することがあ る。 一方、 上記 「媒溶剤などの Z r 02 量」 が 9 5 %を超えると、 耐火 物が脆く なつて剥離 · 欠損して溶鋼中に残存したり、 前記 (B) 項で述 ベた 「平均組成」 に含まれる Z r〇2 の量が 1 0 %を超えて Z r〇 2 系 介在物が粗大且つ硬質な介在物となって、 冷間加工時に断線が多発する ことがある。 したがって、 S i 〇 2 系介在物に Z r 02 を複合し、 S i 02 系介在物を微細分散化させるために、 「媒溶剤などの Z r〇2 量」 を 1〜 95 %とするのがよい。 上記 「媒溶剤などの Z r 02 量」 の上限 は 8 0 %とすることが好ま しい。
なお、 「媒溶剤などの Z r〇2 量」 を適正に制御し、 耐火物ゃ媒溶剤 から溶鋼を介して間接的に Z r〇 2 を S i 02 系介在物に複合させるこ とによって、 つまり、 耐火物及び媒溶剤と平衡する量の Z r を介して S i 02 系介在物に Z r〇 2 を複合させることによって、 コス トを低くす ることができる。
これに対して、 溶鋼中に金属 Z r を添加して S i 02 系介在物に Z r 02 を付加し、 S i 02 系介在物を微細分散化させる方法でもよいが、 この場合は、 製造コス トが嵩んで経済性に欠けることがある。
「最終 C a OZS i C^ 比」 が 2. 0を超える場合には、 スビネル - アルミ ナなど硬質の酸化物が出現して、 鋼の清浄性が低下する場合があ る。 したがって、 高い清浄性を有する素材鋼を安定して製造するために 、 「最終 C a〇/S i 〇2 比」 を 2. 0以下とするのがよい。 なお、 「 最終 C a〇 S i 02 比」 は 2. 0を上限と して 0. 3以上であること が好ま しく、 0. 6以上であれば一層好ま しい。 更に、 0. 8以上であ れば極めて好ま しい。
「最終 C a 0/ S i 02 比」 を 2. 0以下にするためには、 精鍊の各 段階において C a 0 S i 02 比を変化させないで一定の値にしてもよ いし、 低い値から、 又は、 高い値から適宜調整して 「最終 C a 0 / S i O 2 比」 が 2. 0以下になるようにしてもよい。 なお、 C a OZS i O 2 比は、 溶鋼中に吹き込む媒溶剤を適正に選択することで調整できる。 例えば、 C a〇を含有し、 且つ、 その C a O/S i O 2 比が、 二次精鍊 及びそれ以降の工程で溶鋼と接触すると りべ中スラグの C a OZS i O 2 比の値より も高い媒溶剤を溶鋼中に吹き込んで均一化を図ることで、 C a 0/ S i O 2 比を低い値から 2. 0以下の 「最終 C a OZS i 〇2 比」 に調整することができる。
(E) 熱間圧延による線材の製造
上記 (D) 項に記した精鍊と铸造の工程を経て製造された鋼を線材に するための熱間圧延方法は特に規定する必要はなく、 例えば、 通常行わ れている線材の熱間圧延方法でよい。 ( F ) 線材の冷間加工、 最終の熱処理、 めっ き処理及び湿式伸線加工 熱間圧延して得られた線材の冷間加工は、 穴ダイ スを用いた伸線加工 、 ローラダイ スを用いた伸線加工、 所謂 「 2 ロール圧延機」 、 「 3 ロー ル圧延機」 や 「4 ロール圧延機」 を用いた冷間圧延加工など通常の冷間 加工方法で行えばよい。 「最終の熱処理」 である最終パテンテ ィ ング処 理も、 例えば、 通常行われているパテンティ ング処理でよい。 次の湿式 伸線の過程における引き抜き抵抗の低減や、 スチールコー ド用途におけ るようなゴムとの密着性を高めることなどを目的に施されるめっき処理 も特別なものである必要はなく、 通常のブラスめつき、 C uめっき、 N i めっ きなどでよい。 更に、 湿式伸線加工も通常行われているものでよ い。
なお、 線材を冷間加工し、 最終の熱処理、 めっき処理及び湿式伸線加 ェを施して製造された極細鋼線は、 この後所定の最終製品へと加工され ることもある。 例えば、 その極細鋼線を更に燃り加工で複数本燃り合わ せて撚鋼線とすることでスチールコー ドが成形される。
(実施例)
次に実施例によって本発明をよ り具体的に説明するが、 本発明はこれ らの実施例に限定されるものではない。
(実施例 1 )
表 1 に示す化学組成を有する鋼 A〜Wを、 転炉による一次精鍊、 炉外 精鍊による二次精鍊、 連続铸造のプロセスで製造した。 すなわち、 7 0 ト ン転炉で溶製し、 出鋼時に S i 、 M nで脱酸してから 「炉外精練」 し て成分 (化学組成) の調整と清浄化処理を施し、 連続铸造して鋼塊と し た。 なお、 表 1 には、 転炉溶製及び 「炉外精練」 に際しての 「混入 A 1 量」 (つま り、 転炉から連続铸造の工程までに溶鋼中に投入する金属 A 1 量又は不可避的に不純物と して混入する金属 A 1 量) 、 「媒溶剤など の A l 23量」 (つま り、 溶鋼と接触する耐火物及び媒溶剤中の A 1 2 03 量) 、 「媒溶剤などの Z r O 2 量」 (つま り、 前記耐火物及び媒溶 剤の 1種以上に含まれる Z r〇2 の量) 、 溶鋼中への媒溶剤の吹き込み の有無、 精鍊途中でのとりべ中スラグの C a OZS i O 2 比及び 「最終 C a〇ZS i 〇 2 比」 (つま り、 二次精鍊及びそれ以降の工程で溶鋼と 接触するとりべ中スラグの最終 C a OZS i 〇2 比) の詳細も併せて示 した。 ここで、 溶鋼中に吹き込んだ媒溶剤は具体的には C a 0粉末、 又 は C a Oと S i 02 の混合粉末である。
表 1 における鋼 A〜Wはスチールコー ドの素材鋼と して一般に用いら れている J I Sの SWR S 8 2 Aに相当する鋼である。 なお、 表 1 には J I Sの規格化学成分である C、 S i 、 M n、 P、 Sに加えて不純物元 素と しての A l 、 N及び〇 (酸素) の含有量も併せて示した。
2 ,
Figure imgf000022_0002
Figure imgf000022_0001
上記の連続铸造した各鋼を、 通常の方法で圧延温度及び冷却速度を調 整しながら直径 5. 5 mmの線材に熱間圧延した。 これらの線材に一次 伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンティ ング処理、 二次 伸線加工 (仕上がり直径 1. 2 mm) を施した。 この後更に、 最終パテ ンティ ング処理 (9 5 0〜 1 0 5 0 °Cのオーステナイ ト化温度、 5 60 〜 6 1 0 °Cの鉛浴温度) を施し、 引き続きブラスめつ き処理を行ってか ら伸線速度 5 5 0 mZ分の条件で湿式伸線加工 (仕上がり直径 0. 2 m m ) を行った。
表 2に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面を 被検面と して E PM A装置で分析して幅が 2 m以上の酸化物の組成を 測定した結果、 及び直径 1. 2 mmの鋼線を直径 0. 2 mmの鋼線に湿 式伸線した場合の断線指数 (鋼線 1 ト ン当たりの断線回数 (回 ト ン) ) を示す。 なお、 表 2における 「平均組成」 とは既に述べたように、 線 材の L断面における幅 2 m以上の酸化物の平均組成を指し、 以下の実 施例においても同様である。
表 2
試 平 均 組 成 (%)
験 鋼 断線指数 番 SiO: CaO Zr02 その他
+A 03 (回ノ ノ)
1 A 73. 3 18. 1 5. 2 3.4 0. 1
2 B 78. 4 16.3 1. 3 4.0 0. 2
3 C 82. 2 11. 2 2. 1 4.5 0. 1
4 D 79. 1 9.6 1. 9 9.4 0
5 E 72. 5 18.8 6. 7 2.0 0. 1
6 F 73. 6 18. 2 5. 6 2.6 0. 1
7 G 78. 7 16. 5 1. 5 3.3 0. 2
8 H 82. 3 11. 9 2. 1 3.7 0
9 I 79. 2 14.0 1. 0 5.8 0. 2
10 J 72. 0 15. 7 9. 1 3.2 0. 1
11 K 73. 5 18.2 5. 6 2.7 0. 1
12 し 78. 7 16. 3 1. 8 3.2 0. 1
13 82. 3 11. 2 2. 7 3.8 0. 1
14 Ν 77. 1 10. 5 2. 2 0.2 0. 2
15 〇 71. 0 17. 2 3. 6 8.2 0. 1
16 Ρ 84. 4 9. 0 1. 5 5.1 0. 1
17 Q *24. 1 *62. 0 2.9 1.0 5. 3
18 R *58. 2 *24. 3 5. 1 2.4 1. 2
19 S 70. 3 *21. 2 2.8 5.7 0. 8
20 Τ *35. 4 *53. 5 1. 7 9.4 2. 3
21 U *40 5 *50. 3 3. 6 5.6 6. 8
22 V 75 6 15. 7 * - 8.7 0. 1
23 W 70 7 14. 2 *13. 2 1.9 9. 4
*印は本発明で規定する条件から外れている とを示す。 表 2から、 試験番号 1〜 1 6、 つまり、 表 1 に記載の方法で製造した 鋼 A〜 Pを素材鋼とする線材においては、 平均組成が本発明で規定する 条件を満たすので鋼線の断線指数が低く 、 伸線加工性に優れているこ と が明らかである。 これに対して、 試験番号 1 7〜 2 3の鋼 Q〜Wを素材 鋼とする線材の平均組成は本発明で規定する条件から外れており、 鋼線 の断線指数は高く、 伸線加工性に劣っていた。
(実施例 2)
表 3に示す鋼 A 1〜A 1 5を転炉による一次精鍊、 炉外精鍊による二 次精鍊、 連続铸造のプロセスで製造した。 すなわち、 転炉で溶製し、 出 鋼時に S i 、 Mnで脱酸してから 「炉外精鍊」 して成分 (化学組成) の 調整と清浄化処理を施し、 「混入 A 1量」 を 1 g ト ンに調整するとと もに、 「媒溶剤などの A 1 23量」 を 5 %、 「媒溶剤などの Z r〇 2 量 」 を 9 0 %、 「最終 C a OZS i Oz 比」 を 1. 0に調整し、 その後連 て しに。
表 3
鋼 化 学 成 (重量%) 残部 : F e及び不純物
C Si Mn P s Al N 0 その他
Al 0 .77 0 .20 0 .40 0 .005 0 004 0. 001 0. 0028 0 .0020
A2 0 .84 0 .18 0 .42 0 .006 0 005 0. 001 0. 0029 0 0017 Cu:0.13
1
A3 0 .93 0 .21 0 .34 0 .004 0 004 u. UU 1 υ . Π Λ Q n fin 18 Cr:0.15, Co:0.10, B:0.0010
A4 0 .92 0 • 23 0 • 37 0 .005 0 006 0. 001 0. 0027 0 .0019 Ni :0.10
Ao 0 .93 0 .19 0 .41 0 007 0 004 0. 001 0. 0021 0 .0018 Cr:0.15, Zr:0.07
A6 0 .91 0 • 30 0 .31 0 005 0 .005 0. 001 0. 0024 0 .0019 V:0.10. Ti :0.005
A7 0 • 95 0 • 19 0 .37 0 005 0 004 0. 001 0. 0025 0 .0017 Mo:0.15, W:0.25
A8 1 .00 0 18 0 .34 0 006 0 004 0. 001 0. 0022 0 0018
A9 1 • 01 0 .19 0 .40 0 004 0 003 0. 001 0. 0024 0 0019 Cu:0.1, Zr:0.03
A10 1 .03 0 .20 0 .34 0 007 0 003 0. 001 0. 0024 0 .0021 Co: 1.0, B:0.0020
All 1 .08 0 12 0 • 51 0 004 0 004 0. 001 0. 0025 0 .0018
A12 1 .07 0 82 0 .12 0 005 0 006 0. 001 0. 0021 0 .0019
A13 1 .04 0 .41 0 .29 0 .006 0 .005 0. 001 0. 0030 0 .0019 Cr:0.5, Ni :0.1
AH 1 .03 0 .38 0 .40 0 005 0 .004 0. 001 0. 0031 0 .0017 Co:2.0, Cr:0.3
A15 1 .05 0 .18 0 .35 0 009 0 .004 0. 001 0. 0027 0 .0021 V:0.13, Nb:0.01
上記の連続铸造した各鋼を、 通常の方法で圧延温度及び冷却速度を調 整しながら直径 5. 5 mmの線材に熱間圧延した。 これらの線材に一次 伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンテ ィ ング処理、 二次 伸線加工 (仕上がり径直径 1. 2 mm) を施した。 この後更に、 最終パ テンティ ング処理 (9 5 0〜 1 0 50 °Cのオーステナイ ト化温度、 56 0〜 6 1 0 °Cの鉛浴温度) を施し、 引き続きブラスめつき処理を行って から伸線速度 5 5 0 mZ分の条件で湿式伸線加工 (仕上がり直径 0. 2 mm) を行った。
表 4に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面を 被検面と して E PMA装置で分析して幅が 2 m以上の酸化物の組成を 測定した結果及び直径 1. 2 mmの鋼線を直径 0. 2 mmの鋼線に湿式 伸線した場合の断線指数を示す。
A
Figure imgf000028_0001
表 4から、 前記方法で製造した鋼 A 1 A I 5を素材鋼とする線材は 、 いずれも平均組成が本発明で規定する条件を満たすので、 鋼線の断線 指数は低く 、 伸線加工性に優れていることが明らかである。
(実施例 3 )
表 5に示す化学組成を有する鋼 1 7を転炉による一次精鍊、 炉外精 による二次精鍊、 連続铸造のプロセスで製造した。 すなわち、 転炉で 溶製し、 出鋼時に S i M nで脱酸してから 「炉外精鍊」 して成分 (化 学組成) の調整と清浄化処理を施し、 「混入 A i 量」 を 5 g Z ト ン以下 に調整するとともに、 「媒溶剤などの A 1 23量」 を 1 0 %以下と し、 且つ、 「媒溶剤などの Z r 02 量」 を 1〜 80 %、 「最終 C a 0/ S i 02 比」 を 0. 8〜 2. 0の範囲に調整し、 その後連続铸造した。
表 5
ί 学 組 成 残部 : F e及び不純物
C Si Mn P s Al N 0 その他
1 0.75 0.23 0.39 0. 005 0. 002 0.001 0.0028 0.0017
2 0.78 0.20 0.41 0. 008 0. 004 0.001 0.0031 0.0018
3 0.90 0.20 0.54 0. 004 0. 004 0.001 0.0030 0.0018 Cr: 0.06
4 0.95 0.21 0.51 0. 007 0. 004 0.001 0.0033 0.0019
5 1.02 0.19 0.35 0. 006 0. 005 0.001 0.0018 Cr: 0.05, Co: 0.06. B:0.0011
6 0.95 0.20 0.41 0. 005 0. 003 0.001 0.0029 0.0019 V:0 .05. Cu:0 .04, B:0.0030
7 0.82 0.19 0.39 0. 007 0. 005 0.001 0.0027 0.0018 Cr: 0.21, Co: 1.9. i :0.07
O C
上記の連続铸造した各鋼を、 通常の方法で圧延温度及び冷却速度を調 整しながら直径 5. 5 mmの線材に熟間圧延した。 これらの線材に一次 伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンテ ィ ング処理、 二次 伸線加工 (仕上がり直径 1. 2 mm) を施した。 この後更に、 最終パテ ンテ ィ ング処理 ( 9 5 0〜 1 0 5 0 °Cのオーステナイ ト化温度、 5 6 0 〜 6 1 0 °Cの鉛浴温度) を施し、 引き続きブラスめつ き処理を行つてか ら伸線速度 5 5 0 m/分の条件で湿式伸線加工 (仕上がり直径 0. 2 m m を Ττつに。
表 6に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面を 被検面と して E P MA装置で分析して幅が 2 m以上の酸化物の組成を 測定した結果、 0. 2 mm鋼線における引張強度と疲労強度、 及び直径 1. 2 mmの鋼線を直径 0. 2 m mの鋼線に湿式伸線した場合の断線指 数を示す。 なお、 疲労強度は、 温度が 2 0〜 2 5 °C、 湿度が 5 0〜 6 0 %の条件下でハンター式回転曲げ疲労試験機を用いて 1 07 サイ クル試 験した場合の結果である。
表 6
Figure imgf000031_0001
表 6から、 前記方法で製造した鋼 1 〜 7を素材鋼とする線材は、 いず れも平均組成が本発明で規定する条件を満たすので、 極細鋼線は高い疲 労強度を有しており、 しかも、 断線指数は低く、 伸線加工性に優れてい ることが明らかである。
(実施例 4)
表 7に示す化学組成を有する鋼 8〜 1 4を転炉による一次精鍊、 炉外 精鍊による二次精練、 連続铸造のプロセスで製造した。 すなわち、 転炉 で溶製し、 出鋼時に S i 、 Mnで脱酸してから 「炉外精鍊」 して成分 ( 化学組成) の調整と清浄化処理を施し、 「混入 A 1量」 を 5 gZト ン以 下に調整するとともに、 「媒溶剤などの A 1 23量」 を 1 0%以下とし 、 且つ、 「媒溶剤などの Z r〇2 量」 を 1〜 8 0 %、 「最終 C a OZS i O 2 比」 を 0. 8〜 2. 0の範囲に調整し、 その後連続铸造した。
7
鋼 学 組 成 残部 : F e及び不純物
C Si Mn P S Al N 0 その他
8 0.78 0 .20 0.41 0. 007 0 .004 0.001 0.0030
Figure imgf000033_0001
9 0.77 0 .21 0.40 0. 006 0 .005 0.001 0.0032 0.0017
0.91 0
CO 10 .21 0.55 0. 005 0 .004 0.001 0.0031 0.0019 Cu: 0.05
11 0.95 0 .20 0.53 0. 008 0 .005 0.001 0.0034 0.0018
12 0.97 0 .20 0.55 0. 007 0 .006 0.0031 0.0020 Cr: 0.04, Co: 0.05. B
13 0.97 0 .19 0.43 0. 005 0 .004 0.001 0.0028 0.0018 W:0 .05. V:0. 05, B:0. 0012
14 0.83 0 .20 0.31 0. 004 0 .004 0.001 0.0027 0.0017 Cr: 2.0, Ni 0.1
: o
o 上記の連続铸造した各鋼を、 通常の方法で圧延温度及び冷却速度を調 整しながら直径 5. 5 mmの線材に熟間圧延した。 これらの線材に一次 伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンテ ィ ング処理、 二次 伸線加工 (仕上がり直径 1. 2 mm) を施した。 この後更に、 最終パテ ンテ ィ ング処理 (9 5 0〜 1 0 5 0 °Cのオーステナイ ト化温度、 5 60 〜 6 1 0°Cの鉛浴温度) を施し、 引き続きブラスめつき処理を行ってか ら仲線速度 5 5 0 mZ分の条件で湿式伸線加工 (仕上がり直径 0. 2 m m) を行った。
表 8に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面を 被検面と して E PMA装置で分析して幅が 2 m以上の酸化物の組成を 測定した結果、 0. 2 mm鋼線における引張強度と疲労強度、 及び直径 1. 2 mmの鋼線を直径 0. 2 m mの鋼線に湿式伸線した場合の断線指 数を示す。 なお、 本実施例においては、 線材の L断面における幅 2 〃 m 以上の酸化物を S i 〇2 、 C a O、 A l 2〇3、 Mg〇、 M n O、 Z r O 2 に特定して、 つまり、 上記 6元系の酸化物の 「平均組成」 の総和を 1 00 %と して、 その 「平均組成」 を調査した。 疲労強度は、 温度が 2 0 〜 2 5 °C、 湿度が 5 0〜 6 0 %の条件下でハンター式回転曲げ疲労試験 機を用いて 1 07 サイ クル試験した場合の結果である。
表 8
Figure imgf000035_0001
表 8から、 前記方法で製造した鋼 8〜 1 4を素材鋼とする線材は、 い ずれも平均組成が本発明で規定する条件を満たすので、 極細鋼線は高い 疲労強度を有しており、 しかも、 断線指数は低く、 伸線加工性に優れて いることが明らかである。
(実施例 5 )
表 9に示す化学組成を有する鋼を試験炉で溶製し、 S i 、 M nで脱酸 した後に二次精練し、 試験炉から連続铸造の工程までに、 溶鋼中に投入 する金属 A 1 量又は不可避的に不純物と して混入する金属 A 1 量 (以下 、 これらの A 1 量も単に 「混入 A 1 量」 という) 、 溶鋼と接触する耐火 物及び媒溶剤中の A 1 2〇3量 (以下、 この A l 2〇3量も単に 「媒溶剤な どの A l 23量」 という) 、 前記耐火物及び媒溶剤の 1種以上に含まれ る Z r 〇 2 の量 (以下、 この Z r 02 量も単に 「媒溶剤などの Z r O 2 量」 という) 、 更に、 「最終 C a〇ZS i 〇2 比」 (つまり、 二次精鍊 及びそれ以降の工程で溶鋼と接触すると りべ中スラグの最終 C a OZS i O 2 比) を変化させて、 酸化物の組成が種々変わるように し、 次いで 、 連続铸造を行つた。 表 9における鋼 1 5〜 20の製造においては、 混入 A 1量を 5 g ト ン以下に調整するとともに、 媒溶剤などの A 123量を 1 0 %以下、 媒 溶剤などの Z r 02 量を 1〜 80%と し、 更に、 最終 C a O/S i〇2 比を 0. 8〜2. 0の範囲に調整し、 その後連続铸造した。 一方、 鋼 2 1〜 26の製造においては、 上記の条件に対して、 混入 A 1量、 媒溶剤 などの A 1203量、 媒溶剤などの Z r 02 量、 最終 C a 0 / S i 02 比 のいずれか 1つ以上を変化させた。 具体的には、 鋼 2 1は最終 C a 0/ S i 〇2 比を 2. 2と した。 鋼 22は媒溶剤などの Z r〇2 量を 0. 9 %と した。 鋼 23は媒溶剤などの Z r〇 2 量を 0. 8%と し、 更に、 最 終 C a OZS i 〇2 比を 0. 6と した。 鋼 24は媒溶剤などの Z r〇 2 量を 0. 8 %と し、 更に、 最終 C a 0ノ S i 〇 2 比を 2. 1 と した。 鋼 25は媒溶剤などの Z r 02 量を 8 1 %と し、 更に、 最終 C a 0/ S i 02 比を 2. 3と した。 鋼 26は混入 A 1量を 7 g /ト ン、 媒溶剤など の A l 23量を 1 1 %と し、 更に、 最終 C a〇ZS i 02 比を 2. 1 と した。 なお、 鋼 1 5と鋼 2 1、 鋼 1 6と鋼 22、 鋼 1 7と鋼 23、 鋼 1 8と鋼 24、 鋼 1 9と鋼 25、 鋼 20と鋼 26はそれぞれほぼ同一の化 学組成になるように調整した。
化 学 組 成 (重量%) 残部 Fe及び不純物 平 均 組 成 (%) 0. 2 mm鋼線 鋼 引張強度 疲労強度
C Si Mn P s Al N 0 その他 SiOs CaO+A 03 ZrO£ その他 (MPa) (MPa)
15 0.91 0.21 0.29 0.006 0.004 0.001 0.0031 0.0021 Cu:0.2.N に 1 88.0 4.4 3.4 4.2 4101 1220
16 0.77 0.15 0.41 0.006 0.006 0.002 0.0045 0.0023 :0.3. β: 0.0030 92.1 4.5 0.1 3.3 3351 980
17 0.85 0.93 0.14 0.011 0.017 0.004 0.0024 0.0013 Co:1.8,Nb:0.03 81.0 2.2 0.5 16.3 . 3802 1120
18 0.96 0.12 0.30 0.006 0.005 0.001 0.0019 0.0014 Cr:1.2,Mo:0.05 74.0 17.5 3.1 5.4 4260 1260
CO
19 0.61 0.13 0.49 0.007 0.008 0.001 0.0030 0.0020 Cu:0.2.B:0.0007,Ti:0.03 84.2 5.2 5.0 5.6 3205 950
20 0.83 0.22 0.11 0.010 0.005 0.002 0.0022 0.0018 Zr:0.04, Cu.0.3 93.8 0.9 0.9 4.4 3910 1150
21 0.92 0.21 0.29 0.006 0.005 0.001 0.0031 0.0021 Cu:0.2.N 1.1 71.8 *21.9 0.4 5.9 4115 810
22 0.78 0.16 0.40 0.006 0.007 0.002 0.0044 0.0022 W.0.3, B: 0.0029 77.7 13.2 * 0 9.1 3360 650
23 0.85 0.93 0.13 0.011 0.015 0.004 0.0022 0.0014 Co:1.8.Nb:0.03 *65.7 11.2 * 0 23.1 3825 750
24 0.95 0.12 0.29 0.005 0.006 0.001 0.0018 0.0014 Cr:l.2. o:0.05 *44.8 *45.1 * 0 10.1 4243 830
25 0.62 0.13 0.50 0.007 0.009 0.001 0.0031 0.0022 Cu:0.2,B:0.0008.Ti:0.03 *51.5 *27.9 *11.2 9.4 3219 640
26 0.82 0.23 0.12 0.009 0.004 0.002 0.0022 0.0018 Zr:0.04,Cu:0.3 *13.4 *77.2 1.0 8.4 3923 730
*印は本発明で規定する条件から外れることを示す <
上記のようにして各鋼を連続铸造した後、 通常の方法で圧延温度及び 冷却速度を調整しながら直径 5. 5 mmの線材に熱間圧延した。 これら の線材に一次伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンテ ィ ン グ処理、 二次伸線加工 (仕上がり直径 1. 2 mm) を施した。 この後更 に、 最終パテンテ ィ ング処理 (9 5 0〜 1 0 5 0 °Cのオーステナイ ト化 温度、 5 60〜 6 1 0 °Cの鉛浴温度) を施し、 引き続きブラスめつき処 理を行ってから伸線速度 5 5 0 mZ分の条件で湿式伸線加工 (仕上がり 直径 0. 2 mm) を行つた。
表 9に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面を 被検面と して E PMA装置で分析し幅が 2 y m以上の酸化物の組成を測 定した結果及び 0. 2 mm鋼線における引張強度と疲労強度を併せて示 す。 なお、 疲労強度は、 温度が 2 0〜 2 5 °C、 湿度が 50〜 60 %の条 件下でハンター式回転曲げ疲労試験機を用いて 1 07 サイ クル試験した 場合の結果である。
表 9から、 鋼 1 5〜 2 0を素材鋼とする線材から加工した極細鋼線は 、 平均組成が本発明で規定する条件を満たすので、 平均組成が本発明で 規定する条件から外れた鋼 2 1〜 2 6を素材鋼とする線材から加工した 極細鋼線に比べて高い疲労強度を有していることが明らかである。
表 1 0に、 上記の各鋼について、 直径 1. 2 mmの鋼線を直径 0. 2 mmの鋼線に湿式伸線した場合の断線指数 (鋼線 1 ト ン当たりの断線回 数 (回 ト ン) ) を示す。
表 1 0
Figure imgf000039_0001
表 1 0から、 鋼 1 5〜 2 0を素材鋼とする線材においては、 平均組成 が本発明で規定する条件を満たすので鋼線の断線指数が低く 、 伸線加工 性に優れていることが明らかである。 これに対して、 鋼 2 1 〜 2 6を素 材鋼とする線材の平均組成は本発明で規定する条件から外れており、 鋼 線の断線指数は高く、 伸線加工性に劣っていた。
(実施例 6 )
表 1 1 に示す化学組成を有する鋼を試験炉で溶製し、 S i 、 M nで脱 酸した後に二次精鍊し、 「混入 A 1 量」 、 「媒溶剤などの A 1 23量」 、 「媒溶剤などの Z r 0 2 量」 及び 「最終 C a O Z S i O 2 比」 を変化 させて、 酸化物の組成が種々変わるようにし、 次いで、 連続铸造を行つ た。
表 1 1 における鋼 2 7〜 3 2の製造においては、 混入 A 1 量を 5 gノ W 99/67437 ト ン以下に調整するとともに、 媒溶剤などの A 1 203量を 1 0 %以下、 媒溶剤などの Z r O2 量を 1〜 80%と し、 更に、 最終 C a 0/ S i 0 2 比を 0. 8〜 2. 0の範囲に調整し、 その後連続铸造した。 一方、 鋼 33〜 38の製造においては、 上記の条件に対して、 混入 A 1量、 媒溶 剤などの A 1 2O3量、 媒溶剤などの Z r 02 量、 最終 C a 0/ S i O 2 比のいずれか 1つ以上を変化させた。 具体的には、 鋼 33は最終 C a O / S i 02 比を 2. 1 と した。 鋼 34は媒溶剤などの Z r〇2 量を 0. 8%と した。 鋼 3 5は媒溶剤などの Z r 02 量を 0. 7 %と し、 更に、 最終 C a O//S i 〇2 比を 0. 6とした。 鋼 3 6は媒溶剤などの Z r O 2 量を 0. 8 %と し、 更に、 最終 C a 0ノ S i 02 比を 2. 2と した。 鋼 3 7は媒溶剤などの Z r〇 2 量を 8 1 %と し、 更に、 最終 C a〇 "S i O 2 比を 2. 2と した。 鋼 38は混入 A 1量を 7 g /ト ン、 媒溶剤な どの A 1 203量を 1 2 %と し、 更に、 最終 C a OZS i Oz 比を 2. 1 と した。 なお、 鋼 2 7と鋼 3 3、 鋼 2 8と鋼 34、 鋼 29鋼 35、 鋼 3 0と鋼 36、 鋼 3 1 と鋼 37、 鋼 32と鋼 3 8はそれぞれほぼ同一の化 学組成になるように調整した。
1 1
Figure imgf000041_0001
*印は本発明で規定する条件から外れることを示す。
上記のようにして各鋼を連続铸造した後、 通常の方法で圧延温度及び 冷却速度を調整しながら直径 5. 5 mmの線材に熱間圧延した。 これら の線材に一次伸線加工 (仕上がり直径 2. 8 mm) 、 一次パテンテ ィ ン グ処理、 二次伸線加工 (仕上がり直径 1. 2 mm) を施した。 この後更 に、 最終パテンティ ング処理 ( 9 5 0〜 1 0 5 0 °Cのオーステナイ ト化 温度、 5 6 0〜 6 1 0 °Cの鉛浴温度) を施し、 引き続きブラスめつ き処 理を行ってから伸線速度 550 m/分の条件で湿式伸線加工 (仕上がり 直径 0. 2 mm) を行つた。
表 1 1 に、 直径 5. 5 mmの線材の L断面を鏡面研磨し、 その研磨面 を被検面と して E PMA装置で分析し幅が 2 m以上の酸化物の組成を 測定した結果及び 0. 2 mm鋼線における引張強度と疲労強度を併せて 示す。 なお、 本実施例においては、 線材の L断面における幅 2 m以上 の酸化物を S i O2 、 C a〇、 A l 23、 Mg O、 Mn O、 Z r 02 に 特定して、 つまり、 上記 6元系の酸化物の 「平均組成」 の総和を 1 00 %と して、 その 「平均組成」 を調査した。 疲労強度は、 温度が 2 0〜 2 5で、 湿度が 5 0〜 6 0 %の条件下でハンター式回転曲げ疲労試験機を 用いて 1 07 サイ クル試験した場合の結果である。
表 1 1から、 鋼 2 7〜 3 2を素材鋼とする線材から加工した極細鋼線 は、 平均組成が本発明で規定する条件を満たすので、 平均組成が本発明 で規定する条件から外れた鋼 3 3〜 3 8を素材鋼とする線材から加工し た極細鋼線に比べて高い疲労強度を有していることが明らかである。 表 1 2に、 上記の各鋼について、 直径 1. 2 mmの鋼線を直径 0. 2 mmの鋼線に湿式伸線した場合の断線指数 (鋼線 1 ト ン当たりの断線回 数 (回 Zト ン) ) を示す。 1 2
Figure imgf000043_0001
表 1 2から、 鋼 2 7〜 3 2を素材鋼とする線材においては、 平均組成 が本発明で規定する条件を満たすので鋼線の断線指数が低く、 伸線加工 性に優れていることが明らかである。 これに対して、 鋼 3 3〜 3 8を素 材鋼とする線材の平均組成は本発明で規定する条件から外れており、 鋼 線の断線指数は高く、 伸線加工性に劣っていた。 産業上の利用可能性
ワイ ヤロープ、 弁ばね、 懸架ばね、 P C鋼線、 スチールコー ドのよう な、 優れた耐疲労特性や優れた冷間加工性が要求される製品を本発明の 線材を素材と して高い生産性の下に提供することができる。

Claims

請求の範囲
1. 長手方向縦断面における幅 2 m以上の酸化物の平均組成が、 重 量%で、 S i 〇 2 : 7 0 %以上、 C a〇 + A l 23 : 2 0 %未満、 Z r 02 : 0. 1〜 1 0 %を含む鋼線材。
2. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる Z r〇2 が重量%で、 0. 5〜 1 0 %である請求の範囲 1 に記載の 鋼線材。
3. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる Z r 02 が重量%で、 1. 0〜 1 0 %である請求の範囲 1 に記載の 鋼線材。
4. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる S i 〇2 が重量%で、 7 5 %を超えて 9 5 %以下である請求の範囲 1 に記載の鋼線材。
5. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる C a O + A 1 2〇 3が重量%で、 1 %以上 1 5 %未満である請求の範 囲 1 に記載の鋼線材。
6. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる Z r 02 、 S i 02 , C a Ο + A 1 2 O 3がそれぞれ重量%で、 0. 5〜 1 0 %、 75 %を超えて 95 %以下、 1 %以上 1 5 %未満である請 求の範囲 1 に記載の鋼線材。
7. 長手方向縦断面における幅 2 m以上の酸化物の平均組成に含ま れる Z r O2 、 S i O2 、 C a O + A l 203がそれぞれ重量%で、 1. 0〜 1 0 %、 7 5 %を超えて 95 %以下、 1 %以上 1 5 %未満である請 求の範囲 1 に記載の鋼線材。
8. 長手方向縦断面における幅 2 m以上の酸化物が S i O2 、 C a 0、 A l 23、 M g O、 Mn〇、 Z r O 2 で構成され、 その平均組成が 、 重量%で、 S i 02 : 70%以上、 C a O + A l 23 : 20%未満、 Z r〇2 : 0. 1〜 1 0%である請求の範囲 1に記載の鋼線材。
9. 鋼の化学成分が重量%で、 C : 0. 45〜 ; I . 1 %、 S i : 0. 1〜2. 5 %, M n : 0. 1〜 1. 0%、 Z r : 0. 1 %以下を含み、 更に、 C u : 0〜0. 5%、 N i : 0〜 l . 5%、 C r : 0〜 l . 5% 、 Mo : 0~0. 5%、 W : 0〜0. 5%、 C o : 0〜 l . 0%、 B : 0〜0. 0030%、 V : 0〜0. 5%、 Nb : 0〜0. l %、 T i : 0〜0. 1 %を含有し、 残部は F e及び不可避不純物からなり、 不純物 中の Pは 0. 020%以下、 Sは 0. 020%以下、 A 1は 0. 005 %以下、 Nは 0. 005%以下、 0 (酸素) は 0. 0025%以下であ る請求の範囲 1〜8に記載の鋼線材。
1 0. 鋼線材に用いる鋼の製造方法であって、 転炉による一次精鍊、 転炉外での二次精練の後、 連続铸造する請求の範囲 1〜 9に記載の鋼線 材に用いる鋼の製造方法。
1 1. 転炉から連続铸造の工程までに溶鋼中に投入又は混入する A 1 量を 1 O gZト ン以下とするとともに、 溶鋼と接触する耐火物及び媒溶 剤中の A l 23量を 20%以下、 前記耐火物及び媒溶剤の 1種以上に含 まれる Z r〇2 の量を 1〜95%と し、 更に、 二次精鍊の工程以降で溶 鋼と接触すると りべ中スラグの最終 C a OZS i 〇2 比を 2. 0以下と する請求の範囲 1 0に記載の鋼の製造方法。
1 2. 請求の範囲 1〜9に記載の鋼線材を冷間加工した後、 最終の熱 処理、 めっき処理及び湿式伸線加工をこの順に施す極細鋼線の製造方法
PCT/JP1999/003307 1998-06-23 1999-06-21 Tige en fil d'acier et procede de fabrication de l'acier destine a ce fil WO1999067437A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020007001761A KR100353322B1 (ko) 1998-06-23 1999-06-21 강선재 및 강선재용 강의 제조방법
JP2000556076A JP3440937B2 (ja) 1998-06-23 1999-06-21 鋼線材及び鋼線材用鋼の製造方法
CA002300992A CA2300992C (en) 1998-06-23 1999-06-21 Steel wire rod and method of manufacturing steel for the same
EP99957184A EP1018565A4 (en) 1998-06-23 1999-06-21 STEEL WIRE ROD AND METHOD OF MANUFACTURING STEEL FOR SAID WIRE
AU42894/99A AU736258B2 (en) 1998-06-23 1999-06-21 Steel wire rod and process for producing steel for steel wire rod
US09/503,713 US6277220B1 (en) 1998-06-23 2000-02-14 Steel wire rod and process for producing steel for steel wire rod

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10/176273 1998-06-23
JP17627398 1998-06-23
JP10/350824 1998-12-10
JP35082498 1998-12-10
JP11/48289 1999-02-25
JP4828999 1999-02-25
JP10574999 1999-04-13
JP11/105749 1999-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/503,713 Continuation US6277220B1 (en) 1998-06-23 2000-02-14 Steel wire rod and process for producing steel for steel wire rod

Publications (1)

Publication Number Publication Date
WO1999067437A1 true WO1999067437A1 (fr) 1999-12-29

Family

ID=27462174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003307 WO1999067437A1 (fr) 1998-06-23 1999-06-21 Tige en fil d'acier et procede de fabrication de l'acier destine a ce fil

Country Status (8)

Country Link
US (1) US6277220B1 (ja)
EP (1) EP1018565A4 (ja)
JP (1) JP3440937B2 (ja)
KR (1) KR100353322B1 (ja)
CN (1) CN1087355C (ja)
AU (1) AU736258B2 (ja)
CA (1) CA2300992C (ja)
WO (1) WO1999067437A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202905A (ja) * 2009-03-02 2010-09-16 Sumitomo Metal Ind Ltd 高清浄度Si脱酸鋼およびその製造方法
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
JP2017190519A (ja) * 2016-04-15 2017-10-19 現代自動車株式会社Hyundai Motor Company 耐食性に優れた高強度バネ鋼
JP2017218659A (ja) * 2016-06-10 2017-12-14 住友電気工業株式会社 斜め巻きばね用線材、斜め巻きばねおよびそれらの製造方法
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring
US10718039B2 (en) 2016-04-15 2020-07-21 Hyundai Motor Company High strength spring steel having excellent corrosion resistance
CN114150221A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种超高强钢82b的生产方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0006819B1 (pt) * 1999-06-16 2011-05-17 arame de aço de alto carbono excelente na trabalhabilidade e na resistência à fadiga após o trabalho do arame.
WO2002050327A1 (fr) * 2000-12-20 2002-06-27 Nippon Steel Corporation Acier à ressorts haute résistance et fil d'acier à ressorts
KR100695371B1 (ko) * 2003-01-27 2007-03-16 신닛뽄세이테쯔 카부시키카이샤 고강도, 고인성 고탄소강 선재와 그 제조 방법
WO2006059784A1 (ja) 2004-11-30 2006-06-08 Nippon Steel Corporation 高強度ばね用鋼および鋼線
JP2007002294A (ja) * 2005-06-23 2007-01-11 Kobe Steel Ltd 伸線性および疲労特性に優れた鋼線材並びにその製造方法
JP4393467B2 (ja) * 2006-02-28 2010-01-06 株式会社神戸製鋼所 強伸線加工用の熱間圧延線材およびその製造方法
EP2003222B1 (en) * 2006-03-31 2016-05-04 Nippon Steel & Sumitomo Metal Corporation A quenched and tempered steel for spring-use
BRPI0702836B1 (pt) * 2006-03-31 2014-05-27 Nippon Steel & Sumitomo Metal Corp Aço tratado termicamente para molas
DE102007006875A1 (de) * 2007-02-07 2008-08-14 Benteler Stahl/Rohr Gmbh Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen und Rohrbauteil
JP5241178B2 (ja) * 2007-09-05 2013-07-17 株式会社神戸製鋼所 伸線加工性に優れた線材およびその製造方法
BRPI0922826B1 (pt) 2008-11-27 2020-01-07 Nippon Steel Corporation Chapa de aço elétrico e método para sua produção
DE102009010442A1 (de) * 2009-02-26 2010-09-02 C.D. Wälzholz GmbH Mikrolegierter Kohlenstoffstahl als texturgewalzter Bandstahl, insbesondere für Federelemente
CN102953005B (zh) * 2011-08-19 2015-07-08 鞍钢股份有限公司 一种生产细钢丝用高碳低合金钢盘条及其制造方法
CN102926244B (zh) * 2012-11-21 2016-04-06 江苏赛福天钢索股份有限公司 一种电梯钢丝绳的制作方法
CN102926246B (zh) * 2012-11-22 2016-08-31 江苏赛福天钢索股份有限公司 一种高层电梯钢丝绳的制作方法
JP6237794B2 (ja) * 2014-02-06 2017-11-29 新日鐵住金株式会社 鋼線
CN105960478B (zh) * 2014-02-06 2018-10-09 新日铁住金株式会社 单丝
CN103805861B (zh) 2014-02-11 2016-06-01 江苏省沙钢钢铁研究院有限公司 一种高碳钢线材及其制备方法
JP6458927B2 (ja) * 2014-10-07 2019-01-30 大同特殊鋼株式会社 線材圧延性に優れた高強度ばね鋼
KR101745192B1 (ko) * 2015-12-04 2017-06-09 현대자동차주식회사 초고강도 스프링강
KR101795277B1 (ko) * 2016-06-21 2017-11-08 현대자동차주식회사 내식성이 우수한 고강도 스프링강
KR101795278B1 (ko) * 2016-06-21 2017-11-08 현대자동차주식회사 초고강도 스프링강
CN110382726A (zh) * 2017-03-10 2019-10-25 住友电气工业株式会社 斜圈弹簧用线材和斜圈弹簧
WO2018216317A1 (ja) 2017-05-25 2018-11-29 住友電気工業株式会社 斜め巻きばねおよびコネクタ
CN107227427B (zh) * 2017-07-28 2019-03-15 武汉钢铁有限公司 Φ7.0mm2000MPa级镀锌钢丝及其制造方法
CN108330391B (zh) * 2018-02-13 2020-07-17 鞍钢股份有限公司 一种铬钼合金冷镦钢盘条及其生产方法
CN112159928B (zh) * 2020-09-28 2021-11-12 广东韶钢松山股份有限公司 一种含Zr轴承钢及其制备方法
CN112267070A (zh) * 2020-09-30 2021-01-26 联峰钢铁(张家港)有限公司 一种高强度高韧性钢丝钢绞线及其生产工艺
CN114892101B (zh) * 2022-06-06 2023-04-25 武汉钢铁有限公司 一种70级钢帘线用热轧盘条及其制备方法、汽车轮胎

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285029A (ja) * 1989-04-25 1990-11-22 Nippon Steel Corp 加工性と時効特性に優れた冷延鋼板の製造方法
JPH06212238A (ja) * 1993-01-14 1994-08-02 Sumitomo Electric Ind Ltd 高清浄鋼の製造方法
JPH08143940A (ja) * 1994-11-17 1996-06-04 Sumitomo Metal Ind Ltd 鋼中介在物形態の制御方法
JPH08225820A (ja) * 1995-02-17 1996-09-03 Sumitomo Metal Ind Ltd 高炭素Siキルド鋼の製造方法
JPH11131191A (ja) * 1997-10-30 1999-05-18 Kawasaki Steel Corp 耐リジング性に優れたフェライト系ステンレス鋼
JP3062769B2 (ja) * 1991-05-20 2000-07-12 株式会社小松製作所 簡易荷役機械

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136612A (ja) 1984-12-04 1986-06-24 Kobe Steel Ltd 高Siばね用清浄鋼の製造法
JPH0674484B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式曾社 高清浄度鋼
JPH0674485B2 (ja) 1985-10-26 1994-09-21 新日本製鐵株式會社 高清浄度鋼
JP2510898B2 (ja) * 1991-04-03 1996-06-26 新日本製鐵株式会社 高清浄度溶鋼溶製用取鍋の内張り用耐火物
US5534084A (en) * 1992-02-26 1996-07-09 Nippon Steel Corporation Continuous-cast slab and steel product having dispersed fine particles
JPH06299286A (ja) * 1993-04-13 1994-10-25 Nippon Steel Corp 酸化物粒子を制御した鋼およびその製造方法
JPH09125199A (ja) 1995-10-31 1997-05-13 Kobe Steel Ltd 冷間加工性に優れた高清浄度鋼
JPH09125200A (ja) 1995-10-31 1997-05-13 Kobe Steel Ltd 冷間加工性に優れた高清浄度鋼
JPH09209075A (ja) 1996-02-02 1997-08-12 Kobe Steel Ltd 冷間加工性および疲労特性に優れた高清浄度圧延鋼材
JP2000178685A (ja) * 1998-12-15 2000-06-27 Sumitomo Metal Ind Ltd 疲労特性及び伸線加工性に優れた鋼線材とその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02285029A (ja) * 1989-04-25 1990-11-22 Nippon Steel Corp 加工性と時効特性に優れた冷延鋼板の製造方法
JP3062769B2 (ja) * 1991-05-20 2000-07-12 株式会社小松製作所 簡易荷役機械
JPH06212238A (ja) * 1993-01-14 1994-08-02 Sumitomo Electric Ind Ltd 高清浄鋼の製造方法
JPH08143940A (ja) * 1994-11-17 1996-06-04 Sumitomo Metal Ind Ltd 鋼中介在物形態の制御方法
JPH08225820A (ja) * 1995-02-17 1996-09-03 Sumitomo Metal Ind Ltd 高炭素Siキルド鋼の製造方法
JPH11131191A (ja) * 1997-10-30 1999-05-18 Kawasaki Steel Corp 耐リジング性に優れたフェライト系ステンレス鋼

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONZALES J C: "BEHAVIOUR OF CALCIUM ALUMINATES DURING HOT ROLLING OF CONTINUOUS CASTING STEELS", METALLURGICAL SCIENCE AND TECHNOLOGY, TORINO, IT, vol. 11, no. 03, 1 January 1993 (1993-01-01), IT, pages 105 - 109, XP002926348 *
See also references of EP1018565A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365663B2 (en) 2008-03-31 2016-06-14 Exxonmobil Chemical Patents Inc. Production of shear-stable high viscosity PAO
JP2010202905A (ja) * 2009-03-02 2010-09-16 Sumitomo Metal Ind Ltd 高清浄度Si脱酸鋼およびその製造方法
US10689736B2 (en) 2015-12-07 2020-06-23 Hyundai Motor Company Ultra-high-strength spring steel for valve spring
JP2017190519A (ja) * 2016-04-15 2017-10-19 現代自動車株式会社Hyundai Motor Company 耐食性に優れた高強度バネ鋼
US10718039B2 (en) 2016-04-15 2020-07-21 Hyundai Motor Company High strength spring steel having excellent corrosion resistance
JP2017218659A (ja) * 2016-06-10 2017-12-14 住友電気工業株式会社 斜め巻きばね用線材、斜め巻きばねおよびそれらの製造方法
WO2017212770A1 (ja) * 2016-06-10 2017-12-14 住友電気工業株式会社 斜め巻きばね用線材、斜め巻きばねおよびそれらの製造方法
CN114150221A (zh) * 2021-11-26 2022-03-08 湖南华菱湘潭钢铁有限公司 一种超高强钢82b的生产方法

Also Published As

Publication number Publication date
EP1018565A1 (en) 2000-07-12
AU736258B2 (en) 2001-07-26
CA2300992C (en) 2004-08-31
CN1272890A (zh) 2000-11-08
JP3440937B2 (ja) 2003-08-25
AU4289499A (en) 2000-01-10
CN1087355C (zh) 2002-07-10
KR100353322B1 (ko) 2002-09-18
KR20010023138A (ko) 2001-03-26
CA2300992A1 (en) 1999-12-29
US6277220B1 (en) 2001-08-21
EP1018565A4 (en) 2003-07-23

Similar Documents

Publication Publication Date Title
WO1999067437A1 (fr) Tige en fil d&#39;acier et procede de fabrication de l&#39;acier destine a ce fil
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
JP5157230B2 (ja) 伸線加工性の優れた高炭素鋼線材
JP5092749B2 (ja) 高延性の高炭素鋼線材
CN101765672B (zh) 延性优良的线材及高强度钢线以及它们的制造方法
JP5047871B2 (ja) 伸線加工性と耐疲労特性に優れた鋼線材
CN108138285B (zh) 拉丝加工用钢丝材
CN110621799B (zh) 线材、钢线以及钢线的制造方法
JP2018193615A (ja) 疲労特性に優れたばね用鋼線材、およびばね
KR20110082042A (ko) 가공성이 우수한 고탄소강 선재
WO1995026422A1 (fr) Materiau a base de fil d&#39;acier a haute resistance, presentant d&#39;excellentes caracteristiques de fatigue, et fil d&#39;acier a haute resistance
JP2011225990A (ja) 伸線加工性および伸線後の疲労特性に優れた高炭素鋼線材
JP3601388B2 (ja) 鋼線材及び鋼線材用鋼の製造方法
JP7226548B2 (ja) 線材
JP4646850B2 (ja) 耐カッピー断線性に優れた高炭素鋼線材
KR20170002541A (ko) 강선
JPH04371549A (ja) 高強度高靭性極細鋼線用線材、高強度高靭性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法
JP3572993B2 (ja) 鋼線材、鋼線及びその製造方法
JP2000119805A (ja) 伸線加工性に優れた鋼線材
JP2000178685A (ja) 疲労特性及び伸線加工性に優れた鋼線材とその製造方法
JP2004011002A (ja) 伸線加工用の素線及び線
JP2001131697A (ja) 鋼線材、鋼線及びそれらの製造方法
JP3499341B2 (ja) ゴム補強用鋼線の製造方法
JP2000345294A (ja) 鋼線材、極細鋼線及び撚鋼線
JP3428502B2 (ja) 鋼線材、極細鋼線及び撚鋼線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800976.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09503713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999957184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2300992

Country of ref document: CA

Ref document number: 2300992

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020007001761

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 42894/99

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1999957184

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007001761

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 42894/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020007001761

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1999957184

Country of ref document: EP