WO1999065963A1 - Procede de fabrication d'un polymere ramifie et polymere correspondant - Google Patents

Procede de fabrication d'un polymere ramifie et polymere correspondant Download PDF

Info

Publication number
WO1999065963A1
WO1999065963A1 PCT/JP1999/003275 JP9903275W WO9965963A1 WO 1999065963 A1 WO1999065963 A1 WO 1999065963A1 JP 9903275 W JP9903275 W JP 9903275W WO 9965963 A1 WO9965963 A1 WO 9965963A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
macromonomer
polymer
production method
polymerization
Prior art date
Application number
PCT/JP1999/003275
Other languages
English (en)
French (fr)
Inventor
Yoshiki Nakagawa
Shigeki Ono
Masayuki Fujita
Kenichi Kitano
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2000554782A priority Critical patent/JP3990110B2/ja
Priority to CA002335777A priority patent/CA2335777C/en
Priority to EP99925386A priority patent/EP1160266B1/en
Priority to DE69935259T priority patent/DE69935259T2/de
Priority to US09/719,580 priority patent/US6979716B1/en
Publication of WO1999065963A1 publication Critical patent/WO1999065963A1/ja
Priority to US11/199,392 priority patent/US20060052563A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/046Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP

Definitions

  • the present invention relates to a method for producing a branched polymer, which comprises polymerizing a vinyl polymer macromonomer having a polymerizable carbon-carbon double bond at a terminal.
  • Comb-shaped graft copolymers along with block copolymers, have attracted attention in the field of polymer materials. The reason is that these polymers have properties as constituent segments as seen in thermoplastic elastomers and high-impact plastics, and can exhibit unique functions based on microphase-separated structures.
  • graft polymers have long been used to modify polymers, it has only recently been successful to synthesize polymers with well-controlled structures. The concept of a high-molecular-weight monomer was described by Milkovich et al., And by copolymerizing this, it became possible to synthesize a polymer having a distinct comb-shaped structure.
  • a star polymer is a polymer in which a linear arm extends radially from the center, and is known to have various properties different from a linear polymer.
  • a method for connecting the arms a method of reacting a compound having a plurality of functional groups that reacts with a functional group at the terminal of the polymer serving as an arm, a method of adding a compound having a plurality of polymerizable groups after polymerization of the arm, A method of polymerizing a polymer having a polymerizable group (hereinafter, referred to as “macromonomer”) in the present specification is exemplified.
  • Homopolymers and copolymers are both polymers that constitute such a star-shaped polymer.
  • Various types of polymers such as polystyrene, poly (meth) acrylate, polygen, polyether, polyester, and polysiloxane are available. is there. In order to obtain a controlled star structure, no matter how it is produced, the polymerization is controlled Therefore, anionic polymerization, ripening cationic polymerization or degeneracy is often used.
  • Vinyl polymers having a star-shaped structure obtained by radical polymerization have not yet been practically used. Above all, the method of linking macromonomers to form chain extensions or star structures has not been successful yet.
  • Vinyl polymers generally have properties such as weather resistance and transparency that cannot be obtained with the above-mentioned polyether polymers, hydrocarbon polymers, or polyester polymers, and include alkenyl groups. And those having a pendant silyl group in the side chain are used for highly weather-resistant paints and the like.
  • a graft polymer or a star polymer can be obtained by using a macromonomer, but it is still not easy to synthesize the macromonomer.
  • macromolecules of vinyl polymers which are generally polymerized by radical polymerization, are hardly synthesized because the control of the polymerization is difficult.
  • it is difficult to control the polymerization of acryl-based polymers because of its side reaction, and it is therefore difficult to produce a macromonomer having a polymerizable group at the terminal.
  • an object of the present invention is to provide a method for producing a branched polymer using a vinyl polymer macromonomer produced by radical polymerization.
  • the present invention is directed to a vinyl polymer produced by radical polymerization, which polymerizes a macromonomer (I) having one group having a polymerizable carbon-carbon double bond per molecule and having a terminal at the molecular end. And a method for producing a branched polymer.
  • R represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms.). More preferably, R is hydrogen or a methyl group.
  • the main chain of the macromonomer (I) is not limited, but is preferably a living monomer. It is produced by dical polymerization, more preferably by atom transfer radical polymerization.
  • the atom transfer radical polymerization preferably catalyzes a transition metal complex having a central metal of Group 7, 8, 9, 10 or 11 of the periodic table as a catalyst, More preferably, the metal complex used as a catalyst is a metal complex selected from the group consisting of copper, nickel, ruthenium, and iron, and a copper complex is particularly preferable as a catalyst.
  • the main chain of the macromonomer (I) is not particularly limited, but is preferably a (meth) acryl-based polymer or a styrene-based polymer, and more preferably an acrylate-based polymer.
  • the macromonomer (I) is preferably, but not limited to, one produced by substituting a terminal halogen group of a vinyl polymer with a radical polymerizable compound having a carbon-carbon double bond. More preferably, the general formula (2):
  • R 1 and R 2 are groups bonded to the ethylenically unsaturated group of the vinyl monomer.
  • X represents chlorine, bromine, or iodine.
  • R represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms.
  • M + represents an alkali metal or a quaternary ammonium ion.
  • the macromonomer (I) is a vinyl polymer having a hydroxyl group at a terminal and a general formula (4):
  • R represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms.
  • X represents chlorine, bromine, or a hydroxyl group.
  • a vinyl polymer having a hydroxyl group at a terminal is reacted with a diisocyanate compound, and the remaining isocyanate group is reacted with a general formula (5):
  • R represents hydrogen or a monovalent organic group having 1 to 20 carbon atoms.
  • R ′ represents a divalent organic group having 2 to 20 carbon atoms.
  • the number average molecular weight of the polymer of the macromonomer (I) is not limited, but is preferably 3000 or more.
  • the number average molecular weight (Mw) of the macromonomer (I) measured by gel permeation chromatography is The value of the ratio (Mw / Mn) of the number average molecular weight (Mn) is preferably less than 1.8.
  • the method for polymerizing the macromonomer (I) of the present invention is not limited, but is preferably radical polymerization, more preferably living radical polymerization, and further preferably atom transfer radical polymerization.
  • the atom transfer radical polymerization is preferably catalyzed by a transition metal complex having a central metal of Group 7, 8, 9, 10 or 11 of the Periodic Table, More preferably, the metal complex used as a catalyst is a metal complex selected from the group consisting of copper, nickel, ruthenium, and iron, and a copper complex is particularly preferable as a catalyst.
  • polymerization in which polymerization is initiated by an active energy ray or polymerization in which heating is initiated by heating is also preferable.
  • the method of polymerizing the macromonomer (I) may be anion polymerization.
  • a star polymer is obtained by polymerizing the macromonomer (I) of the present invention alone, and the copolymer is graft copolymerized by copolymerizing the macromonomer (I) and a copolymerizable monomer (II) other than the macromonomer.
  • a polymer is obtained, and a polyfunctional compound having two or more groups having a macromonomer (I) and a polymerizable carbon-carbon double bond per minute, preferably a polyfunctional compound having the double bond at a molecular terminal.
  • the copolymer (III) is copolymerized to obtain a crosslinked polymer (gel).
  • the present invention is also a branched polymer obtainable by the method of the present invention.
  • the use of the polymer of the present invention is not limited, it is used as a thermoplastic elastomer, a material for improving impact resistance, and an adhesive.
  • the present invention is directed to the polymerization of Macguchi Monomer (I), which is a biel-based polymer produced by radical polymerization, having one group having a polymerizable carbon-carbon double bond per molecule at the molecular terminal.
  • a method for producing a branched polymer is preferably a group represented by the above general formula (1).
  • R is not particularly limited as long as it is a monovalent organic group having 1 to 20 carbon atoms.
  • 1 H, — CH 3 , —CH 3 , —CH 2 CH 3 ,-(CH 2 ) n CH 3 (n represents an integer from 2 to L 9), —C 6 H 5 , —CH 2 ⁇ H, —CN, etc., but preferably 1 H, — CH 3.
  • the monomer constituting the main chain of the macromonomer (I) of the present invention is not particularly limited, and various monomers can be used.
  • Conjugated dienes such as vinyl chloride, vinylidene chloride, aryl chloride, aryl alcohol and the like. These may be used alone or a plurality of them may be copolymerized. Among them, styrene-based monomers and (meth) acrylic acid-based monomers are preferred in view of the physical properties of the product. More preferably, they are acrylate monomer and methacrylate monomer, and further preferably, butyl acrylate. In the present invention, these preferred monomers are combined with other monomers. The copolymer may be copolymerized, and the gap preferably contains 40% by weight of these preferable monomers.
  • the macromonomer (I) of the present invention has a molecular weight distribution, that is, a ratio of the weight average molecular weight to the number average molecular weight measured by gel permeation chromatography is preferably less than 1.8, and more preferably 1.7. Or less, more preferably 1.6 or less, particularly preferably 1.5 or less, particularly preferably 1.4 or less, and most preferably 1.3 or less.
  • a polystyrene gel column or the like is used as a mobile phase using chloroform or tetrahydrofuran or the like, and the value of the molecular weight is determined in terms of polystyrene.
  • the narrower the molecular weight distribution the lower the viscosity of the macromonomer and the more controlled the structure of the branched polymer produced by the method of the present invention.
  • the number average molecular weight of the macromonomer (I) of the present invention is preferably in the range of 500 to 100,000, more preferably 300 to 400. When the molecular weight is less than 500, the intrinsic properties of the vinyl polymer are hardly exhibited, and when it is more than 100, handling becomes difficult. Polymerization of the main chain of macromonomer (I)>
  • the vinyl polymer which is the main chain of the macromonomer (I) of the present invention is produced by radical polymerization.
  • the radical polymerization method involves simply copolymerizing a monomer having a specific functional group with a vinyl monomer using an azo compound or a peroxide as a polymerization initiator. It can be classified as a “controlled radical polymerization method” that can introduce a specific functional group at a controlled position.
  • the “general radical polymerization method” is a simple method, a monomer having a specific functional group is introduced into the polymer only stochastically, so that a polymer with a high degree of functionalization is obtained. In such a case, it is necessary to use a considerably large amount of the monomer having the specific functional group. Conversely, if the monomer is used in a small amount, the proportion of the polymer into which the specific functional group is not introduced is increased. In addition, since it is a free radical polymerization, there is a problem that only a polymer having a wide molecular weight distribution and a high viscosity can be obtained.
  • the “controlled radical polymerization method” further uses a chain transfer agent having a specific functional group.
  • a vinyl polymer having a specific functional group at the end can be obtained by the ⁇ chain transfer agent method '', and by growing the polymerized growth terminal without causing a termination reaction, etc.
  • a polymer is obtained. It can be classified into "Living radical polymerization method J".
  • the ⁇ chain transfer agent method '' can obtain a polymer with a high degree of functionalization, but requires a considerably large amount of a chain transfer agent having a specific functional group with respect to the initiator, and also includes processing. And there is an economic problem. Further, similar to the above-mentioned “general radical polymerization method”, there is also a problem that since it is free radical polymerization, only a polymer having a wide molecular weight distribution and a high viscosity can be obtained.
  • the “living radical polymerization method” is a radical polymerization that is difficult to control because the polymerization rate is high and a termination reaction such as coupling between radicals is likely to occur. It is possible to obtain a polymer with a narrow molecular weight distribution (MwZMn is about 1.1 to 1.5) and to control the molecular weight freely by the charging ratio of the monomer and the initiator.
  • the "living radical polymerization method” can obtain a polymer having a narrow molecular weight distribution and a low viscosity, and can introduce a monomer having a specific functional group into almost any position of the polymer. It is more preferable as a method for producing the vinyl polymer having the specific functional group.
  • living polymerization refers to polymerization in which the terminal is always active and the molecular chain grows.In general, it is the polymerization in which the terminal is inactivated and the one in which the terminal is activated. Pseudo-living polymerization that grows in a state of equilibrium is also included. The definition in the present invention is also the latter.
  • the "atom transfer radical polymerization method” in which an organic halide or a sulfonyl halide compound is used as an initiator and a vinyl monomer is polymerized using a transition metal complex as a catalyst is the above-mentioned "living radical polymerization method".
  • '' it has halogens at the terminals that are relatively advantageous for the functional group conversion reaction, and has a high degree of freedom in designing initiators and catalysts.
  • the production method is more preferable.
  • Examples of this atom transfer radical polymerization method include Matyjasz ewski et al., Journal of American Chemical Society (J. Am. Chem.
  • a controlled radical polymerization is basically used, and a living radical polymerization is more preferable because of easy control. Polymerization is preferred.
  • the radical polymerization using a chain transfer agent is not particularly limited, but the following two methods are exemplified as a method for obtaining a vinyl polymer having a terminal structure suitable for the present invention. .
  • a radical scavenger such as a nitroxide compound
  • Such compounds include, but are not limited to, 2,2,6,6-substituted_1-piperidinyloxy radicals and 2,2,5,5-substituted-1-pyrrolidinyloxy radicals and the like.
  • Nitroxy free radicals from cyclic hydroxyamines are preferred.
  • an alkyl group having 4 or less carbon atoms such as a methyl group and a methyl group is suitable.
  • dithroxy-free radical compound examples include, but are not limited to, 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) and 2,2,6,6-tetraethyl-1-pipe Lysinyloxy radical, 2,2,6,6-tetramethyl-4 1 year old Kiso 1-piperidinyloxy radical, 2,2,5,5-tetramethyl-1 _ pyrrolidinyloxy radical, 1,1,3,3 —Tetramethyl-2-isoindolinyloxy radical, N, N-di-t-butylamyloxy radical and the like.
  • a stable free radical such as galpinoxyl (ga1Vinoxy1) free radical may be used in place of the two-mouthed xylfree radical.
  • the radical caving agent is used in combination with a radical generator. It is considered that the reaction product of the radical cabbing agent and the radical generator serves as a polymerization initiator, and the polymerization of the addition-polymerizable monomer proceeds.
  • the combination ratio of the two is not particularly limited, but 0.1 to 10 mol of the radical initiator is suitable for 1 mol of the radical cabbing agent.
  • the radical generator various compounds can be used, but a peroxide capable of generating a radical under the polymerization temperature condition is preferable.
  • the peroxide include, but are not limited to, dialkyl peroxides such as benzoyl peroxide and lauroyl peroxide, dialkyl peroxides such as dicumyl peroxide and di-t-butyl peroxide, and diisopropoxide.
  • Propoxycarbonates such as propylperoxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, t-butylperoxyctoate, t-butylperoxytoxy
  • alkyl peresters such as benzoate.
  • benzoyl peroxide is preferred.
  • a radical generator such as a radical-generating azo compound such as azobisisobutyronitrile may be used in place of peroxide.
  • the following alkoxyamine compound may be used as an initiator.
  • a polymer having a functional group such as a hydroxyl group at a terminal can be obtained by using the compound having a functional group such as a hydroxyl group as shown above.
  • a polymer having a functional group at a terminal can be obtained.
  • polymerization conditions such as a monomer, a solvent, and a polymerization temperature are not limited, but may be the same as those used for atom transfer radical polymerization described below. Absent.
  • an organic halide particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbonyl compound having an octalogen at the ⁇ -position or a compound having a halogen at the benzyl position), or Halogenated sulfonyl compounds and the like are used as initiators.
  • an organic halide having a highly reactive carbon-halogen bond for example, a carbonyl compound having an octalogen at the ⁇ -position or a compound having a halogen at the benzyl position
  • Halogenated sulfonyl compounds and the like are used as initiators.
  • R 3 and R 4 are a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • X is chlorine, bromine, or iodine
  • R 3 is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 6 to 20 carbon atoms
  • X is chlorine, bromine, or iodine
  • an organic halide or a sulfonyl halide compound having a functional group other than the functional group that initiates the polymerization can also be used.
  • a Bier polymer having a functional group at one end of the main chain and a structure represented by the above general formula (2) at the other end is produced.
  • a functional group include an alkenyl group, a crosslinkable silyl group, a hydroxyl group, an epoxy group, an amino group, and an amide group.
  • the organic halide having an alkenyl group is not limited, and examples thereof include those having a structure represented by the general formula (6).
  • R 5 is hydrogen or a methyl group
  • R 6 and R 7 are hydrogen or a monovalent alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a 7 to 7 carbon atom.
  • 20 aralkyl groups, or interconnected at the other end R 8 is —C (O) ⁇ - (ester group), —C ( ⁇ )-(keto group), or o—.m—, p —A phenylene group
  • R 9 is a direct bond, or a divalent organic group having 1 to 20 carbon atoms which may contain one or more ether bonds
  • X is chlorine, bromine, or iodine
  • substituents R 6 and R 7 are not particularly limited, and include, for example, hydrogen, methyl, ethyl, n-propyl, isopropyl, butyl, pentyl, hexyl, and the like.
  • R 6 and R 7 may be linked at the other end to form a cyclic skeleton Good
  • organic halide having an alkenyl group represented by the general formula (6) include:
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 1 to 20
  • m is an integer of 0 to 20.
  • X is hydrogen, bromine, or iodine
  • n is an integer of 1 to 20
  • m is an integer of 0 to 20.
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • o, m, p—XCH 2 —C 6 H 4 - ⁇ (CH 2 ) n — O— (CH 2 ) m -CH CH
  • Examples of the organic halide having an alkenyl group further include a compound represented by the general formula (7).
  • H 2 C C (R 5 ) -R 9 -C (R 6 ) (X) -R 10 -R 7 (7)
  • R 1 is a direct bond, one C ( ⁇ ) 0- (ester group), —C ( ⁇ ) — (keto Group), or o-, m-, p-phenylene group)
  • R 8 is a direct bond or a divalent organic group having 1 to 20 carbon atoms (which may contain one or more ether bonds). If the bond is a direct bond, the halogen-bonded carbon Is a halogenated arylated compound. In this case, since the carbon-halogen bond is activated by the adjacent vinyl group, it is not necessary to have a C ( ⁇ ) 0 group or a phenylene group as R 1Q , and it is a direct bond. You can use it.
  • R 3 is not a direct bond
  • R 10 is preferably a C (O) O group, a C (O) group or a phenylene group in order to activate a carbon-halogen bond.
  • CH 2 CHCH 2 X
  • CH 2 C (CH 3 ) CH 2 X
  • CH 2 CHC (H) (X) CH (CH 3 ) 2 ,
  • CH 2 CHC (H) (X) C 6 H 5
  • CH 2 CHC (H) (X) CH 2 C 6 H S
  • X is chlorine, bromine, or iodine
  • R is an alkyl group, aryl group, or aralkyl group having 1 to 20 carbon atoms.
  • X is chlorine, bromine, or iodine
  • n is an integer of 0 to 20.
  • the organic halide having a crosslinkable silyl group is not particularly limited, and examples thereof include those having a structure represented by the general formula (8).
  • R 11 and R 12 are all alkyl groups having 1 to 20 carbon atoms, aryls having 6 to 20 carbon atoms.
  • Y represents a hydroxyl group or a hydrolyzable group, and when two or more Ys are present, they may be the same or different.
  • a represents 0, 1, 2, or 3 and b represents 0, 1, or 2.
  • m is an integer from 0 to 19. However, a + mb 1 must be satisfied.
  • X is chlorine, bromine, iodine
  • n is an integer of 0 to 20
  • X is chlorine, bromine, iodine
  • n is an integer of 1 to 20
  • m is 0 (Integer from 20)
  • organic halide having a pendant silyl group examples include those having a structure represented by the general formula (9).
  • X is chlorine, bromine, or iodine
  • R is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms.
  • the organic halide having a hydroxyl group or the sulfonyl halide is not particularly limited, and examples thereof include the following.
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms, and ⁇ is :! ⁇ 20 integer
  • organic haem-containing compound having an amino group Is not particularly limited, and the following are exemplified.
  • X is chlorine, bromine, or iodine
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms
  • n is an integer from 1 to 20
  • the organic halide having an epoxy group or the sulfonyl halide compound is not particularly limited, and examples thereof include the following.
  • X is chlorine, bromine or iodine
  • R is a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms
  • the macromonomer of the present invention has a polymerizable carbon-carbon bond at one terminal, it is usually preferable to use the one-terminal initiator as described above, but the initiator of atom transfer radical polymerization In some cases, an organic halide having two or more starting points or a sulfonyl halide compound may be used. Such an initiator can be polymerized with the macromonomer of the present invention to obtain a crosslinked polymer (gel). A polymer having a polymerizable carbon-carbon double bond at two or more terminals can be obtained. It is suitable for manufacturing. To give a concrete example,
  • X represents a eight androgenic atoms.
  • the transition metal complex used as the polymerization catalyst is not particularly limited, but is preferably In other words, it is a metal complex containing a Group 7, 8, 9, 10 or 11 element of the periodic table as a central metal. More preferred are complexes of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron or divalent nickel. Among them, a copper complex is preferable. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. is there.
  • a copper compound When a copper compound is used, 2,2'-biviridyl and its derivatives, 1,10-phenanthroline and its derivatives, tetramethylethylenediamine, pentamethylethylenediamine, hexamethyl
  • a ligand such as a polyamine such as tris (2-aminoethyl) amine is added.
  • a tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is suitable as a catalyst.
  • ruthenium compound is used as a catalyst, aluminum alkoxides are added as an activator.
  • divalent bis triphenylphosphine complex of iron F e C l 2 (PPh 3) 2)
  • 2 -valent bis triphenyl phosphine complexes of nickel N i C 1 2 (PPh 3) 2)
  • divalent nickel Bisutoripuchi Le phosphine complex of (N i B r 2 (PBu 3) 2) are also suitable as catalysts.
  • the polymerization can be carried out without solvent or in various solvents.
  • the solvent include hydrocarbon solvents such as benzene and toluene, ether solvents such as getyl ether and tetrahydrofuran, halogenated hydrocarbon solvents such as methylene chloride and chloroform, acetone, methyl ethyl ketone, and the like.
  • Ketone solvents such as methyl isobutyl ketone; alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol and tert-butyl alcohol; nitrile solvents such as acetonitrile, propionitrile and benzonitrile; and ethyl acetate And ester solvents such as ethyl acetate and the like, and carbonate solvents such as ethylene carbonate and propylene carbonate. These solvents can be used alone or as a mixture of two or more.
  • the polymerization can be carried out at room temperature to 200, preferably 50 to 150.
  • the method for introducing the group represented by the general formula (1) into the terminal of the polymer of the present invention is not limited, but includes the following methods.
  • a method comprising reacting a vinyl polymer having a terminal structure represented by (2) with a compound represented by the general formula (3).
  • the vinyl polymer having a terminal structure represented by the general formula (2) is obtained by polymerizing a vinyl monomer by using the above-mentioned organic octafluoride or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst. Alternatively, it is produced by a method of polymerizing a vinyl monomer using a halogen compound as a chain transfer agent, and the former is preferable.
  • the compound represented by the general formula (3) is not particularly limited, but specific examples of R are not particularly limited as long as they are monovalent organic groups having 1 to 20 carbon atoms. May be a substituted or unsubstituted hydrocarbon group, an ether group, an acyl group, a group containing carbon and nitrogen, a group containing carbon and sulfur, a group containing carbon and oxygen, and the like.
  • M + is a counterion of oxyanion, and the type of M + is an alkali metal ion, specifically, for example, a lithium ion, a sodium ion, a potassium ion, and a quaternary ammonium ion. ON.
  • Examples of quaternary ammonium ions include tetramethylammonium ion, tetraethylammonium ion, tetrabenzylammonium ion, trimethyldodecylammonium ion, tetrabutylammonium ion, and dimethylpiperidinium ion.
  • Preferred are sodium ion and potassium ion.
  • the amount of the oxyanion of the general formula (3) to be used is preferably 1 to 5 equivalents, more preferably 1.0 to 1.2 equivalents, based on the halogen terminal of the general formula (2).
  • the solvent for carrying out this reaction is not particularly limited, but is preferably a polar solvent because it is a nucleophilic substitution reaction. Holic triamide, acetonitrile, etc. are used.
  • the temperature at which the reaction is carried out is not limited, but is generally from 0 to 150, preferably from room temperature to 100 in order to maintain a polymerizable terminal group. Introduction of terminal functional group2>
  • the compound represented by the above general formula (4) is not particularly limited, but specific examples of R are not particularly limited as long as they are monovalent organic groups having 1 to 20 carbon atoms.
  • the vinyl polymer having a hydroxyl group at the terminal is obtained by polymerizing a vinyl monomer using the above-mentioned organic halide or a sulfonyl halide compound as an initiator and a transition metal complex as a catalyst, or a chain transfer of a compound having a hydroxyl group.
  • a method of polymerizing a vinyl monomer as an agent the former is preferred.
  • the method for producing a vinyl polymer having a hydroxyl group at a terminal by these methods is not limited, but the following methods are exemplified.
  • R 13 is a monovalent organic group having 1 to 20 carbon atoms, preferably hydrogen or a methyl group, and R 14 is —C (O)) (ester group), or o—, m— or p— represents a Fuenire down group.
  • R 15 represents a divalent organic radical directly bonded, or one or more ether bonds having a carbon number of 1 but it may also have a 20. those wherein R 14 is an ester group ( Meth) acrylate compounds and those in which R 14 is a phenylene group are styrene compounds.)
  • reaction is carried out as a second monomer.
  • the polymer has, as a second monomer, an alkenyl group and a hydroxyl group having low polymerizability in one molecule A method of reacting a compound.
  • a compound is not particularly limited, and examples thereof include a compound represented by the general formula (11).
  • R 13 is the same as described above.
  • R 16 represents a divalent organic group having 1 to 20 carbon atoms which may contain one or more ether bonds.
  • the compound represented by the general formula (11) is not particularly limited, but is preferably an alkenyl alcohol such as 10-indesenol, 5-hexenol, or aryl alcohol, because it is easily available.
  • a stabilized carbanion having a hydroxyl group represented by the general formula (12) is added to a vinyl polymer having at least one carbon-halogen bond represented by the general formula (2) obtained by atom transfer radical polymerization. A method of substituting halogen by reacting.
  • R 17 and R 18 are both electron-withdrawing groups for stabilizing carbanion C—, or one is the above-described electron-withdrawing group and the other is hydrogen or carbon atom 1).
  • Examples of the electron-withdrawing group of R 17 and R 18 include, for example, one C ⁇ 2 R (ester group), — C ( ⁇ ) R (keto group), — CON (R 2 ) (amide group), COSR (thioester group), CN (nitrile group), —N ⁇ 2 (nitro group), etc.
  • the substituent R is an alkyl group having 1 to 20 carbon atoms.
  • Araru kill group Ariru group or a carbon number from 7 to 20 carbon number 6-20, preferably Ru alkyl group or phenyl group der having 1 to 10 carbon atoms.
  • R 17 and R 18, one C0 2 R, one C ( ⁇ ) R and —CN are particularly preferred.
  • a simple metal or organometallic compound such as zinc acts on a vinyl polymer having at least one carbon-halogen bond represented by the general formula (2) and obtained by atom transfer radical polymerization.
  • a hydroxyl-containing oxyanion represented by the following general formula (13) is added to a vinyl polymer having at least one halogen at the terminal of the polymer, preferably a halogen represented by the above general formula (2) or A method of reacting a hydroxyl group-containing carboxylate anion represented by the following general formula (14) or the like to replace the halogen with a hydroxyl group-containing substituent.
  • the method (b) when a halogen is not directly involved in the method for introducing a hydroxyl group as in (a) to (b), the method (b) is more preferable because control is easier.
  • a hydroxyl group is introduced by converting a halogen of a vinyl polymer having at least one carbon-halogen bond as in (c) to (f), (f) The method of ⁇ > is more preferable.
  • the compound represented by the above general formula (5) is not particularly limited, but specific examples of R are not particularly limited as long as they are monovalent organic groups having 1 to 20 carbon atoms, for example, 1 to 20 carbon atoms.
  • Specific compounds include 2-hydroxypropyl methacrylate.
  • the diisocyanate compound is not particularly limited, and any conventionally known compounds can be used.
  • the method for polymerizing the macromonomer (I) of the present invention is not limited, but is preferably radical polymerization, more preferably living radical polymerization, and further preferably atom transfer radical polymerization.
  • Atom transfer radical polymerization is preferably catalyzed by a transition metal complex having a central metal of Group 7, 8, 9, 10 or 11 of the Periodic Table, More preferably, the metal complex used as a catalyst is a metal complex selected from the group consisting of copper, nickel, ruthenium, and iron, and it is particularly preferable to use a copper complex as a catalyst.
  • the method of polymerizing the macromonomer (1) is preferably a polymerization in which polymerization is initiated by an active energy ray or a polymerization in which polymerization is initiated by heating.
  • the method of polymerizing the macromonomer (I) may be anion polymerization.
  • a star polymer can be obtained by polymerizing the macromonomer (I) of the present invention alone, and a graft copolymer can be obtained by copolymerizing the macromonomer (I) and a copolymerizable monomer (II) other than the macromonomer.
  • a polymer is obtained, and is a polyfunctional compound having two or more macromonomer (I) and a group having a polymerizable carbon-carbon double bond per molecule, preferably a polymer having the double bond at a molecular terminal.
  • a gel can be obtained by copolymerizing (III).
  • Examples of the initiator used for anion polymerization include, but are not limited to, monofunctional initiators such as sec-butyllithium and t-butyllithium, and 1,4-dilithiobutane, dilithiobutadiene, and dilithonaphthalene. Can be These may be used as an initiator system in combination with diphenylethylene, ⁇ -methylstyrene and the like.
  • copolymerizable monomers other than macromonomers (II) include anionic polymerizable monomers such as styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, ⁇ -butylstyrene, methoxystyrene, -Vinyl naphthalene, 3-ethyl-1-biphenylnaphthalene, ⁇ - ⁇ ⁇ , ⁇ -dimethylaminostyrene and other aromatic monomers; (meth) acrylic acid, (meth) methyl acrylate, (me (T) Ethyl acrylate, (n) -propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate N-pentyl (meth)
  • styrene-based monomers and (meth) acrylic-acid-based monomers are preferred in view of the physical properties of the product. More preferred are acrylate ester monomers and methacrylate monomers, and even more preferred are butyl acrylate. In the present invention, these preferred monomers may be copolymerized with other monomers. Is preferably 40%.
  • the anion polymerization can be carried out in the absence of a solvent, but can also be carried out in the presence of a suitable organic solvent.
  • the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; aliphatic hydrocarbon solvents such as n-hexane, n-octane, and isooctane; methylcyclopentane, cyclohexane, Alicyclic hydrocarbon solvents such as cyclooctane: ether solvents such as tetrahydrofuran, dioxane, and diethyl ether;
  • the polymerization conditions it is possible to use the polymerization conditions employed in ordinary anion polymerization.However, in order not to deactivate the polymerization initiator and the living site at the terminal of the polymer, oxygen, carbon dioxide or It is preferable to carry out under conditions where water etc. do not enter. For example, a polymerization initiator is added to a degassed and dehydrated solvent under a high vacuum or a nitrogen atmosphere containing almost no water, and then the anion polymerizable monomer is added to carry out anion polymerization. It is also possible to carry out the polymerization while gradually adding the polymerization initiator and the total amount of the monomers without adding them all at once.
  • a polymer having an arbitrary monomer composition By polymerizing two or more of the above-mentioned anion polymerizable monomers in combination, a polymer having an arbitrary monomer composition can be obtained.
  • the copolymer is successively polymerized with another type of monomer, whereby a block copolymer or diblock copolymer having an arbitrary monomer composition and structure can be obtained.
  • Polymers, triblock copolymers, multiblock copolymers and the like can be obtained. If the macromonomer (I) is added during the polymerization, a graft copolymer having the macromonomer (I) incorporated at an appropriate position can be obtained.
  • the polymerization temperature varies depending on the type of polymerization initiator, monomer, solvent and the like to be used, but is usually preferably in the range of —10 Ot: to 150, and in the range of —78 to 80. Is more preferred.
  • the polymerization time varies depending on the used polymerization initiator, monomer, solvent, reaction temperature and the like, but is usually in the range of 10 minutes to 10 hours.
  • the polymerization reaction can be performed in any of the batch, semi-batch, and continuous methods.
  • radical polymerization there is no particular limitation on the radical polymerization, and ordinary free radical polymerization, chain transfer Any method such as radical polymerization and living radical polymerization may be used.
  • radical polymerization as the monomer (II) copolymerized with the macromonomer (I), all the radical polymerizable monomers described in the method for producing the main chain of the macromonomer (I) described above may be used. it can.
  • the radical polymerization may be carried out without a solvent, and all the solvents described in the method for producing the main chain of the macromonomer (I) can be used.
  • the initiator used for the free radical polymerization is not particularly limited, but may be an organic peroxide such as benzoyl peroxide or tert-butyl peroxide, 2,2′-azobisisobutyronitrile, 2'-azobis (4-methoxy-1,4, -dimethylvaleronitrile), 1, 2'-azobis (2-cyclopropylpropionitrile), 2, 2'-azobis (2-methylbutyronitrile) And a radical initiator such as an azo compound.
  • the chain transfer radical polymerization is carried out by adding a chain transfer agent to the free radical polymerization, and the above-mentioned initiator can be used as the initiator.
  • the chain transfer agent is not particularly limited, but may be n-dodecylmercaptan, t-dodecylmercaptan, n-octylmercaptan, n-octyldecylmercaptan, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyljetoxysilane, (H 3 CO) 3 S i — S _ S—S i (O CH 3 ) 3 , CH 3 (H 3 CO) 2 S 1 -S -S -S i CH 3 (OCH 3 ) 2 , (C 2 H 5 0) 3 S i—S — S—S
  • SFRP St 1 e Free Radical Polymer
  • TEMPO tetramethylbiperidine oxide
  • cobalt porphyrin complex etc.
  • Atom transfer radical polymerization described for the polymerization of the main chain of (I) can be mentioned, and the latter is preferable. These polymerizations are carried out under the conditions already mentioned.
  • macromonomer (I) is polymerized by living radical polymerization, it is expected that the molecular weight and molecular weight distribution of the polymer chain obtained by this polymerization will be controlled. As a result, other monomers
  • the macromonomer (I) of the present invention can be polymerized by active energy rays such as UV and electron beams.
  • This method is not limited, but is more suitable for the case where a macromonomer (I) and a polymer (III) having a polymerizable carbon-carbon double bond at two or more terminals are polymerized to form a gel. I have.
  • a photopolymerization initiator When polymerizing with an active energy ray, a photopolymerization initiator is preferably contained.
  • the photopolymerization initiator used in the present invention is not particularly limited, but a photoradical initiator and a photoanion initiator are preferable, and a photoradical initiator is particularly preferable.
  • 8-Nonylxantone benzoyl, benzoin methyl ether, benzoin butyl ether, bis (4-dimethylaminophenyl) ketone, benzyl methoxy ketal, 2-chlorothio Xanthone and the like can be mentioned.
  • These initiators may be used alone or in combination with other compounds. Specifically, it is combined with an amine such as diethanolmethylamine, dimethylethanolamine, and triethanolamine, and further combined with an iodine salt such as diphenyleodonium chloride, and a dye such as methylene blue. And amines.
  • a near-infrared light-absorbing cationic dye may be used as the near-infrared light polymerization initiator.
  • the near-infrared light-absorbing cationic dye is excited by light energy in a region of 65 to 150 nm, for example, as described in JP-A-3-111402, JP-A-5-1904. It is preferable to use a near-infrared light-absorbing cationic dye-borate anion complex disclosed in, for example, US Pat. No. 6,191, and the like, and it is more preferable to use a boron-based sensitizer in combination.
  • the amount of the photopolymerization initiator to be added is not particularly limited since only a slight photofunctionalization of the system is required. However, the amount of the photopolymerization initiator is preferably 0.001-1 to 100 parts of the polymer of this composition. 0 parts by weight is preferred.
  • the method of polymerizing with an active energy ray is not particularly limited. Depending on the properties of the photopolymerization initiator, a high-pressure mercury lamp, a low-pressure mercury lamp, an electron beam irradiator, a halogen lamp, a light-emitting diode, a semiconductor laser, etc. Irradiation of rays is increased. (Polymerization by heat)
  • the macromonomer (I) of the present invention can be polymerized by heat. This method is not particularly limited, but is more suitable when a macromonomer (I) and a polymer (III) having a polymerizable carbon-carbon double bond at two or more terminals are polymerized to form a gel. I have.
  • thermal polymerization initiator When polymerizing by heat, it is preferable to contain a thermal polymerization initiator.
  • the thermal polymerization initiator used in the present invention is not particularly limited, and includes an azo initiator, a peroxide, a persulfate, and a redox initiator.
  • Suitable azo-based initiators include, but are not limited to, 2,2'-azobis (4-methoxy-1,2,4-dimethylvaleronitrile) (VAZO33), 2, 2'-azobis (2-amidinopropane) dihydrochloride (VAZO 50), 2, 2'-azobis (2,4-dimethylvaleronitrile) (VAZO 52), 2, 2'-azobis (isobutyronitrile) (VAZO 64 ), 2,2 'monoazobis-2-methylbutyronitrile (VAZO 67), 1, 1 -azobis (1-cyclohexanecarbonitrile) (VAZO 88) (all from DuPont t Chemica 1) Available), 2,2'-azobis (2-cyclopropylpropionitrile), and 2,2'-azobis (methylisobutyrate) (V-601) (available from Wako Pure Chemical Industries) .
  • VAZO33 2,2'-azobis (4-methoxy-1,2,4-d
  • Suitable peroxide initiators include, but are not limited to, benzoyl peroxide, acetyl peroxide, lauroyl peroxide, decanoyl peroxide, dicetyl benzoic dicarbonate, di (4-t-butylcyclohexane).
  • Hexyl) Peroxy dicarbonate (Perk ad ox 16 S) (available from Akzo Nove 1), di (2-ethylhexyl) peroxy dicarbonate, t-butyl butoxy vivalate ( Lu persol 11) (available from Elf A toch em), t-butyl peroxy-2-ethylhexanoate (Trig on ox 21-C50) (available from Akzo No be 1), and dicumyl peroxide And the like.
  • Suitable persulfate initiators include, but are not limited to, potassium persulfate, sodium persulfate, and ammonium persulfate.
  • Suitable redox (redox) initiators include, but are not limited to, combinations of the above persulfate initiators with reducing agents such as sodium metabisulfite and sodium bisulfite; Systems based on oxides and tertiary amines, such as systems based on benzoyl peroxide and dimethylaniline; and systems based on organic hydrobaroxides and transition metals, such as systems based on cumenehydrobaroxide and cobalt naphthate, etc. Is mentioned.
  • initiators include, but are not limited to, pinacols such as tetraphenyl 1,1,2,2-ethanediol.
  • Preferred thermal radical initiators are selected from the group consisting of azo initiators and peroxide initiators. More preferred are 2,2'-azobis (methylisobu Butylate), t-butyl peroxybivalate, and di (4-t-butylcyclohexyl) peroxydicarbonate, and mixtures thereof.
  • the thermal initiator used in the present invention is present in a catalytically effective amount, and such an amount is not limited, but typically includes the macromonomer (I) and the monomers and When the total amount of the oligomer mixture is 100 parts by weight, the amount is about 0.01 to 5 parts by weight, more preferably about 0.025 to 2 parts by weight. If a mixture of initiators is used, the total amount of the mixture of initiators is equal to the amount used if only one initiator is used.
  • the method of thermal polymerization is not particularly limited, and the temperature varies depending on the type of the thermal initiator, the macromonomer (I) used and the compound to be added. It is preferably within the range, more preferably within the range of 70 T: -200.
  • the polymerization time varies depending on the polymerization initiator, monomer, solvent, reaction temperature and the like used, but is usually in the range of 1 minute to 10 hours. (Gel)
  • a polyfunctional compound preferably a polymer (III) having a polymerizable carbon-carbon double bond at two or more terminals
  • a gel (Tachibana polymer).
  • the polymer (III) can be produced by the same production method as for the macromonomer (I).
  • a method of performing polymerization using a polyfunctional initiator and converting the functional group at the terminal can be used.
  • Polyfunctional monomers include neopentyl glycol polypropoxy diacrylate, trimethylolpropane polyethoxy triacrylate, bisphenol F polyethoxy diacrylate, bisphenol A polyethoxy diacrylate, Tall polyhexanolide hexacrylate, tris (hydroxysethyl) isocyanurate polyhexanolide triacrylate, tricyclodecane dimethylol diacrylate 2- (2-acryloyloxy-1,1-dimethyl) 1-5- Ethyl-5-acryloyloxymethyl-1,3-dioxane, tetrabromobisphenol A diethoxydiacrylate, 4,4-dimercapto Diphenylsulfide dimethacrylate, polytetraethylene glycol diacrylate, 1,9-nonanediol diacrylate, ditrimethylolpropane tetraacrylate and the like.
  • polyfunctional oligomers include epoxy phenolic resins such as bisphenol A type epoxy acrylate resin, phenol nopolak type epoxy acrylate resin, cresol nopolak type epoxy acrylate resin, and COOH group modification.
  • Epoxy acrylate resins polyols (polytetramethylene glycol, polyester diol of ethylene glycol and adipic acid, £ -force prolactone-modified polyester diol, polypropylene glycol, polyethylene glycol, polycarbonate diol, hydroxyl-terminated hydrogenated polyisoprene , Hydroxyl-terminated polybutylene, hydroxyl-terminated polyisobutylene, etc.) and organic isocyanates (tolylene diisocyanate, isophorone diisocyanate, diphenylmethane diisocyanate, etc.) Urethane resin obtained from samethylene diisocyanate, xylylene diisocyanate, etc.) is converted to hydroxyl-containing (
  • the branched polymer of the present invention can be used for applications equivalent to existing elastomers. Specifically, it is used for modifying resins and asphalt, used for compounding resin and block bodies (plasticizers, fillers, stabilizers may be added as necessary), and for preventing shrinkage of thermosetting resins It can be used as a base polymer for adhesives, adhesives and vibration damping materials. Specific application fields include automotive interior and exterior parts, electricity and the Kameso field, food packaging films and tubes, pharmaceuticals and medical containers, and sealable articles.
  • the branched polymer of the present invention is used as a resin having impact resistance by itself.
  • it when used in combination with various thermoplastic resins and thermosetting resins, it can be a bite resistance improving agent that can impart a high degree of impact resistance to these resins.
  • it can be used as a processability improver, a compatibilizer, an anti-glare agent, and a heat resistance improver.
  • thermoplastic resin capable of improving impact resistance by adding the branched polymer of the present invention examples include polymethyl methacrylate resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, and cyclic olefin copolymer resin. At least one vinyl monomer selected from the group consisting of: a polycarbonate resin, a polyester resin, a mixture of a polycarbonate resin and a polyester resin, an aromatic alkenyl compound, a vinyl cyanide compound and a (meth) acrylate ester.
  • pinyl monomers such as ethylene, propylene and vinyl acetate which can be copolymerized with these vinyl monomers and / or co-generators such as butadiene and isoprene.
  • polymethyl methacrylate resin, polyvinyl chloride resin, polypropylene resin, cyclic polyolefin resin, polycarbonate resin, polyester resin, and the like are preferable because they exhibit characteristics such as weather resistance and impact resistance.
  • a known method such as a Banbury mixer, a roll mill, or a twin-screw extruder is used to mechanically mix and shape into a pellet.
  • a known method such as a Banbury mixer, a roll mill, or a twin-screw extruder is used to mechanically mix and shape into a pellet.
  • the extruded and shaped pellets can be molded in a wide temperature range, and ordinary injection molding machines, professional molding machines, and extrusion molding machines are used for molding.
  • this resin composition may contain, if necessary, a crash resistance improving agent, a stabilizer, a plasticizer, a paint, a flame retardant, a pigment, a filler and the like.
  • a crash resistance improving agent such as a methyl methacrylate-tobutadiene-styrene copolymer (MBS resin), an acrylic graft copolymer, an acrylic-silicone composite rubber-based graft copolymer, etc .
  • Stabilizers such as fight; polyethylene wax, polypropylene Lubricants such as pyrene wax; Phosphate-based flame retardants such as trifenyl phosphate and tricresyl phosphate; brominated flame retardants such as decabromobiphenyl and decabose mobiphenyl ether; flame retardants such as antimony trioxide; Pigments such as titanium oxide, zinc sulphate, zinc oxide: fillers such as glass fiber, asbestos, wollastonite, mica,
  • the branched polymer of the present invention is useful as an additive, preferably a viscosity modifier (viscosity index improving additive) such as a lubricating oil, although not particularly limited.
  • a viscosity modifier viscosity index improving additive
  • the amount of the polymer of the present invention added to the lubricating oil is not particularly limited, but is preferably about 0.1 wt% to about 30 wt%, more preferably about 1 wt% to about 10 wt%.
  • Oils used include, but are not limited to, oils used for automobiles, aircraft, ships, railways, etc., for example, oils used for spark ignition, compression ignition, synthetic oils such as summer oil or winter oil, and mineral oils It may be.
  • Typical examples of lubricating oils preferably have a boiling point of about 300 to about 350.
  • the polymer of the present invention is added to a synthetic oil or a mineral oil in an amount of about 1 to 5 O wt%, preferably about 5 to 2 O wt%. It is preferable to use a concentrate containing
  • the branched polymer of the present invention can be made into an adhesive composition.
  • the pressure-sensitive adhesive composition of the present invention preferably contains a (meth) acrylic polymer as a main component, it is not always necessary to add a tackifier resin.
  • a tackifier resin can be used. Specific examples include phenol resin, modified phenol resin, cyclopentadiene-phenol resin, xylene resin, coumarone resin, petroleum resin, terpene resin, terpene phenol resin, rosin ester resin, and the like.
  • the pressure-sensitive adhesive composition of the present invention may be blended with various additives, for example, an antioxidant, a plasticizer, a physical property modifier, a solvent, and the like, in order to produce physical properties.
  • additives for example, an antioxidant, a plasticizer, a physical property modifier, a solvent, and the like, in order to produce physical properties.
  • the acrylic polymer is originally a polymer having excellent durability, an antioxidant is not necessarily required, but conventionally known antioxidants and ultraviolet absorbers can be appropriately used.
  • plasticizer examples include dibutyl phthalate, diheptyl phthalate, di (2-ethylhexyl) phthalate, and butylbenzyl for the purpose of adjusting physical properties and properties.
  • Phthalates such as phthalate; non-aromatic dibasic esters such as octyl adipate and octyl sebacate; esters of polyalkylene glycol such as diethylene glycol dibenzoate and triethylene glycol dibenzoate; Phosphate esters such as zyl phosphate and tributyl phosphate; paraffin chlorides; and hydrocarbon oils such as alkyl diphenyl and partially hydrogenated terphenyl can be used alone or as a mixture of two or more. It is not necessary.
  • These plasticizers can be added at the time of polymer production.
  • the solvent examples include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate, butyl acetate, amyl acetate, and cellosolve; ketones such as methyl ethyl ketone, methyl isobutyl ketone, and diisobutyl ketone. And the like. These solvents may be used during the production of the polymer.
  • various adhesion improvers may be added in order to improve the adhesion to various supports (plastic film, paper, etc.).
  • alkylalkoxy silanes such as methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane; dimethyldiisopropoxyoxysilane, methyltriisopropoxyoxysilane, fragrance
  • Alkyl isoproponoxysilanes such as sidoxypropylmethyldiisoproponoxysilane, aglycidoxypropylmethyldimethoxysilane, aglycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, vinyldimethylmethoxysilane, a 1-aminobutyral trimethoxysilane, N— (/ 3-aminoethyl) monoaminopropyl trimethoxy
  • the pressure-sensitive adhesive composition of the present invention can be widely applied to tapes, sheets, lapels, foils and the like.
  • plastics or denatured natural products such as film, paper, all kinds of cloth, gold foil, metallized plastic foil, asbestos or fiberglass cloth
  • the pressure-sensitive adhesive composition may be applied to a porous material in a solvent type, an emulsion type, a hot melt type, or the like, and cured by active energy rays or heat.
  • the polymer of the present invention can be used for sealing materials, paints, coating materials, sealing materials, adhesives, potting materials, casting materials, molding materials, and the like.
  • parts and % represent “parts by weight” and “% by weight”, respectively.
  • average number of terminal (meth) acryloyl groups is “number of (meth) acryloyl groups introduced per molecule of polymer” and is calculated from the number average molecular weight obtained by NMR analysis and GPC.
  • Production Example 1 Synthetic example of Br-terminated poly (butyl acrylate) (1)
  • a macromonomer [1 [(100 parts) was mixed well with diethoxyacetophenone (0.2 parts) as a photoradical generator to form a composition. After defoaming the composition under reduced pressure, it was poured into a glass mold and covered with a glass plate so that the surface did not come into contact with air. Radical polymerization was performed using a high-pressure mercury lamp (SHL-100UVQ-2; manufactured by Toshiba Lighting & Technology Corp.) at an irradiation distance of 20 cm for 5 minutes to obtain a polymer (number average molecular weight). 1 12000, generation of molecular weight distribution 1.28) was confirmed.
  • SHL-100UVQ-2 high-pressure mercury lamp
  • a macromonomer [1] (100 parts) was mixed well with jetoxysetofphenone (0.2 parts) as a photoradical generator and laurylmercaptan (1.0 parts) as a chain transfer agent to form a composition. After defoaming the composition under reduced pressure, it was poured into a glass mold and covered with a glass plate so that the surface did not come into contact with air. Radical polymerization was performed using a high-pressure mercury lamp (SHL-10 OUVQ-2; manufactured by Toshiba Lighting & Technology Corp.) at an irradiation distance of 20 cm for 5 minutes to perform radical polymerization. The formation of an average molecular weight of 17,500 and a molecular weight distribution of 1.38) was confirmed.
  • SHL-10 OUVQ-2 high-pressure mercury lamp
  • Example 4 the same operation was performed except that macromonomer 1 [2] (100 parts) was used instead of macromonomer [1] (100 parts), and a high molecular weight compound (number average molecular weight 30000, molecular weight distribution 1 The generation of 17) was confirmed.
  • Example 6 Synthesis of graft copolymer
  • Macromonomer [2] (5.0 g), methyl methacrylate (7.5 mL, 7 Ommo 1), 2,2-azobisisobutyronitrile (0.460 g, 2.8 mmo 1 ) And toluene (1 OmL) were charged, and nitrogen gas was blown in for 15 minutes to remove dissolved oxygen.
  • the graft copolymer was obtained by heating and stirring at 60 ° C for 4 hours.
  • the graft copolymer was purified by repeating reprecipitation in methanol.
  • the number average molecular weight of the graft copolymer was 3,600, and the molecular weight distribution was 1.71.
  • N-Butyl acrylate is polymerized using cuprous bromide as a catalyst, pentamethylmethylentriamine as a ligand, and getyl-2,5-dibromoadipate as an initiator.
  • the average number of terminal acryloyl groups in the telechelic oligomer [1] was 2.0 W 596
  • Macromonomer [1], telechelic oligomer [1], and jetioxyacetophenone were mixed well in the ratios shown in Table 1. After defoaming these compositions under reduced pressure, they were filled in a mold, and the surface was covered with a glass plate to prepare a sample. These samples were irradiated with light from a low-pressure mercury lamp (SHL-100 UVQ-2: manufactured by Toshiba Lighting & Technology Corporation) (irradiation conditions: irradiation time: 5 minutes, irradiation distance: 2 Ocm). A rubbery cured product having an adhesive property was obtained.
  • SHL-100 UVQ-2 manufactured by Toshiba Lighting & Technology Corporation
  • the geri rate C was measured. However, it can be obtained before extraction of fmm, mm, and by sat of 3 ⁇ 4 «3 ⁇ 43 ⁇ 4ih ⁇ . ⁇ 3 ⁇ 4 1 ⁇ 2 1 ⁇ 2 ⁇ ⁇ ⁇ ⁇ 1 ⁇ 2 ⁇ 1 ⁇ 2 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the resulting pressure-sensitive adhesive composition was applied to a 50 m thick corona-treated polyethylene terephthalate film (manufactured by Toray Industries, Inc.), and a high-pressure mercury lamp (SHL-100 UVQ-2) was applied in a nitrogen atmosphere. ; Toshiba Lighting & Technology Corp.) for 10 minutes to cure.
  • the obtained pressure-sensitive adhesive sheet was subjected to an inclined pole tack test in accordance with JISZ-0237, and the maximum pole number was 3. However, runway 1 0 O mm, measuring section 100 mm, inclination angle 20 degrees. Industrial applicability
  • a vinyl polymer macromonomer having a polymerizable group having a polymerizable carbon-carbon double bond, such as a (meth) acryloyl group, introduced at a high ratio at the terminal is used.
  • a graft copolymer, a star-shaped polymer, a gel, etc. having a vinyl-based polymer as a branch can be easily synthesized.
  • a macromonomer using living radical polymerization, especially atom transfer radical polymerization a polymer whose side chain molecular weight is well controlled can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明細書
枝分かれした重合体の製造方法及び重合体 技術分野
本発明は、 末端に重合性の炭素—炭素二重結合を有するビニル系重合体のマク 口モノマーを重合させる、 枝分かれした重合体の製造方法に関する。 背景技術
櫛形の構造を持つグラフト共重合体は、 ブロック共重合体とともに、 高分子材 料の分野で注目を集めてきた。 その理由は、 これらのポリマーは、 熱可塑性エラ ストマーゃ耐衝撃性プラスチックに見られるように構成セグメントとしての特性 を持つと共に、 ミクロ相分離構造に基づく独自の機能を発現できるからである。 グラフトポリマ一は古くからポリマーの改質に使われていたものの、 構造がよ く制御されたポリマーの合成に成功したのは最近のことである。 M i l k o v i c hらによって高分子量モノマーの概念が示され、 これを共重合することにより、 明確な櫛形の構造を持つポリマーが合成できるようになった。
一方、 星形重合体は、 中央部から放射線状に直線状の腕となる重合体が伸びて いるものであり、 直鎖の重合体とは異なる様々な性質を持つことが知られている。 星形重合体の合成法としては、 大きく分けて 2種類の方法が挙げられる。 1つ は、 中心となる化合物あるいは重合体から腕となる重合体を成長させる方法で、 もう一つは、 腕となる重合体をまずつくり, それを繫げて星形とする方法である。 腕を繋げる方法としては、 腕となる重合体の末端の官能基と反応する官能基を複 数持つ化合物を反応させる方法、 重合性基を複数持つ化合物を腕の重合後に添加 する方法、 末端に重合性基を有する重合体 (以下、 本明細書中、 「マクロモノマ ―」 という) を重合させる方法等が挙げられる。
このような星形重合体を構成する重合体としては, ホモポリマ一、 コポリマー ともにあり、 その種類としては、 ポリスチレン, ポリ (メタ) ァクリレート、 ポ リジェン、 ポリエーテル、 ポリエステル、 ポリシロキサン等様々なものがある。 制御された星形構造を得る場合、 どの方法で製造する場合でも、 重合が制御され ている必要があるため、 ァニオン重合、 リピングカチオン重合あるいは縮重号が 多く用いられる。
上に例示した、 イオン重合や縮重合で得られる重合体に対して、 ラジカル重合 で得られるビニル系の重合体で星形の構造を有するものは、 まだほとんど実用化 されていない。 中でも、 マクロモノマーを結合することにより、 鎖延長あるいは 星形構造を構築する方法は、 いまだ成功していない。 ビニル系重合体は一般に、 髙ぃ耐候性、 透明性等、 上記のポリエーテル系重合体や炭化水素系重合体、 ある いはポリエステル系重合体では得られない特性を有しており、 アルケニル基や架 橘性シリル基を側鎖に有するものは高耐候性の塗料等に利用されている。
このようにマクロモノマーを用いればグラフト重合体や星形重合体を得ること ができるが、 そのマクロモノマーを合成することは依然として容易ではない。 特 に、 一般にラジカル重合で重合されるビニル系重合体のマクロモノマーは、 その 重合の制御が困難なこともあり、 ほとんど合成されていない。 なかでも、 ァクリ ル系重合体の重合制御は、 その副反応のために容易でないため、 末端に重合性の 基を有するマクロモノマーの製造は困難である。
本発明は、 上記に鑑み、 ラジカル重合によって製造されるビニル系重合体のマ クロモノマーを用いて枝分かれした重合体を製造する方法を提供することを課題 とするものである。 発明の要約
本発明は、 ラジカル重合によって製造されたビニル系重合体であって、 重合性 の炭素一炭素二重結合を有する基を 1分子あたり 1個、 その分子末端に有するマ クロモノマー ( I ) を重合することによる、 枝分かれした重合体の製造方法に関 する。
重合性の炭素一炭素二重結合を有する基は、 好ましくは、 一般式 (1 ) : 一 O C (O) C ( R ) = C H 2 ( 1 )
(式中、 Rは水素、 または、 炭素数 1〜 2 0の 1価の有機基を表す。 ) で表される基であり、 更に好ましくは、 Rは、 水素、 または、 メチル基である。 マクロモノマー ( I ) の主鎖は、 限定はされないが、 好ましくは、 リビングラ ジカル重合, より好ましくは、 原子移動ラジカル重合により製造されたものであ る。 その原子移動ラジカル重合は、 好ましくは、 周期律表第 7族、 8族、 9族、 1 0族、 または 1 1族元素を中心金属とする遷移金厲錯体を触媒とするものであ り、 より好ましくは、 触媒とする金厲錯体が銅、 ニッケル、 ルテニウム、 及び鉄 からなる群から選択された金属の錯体であり、 中でも銅錯体を触媒とすることが 特に好ましい。
マクロモノマー ( I) の主鎖は、 限定はされないが、 好ましくは (メタ) ァク リル系重合体あるいはスチレン系重合体であり、 より好ましくは、 アクリル酸ェ ステル系重合体である。
マクロモノマー (I) としては、 限定はされないが、 好ましくは、 ビニル系重 合体の末端ハロゲン基を, ラジカル重合性の炭素一炭素二重結合を有する化合物 で置換することにより製造されたものであり、 より好ましくは、 一般式 (2) :
- CR'R'X (2)
(式中、 R1, R2は、 ビニル系モノマーのエチレン性不飽和基に結合した基。 X は、 塩素、 臭素、 又は、 ヨウ素を表す。 )
で表される末端ハロゲン基を有するビニル系重合体を、 一般式 (3) :
M +— OC (〇) C (R) =CH2 (3)
(式中, Rは水素, または、 炭素数 1 ~ 20の 1価の有機基を表す。 M +はアル カリ金属、 または 4級アンモニゥムイオンを表す。 )
で示される化合物で置換することにより製造されるものである。
また、 マクロモノマ一 (I) は、 末端に水酸基を有するビニル系重合体と, 一 般式 (4) :
XC (〇) C (R) =CH2 (4)
(式中、 Rは水素、 または、 炭素数 1〜20の 1価の有機基を表す。 Xは塩素、 臭素、 または水酸基を表す。 )
で示される化合物との反応を行う方法、 あるいは,
末端に水酸基を有するビニル系重合体に、 ジイソシァネート化合物を反応させ, 残存イソシァネート基と一般式 (5) :
HO-R' - OC (O) C (R) =CH2 (5) (式中、 Rは水素、 または、 炭素数 1〜20の 1価の有機基を表す。 R' は炭素 数 2 ~ 20の 2価の有機基を表す。 )
で示される化合物との反応を行う方法により製造されるものであっても構わない。 これらの中では、 上記の末端ハロゲン基を置換する方法により製造されるものが より好ましい。
マクロモノマー (I) の重合体の数平均分子量は、 限定はされないが、 300 0以上であることが好ましく、 ゲルパーミエーシヨンクロマトグラフィーで測定 したマクロモノマー ( I) の重量平均分子量 (Mw) と数平均分子量 (Mn) の 比 (Mw/Mn) の値は 1. 8未満であることが好ましい。
本発明のマクロモノマー ( I) を重合させる方法は、 限定はされないが、 好ま しくはラジカル重合であり、 より好ましくは、 リビングラジカル重合であり、 更 に好ましくは、 原子移動ラジカル重合である。 その原子移動ラジカル重合は、 好 ましくは、 周期律表第 7族, 8族、 9族、 10族、 または 1 1族元素を中心金属 とする遷移金厲錯体を触媒とするものであり、 より好ましくは, 触媒とする金属 錯体が銅、 ニッケル、 ルテニウム、 及び鉄からなる群から選択される金属の錯体 であり、 中でも銅錯体を触媒とすることが特に好ましい。
また、 マクロモノマ一 ( I) を重合させる方法としては、 活性エネルギー線に より重合を開始する重合や、 加熱により重合を開始する重合も好ましい。
マクロモノマー (I) を重合させる方法は、 ァニオン重合であっても構わない。 本発明のマクロモノマー ( I) を単独で重合させることにより星形重合体が得 られ,マクロモノマー (I) と、 マクロモノマー以外の共重合性モノマー (I I) とを共重合させることによりグラフト共重合体が得られ、 マクロモノマー (I) と重合性の炭素—炭素二重結合を有する基を 1分于あたり 2個以上有する多官能 化合物、 好ましくは、 該二重結合を分子末端に有する重合体 ( I I I) を共重合 させることにより架橘された重合体 (ゲル) が得られる。
本発明はまた本発明の方法により得ることのできる枝分かれした重合体でもあ る。
本発明の重合体の用途は限定されないが、 熱可塑性エラストマ一、 耐衝撃性改 良材、 粘着剤として利用される。 発明の詳細な開示
本発明は、 重合性の炭素一炭素二重結合を有する基を 1分子あたり 1個、 その 分子末端に有する、 ラジカル重合によって製造されたビエル系重合体であるマク 口モノマ一 ( I) を重合することによる、 枝分かれした重合体の製造方法である。 重合性の炭素一炭素二重結合を有する基は、 好ましくは, 上記一般式 (1) で 表される基である。
一般式 (1) において、 Rの具体例としては炭素数 1〜20の 1価の有機基で あれば特に限定されず、 例えば、 炭素数 1〜 20の置換又は無置換の炭化水素基、 エーテル基、 ァシル基、 炭素、 窒素を含む基、 炭素, 硫黄を含む基、 炭素、 酸素 を含む基などであってよく、 具体的には、 例えば、 一 H、 — CH3、 -CH2CH 3、 - (CH2) nCH3 (nは 2〜: L 9の整数を表す) 、 — C6H5、 —CH2〇H、 —CN等が举げられるが、 好ましくは一 H, — CH3である。 <マクロモノマー ( I ) の主鎖〉
本発明のマクロモノマー ( I) の主鎖を構成するモノマーとしては特に制約は なく、 各種のものを用いることができる。 例示するならば、 (メタ) アクリル酸、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸一 n—プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) アクリル酸一 n—ブ チル、 (メタ) アクリル酸イソブチル、 (メタ) アクリル酸一 t e r t—ブチル、 (メタ) アクリル酸一 n—ペンチル、 (メタ) アクリル酸一 n—へキシル、 (メ タ) アクリル酸シクロへキシル、 (メタ) アクリル酸一 II—ヘプチル、 (メタ) アクリル酸一 n—才クチル、 (メタ) アクリル酸一 2—ェチルへキシル、 (メ 夕) アクリル酸ノニル、 (メタ) アクリル酸デシル、 (メタ) アクリル酸ドデシ ル、 (メタ) アクリル酸フエニル、 (メタ) アクリル酸トルィル、 (メタ) ァク リル酸ベンジル、 (メタ〉 アクリル酸一 2—メトキシェチル、 (メタ) アクリル 酸— 3—メトキシブチル、 (メタ) アクリル酸一 2—ヒドロキシェチル、 (メ タ) アクリル酸一 2—ヒドロキシプロピル、 (メタ) アクリル酸ステアリル、 (メタ) アクリル酸グリシジル、 (メタ) アクリル酸 2—アミノエチル、 ァー (メタクリロイルォキシプロピル〉 トリメトキシシラン、 (メタ) アクリル酸の エチレンオキサイ ド付加物、 (メタ) アクリル酸トリフルォロメチルメチル、
(メタ) アクリル酸 2—トリフルォロメチルェチル、 (メタ) アクリル酸 2—パ 一フルォロェチルェチル、 (メタ) アクリル酸 2—パーフルォロェチルー 2—パ 一フルォロブチルェチル、 (メタ) アクリル酸 2—パーフルォロェチル、 (メ タ) アクリル酸パ一フルォロメチル、 (メタ) アクリル酸ジパーフルォロメチル メチル、 (メタ) アクリル酸 2—パーフルォロメチル— 2—パーフルォロェチル メチル、 (メタ) アクリル酸 2—パーフルォ口へキシルェチル、 (メタ) ァクリ ル酸 2—パーフルォロデシルェチル、 (メタ) アクリル酸 2 _パーフルォ口へキ サデシルェチル等の (メタ) アクリル酸系モノマ一;スチレン、 ビニルトルエン、 α—メチルスチレン、 クロルスチレン、 スチレンスルホン酸及びその塩等のスチ レン系モノマー;パーフルォロエチレン、 パ一フルォロプロピレン、 フッ化ビニ リデン等のフッ素含有ビニルモノマ一; ビニルトリメトキシシラン, ビニルトリ エトキシシラン等のケィ素含有ビニル系モノマー;無水マレイン酸、 マレイン酸、 マレイン酸のモノアルキルエステル及びジアルキルエステル; フマル酸、 フマル 酸のモノアルキルエステル及びジアルキルエステル;マレイミド、 メチルマレイ ミド、 ェチルマレイミド、 プロピルマレイミド、 ブチルマレイミド、 へキシルマ レイミド、 ォクチルマレイミ ド、 ドデシルマレイミド、 ステアリルマレイミド、 フエニルマレイミド、 シクロへキシルマレイミド等のマレイミド系モノマー;ァ クリロニトリル、 メタクリロニ卜リル等の二トリル基含有ビニル系モノマ一; ァ クリルアミド、 メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニ ル、 プロビオン酸ビニル、 ビバリン酸ビニル、 安息香酸ビエル、 桂皮酸ビニル等 のビニルエステル類:エチレン、 プロピレン等のアルケン類; ブタジエン、 イソ プレン等の共役ジェン類;塩化ビニル、 塩化ビニリデン、 塩化ァリル, ァリルァ ルコール等が挙げられる。 これらは、 単独で用いても良いし、 複数を共重合させ ても構わない。 なかでも、 生成物の物性等から、 スチレン系モノマー及び (メ 夕) アクリル酸系モノマーが好ましい。 より好ましくは、 アクリル酸エステルモ ノマー及びメタクリル酸エステルモノマ一であり、 更に好ましくは、 アクリル酸 ブチルである。 本発明においては、 これらの好ましいモノマーを他のモノマーと 共重合させても構わなく、 その隙は、 これらの好ましいモノマーが重量比で 4 0 %含まれていることが好ましい。
本発明のマクロモノマ一 ( I ) は、 分子量分布、 すなわち、 ゲルパーミエーシ ョンクロマトグラフィーで測定した重量平均分子量と数平均分子量の比が好まし くは 1 . 8未満であり、 さらに好ましくは 1 . 7以下であり、 より好ましくは 1 . 6以下であり、 特に好ましくは 1 . 5以下であり、 特別に好ましくは 1 . 4以下 であり、 最も好ましくは 1 . 3以下である。 本発明における G P C測定の際には、 通常は、 クロ口ホルム又はテトラヒドロフラン等を移動相として、 ポリスチレン ゲルカラム等を使用し、 分子量の値はポリスチレン換算値等で求めている。 分子 量分布が狭い方が、 マクロモノマーの粘度は低くなり、 また, 本発明の方法によ り製造される枝分かれした重合体の構造も、 よりょく制御されたものになる。
本発明のマクロモノマー ( I ) の数平均分子量は 5 0 0〜 1 0 0 0 0 0の範囲 が好ましく、 3 0 0 0〜 4 0 0 0 0がさらに好ましい。 分子量が 5 0 0以下であ ると、 ビニル系重合体の本来の特性が発現されにくく、 また、 1 0 0 0 0 0以上 であると、 ハンドリングが困難になる。 ぐマクロモノマー ( I ) の主鎖の重合 >
本発明のマクロモノマー ( I ) の主鎖であるビニル系重合体はラジカル重合に よって製造される。 ラジカル重合法は、 重合開始剤としてァゾ系化合物、 過酸化 物などを用いて、 特定の官能基を有するモノマーとビニル系モノマーとを単に共 重合させる 「一般的なラジカル重合法」 と末端などの制御された位置に特定の官 能基を導入することが可能な 「制御ラジカル重合法」 に分類できる。
「一般的なラジカル重合法」 は簡便な方法であるが、 この方法では特定の官能 基を有するモノマーは確率的にしか重合体中に導入されないので、 官能化率の高 い重合体を得ようとした場合には、 この特定の官能基を有するモノマーをかなり 大量に使う必要があり、 逆に少量使用ではこの特定の官能基が導入されない重合 体の割合が大きくなるという問題点がある。 またフリーラジカル重合であるため、 分子量分布が広く粘度の高い重合体しか得られないという問題点もある。
「制御ラジカル重合法」 は、 更に、 特定の官能基を有する連鎖移動剤を用いて 重合をおこなうことにより末端に特定の官能基を有するビニル系重合体が得られ る 「連鎖移動剤法」 と、 重合生長末端が停止反応などを起こさずに生長すること によりほぼ設計どおりの分子量の重合体が得られる 「リビングラジカル重合法 J とに分類することができる。
「連鎖移動剤法」 は、 官能化率の高い重合体を得ることが可能であるが、 開始剤 に対してかなり大量の特定の官能基を有する連鎖移動剤が必要であり、 処理も含 めて経済面で問題がある。 また上記の 「一般的なラジカル重合法」 と同様、 フリ 一ラジカル重合であるため分子量分布が広く、 粘度の高い重合体しか得られない という問題点もある。
これらの重合法とは異なり、 「リビングラジカル重合法」 は、 重合速度が高く、 ラジカル同士のカツプリングなどによる停止反応が起こりやすいため制御の難し いとされるラジカル重合でありながら、 一方では、 停止反応が起こりにくく、 分 子量分布の狭い (MwZMnが 1. 1〜1. 5程度) 重合体が得られるとともに、 モノマーと開始剤の仕込み比によって分子量を自由にコントロールすることがで きる。
従って 「リビングラジカル重合法」 は、 分子量分布が狭く、 粘度が低い重合体 を得ることができる上に、 特定の官能基を有するモノマーを重合体のほぼ任意の 位置に導入することができるため、 上記特定の官能基を有するビニル系重合体の 製造方法としてはより好ましいものである。
なお、 リビング重合とは狭義においては、 末端が常に活性を持ち続けて分子鎖 が生長していく重合のことをいうが、 一般には、 末端が不活性化されたものと活 性化されたものが平衡状態にありながら生長していく擬リビング重合も含まれる。 本発明における定義も後者である。
「リビングラジカル重合法」 は近年様々なグループで積極的に研究がなされて いる。 その例としては、 たとえばジャーナル ·ォブ ·アメリカン 'ケミカルソサ エティ一 ( J . Am. Chem. S o c. ) , 1994年、 1 16卷、 7943 頁に示されるようなコバルトポルフィリン錯体を用いるもの、 マクロモレキュー ルズ (Ma c r omo l e c u l e s) , 1994年、 27巻、 7228頁に示 されるようなニトロキシド化合物などのラジカル捕捉剤を用いるもの、 有機ハロ ゲン化物等を開始剤とし遷移金厲錯体を触媒とする 「原子移動ラジカル重合」 (A t om Tr an s f e r Rad i c a l P o l yme r i z a t i o n : ATRP) などがあげられる。
「リビングラジカル重合法」 の中でも, 有機ハロゲン化物あるいはハロゲン化 スルホニル化合物等を開始剤とし、 遷移金属錯体を触媒としてビニル系モノマー を重合する 「原子移動ラジカル重合法」 は、 上記の 「リビングラジカル重合法」 の特徴に加えて、 官能基変換反応にとって比較的有利なハロゲン等を末端に有し、 開始剤や触媒の設計の自由度が大きいことから、 特定の官能基を有するビニル系 重合体の製造方法としてはさらに好ましい。 この原子移動ラジカル重合法として は例えば Ma t y j a s z ews k iら、 ジャーナル ·ォブ · アメリカン ·ケミ カルソサエティ一 ( J . Am. Ch em. S o c. ) 1995年、 1 17巻、 5 614頁、 マクロモレキュールズ (Mac r omo l e c u i e s) 1995年、 28巻、 7901頁, サイエンス (S c i e n c e) 1996年、 272巻、 8 66頁、 WO 96/30421号公報, WO 97/18247号公報、 W〇 98 Z01480号公報, WO 98 40415号公報、 あるいは S awamo t o ら、 マクロモレキュ一ルズ (Ma c r omo l e c u l e s) 1995年、 28 巻、 1721頁、 特開平 9一 208616号公報、 特開平 8— 41 1 17号公報 などが挙げられる。
本発明において、 これらのうちどの方法を使用するかは特に制約はないが、 基 本的には制御ラジカル重合が利用され、 更に制御の容易さなどからリビングラジ カル重合が好ましく、 特に原子移動ラジカル重合法が好ましい。
まず、 制御ラジカル重合のうちの一つ、 連鎖移動剤を用いた重合について説明 する。 連鎖移動剤 (テロマ一) を用いたラジカル重合としては、 特に限定されな いが、 本発明に適した末端構造を有するビニル系重合体を得る方法としては, 次 の 2つの方法が例示される。
すなわち、 特開平 4一 132706号公報に示されているようなハロゲン化炭 化水素を連鎖移動剤として用いてハロゲン末端の重合体を得る方法と, 特開昭 6 1 - 271306号公報、 特許 2594402号公報、 特開昭 54 - 47782 号公報に示されているような水酸基含有メルカブタンあるいは水酸基含有ポリス 】0
ルフィ ド等を連鎖移動剤として用いて水酸基末端の重合体を得る方法とである。 次に、 リビングラジカル重合について説明する。
そのうち、 まず、 ニトロキシド化合物などのラジカル捕捉剤を用いる方法につ いて説明する。 この重合では、 一般に、 安定なニトロキシフリーラジカル (=N —〇 ·) をラジカルキヤッビング剤として用いる。 このような化合物類としては、 限定はされないが、 2, 2, 6, 6—置換 _ 1ーピペリジニルォキシラジカルや 2, 2, 5, 5—置換一 1—ピロリジニルォキシラジカル等、 環状ヒドロキシァ ミンからのニトロキシフリーラジカルが好ましい。 置換基としてはメチル基ゃェ チル基等の炭素数 4以下のアルキル基が適当である。 具体的な二トロキシフリー ラジカル化合物としては、 限定はされないが、 2. 2, 6, 6—テトラメチル— 1ーピペリジニルォキシラジカル (TEMPO) 、 2 , 2, 6, 6—テトラェチ ルー 1—ピペリジニルォキシラジカル、 2, 2, 6, 6—テトラメチルー 4一才 キソー 1—ピペリジニルォキシラジカル、 2, 2, 5, 5—テトラメチルー 1 _ ピロリジニルォキシラジカル、 1, 1, 3, 3—テトラメチルー 2—イソインド リニルォキシラジカル、 N, N—ジ— t—プチルァミンォキシラジカル等が挙げ られる。 二ト口キシフリ一ラジカルの代わりに, ガルピノキシル (g a 1 V i n o x y 1 ) フリーラジカル等の安定なフリーラジカルを用いても構わない。
上記ラジカルキヤッビング剤はラジカル発生剤と併用される。 ラジカルキヤッ ビング剤とラジカル発生剤との反応生成物が重合開始剤となって付加重合性モノ マ一の重合が進行すると考えられる。 両者の併用割合は特に限定されるものでは ないが、 ラジカルキヤッビング剤 1モルに対し、 ラジカル開始剤 0. 1〜 1 0モ ルが適当である。
ラジカル発生剤としては、 種々の化合物を使用することができるが、 重合温度 条件下でラジカルを発生しうるパーォキシドが好ましい。 このパーォキシドとし ては、 限定はされないが、 ベンゾィルパーォキシド、 ラウロイルパーォキシド等 のジァシルパ一ォキシド類、 ジクミルパーォキシド、 ジ— t一ブチルパーォキシ ド等のジアルキルパーォキシド類、 ジィソプロピルパーォキシジカーボネート、 ビス (4一 tーブチルシクロへキシル) パーォキシジカーボネート等のパ一ォキ シカーボネート類、 t一ブチルパーォキシォクトエート、 t一ブチルパーォキシ ベンゾエート等のアルキルパーエステル類等がある。 特にべンゾィルパ一ォキシ ドが好ましい。 さらに、 パーォキシドの代わりにァゾビスイソブチロニトリルの ようなラジカル発生性ァゾ化合物等のラジカル発生剤も使用しうる。
a c r omo l e c u l e s 1995, 28, 2993で報告されている ように、 ラジカルキヤッビング剤とラジカル発生剤を併用する代わりに、 下記の ようなアルコキシァミン化合物を開始剤として用いても構わない。
Figure imgf000013_0001
アルコキシァミン化合物を開始剤として用いる場合、 それが上記で示されてい るような水酸基等の官能基を有するものを用いると末端に水酸基などの官能基を 有する重合体が得られる。 これを本発明の方法に利用すると, 末端に官能基を有 する重合体が得られる。
上述の、 ニトロキシド化合物などのラジカル捕捉剤を用いる重合において、 用 いられるモノマ一、 溶媒、 重合温度等の重合条件は、 限定されないが、 次に説明 する原子移動ラジカル重合について用いるものと同様で構わない。
次に、 本発明のリビングラジカル重合としてより好ましい原子移動ラジカル重 合法について説明する。
この原子移動ラジカル重合では、 有機ハロゲン化物、 特に反応性の高い炭素— ハロゲン結合を有する有機ハロゲン化物 (例えば, α位に八ロゲンを有するカル ボニル化合物や、 ベンジル位にハロゲンを有する化合物) 、 あるいはハロゲン化 スルホニル化合物等が開始剤として用いられる。
具体的に例示するならば、 例えば、
C6H5— CH2X、 C6HS-C (H) (X) CH3、 C6H5— C (X) (CH3) (ただし、 上の各化学式中、 C6H5はフエニル基、 Xは塩素、 臭素、 またはヨウ 素)
R3 - C (H) (X) 一 C〇2R4、 R3-C (CH3) (X) 一 C02R4、 R3-
C (H) (X) — C (〇) R4、 R3— C (CH3) (X) — C (〇〉 R4
(各式中、 R3、 R4は水素原子または炭素数 1〜20のアルキル基、 炭素数 6〜
20のァリール基、 または炭素数 7〜20のァラルキル基、 Xは塩素、 臭素、 ま たはヨウ素)
R3-C6H4-SOzX
(R 3は水素原子または炭素数 1〜20のアルキル基、 炭素数 6〜 20のァリ一 ル基、 または炭素数?〜 20のァラルキル基、 Xは塩素、 臭素、 またはヨウ素) 等が挙げられる。
原子移動ラジカル重合の開始剤として、 重合を開始する官能基以外の官能基を 有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもできる。 このような場合、 主鎖の一方の末端に官能基を、 他方の末端に上記一般式 (2) で表される構造を有するビエル系重合体が製造される。 このような官能基として は、 アルケニル基、 架橋性シリル基、 ヒドロキシル基、 エポキシ基、 アミノ基、 アミド基等が挙げられる。
アルケニル基を有する有機ハロゲン化物としては限定されず、 例えば、 一般式 (6) に示す構造を有するものが例示される。
R6R7C (X) 一 R8 - R9 - C (R5) =CH2 (6)
(式中、 R5は水素、 またはメチル基、 R6、 R7は水素、 または、 炭素数 1〜2 0の 1価のアルキル基、 炭素数 6〜 20のァリール基、 または炭素数 7〜20の ァラルキル基、 または他端において相互に連結したもの、 R8は、 — C (O) 〇 - (エステル基) 、 — C (〇) - (ケト基) 、 または o— . m—, p—フエニレ ン基、 R9は直接結合、 または炭素数 1〜20の 2価の有機基で 1個以上のエー テル結合を含んでいても良い、 Xは塩素、 臭素, またはヨウ素)
置換基 R6、 R7の具体例としては特に限定されず、 例えば、 水素、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基, ブチル基、 ペンチル基、 へキシル 基等が挙げられる。 R 6と R 7は他端において連結して環状骨格を形成していても よい
一般式 (6) で示される、 アルケニル基を有する有機ハロゲン化物の具体例と しては、 例えば、
XCH2C (〇) O (CH2) nCH=CH2
H3C C (H) (X) C (〇) O (CH2) nCH=CH2,
(H3C) 2C (X) C (O) O (CH2) nCH=CH2
CH3CH2C (H) (X) C (O) 〇 (CH2) nCH = CH2
、C02(CHa)nCH-CH2
X
(上記の各式において, Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数) XCH2C (O) O (CHZ) nO (CH2) mCH = CH2,
H3CC (H) (X) C (O) O (CH2) n〇 (CH2) mCH = CH2
(H3C) 2C (X) C (〇) O (CH2) n〇 (CH2) mCH = CH2
CH3CH2C (H) (X) C (O) O (CH2) n〇 (CH2) mCH=CH2
Figure imgf000015_0001
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 1〜20の整数、 mは 0〜20の整数)
o, m, p -XCH2-C6H4- (CH2) n - CH = CH2
o, m, p - CH3C (H) (X) _C6H4— (CH2) n-CH=CH2, o, m, p - CH3CH2C (H) (X) 一 C6H4 - (CH2) n - CH = CH2、 (上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数) o, m, p-XCH2-C6H4- (CH2) n—〇— (CH2) m - CH=CH2, o, m, p-CH3C (H) (X) 一 CeH4— (CH2) n- O - (CH2) m— CH=CH2
o, m, p-CH3CH2C (H) (X) 一 C6H4 - (CH2) n -
O - (CH2) mCH=CH2,
(上記の各式において、 Xは ¾素、 臭素、 またはヨウ素、 nは 1〜20の整数, mは 0〜20の整数)
o, m, p-XCH2-C6H4-O- (CH2) π - CH = CH2
o, m, p-CH3C (H) (X) — C6H4— O - (CH2) n— CH=CH2、 o, m, p— CH3CH2C (H) (X) — C6H4_〇— (CH2) n -
CH=CH2,
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 0〜20の整数) o, m, p— XCH2— C6H4 -〇一 (CH2) n— O— (CH2) m-CH=CH
2 '
o, m, p -CH3C (H) (X) -C6H4-0- (CH2) n -
O- (CH2) m - CH=CH2、 o, m, p-CH3CH2C (H) (X) 一 C6H4—〇一 (CH2) n
O— (CHZ) m - CH=CH2, (上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 nは 1〜20の整数, mは 0〜 20の整数)
アルケニル基を有する有機ハロゲン化物としてはさらに一般式 (7) で示され る化合物が挙げられる。
H2C = C (R5) -R9-C (R6) (X) -R10-R7 (7)
(式中、 R5、 R6、 R7、 R9、 Xは上記に同じ、 R1。は、 直接結合、 一 C (〇) 0- (エステル基) 、 —C (〇) ― (ケト基) 、 または、 o—, m—, p—フエ 二レン基を表す)
R 8は直接結合、 または炭素数 1〜20の 2価の有機基 (1個以上のエーテル 結合を含んでいても良い) であるが、 直接結合である場合は、 ハロゲンの結合し ている炭素にビニル基が結合しており、 ハロゲン化ァリル化物である。 この場合 は、 隣接ビニル基によって炭素—ハロゲン結合が活性化されているので、 R1Qと して C (〇) 0基やフエ二レン基等を有する必要は必ずしもなく、 直接結合であ つてもよい。 R3が直接結合でない場合は、 炭素一ハロゲン結合を活性化するた めに、 R10としては C (O) O基、 C (O) 基、 フエ二レン基が好ましい。
一般式 (7) の化合物を具体的に例示するならば、
CH2 = CHCH2X、 CH2 = C (CH3) CH2X、
CH2 = CHC (H) (X) CH3, CH2 = C (CH3) C (H) (X) CH3、 CH2 = CHC (X) (CH3) 2、 CH2 = CHC (H) (X) C2H5
CH2 = CHC (H) (X) CH (CH3) 2
CH2 = CHC (H) (X) C6H5, CH2 = CHC (H) (X) CH2C6HS
CH2 = CHCH2C (H) (X) — C〇2R、
CH2 = CH (CH2) 2C (H) (X) 一 C〇2R、
CH2 = CH (CH2) 3C (H) (X) 一 C〇2R、
CH2 = CH (CH2) 8C (H) (X) 一 C〇2R、
CH2=CHCH2C (H) (X) — C6H5
CH2 = CH (CH2) 2C (H) (X) — C6H5
CH2 = CH (CH2) 3C (H) (X) 一 C6HS
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは炭素数 1~20の アルキル基、 ァリール基、 ァラルキル基)
等を挙げることができる。
アルケニル基を有するハ口ゲン化スルホニル化合物の具体例を挙げるならば、 o -, m— , p -CH2 = CH- (CH2) n-C6H4-S02X,
o—, m -, p -CH2 = CH- (CH2) n - O— C β H4— S〇 2 X、
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素, nは 0〜20の整数) 等である。
上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず, 例え ば一般式 (8) に示す構造を有するものが例示される。
R6R7C (X) — R8 - R9 - C (H) (R5) CH2-
[S i (R11) 2— b (Y) b〇] m-S i (R12) 3 - a (Y) a (8)
(式中、 R5、 R6, R7、 R8、 R9、 Xは上記に同じ、 R11, R12は、 いずれも 炭素数 1~20のアルキル基、 炭素数 6〜 20のァリール基、 または炭素数 7〜 20のァラルキル基、 または (R' ) 3S i〇— (R* は炭素数 1〜20の 1価の 炭化水素基であって、 3個の R' は同一であってもよく、 異なっていてもよい) で示されるトリオルガノシロキシ基を示し、 R11または R12が 2個以上存在する とき、 それらは同一であってもよく、 異なっていてもよい。 Yは水酸基または加 水分解性基を示し、 Yが 2個以上存在するときそれらは同一であってもよく, 異 なっていてもよい。 aは 0, 1, 2, または 3を、 また、 bは 0, 1, または 2 を示す。 mは 0〜 1 9の整数である。 ただし、 a+mb 1であることを満足す るものとする)
—般式 (8) の化合物を具体的に例示するならば,
XCH2C (O) 〇 (CH2) nS i (OCH3) 3
CH3C (H) (X) C (〇〉 〇 (CH2) nS i (〇CH3) 3
(CH3) ZC (X) C (〇) O (CH2) nS i (OCH3) 3
XCH2C (〇) O (CH2) nS i (CH3) (OCH3) 2
CH3C (H) (X) C (O) 〇 (CH2) nS i (CH3) (〇CH3) 2
(CH3) 2C (X) C (〇) O (CH2) nS i (CH3) (OCH3) 2
(上記の各式において、 Xは塩素、 臭素、 ヨウ素、 nは 0〜20の整数、 )
XCH2C (〇) 〇 (CH2) nO (CH2) mS i (〇CH3) 3
H3CC (H) (X) C (O) 〇 (CH2) nO (CH2) mS i (OCH3) 3、 (H3C) 2C (X) C (O) 〇 (CH2) n〇 (CH2) mS i (〇CH3) 3, CH3CH2C (H) (X) C (O) 〇 (CH2) n〇 (CH2) mS i (OCH3)
3、
XCH2C (O) O (CH2) nO (CH2) mS 1 (CH3) (OCH3) 2
H3CC (H) (X) C (O) O (CH2) nO (CH2) m -
S i (CH3) (OCH3) 2
(H3C) 2C (X) C (〇) O (CH2) n〇 (CH2) m
S i (CH3) (OCH3) 2
CH3CHZC (H) (X) C (O) O (CH2) nO (CH2) m -
S i (CH3) (OCH3) 2
(上記の各式において, Xは塩素、 臭素, ヨウ素、 nは 1〜20の整数、 mは 0 〜 20の整数)
o, m, p -XCH2-CaH4- (CH2) 2S i (OCH3) 3
o, m, p -CH3C (H) (X) 一 C6H4 - (CH2) 2 S i (OCH3) 3、 o, m, p— CH3CH2C (H) (X) 一 C6H4— (CH2) 2S i (OCH3) 3
o, m, p-XCH2-C6H4- (CH2) 3S i (OCH3) 3
o, m, p-CH3C (H) (X) — C6H4 - (CH2) 3S i (〇CH3) 3、 o, m, p— CH3CH2C (H) (X) — C6H4— (CH2) 3S i (OCH3)
3 '
o, m, p-XCH2-C6H4 - (CH2) 2—〇一 (CH2) 3S i (〇CH3) 3, o, m, p-CH3C (H) (X) - C6H4- (CH2) 2 -
O— (CH2) 3 S i (OCH3) 3,
0, m, p -CH3CH2C (H) (X) 一 C6H4— (CH2) 2 -
〇— (CH2) 3S i (OCH3) 3、 0, m. p-XCH2-C6H4-0- (CH2) 3S i (OCH3) 3
o, m, p-CH3C (H) (X) — C6H4 -〇一 (CH2) 3S i (OCH3) 3、 o, m, p -CH3CH2C (H) (X) —C6H4— O— (CH2) 3 -
S i (OCH3) 3
o, m, p -XCH2-C6H4-0- (CH2) 2_〇一 (CH2) 3 -
Figure imgf000019_0001
0, m, p -CH3C (H) (X) 一 C6H4—〇一 (CH2) 2
O - (CH2) 3S i (OCH3) 3、 0, m, p-CH3CH2C (H) (X) —C6H4 - O - (CH2) 2
O- (CH2) 3S i (OCH3) 3、 (上記の各式において、 Xは塩素、 臭素、 またはヨウ素)
等が挙げられる。
上記架橘性シリル基を有する有機ハロゲン化物としてはさらに、 一般式 (9) で示される構造を有するものが例示される。
(R12) 3 - a (Y) aS i - [OS i (R11) 2_b (Y) J m— CH2-C (H) (R5) -R9-C (R6) (X) — R10 - R7 (9) (式中, R5、 R6、 R7、 R R10, R 11, R12、 a、 b, m, X、 Yは上記 に同じ)
このような化合物を具体的に例示するならば、
(CH3〇) 3S i CH2CH2C (H) (X) C6H5
(CH3〇) 2 (CH3) S i CH2CH2 C (H) (X) C6H5
(CH3〇) 3S i (CH2) 2C (H) (X) 一 C〇2R、
(CH3〇) 2 (CH3) S i (CH2) 2C (H) (X) — C〇2R、
(CH30) 3 S i (CH2) 3C (H) (X) — C〇2R、
(CH30) 2 (CH3) S i (CH2) 3C (H) (X) — C02R、
(CH3O) 3S i (CH2) 4C (H) (X) 一 C〇2R、
(CH3O) 2 (CH3) S i (CH2) 4C (H) (X) 一 C〇2R、
(CH3O) 3S i (CH2) 9C (H) (X) — C02R、
(CH3O) 2 (CH3) S i (CH2) 9C (H) (X) 一 C〇2R、
(CH3O) 3S i (CH2) 3C (H) (X) — C5H5
(CH3O) 2 (CH3) S i (CH2) 3C (H) (X) — C6H5
(CH3O) 3S i (CH2) 4C (H) (X) — C6HS
(CH3〇) 2 (CH3) S i (CH2) 4C (H) (X) — CfiH5
(上記の各式において、 Xは塩素、 臭素、 またはヨウ素、 Rは炭素数 1〜 2 0の アルキル基、 炭素数 6〜 2 0のァリール基、 または炭素数 7〜 2 0のァラルキル 基)
等が挙げられる。
上記ヒドロキシル基を持つ有機ハロゲン化物、 またはハロゲン化スルホニル化 合物としては特に限定されず、 下記のようなものが例示される。
HO- (CH2) π - OC (O) C (H) (R) (X)
(式中、 Xは塩素、 臭素、 またはヨウ素、 Rは水素原子または炭素数 1〜2 0の アルキル基、 炭素数 6~20のァリール基、 または炭素数?〜 2 0のァラルキル 基、 ηは:!〜 2 0の整数)
上記ァミノ基を持つ有機ハ口ゲン化物、 またはハ口ゲン化スルホニル化合物と しては特に限定されず、 下記のようなものが例示される。
H 2 N— ( C H 2) n - O C (O) C (H) ( R) (X)
(式中、 Xは塩素、 臭素、 またはヨウ素、 Rは水素原子または炭素数 1〜2 0 のアルキル基、 炭素数 6〜2 0のァリール基、 または炭素数?〜 2 0のァラルキ ル基、 nは 1 ~ 2 0の整数)
上記エポキシ基を持つ有機ハロゲン化物、 またはハロゲン化スルホニル化合物 としては特に限定されず、 下記のようなものが例示される。
Figure imgf000021_0001
(式中, Xは塩素、 臭素、 またはヨウ素、 Rは水素原子または炭素数 1〜 2 0の アルキル基、 炭素数 6〜2 0のァリール基、 または炭素数 7〜2 0のァラルキル 基、 nは 1〜 2 0の整数)
本発明のマクロモノマーは重合性の炭素一炭素結合を 1つの末端に有するもの であるので、 通常は上述のような片末端の開始剤を使用することが好ましいが、 原子移動ラジカル重合の開始剤としては、 2つ以上の開始点を持つ有機ハロゲン 化物、 またはハロゲン化スルホニル化合物を用いることもある。 このような開始 剤は、 本発明のマクロモノマ一とともに重合させて、 架橋された重合体 (ゲル) を得ることのできる、 2つ以上の末端に重合性の炭素一炭素二重結合を有する重 合体を製造する場合に適している。 具体的に例示するならば、
o,m,p c-. H X一 CH2— CeH4— CH2一 X
(i-1) o,m,p- c. H
3
(i-4) i一 3
Figure imgf000022_0001
X一 C (CH2)n— C X (i-7)
COR COR
X一 CH2-C-CH2— X
II (i-8) 0
Figure imgf000022_0002
(i-10)
X— CH— (CH2)n— CH— X
CHg CH3
X一 C C一 C一 X (i-11 )
I II 1
CH3 0 CH3
Figure imgf000023_0001
Ci"12)
CH3 0 0 CHa
— CH—C— 0— (CH2)n-0— C— CH― X Ci-13)
Figure imgf000023_0002
o,m,p- X一 SOg— CeH— S02一 X (i-21) 上記各式中、 Xは八ロゲン原子を表す。
この重合において用いられるビニル系モノマーとしては特に制約はなく、 既に 例示したものをすベて好適に用いることができる。
重合触媒として用いられる遷移金属錯体としては特に限定されないが、 好まし くは周期律表第 7族、 8族、 9族、 10族、 または 1 1族元素を中心金厲とする 金厲錯体である。 更に好ましいものとして、 0価の銅、 1価の銅、 2価のルテニ ゥム、 2価の鉄又は 2価のニッケルの錯体が挙げられる。 なかでも、 銅の錯体が 好ましい。 1価の銅化合物を具体的に例示するならば、 塩化第一銅、 臭化第一銅、 ヨウ化第一銅、 シアン化第一銅、 酸化第一銅、 過塩素酸第一銅等である。 銅化合 物を用いる場合、 触媒活性を高めるために 2, 2' 一ビビリジル及びその誘導体、 1, 10—フエナント口リン及びその誘導体、 テトラメチルエチレンジァミン、 ペンタメチルジェチレントリアミン, へキサメチルトリス (2—アミノエチル) ァミン等のポリアミン等の配位子が添加される。 また、 2価の塩化ルテニウムの トリストリフエニルホスフィン錯体 (RuC l 2 (PPh3) 3) も触媒として好 適である。 ルテニウム化合物を触媒として用いる場合は、 活性化剤としてアルミ ニゥムアルコキシド類が添加される。 更に、 2価の鉄のビストリフエニルホスフ イン錯体 (F e C l 2 (PPh3) 2) 、 2価のニッケルのビストリフエニルホス フィン錯体 (N i C 12 (PPh3) 2) 、 及び、 2価のニッケルのビストリプチ ルホスフィン錯体 (N i B r 2 (PBu3) 2) も, 触媒として好適である。
重合は無溶剤または各種の溶剤中で行うことができる。 溶剤の種類としては、 ベンゼン、 トルエン等の炭化水素系溶媒、 ジェチルエーテル、 テトラヒドロフラ ン等のエーテル系溶媒、 塩化メチレン、 クロ口ホルム等のハロゲン化炭化水素系 溶媒、 アセトン、 メチルェチルケトン、 メチルイソブチルケトン等のケトン系溶 媒、 メタノール、 エタノール、 プロパノール、 イソプロパノール、 n—ブチルァ ルコール、 t e r t—ブチルアルコール等のアルコール系溶媒、 ァセトニトリル、 プロピオ二トリル、 ベンゾニトリル等の二トリル系溶媒、 酢酸ェチル、 酢酸プチ ル等のエステル系溶媒、 エチレンカーボネート、 プロピレンカーボネート等の力 —ボネート系溶媒等が挙げられ、 単独または 2種以上を混合して用いることがで きる。 また、 重合は室温〜 200での範囲で行うことができ、 好ましくは 50〜 150 である。 ぐ官能基導入法 >
以下に、 本発明におけるマクロモノマ一 ( I) への重合体の末端官能基の導入 について説明する。
本発明の重合体の末端に一般式 (1) で示される基を導入する方法としては、 限定はされないが、 以下のような方法が挙げられる。
①ビニル系重合体の末端ハロゲン基を、 ラジカル重合性の炭素一炭素二重結合を 有する化合物で置換することにより製造する方法。 具体例としては、 上記一般式
(2) で表される末端構造を有するビニル系重合体と、 上記一般式 (3) で示さ れる化合物との反応による方法。
②末端に水酸基を有するビニル系重合体と、 上記一般式 (4) で示される化合物 との反応による方法。
③末端に水酸基を有するビニル系重合体に、 ジイソシァネート化合物を反応させ、 残存イソシァネート基と上記一般式 (5) で示される化合物との反応による方法。 以下にこれらの各方法について詳細に説明する。 ぐ官能基導入法 ( >
上記①の方法について説明する。
一般式 (2) で表される末端構造を有するビニル系重合体は、 上述した有機八 ロゲン化物、 またはハロゲン化スルホニル化合物を開始剤として、 遷移金厲錯体 を触媒としてビニル系モノマーを重合する方法、 あるいは、 ハロゲン化合物を連 鎖移動剤としてビニル系モノマーを重合する方法により製造されるが、 好ましく は前者である。
一般式 (3) で表される化合物としては特に限定されないが、 Rの具体例とし ては炭素数 1〜20の 1価の有機基であれば特に限定されず、 例えば, 炭素数 1 ~20の置換又は無置換の炭化水素基、 エーテル基、 ァシル基, 炭素、 窒素を含 む基、 炭素、 硫黄を含む基、 炭素、 酸素を含む基などであってよく、 具体的には、 例えば、 一 H、 一 CH3、 — CH2CH3、 ― (CH2) nCH3 (nは 2~19の整 数を表す) 、 — C6H5、 — CH2OH、 — CN、
等が挙げられ、 好ましくは— H、 一 CH3である。 M+はォキシァニオンの対カチ オンであり、 M +の種類としてはアルカリ金属イオン、 具体的には、 例えば、 リ チウムイオン、 ナトリウムイオン、 カリウムイオン、 および 4級アンモニゥムィ オンが挙げられる。 4級アンモニゥムイオンとしてはテトラメチルアンモニゥム イオン、 テトラエチルアンモニゥムイオン、 テトラべンジルアンモニゥムイオン, トリメチルドデシルアンモニゥムイオン、 テトラプチルアンモニゥムイオンおよ びジメチルピペリジニゥムイオン等が挙げられ、 好ましくはナトリゥムイオン、 カリウムイオンである。 一般式 (3) のォキシァニオンの使用量は、 一般式 (2) のハロゲン末端に対して、 好ましくは 1〜5当量、 更に好ましくは 1. 0 〜1. 2当量である。
この反応を実施する溶媒としては特に限定はされないが、 求核置換反応である ため極性溶媒が好ましく、 例えば、 テトラヒドロフラン、 ジォキサン、 ジェチル エーテル、 アセトン、 ジメチルスルホキシド、 ジメチルホルムアミド、 ジメチル ァセトアミド、 へキサメチルホスホリックトリアミド、 ァセトニトリル, 等が用 いられる。 反応を行う温度は限定されないが、 一般に 0~ 1 50でで、 重合性の 末端基を保持するために好ましくは室温〜 100 で行う。 く末端官能基の導入②〉
上記②の方法について説明する。
上記一般式 (4) で表される化合物としては特に限定されないが、 Rの具体例 としては炭素数 1〜20の 1価の有機基であれば特に限定されず、 例えば、 炭素 数 1〜20の置換又は無置換の炭化水素基、 エーテル基、 ァシル基、 炭素、 窒素 を含む基、 炭素、 硫黄を含む基、 炭素、 酸素を含む基などであってよく、 具体的 には、 例えば、 例えば、 一 H, — CH3、 一 CH2CH3、 - (CH2) nCH3 (n は 2〜19の整数を表す) 、 — C6H5、 一 CH2〇H, -CN,
等が挙げられ、 好ましくは— H、 一 CH3である。
末端に水酸基を有するビニル系重合体は、 上述した有機ハロゲン化物、 または ハロゲン化スルホニル化合物を開始剤とし、 遷移金属錯体を触媒としてビニル系 モノマーを重合する方法、 あるいは、 水酸基を持つ化合物を連鎖移動剤としてビ ニル系モノマーを重合する方法により製造されるが、 好ましくは前者である。 こ れらの方法により末端に水酸基を有するビニル系重合体を製造する方法は限定さ れないが、 以下のような方法が例示される。 (a) リビングラジカル重合によりビニル系重合体を合成する際に、 下記一般 式 (10) 等で表される、 一分子中に重合性のアルケニル基および水酸基を併せ 持つ化合物を第 2のモノマーとして反応させる方法。
HZC = C (R13) — R14— R1 S - OH (10)
(式中、 R13は炭素数 1〜20の 1価の有機基で水素またはメチル基が好ましく、 R14は— C (O) 〇一 (エステル基) 、 または o—, m—もしくは p—フエニレ ン基を表す。 R 15は直接結合、 または 1個以上のエーテル結合を有していてもよ い炭素数 1~20の 2価の有機基を表す。 R14がエステル基のものは (メタ) ァ クリレート系化合物、 R 14がフエ二レン基のものはスチレン系の化合物であ る。 )
なお、 一分子中に重合性のアルケニル基および水酸基を併せ持つ化合物を反応 させる時期に制限はないが、 特にゴム的な性質を期待する場合には重合反応の終 期あるいは所定のモノマーの反応終了後に、 第 2のモノマ一として反応させるの が好ましい。
(b) リビングラジカル重合によりビニル系重合体を合成する際に、 重合反応 の終期あるいは所定のモノマーの反応終了後に、 第 2のモノマーとして、 一分子 中に重合性の低いアルケニル基および水酸基を有する化合物を反応させる方法。 このような化合物としては特に限定されないが、 一般式 (1 1) に示される化 合物等が举げられる。
H2C = C (R13) —R16— OH (1 1)
(式中、 R13は上述したものと同様である。 R16は 1個以上のエーテル結合を含 んでいてもよい炭素数 1〜20の 2価の有機基を表す。 )
上記一般式 (1 1) に示される化合物としては特に限定されないが、 入手が容 易であることから、 1 0—ゥンデセノール、 5—へキセノール、 ァリルアルコー ルのようなアルケニルアルコールが好ましい。
(c) 特開平 4一 132706号公報などに開示される方法で、 原子移動ラジカ ル重合により得られる上記一般式 (2) で表される炭素一ハロゲン結合を少なく とも 1個に有するビニル系重合体のハロゲンを、 加水分解あるいは水酸基含有化 合物と反応させることにより、 末端に水酸基を導入する方法。 (d) 原子移動ラジカル重合により得られる上記一般式 (2) で表される炭素一 ハロゲン結合を少なくとも 1個有するビニル系重合体に、 一般式 (12) に示さ れる水酸基を有する安定化カルバニオンを反応させてハロゲンを置換する方法。
M+C- (R17) (R18) — R16— OH (12)
(式中、 R16は上述したものと同様である。 R17および R 18はともにカルバニォ ン C—を安定化する電子吸引基, または一方が上記電子吸引基で他方が水素また は炭素数 1〜10のアルキル基もしくはフエ二ル基を表す。 R 17および R 18の電 子吸引基としては、 例えば、 一 C〇2R (エステル基) 、 — C (◦) R (ケト 基) 、 —CON (R2) (アミド基) 、 一 COSR (チォエステル基) 、 一 CN (二トリル基) 、 — N〇2 (ニトロ基) 等が挙げられる。 置換基 Rは炭素数 1〜 20のアルキル基、 炭素数 6〜 20のァリール基または炭素数 7〜 20のァラル キル基であり、 好ましくは炭素数 1〜10のアルキル基もしくはフエニル基であ る。 R17および R18としては、 一 C02R、 一 C (〇) Rおよび— CNが特に好 ましい。 )
(e) 原子移動ラジカル重合により得られる、 上記一般式 (2〉 で表される炭 素—ハロゲン結合を少なくとも 1個有するビニル系重合体に、 例えば亜鉛のよう な金属単体あるいは有機金属化合物を作用させてエノレートァニオンを調製し、 しかる後にアルデヒド類、 又はケトン類を反応させる方法。
( f ) 重合体末端のハロゲン、 好ましくは上記一般式 (2) で表されるハロゲ ンを少なくとも 1個有するビニル系重合体に、 下記一般式 (13) で表される水 酸基含有ォキシァニオン又は下記一般式 (14〉 で表される水酸基含有カルボキ シレートァニオン等を反応させて、 上記ハロゲンを水酸基含有置換基に置換する 方法。
HO - R16 - 0- M+ ( 13)
(式中、 R16および M +は上述したものと同様である。 )
HO— R16 - C (〇) 0-M+ (14)
(式中、 R16および M+は上述したものと同様である。 )
本発明では (a) ~ (b) のような、 水酸基を導入する方法にハロゲンが直接 関与しない場合、 制御がより容易である点から (b) の方法がさらに好ましい。 また (c ) 〜 ( f ) のような, 炭素一ハロゲン結合を少なくとも 1個有するビ ニル系重合体のハロゲンを変換することにより水酸基を導入する場合は, 制御が より容易である点から (f〉 の方法がさらに好ましい。 <末端官能基の導入③〉
上記③の方法について説明する。
上記一般式 (5) で表される化合物としては特に限定されないが、 Rの具体例 としては炭素数 1〜20の 1価の有機基であれば特に限定されず、 例えば、 炭素 数 1〜20の置換又は無置換の炭化水素基、 エーテル基、 ァシル基、 炭素、 窒素 を含む基、 炭素、 硫黄を含む基、 炭素、 酸素を含む基などであってよく、 具体的 には、 例えば、 — H、 — CH3、 一 CH2CH3、 - (CH2) nCH3 (nは 2〜1 9の整数を表す) , — C6H5、 一 CH2〇H、 — CN、
等が挙げられ、 好ましくは—H:、 一 CH3である。 具体的な化合物としては、 メ タクリル酸 2—ヒドロキシプロピルが挙げられる。
末端に水酸基を有するビニル系重合体は、 上述のものを使用することができる。 ジイソシァネート化合物としては、 特に限定されず、 従来公知のものをいずれ も使用することができ, 例えば、 トルィレンジイソシァネート、 4, 4' —ジフ ェニルメタンジイソシァネート、 へキサメチルジイソシァネート、 キシリレンジ イソシァネート、 メタキシリレンジイソシァネート、 1, 5—ナフタレンジイソ シァネート, 水素化ジフエニルメタンジイソシァネート、 水素化トルイレンジィ ソシァネート、 水素化キシリレンジイソシァネート、 イソホロンジイソシァネー ト等のイソシァネート化合物;等を挙げることができる。 これらは、 単独で使用 しうるほか、 2種以上を併用することもできる。 またブロックイソシァネートを 使用しても構わない。
よりすぐれた耐候性を生かすためには、 例えば、 へキサメチレンジイソシァネ ート、 水素化ジフエニルメタンジィソシァネ一ト等の芳香環を有しないジィソシ ァネート化合物を用いるのが好ましい。 ぐ本発明の重合体の重合法〉 本発明のマクロモノマ一 ( I) を重合させる方法は、 限定はされないが、 好ま しくはラジカル重合であり、 より好ましくは、 リビングラジカル重合であり、 更 に好ましくは、 原子移動ラジカル重合である。 原子移動ラジカル重合は、 好まし くは、 周期律表第 7族、 8族、 9族、 10族、 または 1 1族元素を中心金属とす る遷移金厲錯体を触媒とするものであり、 より好ましくは、 触媒とする金厲錯体 が銅、 ニッケル、 ルテニウム、 又は鉄からなる群より選ばれる金属の錯体であり、 中でも銅錯体を触媒とすることが特に好ましい。
また, マクロモノマー ( 1〉 を重合させる方法が、 活性エネルギー線により重 合を開始する重合や、 加熱により重合を開始する重合も好ましい。
マクロモノマー (I) を重合させる方法は, ァニオン重合であっても構わない。 本発明のマクロモノマー ( I) を単独で重合させることにより星形重合体が得 られ,マクロモノマー (I) と、 マクロモノマー以外の共重合性モノマ一 (I I) を共重合させることによりグラフト共重合体が得られ、 マクロモノマー ( I ) と 重合性の炭素一炭素二重結合を有する基を 1分子あたり 2個以上有する多官能化 合物、 好ましくは該二重結合を分子末端に有する重合体 ( I I I) を共重合させ ることによりゲルが得られる。
以下にマクロモノマー ( I) を重合させる方法の詳細について説明する。
(ァニオン重合)
ァニオン重合に用いられる開始剤としては、 特に限定されないが、 s e c—ブ チルリチウム、 t一ブチルリチウム等の単官能性開始剤、 1, 4—ジリチォブタ ン、 ジリチォブタジエン、 ジリチォナフタレン等が挙げられる。 これらは、 ジフ ェニルェチレン、 α—メチルスチレン等と組み合わせて開始剤系として用いても よい。
マクロモノマー以外の共重合性モノマー ( I I) としては、 ァニオン重合性単 量体、 例えば、 スチレン、 α—メチルスチレン、 ρ—メチルスチレン、 ο—メチ ルスチレン, ρ—プチルスチレン、 メ卜キシスチレン、 1ービニルナフタレン、 3—ェチルー 1ービフエ二ルナフタレン、 ρ— Ν, Ν—ジメチルアミノスチレン 等の芳香族モノマー; (メタ) アクリル酸、 (メタ) アクリル酸メチル、 (メ タ) アクリル酸ェチル、 (メタ) アクリル酸一 n—プロピル、 (メタ) アクリル 酸イソプロピル、 (メタ) アクリル酸一 n—プチル, (メタ) アクリル酸イソブ チル、 (メタ) アクリル酸— t e r t—プチル、 (メタ) アクリル酸一 n—ペン チル、 (メタ) アクリル酸一 n—へキシル、 (メタ) アクリル酸シクロへキシル、 (メタ) アクリル酸一 π—へプチル、 (メタ) アクリル酸一 n—才クテル、 (メ 夕) アクリル酸 _ 2—ェチルへキシル、 (メタ) アクリル酸ノニル、 (メタ) ァ クリル酸デシル、 (メタ) アクリル酸ドデシル、 (メタ) アクリル酸フエニル、
(メタ) アクリル酸トルィル、 (メタ) アクリル酸ベンジル、 (メタ) アクリル 酸一 2—メトキシェチル、 (メタ) アクリル酸一 3—メトキシブチル、 (メタ) アクリル酸一 2—ヒドロキシェチル、 (メタ) アクリル酸一 2—ヒドロキシプロ ピル、 (メタ) アクリル酸ステアリル、 (メタ) アクリル酸グリシジル、 (メ 夕) アクリル酸 2—アミノエチル、 ァ— (メタクリロイルォキシプロピル) トリ メトキシシラン、 (メタ) アクリル酸トリフルォロメチルメチル、 (メタ) ァク リル酸 2—トリフルォロメチルェチル、 (メタ) アクリル酸 2—パ一フルォロェ チルェチル、 (メタ) アクリル酸 2—パーフルォロェチル— 2—パ一フルォロブ チルェチル、 (メタ) アクリル酸 2—パーフルォロェチル、 (メタ) アクリル酸 パーフルォロメチル、 (メタ) アクリル酸ジパ一フルォロメチルメチル、 (メ 夕) アクリル酸 2—パーフルォロメチル— 2—パーフルォロェチルメチル、 (メ タ) アクリル酸 2—パーフルォ口へキシルェチル, (メタ) アクリル酸 2—パー フルォロデシルェチル、 (メタ) アクリル酸 2—パーフルォ口へキサデシルェチ ル等の (メタ) アクリル酸系モノマー ; 1 , 3—ブタジエン、 1 , 3—ペンタジ ェン、 2 , 3—ジメチルー 1 , 3—ブタジエン、 2 , 4—へキサジェン、 2—フ ェニルー 1, 3—ブタジエン、 イソプレン等の共役ジェン類;及びァクリロ二卜 リル等の二トリル類が挙げられる。 これらは、 単独で用いても良いし、 複数を共 重合させても構わない。 なかでも、 生成物の物性等から、 スチレン系モノマー及 び (メタ) アクリル酸系モノマーが好ましい。 より好ましくは、 アクリル酸エス テルモノマー及びメタクリル酸エステルモノマーであり、 更に好ましくは、 ァク リル酸ブチルである。 本発明においては、 これらの好ましいモノマ一を他のモノ マーと共重合させても構わなく、 その は、 これらの好ましいモノマーが重量比 で 4 0 %含まれていることが好ましい。
ァニオン重合は溶媒の不存在下で行うことも可能であるが、 適当な有機溶媒の 存在下で行うことも可能である。 有機溶媒としては、 例えば、 ベンゼン、 トルェ ン、 キシレン等の芳香族炭化水素系溶媒; n—へキサン、 n —オクタン、 イソォ クタン等の脂肪族炭化水素系溶媒; メチルシクロベンタン、 シクロへキサン、 シ クロオクタン等の脂環式炭化水素系溶媒:テトラヒドロフラン、 ジォキサン、 ジ ェチルエーテル等のエーテル系溶媒等が挙げられる。
重合条件としては、 通常のァニオン重合で採用される重合条件を用いることが 可能であるが、 重合開始剤および重合体末端のリビングサイトを失活させないた め、 重合系内に酸素、 二酸化炭素または水等が混入しない条件で行うことが好ま しい。 例えば、 高真空下または水分をほとんど含まない窒素雰囲気下で、 脱気 - 脱水した溶媒中に重合開始剤を添加した後, 前記のァニオン重合性単量体を加え てァニオン重合させる。 重合開始剤と単量体の全量を一度に加えずに、 徐々に添 加しながら重合させてもよい。
前記のァニオン重合性単量体を 2種類以上を組み合わせて重合させることによ り、 任意の単量体組成の重合体を得ることができる。 また、 1種類の単量体の重 合が終了した後、 引き続き他の種類の単量体と順次重合させることにより、 任意 の単量体組成および構造を有する、 ブロック共重合体、 ジブロック共重合体、 ト リブロック共重合体、 マルチブロック共重合体等を得ることができる。 その重合 中にマクロモノマー ( I ) を添加しておけば, 適当な位置にマクロモノマー ( I ) が組み込まれたグラフト共重合体が得られる。
重合温度は、 使用する重合開始剤、 単量体および溶媒等の種類により異なるが、 通常— 1 0 O t:〜 1 5 0 の範囲内が好ましく、 —7 8 :〜 8 0での範囲内がよ り好ましい。 重合時間は、 使用する重合開始剤、 単量体、 溶媒、 反応温度等によ り異なるが、 通常 1 0分〜 1 0時間の範囲内である。 重合反応は、 バッチ式、 セ ミバッチ式、 連統式のどの方法でも行うことができる。
(ラジカル重合)
ラジカル重合としては特に限定されず、 通常のフリーラジカル重合、 連鎖移動 ラジカル重合、 リビングラジカル重合等のどの方法で実施しても構わない。
ラジカル重合において、 マクロモノマー ( I ) と共重合するモノマ一 ( I I) としては、 上述のマクロモノマ一 ( I) の主鎖の製造方法において記載された、 ラジカル重合性の全てのモノマーを用いることができる。
ラジカル重合は、 無溶媒で実施しても構わないし、 上記のマクロモノマー ( I ) の主鎖の製造方法において記載された全ての溶媒を用いることができる。 フリーラジカル重合に用いられる開始剤としては、 特に限定されるものではな いが、 過酸化ベンゾィルや過酸化第三ブチル等の有機過酸化物、 2, 2 ' ーァゾ ビスイソブチロニトリル、 2, 2 ' —ァゾビス (4—メトキシ一 2, 4—ジメチ ルバレロ二トリル) 、 1、 2 ' —ァゾビス (2—シクロプロピルプロピオ二トリ ル) 、 2, 2 ' —ァゾビス (2—メチルプチロニトリル) などのァゾ化合物など のラジカル開始剤等が挙げられる。
連鎖移動ラジカル重合は前記フリーラジカル重合に連鎖移動剤を添加して行う ものであり、 開始剤としては、 前記のものを用いることができる。 連鎖移動剤と しては特に限定されないが、 n—ドデシルメルカブタン、 t—ドデシルメルカブ タン、 n—ォクチルメルカブタン、 n—ォク夕デシルメルカブタン、 3—メルカ ブトプロピルトリメトキシシラン、 3—メルカブトプロピルトリエトキシシラン、 3一メルカプトプロピルメチルジメトキシシラン、 3—メルカプトプロピルメチ ルジェトキシシラン、 (H3CO) 3S i — S _ S— S i (O CH3) 3、 CH3 (H3CO) 2 S 1 - S - S - S i CH3 (OCH3) 2、 (C 2H50) 3S i— S — S— S i (OC2H5) 3、 CH3 (C2H5〇) 2 S i— S— S— S i C H 3 (〇 C2H5) 2、 (H3CO) 3 S i - S 3- S i (OCH3) 3、 (H3CO) 3 S i - S4— S i (OCH3) 3、 (H3CO) 3S i -S6-S i (OCH3) 3等を用い ることができる。 特にアルコキシシリル基を分子中に有する連鎖移動剤、 例えば、 3—メルカブ卜プロビルトリメトキシシランを用いれば、 末端にアルコキシシリ ル基を導入することができる。
リビングラジカル重合としては, 限定はされないが、 TEMPO (テトラメチ ルビペリジンォキシド) やコバルトポルフィリン錯体等により重合成長末端ラジ カルを捕捉する S F R P (S t a b 1 e F r e e Ra d i c a l P o l y W 9/6596
32
me r i z a t i on :安定フリーラジカル重合) や、 本発明のマクロモノマー
(I ) の主鎖の重合に関して記述した原子移動ラジカル重合が挙げられ、 後者が 好ましい。 これらの重合は、 既に述べた条件で実施される。 リビングラジカル重 合でマクロモノマー ( I) を重合させると, この重合により得られる重合体鎖の 分子量及び分子量分布が制御されることが期待される。 その結果、 他のモノマー
(I I ) と共重合させる場合には重合体中の側鎖の数も一般のフリーラジカル重 合に比較して、 より制御されたグラフト共重合体が得られ、 マクロモノマー
( I ) を単独で重合させる場合には、 星型重合体中の腕の数が一般のフリーラジ カル重合に比較して、 より制御されたものが得られる。
(活性エネルギー線による重合)
本発明のマクロモノマ一 ( I) は、 UVや電子線などの活性エネルギー線によ り重合させることが可能である。
本方法は、 限定はされないが、 マクロモノマー (I) と 2つ以上の末端に重合 性の炭素一炭素二重結合を有する重合体 (I I I) とを重合させてゲルにする場 合により適している。
活性エネルギー線で重合させる場合は光重合開始剤を含有することが好ましい。 本発明に用いられる光重合開始剤としては特に制限はないが、 光ラジカル開始 剤と光ァニオン開始剤が好ましく、 特に光ラジカル開始剤が好ましい。 例えば、 ァセトフエノン、 プロピオフエノン、 ベンゾフエノン、 キサントール、 フルォレ イン、 ベンズアルデヒド、 アンスラキノン、 トリフエニルァミン、 カルバゾール、 3—メチルァセトフエノン、 4一メチルァセトフエノン、 3—ペンチルァセトフ ェノン、 4—メトキシァセトフェン、 3—プロモアセトフエノン、 4—ァリルァ セトフエノン、 p—ジァセチルベンゼン, 3—メトキシベンゾフエノン、 4ーメ チルベンゾフエノン、 4一クロ口べンゾフエノン, 4, 4 '—ジメトキシベンゾ フエノン、 4一クロ口一 4' 一べンジルベンゾフエノン、 3—クロロキサント一 ン、 3, 9—ジクロロキサン! ン、 3—クロ口一 8—ノニルキサントーン、 ベ ンゾィル、 ベンゾインメチルエーテル、 ベンゾインブチルエーテル、 ビス (4— ジメチルァミノフエニル) ケトン、 ベンジルメトキシケタール, 2—クロロチォ キサントーン等が挙げられる。 これらの開始剤は単独でも、 他の化合物と組み合 わせても良い。 具体的には、 ジエタノールメチルァミン、 ジメチルエタノールァ ミン、 トリエタノールァミンなどのァミンとめ組み合わせ、 更にこれにジフエ二 ルョードニゥムクロリドなどのョードニゥム塩と組み合わせたもの、 メチレンブ ルーなどの色素及びァミンと組み合わせたものが挙げられる。
また、 近赤外光重合開始剤として、 近赤外光吸収性陽イオン染料を使用しても 構わない。 近赤外光吸収性陽イオン染料としては、 6 5 0〜 1 5 0 0 n mの領域 の光エネルギーで励起する、 例えば特開平 3 - 1 1 1 4 0 2号、 特開平 5— 1 9 4 6 1 9号公報等に開示されている近赤外光吸収性陽イオン染料一ボレート陰ィ オン錯体などを用いるのが好ましく、 ホウ素系増感剤を併用することがさらに好 ましい。
光重合開始剤の添加量は, 系をわずかに光官能化するだけでよいので、 特に制 限はないが、 この組成物の重合体 1 0 0部に対して、 0 . 0 0 1〜 1 0重量部が 好ましい。
活性エネルギー線で重合させる方法は特に限定されないが、 その光重合開始剤 開始剤の性質に応じて、 高圧水銀灯、 低圧水銀灯, 電子線照射装置、 ハロゲンラ ンプ、 発光ダイオード、 半導体レーザー等による光及び電子線の照射が举げられ る。 (熱による重合)
本発明のマクロモノマー ( I ) は、 熱により重合させることが可能である。 本方法は、 限定はされないが、 マクロモノマー ( I ) と 2つ以上の末端に重合 性の炭素一炭素二重結合を有する重合体 ( I I I ) とを重合させてゲルにする場 合により適している。
熱で重合させる場合は熱重合開始剤を含有することが好ましい。
本発明に用いられる熱重合開始剤としては特に制限はないが、 ァゾ系開始剤、 過酸化物, 過硫酸酸、 及びレドックス開始剤が含まれる。
適切なァゾ系開始剤としては、 限定されるわけではないが、 2 , 2 ' —ァゾビ ス (4ーメトキシ一 2 , 4—ジメチルバレロニトリル) (VA Z O 3 3 ) 、 2 , 2 ' ーァゾビス (2—アミジノプロパン) 二塩酸塩 (VAZO 50) 、 2, 2 ' —ァゾビス (2, 4—ジメチルバレロニトリル) (VAZO 52) 、 2, 2 ' ーァゾビス (イソプチロニトリル) (VAZO 64) 、 2, 2 ' 一ァゾビ ス— 2—メチルプチロニ卜リル (VAZO 67) 、 1, 1—ァゾビス (1—シ クロへキサンカルボ二トリル) (VAZO 88) (全て DuP on t Ch e mi c a 1から入手可能) 、 2, 2 ' —ァゾビス ( 2—シクロプロピルプロピオ 二トリル) 、 及び 2, 2 ' ーァゾビス (メチルイソブチレート) (V— 601) (和光純薬より入手可能) 等が挙げられる。
適切な過酸化物開始剤としては, 限定されるわけではないが、 過酸化べンゾィ ル、 過酸化ァセチル、 過酸化ラウロイル、 過酸化デカノィル、 ジセチルバ一ォキ シジカーボネート、 ジ (4一 t—プチルシクロへキシル) パーォキシジカーボネ —ト (P e r k ad ox 16 S) (Ak z o N o b e 1から入手可能) 、 ジ (2—ェチルへキシル) パーォキシジカーボネート、 tーブチルバ一ォキシビバ レート (Lu p e r s o l 11) (E l f A t o c h emから入手可能) 、 tーブチルパ一ォキシ— 2—ェチルへキサノエート (T r i g on o x 21 - C 50) (Ak z o No b e 1から入手可能) 、 及び過酸化ジクミル等が挙げ られる。
適切な過硫酸塩開始剤としては、 限定されるわけではないが、 過硫酸カリウム、 過硫酸ナトリウム、 及び過硫酸アンモニゥムが挙げられる。
適切なレドックス (酸化還元) 開始剤としては、 限定されるわけではないが、 上記過硫酸塩開始剤のメタ亜硫酸水素ナ卜リゥム及び亜硫酸水素ナ卜リゥムのよ うな還元剤との組み合わせ;有機過酸化物と第 3級ァミンに基づく系, 例えば過 酸化べンゾィルとジメチルァニリンに基づく系;並びに有機ヒドロバーオキシド と遷移金属に基づく系、 例えばクメンヒドロバーオキシドとコバルトナフテ一ト に基づく系等が挙げられる。
他の開始剤としては、 限定されるわけではないが、 テトラフェニル 1, 1, 2, 2—エタンジオールのようなピナコール等が挙げられる。
好ましい熱ラジカル開始剤としては、 ァゾ系開始剤及び過酸化物系開始剤から なる群から選ばれる。 更に好ましいものは、 2, 2 ' —ァゾビス (メチルイソブ チレート) 、 t 一ブチルパーォキシビバレート、 及びジ (4一 t —ブチルシクロ へキシル) パーォキシジカーボネート、 並びにこれらの混合物である。
本発明に用いられる熱開始剤は触媒的に有効な量で存在し、 このような量は、 限定はされないが、 典型的には、 上記マクロモノマー (I ) 及び他に添加される モノマ一及びオリゴマー混合物の合計量を 1 0 0重量部とした場合に約 0 . 0 1 〜5重量部、 より好ましくは約 0 . 0 2 5〜2重量部である。 開始剤の混合物が 使用される場合には、 開始剤の混合物の合計量は、 ただ 1種の開始剤が使用され る場合の使用量に等しい量である。
本発明において、 熱重合させる方法は特に限定されないが、 その温度は、 使用 する熱開始剤、 マクロモノマー ( I ) 及び添加される化合物等の種類により異な るが、 通常 5 0 〜 2 5 0 の範囲内が好ましく、 7 0 T:〜 2 0 0 の範囲内が より好ましい。 重合時間は、 使用する重合開始剤、 単量体、 溶媒、 反応温度等に より異なるが、 通常 1分〜 1 0時間の範囲内である。 (ゲル)
本発明のマクロモノマー ( I ) と、 多官能化合物 (モノマーノオリゴマー) 、 好ましくは 2つ以上の末端に重合性の炭素一炭素二重結合を有する重合体 ( I I I ) を重合させるとゲル (架橘した重合体) にすることができる。
重合体 ( I I I ) は、 マクロモノマ一 ( I ) と同様の製法により、 製造するこ とができる。 特に原子移動ラジカル重合を利用する場合には、 多官能開始剤を用 いて重合し、 末端の官能基変換をする方法が挙げられる。
多官能モノマーとしては、 ネオペンチルグリコールポリプロポキシジァクリレ ート、 トリメチロールプロパンポリエトキシトリァクリレート、 ビスフエノール Fポリエトキシジァクリレート、 ビスフエノール Aポリエトキシジァクリレート、 ジペン夕エリスリ トールポリへキサノリ ドへキサクリレート、 トリス (ヒドロキ シェチル) イソシァヌレートポリへキサノリ ドトリアクリレート、 トリシクロデ カンジメチロールジァクリレート 2— ( 2—ァクリロイルォキシ一 1, 1—ジメ チル) 一 5—ェチルー 5—ァクリロイルォキシメチルー 1 , 3—ジォキサン、 テ トラブロモビスフエノール Aジエトキシジァクリレート, 4, 4—ジメルカプト ジフエ二ルサルフアイ ドジメタクリレ一ト、 ポリテトラエチレングリコ一ルジァ クリレート, 1, 9ーノナンジォ一ルジァクリレート、 ジトリメチロールプロパ ンテトラァクリレート等が挙げられる。
多官能オリゴマーとしては、 ビスフエノール A型エポキシァクリレート榭脂、 フエノールノポラック型エポキシァクリレート樹脂、 クレゾ一ルノポラック型ェ ポキシァクリレート樹脂等のエポキシァクリレー卜系樹脂、 C O O H基変性ェポ キシァクリレート系樹脂、 ポリオール (ポリテトラメチレングリコール、 ェチレ ングリコールとアジピン酸のポリエステルジオール、 £—力プロラクトン変性ポ リエステルジオール、 ポリプロピレングリコール、 ポリエチレングリコール、 ポ リカーボネートジオール、 水酸基末端水添ポリイソプレン、 水酸基末端ポリブ夕 ジェン、 水酸基末端ポリイソブチレン等) と有機イソシァネート (トリレンジィ ソシァネート、 イソホロンジイソシァネート、 ジフエ二ルメタンジイソシァネー ト、 へキサメチレンジイソシァネート, キシリレンジイソシァネート等) から得 られたウレタン樹脂を水酸基含有 (メタ) ァクリレート {ヒドロキシェチル (メ 夕) ァクリレート、 ヒドロキシプロピル (メタ) ァクリレート、 ヒドロキシプチ ル (メタ) ァクリレート, ペンタエリスリ トールトリァクリレート等 } を反応さ せて得られたウレタンァクリレート系樹脂、 上記ポリオールにエステル結合を介 して (メタ) アクリル基を導入した樹脂、 ポリエステルァクリレート系樹脂等が 挙げられる。 ぐ用途〉
本発明の枝分かれした重合体は、 既存のエラストマ一と同等の用途に使用でき る。 具体的には、 樹脂やアスファルトの改質用途、 樹脂とブロック体とのコンパ ゥンド用途 (必要に応じて可塑剤や充填材、 安定剤等を加えてもよい) 、 熱硬化 性樹脂の収縮防止剤, 粘 '接着剤、 制振材のベースポリマーとして使用すること ができる。 具体的な応用分野としては、 自動車の内装 ·外装部品、 電気 ·亀子分 野、 食品の包装用フィルムやチューブ、 医薬 '医療用容器やシール性物品等が挙 げられる。
また、 本発明の枝わかれした重合体は、 それ自身でも耐衝撃性を有する樹脂と して成形材料となりうるが、 種々の熱可塑性樹脂および熱硬化性樹脂と混合して 用いるとこれらの樹脂に高度の耐衝擊性を付与できる耐銜撃性改良剤となりうる。 このほか、 加工性改良剤、 相溶化剤、 艷消し剤、 耐熱性改良剤などとして使用で さる。
本発明の枝わかれした重合体を添加して耐衝撃性を改良しうる熱可塑性樹脂と しては、 ポリメチルメタクリレート樹脂、 ポリ塩化ビニル樹脂、 ポリエチレン榭 脂、 ポリプロピレン榭脂、 環状ォレフィン共重合樹脂、 ポリカーボネート榭脂、 ポリエステル樹脂、 ポリカーボネート樹脂とポリエステル樹脂の混合物、 芳香族 アルケニル化合物、 シアン化ビニル化合物および (メタ) アクリル酸エステルか らなる群から選ばれる少なくとも 1種のビニル系単量体 7 0〜 1 0 0重量%とこ れらのビニル系単量体と共重合可能なたとえばエチレン、 プロピレン、 酢酸ビニ ルなどの他のピニル系単量体および 〈または) ブタジエン、 イソプレンなどの共 役ジェン系単量体など 0〜 3 0重量%とを重合して得られる単独重合体または共 重合体、 ポリスチレン樹脂、 ポリフエ二レンエーテル樹脂、 ポリスチレン樹脂と ポリフエ二レンエーテル榭脂の混合物などをあげることができるが、 これらに限 定されることなく、 熱可塑性樹脂樹脂が広く使用可能である。 特にポリメチルメ タクリレート榭脂、 ポリ塩化ビニル樹脂、 ポリプロピレン樹脂、 環状ポリオレフ イン樹脂、 ポリカーボネート樹脂、 ポリエステル榭脂などが耐候性、 耐衝撃性な どの特徴を出しやすく好ましい。
本発明の枝わかれした重合体を各種樹脂に添加する方法としては、 バンバリ一 ミキサー、 ロールミル、 二軸押出機等の公知の装置を用い、 機械的に混合しペレ ット状に賦形する方法をあげることができる。 押出賦形されたペレットは、 幅広 い温度範囲で成形可能であり、 成形には、 通常の射出成形機、 プロ一成形機、 押 出成形機などが用いられる。
さらに、 この樹脂組成物には、 必要に応じて耐衝攀性改良剤, 安定剤、 可塑剤、 搰剤、 難燃剤、 顔料、 充填剤などを配合し得る。 具体的には、 メチルメタクリレ —トーブタジエン—スチレン共重合体 (M B S樹脂) 、 アクリル系グラフト共重 合体、 アクリル一シリコーン複合ゴム系グラフト共重合体などの耐衝撃性改良 剤; 卜リフエニルホスファイトなどの安定剤;ポリエチレンワックス、 ポリプロ ピレンワックスなどの滑剤; トリフエニルホスフェート、 トリクレジルホスフエ 一卜等のホスフエ一卜系難燃剤、 デカブロモビフエニル、 デカブ口モビフエニル エーテルなどの臭素系難燃剤、 三酸化アンチモンなどの難燃剤;酸化チタン、 硫 化亜鉛、 酸化亜鉛などの顔料:ガラス繊維、 アスベスト、 ウォラス卜ナイト、 マ イカ、 タルク、 炭酸カルシウムなどの充填剤などがあげられる。
本発明の枝分かれした重合体、 特に星型重合体は、 特に限定されないが、 添加 剤、 望ましくは潤滑油等の粘度調整剤 (粘度指数改良添加剤) として有用である。 本発明の重合体を潤滑油に対して添加する量は特に限定されないが、 約 0 . l w t %〜約 3 0 w t %が好ましく、 更には約 1 w t %〜約 1 0 w t %が好ましい。 対象となる潤滑油は. 特に限定されないが、 自動車、 航空機、 船舶、 鉄道などに 使用される油、 例えばスパーク点火、 圧縮点火に使用される油、 夏油又は冬油な どの合成油及び鉱物油であってよい。 潤滑油の典型例は、 沸点が約 3 0 0 〜約 3 5 0 のものが好ましい。 本発明の重合体の潤滑油への添加を容易に行うには、 合成油又は鉱物油の中に、 本発明の重合体を約 1 ~ 5 O w t % , 好ましくは約 5 〜2 O w t %を含む濃縮物を用いることが好ましい。
本発明の枝わかれした重合体は、 粘着剤組成物にすることができる。
本発明の粘着剤組成物は、 好ましくは (メタ) アクリル系重合体を主成分とす るものであるため、 粘着付与樹脂を添加する必要は必ずしもないが、 必要に応じ て、 各種のものを使用することができる。 具体例を挙げるならば、 フエノール樹 脂、 変性フエノール樹脂、 シクロペンタジェンーフエノール樹脂、 キシレン樹脂、 クマロン樹脂、 石油樹脂、 テルペン樹脂、 テルペンフエノール樹脂、 ロジンエス テル樹脂等である。
本発明の粘着剤組成物には、 物性を綢製するために各種の添加剤、 例えば、 老 化防止材、 可塑剤、 物性調整剤、 溶剤などを配合してもよい。
アクリル系重合体は本来、 耐久性に優れた重合体であるので、 老化防止剤は必 ずしも必要ではないが、 従来公知の酸化防止剤、 紫外線吸収剤を適宜用いること ができる。
可塑剤としては物性の調整、 性状の調節等の目的により、 ジブチルフタレート、 ジへプチルフタレート、 ジ (2—ェチルへキシル) フタレー卜、 ブチルベンジル フタレート等のフタル酸エステル類; ジォクチルアジペート、 ジォクチルセバケ ート等の非芳香族二塩基酸エステル類;ジエチレングリコールジベンゾェ一ト、 トリエチレングリコールジベンゾエート等のポリアルキレングリコールのエステ ル類; トリクレジルホスフェート、 トリブチルホスフェート等のリン酸エステル 類;塩化パラフィン類;アルキルジフエニル、 部分水添ターフェニル等の炭化水 素系油等を単独、 または 2種以上混合して使用することができるが、 必ずしも必 要とするものではない。 なおこれら可塑剤は、 重合体製造時に配合することも可 能である。
溶剤としては、 例えばトルエン、 キシレン等の芳香族炭化水素系溶剤、 酢酸ェ チル、 酢酸ブチル、 酢酸ァミル、 酢酸セロソルブ等のエステル系溶剤、 メチルェ チルケトン、 メチルイソプチルケトン、 ジイソプチルケトン等のケトン系溶剤等 が挙げられる。 それらの溶剤は重合体の製造時に用いてもよい。
また、 本発明の粘着剤組成物には、 各種支持体 (プラスチックフィルム、 紙 等) に対する接着性を向上させるために各種接着性改良剤を添加してもよい。 例 示するならば、 メチルトリメトキシシラン、 ジメチルジメトキシシラン、 トリメ チルメトキシシラン、 n—プロビルトリメトキシシラン等のアルキルアルコキシ シラン類; ジメチルジイソプロぺノキシシラン、 メチルトリイソプロぺノキシシ ラン、 ァーグリシドキシプロピルメチルジィソプロぺノキシシラン等のアルキル イソプロぺノキシシラン、 ァーグリシドキシプロピルメチルジメトキシシラン、 ァーグリシドキシプロビルトリメトキシシラン、 ビニルトリメトキシシラン、 ビ 二ルジメチルメトキシシラン、 ァ一アミノブ口ビルトリメトキシシラン、 N— ( /3—アミノエチル) 一ァーァミノプロビルトリメトキシシラン、 N— ( β -ァ ミノェチル) 一ァ—ァミノプロピルメチルジメトキシシランァ—メルカプトプロ ピルトリメトキシシラン、 ァーメルカプトプロピルメチルジメトキシシラン等の 官能基を有するアルコキシシラン類; シリコーンワニス類;ポリシロキサン類等 である。
本発明の粘着剤組成物はテープ、 シート、 ラペル、 箔等に広く適用することが できる。 例えば、 合成樹脂製または変成天然物製のフィルム、 紙、 あらゆる種類 の布、 金厲箔、 金属化プラスチック箔、 アスベストまたはガラス繊維布などの基 質材料に溶剤型、 エマルシヨン型またはホットメルト型等の形で前記粘着剤組成 物を塗布し、 活性エネルギー線や熱により硬化させればよい。
本発明の重合体はこれら以外に、 シーリング材、 塗料、 コ一ティング材、 封止 材、 接着剤、 ポッティング材、 注型材料、 成形材料などに用いることができる。 発明を実施するための最良の形態
以下に、 本発明の具体的な実施例を比較例と併せて説明するが、 本発明は、 下 記実施例に限定されない。
下記実施例中 「部」 および 「%」 は、 それぞれ 「重量部」 および 「重量%」 を 表す。
下記実施例中、 「数平均分子量」 および 「分子量分布 (重量平均分子量と数平 均分子量の比) J は、 ゲルパーミエ一シヨンクロマトグラフィー (GPC) を用 いた標準ポリスチレン換算法により算出した。 ただし、 GPCカラムとしてポリ スチレン架橘ゲルを充填したものを用い、 GP C溶媒としてクロ口ホルムを用い た。
下記実施例中、 「平均末端 (メタ) ァクリロイル基数」 は, 「重合体 1分子当 たりに導入された (メタ〉 ァクリロイル基数」 であり、 NMR分析および GP Cにより求められた数平均分子量により算出した。 製造例 1 B r基末端ポリ (アクリル酸プチル) の合成例 (1)
還流管および攪拌機付きの 2 Lのセパラブルフラスコに、 CuB r (5. 54 g、 38. 6mmo 1 ) を仕込み、 反応容器内を窒素置換した。 ァセトニトリル (73. 8mL) を加え、 オイルバス中 70でで 30分間攪拌した。 これにァク リル酸ブチル ( 1 32 g) 、 2—ブロモプロピオン酸メチル ( 14. 4mL、 0 . 129 mo 1 ) 、 ペン夕メチルジェチレン卜リアミン (4. 69mL、 0. 0 22mo 1 ) を加え、 反応を開始した。 70でで加熱攪拌しながら、 アクリル酸 ブチル (528 g) を 90分かけて連続的に滴下し、 更に 80分間加熱攪拌した 反応混合物をトルエンで希釈し、 活性アルミナカラムを通した後、 揮発分を減 圧留去することにより片末端に B r基を有するポリ (アクリル酸ブチル) (以下 , 重合体 [1] という) を得た。 重合体 [1] の数平均分子量は 5800、 分子 量分布は 1. 14であった。 製造例 2 アクリル酸カリウムの合成
フラスコに、 メタノール (500mL) を仕込み、 0"Cに冷却した。 そこへ、 t一ブトキシカリウム (78 g) を数回に分けて加えた。 この反応溶液を OX:に 保持して, アクリル酸 (50 g) のメタノール溶液を滴下した。 滴下終了後、 反 応液の温度を ot:から室温に戻したのち、 反応液の揮発分を減圧留去す ¾ことに より下式に示すアクリル酸カリウム (以下、 カルボン酸塩 [1] という) を得た
CH2 = CHC〇2K 製造例 3 メ夕クリル酸カリウムの合成
フラスコに、 メタノール (800mL) を仕込み、 0 に冷却した。 そこへ、 t一ブトキシカリウム (1 30 g) を数回に分けて加えた。 この反応溶液を 0 に保持して、 メタクリル酸 (100 g) のメタノール溶液を滴下した。 滴下終了 後、 反応液の温度を 0 から室温に戻したのち、 反応液の揮発分を減圧留去する ことにより下式に示すメタクリル酸カリウム (以下、 カルボン酸塩 [2] という ) を得た。
CH2 = C (CH3) C02 実施例 1 ァクリロイル基型マクロモノマーの合成
ϋίϋ^付き 500mLフラスコに、 ¾ϋ例 唇ら l S^ [1] (150g) , l»J2 ί§ら こカルボ [1] (6. 61g) , ジメチルァセトアミド (150mL)
、 70^で 3離 ¾Ι^Ι¾^Τることにより)^ ¾にァクリロイリ を Τるボリ (ァクリリ ブ チル) 似下、 マクロモノマー [1] という) を得た。 ίΤ棍^^らジメチルァセトアミドを 留去し、 トルエンに麵させ、 アルミナカラム ¾1した後、 トルエンを S¾Tることにより マクロモノマー [1] を纏し マクロモノマー [1] 群 ァクリロイリ»は 1. 1 O 99/65963
42
、 数平!^ 7»ま 6000、 :ί ¾^布は 1. 14であつ, 実施例 2 メタクリロイル基型マクロモノマ一の合成
付き 50 omLフラスコに、 i 1 τ ら^a合体 [ 1 ] ( 150 g) 、 \ 3 で得ら Γこ力ルポ [2] (7. 45g) 、 ジメチルァセトアミド (15 OmL) を ffi^ 、
Figure imgf000044_0001
(ァクリ プチル) COT, マクロモノマー [2] という) を得广 SiSi^t^らジメチルァセトアミド を留去し、 トルエンに麵させ、 ¾14アルミナカラム ¾1した後、 トルエンを留針ることによ りマクロモノマ一 [23 ¾¾¾した。 マクロモノマー [2]の平 ί¾*¾メタクリロイ は 1 . 0、 数平 ま 6000、 :¾¾^布《:1. 13であつ 実施例 3 星型高分子の合成 ( 1 )
マクロモノマー [1〗 (100部) に, 光ラジカル発生剤としてジエトキシァ セトフエノン (0. 2部) をよく混合し、 組成物とした。 組成物を減圧脱泡した 後、 ガラス製の型枠に流し込み、 表面が空気と接触しないようにガラス板で覆つ た。 高圧水銀ランプ (SHL— 100UVQ— 2 ;東芝ライテック (株) 製) を 用い、 20 cmの照射距離で 5分間、 光を照射することにより、 ラジカル重合さ せたところ、 高分子量体 (数平均分子量 1 12000、 分子量分布 1. 28) の 生成が確認された。 実施例 4 星型高分子の合成 (2)
マクロモノマー [1] (100部) に、 光ラジカル発生剤としてジェトキシァ セトフエノン (0, 2部) 、 連鎖移動剤としてラウリルメルカブタン (1. 0部 ) をよく混合し、 組成物とした。 組成物を減圧脱泡した後、 ガラス製の型枠に流 し込み、 表面が空気と接触しないようにガラス板で覆った。 高圧水銀ランプ (S HL- 10 OUVQ- 2 ;東芝ライテック (株) 製) を用い、 20 cmの照射距 離で 5分間、 光を照射することにより、 ラジカル重合させたところ、 高分子量体 (数平均分子量 17500、 分子量分布 1. 38) の生成が確認された。 実施例 5 星型高分子の合成 (3〉
実施例 4において、 マクロモノマー [1] (100部) の代りにマクロモノマ 一 [2] (100部) を用いる以外は同様の操作を行ったところ、 高分子量体 ( 数平均分子量 30000、 分子量分布 1. 17) の生成が確認された。 実施例 6 グラフト共重合体の合成
還流管付き 10 OmL三口フラスコに、 マクロモノマ一 [2] (5. 0 g) 、 メタクリル酸メチル (7. 5mL、 7 Ommo 1 ) , 2, 2—ァゾビスイソブチ ロニトリル (0. 460 g、 2. 8mmo 1 ) 、 トルエン (1 OmL) を仕込み 、 1 5分間窒素ガスを吹き込んで溶存酸素を除去した。 60 で 4時間加熱擾拌 することによりグラフト共重合体を得た。 メタノールへの再沈殿を繰り返すこと によりグラフ卜共重合体を精製した。 グラフト共重合体の数平均分子量は 360 00、 分子量分布は 1. 71であった。
本実験により、 ポリ (メタクリル酸メチル) を幹高分子、 ポリ (アクリル酸ブ チル) を枝高分子とするグラフト共重合体が得られた。 製造例 4 両末端ァクリロイル基ポリ (アクリル酸プチル) の合成
臭化第一銅を触媒、 ペンタメチルジェチレントリアミンを配位子、 ジェチルー 2, 5—ジブロモアジペートを開始剤としてアクリル酸 n—ブチルを重合し、 数 平均分子量 10800、 分子量分布 1. 15の末端臭素基ポリ (アクリル酸 n— プチル) を得た。
この重合体 300 gを N, N—ジメチルァセトアミド (30 OmL) に溶解さ せ、 カルボン酸塩 [1] 7. 4 gを加え、 窒素雰囲気下、 70でで 3時間加熱攙 拌し、 両末端ァクリロイル基ポリ (アクリル酸 n—プチル) (以下、 テレケリツ クオリゴマー [1] という) の混合物を得た。 この混合液の N, N—ジメチルァ セトアミドを滅圧留去した後、 残さにトルエンを加えて、 不溶分をろ過により除 去した。 濂液のトルエンを減圧留去して、 テレケリックオリゴマー [1] を精製 した。
テレケリックオリゴマー [1] の平均末端ァクリロイル基数は 2. 0であった W 596
44
実施例 7〜 9 粘着性硬化物の作成
マクロモノマー [1] 、 テレケリックオリゴマー [1] 、 および、 ジェ卜キシ ァセトフエノンを表 1に示した比率でよく混合した。 これらの組成物を減圧脱泡 した後、 型枠に充填し、 その表面をガラス板で覆い、 サンプルを作成した。 これ らのサンプルについて、 髙圧水銀ランプ (S HL— 100 UVQ— 2 :東芝ライ テック (株) 製) により光を照射した (照射条件:照射時間 5分間、 照射距離 2 O cm) ところ、 表面に粘着性のあるゴム状硬化物が得られた。
得ら こ硎 について、 ゲリ 率 C «啶を行った。 ただし、 fmm, m m 分抽出前と ¾«¾¾ih^の satにより求めら wこ。 總匕 ¾β5½>ίώ出は、 ^ をトルエン に ることにより行; i o ¾¾¾¾ tt¾ii示し 表 1
Figure imgf000046_0001
実施例 10 粘着シートの作成と粘着シート試験
マクロモノマー [1] 70部, テレケリックオリゴマー [1] 30部、 ジエト キシァセトフエノン 2部をよく混合し、 粘着剤組成物を得た。 得られた粘着剤組 成物を、 厚さ 50 mのコロナ処理を施したポリエチレンテレフタレートフィル ム (東レ (株) 製) に塗布し、 窒素雰囲気下で高圧水銀ランプ (SHL— 1 00 UVQ-2 ;東芝ライテック (株) 製) により 10分間光照射を行い、 硬化させ た。
得られた粘着シートについて J I S Z— 0237に準じ、 傾斜式ポールタツ ク試験を行ったところ、 最大のポ一ルナンバ一は 3であった。 ただし、 助走路 1 0 O mm, 測定部 1 0 0 mm、 傾斜角 2 0度とした。 産業上の利用可能性
本発明においては、 末端に高い比率で (メタ) ァクリロイル系基のような重合 性の炭素一炭素二重結合を有する基が導入されたビニル系重合体マクロモノマー を利用するので、 これまで合成が困難であったビニル系重合体を枝に持つグラフ ト共重合体、 星形重合体、 ゲル等が容易に合成されるものである。 さらに、 リビ ングラジカル重合、 特に. 原子移動ラジカル重合を利用してマクロモノマーを製 造することにより、 側鎖の分子量がよく制御されたものが得られる。

Claims

請求の範囲
1. ラジカル重合によって製造されたビニル系重合体であって、 重合性の炭素 一炭素二重結合を有する基を 1分子あたり 1個、 その分子末端に有するマクロモ ノマー ( I )
を重合することを特徴とする、 枝分かれした重合体の製造方法。
2. 重合性の炭素一炭素二重結合を有する基が、 一般式 (1) :
-OC (O) C (R) =CH2 (1)
(式中、 Rは水素、 または、 炭素数 1~20の 1価の有機基を表す。 )
で表される基である請求項 1記載の製造方法。
3. Rが水素、 または、 メチル基である請求項 1または 2記載の製造方法。
4. マクロモノマ一 (I ) の主鎖は、 リビングラジカル重合により製造された ビニル系重合体からなるものである請求項 1〜 3のいずれか 1項に記載の製造方 法。
5. リビングラジカル重合が、 原子移動ラジカル重合である請求項 4記載の製 造方法。
6. 原子移動ラジカル重合が、 周期律表第 7族、 8族、 9族、 10族、 または 1 1族元素を中心金属とする遷移金厲銪体を触媒として使用するものである請求 項 5記載の製造方法。
7. 触媒とする金厲鍺体が銅、 ニッケル、 ルテニウム、 及び鉄からなる群より 選ばれる金属の錯体である請求項 6記載の製造方法。
8. 触媒とする金属錯体が銅の錯体である請求項 7記載の製造方法。
9. マクロモノマ一 (I) の主鎖は、 連鎖移動剤を用いたビニル系モノマーの 重合により製造されたビニル系重合体からなるものである請求項 1〜 3のいずれ か 1項に記載の製造方法。
10. マクロモノマ一 (I) の主鎖が (メタ) アクリル系重合体である請求項 1〜 9のいずれか 1項に記載の製造方法。
1 1. マクロモノマ一 (1〉 の重合体主鎖がアクリル酸エステル系重合体であ る請求項 10記載の製造方法。
12. マクロモノマ一 (I) の主鎖がスチレン系重合体である請求項 1〜 9の いずれか 1項に記載の製造方法。
13. マクロモノマー (I) が、 ビニル系重合体の末端ハロゲン基を、 ラジカ ル重合性の炭素一炭素二重結合を有する化合物で置換することにより製造された ものである請求項 1~12のいずれか 1項に記載の製造方法。
14. マクロモノマー (I) が、 一般式 (2) :
一 CRH (2)
(式中、 R1, R2は, ビニル系モノマーのエチレン性不飽和基に結合した基。 X は、 塩素、 臭素、 又は、 ヨウ素を表す。 )
で表される末端ハロゲン基を有するビニル系重合体の該ハロゲン基を、 一般式 (3) :
M + -〇C (0) C (R) =CH2 (3)
(式中, Rは水素、 または, 炭素数 1〜20の 1価の有機基を表す。 M +はアル カリ金属、 または 4級アンモニゥムイオンを表す。 )
で示される化合物で置換することにより製造されたものである請求項 13記載の 製造方法。
15. マクロモノマー (I) が、 末端に水酸基を有するビニル系重合体と、 一 般式 (4) :
XC (〇) C (R) =CH2 (4)
(式中, Rは水素、 または、 炭素数 1〜 20の 1価の有機基を表す。 Xは塩素、 臭素、 または水酸基を表す。 )
で示される化合物との反応を行って製造されたものである請求項 1〜 12のいず れか 1項に記載の製造方法。
16. マクロモノマー (I) が、 末端に水酸基を有するビニル系重合体に、 ジ イソシァネート化合物を反応させ、 残存イソシァネート基と一般式 (5) :
HO-R' 一 OC (O) C (R) =CH2 (5)
(式中、 Rは水素、 または、 炭素数 1〜20の 1価の有機基を表す。 R' は炭素 数 2〜 20の 2価の有機基を表す。 )
で示される化合物との反応を行って製造されたものである請求項 1 ~ 12のいず れか 1項に記載の製造方法。
1 7. マクロモノマー ( I ) の数平均分子量が 3000以上である請求項 1〜 1 6のいずれか 1項に記載の製造方法。
1 8. ゲルパ一ミエ一ションクロマトグラフィ一で測定したマクロモノマ一 ( I) の重量平均分子量 (Mw) と数平均分子量 (Mn) の比 (Mw/Mn) の 値が 1. 8未満である請求項 1〜 1 7のいずれか 1項に Ϊ3載の製造方法。
1 9. マクロモノマー ( I) を重合させる方法がラジカル重合である請求項 1 〜 1 8のいずれか 1項に記載の製造方法。
20. マクロモノマー ( I ) を重合させる方法がリビングラジカル重合である 請求項 1 9記載の製造方法。
2 1. リビングラジカル重合が、 原子移動ラジカル重合であることを特徵とす る請求項 20記載の製造方法。
22. 原子移動ラジカル重合が、 周期律表第 7族、 8族、 9族、 10族、 また は 1 1族元素を中心金属とする遷移金厲錯体を触媒として使用するものである請 求項 2 1記載の製造方法。
23. 触媒とする金屎錯体が銅、 ニッケル、 ルテニウム、 及び鉄からなる群よ り選ばれる金属の錯体である請求項 22記載の製造方法。
24. 触媒とする金属錯体が銅の錯体である請求項 23記載の製造方法。
2 5. マクロモノマー ( I) を重合させる方法が、 活性エネルギー線により重 合を開始する重合である請求項 1〜 18のいずれか 1項に記載の製造方法。
26. マクロモノマ一 ( I ) を重合させる方法が、 加熱により重合を開始する 重合である請求項 1〜 1 8のいずれか 1項に記載の製造方法。
27. マクロモノマー ( I) を重合させる方法がァニオン重合である請求項 1 〜 1 8のいずれか 1項に記載の製造方法.
28. マクロモノマー ( I ) を単独で重合させることにより製造される重合体 が星形重合体である請求項 1 ~ 27のいずれか 1項に記載の製造方法。
29. マクロモノマー ( I ) と、 マクロモノマ一以外の共重合性モノマー ( I I ) とを共重合させ、 グラフ卜共重合体を製造する請求項 1~27のいずれか 1 項に記載の製造方法。
30. マクロモノマ一 ( I ) とモノマー ( I I) の重量比が 95 : 5〜 5 : 9 5である請求項 29記載の製造方法。
3 1. マクロモノマ一 ( I) と、 重合性の炭素一炭素二重結合を有する基を 1 分子あたり 2個以上有する多官能化合物とを共重合させ、 架橋された重合体を製 造する請求項 1〜 27のいずれか 1項に記載の製造方法。
32. 重合性の炭素一炭素二重結合を有する基を 1分子あたり 2個以上有する 多官能化合物が、 重合性の炭素一炭素二重結合を有する基を 1分子あたり 2個以 上分子末端に有する重合体 (I I I) である請求項 31記載の製造方法。
33. 請求項 1〜32のいずれか 1項に記載された製造方法により得ることの できる枝分かれした重合体。
34. 請求項 33記載の重合体を主成分とする熱可塑性エラストマ一。
35. 請求項 33記載の重合体を主成分とする耐衝撃性改良材。
36. 請求項 33記載の重合体を主成分とする粘着剤。
PCT/JP1999/003275 1998-06-19 1999-06-18 Procede de fabrication d'un polymere ramifie et polymere correspondant WO1999065963A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000554782A JP3990110B2 (ja) 1998-06-19 1999-06-18 枝分かれした重合体の製造方法及び重合体
CA002335777A CA2335777C (en) 1998-06-19 1999-06-18 Process for producing branched polymer and polymer
EP99925386A EP1160266B1 (en) 1998-06-19 1999-06-18 Process for producing branched polymer and polymer
DE69935259T DE69935259T2 (de) 1998-06-19 1999-06-18 Verfahren zur herstellung von verzweigtem polymer
US09/719,580 US6979716B1 (en) 1998-06-19 1999-06-18 Process for producing branched polymer and polymer
US11/199,392 US20060052563A1 (en) 1998-06-19 2005-08-09 Process for producing branched polymer and polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP17296098 1998-06-19
JP10/172961 1998-06-19
JP10/172960 1998-06-19
JP17296198 1998-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/199,392 Division US20060052563A1 (en) 1998-06-19 2005-08-09 Process for producing branched polymer and polymer

Publications (1)

Publication Number Publication Date
WO1999065963A1 true WO1999065963A1 (fr) 1999-12-23

Family

ID=26495112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003275 WO1999065963A1 (fr) 1998-06-19 1999-06-18 Procede de fabrication d'un polymere ramifie et polymere correspondant

Country Status (7)

Country Link
US (2) US6979716B1 (ja)
EP (2) EP1160266B1 (ja)
JP (1) JP3990110B2 (ja)
CN (1) CN1294171C (ja)
CA (1) CA2335777C (ja)
DE (1) DE69935259T2 (ja)
WO (1) WO1999065963A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508606A (ja) * 1999-09-08 2003-03-04 スクール オブ ファーマシー, ユニヴァーシティ オブ ロンドン 均一分子量ポリマー
WO2003020779A1 (fr) * 2001-08-31 2003-03-13 Kaneka Corporation Copolymere greffe de polyolefine produit avec un catalyseur de polymerisation de coordination a base d'un complexe de metal de transition apparaissant dans une periode ulterieure et procede pour preparer ce copolymere
JP2003515633A (ja) * 1999-11-30 2003-05-07 ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング Atrp法によって得られるコポリマー並びにその製造方法及び使用
JP2003519703A (ja) * 2000-01-11 2003-06-24 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Atrpマクロモノマーからのクシ型ポリマー
WO2005000928A1 (ja) * 2003-06-27 2005-01-06 Kaneka Corporation 金型離型性を有する硬化性組成物
WO2005000927A1 (ja) * 2003-06-30 2005-01-06 Kaneka Corporation 硬化性組成物
WO2005030866A1 (ja) * 2003-09-29 2005-04-07 Kaneka Corporation 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
JP2005105065A (ja) * 2003-09-29 2005-04-21 Kaneka Corp アクリル系粘着剤
WO2006075712A1 (ja) * 2005-01-14 2006-07-20 Kaneka Corporation 活性エネルギー線硬化型硬化性組成物および該硬化物
WO2007094270A1 (ja) 2006-02-14 2007-08-23 Kaneka Corporation 極性官能基を有するビニル系重合体とその製造方法
JPWO2005087890A1 (ja) * 2004-03-11 2008-01-24 株式会社カネカ 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
JPWO2006109518A1 (ja) * 2005-03-31 2008-10-23 株式会社カネカ 改質ポリオレフィン系樹脂および熱可塑性樹脂組成物ならびにその製造方法
JP2009293015A (ja) * 2008-05-07 2009-12-17 Toray Fine Chemicals Co Ltd 接着剤組成物
JP2011236364A (ja) * 2010-05-12 2011-11-24 Kaneka Corp 制振材用硬化性組成物および制振材
JP4843173B2 (ja) * 1999-11-30 2011-12-21 エボニック ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング 勾配コポリマー並びにその製造方法及びその使用
WO2012043426A1 (ja) * 2010-09-30 2012-04-05 株式会社カネカ 分岐高分子を含有する制振材料用組成物
WO2015080097A1 (ja) * 2013-11-29 2015-06-04 三菱樹脂株式会社 粘着剤樹脂組成物
JP2018127638A (ja) * 2018-04-11 2018-08-16 三菱ケミカル株式会社 粘着剤樹脂組成物
WO2018168992A1 (ja) 2017-03-16 2018-09-20 株式会社カネカ ビニル系櫛型共重合体

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842887B2 (ja) * 1998-06-19 2011-12-21 株式会社カネカ 枝分かれした重合体の製造方法及び重合体
US6608143B1 (en) * 1999-05-07 2003-08-19 Sekisui Chemical Co., Ld. Acrylic copolymer, acrylic pressure-sensitive adhesive composition, acrylic pressure-sensitive adhesive tape or sheet, and acrylic adhesive composition
US20070149713A1 (en) * 2004-12-14 2007-06-28 Kanaeka Corporation Soft vinyl chloride copolymer resin, resin composition and process for preparing the same
US8372912B2 (en) 2005-08-12 2013-02-12 Eastman Chemical Company Polyvinyl chloride compositions
CN100441567C (zh) * 2005-11-02 2008-12-10 苏州大学 丙烯酸酯及甲基丙烯酸酯类侧链型发光聚合物及其合成
WO2007069600A1 (ja) * 2005-12-13 2007-06-21 Kaneka Corporation 制振材用硬化性組成物および制振材
EP2060590A4 (en) * 2006-08-18 2010-02-24 Kaneka Corp PROCESS FOR PRODUCING BRANCHED VINYL POLYMER WITH FUNCTIONAL GROUP
ES2402470T3 (es) 2006-08-30 2013-05-06 Eastman Chemical Company Composiciones sellantes que tienen un nuevo plastificante
PL2057241T3 (pl) 2006-08-30 2012-12-31 Eastman Chem Co Tereftalany jako plastyfikatory w kompozycjach polimeru octanu winylu
EP2102259B1 (en) * 2006-12-12 2012-06-27 Unilever PLC Polymers
JP5059592B2 (ja) * 2007-12-27 2012-10-24 京セラ株式会社 無線通信装置及び通信制御方法
US8975346B2 (en) 2012-05-18 2015-03-10 Sabic Global Technologies B.V. Polycarbonate copolymers via controlled radical polymerization
CN105745230B (zh) 2013-11-27 2019-08-13 日本瑞翁株式会社 自由基聚合引发剂及聚合物的制造方法
KR20160072163A (ko) * 2013-11-29 2016-06-22 미쯔비시 레이온 가부시끼가이샤 (메트)아크릴계 공중합체, 그것을 포함하는 점착제 조성물 및 점착 시트
GB201405624D0 (en) 2014-03-28 2014-05-14 Synthomer Uk Ltd Method of making a branched polymer, a branched polymer and uses of such a polymer
TWI738656B (zh) 2015-06-02 2021-09-11 日商三菱化學股份有限公司 黏著組成物及黏著片以及使用其的披覆材及塗裝物
US10982167B2 (en) 2016-09-21 2021-04-20 Nippon Shokubai Co., Ltd. Viscosity index improver and lubricating oil composition
CN111566135B (zh) * 2017-11-24 2023-08-25 三菱化学株式会社 嵌段共聚物组合物及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4311224B1 (ja) * 1963-08-06 1968-05-11
JPS50150793A (ja) * 1974-05-24 1975-12-03
JPS51125186A (en) * 1972-04-14 1976-11-01 Cpc International Inc Process for produsing chemically bonded phaseeseparating thermoplastic graft copolymers
JPS5433589A (en) * 1971-02-22 1979-03-12 Cpc International Inc Preparation of copolymerizable high molecular monomer
JPS6395215A (ja) * 1986-09-23 1988-04-26 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 新規なマクロモノマー組成物
JPH03200886A (ja) * 1989-12-28 1991-09-02 Toagosei Chem Ind Co Ltd 粘着剤
JPH05186517A (ja) * 1991-07-02 1993-07-27 Roehm Gmbh マクロ単量体及びくし型重合体の製法
JPH06166730A (ja) * 1992-12-01 1994-06-14 Toagosei Chem Ind Co Ltd 懸濁重合法によるグラフトコポリマーの製造方法
JPH06234822A (ja) * 1993-02-10 1994-08-23 Mitsubishi Rayon Co Ltd グラフト共重合体の製造方法
JPH1072513A (ja) * 1997-09-22 1998-03-17 Mitsubishi Rayon Co Ltd アクリル系くし形共重合体および耐衝撃性樹脂組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053461A (en) * 1988-08-31 1991-10-01 Mitsubishi Rayon Co., Ltd. Preparation method of comb copolymer, acrylic comb copolymer, and impact resistant resin composition
DE4309853A1 (de) * 1993-03-26 1994-09-29 Roehm Gmbh Thermoplastisch verarbeitbare Elastomere mit verbesserten optischen Eigenschaften
US5763548A (en) 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
US5807937A (en) * 1995-11-15 1998-09-15 Carnegie Mellon University Processes based on atom (or group) transfer radical polymerization and novel (co) polymers having useful structures and properties
JP3806475B2 (ja) 1996-02-08 2006-08-09 株式会社カネカ 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
DE69710130T2 (de) 1996-06-26 2002-08-29 Kaneka Corp Verfahren zur Herstellung von Vinylpolymeren
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
DE69729843T2 (de) * 1996-11-28 2005-08-25 Kaneka Corp. Verfahren zur Herstellung eines (Meth)acrylpolymers mit endständiger Hydroxylgruppe und dieses Polymer
TW593347B (en) 1997-03-11 2004-06-21 Univ Carnegie Mellon Improvements in atom or group transfer radical polymerization
WO1998047931A1 (fr) * 1997-04-18 1998-10-29 Kaneka Corporation Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres
US6274688B1 (en) * 1997-07-28 2001-08-14 Kaneka Corporation Functional groups-terminated vinyl polymers
WO1999043719A1 (fr) 1998-02-27 1999-09-02 Kaneka Corporation Polymere et composition solidifiable

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4311224B1 (ja) * 1963-08-06 1968-05-11
JPS5433589A (en) * 1971-02-22 1979-03-12 Cpc International Inc Preparation of copolymerizable high molecular monomer
JPS51125186A (en) * 1972-04-14 1976-11-01 Cpc International Inc Process for produsing chemically bonded phaseeseparating thermoplastic graft copolymers
JPS50150793A (ja) * 1974-05-24 1975-12-03
JPS6395215A (ja) * 1986-09-23 1988-04-26 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 新規なマクロモノマー組成物
JPH03200886A (ja) * 1989-12-28 1991-09-02 Toagosei Chem Ind Co Ltd 粘着剤
JPH05186517A (ja) * 1991-07-02 1993-07-27 Roehm Gmbh マクロ単量体及びくし型重合体の製法
JPH06166730A (ja) * 1992-12-01 1994-06-14 Toagosei Chem Ind Co Ltd 懸濁重合法によるグラフトコポリマーの製造方法
JPH06234822A (ja) * 1993-02-10 1994-08-23 Mitsubishi Rayon Co Ltd グラフト共重合体の製造方法
JPH1072513A (ja) * 1997-09-22 1998-03-17 Mitsubishi Rayon Co Ltd アクリル系くし形共重合体および耐衝撃性樹脂組成物

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508606A (ja) * 1999-09-08 2003-03-04 スクール オブ ファーマシー, ユニヴァーシティ オブ ロンドン 均一分子量ポリマー
JP4883515B2 (ja) * 1999-09-08 2012-02-22 ポリセリックス リミテッド 均一分子量ポリマー
JP2003515633A (ja) * 1999-11-30 2003-05-07 ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング Atrp法によって得られるコポリマー並びにその製造方法及び使用
JP2011157555A (ja) * 1999-11-30 2011-08-18 Evonik Rohmax Additives Gmbh Atrp法によって得られるコポリマー並びにその製造方法及び使用
JP4843173B2 (ja) * 1999-11-30 2011-12-21 エボニック ローマックス アディティヴス ゲゼルシャフト ミット ベシュレンクテル ハフツング 勾配コポリマー並びにその製造方法及びその使用
JP2003519703A (ja) * 2000-01-11 2003-06-24 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Atrpマクロモノマーからのクシ型ポリマー
WO2003020779A1 (fr) * 2001-08-31 2003-03-13 Kaneka Corporation Copolymere greffe de polyolefine produit avec un catalyseur de polymerisation de coordination a base d'un complexe de metal de transition apparaissant dans une periode ulterieure et procede pour preparer ce copolymere
US7335703B2 (en) 2001-08-31 2008-02-26 Kaneka Corporation Polyolefin graft copolymer prepared in the presence of coordination polymerization catalyst based on late transition metal complex and method for making the same
JPWO2005000928A1 (ja) * 2003-06-27 2006-08-03 株式会社カネカ 金型離型性を有する硬化性組成物
WO2005000928A1 (ja) * 2003-06-27 2005-01-06 Kaneka Corporation 金型離型性を有する硬化性組成物
JP4881005B2 (ja) * 2003-06-30 2012-02-22 株式会社カネカ 硬化性組成物
JPWO2005000927A1 (ja) * 2003-06-30 2006-08-03 株式会社カネカ 硬化性組成物
WO2005000927A1 (ja) * 2003-06-30 2005-01-06 Kaneka Corporation 硬化性組成物
JP2005105065A (ja) * 2003-09-29 2005-04-21 Kaneka Corp アクリル系粘着剤
JP4787018B2 (ja) * 2003-09-29 2011-10-05 株式会社カネカ 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
WO2005030866A1 (ja) * 2003-09-29 2005-04-07 Kaneka Corporation 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
JPWO2005087890A1 (ja) * 2004-03-11 2008-01-24 株式会社カネカ 活性エネルギー硬化型現場成形ガスケット用組成物および現場成形ガスケット
WO2006075712A1 (ja) * 2005-01-14 2006-07-20 Kaneka Corporation 活性エネルギー線硬化型硬化性組成物および該硬化物
JPWO2006109518A1 (ja) * 2005-03-31 2008-10-23 株式会社カネカ 改質ポリオレフィン系樹脂および熱可塑性樹脂組成物ならびにその製造方法
WO2007094270A1 (ja) 2006-02-14 2007-08-23 Kaneka Corporation 極性官能基を有するビニル系重合体とその製造方法
JP2009293015A (ja) * 2008-05-07 2009-12-17 Toray Fine Chemicals Co Ltd 接着剤組成物
JP2011236364A (ja) * 2010-05-12 2011-11-24 Kaneka Corp 制振材用硬化性組成物および制振材
WO2012043426A1 (ja) * 2010-09-30 2012-04-05 株式会社カネカ 分岐高分子を含有する制振材料用組成物
JP5809633B2 (ja) * 2010-09-30 2015-11-11 株式会社カネカ 分岐高分子を含有する制振材料用組成物
WO2015080097A1 (ja) * 2013-11-29 2015-06-04 三菱樹脂株式会社 粘着剤樹脂組成物
JP2015105296A (ja) * 2013-11-29 2015-06-08 三菱樹脂株式会社 粘着剤樹脂組成物
US9809731B2 (en) 2013-11-29 2017-11-07 Mitsubishi Chemical Corporation Adhesive resin composition
WO2018168992A1 (ja) 2017-03-16 2018-09-20 株式会社カネカ ビニル系櫛型共重合体
JP2018127638A (ja) * 2018-04-11 2018-08-16 三菱ケミカル株式会社 粘着剤樹脂組成物

Also Published As

Publication number Publication date
DE69935259T2 (de) 2007-10-25
DE69935259D1 (de) 2007-04-05
EP1160266B1 (en) 2007-02-21
EP1686143A2 (en) 2006-08-02
EP1686143A3 (en) 2006-08-16
US6979716B1 (en) 2005-12-27
US20060052563A1 (en) 2006-03-09
CN1306546A (zh) 2001-08-01
EP1160266A1 (en) 2001-12-05
CA2335777C (en) 2008-08-19
CN1294171C (zh) 2007-01-10
CA2335777A1 (en) 1999-12-23
JP3990110B2 (ja) 2007-10-10
EP1160266A4 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
WO1999065963A1 (fr) Procede de fabrication d&#39;un polymere ramifie et polymere correspondant
JP4842887B2 (ja) 枝分かれした重合体の製造方法及び重合体
JP4176900B2 (ja) 硬化性組成物
EP1153950B1 (en) Resin composition, polymer, and process for producing polymer
EP1865009B1 (en) Modified thermoplastic resin
US20090082488A1 (en) Curable composition, adhesive composition containing such curable composition, and adhesive
JP4405619B2 (ja) 硬化性組成物
WO1999043719A1 (fr) Polymere et composition solidifiable
CA2342872A1 (en) Polymer, processes for producing polymer, and composition
JP4215898B2 (ja) 粘着剤組成物
JP3701795B2 (ja) 重合体及び用途
JP2000072815A (ja) 重合体及び硬化性組成物
JP4024669B2 (ja) 末端に重合性炭素―炭素二重結合を持つ基を有するビニル系重合体の安定化方法
WO2005030866A1 (ja) 現場成形ガスケット用組成物及びガスケット、並びに、(メタ)アクリル系重合体及びその硬化性組成物
JP4391630B2 (ja) 硬化性組成物
JP2000136211A (ja) 水性エマルジョン
WO1999050315A1 (fr) Polymere et procede de production de polymere
JP2005105065A (ja) アクリル系粘着剤
JP3962184B2 (ja) 樹脂組成物、重合体及び重合体の製造方法
JP3946900B2 (ja) 重合体及び重合体の製造方法
JP4181144B2 (ja) 重合体及び用途
JP2005015721A (ja) 塗料用組成物
JP4881330B2 (ja) 硬化性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807554.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2335777

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999925386

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09719580

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999925386

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999925386

Country of ref document: EP