WO1999010909A1 - Ecran a plasma et procede de fabrication de cet ecran - Google Patents

Ecran a plasma et procede de fabrication de cet ecran Download PDF

Info

Publication number
WO1999010909A1
WO1999010909A1 PCT/JP1998/003825 JP9803825W WO9910909A1 WO 1999010909 A1 WO1999010909 A1 WO 1999010909A1 JP 9803825 W JP9803825 W JP 9803825W WO 9910909 A1 WO9910909 A1 WO 9910909A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
partition wall
coating film
plasma display
pattern
Prior art date
Application number
PCT/JP1998/003825
Other languages
English (en)
French (fr)
Inventor
Ken Horiuchi
Yuichiro Iguchi
Takaki Masaki
Go Moriya
Yukichi Deguchi
Kiwame Arizumi
Yoshiyuki Kitamura
Yoshinori Tani
Isamu Sakuma
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10146273A external-priority patent/JPH11339668A/ja
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to DE69832583T priority Critical patent/DE69832583T2/de
Priority to US09/297,143 priority patent/US6184621B1/en
Priority to EP98940588A priority patent/EP0935275B1/en
Priority to KR10-1999-7003631A priority patent/KR100522067B1/ko
Publication of WO1999010909A1 publication Critical patent/WO1999010909A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • H01J2211/361Spacers, barriers, ribs, partitions or the like characterized by the shape
    • H01J2211/363Cross section of the spacers

Definitions

  • the present invention relates to a plasma display and a method for manufacturing the same.
  • Plasma displays can be used for large televisions, computers and monitors. Background art
  • Plasma displays are used in fields such as office automation equipment and public information displays because they can display at higher speeds than liquid crystal panels and can be easily enlarged. In addition, progress in the field of high-definition television is highly expected.
  • FIG. 1 shows a simple configuration diagram of an AC type plasma display.
  • a barrier also referred to as a barrier or a rib
  • the partition is formed in a stripe shape.
  • the above partition walls have a width of about 30 to 80 wm and a height of about 70 to 200 / m, but are usually screen-printed with an insulating paste containing glass powder on the front and rear glass substrates. Printing and drying by the method, this printing and drying process is repeated several times to form a predetermined height.
  • a partition is formed by forming an insulating paste containing glass powder in a partition pattern shape and then firing. At this time, the end of the partition wall is peeled off from the base as shown in FIG. 4 and jumps up due to the difference in firing shrinkage between the upper and lower parts of the partition wall, or the peeling is made as shown in FIG.
  • the upper part of the bulkhead swelled.
  • Japanese Patent Application Laid-Open No. 6-150828 proposes a method in which the partition has a multilayer structure, the composition of the upper layer and the lower layer is changed, and glass having a lower melting point than the upper layer is provided in the lower layer.
  • Japanese Patent Application Laid-Open No. 6-150831 proposes a method of providing an under glass layer on a base at an end. However, none of these methods was sufficient to prevent swelling.
  • Japanese Patent Application Laid-Open No. 6-150832 describes a method in which the end of a partition wall is stepped, but it is not enough to prevent swelling. Disclosure of the invention
  • the plasma display in the present invention refers to a display that performs display by discharging in a discharge space separated by a partition, and includes a plasma-addressed liquid crystal display as well as the AC-type plasma display described above. Including various discharge-type displays.
  • An object of the present invention is a plasma display in which a dielectric layer and a stripe-shaped partition are formed on a substrate, wherein the partition has an inclined portion at a longitudinal end portion;
  • the plasma display is characterized in that the height (Y) of the inclined portion and the length (X) of the base of the inclined portion are in the following ranges.
  • Another object of the present invention is a method for manufacturing a plasma display in which a dielectric layer and a stripe-shaped partition are formed on a substrate, wherein a slope is formed at an end using a partition paste comprising an inorganic material and an organic component.
  • a step of forming a stripe-shaped partition pattern having the same on a substrate and a step of baking the partition pattern, the partition has a slope at a longitudinal end thereof, and the height ( ⁇ ) of the slope and the slope This is achieved by a method of manufacturing a plasma display, wherein a stripe-shaped partition wall having a length (X) of the bottom of the portion in the following range is formed.
  • FIG. 1 is a diagram showing the structure of a plasma display.
  • FIG. 2 is a side view showing the shape of the partition wall of the present invention.
  • FIG. 3 is a side view showing the shape of a conventional partition wall.
  • FIG. 4 is a side view showing the shape of the partition wall after baking.
  • FIG. 5 is a side view showing the shape of the swell.
  • FIG. 6, FIG. 7 and FIG. 8 are side views showing one example of the partition wall shape of the present invention.
  • FIG. 9 is a cross-sectional view showing an example of an inclined surface formed on a paste application film for partition walls.
  • FIG. 10 is a cross-sectional view showing the relationship between the shape of a blade or a grindstone and the shape of an end portion of a coating film shaved by the shape.
  • FIGS. 11 and 12 show an example of a method of forming an inclined surface by shaving an end portion of a coating film with a blade, which is a preferable manufacturing method of the present invention.
  • FIG. 13 is a sectional view of a partition matrix preferably used in the manufacturing method of the present invention.
  • FIG. 14 is a sectional view of a partition pattern in which an inclined surface is formed at an end of a coating film in Example 3.
  • the plasma display of the present invention needs to have a slope at the end of the partition.
  • a slope at the end of the partition wall By having a slope at the end of the partition wall, the stress caused by the shrinkage stress and adhesive force at the upper part of the partition wall can be reduced as shown in Fig. 2, Can be prevented.
  • the inclined portion has a slope. Anything is good. Further, it is preferable that the inclined portions are formed at both ends of the partition wall in order to eliminate uneven gap between the front plate and the rear plate at the time of panel sealing.
  • the inclined portion may be combined with a step shape as shown in FIG.
  • the height of the portion other than the inclined portion is preferably 5 Owm or less.
  • a stepped shape having a right-angled portion cannot balance the contraction stress, so the higher the height, the higher the level of the swelling or swelling. When it is 50 / m or less, the bulge is small, and when a panel of 20 inches or more is formed, the front plate and the partition wall are in close contact with each other, and crosstalk is unlikely to occur.
  • it is more preferable to provide the inclined portion at the uppermost portion of the partition wall. The swelling can be eliminated by having the inclined portion at the top.
  • the height (Y) of the inclined portion and the length (X) (FIG. 7) of the base of the inclined portion are within the ranges shown below.
  • the length (X) of the base of the slope is preferably 0.05 to 5 O mm. Since the slope is lower than the desired partition height and the image is disturbed, X is 5 O mm. Is not preferable. More preferably, it is 10 mm or less, still more preferably 5 mm or less. On the other hand, when the thickness is less than 0.05 mm, the formation of the inclined portion has little effect on the suppression of the jump and the rise.
  • the inclination angle of the inclined portion of the partition wall is preferably 0.5 to 60 degrees. If the slope is not on a straight line, the angle of the portion where the slope is maximized is assumed to be the slope angle as shown in Fig. 8. If the inclination angle is less than 0.5 degrees, the inclined part becomes too long, which is not preferable in panel design. Gully cannot be suppressed sufficiently.
  • the preferred range is 20 to 50 degrees. Since the swelling and bouncing occur during firing, it is preferable to form the inclined portion before firing the partition walls.
  • the preferred shape of the partition pattern end before firing is 0.5 ⁇ ' ⁇ ( ⁇ 'Xr) ⁇ 100. Range.
  • the height Y ′ of the inclined portion before firing is 0.2 to 1 times the height of the partition pattern before firing, which is effective for preventing the partition wall end from rising. If it is less than 0.2 times, the difference in the firing shrinkage stress between the upper part and the lower part of the partition wall cannot be alleviated, and the protrusion cannot be prevented. If the ratio is set to 1, the dielectric or the electrode provided on the substrate may be damaged depending on the process of forming the inclined portion. Therefore, the ratio is preferably 0.9 or less. More preferably, it is 0.3 to 0.8 times.
  • the method of measuring the shape of the inclined portion is not particularly limited, but is preferably measured using an optical microscope, a scanning electron microscope, or a laser microscope.
  • HI TACH IS-2400 when using a scanning electron microscope (HI TACH IS-2400), the following method is preferable. Cut so that the end of the partition wall comes out accurately, and process it to a size that allows observation. For the measurement magnification, select the position where the inclined part is in the field of view. Then, take a photograph after calibrating the scale with a standard sample of the same size as the slope. Measure the lengths of X and Y using the method shown in Fig. 7, and calculate the shape from the scale.
  • HI TACH IS-2400 scanning electron microscope
  • a laser-focus displacement meter for example, LT-8010 manufactured by Keyence Corporation
  • the method of forming the inclined portion at the end of the partition is not particularly limited, but the following method can be used.
  • One method is to apply the glass paste for barrier ribs on the substrate so that the edge of the coating film forms an inclined surface, and the inclined surface of the coating film is the longitudinal end of the stripe-shaped barrier rib pattern.
  • This is a method of forming a partition pattern so that The application method is not particularly limited, but it is preferable to use screen printing, a roll copier, a doctor blade, and a slit die copper which is discharged from a base.
  • a screen printing method, a sand blast method, a lift-off method, a photolithography method, or the like can be used as the partition pattern forming method.
  • the coating film having the inclined surface is exposed through a photomask having a stripe-shaped pattern, and is developed to form a stripe-shaped partition pattern.
  • a photomask having a stripe pattern longer than the length of the coating film having the inclined surface as an end a stripe-shaped partition pattern having an inclined portion at the end can be obtained.
  • This method does not require any post-processing, and can form the inclined portion without increasing the number of steps.
  • Another method is to apply a glass paste for barrier ribs on a substrate and then apply a coating film to form an inclined surface such that the inclined surface of the coating film is the longitudinal end of the stripe-shaped barrier rib pattern. Is a method of forming a partition pattern on the substrate.
  • any method may be used to form the inclined surface by processing the coating film, it is preferable to form a slanted surface by spraying a fluid onto the coating film. Specifically, a fluid is sprayed onto the flowable remaining coating film that has not yet been completely dried and hardened to form an inclined surface as shown in FIG.
  • the fluid used in this method may be any substance as long as it is a liquid or gas at the working temperature, but it is a substance that does not remain on the substrate after the firing step and that can perform the work cleanly Is preferred.
  • the fluid is preferably a gas because of its cleanliness and no need for recovery.
  • the gas component is not particularly limited, but air or nitrogen is preferably used in terms of cost. If a gas is used as the fluid, a flowable coating film that has not yet been completely dried and cured It is preferable to form a slope by injecting gas into the air. It is also preferable to use a solvent as the fluid. When a solvent is used as the fluid, precise processing is possible by spraying the solvent onto the dried and cured coating film to form an inclined surface.
  • a nozzle or a slit it is preferable to use a nozzle or a slit to eject the fluid.
  • the inner diameter of the nozzle and the gap between the slits are each preferably 0.01 mm to 3 mm. If the thickness is less than 0.01 mm, a required flow rate cannot be obtained at the time of fluid ejection, and an inclined surface cannot be formed. If it exceeds 3 mm, it will be difficult to control the fluid ejection position.
  • a method of mechanically cutting and processing may be used.
  • the term “cutting” as used herein includes cutting with a blade or a grindstone or the like, cutting with a sand blast, baking by laser irradiation, and the like.
  • the cutting amount depends on the thickness of the coating film, and is preferably from 10 to 90%, more preferably from 50 to 80% of the coating film thickness. If the cutting amount is too large, the substrate may be shaved. If the cutting amount is too small, a portion that cannot be cut due to the unevenness of the coating film thickness occurs. Cutting after drying and curing of the coating film is preferable because it does not cause swelling due to cutting.
  • This method may be applied after curing with heat or ultraviolet rays. The method can be applied to a case where a pattern is exposed to ultraviolet rays on a coating film by a photolithography method and a partially cured portion is formed.
  • the cutting speed may be determined by examining the condition of the cutting section, but is preferably 0.05 to 10 minutes.
  • the coating film is formed by applying a photosensitive paste and a partition pattern is formed by a photolithography method
  • the lift-off method When the lift-off method is used for forming the partition wall pattern, it is preferable to fill the resin die with the partition wall paste, dry and cure, and then simultaneously cut the resin die and the partition paste coating film. Simultaneous cutting can prevent the partition wall pattern from falling down. Furthermore, shavings can be removed together in the process of removing the resin mold, thus preventing defects. Is also advantageous.
  • a resin mold is formed as a matrix of a partition pattern on a glass substrate using a photosensitive resin, and the partition mold is filled with the resin mold. Subsequently, after the partition wall paste is dried, the resin mold is removed to form a partition pattern, and the partition pattern is fired to form the partition walls.
  • the unnecessary portion may be removed by sand blasting and then cut together with the resist layer. Since shavings can be removed at the same time when the resist layer is removed, it is advantageous in preventing defects.
  • the sand blast method is a method in which a resist layer is applied on a partition paste application film, the resist layer is exposed and developed to form a partition pattern mask, and an unnecessary portion is removed by sand blast to form a partition pattern. After the formation, the resist layer is removed and the partition pattern is baked to form the partition.
  • FIG. 10 shows an example of a preferable shape of the end of the coating film on which the inclined surface is formed by cutting.
  • the height of the non-inclined surface is t1
  • the thickness of the coating film is t2
  • the inclination angle of the inclined surface is ⁇
  • tl Z t2 0.1 to 0.8
  • 0.1 to 60 degrees Is preferable.
  • it is only necessary to use a shaping tool or a grindstone having a shape corresponding to the desired shape of the inclined surface for example, a shape shown by a broken line in FIG. 10).
  • the substrate may be fixed and the cutting means such as a blade or a grindstone may be moved, or the cutting means may be fixed and the substrate may be moved.
  • FIGS. 11 and 12 show a side view of FIG. 10 when a blade is used.
  • the blade is fixed and the substrate is moved in the direction of the arrow.
  • the angle of the blade with respect to the substrate may be opposite to the substrate as shown in FIG. 11 or may be such that the blade covers the substrate as shown in FIG. It should be selected according to the characteristics of the coating film. In both cases, the angle ⁇ between the blade and the substrate is preferably from 10 to 80 degrees, particularly preferably from 15 to 60 degrees.
  • the injection angle of the sandblast and the irradiation angle of the laser are important, but the angle may be set so as to match the desired inclined surface shape.
  • the preferred angle is 0.1 to 60 degrees as described above.
  • the suction pressure of the device used for suction is preferably 10 to 500 hPa.
  • the relative position of the blade or the grindstone with respect to the coating film may be changed according to the coating film profile so that the film thickness is always constant.
  • the substrate has undulations of several tens of m.
  • the coating film may be dissolved and processed by a solvent.
  • the slope is formed by rubbing the coating film with a solvent or the like contained in a cloth or the like.
  • a wedge-shaped press may be applied to the coating film to form an inclined surface.
  • a photomask having a strip-like pattern longer than the length of the coating film with the inclined surface at the end is used, as described above, so that the inclined portion is formed at the end.
  • the length of the coating film with the inclined surface as the end means the length of the coating film when the inclined surface is regarded as the end.
  • coating film residue an unnecessary part of the coating film (hereinafter referred to as coating film residue) is left outside the formed inclined surface during processing of the coating film, the coating film residue is applied with the inclined surface as an end. It is not included in the film length.
  • the coating film residue is removed from the substrate in a post-process such as a development process.
  • FIG. 9 shows a state in which an inclined surface is formed in the coating film.
  • the left side of the drawing is the coating film, and the side is the outside of the coating film.
  • the dotted line on the left side of the drawing indicates the end of the coating film length. Department.
  • a photomask having a length longer than the length of the coating film with the inclined surface as an end and not including the coating film residue that is, a length in which the end of the pattern exists between the dotted line on the left and the dotted line on the right in the drawing.
  • the end may be processed to form the inclined portion.
  • the partition is formed after forming the inclined portion as described above. It is preferable to form a pattern.
  • Another method of forming an inclined portion at the end of the partition is a step of filling a partition base made of an inorganic material and an organic component into a partition matrix having striped grooves, and filling the partition matrix. Transferring the paste for partition walls onto a substrate, and baking the paste for partition walls at 400 to 600 ° C. in this order.
  • a groove corresponding to the partition wall pattern is formed in advance in the partition wall matrix, a glass paste for the partition wall is filled into the groove, and the paste is transferred from the partition wall matrix onto the glass substrate to form a partition wall pattern. .
  • the glass paste is transferred to a glass substrate to form a partition wall pattern. Is less likely to occur. Also, the transfer while heating facilitates the detachment of the paste from the partition wall matrix. Further, when the organic component in the glass paste contains a component that is thermally polymerized, the volume changes due to the polymerization shrinkage, so that the separation of the partition wall type becomes easy.
  • an inclined portion may be formed at the end portion of the partition wall pattern by the above-described inclined surface forming method. Forming the portion eliminates the need for post-processing, and can form the inclined portion without increasing the number of steps, which is preferable.
  • Still another method is a step of applying a partition wall paste composed of an inorganic material and an organic component to a substrate to form a coating film, and pressing a partition wall mold having striped grooves formed in the coating film. And forming the partition pattern at 400 ° C. to 600 ° C. in this order.
  • a partition wall pattern is formed by applying a glass paste for partition walls uniformly in advance on a part or the entire surface of a glass substrate, and pressing a partition wall mold against the paste applied layer.
  • the method for uniformly applying the glass paste to the glass substrate is not particularly limited, but a screen printing method, a coating method using a die or a roll or the like is preferable.
  • an inclined portion is formed in advance at an end of a groove formed in the partition wall matrix.
  • FIG. 13 is a cross-sectional view of a partition wall mold preferably used in each of the above-described manufacturing methods.
  • the groove formed in the partition wall mold has an inclined portion at a longitudinal end portion.
  • Constituting the partition matrix As the material to be used, a polymer resin or a metal is preferably used.In the former method, a partition wall mold made of silicone rubber can be preferably used, and in the latter method, a metal plate is patterned. A partition wall mold prepared by etching, pattern grinding using an abrasive, or the like can be preferably used.
  • Boosting can be prevented by improving the adhesion to the base.
  • the partition wall for a plasma display of the present invention has a lower surface width of Lb, a half width of Lh, and an upper surface width of Lt,
  • Lb indicates the width at the bottom of the partition
  • Lh indicates the half-value width (assuming the height of the partition is 100, the line width at a height of 50 from the bottom)
  • Lt indicates the width at the top of the partition.
  • Lt / Lh is greater than 1, the shape becomes constricted at the center of the partition wall, and the ratio of the discharge space to the pitch of the partition wall, that is, the aperture ratio becomes small, so that the brightness decreases.
  • unevenness in coating that is, thickness unevenness ⁇ ⁇ non-uniformity occurs during the formation of the phosphor.
  • L bZL h is less than 1, the strength is low, and the partition walls may fall down or meander, which is not preferable.
  • it is larger than 2 the discharge space is reduced and the brightness is reduced.
  • the strength is weak, and the fall is likely to occur, which is not preferable.
  • a trapezoidal or rectangular shape having no constriction on the lower surface of the partition wall is preferable as the shape.
  • the porosity of the partition wall in the present invention is preferably 10% or less, more preferably 3% or less, since the partition wall is prevented from falling down and has excellent adhesion to the substrate.
  • the porosity (P) is given by the following equation: d th is the true specific gravity of the partition wall material and d ex is the measured density of the partition wall.
  • the true specific gravity of the partition wall material is preferably calculated using the so-called Archimedes' method as follows. Using a mortar, crush the partition wall material to a size of not more than 325 mesh so that it does not feel at the fingertips. Then, the true specific gravity is obtained as described in JIS-R2205. Next, the measured density is measured using the Archimedes method in the same manner as described above, except that the partition wall is cut away so as not to lose its shape, and pulverization is not performed.
  • the porosity is more than 10%, the adhesion strength is reduced, and in addition, the light emission characteristics are deteriorated, such as insufficient strength, and a decrease in luminance due to adsorption of gas and moisture discharged from the pores during discharging.
  • the light emission characteristics of the panel such as discharge life and luminance stability, it is more preferably 1% or less.
  • the partition wall material When used as a partition of a plasma display or a plasma-free liquid crystal display, a pattern is formed on a glass substrate with a low glass transition point and softening point, so the partition wall material has a glass transition point of 430 to 500 ° C and a softening point of 470. It is preferable to use a glass material of up to 580 ° C. If the glass transition point is higher than 500 ° C and the softening point is higher than 580 ° C, it must be fired at a high temperature, and the substrate will be distorted during firing. A material having a glass transition point of 430T and a softening point of 470, which is lower, does not allow a dense partition layer to be obtained, causing peeling, disconnection, and meandering of the partition walls.
  • the glass transition point and the softening point are preferably measured as follows. Approximately 10 Omg of a glass sample is heated in air for 20 minutes using the differential thermal analysis (DTA) method, and the temperature is plotted on the horizontal axis and the calorific value is plotted on the vertical axis, and a DTA curve is drawn. From the DTA curve, read the glass transition point and softening point.
  • DTA differential thermal analysis
  • thermal expansion coefficient of the general high strain point glass used for the substrate glass is 80 ⁇ 9 0 X 1 0- 7 Bruno K
  • warping of the substrate, for prevent cracking during the panel sealing is , 50 to 400 coefficient of thermal expansion ° C (shed 50-400) is 50 ⁇ 90 X 1 0- 7 ZK
  • the composition of the partition wall material it is preferable that silicon oxide is mixed in the glass in a range of 3 to 60% by weight. If the content is less than 3% by weight, the denseness, strength and stability of the glass layer will be reduced, and the coefficient of thermal expansion will be out of the desired values. Further, when the content is set to 60% by weight or less, there is an advantage that a heat softening point is lowered and baking on a glass substrate becomes possible.
  • boron oxide in glass in the range of 5 to 50% by weight, electrical, mechanical and thermal properties such as electrical insulation, strength, coefficient of thermal expansion, and denseness of the insulating layer are improved. Can be. If it exceeds 50% by weight, the stability of the glass will be reduced.
  • the use of a glass powder containing 2 to 15% by weight of at least one of lithium oxide, sodium oxide, and potassium oxide also makes it possible to obtain a photosensitive paste having a temperature characteristic capable of being patterned on a glass substrate. it can.
  • the stability of the paste can be improved by adding an oxide of an alkali metal such as lithium, sodium, potassium or the like in an amount of 15% by weight or less, preferably 15% by weight or less.
  • the glass composition containing lithium oxide is expressed in terms of oxide.
  • sodium oxide or potassium oxide may be used instead of lithium oxide, but lithium oxide is preferred from the viewpoint of paste stability.
  • glass containing both metal oxides, such as lead oxide, bismuth oxide, and zinc oxide, and metal oxides, such as lithium oxide, sodium oxide, and oxidizing power has a lower aluminum content.
  • the softening point and linear thermal expansion coefficient can be easily controlled by the amount.
  • the thickness of the dielectric layer is preferably 5 to 20 m, more preferably 8 to 15 m, for forming a uniform dielectric layer. If the thickness exceeds 20, the solvent is difficult to be removed during firing and cracks are likely to occur, and the substrate is warped due to a large stress applied to the substrate. If the thickness is less than 5 zm, it is difficult to maintain the uniformity of the thickness.
  • the partition pattern is formed on the dielectric layer coating film
  • the partition pattern and the dielectric layer coating film are simultaneously baked, the binder layer of the dielectric layer coating film and the partition pattern will be simultaneously de-bindered. Shrinkage stress due to binder removal is reduced, and peeling and disconnection can be prevented.
  • peeling or disconnection is likely to occur during baking due to insufficient adhesion between the partition and the dielectric layer. . Also, when the partition pattern and the dielectric layer coating film are baked simultaneously, there is an advantage that the number of steps can be reduced.
  • the film after forming the coating film for the dielectric layer because the coating film is not eroded by the developer in the partition wall pattern forming step.
  • a photosensitive paste for the dielectric layer apply it to a glass substrate, dry it, expose it, and then light cure it. It is suitably used in
  • the coating film can be cured by thermal polymerization.
  • thermal polymerization there is a method of adding a radical polymerizable monomer and a radical polymerization initiator to the dielectric layer paste, applying the paste, and then heating the paste.
  • the coating of the dielectric layer may not be cured. However, compared to the case where the coating is cured, the dielectric layer is eroded by the developing solution in the partition pattern forming step, and cracks are more likely to occur in the dielectric layer. Therefore, a polymer that is insoluble in the developer must be selected.
  • the dielectric layer of the present invention 5 0 to 4 0 0 ° thermal expansion coefficient monument 5 range of C. ⁇ 4 . . Of glass whose main component is 70 to 85 X 10 _ 7 / K, more preferably 72 to 80 X 10 _ 7 K, matches the coefficient of thermal expansion of the substrate glass. However, it is preferable in that the stress applied to the glass substrate during firing is reduced. 60% by weight in all components As mentioned above, preferably, it is contained in an amount of 70% by weight or more. 8 5 when X 1 0- 7 / K Ru beyond, stress is applied as the substrate is warped in forming surface of the dielectric layer, the substrate surface without side of the dielectric layer is less than 70 X 1 0- 7 ⁇ Is applied. Therefore, the substrate may be cracked when the substrate is repeatedly heated and cooled. In addition, when sealing with the front substrate, the substrates may not be parallel and cannot be sealed due to warpage of the substrates.
  • the warpage amount of the substrate for a plasma display of the present invention since the inversely proportional to the radius of curvature R of the substrate, the positive and negative values of c where warpage which can be defined by a radius of curvature of the inverse of the substrate (1Zr) substrate Represents the direction of warping.
  • the curvature radius of a glass substrate can be measured by various methods, but the simplest method is to measure the undulation of the substrate surface using a surface roughness meter (Tokyo Seimitsu Co., Ltd .: Surfcom 150 OA, etc.). is there. From the maximum deviation H and the measured length L of the obtained undulation curve, the amount of warpage 1 ZR can be calculated using the following equation.
  • the board is warped, a gap is created between the head of the bulkhead and the surface of the front plate when sealing the front and back plates, causing erroneous discharge between the cells or during sealing.
  • the board may be damaged.
  • the absolute value of the amount of warpage must be 3 X 10 ⁇ m 1 or less. That is, the amount of warpage of the substrate must be within the range of the following equation.
  • substantially free of Al force Li metal in the dielectric layer By not doing so, it is possible to prevent warpage of the substrate during firing and cracking during panel sealing.
  • “substantially not contained” means that the content of the alkali metal is 0.5% by weight or less, preferably 0.1% by weight or less based on the inorganic material. Even if the coefficient of thermal expansion matches that of the substrate glass, if the content of alkali metals such as Na (sodium), Li (lithium), K (potassium), etc.
  • the composition does not substantially contain an alkaline earth metal.
  • the dielectric layer of the present invention is preferably at least two layers. On glass substrate A two-layer structure of a dielectric layer formed on the electrode (referred to as dielectric layer A) and a dielectric layer formed on dielectric layer A (referred to as dielectric layer B) is preferable.
  • dielectric layer A a dielectric layer formed on the electrode
  • dielectric layer B a dielectric layer formed on dielectric layer A
  • the components in the dielectric layer A react with silver ions or components on the glass substrate, such as ion exchange, to cause a problem that the dielectric layer A is colored.
  • the dielectric layer A may become yellow.
  • the dielectric layers A and B of the present invention are inorganic materials that do not substantially contain metal.
  • the dielectric layer of the present invention uses at least one of bismuth oxide, lead oxide, and zinc oxide, and more preferably, glass containing 10 to 60% by weight of bismuth oxide. It is preferable because control becomes easy. In particular, use of glass containing 10 to 60% by weight of bismuth oxide has advantages such as stability of the paste. If the added amount of bismuth oxide, lead oxide, or zinc oxide exceeds 60% by weight, the heat resistance temperature of the glass becomes too low, and it is difficult to bake on a glass substrate.
  • glass compositions include those containing the following compositions in terms of oxides, but the present invention is not limited to these glass compositions.
  • Silicon oxide 3 to 50% by weight
  • Zinc oxide 10-20% by weight
  • the inorganic material contained in the dielectric layer of the present invention white fillers such as titanium oxide, alumina, silica, barium titanate, and zirconia are used.
  • An inorganic material containing 50 to 95% by weight of glass and 5 to 50% by weight of filler is used. By including the filler in the above range, the reflectance of the dielectric layer is improved, and a high-brightness plasma display can be obtained.
  • the dielectric layer of the present invention can be formed by applying or laminating a dielectric paste composed of an inorganic material powder and an organic binder on a glass substrate and firing the dielectric paste.
  • Dielectric The amount of the inorganic material powder used for the layer paste is preferably 50 to 95% by weight based on the sum of the inorganic material powder and the organic component. If the amount is less than 50% by weight, the denseness of the dielectric layer and the flatness of the surface are lacking. If the amount exceeds 95% by weight, the paste viscosity increases, and the thickness unevenness during application becomes large.
  • the method for producing the partition wall of the present invention is not particularly limited, but a photosensitive paste method which has few steps and can form a fine pattern is preferable.
  • a coating film is formed using a photosensitive paste composed of an inorganic material mainly composed of glass powder and a photosensitive organic component, and the coating film is exposed through a photomask and developed.
  • a partition pattern is formed, and then the partition pattern is fired to obtain a partition.
  • the amount of the inorganic material used in the photosensitive paste method is preferably 65 to 85% by weight based on the sum of the inorganic material and the organic component.
  • the content is less than 65% by weight, the shrinkage during firing becomes large, which may cause disconnection and peeling of the partition walls, which is not preferable. In addition, it becomes difficult to dry the paste, causing sticking and deteriorating printing characteristics. Further, the pattern is likely to be thickened and a residual film is likely to occur during development. If the amount is more than 85% by weight, the photosensitive component is small, so that the photocuring does not occur to the bottom of the partition pattern, and the pattern formability tends to deteriorate.
  • the following glass powder as the inorganic material.
  • the content is preferably 40% by weight or less, more preferably 25% by weight or less.
  • glass generally used as an insulator has a refractive index of about 1.5 to 1.9, but when the photosensitive paste method is used, the average refractive index of the organic component is lower than that of glass powder. If the ratio is significantly different, the reflection and scattering at the interface between the glass powder and the organic component become large, and a fine pattern cannot be obtained. Since the refractive index of general organic components is 1.45 to 1.7, the refractive index of glass powder and that of organic components must be matched. In order to achieve this, it is preferable that the average refractive index of the glass powder be 1.5 to 1.7. Even more preferably, it is better to be 1.5 to 1.65.
  • glass containing a total of 2 to 10% by weight of alkali metal oxides such as sodium oxide, lithium oxide and potassium oxide not only facilitates the control of the softening point and the coefficient of thermal expansion, but also the glass. Since the average refractive index of the organic compound can be reduced, it is easy to reduce the difference in the refractive index from the organic substance. If it is less than 2%, it becomes difficult to control the softening point. If it is larger than 10%, the brightness is reduced due to evaporation of the alkali metal oxide during discharging. Further, the addition amount of the metal oxide is preferably less than 8% by weight, more preferably 6% by weight or less, in order to improve the stability of the paste.
  • alkali metal oxides such as sodium oxide, lithium oxide and potassium oxide
  • lithium oxide among the alkali metals because the stability of the best can be relatively increased.
  • potassium oxide there is an advantage that the refractive index can be controlled by adding a relatively small amount.
  • Glasses containing bismuth oxide are preferred from the viewpoint of improving the softening point and water resistance, but glasses containing 10% by weight or more of bismuth oxide often have a refractive index of 1.6 or more. Therefore, by using bismuth oxide in combination with alkali metal oxides such as sodium oxide, lithium oxide, and potassium oxide, it becomes easy to control the softening point, thermal expansion coefficient, water resistance, and refractive index.
  • alkali metal oxides such as sodium oxide, lithium oxide, and potassium oxide
  • the measurement of the refractive index of the glass material in the present invention is accurate when measuring the wavelength of the light exposed by the photosensitive glass paste method in order to confirm the effect.
  • it is preferable to measure with light having a wavelength in the range of 350 to 600 nm.
  • it is preferable to measure the refractive index at the i-line (365 nm) or the g-line (436 nm).
  • the partition wall of the present invention may be colored black because it is excellent in increasing the contrast.
  • the partition walls after firing can be colored.
  • a black pattern can be formed by including 1 to 10% by weight of a black metal oxide in the photosensitive paste.
  • the black metal oxide used at this time contains at least one, and preferably three or more, of the oxides of Ru, Cr, Fe, Co, Mn, and Cu to blacken. Becomes possible.
  • black patterns can be formed by containing 5 to 20% by weight of each of Ru and Cu oxides.
  • a pattern of each color can be formed by using a paste to which an inorganic pigment that develops a color such as red, blue, or green in addition to black is added. These colored patterns can be suitably used for a color filter of a plasma display and the like.
  • the dielectric constant of the partition wall glass material is preferably 4 to 10 at a frequency of 1 ° C. and a temperature of 20 ° C. from the viewpoint of excellent power consumption and discharge life of the panel. In order to achieve a value of 4 or less, a large amount of silicon oxide having a dielectric constant of about 3.8 must be contained, which increases the glass transition point and raises the firing temperature. Absent. If it is 10 or more, power loss due to an increase in the charge amount occurs, which causes an increase in power consumption, which is not preferable.
  • the specific gravity of the partition wall of the present invention is preferably 2 to 3.3.
  • the glass material In order to reduce the content to 2 or less, the glass material must contain a large amount of oxides of alkali metal such as sodium oxide and oxidizing power, and this may cause evaporation during discharge and cause deterioration of discharge characteristics. Is not preferred. 3. If it is more than 3, it is not preferable because the display becomes heavy when the screen is enlarged or the substrate is distorted by its own weight.
  • the particle diameter of the glass powder used in the above is selected in consideration of the line width and height of the partition wall to be produced, but the 50% by volume particle diameter (average particle diameter D50) is l to 6 m, It is preferable that the maximum particle size is 30 im or less and the specific surface area is 1.5 to 4 m 2 / g. More preferably, 10 volume% particle diameter (D 10) 0.4 to 2 ⁇ m, 50 volume% particle diameter (D 50) 1.5 to 6; um, 90 volume% particle diameter (D 9 0): preferably 4 to 15 zm, a maximum particle size of 25 tm or less, and a specific surface area of 1.5 to 3.5 ⁇ 2 ⁇ . More preferably, D 50 is 2 to 3.5, and specific surface area is 1.5 to 3 m 2 / g.
  • D 10, D 50, and D 90 are glass particle diameters of 10% by volume, 50% by volume, and 90% by volume, respectively, of glass powder having a small particle diameter.
  • the particle size distribution is smaller than the above, the specific surface area increases, so that the cohesiveness of the powder increases, and Since the dispersibility in the machine components is reduced, it becomes easier to entrap air bubbles. For this reason, light scattering increases, the center of the partition wall becomes thicker, and the bottom is hardened insufficiently, so that a desirable shape cannot be obtained. If it is too large, the bulk density of the powder will decrease and the filling property will decrease, the amount of the photosensitive organic component will be insufficient, and air bubbles will be easily trapped, which will also tend to cause light scattering.
  • the filling property of the powder is improved, and even if the powder ratio in the photosensitive paste is increased, bubbles are generated. Entrapment is reduced, and extra light scattering is small, so that the partition pattern formation is maintained.
  • the powder filling ratio is high, the firing shrinkage ratio is reduced, the pattern accuracy is improved, and a preferable partition shape is obtained.
  • the method for measuring the particle diameter is not particularly limited, but it is preferable to use a laser diffraction / scattering method because the measurement can be performed easily.
  • the measurement conditions when a particle size distribution analyzer HRA9320-X100 manufactured by Microtrac Co., Ltd. are used are as follows.
  • Dispersion conditions Ultrasonic dispersion in purified water for 1 to 1.5 minutes, if difficult to disperse
  • Particle refractive index changed depending on glass type (lithium 1.6, bismuth 1.88)
  • the partition wall of the present invention may contain 3 to 60% by weight of a filler having a softening point of 550 to 1200 ° C., more preferably 650 to 800.
  • a high melting point glass powder containing 15% by weight or more of ceramics such as titania, alumina, barium titanate, and zirconia, silicon oxide, and aluminum oxide is preferable.
  • ceramics such as titania, alumina, barium titanate, and zirconia, silicon oxide, and aluminum oxide.
  • Silicon oxide 25 to 50% by weight
  • Boron oxide 5 to 20% by weight
  • Aluminum oxide 25-50% by weight
  • Oxide barrier 2 to 10% by weight
  • the refractive index matching with the organic component becomes easy.
  • the small variation in the refractive index of the inorganic powder is also important for reducing light scattering. It is preferable that the dispersion of the refractive index is ⁇ 0.05 (95% by volume or more of the inorganic powder falls within the range of the average refractive index N 1 ⁇ 0.05) for reducing the light scattering.
  • the particle diameter of the filler used an average particle diameter of 1 to 6; m is preferable.
  • D90 is 3-5 / m, and the maximum particle size is preferably 5 m or less.
  • Fine powder having a D90 of 3 to 5 zm is preferable because it is excellent in that the firing shrinkage can be reduced and a partition having a low porosity is produced.
  • a cellulose compound represented by ethylcellulose, an acrylic polymer represented by polyisobutylmethyl acrylate, and the like can be used as an organic component contained in the glass paste.
  • polypinyl alcohol, polyvinyl butyral, methacrylate polymer, acrylate polymer, acrylate-methacrylate copolymer, a-methylstyrene polymer, butyl methyl acrylate resin, etc. a cellulose compound represented by ethylcellulose, an acrylic polymer represented by polyisobutylmethyl acrylate, and the like.
  • an organic solvent may be added.
  • the organic solvents used at this time include methyl sorb, ethyl sorb, butyl sorb, methyl ethyl ketone, dioxane, acetone, cyclohexanone, cyclopentone, isobutyl alcohol, isopropyl alcohol, tetrahydrofuran, dimethyl sulfoxide, and ⁇ Butyrolactone, promobenzene, chlorobenzene, dibromobenzene, dichlorobenzene, bromobenzoic acid, chlorobenzoic acid, terbineol, and the like, and an organic solvent mixture containing at least one of these are used.
  • the photosensitive paste method is used as the partition wall forming method, the following organic components are used.
  • the organic component contains at least one photosensitive component selected from a photosensitive monomer, a photosensitive oligomer, and a photosensitive polymer. If necessary, a binder, a photopolymerization initiator, and an ultraviolet absorber Additives such as sensitizers, sensitizers, polymerization inhibitors, plasticizers, thickeners, organic solvents, antioxidants, dispersants, and organic or inorganic suspending agents can also be added. .
  • the photosensitive component there are a photo-insolubilized type and a photo-solubilized type.
  • diazo resin such as a condensate of diazoamine and formaldehyde.
  • the photosensitive component used in the present invention all of the above can be used. You.
  • the photosensitive base the photosensitive component which can be simply used by being mixed with inorganic fine particles is preferably (A).
  • the photosensitive monomer is a compound containing a carbon-carbon unsaturated bond. Specific examples thereof include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, and n-butyl acrylate.
  • the developability after exposure can be improved by adding an unsaturated acid such as an unsaturated carboxylic acid.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid, and acid anhydrides thereof.
  • the content of these monomers is preferably 5 to 30% by weight based on the sum of the glass powder and the photosensitive component. Outside of this range, the pattern formability deteriorates and the hardness after curing occurs, which is not preferable.
  • binder examples include polyvinyl alcohol, polyvinyl butyral, methacrylate polymer, acrylate polymer, acrylate-methacrylate copolymer, ⁇ -methylstyrene polymer, and butyl methacrylate resin.
  • an oligomer or polymer obtained by polymerizing at least one of the compounds having a carbon-carbon double bond described above can be used. At the time of polymerization, it can be copolymerized with other photosensitive monomers so that the content of these photoreactive monomers is at least 10% by weight, more preferably at least 35% by weight.
  • the developability after exposure can be improved by copolymerizing an unsaturated acid such as an unsaturated carboxylic acid.
  • unsaturated carboxylic acid Typical examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetic acid, and anhydrides thereof.
  • the acid value (AV) of the thus obtained polymer or oligomer having an acidic group such as a carboxyl group in the side chain is preferably 30 to 150, more preferably 70 to 120. If the acid value is less than 30, the solubility of the unexposed portion in the developing solution is reduced. Therefore, when the developing solution concentration is high, peeling occurs even in the exposed portion, and it is difficult to obtain a high-definition pattern. On the other hand, when the acid value exceeds 150, the allowable development width becomes narrow.
  • the acid value of the polymer is preferably 50 or less because gelation due to the reaction between the glass powder and the polymer can be suppressed.
  • photoreactive group By adding a photoreactive group to a side chain or a molecular terminal to the polymer or oligomer described above, it can be used as a photosensitive polymer or photosensitive oligomer having photosensitivity.
  • Preferred photoreactive groups are those having an ethylenically unsaturated group. Examples of the ethylenically unsaturated group include a vinyl group, an aryl group, an acryl group and a methyl acryl group.
  • a method for adding such a side chain to an oligomer or a polymer is to use an ethylenically unsaturated compound, acrylic acid chloride, having a glycidyl group or an isocyanate group with respect to a mercapto group, an amino group, a hydroxyl group, or a carboxyl group in the polymer.
  • an ethylenically unsaturated compound acrylic acid chloride, having a glycidyl group or an isocyanate group with respect to a mercapto group, an amino group, a hydroxyl group, or a carboxyl group in the polymer.
  • methacrylic acid chloride or acrylyl chloride is subjected to an addition reaction.
  • Examples of the ethylenically unsaturated compound having a glycidyl group include glycidyl acrylate, glycidyl methacrylate, aryl glycidyl ether, glycidyl ethyl acrylate, crotonyl glycidyl ether, glycidyl crotonate, and dalicidyl dicrotilate. Ethers and the like.
  • Examples of the ethylenically unsaturated compound having an isocyanate group include (meth) acryloyl isocyanate and (meth) acryloylethyl isocyanate.
  • ethylenic unsaturated compounds having dalicidyl group or isocyanate group, acrylic acid chloride, methacrylic acid chloride or aryl chloride are used in an amount of 0.0 with respect to mercapto group, amino group, hydroxyl group and carboxyl group in the polymer. It is preferable to add 5 to 1 molar equivalent.
  • the amount of the polymer component consisting of the photosensitive polymer, the photosensitive oligomer and the binder in the photosensitive glass paste is excellent in terms of pattern forming property and shrinkage ratio after firing, so that the glass powder and the photosensitive component It is preferably from 5 to 30% by weight based on the sum. Outside this range, it is not preferable because pattern formation is impossible or the pattern becomes thicker.
  • photopolymerization initiator examples include benzophenone, methyl 0-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, and 4,4-bis
  • the photopolymerization initiator is added in the range of 0.05 to 20% by weight, more preferably 0.1 to 15% by weight, based on the photosensitive component. If the amount of the polymerization initiator is too small, the photosensitivity becomes poor, and if the amount of the photopolymerization initiator is too large, the residual ratio of the exposed portion may be too small.
  • an ultraviolet absorber it is also effective to add an ultraviolet absorber.
  • High aspect ratio, high definition, and high resolution can be obtained by adding a compound having a high ultraviolet absorption effect.
  • the ultraviolet absorber those composed of organic dyes, among which organic dyes having a high UV absorption coefficient in the wavelength range of 350 to 450 nm, are preferably used. Specifically, azo dyes, aminoketone dyes, xanthene dyes, quinoline dyes, anthraquinones, benzophenones, diphenylcyanoacrylates, triazines, p-aminobenzoic acid dyes, etc. Can be used.
  • the organic dye is preferable because it does not remain in the insulating film after firing and can reduce the deterioration of the insulating film characteristics due to the light absorbing agent.
  • azo and benzophenone dyes are preferred.
  • the addition amount of the organic dye is preferably 0.05 to 1 part by weight based on the glass powder.
  • the content is less than 0.05% by weight, the effect of adding the ultraviolet absorbent is low, and when it exceeds 1% by weight, the properties of the insulating film after firing are deteriorated. More preferably, it is 0.1 to 0.18% by weight.
  • a solution is prepared by dissolving the organic dye in an organic solvent in advance, and it is kneaded when preparing the paste.
  • glass fine particles are mixed in the organic dye solution and then dried.
  • metals and oxides such as Ca, Fe, Mn, Co, and Mg contained in the inorganic fine particles react with the photosensitive components contained in the paste to shorten the paste time. It may gel between them, making it impossible to apply.
  • a stabilizer it is preferable to add a stabilizer to prevent gelation.
  • a triazole compound is preferably used.
  • a benzotriazole derivative is preferably used. Among them, benzotriazole works particularly effectively.
  • a predetermined amount of benzotriazole is applied to inorganic fine particles in a predetermined amount such as methyl acetate, ethyl acetate, ethyl alcohol, and methyl alcohol.
  • the particles After dissolving in an organic solvent, the particles are immersed in a solution for 1 to 24 hours so that these fine particles can be sufficiently immersed.
  • the particles After immersion, preferably, the particles are naturally dried at 20 to 30 to evaporate the solvent to produce triazole-treated fine particles.
  • the ratio (stabilizer inorganic fine particles) of the stabilizer used is preferably 0.05 to 5% by weight.
  • a sensitizer is added to improve the sensitivity.
  • Specific examples of the sensitizer include 2,4—getylthioxanthone, isopropylthioxanthone, 2,3—bis (4—ethylpyraminobenzal) cyclopenone, 2,6—bis (4-dimethylaminobenzal) ) Cyclohexanone, 2,6-bis (4-dimethylaminobenzal) 1,4-methylcyclohexanone, Michler monoketone, 4,4-bis (getylamino) 1-benzophenone, 4,4-bis (dimethylamino) Chalcone, 4,4-bis (ethylpyramino) chalcone, ⁇ -dimethylaminocinnamylidene indanone, ⁇ —dimethylaminobenzylidene indanone, 2- ( ⁇ —dimethylaminophenyrubinylene) 1 isonaphthothiazo 1,3-bis (4-dimethylaminobenzal
  • sensitizers can also be used as photopolymerization initiators.
  • the amount added is based on the amount of the photosensitive component. Usually, it is 0.05 to 10% by weight, more preferably 0.1 to 10% by weight. (4) If the amount of the sensitizer is too small, the effect of improving the photosensitivity is not exhibited, and if the amount of the sensitizer is too large, the residual ratio of the exposed portion may be too small.
  • a sensitizer having an absorption at the exposure wavelength is used.
  • the refractive index becomes extremely high near the absorption wavelength.
  • the refractive index of the component can be improved.
  • the sensitizer may be added in an amount of 3 to 10% by weight.
  • the polymerization inhibitor is added to improve the thermal stability during storage.
  • Specific examples of polymerization inhibitors include hydroquinone, monoesterified hydroquinone, N-nitrosodiphenylamine, phenothiazine, p-t-butylcatechol, N-phenylnaphthylamine, 2,6-di_ t-butyl-p-methylphenol, chloranil, pyrogallol, etc.
  • the addition increases the threshold value of the photocuring reaction, reduces the pattern line width, and eliminates the thickening of the upper portion of the pattern due to the gap.
  • the addition amount is usually 0.01 to 1% by weight in the photosensitive paste. If the amount is less than 0.01% by weight, the effect of addition is difficult to obtain, and if the amount is more than 1% by weight, the sensitivity is lowered, so that a large amount of exposure light is required for pattern formation.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, polyethylene dalicol, glycerin and the like.
  • antioxidants are added to prevent oxidation of the acrylic copolymer during storage.
  • antioxidants include 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-4-ethylfurenol, 2,2-methylene-bis- ( 4 1-methyl-1 6-t-butylphenol), 2,2-methylenebis- (4-ethyl-1 6-t-butylphenol), 4,4-bis-1
  • an organic solvent may be added to the photosensitive paste of the present invention.
  • the organic solvents used at this time include methyl sorb, ethyl sorb, butyl sorb, methyl ethyl ketone, dioxane, acetone, cyclohexanone, cyclopentanone, isobutyl alcohol, isopropyl alcohol, tetrahydrofuran, and dimethyl.
  • the refractive index of the organic component is the refractive index of the organic component in the base at the time when the photosensitive component is exposed by exposure.
  • it means the refractive index of the organic component in the paste after the drying step.
  • the paste is applied on a glass substrate, dried at 50 to 100 ° C. for 1 to 30 minutes, and the refractive index is measured.
  • the measurement of the refractive index is preferably performed by an ellipsometry method or a V-block method, which is generally performed, and it is accurate to perform the measurement at the wavelength of the light to be exposed in order to confirm the effect.
  • the refractive index after the organic component is polymerized by light irradiation it can be measured by irradiating only the organic component with the same light as in the case of irradiating light in the first test.
  • the photosensitive paste is usually prepared by mixing various components such as inorganic fine particles, ultraviolet absorber, photosensitive polymer, photosensitive monomer, photopolymerization initiator, glass frit, and solvent into a predetermined composition, and then adding 3 parts. It is manufactured by mixing and dispersing homogeneously with a roller or kneader.
  • the viscosity of the paste is appropriately adjusted by the addition ratio of inorganic fine particles, thickeners, organic solvents, plasticizers and suspending agents, but the range is 200 to 200,000 cps (centimeters of void). It is.
  • spin coating is applied to a glass substrate In this case, 200 to 500 cps is preferable.
  • 10,000 to 100,000 cps is preferable.
  • a coating method a method such as screen printing, barco all day, lipstick all day, dieco night, a blade coater, or the like can be used.
  • the coating thickness can be adjusted by selecting the number of coatings, screen mesh, and paste viscosity.
  • surface treatment of the substrate can be performed in order to enhance the adhesion between the substrate and the coating film.
  • the surface treatment liquid include silane coupling agents such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, tris (2-methoxyethoxy) vinylsilane, glycidoxypropyltrimethoxysilane, and methacryloxypropyl. Trimethoxysilane, T (2-aminoethyl) aminopropyl trimethoxysilane, isopropyltrimethoxysilane, mercaptopropyltrimethoxysilane, aminopropyltriethoxysilane, etc.
  • Silane coupling agent or organic metal such as organic Examples include titanium, organic aluminum, and organic zirconium.
  • Silane coupling agent or organic metal diluted with an organic solvent such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, etc. to a concentration of 0.1 to 5% Is used.
  • this surface treatment liquid is uniformly applied on a substrate with a spinner or the like, and then dried at 80 to 140 for 10 to 60 minutes to perform surface treatment.
  • the film when applied on a film, the film is dried on the film and then subjected to the next exposure step, or the method is performed after the film is pasted on a glass or ceramic substrate and then exposed.
  • Exposure is generally performed by mask exposure using a photomask, as in the case of ordinary photolithography. Depending on the type of photosensitive organic component, the mask used is either negative or positive. Choose Karakara. Alternatively, a method of directly drawing with a red or blue laser beam without using a photomask may be used.
  • a stepper exposure machine, a proximity exposure machine, or the like can be used as the exposure apparatus.
  • a photosensitive paste on a substrate such as a glass substrate, and then carry out exposure while transporting, so that a large area is exposed with an exposure machine with a small exposure area.
  • a substrate such as a glass substrate
  • the active light source used in this case includes, for example, visible light, near-ultraviolet light, ultraviolet light, electron beam, X-ray, and laser light.
  • ultraviolet light is preferable, and the light source is, for example, a low-pressure mercury lamp.
  • High pressure mercury lamp, ultra high pressure mercury lamp, halogen lamp, germicidal lamp, etc. can be used.
  • an ultra-high pressure mercury lamp is preferred. Exposure conditions vary depending on the coating thickness, but exposure is performed for 20 seconds to 30 minutes using an ultra-high pressure mercury lamp with an output of 3 to 50 mWZ cm 2 .
  • an organic solvent in which an organic component in the photosensitive paste can be dissolved can be used as a developer to be used.
  • Water may be added to the organic solvent as long as the solvent does not lose its solubility.
  • a compound having an acidic group such as a carboxyl group is present in the photosensitive paste, development can be performed with an aqueous alkali solution.
  • Metallic aqueous solutions such as sodium hydroxide, sodium carbonate, and calcium hydroxide can be used as the aqueous alkaline solution.However, using the organic aqueous solution removes the alkaline components during firing. Easy to use
  • an amine compound can be used as the organic alkali.
  • an amine compound can be used. Specific examples include tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, monoethanolamine, diethanolamine and the like.
  • the concentration of the alkali aqueous solution is usually from 0.01 to 10% by weight, more preferably from 0.1 to 5% by weight. If the alkali concentration is too low, the soluble portion is not removed, and if the alkali concentration is too high, the pattern portion may be peeled off and the non-soluble portion may be corroded, which is not preferable.
  • the development temperature during development is preferably from 20 to 50 for process control. Next, firing is performed in a firing furnace.
  • the firing atmosphere and temperature vary depending on the type of paste and substrate, but firing is performed in an atmosphere such as air, nitrogen, or hydrogen.
  • a batch type firing furnace / a belt type continuous firing furnace can be used.
  • baking is performed at a heating rate of 200 to 400 ° C / hour and at a temperature of 540 to 610 ° C for 10 to 60 minutes.
  • the firing temperature is determined by the glass powder to be used, but it is preferable to fire at an appropriate temperature at which the shape after pattern formation does not collapse and the shape of the glass powder does not remain.
  • the temperature is lower than the appropriate temperature, the porosity and the unevenness of the upper part of the partition wall become large, and the discharge life is shortened and erroneous discharge is caused.
  • the temperature is higher than the appropriate temperature, the shape at the time of pattern formation is broken, the upper part of the partition wall becomes round, the height becomes extremely low, and a desired height cannot be obtained, which is not preferable.
  • a heating step of 50 to 300 ° C. may be introduced for the purpose of drying and preliminary reaction during each of the coating, exposure, development and baking steps described above.
  • Thermophysical properties glass transition point 49 1 ° C, softening point 528,
  • Polymer (1) 0.4 equivalent of glycidyl mesylate to the carboxyl group of a copolymer consisting of 40% methacrylic acid (MAA), 30% methyl methacrylate (MMA) and 30% styrene (St)
  • MAA methacrylic acid
  • MMA methyl methacrylate
  • St styrene
  • n 2 to 10
  • Monomer (2) trimethylolpropane triacrylate / modify PO (photopolymerization initiator)
  • Sudan azo organic dye, chemical formula C 24 H 2 . N 4 ⁇ , molecular weight 380.45
  • Nopcospars 092 manufactured by San Nopco
  • a photosensitive paste for partition walls was prepared.
  • the organic powder was weighed at a ratio of 0.08 parts by weight to 100 parts by weight of the glass powder (glass (1)).
  • Sudan was dissolved in acetone, a dispersant was added, and the mixture was stirred homogeneously with a homogenizer.
  • the glass powder was added to the solution and dispersed homogeneously. After mixing, the mixture was dried at a temperature of 100 using a rotary evaporator to evaporate acetone. In this way, a powder was prepared in which the surface of the glass powder was uniformly coated with the organic dye film.
  • Polymer (1), monomer (1), photopolymerization initiator (IC-369), sensitizer, plasticizer, and solvent were added to 37.5: 1: 5: 4.8: 4.8: 2: 7.5. They were mixed by weight ratio and dissolved homogeneously. The solution was then filtered using a 400 mesh filter, I got a vehicle.
  • the refractive index of the organic component was 1.59, and the refractive index of the glass powder was 1.59.
  • This dielectric paste was screen-printed on a 13-inch size Asahi Glass PD-200 glass substrate with a 140-m pitch, line width of 60 m, and 4 ⁇ m-thick electrodes previously formed by Asahi Glass Co., Ltd. using a 325-mesh screen. It was applied evenly. Thereafter, the resultant was dried at 80 ° C. for 40 minutes and calcined at 550 ° C. to form a 10-thick dielectric layer.
  • the partition wall paste was uniformly applied on the dielectric layer by screen printing using a 325-mesh screen to form a coating film. Coating and drying were repeated several times or more to prevent pinholes and the like from being generated in the coating film, and the film thickness was adjusted.
  • the screen printing plate used was designed to be smaller than the length of the partition wall pattern in the longitudinal direction. Drying during the drying was performed at 80 at 10 minutes, and drying after forming the coating film was performed at 80 at 1 hour. The thickness of the coated film after drying was 150 m. A 2000 m long slope was formed at the end of the coating film.
  • the film was irradiated with ultraviolet light from an upper surface using an ultra-high pressure mercury lamp having a power of 50 mJ / cm 2 through a 140 / zm pitch striped negative chrome mask.
  • the exposure amount was 1.0 J Zcm 2 .
  • the chrome mask used had a partition pattern length longer than the length of the coating film in the partition length direction.
  • a 0.2% by weight aqueous solution of monoethanolamine held at 35 was developed by applying the solution for 170 seconds with a sharpener, and then washed with water using a shower spray. As a result, portions that were not photocured were removed, and a strip-shaped partition pattern was formed on the glass substrate.
  • the glass substrate on which the partition pattern was formed in this way was baked in air at 570 for 15 minutes to form a partition.
  • the cross-sectional shape of the end of the partition pattern before and after firing was observed with a scanning electron microscope (S-2400 manufactured by HI TACH I). Evaluation results It is described in Table 1. If there is no swelling or bouncing, ⁇ is described. If there is swelling or bouncing, the details and figures are described.
  • X was 2 mm
  • Y was 100 / zm
  • XZY 20, which satisfied the scope of the present invention.
  • it jumped to the end of the partition wall, and was good without swelling.
  • a phosphor paste that emits red, blue, and green light is applied between the partition walls thus formed using a screen printing method, and the paste is baked (500t :, 30 minutes) to be applied to the side and bottom of the partition wall.
  • a phosphor layer was formed on the substrate to complete a back plate.
  • a front plate was produced by the following steps. First, after ITO is formed on the same glass substrate as the back plate by the sputtering method, a resist is applied, exposed to a desired pattern, developed, etched, baked thickness 0.1 m, line width 200 / m transparent electrodes were formed. Further, a bus electrode having a thickness of 10 was formed after firing by a photolithography method using a photosensitive silver paste composed of black silver powder. Electrodes were manufactured with a pitch of 140 / zm and a line width of 60 m.
  • a transparent dielectric paste was applied at 20 / zm on the front plate on which the electrodes were formed, and was baked at 430 for 20 minutes.
  • a 0.5 m-thick Mg0 film was formed using an electron beam evaporator so as to uniformly cover the formed transparent electrode, black electrode, and dielectric layer, thereby completing the front plate.
  • the dielectric layer paste was made of glass (2), filler, polymer (2), and monomer (2), respectively, for 22.5: 2.2: 10: 10: 0.3: 1.6.
  • a dielectric layer paste was applied on a glass substrate in the same manner as in Example 1 except that the photosensitive paste was mixed at a weight ratio. The thickness after drying was 15 wm. Instead of pre-firing, the surface was exposed to ultraviolet light at an exposure of 1 JZcm 2 using an ultra-high pressure mercury lamp with 50 mJ / cm 2 output from the top. Was. Thereafter, a plasma display was manufactured in the same manner as in Example 1. The dielectric layer was fired at the same time as the barrier pattern firing. Evaluation was performed in the same manner as in Example 1. Table 1 shows the results.
  • a screen printing plate is printed on an area larger than the length of the partition pattern of the photomask and a thickness of 50 m, and then the same as in Example 1.
  • the operation was performed in the same manner as in Example 1 except that printing was performed with a thickness of 100 m using a screen printing plate having a printing surface smaller than the partition pattern length of the photomask.
  • Example 1 When firing was performed in the same manner as in Example 1, the end of the lower layer (having a height of 33 after firing) had a swelling of 10 m, but the end of the upper layer (having a height of 67 / m after firing). could be formed without swelling. Since the upper layer was 67 m, the bulge of the lower layer did not exceed the upper layer, and the entire partition could be formed without any problem. Thereafter, a plasma display was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 When applying the paste for the partition walls on the substrate, apply it to a thickness of 250 / m before drying using a slit die coater, and then inject air using a nozzle with an inner diameter of 0.4 ⁇ before drying using a slit die coater.
  • a partition plate was formed in the same manner as in Example 1 except that an inclined surface was formed at the end.
  • the air pressure was 2.5 kgf / cm 2 , and the injection angle was 45 ° from the perpendicular to the substrate.
  • a plasma display was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • a plasma display was produced and evaluated in the same manner as in Example 4 except that the injection pressure of the air from the nozzle was set to 0.5 kgf cm 2 when forming the inclined surface at the end of the coating film. Shown in
  • Example 7
  • a plasma display was fabricated and evaluated in the same manner as in Example 4, except that when forming an inclined surface at the end of the coating film, the injection was performed using a slit having a gap of 0.4 mm. Table 1 shows the results.
  • the coating film When forming an inclined surface at the end of the coating film, the coating film was dried at 80 ° C for 1 hour, and then the end of the coating film was cut off with a blade and processed into an inclined surface in the same manner as in Example 4.
  • a strip-shaped partition prototype having a pitch of 200 m, a line width of 30 m, and a height of 200 iim was formed on an aluminum substrate using a grinding machine.
  • a silicone resin size: 300 mm square in which a silicone resin is formed by filling a silicone resin on the partition wall mold and forming a groove having a pitch of 200 m, a line width of 30 m, and a height of 200 xm. ) was prepared and used as the partition wall matrix.
  • an inclined portion was formed at an end portion of the partition wall mold, so that the silicon resin partition wall mold had an inclined portion over a length of 3 mm.
  • the silicone mold was filled with the paste for barrier ribs using a doctor blade, and then transferred onto a glass substrate of 40 mm square to peel off the silicone mold, thereby forming a barrier rib pattern.
  • the glass substrate on which the partition pattern was formed was fired under the same firing conditions as in Example 1 to form the partition. Thereafter, a plasma display was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results.
  • stripe-shaped grooves having a pitch of 200 im, a line width of 30 wm, and a height of 200 / m were formed on a copper plate having a thickness of 1 mm by an etching method to form a partition matrix. The etching was performed so that an inclined portion was formed at the end of the groove during the etching.
  • partition wall mold was filled with the partition wall paste using a doctor blade, the mixture was pressed onto a glass substrate of 400 mm square and heated at 100 at 30 minutes. Next, a partition wall pattern was formed by removing the partition wall matrix, and the glass substrate on which the partition wall pattern was formed was fired under the same firing conditions as in Example 1 to form a partition wall.
  • Stripe-shaped grooves having a pitch of 200 m, a line width of 30 m, and a height of 200 / _t m were formed on a copper plate having a thickness of 1 mm by an etching method, to obtain a partition wall matrix.
  • the etching was performed such that an inclined portion having an angle of 10 degrees was formed at the end of the groove during the etching.
  • Example 10 The same partition wall paste as in Example 10 was applied to the substrate by the same operation as in Example 4, and the partition wall matrix was pressed against the partition wall paste coating film on the glass substrate before drying, followed by pressing. While heating to 80 ° C. Next, a partition wall pattern was formed by removing the partition wall matrix, and the glass substrate on which the partition wall pattern was formed was fired under the same firing conditions as in Example 1 to form a partition wall.
  • Example 1 2 After applying and drying the photosensitive paste for the partition wall in Example 1, the photosensitive paste for the partition wall was used.
  • Example 2 A plasma display was fabricated and evaluated in the same manner as in Example 1, except that the edge of the strike coating film was rubbed with a cloth containing a solvent to form an inclined surface. Table 1 shows the results.
  • a partition pattern was formed in the same manner as in Example 8, except that the angle ⁇ of the blade used was 80 degrees and the length of the inclined surface at the end of the coating layer was 35 m.
  • Example 2 As a result of baking in the same manner as in Example 1, a jump of 80; Thereafter, a plasma display was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results. Crosstalk occurred within a width of about 10 mm around the display surface. Comparative Example 2
  • a partition pattern was formed in the same manner as in Example 1 except that a chromium mask having a length smaller than the length of the coating film in the partition length direction was used. The end of the partition pattern was vertical and there was no slope.
  • a 20 / m bulge was formed at the end of the partition wall.
  • Fig. 5 shows the shape of the obtained partition wall end.
  • a plasma display was fabricated and evaluated in the same manner as in Example 1. Table 1 shows the results. Crosstalk occurred within a width of about 10 mm around the display surface.
  • Example 11 Example 12 Comparative Example 1 Comparative Example 2 Before firing X '(m) 5 7 0 5 0 0 0 0' 3 5 0
  • a plasma display having no bulging or rising edge can be obtained.
  • the plasma display of the present invention can be used for large televisions and computer monitors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

明細書 プラズマディスプレイおよびその製造方法 技術分野
本発明は、 プラズマディスプレイおよびその製造方法に関する。 プラズマディ スプレイは大型のテレビやコンピュータ一モニタ一に用いることができる。 背景技術
プラズマディスプレイ (P D P ) は液晶パネルに比べて高速の表示が可能であ り、 かつ大型化が容易であることから、 O A機器、 広報表示装置などの分野に用 いられている。 また、 高品位テレビジョンの分野などへの進展が非常に期待され ている。
このような用途の拡大にともなって、 微細で多数の表示セルを有するカラ一プ ラズマディスプレイが注目されている。 A C方式プラズマディスプレイを例に挙 げて説明すると、 前面ガラス基板と背面ガラス基板との間に備えられた放電空間 内で対抗するアノードおよびカソ一ド電極間にプラズマ放電を生じさせ、 上記放 電空間内に封入されているガスから発生した紫外線を、 放電空間内に設けた蛍光 体にあてることにより表示を行うものである。 A C方式プラズマディスプレイの 簡単な構成図を第 1図に示す。 この場合、 放電の広がりを一定領域に押さえ、 表 示を規定のセル内で行わせると同時に、 かつ均一な放電空間を確保するために隔 壁 (障壁、 リブともいう) が設けられている。 A C方式プラズマディスプレイの 場合、 この隔壁はストライプ状に形成される。
上記の隔壁は、 およそ幅 3 0〜 8 0 w m、 高さ 7 0〜 2 0 0 / mであるが、 通 常、 前面ガラス基板や背面ガラス基板にガラス粉末を含む絶縁ペーストをスクリ ーン印刷法で印刷 '乾燥し、 この印刷 ·乾燥工程を 1 0数回繰り返して所定の高 さに形成する。
特開平 1 一 2 9 6 5 3 4号公報、 特開平 2— 1 6 5 5 3 8号公報、 特開平 5— 3 4 2 9 9 2号公報、 特開平 6— 2 9 5 6 7 6号公報、 特開平 8— 5 0 8 1 1号 公報では、 隔壁を感光性ペース卜を用いてフォトリソグラフィー技術により形成 する方法が提案されている。
上記のいずれの方法も、 ガラス粉末を含む絶縁ペース卜を隔壁パターン形状に 形成した後、 焼成することにより隔壁を形成する。 その際、 隔壁の端部が、 隔壁 の上部と下部の焼成収縮差により、 第 4図に示されるように下地から剥離して跳 ね上がる、 または、 第 5図に示されるように、 剥離はしないが、 隔壁上部が盛り 上がるという問題が生じていた。
この跳ね上がりまたは盛り上がりが隔壁の端部にあると、 前面板と背面板を合 わせてパネルを形成した際に、 背面板の隔壁頂部と前面板の間にギヤップが生じ る。 このギャップにより、 放電時にクロストークが発生し、 映像に乱れが生じる 問題があった。
この対策として、 特開平 6— 1 5 0 8 2 8号公報では隔壁を多層構造にして、 上層と下層の組成を変え、 下層に上層よりも低融点のガラスを設ける方法が提案 されている。 また、 特開平 6— 1 5 0 8 3 1号公報では、 端部の下地にアンダー ガラス層を設ける方法が提案されている。 しかしながら、 いずれの方法も盛り上 がりを防ぐには十分でなかった。 また、 特開平 6— 1 5 0 8 3 2号公報では、 隔 壁端部を階段状にする方法が記載されているが、 盛り上がりを防ぐには十分でな かった。 発明の開示
本発明は、 端部の跳ね上がりおよび盛り上がりのない高精細プラズマディスプ レイおよびその製造方法を提供することを目的とする。 また本発明は、 誤放電の 少ない高精細のプラズマディスプレイおよびその製造方法を提供することを目的 とする。 なお、 本発明におけるプラズマディスプレイとは、 隔壁で区切られた放 電空間内において放電することにより表示を行うディスプレイを指し、 上記の A C方式プラズマディスプレイ以外にも、 プラズマアドレス液晶ディスプレイをは じめとする各種放電型ディスプレイを含むものである。
本発明の目的は、 基板上に誘電体層およびストライプ状隔壁が形成されたブラ ズマディスプレイであって、 該隔壁の長手方向端部に傾斜部を有し、 かつ、 該傾 斜部の高さ (Y ) および該傾斜部の底辺の長さ (X ) が下記の範囲にあることを 特徴とするプラズマディスプレイにより達成される。
0 . 5≤X / Y≤ 1 0 0
また本発明の目的は、 基板上に誘電体層およびストライプ状隔壁が形成された プラズマディスプレイの製造方法であって、 無機材料と有機成分からなる隔壁用 ペーストを用いて、 端部に傾斜部を有するストライプ状隔壁パターンを基板上に 形成する工程および該隔壁パターンを焼成する工程を経て、 隔壁の長手方向端部 に傾斜部を有し、 かつ、 該傾斜部の高さ (Υ ) および該傾斜部の底辺の長さ (X ) が下記の範囲にあるストライプ状隔壁を形成することを特徴とするプラズマディ スプレイの製造方法により達成される。
0 . 5≤Χ / Υ≤ 1 0 0 図面の簡単な説明
第 1図はプラズマディスプレイの構造を示す図である。 第 2図は本発明の隔壁 形状を示す側面図である。 第 3図は従来の隔壁の形状を示す側面図である。 第 4 図は焼成後の隔壁の跳ね上がりの形状を示す側面図である。 第 5図は盛り上がり の形状を示す側面図である。 第 6図、 第 7図および第 8図は本発明の隔壁形状の 1例を示す側面図である。 第 9図は隔壁用ペースト塗布膜に形成した傾斜面の 1 例を示す断面図である。 第 1 0図は刃物または砥石の形状とそれにより削られた 塗布膜端部の形状との関係を示す断面図である。 第 1 1図および第 1 2図は本発 明の好ましい製造方法である塗布膜端部を刃物で削ることにより傾斜面を形成す る方法の 1例である。 第 1 3図は本発明の製造方法に好ましく使用される隔壁母 型の断面図である。 第 1 4図は実施例 3で塗布膜端部に傾斜面を形成した隔壁パ ターンの断面図である。 発明を実施するための最良の形態
本発明のプラズマディスプレイは、 隔壁端部に傾斜部を有することが必要であ る。 隔壁端部に傾斜部を有することによって、 第 2図のように隔壁上部の収縮応 力と接着力に起因する応力を緩和させることができ、 跳ね上がり、 盛り上がりを 防止できる。
隔壁端部に傾斜部を有さない場合は、 焼成による収縮の際、 第 3図のように隔 壁下部が下地と接着しているのに対し、 上部は収縮が自由にできるため、 この収 縮応力の差により、 跳ね上がる (第 4図) または盛り上がる (第 5図) という現 象が起きると推定される。
傾斜部は(1 )直線状、 (2)上に凸の曲線、 (3)下に凸の曲線および(4)複数の直線 を連結したものなど、 どのような形状であっても傾斜がついているものならよい。 さらに傾斜部は隔壁の両端部に形成することが、 パネル封着時の前面板と背面 板間のギヤップムラをなくす上で好ましい。
また、 傾斜部は第 6図のように階段形状と組み合わせてもよい。 ただし、 傾斜 部でない部分の高さは 5 O w m以下が好ましい。 直角部分を有する階段形状は、 収縮応力のバランスをとることができないため、 高さが高いほど跳ね上がり、 ま たは盛り上がりの程度が大きくなる。 5 0 / m以下であると盛り上がりが小さく、 2 0インチ以上のパネルを形成した場合、 前面板と隔壁が密着し、 クロストーク が起こりにくくなる。 階段形状と傾斜部を組み合わせる場合、 傾斜部を隔壁最上 部に設けることがより好ましい。 傾斜部が最上部にあることによって盛り上がり を解消できる。
前記傾斜部の高さ (Y ) と傾斜部の底辺の長さ (X ) (第 7図) が下記に示さ れる範囲にあることが好ましい。
0 . 5≤X / Y≤ 1 0 0 .
また、 傾斜部の底辺の長さ (X ) は 0 . 0 5〜 5 O mmであることが好ましレ 傾斜部は所望の隔壁高さより低く、 画像乱れを生じることから、 Xが 5 O mmを 越えると好ましくない。 より好ましくは、 1 0 mm以下、 さらに好ましくは 5 m m以下である。 また、 0 . 0 5 mm未満の場合は傾斜部を形成することによる跳 ね上がり抑制や盛り上がり抑制に対する効果が少ない。
また、 本発明において、 隔壁の傾斜部の傾斜角が 0 . 5〜 6 0度であることが 好ましい。 傾斜が直線上でない場合には、 第 8図のように示したように傾斜が最 大になる部分の角度を傾斜角とする。 傾斜角が 0 . 5度以下では傾斜部が長くな りすぎるため、 パネル設計上好ましくなく、 傾斜角が 6 0度以上では焼成時のハ ガレを十分抑制できない。 また、 好ましい範囲としては、 20〜50度である。 盛り上がり、 跳ね上がりは焼成時に起こるため、 傾斜部は隔壁焼成前に形成す ることが好ましい。
隔壁用ペース卜の焼成時の収縮率を rとすると焼成収縮は高さ方向には顕著で あるが、 隔壁長手方向にはほとんど起こらないため、 焼成前の傾斜部の高さを Y , 、 傾斜部の長さを X' とすると、 Y= r XY, 、 となる。 従って、 焼 成後の隔壁形状を本発明の範囲にするためには、 焼成前の隔壁パターン端部の好 ましい形状は、 0. 5≤Χ' Ζ (Υ' X r ) ≤ 1 00の範囲である。
この際、 焼成前の傾斜部の高さ Y' は、 焼成前の隔壁パターン高さの 0. 2〜 1倍であることが、 隔壁端部の隆起を防止するために効果的である。 0. 2倍未 満では、 隔壁上部と下部の焼成収縮応力差を緩和することができず、 隆起を防止 できない。 また、 1倍とした場合、 傾斜部を形成する工程によっては、 基板に設 けてある誘電体または電極を傷つけたりすることがあるので、 0. 9倍以下が好 ましい。 より好ましくは 0. 3〜0. 8倍である。
傾斜部の形状の測定方法は特に限定しないが、 光学顕微鏡、 走査電子顕微鏡、 またはレーザー顕微鏡を用いて測定するのが好ましい。
たとえば、 走査電子顕微鏡 (H I TACH I S— 2400) を用いる場合は 次のような方法が好ましい。 隔壁端部が正確にでるように切断し、 観察が可能な サイズに加工する。 測定倍率は、 傾斜部が視野にはいるところを選ぶ。 そして傾 斜部と同等の大きさの標準試料で縮尺を校正した後に写真を撮影する。 第 7図の ような方法で Xと Yの長さを測定し、 縮尺から形状を算出する。
また非破壊で測定を行いたい場合は、 レーザ一フォーカス変位計 (たとえば (株) キーエンス社製 LT— 80 1 0) を用いてもよい。 この場合も同様に標 準試料で校正を行った後、 測定を行うのが好ましい。 この際、 レーザーの測定面 が隔壁のストライプ方向と平行になっていることを確認することが、 正確な測定 をするため好ましい。
本発明のプラズマディスプレイの製造方法においては、 無機材料と有機成分か らなる隔壁用べ一ストを用いて、 端部に傾斜部を有するストライプ状隔壁パター ンを基板上に形成する工程および該隔壁パターンを焼成する工程を経て、 隔壁の 長手方向端部に傾斜部を有するストライプ状隔壁を形成する。 隔壁端部に傾斜部 を形成する方法は特に限定しないが、 以下のような方法を用いることができる。 一つの方法は、 隔壁用ガラスペーストを基板上に塗布する際、 塗布膜の端部が 傾斜面を形成するように塗布し、 その塗布膜の傾斜面がストライプ状隔壁パター ンの長手方向端部となるように隔壁パターンを形成する方法である。 塗布方法は 特に限定しないが、 スクリーン印刷、 ロールコ一夕一、 ドクターブレード、 口金 から吐出するスリットダイコー夕一を用いるのが好ましい。
隔壁パターン形成方法には、 スクリーン印刷法、 サンドブラスト法、 リフトォ フ法、 フォトリソグラフィ法などを用いることができる。
特に、 隔壁パターンの形成をフォトリソグラフィ法で行う場合は、 前記の傾斜 面を有する塗布膜を、 ス卜ライプ状パターンを有するフォトマスクを通して露光 し、 現像することによりストライプ状隔壁パターンを形成するが、 その際傾斜面 を端部とした塗布膜長さより長いストライプ状パターンを有するフォトマスクを 通して露光することにより、 端部に傾斜部を有するストライプ状隔壁パターンを 得ることができる。 この方法は後加工を必要とせず、 工程をふやすことなく傾斜 部を形成できる。
もう一つの方法は、 隔壁用ガラスペーストを基板上に塗布した後、 塗布膜を加 ェして傾斜面を形成し、 その塗布膜の傾斜面がストライプ状隔壁パターンの長手 方向端部となるように隔壁パターンを形成する方法である。
塗布膜を加工して傾斜面を形成する方法はどの様な方法でも良いが、 塗布膜に 流体を噴射し傾斜面を形成することが好ましい。 具体的には、 まだ完全に乾燥硬 化していない流動性の残った塗布膜に流体を噴射して、 第 9図に示すように傾斜 面を形成する。
この方法において用いる流体としては、 作業温度において液体または気体であ るならば、 いかなる物質でもよいが、 焼成工程を経た後に、 基板上に残留しない 物質であり、 且つ作業をクリーンに行えるものであることが好ましい。 流体はク リーン度の点および回収作業が必要ないことから気体が好ましい。 気体の成分は 特に限定されないが、 コスト面から空気または窒素が好適に用いられる。 流体と して気体を用いる場合は、 まだ完全に乾燥硬化していない流動性の残った塗布膜 に気体を噴射して傾斜面を形成することが好ましい。 また、 流体として溶媒を用 いることも好ましい。 流体として溶剤を用いる場合は、 乾燥硬化後の塗布膜に溶 媒を噴射して傾斜面を形成することにより、 精密な加工が可能である。
流体の噴射は、 ノズルまたはスリットを用いることが好ましい。 ノズルの内径 およびスリットの間隙は、 それぞれ 0 . 0 l mm〜 3 mmであることが好ましい。 0 . 0 1 mm未満では、 流体噴射の際、 必要な流量が得られず、 傾斜面を形成で きない。 3 mmを超えると、 流体の噴射位置制御が困難となる。
塗布膜を加工して傾斜面を形成する方法としては、 機械的に切削して加工する 方法もよい。 ここでいう切削とは、 刃物や砥石またはそれに類するものでの切削、 サンドブラス卜での切削、 レーザー照射による焼きとばし等を含む。 切削量は塗 布膜の厚さに依存し、 塗布膜厚さの 1 0〜 9 0 %が好ましく、 特に 5 0〜 8 0 % が好ましい。 切削量は多すぎると基板を削る恐れがあり、 少なすぎると塗布膜厚 さムラの影響で切削できない部分が生じる。 塗布膜を乾燥硬化後、 切削すること が、 切削による盛り上がりを生じさせないため、 好ましい。 さらに熱や紫外線で キュア後にこの方法を適用してもよい。 フォトリソグラフィ法により塗布膜に紫 外線でパターンを露光して、 部分的に硬化している部分ができているような場合 にも、 適用できる。
切削速度については、 切削断面の状況を見てきめればよいが、 0 . 0 5〜 1 0 分が好ましい。
また刃物、 砥石などの材料については、 セラミック、 高速度鋼、 超鋼等の切削 用材料として用いられるものならすべて適用できる。
塗布膜が感光性ペーストを塗布したものであり、 フォトリソグラフィ法により 隔壁パターンの形成を行う場合には、 露光後、 現像前の工程で削ることも好まし い。 削りカスが現像工程により洗い流され、 簡便に削りカスによる欠点を防止で さる。
隔壁パターン形成にリフトオフ法を用いる場合には樹脂型に隔壁用ペーストを 充填し、 乾燥硬化した後に、 樹脂型と隔壁用ペース卜塗布膜を同時に切削するこ とが好ましい。 同時に切削することにより、 隔壁パターンの倒れが防止できる。 さらに、 削りカスも樹脂型を除去する工程で一緒に除去できるため、 欠点防止に も有利である。 リフトオフ法とは、 ガラス基板上に感光性樹脂により隔壁パター ンの母型として樹脂型を形成し、 それに隔壁用べ一ストを充填する。 続いて、 該 隔壁用ペーストを乾燥後、 樹脂型を除去して隔壁パターンを形成し、 該隔壁パ夕 —ンを焼成することにより隔壁を形成する方法である。
また隔壁パターン形成にサンドプラスト法を用いる場合には、 サンドブラスト により不要部分を除去した後に、 レジスト層とともに切削してもよい。 レジスト 層を除去する際に削りカスも同時に除去できるため、 欠点防止に有利である。 サ ンドブラスト法とは、 隔壁用ペースト塗布膜上にレジスト層を塗布し、 該レジス ト層を露光、 現像することにより隔壁パターンマスクを形成し、 サンドブラスト によって不要部分を除去することにより隔壁パターンを形成した後、 レジス卜層 を除去し、 隔壁パターンを焼成することにより隔壁を形成する方法である。
切削により傾斜面の形成された塗布膜端部の好ましい形状の 1例を第 1 0図に 示す。 傾斜面でない部分の高さを t 1、 塗布膜厚みを t 2、 傾斜面の傾斜角を φ とすると、 t l Z t 2 = 0 . 1〜0 . 8、 φ = 0 . 1〜 6 0度の範囲が好ましい。 そのためには目的の傾斜面形状と一致した形状の成形刃物や砥石など (例えば第 1 0図の破線で示す形状) を使用すれば良い。 切削の際には、 基板を固定して刃 物、 砥石などの切削手段を移動させても、 切削手段を固定して基板を移動させて も良い。 刃物を用いた場合、 第 1 0図を横から見た図を第 1 1図および第 1 2図 に示す。 ここでは、 刃物を固定して基板を矢印の方向に移動させている。 刃物の 基板に対する角度は第 1 1図に示すように基板に対して対向するようにしてもよ いし、 第 1 2図に示すように基板に刃物がかぶるようにしてもよい。 塗布膜の特 性に合わせて、 選択すればよい。 どちらの場合も刃物と基板との角度 Θは 1 0〜 8 0度、 特に 1 5〜6 0度が好ましい。
サンドプラス卜で切削する場合またはレーザーで焼きとばす場合は、 サンドブ ラス卜の噴射角度やレーザ一照射角度が重要となるが、 目的の傾斜面形状に合う ように角度を設定すればよい。 好ましい角度としては上記と同様に 0 . 1〜6 0 度であることがよい。
また、 塗布膜を切削することによって発生する削りカスを強制的に排除するこ とが好ましい。 削りカスの強制的な排除は削りカスを吸引して行うことが好まし い。 これによつてカスの塗布膜表面への再付着を防ぎ、 パネル欠陥の防止になる- なお、 吸引に用いる装置の吸引圧力は 1 0〜 5 0 0 h P aであることが好ましい < さらに、 膜厚形状が常に一定となるように、 塗布膜プロファイルに応じて前記 刃物または砥石の塗布膜に対する相対位置を変化させることもよい。 対角 2 0ィ ンチ以上のガラス基板上に隔壁パターンを形成する場合、 基板には数十 mォ一 ダ一のうねりが存在する。 刃物または砥石と基板の距離を一定にすることにより、 誘電体や電極を削ることを防ぎ、 欠陥防止になる。
塗布膜を加工して傾斜面をつける手段として、 溶剤で溶かして加工してもよい 具体的には、 布などに溶剤を含ませて、 塗布膜をこすることにより傾斜面を形成 する。 また、 塗布膜にくさび型の判を押して傾斜面を形成してもよい。
特に隔壁パターンの形成をフォトリソグラフィ法で行う場合は、 前述と同様に、 傾斜面を端部とした塗布膜長さより長いス卜ライプ状パターンを有するフォトマ スクを用いることにより、 端部に傾斜部を有するストライプ状隔壁パターンを得 ることができる。
なお、 ここでいう傾斜面を端部とした塗布膜長さとは、 傾斜面を終端部とみな した場合の塗布膜長さのことである。 塗布膜の加工に際して、 形成した傾斜面の 外部に、 塗布膜の不用な一部 (以下、 塗布膜残渣と呼ぶ) が残ってしまった場合、 この塗布膜残渣は傾斜面を端部とした塗布膜長さには含まれない。 塗布膜残渣は 現像工程等の後工程で、 基板上から取り除かれる。 例えば第 9図は塗布膜に傾斜 面を形成したところであり、 図面の向かって左側が塗布膜、 お側が塗布膜外部で あるが、 本発明においては、 図面左の点線を塗布膜長さの端部とみなす。 また、 図面右の点線より右側は、 不用な塗布膜残渣である。 ここで傾斜面を端部とした 塗布膜長さより長く、 塗布膜残渣は含まない長さ、 すなわち、 図面左の点線と右 の点線の間にパターンの端部が存在する長さのフォ卜マスクを用いることにより、 塗布膜残渣は露光されないので、 現像時に除去され、 端部に傾斜部を有する隔壁 パターンのみが得られる。
また、 隔壁パターンを形成してから、 端部を加工して傾斜部を形成しても良い が、 加工のしゃすさや工程数を少なくできることから、 前記のように傾斜部を形 成した後、 隔壁パターンを形成する方が好ましい。 隔壁端部に傾斜部を形成する別の方法は、 無機材料と有機成分とからなる隔壁 用べ一ストをストライプ状の溝を形成した隔壁母型に充填する工程、 該隔壁母型 に充填された隔壁用ペーストを基板上に転写する工程、 該隔壁用ペーストを 4 0 0〜 6 0 0 °Cで焼成する工程とをこの順で含む方法である。
すなわち、 予め隔壁パターンに対応する溝を隔壁母型に形成し、 これに隔壁用 ガラスペーストを充填し、 該ペーストを隔壁母型からガラス基板上に転写して、 隔壁パターンを形成する方法である。 この方法においては、 ガラスペーストを隔 壁母型中に充填した後に、 ガラス基板上に転写して隔壁パ夕一ンを形成するが、 転写する際に圧力を加えて転写することによって、 転写欠陥が生じにくくなる。 また、 加熱しながら転写することによって、 隔壁母型からのペーストの脱離が容 易になる。 さらに、 ガラスペースト中の有機成分が熱重合する成分を含有する場 合、 重合収縮による体積変化が生じるため、 隔壁型の剥離が容易になる。
この方法においては、 隔壁パターンを形成した後、 前述のような傾斜面形成方 法によって隔壁パターン端部に傾斜部を形成しても良いが、 予め隔壁母型に形成 する溝の端部に傾斜部を形成しておくと、 後加工の必要が無くなり、 工程を増や すことなく傾斜部を形成でき、 好ましい。
さらに別の方法は、 無機材料と有機成分とからなる隔壁用ペーストを、 基板に 塗布して塗布膜を形成する工程、 該塗布膜にス卜ライプ状の溝を形成した隔壁母 型を押し当てて隔壁パターンを形成する工程、 該隔壁パターンを 4 0 0〜 6 0 0 °Cで焼成する工程とを、 この順で含む方法である。
この方法は、 隔壁用のガラスペーストを、 予めガラス基板の一部もしくは全面 に均一塗布し、 このペースト塗布層に隔壁母型を押し当てることにより、 隔壁パ ターンを形成する方法である。 ガラスペーストをガラス基板に均一に塗布する方 法は特に限定されないが、 スクリーン印刷法やダイコ一夕一やロールコ一夕一を 用いたコ一ティング法などが好ましく挙げられる。
この方法においても、 前記と同様に、 予め隔壁母型に形成する溝の端部に傾斜 部を形成しておくことが好ましい。
第 1 3図は上記した各製造方法に好ましく使用される隔壁母型の断面図であり、 隔壁母型に形成された溝の長手方向端部に傾斜部を有する。 該隔壁母型を構成す る材料としては、 高分子樹脂もしくは金属が好ましく挙げられるが、 前者の製造 方法においては、 シリコーンゴム製の隔壁母型を好ましく用いることができ、 ま た後者の製造方法においては、 金属板をパターンエッチングや研磨剤を用いたパ ターン研削等によって作製した隔壁母型を好ましく用いることができる。
端部に傾斜部を有することに加え、 隔壁を多層構成にして、 上層より下層に低 軟化点ガラスを用いることも、 接着力をあげることができるため好ましい。 下地 との接着力が向上することにより、 跳ね上がりが防止できる。
本発明のプラズマディスプレイ用隔壁は、 下面幅を L b、 半値幅を Lh、 上面 幅を L tとしたとき、
L t/L h = 0. 65〜 1
L b/L h = 1〜 2
の範囲にあることが好ましい。 なお Lbは隔壁底部の幅、 L hは半値幅 (隔壁高 さを 100としたとき、 底面から 50の高さの線幅) 、 L tは隔壁上部の幅を示 す。
L tノ L hが 1より大きいと、 隔壁中央にくびれが生じる形状となり、 隔壁の ピッチに対する放電空間の割合、 すなわち開口率が小さくなるため、 輝度が低下 する。 また蛍光体形成時に塗布ムラすなわち厚みムラゃ不均一が生じる。 また 0. 65未満では上面が細くなりすぎ、 パネル形成時にかかる大気圧に耐える強度が 不足し、 先端のつぶれが生じやすくなる。 L bZL hが 1未満では強度が低くな り、 隔壁の倒れ、 蛇行の原因になるため、 好ましくない。 また 2より大きいと放 電空間が減少することにより輝度が低下する。
より好ましくは、 L tZLh = 0. 8〜; L、 Lb/Lh= l〜; L . 5の範囲が、 開口率の確保の点からすぐれているため、 好ましい。 ただし、 L t =Lh = L b の場合は、 強度が弱くなり、 倒れが生じやすくなることから、 好ましくない。 形 状としては、 隔壁下面にくびれなどない台形または矩形形状が強度の点から好ま しい。
また焼成前の隔壁パターンを上記形状とすることにより、 特に基板ガラスや誘 電体層との接触面積が広くなり、 形状保持性や安定性が向上する。 その結果、 焼 成後の剥がれ、 断線が解消される。 本発明における隔壁の気孔率は、 隔壁の倒れを防止し、 基板との密着性に優れ ていることから、 1 0 %以下が好ましく、 3 %以下がより好ましい。 気孔率 (P) は、 隔壁材料の真比重を d th、 隔壁の実測密度を d exとしたとき、
P = (d th- dex)/d thx 1 00
と定義する。
隔壁材料の真比重は次の様ないわゆるアルキメデス法を用いて算出するのが好 ましい。 隔壁材料を乳鉢を用いて指頭に感じない程度、 32 5メッシュ以下ぐら いまでに粉砕する。 そして J I S - R 220 5に記載のように真比重を求める。 次に実測密度の測定は隔壁部分を形状を崩さないように削り取り、 粉砕を行わ ないこと以外は上記と同様にしてアルキメデス法を用いて計測を行う。
気孔率が 1 0 %より大きいと、 密着強度が低下するのに加え、 強度の不足、 ま た放電時に気孔から排出されるガス、 水分の吸着による輝度低下などの発光特性 低下の原因になる。 パネルの放電寿命、 輝度安定性などの発光特性を考慮すると、 さらに好ましくは 1 %以下がよい。
プラズマディスプレイやプラズマァドレス液晶ディスプレイの隔壁に用いる場 合は、 ガラス転移点、 軟化点の低いガラス基板上にパターン形成するため、 隔壁 材料として、 ガラス転移点が 430〜500°C、 軟化点が 470〜580 °Cのガ ラス材料を用いることが好ましい。 ガラス転移点が 500°C、 軟化点が 580 °C より高いと、 高温で焼成しなければならず、 焼成の際に基板に歪みが生じる。 ま たガラス転移点が 430T:、 軟化点が 470でより低い材料は緻密な隔壁層が得 られず、 隔壁の剥がれ、 断線、 蛇行の原因となる。
ガラス転移点、 軟化点の測定は次の様にするのが好ましい。 示差熱分析 (DT A) 法を用いて、 ガラス試料約 1 0 Omgを 20で 分で空気中で加熱し、 横軸 に温度、 縦軸に熱量をプロットし、 DTA曲線を描く。 DTA曲線より、 ガラス 転移点と軟化点を読みとる。
また、 基板ガラスに用いられる一般的な高歪点ガラスの熱膨張係数が 80〜9 0 X 1 0— 7ノ Kであることから、 基板のそり、 パネル封着時の割れ防止のために は、 50〜400°Cの熱膨張係数 (ひ 50~400) が 50〜90 X 1 0— 7ZK、 さら には、 60〜90 X 1 0—7/Κのガラス材料を隔壁および誘電体層に用いること が好ましい。 上記の特性を有するガラス材料を用いることによって、 隔壁の剥が れゃ断線を防ぐことができる。
隔壁材料の組成としては、 酸化珪素はガラス中に、 3〜6 0重量%の範囲で配 合することが好ましい。 3重量%未満の場合はガラス層の緻密性、 強度や安定性 が低下し、 また熱膨張係数が所望の値から外れ、 ガラス基板との不一致が起こり やすい。 また 6 0重量%以下にすることによって、 熱軟化点が低くなり、 ガラス 基板への焼き付けが可能になるなどの利点がある。
酸化ホウ素はガラス中に、 5〜 5 0重量%の範囲で配合することによって、 電 気絶縁性、 強度、 熱膨張係数、 絶縁層の緻密性などの電気、 機械および熱的特性 を向上することができる。 5 0重量%を越えるとガラスの安定性が低下する。 酸化リチウム、 酸化ナトリウム、 酸化カリウムのうち少なくとも 1種類を 2〜 1 5重量%含むガラス粉末を用いることによつても、 ガラス基板上にパターン加 ェできる温度特性を有する感光性ペーストを得ることができる。 リチウム、 ナト リウム、 カリウム等のアルカリ金属の酸化物は添加量としては、 1 5重量%以下、 好ましくは、 1 5重量%以下にすることによって、 ペーストの安定性を向上する ことができる。
酸化リチウムを含むガラス組成としては、 酸化物換算表記で
酸化リチウム 2〜 1 5重量%
酸化珪素 1 5〜 5 0重量%
酸化ホウ素 1 5〜4 0重量%
酸化バリゥム 2〜 1 5重量%
酸化アルミニウム 6〜2 5重量%
の組成を含有することが好ましい。 また、 上記組成で、 酸化リチウムの代わりに、 酸化ナトリウム、 酸化カリウムを用いても良いが、 ペーストの安定性の点で、 酸 化リチウムが好ましい。
また、 酸化鉛、 酸化ビスマス、 酸化亜鉛のような金属酸化物と酸化リチウム、 酸化ナトリゥム、 酸化力リゥムのようなアル力リ金属酸化物の両方を含有するガ ラスによって、 より低いアル力リ含有量で軟化点や線熱膨張係数のコントロール が容易になる。 基板と隔壁の間に誘電体層を設けると、 基板上に直接形成する場合に比べて隔 壁の密着性が増大して剥がれが抑制される。
誘電体層の厚みは、 5〜2 0 m、 より好ましくは 8〜 1 5 mであることが 均一な誘電体層の形成のために好ましい。 厚みが 2 0 を越えると、 焼成の際、 脱媒が困難でありクラックが生じやすく、 また基板へかかる応力が大きいために 基板が反る等の問題が生じる。 また、 5 z m未満では厚みの均一性を保持するの が困難である。
誘電体層用塗布膜上に隔壁パターンを形成した後、 隔壁パターンと誘電体層用 塗布膜を同時に焼成すると、 誘電体層用塗布膜と隔壁パターンの脱バインダ一が 同時におこるため、 隔壁パターンの脱バインダーによる収縮応力が緩和され、 剥 がれや断線を防止できる。 これに対し、 まず誘電体層用塗布膜のみを焼成した後、 この上に隔壁パターンを形成して焼成する場合、 隔壁と誘電体層間の密着不足に よる焼成の際の剥がれや断線を起こしやすい。 また、 隔壁パターンと誘電体層用 塗布膜を同時に焼成すると、 工程数が少なくて済むという利点がある。
同時焼成法の場合、 誘電体層用塗布膜を形成した後、 膜の硬化を行うと、 隔壁 パターン形成工程において、 該塗布膜が現像液に浸食されないため好ましい。 誘 電体層用塗布膜を硬化するには、 誘電体層用ペーストに感光性のものを用い、 ガ ラス基板上に塗布し、 乾燥を行った後、 露光を行い、 光硬化する方法が簡便で好 適に用いられる。
また、 熱重合によっても塗布膜を硬化させることができる。 この場合は、 誘電 体層用ペースト中にラジカル重合性モノマーおよびラジカル重合開始剤を添加し、 ペーストを塗布後、 加熱する方法等がある。
誘電体層用塗布膜の硬化を行わないこともできるが、 硬化を行った場合に比べ、 隔壁パターン形成工程において、 現像液による浸食をうけ、 誘電体層に亀裂が生 じゃすい。 従って、 現像液に非溶解性のポリマ一を選択せねばならない。
本発明の誘電体層は、 5 0〜4 0 0 °Cの範囲の熱膨張係数ひ 5。~4。。の値が、 7 0〜8 5 X 1 0 _ 7 / K、 より好ましくは 7 2〜 8 0 X 1 0 _ 7 Κであるガラスを 主成分とすることが、 基板ガラスの熱膨張係数と整合し、 焼成の際にガラス基板 にかかる応力を減らす点で好ましい。 主成分とするとは、 全成分中に 6 0重量% 以上、 好ましくは 70重量%以上含まれることをいう。 8 5 X 1 0— 7/Kを越え ると、 誘電体層の形成面側に基板が反るような応力がかかり、 70 X 1 0— 7ΖΚ 未満では誘電体層のない面側に基板が反るような応力がかかる。 このため、 基板 の加熱、 冷却を繰り返すと基板が割れる場合がある。 また、 前面基板との封着の 際、 基板の反りのために両基板が平行にならず封着できない場合もある。
本発明のプラズマディスプレイ用基板の前記反り量は、 基板の曲率半径 Rに反 比例するので、 基板の曲率半径の逆数 ( 1ZR) によって規定することができる c ここで反り量の正負の値は基板の反る方向を表す。 ガラス基板の曲率半径は、 種 々の方法で測定できるが、 表面粗さ計 (東京精密社製:サ一フコム 1 50 OAな ど) を用い、 基板面のうねりを測定する方法がもっとも簡便である。 得られたう ねり曲線の最大偏差 H、 測定長さ Lから次式を用いて反り量 1 ZRを算出できる。
1 /R=8 H/L 2
基板に反りが生じている場合、 前面板と背面板の封着の際、 隔壁頭部と前面板 表面との間に隙間が生じることで、 各セル間で誤放電が生じたり、 封着時に基板 が破損したりする。 これらの問題が生じないためには、 反り量の絶対値を 3 X 1 0 ^m 1以下にする必要がある。 すなわち、 基板の反り量を次式の範囲内にする 必要がある。
- 3 X 1 0 3m— i≤ 1 /R≤ 3 X 1 0 3m— 1 ( Rは基板の曲率半径を表す) 本発明では、 誘電体層中にアル力リ金属を実質的に含有しないことにより焼成 時の基板の反りやパネル封着時の割れを防止することができる。 本発明で、 実質 的に含有しないとは、 アルカリ金属の含有量が無機材料に対して 0. 5重量%以 下、 好ましくは、 0. 1重量%以下である。 熱膨張係数が基板ガラスと整合して いても、 誘電体中にアルカリ金属、 例えば Na (ナトリウム) 、 L i (リチウム) 、 K (カリウム) 等の含有量が 0. 5重量%を超える場合は、 焼成時にガラス基板 や電極中のガラス成分とイオン交換が起こるため、 基板の表面部分や誘電体層の 熱膨張係数が変化し、 誘電体層と基板の熱膨脹係数と一致しなくなり、 基板に引 つ張り応力が生じ、 基板割れの原因となる。 また、 アルカリ土類金属も実質的に 含まないことがより好ましい。
本発明の誘電体層は、 少なくとも 2層であることが好ましい。 ガラス基板上の 電極上に形成された誘電体層 (誘電体層 Aと呼ぶ) および誘電体層 A上に形成さ れた誘電体層 (誘電体層 Bと呼ぶ) の 2層構造が好ましい。 例えば、 電極として 銀を用いた場合、 誘電体層 A中の成分と銀イオンやガラス基板上の成分とがィォ ン交換などの反応を起こし、 誘電体層 Aが着色するという問題が発生する場合が ある。 特に誘電体層 A中にアルカリ金属およびその酸化物が含有する場合、 前記 イオン交換反応が顕著に起こり、 誘電体層 Aが黄色化する場合がある。 この問題 を解決するために、 本発明の誘電体層 Aおよび Bが実質的にアル力リ金属を含ま ない無機材料であることが好ましい。
本発明の誘電体層には酸化ビスマス、 酸化鉛、 酸化亜鉛のうち少なくとも 1種 類、 さらに好ましくは酸化ビスマスを 1 0〜 6 0重量%含むガラスを用いること によって熱軟化温度、 熱膨張係数のコントロールが容易になるため好ましい。 特 に、 酸化ビスマスを 1 0〜6 0重量%含有するガラスを用いることは、 ペースト の安定性などの利点がある。 酸化ビスマス、 酸化鉛、 酸化亜鉛の添加量は 6 0重 量%を越えるとガラスの耐熱温度が低くなり過ぎてガラス基板上への焼き付けが 難しくなる。
具体的なガラス組成の例としては、 酸化物換算表記で以下の組成を含むものが 挙げられるが、 本発明は、 このガラス組成に限定されるものではない。
酸化ビスマス 1 0〜6 0重量%
酸化珪素 3〜 5 0重量%
酸化ホウ素 1 0〜4 0重量%
酸化バリゥム 5〜2 0重量%
酸化亜鉛 1 0〜 2 0重量%
本発明の誘電体層中に含有する無機材料としては、 酸化チタン、 アルミナ、 シ リカ、 チタン酸バリウム、 ジルコニァ等の白色フィラーが用いられる。 ガラスを 5 0〜 9 5重量%、 フィラーを 5〜 5 0重量%含有する無機材料が用いられる。 フィラーを上記範囲に含有することによって誘電体層の反射率を向上させ、 高輝 度のプラズマディスプレイが得られる。
本発明の誘電体層は、 無機材料粉末と有機バインダ一からなる誘電体ペースト をガラス基板上に塗布または積層し、 焼成することによって形成できる。 誘電体 層用ペーストに用いる無機材料粉末の量は、 無機材料粉末と有機成分の和に対し て 5 0〜 9 5重量%であるのが好ましい。 5 0重量%未満では、 誘電体層の緻密 性、 表面の平坦性が欠如し、 9 5重量%を越えるとペースト粘度が上昇し、 塗布 時の厚みムラが大きくなる。
本発明の隔壁の作製方法は特に限定しないが、 工程が少なく、 微細なパターン 形成が可能である感光性ペース卜法が好ましい。
感光性ペースト法は、 ガラス粉末を主成分とする無機材料と感光性を持つ有機 成分からなる感光性ペーストを用いて塗布膜を形成し、 該塗布膜をフォトマスク を通して露光し、 現像することにより、 隔壁パターンを形成し、 その後該隔壁パ ターンを焼成して隔壁を得る方法である。
感光性ペースト法に用いる無機材料の量は、 無機材料と有機成分の和に対して 6 5〜 8 5重量%であるのが好ましい。
6 5重量%より小さいと、 焼成時の収縮率が大きくなり、 隔壁の断線、 剥がれ の原因となるため、 好ましくない。 また、 ペーストとして乾燥が難しくなり、 ベ 夕付きが生じ、 印刷特性が低下する。 さらにパターン太り、 現像時の残膜の発生 が起こりやすい。 8 5重量%より大きいと、 感光性成分が少ないことにより、 隔 壁パターン底部まで光硬化せず、 パターンの形成性が悪くなりやすい。
この方法を用いる場合には、 無機材料として下記のようなガラス粉末を用いる ことが好ましい。
ガラス粉末中に、 酸化アルミニウム、 酸化バリウム、 酸化カルシウム、 酸化マ グネシゥム、 酸化亜鉛、 酸化ジルコニウムなど、 特に酸化アルミニウム、 酸化バ リウム、 酸化亜鉛を添加することにより、 軟化点、 熱膨張係数、 屈折率を制御す ることができる力 その含有量は 4 0重量%以下が好ましく、 より好ましくは 2 5重量%以下である。
さらに、 一般に絶縁体として用いられるガラスは、 1 . 5〜 1 . 9程度の屈折 率を有しているが、 感光性ペースト法を用いる場合、 有機成分の平均屈折率がガ ラス粉末の平均屈折率と大きく異なる場合は、 ガラス粉末と有機成分の界面での 反射 '散乱が大きくなり、 精細なパターンが得られない。 一般的な有機成分の屈 折率は 1 . 4 5〜 1 . 7であるため、 ガラス粉末と有機成分の屈折率を整合させ るためには、 ガラス粉末の平均屈折率を 1 . 5〜 1 . 7にすることが好ましい。 さらにより好ましくは 1 . 5〜 1 . 6 5にするのがよい。
酸化ナトリウム、 酸化リチウム、 酸化カリウム等のアルカリ金属の酸化物を合 計で 2〜 1 0重量%含有するガラスを用いることによって、 軟化点、 熱膨張係数 のコントロールが容易になるだけでなく、 ガラスの平均屈折率を低くすることが できるため、 有機物との屈折率差を小さくすることが容易になる。 2 %より小さ い時は、 軟化点の制御が難しくなる。 1 0 %より大きい時は、 放電時にアルカリ 金属酸化物の蒸発によって輝度低下をもたらす。 さらにアル力リ金属の酸化物の 添加量はペース卜の安定性を向上させるためにも、 8重量%より小さいことが好 ましく、 より好ましくは 6重量%以下である。
特に、 アルカリ金属の中では酸化リチウムを用いることが、 比較的べ一ストの 安定性を高くすることができるから好ましい。 また、 酸化カリウムを用いた場合 は、 比較的少量の添加でも屈折率を制御できる利点がある。
この結果、 ガラス基板上に焼き付け可能な軟化点を有し、 平均屈折率を 1 . 5 〜 1 . 7にすることができ、 有機成分との屈折率差を小さくすることが容易にな る。
酸化ビスマスを含有するガラスは軟化点や耐水性向上の点から好ましいが、 酸 化ビスマスを 1 0重量%以上含むガラスは、 屈折率が 1 . 6以上になるものが多 い。 このため酸化ナトリウム、 酸化リチウム、 酸化カリウムなどのアルカリ金属 の酸化物と酸化ビスマスを併用することによって、 軟化点、 熱膨張係数、 耐水性、 屈折率のコントロールが容易になる。
本発明におけるガラス材料の屈折率測定は、 感光性ガラスペース卜法で露光す る光の波長で測定することが効果を確認する上で正確である。 特に、 3 5 0〜6 5 0 n mの範囲の波長の光で測定することが好ましい。 さらには、 i線 (3 6 5 n m) もしくは g線 (4 3 6 n m) での屈折率測定が好ましい。
本発明の隔壁はコントラストをあげる点で優れていることから、 黒色に着色さ れていてもよい。 種々の金属酸化物を添加することによって、 焼成後の隔壁を着 色することができる。 例えば、 感光性ペースト中に黒色の金属酸化物を 1〜 1 0 重量%含むことによって、 黒色のパターンを形成することができる。 この際に用いる黒色の金属酸化物として、 R u、 C r、 F e、 C o、 Mn、 C uの酸化物の内、 少なくとも 1種、 好ましくは 3種以上を含むことによって、 黒 色化が可能になる。 特に、 R uと C uの酸化物をそれぞれ 5〜 2 0重量%含有す ることによって、 黒色パターンを形成できる。
さらに、 黒色以外に、 赤、 青、 緑等に発色する無機顔料を添加したペーストを 用いることによって、 各色のパターンを形成できる。 これらの着色パターンは、 プラズマディスプレイのカラ一フィルターなどに好適に用いることができる。 隔壁ガラス材料の誘電率はパネルの消費電力、 放電寿命に優れている点から周 波数 1 ΜΗ ζ、 温度 2 0°Cの時に 4〜 1 0であることが好ましい。 4以下にする ためには、 誘電率が 3. 8程度である酸化珪素を多く含ませねばならず、 ガラス 転移点が高くなり、 焼成温度が高くなることから、 基板歪みの原因となり好まし くない。 1 0以上であると、 帯電量の増加による電力のロスが生じ、 消費電力の 増加を引き起こすため好ましくない。
また、 本発明の隔壁の比重は 2〜 3. 3であることが好ましい。 2以下にする ためには、 ガラス材料に酸化ナトリゥムゃ酸化力リゥムなどのアル力リ金属の酸 化物を多く含ませなければならず、 放電中に蒸発して放電特性を低下させる要因 となるため、 好ましくない。 3. 3以上になると、 大画面化した時ディスプレイ が重くなつたり、 自重で基板に歪みを生じたりするので好ましくない。
上記において使用されるガラス粉末粒子径は、 作製しょうとする隔壁の線幅や 高さを考慮して選ばれるが、 5 0体積%粒子径 (平均粒子径 D 5 0) が l〜6 m、 最大粒子径サイズが 3 0 im以下、 比表面積 1. 5〜4m2 /gであること が好ましい。 より好ましくは 1 0体積%粒子径 (D 1 0) 0. 4〜 2 ^m、 5 0 体積%粒子径 (D 5 0) 1. 5〜6 ;um、 9 0体積%粒子径 (D 9 0 ) : 4〜 1 5 zm、 最大粒子径サイズが 2 5 t m以下、 比表面積 1. 5〜3. 5πι2 ^を 有していることが好ましい。 さらに好ましくは D 5 0が 2〜 3. 5 , 比表面 積 1. 5〜3m2 /gである。
ここで、 D 1 0、 D 5 0、 D 9 0は、 それぞれ、 粒径の小さいガラス粉末から 1 0体積%、 5 0体積%、 9 0体積%のガラスの粒子径である。
上記粒度分布より小さいと比表面積が増えるため、 粉末の凝集性があがり、 有 機成分内への分散性が下がるため、 気泡を巻き込みやすくなる。 そのため光散乱 が増え、 隔壁中央部の太り、 底部の硬化不足が生じ、 好ましい形状が得られない。 また大きいと粉末のかさ密度が下がるため充填性がさがり、 感光性有機成分の量 が不足し気泡を巻き込みやすくなり、 やはり光散乱を起こしやすくなる。
よつて粒度分布には最適領域があり、 上記のような粒度分布をもつたガラス粉 末を用いることにより、 粉末の充填性が向上し、 感光性ペースト中の粉末比率を 増加させても気泡を巻き込むことが少なくなり、 余分な光散乱が小さいため隔壁 パターン形成が維持される。 かつ粉末充填比率が高いので焼成収縮率が低くなり、 パターン精度が向上し、 好ましい隔壁形状が得られる。
粒子径の測定方法は特に限定しないが、 レーザー回折 ·散乱法を用いるのが、 簡便に測定できるので好ましい。 たとえばマイクロトラック社製、 粒度分布計 H R A 9 3 2 0 - X 1 0 0を用いた場合の測定条件は下記の通りである。
SA料量 : 1 g
分散条件 :精製水中で 1〜1 . 5分間超音波分散、 分散しにくい場合は
0 . 2 %へキサメ夕リン酸ナトリウム水溶液中で行う。
粒子屈折率: ガラス種類によって変更 (リチウム系 1 . 6、 ビスマス系 1 . 8 8 )
溶媒屈折率: 1 . 3 3
測定数 : 2回
本発明の隔壁に軟化点が 5 5 0〜 1 2 0 0 °C、 さらに好ましくは 6 5 0〜8 0 0 であるフイラ一を 3〜6 0重量%含ませてもよい。 これにより、 感光性べ一 スト法において、 パターン形成後の焼成時の収縮率が小さくなり、 パターン形成 が容易になり、 焼成時の形状保持性が向上する。
フイラ一としては、 チタニア、 アルミナ、 チタン酸バリウム、 ジルコニァなど のセラミックスや酸化珪素、 酸化アルミニウムを 1 5重量%以上含有する高融点 ガラス粉末が好ましい。 一例としては、 以下の組成を含有するガラス粉末を用い ることが好ましい。
酸化珪素 : 2 5〜 5 0重量%
酸化ホウ素 : 5〜2 0重量% 酸化アルミニウム : 2 5〜50重量%
酸化バリゥム : 2〜 1 0重量%
高融点ガラス粉末をフイラ一として用いる際、 母ガラス材料 (低融点ガラス) との屈折率差が大きいと有機成分との整合が困難になり、 パターン形成性が悪く なる。
そこで、 低融点ガラス粉末の平均屈折率 N 1、 高融点ガラス粉末の平均屈折率 N2が、 次の範囲にあることによって、 有機成分との屈折率整合が容易になる。
- 0. 05≤N 1 -N2≤0. 0 5
無機粉末の屈折率のばらつきが小さいことも光散乱低減には重要なことである。 屈折率のばらつきが ± 0. 05である (無機粉末の 9 5体積%以上が平均屈折率 N 1 ± 0. 0 5の範囲に入っている) ことが、 光散乱低減には好ましい。
用いるフィラーの粒子径としては、 平均粒子径 1〜 6; mのものが好ましい。 また、 D 10 ( 1 0体積%粒子径) 0. 4〜2 / m、 D 50 (50体積%粒子径) : l〜3 ;am、 D 90 ( 90体積%粒子径) : 3〜8 /xm、 最大粒子サイズ: 1 0 im以下の粒度分布を有するものを使用することがパターン形成を行う上で好 ましい。
さらにより好ましくは D 90は 3〜5 / m、 最大粒子サイズ 5 m以下が好ま しい。 D 90が 3〜 5 zmの細かい粉末であることが、 焼成収縮率を低くするこ とができ、 かつ気孔率が低い隔壁を作製する点で優れていることから好ましい。 また隔壁上部の長手方向の凹凸を土 2 m以下にすることが可能となる。 フイラ —に大きい粒径の粉末を用いると、 気孔率が上昇するばかりでなく、 隔壁上部の 凹凸が大きくなり、 誤放電を引き起こすことから好ましくない。
ガラスペースト中に含まれる有機成分としては、 ェチルセルロースに代表され るセルロース化合物、 ポリイソプチルメ夕クリレートに代表されるアクリルポリ マ一などを用いることができる。 また、 ポリピニルアルコール、 ポリビニルプチ ラール、 メタクリル酸エステル重合体、 アクリル酸エステル重合体、 アクリル酸 エステルーメタクリル酸エステル共重合体、 a—メチルスチレン重合体、 ブチル メ夕クリレート樹脂などがあげられる。
その他、 ガラスペーストには、 必要に応じて各種添加剤を添加することができ、 粘度を調整したい場合は、 有機溶媒を加えてもよい。 このとき使用される有機溶 媒としては、 メチルセ口ソルブ、 ェチルセ口ソルブ、 ブチルセ口ソルブ、 メチル ェチルケトン、 ジォキサン、 アセトン、 シクロへキサノン、 シクロペン夕ノン、 イソブチルアルコール、 イソプロピルアルコール、 テトラヒドロフラン、 ジメチ ルスルフォキシド、 ァーブチロラクトン、 プロモベンゼン、 クロ口ベンゼン、 ジ ブロモベンゼン、 ジクロロベンゼン、 ブロモ安息香酸、 クロ口安息香酸、 テルビ ネオ一ルなどやこれらのうちの 1種以上を含有する有機溶媒混合物が用いられる。 また、 隔壁形成法として感光性ペースト法を用いる場合には、 下記のような有 機成分が用いられる。
有機成分は、 感光性モノマー、 感光性オリゴマー、 感光性ポリマ一のうち少な くとも 1種類から選ばれる感光性成分を含有し、 さらに必要に応じて、 バインダ 一、 光重合開始剤、 紫外線吸収剤、 增感剤、 増感助剤、 重合禁止剤、 可塑剤、 増 粘剤、 有機溶媒、 酸化防止剤、 分散剤、 有機あるいは無機の沈殿防止剤などの添 加剤成分を加えることも行われる。
感光性成分としては、 光不溶化型のものと光可溶化型のものがあり、 光不溶化 型のものとして、
( A) 分子内に不飽和基などを 1つ以上有する官能性のモノマ一、 オリゴマー、 ポリマーを含有するもの
( B ) 芳香族ジァゾ化合物、 芳香族アジド化合物、 有機ハロゲン化合物などの感 光性化合物を含有するもの
( C ) ジァゾ系ァミンとホルムアルデヒドとの縮合物などいわゆるジァゾ樹脂と いわれるもの等がある。
また、 光可溶型のものとしては、
( D ) ジァゾ化合物の無機塩や有機酸とのコンプレックス、 キノンジァゾ類を含 有するもの
( E ) キノンジァゾ類を適当なポリマーバインダーと結合させた、 例えばフエノ —ル、 ノポラック樹脂のナフトキノン一 1, 2—ジアジド一 5 —スルフォン酸ェ ステル等がある。
本発明において用いる感光性成分は、 上記のすべてのものを用いることができ る。 感光性べ一ストとして、 無機微粒子と混合して簡便に用いることができる感 光性成分は、 (A ) のものが好ましい。
感光性モノマーとしては、 炭素一炭素不飽和結合を含有する化合物で、 その具 体的な例として、 メチルァクリレート、 ェチルァクリレート、 n—プロピルァク リレート、 イソプロピルァクリレート、 n—ブチルァクリレー卜、 s e c—ブチ ルァクリレート、 s e c —ブチルァクリレート、 イソ一ブチルァクリレート、 t e r t —ブチルァクリレート、 n—ペンチルァクリレー卜、 ァリルァクリレート、 ベンジルァクリレー卜、 ブ卜キシェチルァクリ レート、 ブ卜キシトリエチレング リコールァクリ レート、 シクロへキシルァクリ レート、 ジシクロペン夕二ルァク リレート、 ジシクロペンテ二ルァクリレー卜、 2—ェチルへキシルァクリレート、 グリセロールァクリレート、 グリシジルァクリ レート、 ヘプタデカフロロデシル ァクリ レート、 2—ヒドロキシェチルァクリ レート、 イソポニルァクリレート、 2—ヒドロキシプロピルァクリレート、 イソデシルァクリレート、 イソォクチル ァクリレート、 ラウリルァクリレート、 2—メ 卜キシェチルァクリ レート、 メ ト キシエチレンダリコールァクリレー卜、 メ 卜キシジエチレングリコールァクリレ —ト、 ォクタフロロペンチルァクリ レー卜、 フエノキシェチルァクリレート、 ス テアリルァクリレート、 トリフロロェチルァクリレート、 ァリル化シクロへキシ ルジァクリレート、 1 , 4 —ブタンジオールジァクリレー卜、 1 , 3—ブチレン グリコ一ルジァクリレート、 エチレングリコールジァクリレート、 ジエチレング リコ一ルジァクリレート、 トリエチレングリコールジァクリ レー卜、 ポリエチレ ングリコールジァクリレー卜、 ジペン夕エリスリ トールへキサァクリ レート、 ジ ペン夕エリスリ トールモノヒドロキシペン夕ァクリレート、 ジトリメチ口一ルプ 口パンテトラァクリレート、 グリセ口一ルジァクリレート、 メ トキシ化シクロへ キシルジァクリレー卜、 ネオペンチルダリコ一ルジァクリレート、 プロピレング リコ一ルジァクリレート、 ポリプロピレングリコールジァクリレー卜、 卜リグリ セロールジァクリレー卜、 卜リメチロールプロパントリァクリレート、 アクリル アミ ド、 アミノエチルァクリレート、 フエ二ルァクリ レー卜、 フエノキシェチル ァクリレート、 ベンジルァクリレー卜、 1—ナフチルァクリレ一卜、 2—ナフチ ルァクリレート、 ビスフエノール Aジァクリレート、 ビスフエノール A—ェチレ ンォキサイド付加物のジァクリレート、 ビスフエノール A—プロピレンォキサイ ド付加物のジァクリレート、 チォフエノールァクリレート、 ベンジルメルカプタ ンァクリレート等のァクリレート、 また、 これらの芳香環の水素原子のうち、 1 〜 5個を塩素または臭素原子に置換したモノマー、 もしくは、 スチレン、 p—メ チルスチレン、 o—メチルスチレン、 m—メチルスチレン、 塩素化スチレン、 臭 素化スチレン、 α—メチルスチレン、 塩素化ひ一メチルスチレン、 臭素化 α—メ チルスチレン、 クロロメチルスチレン、 ヒドロキシメチルスチレン、 カルポキシ メチルスチレン、 ビニルナフ夕レン、 ビニルアン卜ラセン、 ビニルカルバゾール、 および、 上記化合物の分子内のァクリレートを一部もしくはすべてをメタクリレ —卜に変えたもの、 了一メタクリロキシプロビルトリメトキシシラン、 1ービニ ルー 2—ピロリ ドンなどが挙げられる。 本発明ではこれらを 1種または 2種以上 使用することができる。
これら以外に、 不飽和カルボン酸等の不飽和酸を加えることによって、 感光後 の現像性を向上することができる。 不飽和カルボン酸の具体的な例としては、 ァ クリル酸、 メタアクリル酸、 ィタコン酸、 クロトン酸、 マレイン酸、 フマル酸、 ビニル酢酸、 またはこれらの酸無水物などがあげられる。
これらモノマーの含有率は、 ガラス粉末と感光性成分の和に対して、 5〜 3 0 重量%が好ましい。 これ以外の範囲では、 パターンの形成性の悪化、 硬化後の硬 度不足が発生するため好ましくない。
バインダーとしては、 ポリビニルアルコール、 ポリビニルプチラール、 メタク リル酸エステル重合体、 アクリル酸エステル重合体、 アクリル酸エステル一メタ クリル酸エステル共重合体、 α—メチルスチレン重合体、 ブチルメタクリレート 樹脂などがあげられる。
また、 前述の炭素一炭素二重結合を有する化合物のうち少なくとも 1種類を重 合して得られたオリゴマーやポリマーを用いることができる。 重合する際に、 こ れら光反応性モノマーの含有率が、 1 0重量%以上、 さらに好ましくは 3 5重量 %以上になるように、 他の感光性のモノマーと共重合することができる。
共重合するモノマーとしては、 不飽和カルボン酸等の不飽和酸を共重合するこ とによって、 感光後の現像性を向上することができる。 不飽和カルボン酸の具体 的な例としては、 アクリル酸、 メタアクリル酸、 ィタコン酸、 クロトン酸、 マレ イン酸、 フマル酸、 ビニル酢酸、 またはこれらの酸無水物などがあげられる。 こうして得られた側鎖にカルボキシル基等の酸性基を有するポリマーもしくは オリゴマーの酸価 (A V ) は 3 0〜 1 5 0、 さらには 7 0〜 1 2 0の範囲が好ま しい。 酸価が 3 0未満であると、 未露光部の現像液に対する溶解性が低下するた め現像液濃度を濃くすると露光部まで剥がれが発生し、 高精細なパターンが得ら れにくい。 また、 酸価が 1 5 0を越えると現像許容幅が狭くなる。
現像性を不飽和酸等のモノマーで付与する場合は、 ポリマーの酸価値は 5 0以 下にすることによりガラス粉末とポリマーの反応によるゲル化を抑制できること から好ましい。
以上示した、 ポリマ一もしくはオリゴマーに対して、 光反応性基を側鎖または 分子末端に付加させることによって、 感光性を持つ感光性ポリマーや感光性オリ ゴマ一として用いることができる。 好ましい光反応性基は、 エチレン性不飽和基 を有するものである。 エチレン性不飽和基としては、 ビニル基、 ァリル基、 ァク リル基、 メ夕クリル基などがあげられる。
このような側鎖をオリゴマーやポリマーに付加させる方法は、 ポリマー中のメ ルカプト基、 アミノ基、 水酸基やカルボキシル基に対して、 グリシジル基やイソ シァネート基を有するエチレン性不飽和化合物ゃァクリル酸クロライド、 メタク リル酸クロライドまたはァリルクロライドを付加反応させて作る方法がある。 グリシジル基を有するエチレン性不飽和化合物としては、 アクリル酸グリシジ ル、 メ夕クリル酸グリシジル、 ァリルグリシジルェ一テル、 ェチルアクリル酸グ リシジル、 クロトニルグリシジルエーテル、 クロトン酸グリシジルエーテル、 ィ ソクロトン酸ダリシジルエーテルなどがあげられる。
イソシァネート基を有するエチレン性不飽和化合物としては、 (メタ) ァクリ ロイルイソシァネート、 (メタ) ァクリロイルェチルイソシァネート等がある。 また、 ダリシジル基やイソシァネート基を有するエチレン性不飽和化合物ゃァ クリル酸クロライド、 メタクリル酸クロライドまたはァリルクロライドは、 ポリ マ一中のメルカプト基、 アミノ基、 水酸基やカルボキシル基に対して 0 . 0 5〜 1モル当量付加させることが好ましい。 感光性ガラスペースト中の感光性ポリマー、 感光性オリゴマーおよびバインダ 一からなるポリマー成分の量としては、 パターン形成性、 焼成後の収縮率の点で 優れていることから、 ガラス粉末と感光性成分の和に対して、 5〜3 0重量%で あることが好ましい。 この範囲外では、 パターン形成が不可能もしくは、 パ夕一 ンの太りがでるため好ましくない。
光重合開始剤としての具体的な例として、 ベンゾフエノン、 0 —ベンゾィル安 息香酸メチル、 4, 4一ビス (ジメチルァミン) ベンゾフエノン、 4, 4 一ビス
(ジェチルァミノ) ベンゾフエノン、 4, 4—ジクロロべンゾフエノン、 4—ベ ンゾィル一 4—メチルジフエ二ルケトン、 ジベンジルケトン、 フルォレノン、 2, 2—ジェトキシァセ卜フエノン、 2, 2—ジメトキシー 2—フエニル一 2—フエ 二ルァセ卜フエノン、 2—ヒドロキシ一 2—メチルプロピオフエノン、 p— t— ブチルジクロロアセトフエノン、 チォキサントン、 2—メチルチオキサントン、 2—クロ口チォキサントン、 2—イソプロピルチォキサントン、 ジェチルチオキ サントン、 ベンジルジメチルケ夕ノール、 ベンジルメトキシェチルァセタール、 ベンゾイン、 ベンゾインメチルエーテル、 ベンゾインブチルエーテル、 アントラ キノン、 2— t—プチルアン卜ラキノン、 2—アミルアントラキノン、 3—クロ ルアントラキノン、 アントロン、 ベンズアントロン、 ジベンゾスベロン、 メチレ ンアントロン、 4 —アジドベンザルァセトフエノン、 2 , 6 —ビス (p—アジド ベンジリデン) シクロへキサノン、 2 , 6—ビス (p —アジドベンジリデン) ― 4 —メチルシクロへキサノン、 2—フエニル一 1, 2—ブタジオン一 2— (o— メ卜キシカルポニル) ォキシム、 1 一フエ二ループロパンジオン一 2— ( o—ェ 卜キシカルポニル) ォキシム、 1 , 3—ジフエ二ループロパン卜リオン一 2—
( o —エトキシカルボニル) ォキシム、 1 —フエ二ルー 3—ェ卜キシープロパン 卜リオンー 2— (o—べンゾィル) ォキシム、 ミヒラ一ケトン、 2—メチルー
[ 4— (メチルチオ) フエニル] — 2 —モルフォリノ一 1 —プロパノン、 2—ベ ンジル一 2—ジメチルァミノ一 1一 (4 一モルフォリノフエ二ル) ブ夕ノン一 1、 ナフ夕レンスルホニルクロライド、 キノリンスルホニルクロライド、 N—フエ二 ルチオァクリ ドン、 4 , 4—ァゾビスイソプチロニトリル、 ジフエニルジスルフ イ ド、 ベンズチアゾールジスルフイ ド、 卜リフエニルホスフィン、 カンファーキ ノン、 四臭素化炭素、 トリブロモフエニルスルホン、 過酸化べンゾインおよびェ ォシン、 メチレンブル一などの光還元性の色素とァスコルビン酸、 トリエタノー ルァミンなどの還元剤の組み合わせなどがあげられる。 本発明ではこれらを 1種 または 2種以上使用することができる。
光重合開始剤は、 感光性成分に対し、 0 . 0 5〜 2 0重量%の範囲で添加され、 より好ましくは、 0 . 1〜 1 5重量%である。 重合開始剤の量が少なすぎると、 光感度が不良となり、 光重合開始剤の量が多すぎれば、 露光部の残存率が小さく なりすぎるおそれがある。
紫外線吸収剤を添加することも有効である。 紫外線吸収効果の高い化合物を添 加することによって高アスペクト比、 高精細、 高解像度が得られる。 紫外線吸収 剤としては有機系染料からなるもの、 中でも 3 5 0〜 4 5 0 n mの波長範囲で高 U V吸収係数を有する有機系染料が好ましく用いられる。 具体的には、 ァゾ系染 料、 アミノケトン系染料、 キサンテン系染料、 キノリン系染料、 アントラキノン 系、 ベンゾフエノン系、 ジフエ二ルシアノアクリレー卜系、 卜リアジン系、 p— ァミノ安息香酸系染料などが使用できる。 有機系染料は吸光剤として添加した場 合にも、 焼成後の絶縁膜中に残存しないで吸光剤による絶縁膜特性の低下を少な くできるので好ましい。 これらの中でもァゾ系およびべンゾフエノン系染料が好 ましい。
有機染料の添加量はガラス粉末に対して 0 . 0 5〜 1重量部が好ましい。 0 . 0 5重量%以下では紫外線吸光剤の添加効果が低く、 1重量%を越えると焼成後 の絶縁膜特性が低下するので好ましくない。 より好ましくは 0 . 1〜 0 . 1 8重 量%である。
有機染料からなる紫外線吸光剤の添加方法の一例を上げる。 有機染料を予め有 機溶媒に溶解した溶液を作製し、 それをペースト作製時に混練する。 あるいは、 該有機染料溶液中にガラス微粒子を混合後、 乾燥する方法もある。 この方法によ つてガラス微粒子の個々の粒子表面に有機染料の膜をコートしたいわゆるカプセ ル状の微粒子が作製できる。
本発明において、 無機微粒子に含まれる C a、 F e、 M n、 C o、 M gなどの 金属および酸化物がペースト中に含有する感光性成分と反応してペース卜が短時 間でゲル化し、 塗布できなくなる場合がある。 このような反応を防止するために 安定化剤を添加してゲル化を防止することが好ましい。 用いる安定化剤としては、 卜リアゾール化合物が好ましく用いられる。 トリァゾ一ル化合物としては、 ベン ゾトリァゾール誘導体が好ましく用いられる。 この中でも特にべンゾトリァゾ一 ルが有効に作用する。 本発明において使用されるべンゾトリアゾ一ルによるガラ ス微粒子の表面処理の一例を上げると、 無機微粒子に対して所定の量のベンゾト リアゾ一ルを酢酸メチル、 酢酸ェチル、 エチルアルコール、 メチルアルコールな どの有機溶媒に溶解した後、 これら微粒子が十分に浸すことができるように溶液 中に 1〜2 4時間浸積する。 浸積後、 好ましくは 2 0〜3 0でで自然乾燥して溶 媒を蒸発させて卜リアゾ一ル処理を行った微粒子を作製する。 使用される安定化 剤の割合 (安定化剤ノ無機微粒子) は 0 . 0 5〜5重量%が好ましい。
増感剤は、 感度を向上させるために添加される。 增感剤の具体例としては、 2 , 4 —ジェチルチオキサントン、 イソプロピルチォキサントン、 2 , 3 —ビス (4 —ジェチルァミノベンザル) シクロペン夕ノン、 2 , 6—ビス (4—ジメチルァ ミノベンザル) シクロへキサノン、 2, 6 —ビス (4 —ジメチルァミノベンザル) 一 4ーメチルシクロへキサノン、 ミヒラ一ケトン、 4, 4—ビス (ジェチルアミ ノ) 一べンゾフエノン、 4, 4 一ビス (ジメチルァミノ) カルコン、 4, 4—ビ ス (ジェチルァミノ) カルコン、 ρ—ジメチルァミノシンナミリデンインダノン、 Ρ —ジメチルァミノべンジリデンインダノン、 2— ( ρ —ジメチルァミノフエ二 ルビ二レン) 一イソナフトチアゾ一ル、 1, 3 —ビス (4ージメチルァミノベン ザル) アセトン、 1, 3—カルボニル—ビス (4 —ジェチルァミノベンザル) ァ セ卜ン、 3, 3—カルボニル一ビス ( 7—ジェチルァミノクマリン) 、 Ν—フエ 二ルー Ν—ェチルエタノールァミン、 Ν—フエニルエタノールァミン、 Ν—トリ ルジェ夕ノールァミン、 Ν—フエニルエタノールァミン、 ジメチルァミノ安息香 酸イソァミル、 ジェチルァミノ安息香酸イソァミル、 3—フエニル— 5—ベンゾ ィルチオテ卜ラゾール、 1 一フエ二ルー 5—ェトキシカルボ二ルチオテトラゾー ルなどがあげられる。 本発明ではこれらを 1種または 2種以上使用することがで きる。 なお、 増感剤の中には光重合開始剤としても使用できるものがある。 増感 剤を本発明の感光性べ一ス卜に添加する場合、 その添加量は感光性成分に対して 通常 0 . 0 5〜 1 0重量%、 より好ましくは 0 . 1〜 1 0重量%である。 增感剤 の量が少なすぎれば光感度を向上させる効果が発揮されず、 増感剤の量が多すぎ れば露光部の残存率が小さくなりすぎるおそれがある。
また、 增感剤は、 露光波長に吸収を有しているものが用いられる、 この場合、 吸収波長近傍では屈折率が極端に高くなるため、 増感剤を多量に添加することに よって、 有機成分の屈折率を向上することができる。 この場合の増感剤の添加量 は 3〜 1 0重量%添加することができる。
重合禁止剤は、 保存時の熱安定性を向上させるために添加される。 重合禁止剤 の具体的な例としては、 ヒドロキノン、 ヒドロキノンのモノエステル化物、 N— ニトロソジフエニルァミン、 フエノチアジン、 p— t—ブチルカテコール、 N— フエニルナフチルァミン、 2, 6—ジ _ t —ブチル— p —メチルフエノール、 ク ロラニール、 ピロガロールなどが挙げられる。
また添加することにより、 光硬化反応のしきい値をあがり、 パターン線幅の縮 小化、 ギャップに対するパターン上部の太りがなくなる。
その添加量は、 感光性ペースト中に、 通常、 0 . 0 1〜 1重量%である。 0 . 0 1重量%より小さいと添加効果がでにくく、 1重量%より多く添加すると、 感 度が低下するため、 パターン形成するための露光量が多く必要になる。
可塑剤の具体的な例としては、 ジブチルフタレート、 ジォクチルフ夕レート、 ポリエチレンダリコール、 グリセリンなどがあげられる。
酸化防止剤は、 保存時におけるアクリル系共重合体の酸化を防ぐために添加さ れる。 酸化防止剤の具体的な例として 2, 6—ジー t 一プチルー p —クレゾ一ル、 ブチル化ヒドロキシァニソール、 2 , 6—ジー t— 4 一ェチルフエノール、 2 , 2—メチレン一ビス一 (4 一メチル一 6— t —ブチルフエノール) 、 2, 2—メ チレン一ビス— (4 一ェチル一 6— t —ブチルフエノール) 、 4, 4 一ビス一
( 3 —メチルー 6— t —ブチルフエノール) 、 1, 1, 3 —トリス— (2—メチ ルー 6 — t —ブチルフエノール) 、 1, 1, 3—卜リス— ( 2 —メチル— 4 —ヒ ドロキシ— t —ブチルフエニル) ブタン、 ビス [ 3 , 3—ビス一 (4—ヒドロキ シ— 3— t —ブチルフエニル) プチリックアシッド] グリコールエステル、 ジラ ゥリルチオジプロピオナ一ト、 トリフエニルホスファイトなどが挙げられる。 酸 化防止剤を添加する場合、 その添加量は通常、 添加量は、 ペースト中に、 通常、 0 . 0 1〜 1重量%である。
本発明の感光性ペース トには、 溶液の粘度を調整したい場合、 有機溶媒を加え てもよい。 このとき使用される有機溶媒としては、 メチルセ口ソルブ、 ェチルセ 口ソルブ、 ブチルセ口ソルブ、 メチルェチルケトン、 ジォキサン、 アセトン、 シ クロへキサノン、 シクロペンタノン、 イソブチルアルコール、 イソプロピルアル コール、 テトラヒドロフラン、 ジメチルスルフォキシド、 ァープチロラクトン、 ブロモベンゼン、 クロ口ベンゼン、 ジブロモベンゼン、 ジクロロベンゼン、 ブロ モ安息香酸、 クロ口安息香酸などやこれらのうちの 1種以上を含有する有機溶媒 混合物が用いられる。
有機成分の屈折率とは、 露光により感光性成分を感光させる時点におけるべ一 スト中の有機成分の屈折率のことである。 つまり、 ペーストを塗布し、 乾燥工程 後に露光を行う場合は、 乾燥工程後のペースト中の有機成分の屈折率のことであ る。 例えば、 ペーストをガラス基板上に塗布した後、 5 0〜 1 0 0 °Cで 1〜3 0 分乾燥して屈折率を測定する方法などがある。
本発明における屈折率の測定は、 一般的に行われるエリプソメトリ一法や Vブ 口ック法が好ましく、 測定は露光する光の波長で行うことが効果を確認する上で 正確である。 特に、 3 5 0〜 6 5 0 n mの範囲中の波長の光で測定することが好 ましい。 さらには、 i線 (3 6 5 n m) もしくは g線 (4 3 6 n m) での屈折率 測定が好ましい。
また、 有機成分が光照射によって重合した後の屈折率を測定するためには、 ぺ 一スト中に対して光照射する場合と同様の光を有機成分のみに照射することによ つて測定できる。
感光性ペーストは、 通常、 無機微粒子、 紫外線吸光剤、 感光性ポリマー、 感光 性モノマー、 光重合開始剤、 ガラスフリットおよび溶媒等の各種成分を所定の組 成となるように調合した後、 3本ローラや混練機で均質に混合分散し作製する。 ペーストの粘度は無機微粒子、 増粘剤、 有機溶媒、 可塑剤および沈殿防止剤な どの添加割合によつて適宜調整されるが、 その範囲は 2 0 0 0〜 2 0万 c p s (センチ 'ボイズ) である。 例えばガラス基板への塗布をスピンコート法で行う 場合は、 2 0 0〜 5 0 0 0 c p sが好ましい。 スクリーン印刷法で 1回塗布して 膜厚 1 0〜 2 0 mを得るには、 1万〜 1 0万 c p sが好ましい。
次に、 感光性ペーストを用いてパターン加工を行う一例について説明するが、 本発明はこれに限定されない。
ガラス基板やセラミックスの基板、 もしくは、 ポリマー製フィルムの上に、 感 光性ペーストを全面塗布、 もしくは部分的に塗布する。 塗布方法としては、 スク リーン印刷、 バーコ一夕一、 口一ルコ一夕一、 ダイコ一夕一、 ブレードコ一ター 等の方法を用いることができる。 塗布厚みは、 塗布回数、 スクリーンのメッシュ、 ペース卜の粘度を選ぶことによって調整できる。
ここでペーストを基板上に塗布する場合、 基板と塗布膜との密着性を高めるた めに基板の表面処理を行うことができる。 表面処理液としてはシランカツプリン グ剤、 例えばビニルトリクロロシラン、 ビニルトリメトキシシラン、 ビニルトリ エトキシシラン、 トリスー (2—メトキシエトキシ) ビニルシラン、 ア一グリシ ドキシプロピル卜リメ卜キシシラン、 ァ一 (メタクリロキシプロピル) トリメト キシシラン、 T ( 2—アミノエチル) ァミノプロビルトリメトキシシラン、 了一 クロ口プロピルトリメトキシシラン、 ァ一メルカプトプロピルトリメ卜キシシラ ン、 ァーァミノプロピルトリエトキシシランなどあるいは有機金属例えば有機チ タン、 有機アルミニウム、 有機ジルコニウムなどである。 シランカップリング剤 あるいは有機金属を有璣溶媒、 例えばエチレングリコールモノメチルエーテル、 エチレングリコールモノェチルエーテル、 メチルアルコール、 エチルアルコール、 プロピルアルコール、 ブチルアルコールなどで 0 . 1〜 5 %の濃度に希釈したも のを用いる。 次にこの表面処理液をスピナ一などで基板上に均一に塗布した後に 8 0〜 1 4 0 で 1 0〜 6 0分間乾燥することによって表面処理ができる
また、 フィルム上に塗布した場合、 フィルム上で乾燥を行った後、 次の露光ェ 程を行う場合と、 ガラスやセラミックの基板上に貼り付けた後、 露光工程を行う 方法がある。
塗布した後、 露光装置を用いて露光を行う。 露光は通常のフォトリソグラフィ 一で行われるように、 フォ卜マスクを用いてマスク露光する方法が一般的である。 用いるマスクは、 感光性有機成分の種類によって、 ネガ型もしくはポジ型のどち らかを選定する。 また、 フォトマスクを用いずに、 赤色や青色のレーザ一光など で直接描画する方法を用いても良い。
露光装置としては、 ステッパー露光機、 プロキシミティ露光機等を用いること ができる。 また、 大面積の露光を行う場合は、 ガラス基板などの基板上に感光性 ペーストを塗布した後に、 搬送しながら露光を行うことによって、 小さな露光面 積の露光機で、 大きな面積を露光することができる。
この際使用される活性光源は、 たとえば、 可視光線、 近紫外線、 紫外線、 電子 線、 X線、 レーザ一光などが挙げられるが、 これらの中で紫外線が好ましく、 そ の光源としてはたとえば低圧水銀灯、 高圧水銀灯、 超高圧水銀灯、 ハロゲンラン プ、 殺菌灯などが使用できる。 これらのなかでも超高圧水銀灯が好適である。 露 光条件は塗布厚みによって異なるが、 3〜 5 0 mWZ c m2 の出力の超高圧水銀 灯を用いて 2 0秒〜 3 0分間露光を行う。
露光後、 感光部分と非感光部分の現像液に対する溶解度差を利用して、 現像を 行うが、 この場合、 浸漬法、 シャワー法、 スプレー法、 ブラシ法で行う。
用いる現像液は、 感光性ペース卜中の有機成分が溶解可能である有機溶媒を使 用できる。 また該有機溶媒にその溶解力が失われない範囲で水を添加してもよい。 感光性ペースト中にカルボキシル基等の酸性基を持つ化合物が存在する場合、 ァ ルカリ水溶液で現像できる。 アル力リ水溶液として水酸化ナトリゥムゃ炭酸ナト リゥム、 水酸化カルシウム水溶液などのような金属アル力リ水溶液を使用できる が、 有機アル力リ水溶液を用いた方が焼成時にアル力リ成分を除去しやすいので 好ましい。
有機アルカリとしては、 ァミン化合物を用いることができる。 具体的には、 テ トラメチルアンモニゥムヒドロキサイド、 トリメチルベンジルアンモニゥムヒド ロキサイド、 モノエタノールァミン、 ジエタノールァミンなどが挙げられる。 ァ ルカリ水溶液の濃度は通常 0 . 0 1 ~ 1 0重量%、 より好ましくは 0 . 1〜 5重 量%である。 アルカリ濃度が低すぎると可溶部が除去されず、 アルカリ濃度が高 すぎると、 パターン部を剥離させ、 また非可溶部を腐食させるおそれがあり好ま しくない。 また、 現像時の現像温度は、 2 0〜 5 0でで行うことが工程管理上好 ましい。 次に焼成炉にて焼成を行う。 焼成雰囲気や、 温度はペーストや基板の種類によ つて異なるが、 空気中、 窒素、 水素等の雰囲気中で焼成する。 焼成炉としては、 バッチ式の焼成炉ゃベルト式の連続型焼成炉を用いることができる。
ガラス基板上にパターン加工する場合は、 昇温速度 200〜400°C/時間で 540〜610°Cの温度で 10〜60分間保持して焼成を行う。 なお焼成温度は 用いるガラス粉末によって決まるが、 パターン形成後の形が崩れず、 かつガラス 粉末の形状が残らない適正な温度で焼成するのが好ましい。
適正温度より低いと、 気孔率、 隔壁上部の凹凸が大きくなり、 放電寿命が短く なったり、 誤放電を起こしゃすくなったりするため好ましくない。
また適正温度より高いとパターン形成時の形状が崩れ、 隔壁上部が丸くなつた り、 極端に高さが低くなり、 所望の高さが得られないため、 好ましくない。
また、 以上の塗布や露光、 現像、 焼成の各工程中に、 乾燥、 予備反応の目的で、 50〜300°C加熱工程を導入しても良い。
以下に、 本発明を実施例を用いて、 具体的に説明する。 ただし、 本発明はこれ に限定はされない。 なお、 実施例、 比較例中の濃度 (%) は特にことわらない限 り重量%である
本発明の実施例および比較例に使用した材料を以下に示す。
ガラス(1) ;
組成 : L i 20 7 %、 S i 02 22 %、 B23 32 %、
B a O 4%、 A 12 O 3 22%、 Z n O 2%、
Mg O 6%、 C aO 4 %
熱物性 :ガラス転移点 49 1°C、 軟化点 528で、
熱膨張係数 74 X 10"VK
粒径 : D 10 0. 9 rn
D 50 2. 6 m
D 90 7. 5 im
最大粒径 22. 0
比表面積 1. 92m2 /g
屈折率 1. 59 (g線 436 nm) 比重 2. 54
ガラス(2) ;
組成 B i 2 O 3 38%、 S i 02 Ί %、 B23 19%
B a O 12 , A 12 O 3 4%、 Z n〇 20 %
熱物性 ガラス転移点 475°C、 軟化点 5 1 5で、
熱膨張係数 75 X 1 O'VK
粒径 : D 10 0 - 9 am
D 50 2. 5 zm
D 90 3. 9
最大粒径 6. 5 m
(白色フイラ一粉末)
フイラ一; T i 02 、 比重 4. 6 1
(ポリマ一)
ポリマー(1) ; 40 %のメタアクリル酸 (MAA) 、 30%のメチルメタァクリ レート (MMA) および 30%のスチレン (S t) からなる共重合体のカルポキ シル基に対して 0. 4当量のグリシジルメ夕ァクリレート (GMA) を付加反応 させた重量平均分子量 43000、 酸価 95の感光性ポリマーの 40%ァ一プチ 口ラクトン溶液
ポリマー(2) ;ェチルセルロースノテルビネオール = 6 94 (重量比) の溶液 (モノマ一)
モノマー(1) ; X2-N-CH(CH3) -CH2-(0-CH2-CH(CH3))n-N-X 2
X: -CH 2-CH (OH) -CH2〇 - CO- C (CH3) =CH 2
n = 2〜 10
モノマー(2) ; トリメチロールプロパントリァクリレート ·モディフアイ ド PO (光重合開始剤)
I C - 369 ; I r g a c u r e - 369 (チバ ·ガイギ一製品)
2—ベンジルー 2—ジメチルァミノ一 1一 (4—モルフォリノフエニル) ブ夕ノン一 1
I C - 907 ; I r g a c u r e - 907 (チバ ·ガイギ一製品) 2 _メチル一 1ー (4一 (メチルチオ) フエ二ルー 2—モルフオリノプ ロパノン
(増感剤)
DETX— S ; 2, 4一ジェチルチオキサントン
(増感助剤)
E PA ; p—ジメチルァミノ安息香酸ェチルエステル
(可塑剤)
DBP ; ジブチルフタレ一卜 (DBP)
(增粘剤)
S i O ; S i〇 2の酢酸 2— (2—ブトキシエトキシ) ェチル 1 5 %溶液 (有機染料)
スダン ; ァゾ系有機染料、 化学式 C24H2。N4〇、 分子量 380. 45
(溶媒)
ァ一ブチロラクトン
テルビネオール
(分散剤)
ノプコスパース 092 (サンノプコ社製)
(安定化剤)
1 , 2 , 3—ベンゾトリアゾ一ル
実施例 1
まず、 隔壁.用感光性ペーストを作製した。 ガラス粉末 (ガラス(1)) 1 00重量 部に対して、 有機染料 0. 08重量部の割合で秤量した。 スダンをアセトンに溶 解させ、 分散剤を加えてホモジナイザで均質に攪拌した。 この溶液中にガラス粉 末を添加して均質に分散 '混合後、 ロータリーエバポレー夕を用いて、 1 00で の温度で乾燥し、 アセトンを蒸発させた。 こうして有機染料の膜でガラス粉末の 表面が均質にコーティングされた粉末を作製した。
ポリマー(1)、 モノマー(1)、 光重合開始剤 (IC- 369)、 增感剤、 可塑剤、 溶媒を 37. 5 : 1 5 : 4. 8 : 4. 8 : 2 : 7. 5の重量比で混合し、 均質に溶解さ せた。 その後、 この溶液を 400メッシュのフィルタ一を用いて濾過し、 有機ビ ヒクルを得た。
上記ガラス粉末と上記有機ビヒクルをガラス粉末:有機ビヒクル = 70 : 7 1. 6の重量比になるように添加し、 3本ローラで混合 '分散して、 隔壁用の感光性 ペーストを調整した。 有機成分の屈折率は 1. 59、 ガラス粉末の屈折率は 1. 59であった。
次に同様にしてガラス(2) : フイラ一:ポリマー(2)= 5 5 : 1 0 : 35の重量 比になる誘電体層用ペーストを作製した。 この誘電体ペーストをピッチ 140 m、 線幅 60 m、 厚み 4 ^ mの電極をあらかじめ形成した 1 3ィンチサイズの 旭ガラス社製 PD— 200ガラス基板上に、 325メッシュのスクリーンを用い てスクリーン印刷により、 均一に塗布した。 その後、 80°Cで 40分乾燥し、 5 50°Cで仮焼成して、 厚み 1 0 の誘電体層を形成した。
この誘電体層上に前記隔壁用ペーストを 32 5メッシュのスクリーンを用いて スクリーン印刷により、 均一に塗布し塗布膜を形成した。 塗布膜にピンホールな どが発生することを回避するために塗布 ·乾燥を数回以上繰り返し行い、 膜厚み の調整を行った。 スクリーン版の印刷版は、 隔壁パターン長手方向の長さよりも 小さく設計したものを用いた。 途中の乾燥は 80でで 1 0分間、 塗布膜を形成後 の乾燥は 80でで 1時間行った。 乾燥後の塗布膜厚みは 1 50 ^mであった。 塗 布膜端部には、 長さ 2000 mの傾斜面が形成されていた。
続いて、 140 /zmピッチのストライプ状のネガ型クロムマスクを通して、 上 面から 50m J /cm2出力の超高圧水銀灯で紫外線照射した。 露光量は 1. 0 J Zcm2であった。 この際、 クロムマスクは隔壁パターンの長さが、 前記塗布膜の 隔壁長手方向の長さよりも大きいものを用いた。
次に、 35 に保持したモノエタノールァミンの 0. 2重量%の水溶液をシャ ヮ一で 1 70秒間かけることにより現像し、 その後シャワースプレーを用いて水 洗浄した。 これにより、 光硬化していない部分が除去され、 ガラス基板上にスト ラィプ状の隔壁パターンが形成された。
このようにして隔壁パターンが形成されたガラス基板を、 空気中で 570でで 1 5分間焼成し、 隔壁を形成した。 焼成前後の隔壁パターン端部の断面形状を、 走査型電子顕微鏡 (H I TACH I製 S— 2400) で観察した。 評価結果を 表 1に記載した。 盛り上がり、 跳ね上がりのない場合は〇、 盛り上がり、 跳ね上 がりがある場合はその内容と数値を記載した。
その結果、 Xが 2mm、 Yが 100 /zm、 XZY=20であり、 本発明の範囲 を満足したものであった。 また、 隔壁端部に跳ね上がり、 盛り上がりなく良好な ものであった。
このように形成された隔壁間に、 赤、 青、 緑に発光する蛍光体ペーストをスク リーン印刷法を用いて塗布し、 これらを焼成 ( 500t:、 30分) して隔壁の側 面および底部に蛍光体層を形成し、 背面板を完成させた。
次に、 前面板を以下の工程によって作製した。 先ず、 背面板と同じガラス基板 上に、 I TOをスパッ夕法で形成後、 レジストを塗布し、 所望のパターンに露光 '現像後、 エッチング処理して焼成厚み 0. 1 m、 線幅 200 /mの透明電極 を形成した。 また、 黒色銀粉末からなる感光性銀ペーストを用いて、 フォトリソ グラフィ法により、 焼成後厚み 10 のバス電極を形成した。 電極はピッチ 1 40 /zm、 線幅 60 mのものを作製した。
さらに、 電極形成した前面板上に透明誘電体ペーストを 20 /zm塗布し、 43 0 で 20分間保持して焼き付けた。 次に、 形成した透明電極、 黒色電極、 誘電 体層を一様に被覆するように電子ビーム蒸着機を用いて、 厚み 0. 5 mの Mg 0膜を形成して前面板を完成させた。
得られた前面基板を、 前記の背面基板と貼り合わせ封着した後、 放電用ガスを 封入し、 駆動回路を接合してプラズマディスプレイを作製した。 このパネルに電 圧を印加して表示を行った。 評価結果を表 1に示す。 全面に渡って均一な表示が 得られた場合は〇、 誤放電等の問題が見られた場合はその内容を記載した。 表 1 に示すように全面に渡って均一な表示が得られた。
実施例 2
誘電体層用べ一ストを、 ガラス(2)、 フィラー、 ポリマー(2)、 モノマー(2)をそ れぞれ 22. 5 : 2. 2 : 10 : 10 : 0. 3 : 1. 6の重量比で混合した感光 性ペーストとした以外は実施例 1と同様にして、 ガラス基板上に誘電体層用べ一 ストを塗布した。 乾燥後の厚みは 1 5 wmであった。 仮焼成を行う代わりに、 上 面から 50m J /cm2出力の超高圧水銀灯で露光量 1 JZcm2で紫外線露光し た。 後は、 実施例 1と同様にプラズマディスプレイを作製した。 誘電体層は、 隔 壁パターン焼成時に同時に焼成された。 実施例 1と同様に評価を行った。 結果を 表 1に示す。
実施例 3
隔壁用感光性ペース卜をスクリーン印刷で基板上に塗布する際、 スクリーン印 刷版を、 フォトマスクの隔壁パターン長さよりも大きい面積で、 厚さ 50 m印 刷し、 次に実施例 1と同様のフォトマスクの隔壁パターン長さより小さい印刷面 のスクリーン印刷版を用いて、 厚さ 1 00 m印刷した以外は実施例 1と同様に 操作を行った。
パターン形成をおこなったところ、 厚さ 50 mの隔壁下層部の端部は直角の 形状を成し、 厚さ 1 00 の隔壁上層部の端部は傾斜しており、 第 14図に示 す形状となった。
実施例 1と同様に焼成したところ、 下層部の端部 (焼成後 33 高さとなる) は 1 0 mの盛り上がりを生じたが、 上層部の端部 (焼成後 6 7 / m高さとなる) は盛り上がりなく形成できた。 上層部が 6 7 mあるため、 下層部の盛り上がり は上層部を越えず、 隔壁全体としては問題なく形成できた。 後は、 実施例 1と同 様にプラズマディスプレイを作製し、 評価を行った。 結果を表 1に示す。
実施例 4
隔壁用ペース卜を基板上に塗布する際、 スリットダイコーターを用いて乾燥前 厚み 250 / mに塗布し、 乾燥する前に内径 0. 4πιιηφのノズルを用いて、 空 気を噴射して塗布膜端部に傾斜面を形成した以外は実施例 1と同様に隔壁パ夕一 ンの形成を行った。 空気の圧力は 2. 5 k g f /cm2, 噴射角度は基板に対し垂 線方向から 45° 傾けて噴射した。 後は、 実施例 1と [^様にプラズマディスプレ ィを作製し、 評価を行った。 結果を表 1に示す。
実施例 5
塗布膜端部に傾斜面を形成する際、 ノズルからの空気の噴射圧を 0. 5 k g f ノ c m2とした以外は実施例 4と同様にプラズマディスプレイを作製し、 評価した: 結果を表 1に示す。
実施例 6 隔壁用ペーストを基板上に塗布した後、 8 0^で 5分乾燥し、 内径 1. 5mm Φのノズルから、 噴射圧 1. O k gZcm2で、 ェチルセルロース テルビネオ一 ル = 1 Z9 9 (重量比) の溶剤を噴射して塗布膜端部に傾斜面を形成した以外は 実施例 4と同様にプラズマディスプレイを作製し、 評価した。 結果を表 1に示す。 実施例 7
塗布膜端部に傾斜面を形成する際、 噴射を間隙 0. 4mmのスリットを用いて 行った以外は、 実施例 4と同様にプラズマディスプレイを作製し、 評価した。 結 果を表 1に示す。
実施例 8
塗布膜端部に傾斜面を形成する際、 塗布膜を 8 0°Cで 1時間乾燥した後、 塗布 膜端部を、 刃で削り取つて傾斜面に加工した以外は実施例 4と同様にブラズマデ イスプレイを作製し、 評価した。 刃物の刃先端のサイズは φ = 3 0度、 その刃を 角度 Θ=4 5度で基板に刃物がかぶせるように配置し、 5m/ sの速度で 1 5 n mZ回切削した。 この操作を 5回繰り返し、 隔壁上部から 7 5 /zmを切削した。 結果を表 1に示す。
実施例 9
まず、 アルミ基板上に、 研削装置を用いてピッチ 2 0 0 m、 線幅 3 0 m、 高さ 2 0 0 iimのス卜ライプ状の隔壁原型を形成した。 該隔壁原型上にシリコー ン樹脂を充填して、 ピッチ 2 0 0 m、 線幅 3 0 m、 高さ 2 0 0 xmのストラ イブ状の溝が形成されたシリコーン型 (サイズ 3 0 0 mm角) を作成し、 隔壁母 型とした。 前記において隔壁原型端部に傾斜部を形成することにより、 該シリコ 一ン樹脂製隔壁母型の端部 3 mmの長さにわたつて傾斜部を有するようにした。 次に、 ガラス粉末(1) 8 0 0 g、 ポリマ一(2) 2 0 0 g、 可塑剤 5 0 g、 テルビ ネオ一ル 2 5 0 gを混合して、 3本ローラで混合 ·分散して、 粘度 9 5 0 0 c p sの隔壁用ペーストを作成した。
前記のシリコーン型にドクターブレードコ一夕一を用いて該隔壁用ペーストを 充填した後、 40 Omm角のガラス基板上に転写してシリコーン型を剥離するこ とによって、 隔壁パターンを形成した。 次に、 隔壁パターンを形成したガラス基 板を、 実施例 1と同様の焼成条件で焼成することにより隔壁を形成した。 後は、 実施例 1と同様にプラズマディスプレイを作製し、 評価を行った。 結果 を表 1に示す。
実施例 1 0
まず、 厚み 1 mmの銅板上にエッチング法でピッチ 2 0 0 i m、 線幅 3 0 w m、 高さ 2 0 0 / mのストライプ状の溝を形成し、 隔壁母型とした。 エッチングする 際に溝の端部に傾斜部が形成されるようにエッチングを行った。
次に、 ガラス粉末(2) 8 0 0 g、 ポリマー(2) 1 5 0 g、 可塑剤 5 0 g、 モノマ — (2) 1 0 0 g、 重合開始剤 (ベンゾィルォキサイド) 1 0 g、 溶媒 2 5 0 gを混 合して、 3本ローラで混合,分散して、 粘度 8 5 0 0 c p sの隔壁用ペーストを 作成した。
前記の隔壁母型にドクターブレードコ一夕一を用いて該隔壁用ペーストを充填 した後、 4 0 0 mm角のガラス基板上に押しあてて、 1 0 0でで 3 0分間加熱し た。 次に、 隔壁母型を剥離することによって、 隔壁パターンを形成し、 隔壁パ夕 ーンを形成したガラス基板を、 実施例 1と同様の焼成条件で焼成することにより 隔壁を形成した。
後は、 実施例 1と同様にプラズマディスプレイを作製し、 評価を行った。 結果 を表 1に示す。
実施例 1 1
厚み 1 mmの銅板上にエッチング法でピッチ 2 0 0 m、 線幅 3 0 m、 高さ 2 0 0 /_t mのストライプ状の溝を形成し、 隔壁母型とした。 エッチングする際に 溝の端部に角度 1 0度の傾斜部が形成されるようにエッチングを行った。
実施例 1 0と同じ隔壁用ペーストを実施例 4と同様の操作で基板上に塗布し、 乾燥前に前記の隔壁母型をガラス基板上の隔壁用ペースト塗布膜に押しあてて、 加圧プレスしながら 8 0 °Cに加熱した。 次に、 隔壁母型を剥離することによって、 隔壁パターンを形成し、 隔壁パターンを形成したガラス基板を、 実施例 1と同様 の焼成条件で焼成することにより隔壁を形成した。
後は、 実施例 1と同様にプラズマディスプレイを作製し、 評価を行った。 結果 を表 1に示す。
実施例 1 2 実施例 1において隔壁用感光性ペーストを塗布 ·乾燥した後、 隔壁用感光性べ
—スト塗布膜端部を、 溶剤を含ませた布でこすって傾斜面を形成した以外は、 実 施例 1と同様にプラズマディスプレイを作製し、 評価を行った。 結果を表 1に示 す。
比較例 1
用いる刃物の角度 Φを 80度にし、 塗布層端部の傾斜面の長さを 35 mにし た以外は実施例 8と同様に隔壁パターンの形成を行った。
本ペーストの塗布膜は焼成により、 63%に収縮するため、 盛り上がりなく焼 成できれば、 焼成後は X=35 wm、 Y= 100 mとなり、 X/Y=0. 35 となる形状である。
実施例 1と同様に焼成した結果、 隔壁端部に 80; amの跳ね上がりが生じた。 後は、 実施例 1と同様にプラズマディスプレイを作製し、 評価を行った。 結果を 表 1に示す。 表示面周辺部の幅約 10mmの範囲でクロストークが発生した。 比較例 2
クロムマスクを前記塗布膜の隔壁長手方向の長さよりも小さいものを用いた以 外は実施例 1と同様に隔壁パターンの形成を行った。 隔壁パターンの端部は垂直 であり、 傾斜部は全くなかった。
実施例 1と同様に焼成した結果、 隔壁端部には 20 / mの隆起が生じた。 得ら れた隔壁端部の形状を第 5図に示す。 後は、 実施例 1と同様にプラズマディスプ レイを作製し、 評価を行った。 結果を表 1に示す。 表示面周辺部の幅約 10mm の範囲でクロストークが発生した。
1 結果
Figure imgf000044_0001
表 1— 2 結果
Figure imgf000044_0002
表 1一 3 結果
実施例 11 実施例 12 比較例 1 比較例 2 焼成前 X ' ( m) 5 7 0 5 0 0 0 ' 3 5 0
Y ' (M m) 2 0 0 1 5 0 1 5 0
塗布膜厚み(/i m) 2 0 0 1 5 0 1 5 0 1 5 0
Y ' 塗布膜厚み 1 1 1
焼成後 X (u m) 5 7 0 5 0 0 0 計測不可 計測不可
Y m) 1 0 0 1 0 0 計測不可 計測不可
X / Y 5. 7 5 0 計測不可 計測不可 最大角度(度) 1 0 1. 1 8 0 計測不可 隔壁端部の状態 〇 O 跳ね上り 盛り上り 跳ね上り高さ (μ πι) 0 0 8 0 2 0
(盛り上り高さ)
放電結果 〇 o 端部ク Dスト-ク 端部ク πスト-ク 産業上の利用の可能性
本発明の隔壁端部形状を有することによって、 端部の跳ね上がり、 盛り上がり のないプラズマディスプレイが得られる。 これによつて、 端部で誤放電の生じな い、 全面にわたって均一な表示のできるプラズマディスプレイを提供することが できる。 本発明のプラズマディスプレイは大型のテレビやコンピューターモニタ 一に用いることができる。

Claims

請求の範囲
1 . 基板上に誘電体層およびストライプ状隔壁が形成されたプラズマディスプレ ィであって、 該隔壁の長手方向端部に傾斜部を有し、 かつ、 該傾斜部の高さ (Y ) および該傾斜部の底辺の長さ (X ) が下記の範囲にあることを特徴とするプラズ マディスプレイ。
0 . 5≤X / Y≤ 1 0 0
2 . 傾斜部の底辺の長さ (X) が 0 . 0 5〜 1 0 mmであることを特徴とする請 求項 1記載のプラズマディスプレイ。
3 . 傾斜部の傾斜角が 0 . 5〜6 0度であることを特徴とする請求項 1記載のプ ラズマディスプレイ。
4 . 基板上に誘電体層およびストライプ状隔壁が形成されたプラズマディスプレ ィの製造方法であって、 無機材料と有機成分からなる隔壁用ペーストを用いて、 端部に傾斜部を有するス卜ライプ状隔壁パターンを基板上に形成する工程および 該隔壁パターンを焼成する工程を経て、 隔壁の長手方向端部に傾斜部を有し、 か つ、 該傾斜部の高さ (Y ) および該傾斜部の底辺の長さ (X ) が下記の範囲にあ るストライプ状隔壁を形成することを特徴とするプラズマディスプレイの製造方 法。
0 . 5≤X / Y≤ 1 0 0
5 . 隔壁用ペーストを端部に傾斜面を有するように基板上に塗布して塗布膜を形 成する工程、 該塗布膜の傾斜面が長手方向端部になるようにストライプ状隔壁パ ターンを形成する工程、 および該隔壁パターンを焼成する工程を経て、 ストライ プ状隔壁を形成する請求項 4記載のプラズマディスプレイの製造方法。
6 . 隔壁用ペーストを基板上に塗布して塗布膜を形成する工程、 該塗布膜を加工 して傾斜面を形成する工程、 該塗布膜の傾斜面が長手方向端部になるようにスト ライプ状隔壁パターンを形成する工程、 および該隔壁パターンを焼成する工程を 経て、 ストライプ状隔壁を形成する請求項 4記載のプラズマディスプレイの製造 方法。
7 . 塗布膜を加工して傾斜面を形成する工程を、 塗布膜に流体を噴射することに より行う請求項 6記載のプラズマディスプレイの製造方法。
8 . 噴射する流体が気体である請求項 7記載のプラズマディスプレイの製造方法。
9 . 塗布膜を加工して傾斜面を形成する工程を、 塗布膜を切削することにより行 う請求項 6記載のプラズマディスプレイの製造方法。
1 0 . 隔壁用ペーストが感光性隔壁用べ一ストであり、 隔壁パターンを形成する 工程において、 前記隔壁用ペースト塗布膜を傾斜面を端部とした塗布膜長さより 長いストライプ状パターンを有するフォトマスクを通して露光し、 現像すること によりストライプ状隔壁パターンを形成する請求項 5または請求項 6記載のブラ ズマディスプレイの製造方法。
1 1 . 無機材料と有機成分からなる隔壁用ペーストをストライプ状の溝を形成し た隔壁母型に充填する工程、 該隔壁母型に充填された隔壁用ペーストを基板上に 転写する工程、 該隔壁用ペーストを焼成する工程をこの順で含む請求項 4記載の プラズマディスプレイの製造方法。
1 2 . 無機材料と有機成分からなる隔壁用ペーストを基板上に塗布して塗布膜を 形成する工程、 該塗布膜にストライプ状の溝を形成した隔壁母型を押し当てて隔 壁パターンを形成する工程、 該隔壁パターンを焼成する工程をこの順で含む請求 項 4記載のプラズマディスプレイの製造方法。
1 3 . 焼成前の傾斜部の高さ (Υ ' ) と傾斜部の長さ (X ' ) 、 隔壁用ペースト の焼成による収縮率 (r ) が下記の関係にある請求項 4記載のプラズマディスプ レイの製造方法。
0 . 5≤X ' / ( r X Υ ' ) ≤ 1 0 0
1 4 . 焼成前の傾斜部の高さ (Υ ' ) が焼成前の隔壁パターン高さの 0 . 2〜 1 倍である請求項 4記載のプラズマディスプレイの製造方法。
1 5 . 基板上に無機材料と有機成分からなる誘電体べ一スト塗布膜を形成し、 そ の上に隔壁用ペーストを用いてストライプ状隔壁パターンを形成した後に、 前記 誘電体ペースト塗布膜と隔壁パターンを同時に焼成する請求項 4記載のプラズマ ディスプレイの製造方法。
PCT/JP1998/003825 1997-08-27 1998-08-27 Ecran a plasma et procede de fabrication de cet ecran WO1999010909A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69832583T DE69832583T2 (de) 1997-08-27 1998-08-27 Plasma anzeige und herstellungsverfahren derselben
US09/297,143 US6184621B1 (en) 1997-08-27 1998-08-27 Plasma display and method for manufacturing the same
EP98940588A EP0935275B1 (en) 1997-08-27 1998-08-27 Plasma display and method for manufacturing the same
KR10-1999-7003631A KR100522067B1 (ko) 1997-08-27 1998-08-27 플라즈마 디스플레이 및 그의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP9/230739 1997-08-27
JP23073997 1997-08-27
JP10/142842 1998-05-25
JP14284298 1998-05-25
JP10146273A JPH11339668A (ja) 1998-05-27 1998-05-27 プラズマディスプレイおよびその製造方法
JP10/146273 1998-05-27

Publications (1)

Publication Number Publication Date
WO1999010909A1 true WO1999010909A1 (fr) 1999-03-04

Family

ID=27318522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003825 WO1999010909A1 (fr) 1997-08-27 1998-08-27 Ecran a plasma et procede de fabrication de cet ecran

Country Status (6)

Country Link
US (1) US6184621B1 (ja)
EP (1) EP0935275B1 (ja)
KR (1) KR100522067B1 (ja)
CN (2) CN1157747C (ja)
TW (1) TW396365B (ja)
WO (1) WO1999010909A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058990A1 (en) * 1999-03-25 2000-10-05 Minnesota Mining And Manufacturing Company Method of producing substrate for plasma display panel and mold used in the method
EP1125309A2 (en) * 1999-08-04 2001-08-22 Koninklijke Philips Electronics N.V. Plasma display panel
EP1310975A2 (en) * 1998-05-12 2003-05-14 Matsushita Electric Industrial Co., Ltd. Manufacturing method of plasma display panel and plasma display panel
WO2004053916A1 (en) * 2002-12-09 2004-06-24 Lg Micron Ltd. Rear plate for plasma display panel
US6843952B1 (en) 1999-03-25 2005-01-18 3M Innovative Properties Company Method of producing substrate for plasma display panel and mold used in the method

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764438A1 (fr) * 1997-06-10 1998-12-11 Thomson Tubes Electroniques Procede de realisation d'une couche dielectrique comportant des motifs en relief, sur une dalle de panneau a plasma
JPH11238452A (ja) 1998-02-24 1999-08-31 Dainippon Printing Co Ltd 隔壁形成方法およびプラズマディスプレイパネルの背面板
JPH11312463A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd 配線基板およびそれを用いたガス放電型表示装置
KR100285760B1 (ko) * 1998-07-21 2001-05-02 구자홍 플라즈마 디스플레이 패널용 격벽제조방법 및 이를 이용한 플라즈마 디스플레이 패널 소자
WO2000019479A1 (fr) * 1998-09-29 2000-04-06 Fujitsu Limited Procede de fabrication d'un ecran a plasma et d'une structure de substrat
KR100721730B1 (ko) * 1999-09-13 2007-06-04 쓰리엠 이노베이티브 프로퍼티즈 캄파니 플라즈마 디스플레이 패널용 기판의 제조 방법과 그것을위한 몰드
US6878333B1 (en) 1999-09-13 2005-04-12 3M Innovative Properties Company Barrier rib formation on substrate for plasma display panels and mold therefor
TW494423B (en) * 1999-10-12 2002-07-11 Matsushita Electric Ind Co Ltd Elecron-emitting element, electronic source using the element, field emission display device, fluorescent lamp, and method for producing those
TW484158B (en) * 2000-01-26 2002-04-21 Matsushita Electric Ind Co Ltd A plasma display panel and a plasma display panel production method
DE10026974A1 (de) * 2000-05-31 2002-01-03 Schott Glas Kanalplatte aus Glas für Flachbildschirme und Verfahren zu ihrer Herstellung
JP2002072922A (ja) * 2000-06-13 2002-03-12 Asahi Glass Co Ltd ディスプレイ用ガラス基板およびその選別方法
JP4156789B2 (ja) * 2000-11-02 2008-09-24 三星エスディアイ株式会社 プラズマディスプレイの製造方法
FR2819628B1 (fr) * 2001-01-18 2003-03-21 Guy Baret Structure de dalles arrieres pour ecran de visualisation a plasma, procede de realisation de cette structure et ecrans utilisant cette structure
JP2002328467A (ja) * 2001-05-01 2002-11-15 Tokyo Ohka Kogyo Co Ltd プラズマディスプレイパネルの製造方法
KR20040004712A (ko) * 2001-06-12 2004-01-13 마츠시타 덴끼 산교 가부시키가이샤 플라즈마 디스플레이 패널, 플라즈마 디스플레이 표시장치및 플라즈마 디스플레이 패널의 제조방법
US7033534B2 (en) * 2001-10-09 2006-04-25 3M Innovative Properties Company Method for forming microstructures on a substrate using a mold
US7176492B2 (en) * 2001-10-09 2007-02-13 3M Innovative Properties Company Method for forming ceramic microstructures on a substrate using a mold and articles formed by the method
US20030124461A1 (en) * 2001-10-12 2003-07-03 Suess Terry R. Aqueous developable photoimageable thick film compositions for making photoimageable black electrodes
US6660184B2 (en) 2001-12-13 2003-12-09 Osram Sylvania Inc. Phosphor paste compositions
EP1460671A1 (en) * 2001-12-27 2004-09-22 Teijin Limited Sheet material for forming dielectric layer for plasma display panel
KR100831005B1 (ko) * 2002-02-27 2008-05-20 삼성에스디아이 주식회사 전계방출 디스플레이용 스페이서 및 그 제조 방법
US20030176516A1 (en) * 2002-03-15 2003-09-18 Greene, Tweed Of Delaware, Inc. Cellular perfluoroelastomeric compositions, sealing members, methods of making the same and cellular materials for medical applications
JP2003331743A (ja) * 2002-05-09 2003-11-21 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネル
JP2004095349A (ja) * 2002-08-30 2004-03-25 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの製造方法
KR100510185B1 (ko) * 2002-12-27 2005-08-26 엘지전자 주식회사 플라즈마 디스플레이 패널의 제조방법
JP4325244B2 (ja) * 2003-03-27 2009-09-02 パナソニック株式会社 プラズマディスプレイパネル
KR100669693B1 (ko) * 2003-10-30 2007-01-16 삼성에스디아이 주식회사 유전체막용 도료 및 이를 이용한 플라즈마 디스플레이 패널
KR100627361B1 (ko) * 2004-09-20 2006-09-21 삼성에스디아이 주식회사 플라즈마 디스플레이 패널 및 이의 제조 방법
KR100647618B1 (ko) * 2004-10-06 2006-11-23 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
KR100683688B1 (ko) * 2004-11-04 2007-02-15 삼성에스디아이 주식회사 유전체층 형성 장치 및 이를 이용한 플라즈마 디스플레이패널의 제조 방법
US20060108905A1 (en) * 2004-11-25 2006-05-25 Samsung Electronics Co., Ltd. Mold for fabricating barrier rib and method of fabricating two-layered barrier rib using same
US20060225832A1 (en) * 2005-03-30 2006-10-12 Saidman Laurence B Method for dispensing an energy reactive adhesive
KR20070005126A (ko) * 2005-07-05 2007-01-10 엘지전자 주식회사 플라즈마 디스플레이 패널
WO2007026426A1 (ja) * 2005-08-31 2007-03-08 Fujitsu Hitachi Plasma Display Limited プラズマディスプレイパネルの隔壁形成方法
KR100696444B1 (ko) * 2005-11-07 2007-03-20 엘지전자 주식회사 플라즈마 디스플레이 패널의 하판 제조방법
JP4770516B2 (ja) * 2006-02-28 2011-09-14 パナソニック株式会社 プラズマディスプレイパネル
EP2005248A2 (en) * 2006-04-11 2008-12-24 Dow Corning Corporation Low thermal distortion silicone composite molds
KR100762249B1 (ko) * 2006-05-30 2007-10-01 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100762251B1 (ko) * 2006-05-30 2007-10-01 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100806306B1 (ko) * 2006-06-09 2008-02-27 엘지전자 주식회사 플라즈마 디스플레이 장치
KR100820964B1 (ko) * 2006-10-16 2008-04-11 엘지전자 주식회사 플라즈마 디스플레이 패널
US20080116800A1 (en) * 2006-11-21 2008-05-22 Lg Electronics Inc. Plasma display panel, method for manufacturing the same, and related technologies
JP2008153126A (ja) * 2006-12-19 2008-07-03 Pioneer Electronic Corp ディスプレイパネル、およびディスプレイパネルの製造方法
KR20080068202A (ko) * 2007-01-18 2008-07-23 삼성에스디아이 주식회사 격벽 형성용 조성물, 및 이를 이용하여 제조된 플라즈마디스플레이 패널
KR20080085522A (ko) * 2007-03-20 2008-09-24 엘지전자 주식회사 감광성 격벽 재료, 그 제조방법 및 이를 이용한 플라즈마디스플레이 패널의 제조방법
KR20090081147A (ko) * 2008-01-23 2009-07-28 삼성에스디아이 주식회사 플라즈마 디스플레이 패널
JP5058839B2 (ja) * 2008-02-01 2012-10-24 株式会社ノリタケカンパニーリミテド 転写用感光性導体ペーストおよび感光性転写シート
KR20110133547A (ko) * 2009-03-31 2011-12-13 도레이 카부시키가이샤 평판 디스플레이용 부재 및 평판 디스플레이용 부재의 격벽 최상층용 페이스트
CN102471138A (zh) * 2009-07-01 2012-05-23 东丽株式会社 感光性密封层形成用玻璃糊剂及使用其的等离子体显示器的制造方法、以及等离子体显示器
JP2021146242A (ja) * 2020-03-17 2021-09-27 株式会社豊田中央研究所 電子線硬化型水性塗料の塗装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102275A (ja) * 1995-10-06 1997-04-15 Fujitsu Ltd フラットディスプレイパネルの隔壁形成方法
JPH09320475A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd プラズマディスプレイパネル
JPH10188791A (ja) * 1996-12-27 1998-07-21 Fujitsu Ltd 表示パネルの隔壁形成方法
JPH10302616A (ja) * 1997-04-30 1998-11-13 Kyocera Corp プラズマ表示装置用基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876029B2 (ja) * 1992-11-10 1999-03-31 株式会社住友金属エレクトロデバイス プラズマディスプレイパネルの障壁の製造方法
JP3229708B2 (ja) * 1993-04-30 2001-11-19 大日本印刷株式会社 プラズマディスプレイパネルの障壁形成方法
JP3394799B2 (ja) * 1993-09-13 2003-04-07 パイオニア株式会社 プラズマディスプレイ装置
JP3224486B2 (ja) * 1995-03-15 2001-10-29 パイオニア株式会社 面放電型プラズマディスプレイパネル
JP3719743B2 (ja) * 1995-08-09 2005-11-24 株式会社日立製作所 プラズマディスプレイパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102275A (ja) * 1995-10-06 1997-04-15 Fujitsu Ltd フラットディスプレイパネルの隔壁形成方法
JPH09320475A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd プラズマディスプレイパネル
JPH10188791A (ja) * 1996-12-27 1998-07-21 Fujitsu Ltd 表示パネルの隔壁形成方法
JPH10302616A (ja) * 1997-04-30 1998-11-13 Kyocera Corp プラズマ表示装置用基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0935275A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310975A2 (en) * 1998-05-12 2003-05-14 Matsushita Electric Industrial Co., Ltd. Manufacturing method of plasma display panel and plasma display panel
EP1310975A3 (en) * 1998-05-12 2003-05-21 Matsushita Electric Industrial Co., Ltd. Manufacturing method of plasma display panel and plasma display panel
WO2000058990A1 (en) * 1999-03-25 2000-10-05 Minnesota Mining And Manufacturing Company Method of producing substrate for plasma display panel and mold used in the method
US6843952B1 (en) 1999-03-25 2005-01-18 3M Innovative Properties Company Method of producing substrate for plasma display panel and mold used in the method
EP1125309A2 (en) * 1999-08-04 2001-08-22 Koninklijke Philips Electronics N.V. Plasma display panel
WO2004053916A1 (en) * 2002-12-09 2004-06-24 Lg Micron Ltd. Rear plate for plasma display panel
US7427837B2 (en) 2002-12-09 2008-09-23 Lg Micron Ltd. Rear plate for plasma display panel with barrier ribs having specific width characteristics

Also Published As

Publication number Publication date
EP0935275A1 (en) 1999-08-11
EP0935275B1 (en) 2005-11-30
CN1237271A (zh) 1999-12-01
EP0935275A4 (en) 2000-11-08
KR100522067B1 (ko) 2005-10-18
CN1271664C (zh) 2006-08-23
CN1157747C (zh) 2004-07-14
KR20000068835A (ko) 2000-11-25
CN1540706A (zh) 2004-10-27
TW396365B (en) 2000-07-01
US6184621B1 (en) 2001-02-06

Similar Documents

Publication Publication Date Title
WO1999010909A1 (fr) Ecran a plasma et procede de fabrication de cet ecran
US6043604A (en) Plasma display with barrier rib of specific construction
JP4273549B2 (ja) 低融点ガラス微粉末および感光性ペースト
JP3428451B2 (ja) プラズマディスプレイおよびその製造方法
WO2008035785A1 (fr) Composition de résine contenant des particules inorganiques, film de transfert et procédé de production d&#39;un membre pour panneau d&#39;affichage
JP2012158484A (ja) ガラスペースト、それを用いたプラズマディスプレイパネルの製造方法
JP2008224940A (ja) 感光性ペーストおよびプラズマディスプレイ部材
JPH10188825A (ja) プラズマディスプレイパネル
JP3440768B2 (ja) プラズマディスプレイ
JPH11144623A (ja) プラズマディスプレイ用基板およびその製造方法
JP2000048714A (ja) プラズマディスプレイ用部材の製造方法およびプラズマディスプレイ
JP4062557B2 (ja) プラズマディスプレイ用基板
JPH10283941A (ja) プラズマディスプレイパネル
JP3956889B2 (ja) プラズマディスプレイ
JP2004327456A (ja) プラズマディスプレイ用基板およびその製造方法
JP4159002B2 (ja) プラズマディスプレイ用基板およびプラズマディスプレイの製造方法
JP5779986B2 (ja) ガラスペースト、プラズマディスプレイ用部材の製造方法およびプラズマディスプレイ用部材
JP4193878B2 (ja) プラズマディスプレイパネルの製造方法
JPH11176336A (ja) プラズマディスプレイ用基板、プラズマディスプレイおよびその製造方法
JPH10275564A (ja) プラズマディスプレイパネルおよびその製造方法
JPH1186736A (ja) プラズマディスプレイ用基板、プラズマディスプレイおよびその製造方法
JPH11242930A (ja) 電極の製造方法およびプラズマディスプレイパネル用部材の製造方法
JPH11120921A (ja) プラズマディスプレイ用基板
JP4578489B2 (ja) プラズマディスプレイパネルの製造方法
JP5417747B2 (ja) ネガ型感光性ペースト、パターンの形成方法および平面ディスプレイパネル用部材の製造方法。

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801199.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997003631

Country of ref document: KR

Ref document number: 09297143

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998940588

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998940588

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997003631

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997003631

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998940588

Country of ref document: EP