WO1999005489A1 - Thermometre medical a rayonnement - Google Patents

Thermometre medical a rayonnement Download PDF

Info

Publication number
WO1999005489A1
WO1999005489A1 PCT/JP1998/003333 JP9803333W WO9905489A1 WO 1999005489 A1 WO1999005489 A1 WO 1999005489A1 JP 9803333 W JP9803333 W JP 9803333W WO 9905489 A1 WO9905489 A1 WO 9905489A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
infrared light
probe
optical axis
receiving element
Prior art date
Application number
PCT/JP1998/003333
Other languages
English (en)
French (fr)
Inventor
Hirohisa Imai
Kazunari Nisii
Kiyoshi Kanazawa
Makoto Shibuya
Miki Moriguchi
Naohumi Nakatani
Hirohumi Inui
Kazuko Awaya
Kanzi Nisii
Kazumasa Takada
Motomiti Kato
Hirosi Kobayasi
Kozi Yosimoto
Masanori Nisikawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP20109597A external-priority patent/JP3838748B2/ja
Priority claimed from JP30419497A external-priority patent/JP3817867B2/ja
Priority claimed from JP10003000A external-priority patent/JPH11197117A/ja
Priority claimed from JP10003003A external-priority patent/JPH11197119A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CA002267573A priority Critical patent/CA2267573A1/en
Priority to EP98933941A priority patent/EP0937971A4/en
Priority to US09/269,530 priority patent/US6371925B1/en
Priority to CNB988010690A priority patent/CN100385215C/zh
Publication of WO1999005489A1 publication Critical patent/WO1999005489A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/025Interfacing a pyrometer to an external device or network; User interface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/027Constructional details making use of sensor-related data, e.g. for identification of sensor parts or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/049Casings for tympanic thermometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0804Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration

Definitions

  • the present invention relates to a radiation thermometer that measures the body temperature of a living body by detecting the amount of infrared rays emitted from the ear canal.
  • thermometer that detects the amount of infrared radiation emitted from the ear canal in a non-contact manner and converts it into a body temperature, and these can be measured in a short time with a contact-type thermometer using mercury or a thermocouple. There is a feature.
  • FIG. 27 shows a general example of this type of radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 6-165.
  • the radiation thermometer consists of a probe 1, a waveguide 2 running in the probe 1 in the longitudinal direction, and an infrared ray that converts the radiation intensity of the infrared light propagated through the waveguide 2 into an electric signal. It comprises a light receiving element 3 and signal processing means 4 for measuring temperature from the converted electric signal.
  • the infrared light receiving element 3 receives the infrared light emitted from the eardrum and / or its vicinity, and outputs an electric signal correlated with the amount of the received infrared light. Converts the temperature of the eardrum and / or its vicinity from the electrical signal.
  • the infrared light receiving element 3 outputs an electric signal correlated with the total amount of infrared light incident from all directions, and the waveguide 2 is made of metal at least on its inner surface or subjected to plating. To increase the reflectivity.
  • the infrared rays emitted from the eardrum and Z or its vicinity are directly or in the waveguide 2. The light is reflected multiple times on the surface and reaches the infrared light receiving element 3. Unnecessary infrared light emitted from the inner surface of the probe 1 and the like does not reach the infrared light receiving element 3.
  • reflection at a shallow angle such as single reflection, generally has lower reflectance than vertical light, and also causes reflection loss.
  • the portions corresponding to these reflection losses are incident on the infrared light receiving element 3 as infrared radiation emitted from the waveguide 2, and when the probe 1 is inserted into the ear canal, the temperature fluctuation of the waveguide 2 is reduced. If this is the case, the infrared light receiving element 3 will not be able to perform accurate body temperature measurement due to the influence.
  • the tip of the probe 1 is made thinner than the main body to reduce the contact with the ear canal, thereby reducing the temperature fluctuation of the waveguide 2.
  • the surface of the probe is made of a heat insulating material and the inside is made of a material having high thermal conductivity, so that it is hardly affected by heat from the ear canal. The heat is quickly conveyed to the infrared detector to cancel the effect.
  • the probe is made detachable, and the probe is replaced every measurement to remove the effect of heat accumulated in the probe.
  • the problem is that dew condensation easily occurs inside the waveguide in a low-temperature environment. There is. This is because the temperature of the metal surface does not easily rise even if it comes into contact with air near body temperature by inserting it into the ear canal in a low-temperature environment. Therefore, steam containing water vapor is cooled by the metal below the dew point, and dew condensation occurs on the metal surface. If this condensation phenomenon occurs in parts that reflect infrared light, such as waveguides, infrared light is absorbed and scattered by the condensation, and the amount of infrared light that reaches the infrared light receiving element is significantly reduced. Become.
  • JP-A Japanese Patent Application Publication No. 1
  • thermopile type whose output is correlated with the temperature difference between the infrared light receiving element and the object.
  • pyroelectric type whose output is correlated with the temperature change of the measurement target
  • thermopile type whose output is correlated with the temperature difference between the infrared light receiving element and the object.
  • the incident infrared light must be measured. It is necessary to change it forcibly.
  • a butterfly that switches between inputting and blocking light of infrared light incident on the pyroelectric infrared light receiving element.
  • This butterfly is made of a material that does not transmit infrared light, such as a metal plate, and its end is mounted on a rotating shaft of a DC motor or an AC motor and driven to rotate, so that the infrared light reaching the infrared light receiving element can be received.
  • There is a method of intermittently intermittently blocking light That is, as shown in Fig. 28, the semicircular-shaped butterfly 5 is attached to the rotating shaft of the DC or AC motor 6 and is driven to rotate in the direction of the arrow, thereby intermittently intermitting the infrared light incident on the infrared light receiving element 3. .
  • a pulse is applied at a predetermined cycle using a pulse motor as a rotation drive source, and infrared light is intermittently transmitted by repeating a predetermined angle, for example, forward rotation and inversion.
  • a quartz clock movement 7 which is a driving source based on the same principle as that of the pulse motor, and intermittently transmits the infrared light reaching the infrared light receiving element 3.
  • the quartz watch movement 7 includes a permanent magnet 8, a core 9 and a coil 10, and the permanent magnet 8 is attached to the end of the chisel 5.
  • the coil 10 receives a pulse input at the first and second input terminals 11 and 12, and in response to the pulse input,
  • the magnet 8 rotates, and the chopper 5 reciprocates as indicated by the arrow.
  • the temperature measurement accuracy is low due to variations in the light input time and the light shielding time.
  • the rotation speed of the DC motor fluctuates due to fluctuations in the power supply voltage or the like. If the number of revolutions fluctuates, the period of light input and light shielding will change, and the fluctuation of this period will also fluctuate the output of the infrared light receiving element, making it impossible to accurately measure body temperature.
  • the light source is driven based on digital signals from a microprocessor, etc., so that the light incident and light shielding periods can be intermittently performed with high precision.
  • a quartz watch movement or pulse motor is used as the driving source
  • the light source is driven based on digital signals from a microprocessor, etc., so that the light incident and light shielding periods can be intermittently performed with high precision.
  • a problem that it is difficult to accurately switch between incoming light and outgoing light because of stopping.
  • these drive sources stop at a balance between the attractive force and the repulsive force due to the magnetic force, and are driven by changing the polarity of the magnetic force. It has the characteristic of stopping after balancing.
  • Figures 30A and 30B show the characteristics of the behavior of the pulse motor.
  • the horizontal axis is the elapsed time.
  • Figure 3 OA alternately outputs CW (clockwise) and CCW (counterclockwise) pulses with a drive pulse at a constant period t and a duty of 50%.
  • Fig. 30 When B reaches the stop position at the rotation angle of the rotating shaft of the pulse motor as shown in the figure, an overshoot occurs, then an undershoot occurs, and the amplitude decreases at the stop position while the amplitude decreases. Stabilize.
  • An object of the present invention is to solve these problems and accurately measure body temperature in a non-contact manner using an ear canal.
  • a radiation thermometer of the present invention includes a light receiving unit that receives only infrared light directly emitted from the eardrum and Z or its vicinity, a signal processing unit that calculates an output of the light receiving unit to temperature, and a signal It is configured to include notification means for notifying the output of the processing means.
  • the output from the light receiving unit that receives only infrared rays directly radiated from the eardrum and / or its vicinity is calculated into the temperature by the signal processing means and is notified by the notification means.
  • the temperature of the eardrum can be accurately detected without being affected by the temperature.
  • a probe that is inserted into the ear canal and passes infrared light radiated from the eardrum and Z or its vicinity; a light receiving unit that receives the infrared light that has passed through the probe; a signal processing unit that calculates an output of the light receiving unit into a temperature;
  • the light-receiving unit receives at least the infrared light collected by the light-collecting element, and receives the infrared light collected by the light-collecting element from the eardrum and Z or its vicinity.
  • an infrared light receiving element arranged to receive only emitted infrared light.
  • the light-receiving unit receives only infrared light emitted from or near the eardrum and Z and passing through the probe, the signal processing unit calculates an output from the light-receiving unit into a temperature, and the notifying unit notifies the temperature of the calculation result. .
  • the infrared light collected by the light-collecting element enters the infrared light-receiving element of the light-receiving section, and the infrared light-receiving element receives the infrared light collected by the light-collecting element and radiates from the eardrum and / or its vicinity.
  • the infrared light receiving element is placed away from the focal point of the light-collecting element, so that the light receiving area is limited.
  • the infrared light receiving element is radiated from the eardrum and Z or its vicinity and passes through the probe. Only the infrared rays thus received are spotted, and the infrared rays emitted from the inner surface of the probe can travel outside the infrared light receiving element to limit the light receiving area.
  • the probe has a main body that houses the light-receiving part, and the probe has a hollow interior and is connected to the main body to be detachable.
  • the light-receiving part housed in the main body has a tympanic membrane and a tympanic membrane.
  • the probe is configured so that the tip is open, eliminating the cause of temperature error due to the variation in the infrared transmittance of the cover that covers the tip, and improving the measurement temperature accuracy.
  • the main unit has a configuration that has a storage section for storing the probe during non-measurement, and the probe is stored in the storage section during non-measurement. And the likelihood of losing the removed probe is reduced.
  • a plurality of probes are configured to have a difference that can be visually distinguished by half ij, and a plurality of probes that can be visually identified are provided, so that it is possible to identify a user for each probe and replace a probe. No infection problems due to
  • the notifying unit has a structure that includes a sound notifying unit for notifying the temperature of the calculation result of the signal processing unit by sound, so that accurate body temperature can be measured regardless of the time of insertion into the ear.
  • the light receiving section has a light shield that blocks infrared light from outside the light collecting element from entering the infrared light receiving element, and has a configuration in which reflection suppression means is provided on the infrared light receiving element side of the light shield. Infrared rays that have traveled to positions other than the outside light receiving element are not reflected and incident on the infrared light receiving element. Therefore, the light receiving area is limited, and infrared light from other than the eardrum and Z or its vicinity is condensed to a point other than the light receiving element, so that accurate body temperature measurement can be performed without being affected by a temperature change of the probe.
  • the light shielding body is made of a synthetic resin.
  • the emissivity of synthetic resin is known to be as high as about 0.9, and by using this as a light-shielding body, reflection of infrared rays is suppressed.
  • synthetic resin since synthetic resin has low thermal conductivity and small heat capacity, dew condensation hardly occurs on the surface of the light shielding body. Therefore, accurate measurement of body temperature is possible without reflection or scattering of infrared rays due to condensation.
  • the light-collecting element is made of a material with low thermal conductivity and small heat capacity.There is no need for a waveguide that blocks infrared rays from the probe, and the optical system including the light-collecting element has high thermal conductivity. do not need. Since the light-collecting element is made of a material having a low thermal conductivity and a small heat capacity, dew condensation hardly occurs on the surface of the light-collecting element, and an accurate body temperature measurement can be performed.
  • a synthetic resin is used as the material of the light-collecting element. It is generally known that synthetic resin has low thermal conductivity and small heat capacity. Dew condensation on the element surface can be suppressed.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, should be in contact with the inner wall of the probe on the same side as the edge of the light-collecting element with respect to the optical axis from the edge of the light-collecting element. From the virtual tip point where the drawn straight line intersects the probe tip surface, it passes through the edge of the light-collecting element on the same side as the virtual tip point with respect to the optical axis and reaches the image point of the virtual tip point by the light-collecting element. It is configured to be located farther from the light-collecting element than the intersection of the optical path and the optical axis, and closer to the light-collecting element than the image point of the virtual tip point by the light-collecting element.
  • an infrared ray incident on the light-collecting element from the inner wall of the probe can be advanced to a position other than the infrared light-receiving element, and the light-receiving area can be limited.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, should be in contact with the inner wall of the probe on the same side as the edge of the light-collecting element with respect to the optical axis from the edge of the light-collecting element. From the virtual tip point where the drawn straight line intersects the probe tip surface, it passes through the edge of the light-collecting element on the same side as the virtual tip point with respect to the optical axis and reaches the image point of the virtual tip point by the light-collecting element. It is set up within a triangle formed by two intersections of an optical path and an optical axis and a virtual tip point by a light-collecting element.
  • the infrared light incident on the light collecting element from the inner wall of the probe can be advanced to a position other than the infrared light receiving element, and the light receiving area can be limited.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, is positioned at the focal length f of the light-collecting element, the radius rs of the infrared light-receiving element, and the distance from the edge of the light-collecting element to the optical axis.
  • the distance r ⁇ between the virtual tip point and the optical axis where a straight line drawn so as to contact the inner wall of the probe on the same side as the edge of the light collecting element intersects the surface of the probe tip Distance Using the distance L a and the radius r 3 of the light-collecting element, fxff v Lax (r ee f — !: s (La— f)). fxf
  • La-f La-f r 3 (La-f) + ⁇ ⁇ f-I The configuration is such that L 3 given by La-f is located farther from the light-collecting element than the focal point of the light-collecting element.
  • the infrared light incident on the light-collecting element from the inner wall of the probe can be advanced to a position other than the infrared light-receiving element, and the light-receiving area can be limited.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, should be in contact with the inner wall of the probe on the same side as the edge of the light-collecting element with respect to the optical axis from the edge of the light-collecting element.
  • the configuration is such that the line drawn is located farther from the light-collecting element than the image point of the light-collecting element at the virtual tip point that intersects the tip surface of the probe. It can be advanced to a position other than the light receiving element, and the light receiving area can be limited. As a result, it is possible to spot-detect only the radiation emitted from the eardrum and / or its vicinity and passed through the probe.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, should be in contact with the inner wall of the probe on the same side as the edge of the light-collecting element with respect to the optical axis from the edge of the light-collecting element.
  • the drawn straight line passes from the virtual tip point intersecting the probe tip surface to the image point of the virtual tip point by the light collector through the edge of the light collector opposite to the virtual tip point across the optical axis. It is configured to be installed in an area between two optical paths.
  • the infrared light incident on the light-collecting element from the inner wall of the probe can be advanced to a position other than the infrared light-receiving element, and the light-receiving area can be limited. As a result, it becomes possible to detect only the radiation emitted from or near the eardrum and through the probe as a spot.
  • the infrared light-receiving element when viewed in a cross section including the optical axis of the light-collecting element, the infrared light-receiving element is positioned at a focal length f of the light-collecting element, a radius rs of the infrared light-receiving element,
  • the distance r ⁇ between the virtual tip point and the optical axis where a straight line drawn so as to be in contact with the inner wall of the probe on the same side as the edge of the light-collecting element, and the virtual tip point and the light-collecting element Using the distance L a and the condensing element radius r 3,
  • the infrared light incident on the light-collecting element from the inner wall of the probe can be advanced to a position other than the infrared light-receiving element, and the light-receiving area can be limited.
  • the light-collecting element is constituted by a refraction lens, and the condensed infrared light enters the infrared light-receiving element by the refraction lens.
  • the light-collecting element is constituted by a light-collecting mirror, and the collected infrared rays enter the infrared light-receiving element by the light-collecting mirror.
  • the converging mirror is configured to bend the first optical axis incident on the converging mirror and the second optical axis exiting from the converging mirror and incident on the infrared light receiving element.
  • the optical system can also be bent in accordance with this angle. Therefore, it is easy to use and can be easily inserted into the ear canal, so that the insertion direction is stable and the body temperature can be measured with high accuracy.
  • An infrared light receiving element for detecting infrared light emitted by the device under test; a gutter for blocking infrared light incident on the infrared light receiving element; a DC motor for driving the gutter;
  • a stove provided at a stop position of the chopper, a motor control means for controlling a DC motor, and a signal processing means for converting a temperature based on an output of the infrared light receiving element, wherein the motor control means comprises a DC motor
  • the rotation direction is alternately reversed to control the incidence and blocking of infrared light reaching the infrared light receiving element.
  • Mode control means alternately reverses the direction of rotation of the DC motor to switch between the light-in and light-out states
  • the signal processing means converts the temperature of the DUT based on the output of the infrared light-receiving element.
  • the light input time and the light blocking time by the drive of the stove are stable, and the rocks do not swing at the stop position, so that the light input and light blocking state can be switched stably even if the chicken is small enough. A compact and highly accurate body temperature measurement can be performed.
  • the time for alternately reversing the rotation direction of the DC motor is longer than the response time constant of the infrared light receiving element, the output of the infrared light receiving element becomes high, the SZN improves, and the body temperature increases. Measurement accuracy can be improved.
  • the motor control means is configured to supply power to the DC motor based on a preset power supply pattern, and the DC motor is controlled based on a preset power supply pattern, and is controlled by a chopper. Can switch between incoming and outgoing infrared light.
  • the power supply pattern has a positive power supply pattern that supplies power in the light incident direction and a negative power supply pattern that supplies power in the direction opposite to the light incident direction.
  • the positive power supply pattern and the negative power supply pattern It has a configuration consisting of alternating positive and negative power supply patterns. By alternately performing the positive and negative power supply patterns, the rotation direction of the DC motor can be alternately reversed.
  • the positive / negative power supply pattern includes an initial power supply period for supplying power first, After that, the power supply is reduced and the power supply period is reduced, and the power supply is moved to the stop position at the first power supply, and the reduced power is supplied to maintain the position of the power supply after that. Power consumption can be reduced.
  • the reduced power supply period is configured to supply power intermittently, so that power consumption can be reduced and the circuit configuration can be simplified.
  • the power supply is stopped during the reduced power supply period, so that the power consumption can be further reduced.
  • the power supply is stopped and then the power is finally supplied.
  • the DC mode is reversed after the chopper hits the stop again, so the power consumption can be reduced with a simple circuit configuration.
  • the initial power supply period is set to be longer than the sum of the time required for the chopper to reach the stop and the time for the chopper to bounce off the stop and stop naturally.
  • the initial power supply period is longer than the sum of the time of the bouncing spontaneous stop and the initial power is supplied to the DC motor overnight, and then the reduced power supply means reduces the power and supplies it. , And stable switching between incoming and outgoing light can be performed, improving body temperature measurement accuracy and saving power consumption.
  • the stopper is made of a shock-absorbing material, which reduces the biting and rebounding of the giant crab, stabilizes tibbing, improves the accuracy of body temperature measurement, and reduces the sound of the giant crab hitting the stove. it can.
  • the stopper is made of a soft rubber material, which reduces the biting and rebounding of the butterfly, stabilizes chopping, improves the accuracy of body temperature measurement, and also reduces the sound of the butterfly colliding with the stopper. it can.
  • the field of view that limits the field of view of the infrared light receiving element between the infrared light is larger than the field of view of the infrared light receiving element at the chopping position.By limiting the field of view of the infrared light receiver, the size of the chopper can be reduced. Since the configuration is larger than the field of view at the light-shielding position of the element, the difference between the incident light of the infrared light-receiving element and the output in the light-shielded state increases, and the accuracy of body temperature measurement can be improved.
  • the view limiting means has at least the surface on the side of the infrared light receiving element having a low reflectivity, and can suppress the reflection of infrared light from the view limiting means. Since it is no longer incident on the body, the field of view of the infrared light receiving element can be reliably limited, and a small and highly accurate body temperature measurement can be performed.
  • the stove is provided at a position where the movement angle from the stop position in the light blocking state to the light start state and the movement angle from the stop position in the light receiving state to the light start state in the light blocking state are equal to each other.
  • the means is configured to output a signal for inverting the rotation direction of the DC motor alternately at regular intervals.
  • the infrared light incident time and the light-shielding time due to the driving of the chives become equal, so that a high output of the infrared light receiving element can be obtained, and highly accurate body temperature measurement can be performed.
  • the signal processing means includes Fourier transform means for calculating a signal component having a frequency equal to the frequency for alternately reversing the rotation direction of the DC motor from the output signal of the infrared light receiving element by discrete Fourier transform. It is configured to convert the temperature of the DUT based on the output.
  • the motor control means drives the DC motor to adjust the position of the chicken.
  • Positioning driving means body temperature measurement driving means for alternately reversing the direction of rotation of the DC motor and switching between light incident and light blocking of an infrared light path leading to the infrared light receiving element to measure body temperature; and positioning driving means.
  • a switching means for switching between the body temperature measurement driving means and the temperature measurement start, the chicken is always in the same position.
  • the positioning driving means drives the DC motor to collide the pot with the stove to adjust the position of the pot, and the body temperature measurement driving means alternately reverses the rotation direction of the DC motor to hit the pot with the stump.
  • the switching means switches between the positioning driving means and the body temperature measurement driving means. Therefore, by adjusting the position of the fever, the fever can always be at the same position at the start of temperature measurement, and the light input time and the shading time by driving the fever can be stabilized at the time of measuring the body temperature, so that a highly accurate body temperature measurement can be performed. be able to.
  • a transmitting means for transmitting a temperature detection start signal is provided, and the motor control means has a time measuring means for measuring a continuous time during which the temperature detection start signal from the transmitting means is in a non-receiving state, and the time measuring means measures a predetermined time.
  • the switching means operates the body temperature measurement driving means, and when the timing means receives a temperature detection start signal from the transmission means after measuring a predetermined time, the switching means is activated.
  • the configuration is such that the body temperature measurement driving unit is operated after the positioning driving unit is operated.
  • the timing means measures the continuous time during which the temperature detection start signal from the transmission means is in a non-receiving state, and if the time measurement means receives the temperature detection start signal before timing the predetermined time, the switching means switches the body temperature measurement driving means.
  • the switching means operates the positioning driving means to perform the positioning of the chives and then the body temperature measuring driving means
  • the body temperature measurement is performed by switching to, and if the body temperature measurement is to be performed repeatedly in a short period of time so that it is assumed that the position Since temperature measurement can be performed continuously without performing alignment, accurate and accurate temperature measurement can be performed in a short time. Even if the position shifts, when measuring the body temperature again, since the body temperature measurement is performed after the alignment of the chives, the body temperature measurement can always be performed with high accuracy.
  • a transmitting means for transmitting a temperature detection start signal is provided, and the switching means activates the positioning driving means when the motor control means is turned on, and measures the body temperature when the temperature detection start signal is received from the transmitting means. It is configured to operate the driving means.
  • the switching means operates the positioning driving means when the power is supplied to the motor control means to perform positioning of the fever and activates the body temperature measurement driving means when receiving the temperature detection start signal from the transmitting means. Since the body temperature measurement is performed in a short time, when the temperature measurement is repeatedly performed in a short time, it is possible to efficiently and accurately measure the body temperature in a short time.
  • power supply control means for controlling the turning on and off of the power of the motor control means is provided, and the power supply control means has a timing means for measuring a continuous time during which the temperature detection start signal from the transmission means is in a non-receiving state. When the timer measures a predetermined time, the power is cut off.
  • the timing means measures the continuous time during which the temperature detection start signal from the transmitting means is in the non-receiving state, and when the timing means measures a predetermined time, the power supply control means cuts off the power of the motor control means.
  • the body temperature is measured at a later time, it is necessary to turn on the power to the motor control means again. Therefore, in the case where the temperature measurement is repeatedly performed in a short time, the temperature measurement can be continuously performed without performing the positioning of the chopper until the time measuring means measures the predetermined time, so that high accuracy can be achieved in a short time.
  • the body temperature can be measured.Even if the position of the chicken is misaligned because the body temperature is not measured for a long time, the clocking means measures a predetermined time and the power to the motor control means is cut off. When the body temperature measurement is performed again, the power of the motor control means is turned on, and the switching means operates the positioning drive means to perform the positioning of the fever and measures the body temperature with the subsequent temperature measurement start signal. Therefore, highly accurate body temperature measurement can always be performed. Further, even if the power of the motor control means is forgotten to be turned off, the power is automatically cut off after a predetermined time, so that the power consumption can be reduced and the usability is improved. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram of a radiation thermometer according to Embodiment 1 of the present invention.
  • 2A to 2D are side views of a plurality of probes of the embodiment in which different symbols are printed.
  • FIG. 3A to 3D are side views of a plurality of probes having different dimensions according to the embodiment.
  • FIG. 4 is a configuration sectional view of a light receiving unit and a probe of the same embodiment.
  • FIG. 5 is a configuration sectional view showing a light receiving unit and a probe according to the second embodiment of the present invention.
  • FIG. 6 is a configuration sectional view showing a light receiving unit and a probe according to Embodiment 3 of the present invention.
  • FIG. 7 is a configuration sectional view showing a light receiving section and a probe according to Embodiment 4 of the present invention.
  • FIG. 8 is a configuration sectional view showing a light receiving section and a probe according to a fifth embodiment of the present invention.
  • FIG. 9 is a configuration sectional view showing a light receiving unit and a probe according to Embodiment 6 of the present invention.
  • FIG. 10 is a configuration diagram of a light-collecting element according to Embodiment 7 of the present invention.
  • FIG. 11 is a configuration block diagram of a radiation thermometer showing Embodiment 8 of the present invention.
  • FIG. 12 is an enlarged view of a main part of the saliva part of the embodiment.
  • FIG. 13 is a diagram illustrating a power supply pattern of a DC motor according to the embodiment.
  • FIG. 14 is a characteristic diagram of a sound generated at the time of driving the fever according to the embodiment.
  • FIG. 15 is a configuration block diagram of a temperature detection drive unit according to Embodiment 9 of the present invention.
  • FIG. 16 is an evening image showing a power supply pattern of the DC motor of the embodiment.
  • FIG. 17 is a timing chart showing a power supply pattern in the DC mode of Embodiment 10 of the present invention.
  • FIG. 18 is an evening timing chart showing a power supply pattern of a DC motor according to Embodiment 11 of the present invention.
  • FIG. 19 is a timing chart showing a DC power supply pattern of Embodiment 12 of the present invention.
  • FIG. 20 is a configuration block diagram of the temperature conversion means of Embodiment 13 of the present invention.
  • FIG. 21 is a timing chart of sampling the output of the infrared light receiving element of the embodiment.
  • FIG. 22 is a block diagram showing a configuration of the motor control means according to Embodiment 14 of the present invention.
  • FIG. 23 is a flowchart for explaining the operation of the motor control means of the embodiment.
  • FIG. 24 is a block diagram showing a configuration of the mode control means according to Embodiment 15 of the present invention.
  • FIG. 25 is a flowchart for explaining the operation of the motor control means of the embodiment.
  • FIG. 26 is a circuit diagram for explaining the operation of the power supply control means of the embodiment.
  • FIG. 27 is a configuration block diagram of a conventional radiation thermometer.
  • FIG. 28 is a configuration diagram of a conventional saliva part.
  • FIG. 29 is a configuration diagram of another conventional chopper portion.
  • FIGS. 30A and 30B are timing charts for explaining the operation of another conventional example.
  • FIG. 1 is a configuration diagram of a radiation thermometer of the present invention.
  • 2A to 2D and 3A to 3D are side views of a plurality of probes
  • FIG. 4 is a sectional view of the configuration of the light receiving section 17 and the probe 1.
  • probe 1 is the part to be inserted into the ear canal when measuring body temperature.It has a narrow shape toward the tip toward the eardrum, has an open tip, and can be attached to and detached from the body 13 at the opposite end.
  • the projection 14 is provided. When the probe 1 is attached to the main body 13, the projection 14 is distorted inward by the pressing force and is attached to the main body 13. When removing the probe, hold down the probe 1 with your finger, distorting the protruding portion 14 inward in the same manner.
  • the main body 13 has a storage section 15. When not measuring the temperature, remove the probe 1 and store it in the storage section 15.
  • the storage section 15 has a lid 16 and opens and closes when stored. By removing probe 1 when not in measurement, it becomes the shape of the main body itself, making it easy to store. Also, since the removed probe 1 is stored in the storage section 15, it is unlikely to be lost.
  • the light receiving section 17 receives only the infrared light that has passed through the opening of the probe 1 and outputs an electric signal corresponding to the amount of the infrared light.
  • the signal processing means 4 converts the temperature based on the signal input from the light receiving section 17.
  • the temperature converted here is the infrared irradiation source temperature, and corresponds to the temperature of the eardrum and / or its vicinity.
  • the temperature converted by the signal processing means 4 is reported to the user by the reporting means 18 as body temperature.
  • the notifying means 18 comprises a number displaying means 19 for displaying the body temperature converted by the signal processing means 4 by numbers and a voice notifying means 20.
  • the numeral display means 19 is, for example, a liquid crystal display, and the audio notification means 20 is, for example, a speaker.
  • the light receiving section 17 receives only the infrared ray passing through the opening of the probe 1 as described later in detail, so that it is not affected by the temperature fluctuation of the probe 1 and does not need a waveguide.
  • the probe 1 is detachable and includes a plurality of probes, each of which is printed with a different symbol, for example, as shown in FIGS. 2A to 2D.
  • Figure 2 A to D 2A has the symbol “a”
  • FIG. 2B has the symbol “b”
  • FIG. 2C has the symbol “c”
  • FIG. 2D has the symbol “d”.
  • the tip of the probe 1 may be open and there is no covering with a film, so there is no temperature error due to the variation in the infrared transmittance of the film.
  • a color may be changed or a different pattern may be printed.
  • the dimensions may be changed as shown in FIGS. 3A to 3D, FIG. 3A is the shortest, and FIG. 3B, FIG. 3C, and FIG.
  • FIGS. 3A to 3D FIGS. 3A to 3D
  • FIG. 3A is the shortest
  • Fig. 3A for infants with small ears
  • Fig. 3D for adults with large ears, etc.
  • Another effect is that the dimensions can be selected.
  • the sound is notified by the sound notifying means 20, the result of the temperature measurement can be known even when the measurement is performed in the dark or when a person with an invisible eye performs the measurement.
  • the number display means 19 also provides notification, it is possible to know the temperature measurement result even when measuring in a noisy environment or when a person with hearing impairments performs measurement. Since the temperature is measured with the ears, the audio notification means 20 can notify the subject with a sufficiently low volume, and only the subject can hear the result of the temperature measurement, and the test result can be heard only by the subject, so that the subject cannot hear the result of the temperature measurement. It does not bother you with unnecessary noise. It also protects the privacy of the subject.
  • FIG. 4 is a cross-sectional view including the optical axis of the light-collecting element.
  • the inner surface of the light shielding body 22 is formed of a reflection suppressing means having a low reflectance such as a synthetic resin described later in detail.
  • a and A ' are the straight lines drawn from the edge of the refractive lens 21 so as to be in contact with the inner wall of the probe 1 on the same side as this edge and the tip of the probe 1 If the probe is a straight line from the opening to the body mounting part as shown in Fig. 4 at the intersection with the surface, this point is located on the inner wall of the tip of probe 1.
  • B is a point on the inner wall of the probe 1, that is, a point in an area where light is not desired to be received
  • F is a focal point of the refractive lens
  • FA is an image point of A by the refractive lens
  • FA ′ is A ′ by a refractive lens 21.
  • K 1 A is the optical path of light (marginal ray) traveling from A to the FA through the edge of the refraction lens 21 on the same side with respect to the optical axis
  • K2A is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F to reach FA
  • K3 A is the optical path of light passing from A through the center of the refractive lens 21 to reach FA
  • K4A is A This is the optical path of the light (the marginal ray) that passes through the edge of the refractive lens 21 on the opposite side of the optical axis and reaches the FA.
  • K1A ' is the optical path of the light (the primary ray) traveling from A' to FA 'through the edge of the refraction lens 21 on the same side of the optical axis
  • K2A' is the light from A '
  • K3A ' is the optical path of light traveling parallel to the axis and passing through the focal point F to reach FA'
  • K3A ' is the optical path of light traveling from A' through the center of the refraction lens 21 and reaching FA '
  • K4A' is A From the optical path of the light (marginal ray) that reaches the FA through the edge of the refractive lens 21 on the opposite side of the optical axis from 38, 38 passes from 8 to the FB through the center of the refractive lens 21
  • the optical path of the arriving light, FX is the intersection of optical path K 1 A and optical path K 1 A ′.
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1.
  • the following design is performed after a configuration in which only infrared light that has passed through the refractive lens 21 is received.
  • the light emitted from A reaches the image point FA of A through optical paths K 1 A, K 2 A, K 3 A, K 4 A, and the like.
  • the image point FA of A is formed on the opposite side of A with respect to the optical axis.
  • light passing through the optical path K2A After passing through 1, it crosses the optical axis at F and then reaches FA while leaving the optical axis.
  • light passing through the optical path K1A passes through the refractive lens 21, crosses the optical axis, and then reaches the FA away from the optical axis.
  • the light passing through the optical path K3A crosses the optical axis by the refractive lens 21 and then reaches the FA while leaving the optical axis.
  • the light passing through the optical path K 4 A crosses the optical axis and passes through the refraction lens 21, and after passing through the refraction lens 21 reaches the FA without crossing the optical axis.
  • This area is inside the triangle formed by FX, FA and FA '.
  • the point ⁇ in the region of the inner wall of the probe 1 that does not want to receive light is farther from the optical axis than ⁇ , so that the image point FB of B by the refracting lens 21 is farther from the optical axis than FA. Therefore, if the infrared light receiving element 3 is installed inside the triangle formed by FX, FA and FA 'so as not to receive the infrared light radiated from A and A', the infrared light from B will be automatically detected. The configuration does not receive light.
  • FIG. 5 is a sectional view showing the configuration of a light receiving section 17 and a probe 1 of a radiation thermometer according to Embodiment 2 of the present invention.
  • a and A ' are the straight lines drawn from the edge of the refractive lens 21 so as to be in contact with the inner wall of the probe 1, and If the probe is a straight line between the opening and the main body mounting part as shown in Fig. 5 at the intersection with the tip surface of the probe 1, the point is located on the inner wall of the tip of the probe 1.
  • B is a point on the inner wall of probe 1, that is, a point in an area where light is not desired to be received
  • F is a focal point of refractive lens
  • FA is an image point of A by refractive lens
  • FA ' is an image point of A' by refractive lens 21
  • FB is the image point of B by the refraction lens 21
  • K 1 A is the optical path of light (marginal ray) traveling from A to the FA through the edge of the refraction lens 21 on the same side with respect to the optical axis
  • K 2 A is the optical path of light traveling parallel to the optical axis from A and passing through the focal point F and reaching the FA
  • K 3 A is the optical path of light passing from A and passing through the center of the refractive lens 21 and reaching the FA.
  • K4A is the optical path of the light (marginal ray) that reaches the FA through the edge of the refraction lens 21 on the opposite side from A with respect to the optical axis, and K1A 'is the same path from A' with respect to the optical axis.
  • K3A ' is the light path from A' to the light path passing from the center of refraction lens 21 to FA '
  • K4A' is the edge of refraction lens 21 from A 'on the opposite side of the optical axis.
  • K3 B is the optical path of the light (marginal ray) that passes through and reaches FA '
  • K3 B is the optical path of the light that passes from the center of refraction lens 21 to B and reaches FB
  • K 4 B is the optical axis from B across the optical axis.
  • FX is the intersection of optical path K 1 A and optical path K 1 A '
  • FY is the optical path of optical path K4 A and optical path K4 A' It is an intersection.
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1.
  • the following design is performed after the configuration is such that only infrared light that has passed through the refractive lens 21 is received.
  • Light emitted from A passes through optical paths K 1 A, K2A, K3A, K4A, etc. Reach image point FA.
  • the image point FA of A is formed on the opposite side of A with respect to the optical axis.
  • the light passing through the optical path K2A passes through the refractive lens 21, crosses the optical axis at F, reaches the FA, and moves away from the optical axis.
  • light passing through the optical path K1A passes through the refractive lens 21 and crosses the optical axis, reaches the FA, and moves away from the optical axis.
  • the light passing through the optical path K3A crosses the optical axis by the refraction lens 21, reaches the FA, and moves away from the optical axis.
  • the light passing through the optical path K4A crosses the optical axis, passes through the refraction lens 21, and after passing through the refraction lens 21, reaches the FA without crossing the optical axis, and then approaches the optical axis or Keep moving away.
  • This region is a region sandwiched between an optical path K4A at a portion farther from the refraction lens 21 than the FA and an optical path K4A 'at a portion farther from the refraction lens 21 than FA'.
  • the infrared light receiving element 3 must be installed in a region between the optical path K4A farther from the refractive lens 21 than the FA and the optical path K4A 'farther from the refractive lens 21 than FA'.
  • a light-receiving portion that receives only infrared light radiated from an area to be received near the optical axis, that is, an eardrum that has passed through the opening of the probe 1 and Z or the vicinity thereof is obtained.
  • FIG. 6 is a configuration sectional view showing the light receiving section 17 and the probe 1 of the radiation thermometer according to Embodiment 3 of the present invention.
  • the probe 1 has a portion with an R so that it can be more easily inserted into the ear canal.
  • ⁇ and ⁇ ′ are virtual tip points where a straight line that touches the edge of the refractive lens 21 from the edge of the refractive lens 21 to the inner wall of the probe 1 on the same side with respect to the optical axis intersects the distal end surface of the probe 1, and F is a refractive lens.
  • the focal point of 2 1, F o; and F a ' are the image points of a and' by the refracting lens 21 respectively, and K 1 a passes from the edge of the refracting lens 21 on the same side with respect to the optical axis from a.
  • K2a is the optical path of the light that travels in parallel to the optical axis from a and passes through the focal point F to reach F.
  • K3a is the refractive lens from a
  • K4a is the optical path of the light that reaches the F-line through the center of 1 and K4a is the light that reaches the F-line through the edge of the refraction lens 21 opposite the optical axis from the a-force.
  • Kl a ' is the optical path of the light (marginal ray) traveling from a' to a 'through the edge of the refracting lens 21 on the same side with respect to the optical axis
  • K2 a' is a ' From the optical axis
  • the optical path of light traveling parallel and passing through the focal point F and reaching F ', K3 optical path of light reaching F a' through the center of the refractive lens 21 and 14 ⁇ ' Is the optical path of the light (marginal ray) that reaches F ⁇ 'through the edge of the refractive lens 21 on the opposite side from a' with respect to the optical axis
  • FX is the intersection of optical path K 1 with the optical axis .
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1.
  • the infrared light receiving element 3 is attached to the light shield 22 so that only the infrared light passing through the refractive lens 21 is received by the infrared light receiving element 3.
  • the following design is performed after a configuration in which only infrared light that has passed through the refractive lens 21 is received.
  • probe 1 In order to receive only infrared light emitted from the eardrum and Z or its vicinity and passed through the opening of probe 1, make sure that infrared light emitted from probe 1 is not received. do it. Therefore, a point located at the boundary between the region where light is to be received and the region where light is not to be received is imagined, and from this point, the light passes through the edge of the refractive lens 21 on the same side as the point located at this imaginary boundary with respect to the optical axis.
  • the probe 1 should be installed farther from the optical axis than the optical path of the light (marginal ray).
  • the point located at the above-mentioned virtual boundary is defined as ⁇ ′, the point at which the straight line contacting the edge of the refractive lens 21 and the inner wall of the probe 1 on the same side with respect to this edge and the optical axis intersects the tip surface of the probe 1, ⁇ ′
  • the infrared light receiving element 3 is set inside the triangle formed by F c ⁇ ⁇ , F ′, and FX.
  • the probe 1 is positioned farther from the optical axis than the optical path K 1 ⁇ , ⁇ 1 ⁇ 'between the refracting lenses 21, and an optical system that does not receive light from the probe 1 is provided. can get.
  • the above is described in detail below.
  • the light radiated from the light reaches the image point F ⁇ of ⁇ through the optical paths ⁇ 1 ⁇ , ⁇ 2, ⁇ 3, ⁇ 4 and the like.
  • the image point F ⁇ of ⁇ is formed on the opposite side of ⁇ with respect to the optical axis.
  • the light passing through the optical path 0 20! Passes through the refracting lens 21, crosses the optical axis at F, and reaches the light source F while being away from the optical axis.
  • light passing through the optical path ⁇ ⁇ passes through the refracting lens 21, crosses the optical axis, and then reaches F ⁇ while leaving the optical axis.
  • the light passing through the optical path # 3 crosses the optical axis by the refracting lens 21 and then reaches the optical path F away from the optical axis.
  • the light passing through the optical path # 4 ⁇ crosses the optical axis and passes through the refractive lens 21. After passing through the refractive lens 21, the light reaches F ⁇ without crossing the optical axis. In this way, at the position farther from the refractive lens 21 than the point FX where the optical path K 1 intersects the optical axis and closer to the refractive lens 21 than F ⁇ , the region where the light emitted from ⁇ does not pass is Exists.
  • ⁇ ′ is radiated from ⁇ ′ at a position farther from refraction lens 21 than the point where the optical path ⁇ ⁇ ⁇ ′ intersects with the optical axis and closer to refraction lens 21 than F There is an area through which the light does not pass.
  • Light from a portion farther from the optical axis than the optical path K1 between the human refraction lenses 21 is replaced with light from a point whose distance from the optical axis is larger than ⁇ in the same plane as ⁇ ;. It is well known in geometrical optics that the image point at this point by the refraction lens 21 is farther from the optical axis than F ⁇ . Therefore, if light from ⁇ is not received, light from a point farther from the optical axis than the light is not received, and therefore, light from probe 1 is not received.
  • light from a portion farther from the optical axis than the optical path ⁇ 1 'between the light source and the refracting lens 21 is a light beam from a point in the same plane as ⁇ ' and whose distance from the optical axis is larger than ⁇ '. Is replaced with It is well known in geometrical optics that the image point at this point by the refraction lens 21 is farther from the optical axis than F ⁇ ′. Therefore, if light from ⁇ ′ is not received, light from a point farther from the optical axis than H ′ will not be received, and therefore light from probe 1 will not be received.
  • the infrared light receiving element is located inside the triangle formed by Fa, Fa ', and FX.
  • the position of the infrared light receiving element 3 that does not receive the light from a is obtained.
  • the infrared light receiving element 3 is closer to the refractive lens 21 than the F lens. At this time, the following equation holds.
  • L a F is the distance from the center of the refractive lens 21 to the image point F a
  • f is the distance from the center of the refractive lens 21 to the focal point F
  • L 3 is the distance from the focal point F to the infrared light receiving element 3. It is.
  • the light receiving surface is located between the point FX and Fa where the optical path intersects the optical path K1a. Therefore, the light path closest to the infrared light receiving element 3 on the light receiving surface of each light path from the light path F to the light path F ⁇ is K 1 light path. Therefore, in order for the light from ⁇ to not be received by the infrared light receiving element 3, the following equation must be satisfied.
  • r a S 1 is the intersection point F a S 1 between the optical path K 1 ⁇ and the light receiving surface of the infrared light receiving element 3, the distance from the optical axis, and r s is the radius of the infrared light receiving element 3.
  • the radius of the refractive lens 21 is r 3 and the distance from the optical axis to the image point F is raF, as is well known in geometrical optics
  • r 3 raF ra S l L 3 f is expressed by the equation 4 Meet.
  • Equation 5 Equation 5 is satisfied.
  • Equation 6 Equation 6
  • the condition for not receiving the light emitted from a by the infrared light receiving element 3 is as follows.
  • Equation 9 is satisfied.
  • Equation 10 the condition for not receiving the light emitted from a by the infrared receiving element 3 is given by Equation 10:
  • Equation 10 Equation 11 holds from Gauss's formula. f L ⁇ La
  • Equation 1 2 holds.
  • Equation 13 the condition for preventing the light radiated from a from being received by the infrared light receiving element 4 is given by Equation 13.
  • the optical system in order to prevent the light radiated from the tip of the probe 1 from being received by the infrared light receiving element 3 as described above, the optical system must satisfy Equation 7, Equation 10, or Equation 13. Need to design. Only L3 given by Equation 7, Equation 10 and Equation 13 receives infrared light By disposing the element 3 out of the focus of the refractive lens 21, the infrared light emitted from the probe 1 is not received by the infrared light receiving element 3, but is emitted from the eardrum and / or its vicinity. Only the infrared light that has passed through the opening can be received by the infrared light receiving element 3. Fourth embodiment
  • FIG. 7 is a configuration sectional view showing the light receiving section 17 and the probe 1 of the radiation thermometer according to the fourth embodiment of the present invention.
  • the probe 1 has an R-attached portion as in the third embodiment.
  • ⁇ ' is a virtual tip point where a straight line from the edge of the refractive lens 21 to the probe 1 inner wall on the same side with respect to this edge and the optical axis intersects the tip surface of the probe 1,
  • F is the focal point of the refractive lens 21
  • F a and F ′ are the image points of ⁇ and a ′ by the refraction lens 21 respectively, and K 1 ⁇ ; travels from ⁇ to F through the edge of the refraction lens 21 on the same side with respect to the optical axis.
  • the optical path of light (marginal ray), ⁇ 2 ⁇ is the optical path of light traveling parallel to the optical axis from ⁇ and passing through the focal point F to reach F ⁇ , and ⁇ 3 ⁇ is the center of the refracting lens 21
  • the optical path of the light that passes through and reaches F ⁇ 4 ⁇ is the optical path of the light (marginal ray) that reaches F ⁇ through the edge of the refractive lens 21 on the opposite side of the optical axis
  • ⁇ ⁇ ⁇ ' is the optical path of the light (marginal ray) that travels to F ⁇ ' through the edge of the refractive lens 21 on the same side of the optical axis from ⁇ '
  • ⁇ 2 ⁇ ' is the optical path from ⁇ 'to the optical axis.
  • the optical path of light traveling parallel and passing through the focal point F to reach F a ', ⁇ 3 ⁇ ' is the optical path of light from ⁇ 'passing through the center of the refractive lens 21 and reaching F a', ⁇ 4 ⁇ ' Is the optical path of the light (marginal ray) that reaches F a 'through the edge of the refraction lens 21 opposite to the optical axis from a' and FX is the intersection of the optical path K la and the optical axis .
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1. Attach the infrared light receiving element 3 to the light shield 22 so that only the infrared light passing through the refractive lens 21 is received by the infrared light receiving element 3.
  • the following design is performed after a configuration in which only infrared light that has passed through the refractive lens 21 is received.
  • the infrared light emitted from the probe 1 may not be received. Therefore, a point located at the boundary between the region where light is to be received and the region where light is not to be received is imagined, and from this point, the light passes through the edge of the refractive lens 21 on the same side as the point located at this imaginary boundary with respect to the optical axis.
  • the probe 1 should be installed farther from the optical axis than the optical path of the light (marginal ray).
  • the point located at the above-mentioned virtual boundary is defined as the point where a straight line that contacts the inner wall of the probe 1 on the same side with respect to this edge and the optical axis from the edge of the refractive lens 21 intersects the distal end surface of the probe 1,
  • Infrared light receiving element 3 is installed in the area between optical path K4a, which is farther from refraction lens 21 than Fa, and optical path K4, which is farther from refraction lens 21 than Fa '. I do.
  • the probe 1 is positioned farther from the optical axis than the optical path 'K 1 a ⁇ ⁇ between the refracting lens 21 and the optical system that does not receive the light from the probe 1. can get.
  • the light radiated from the light reaches the image point F of a through the light paths K1, K2a, ⁇ 3 ⁇ , ⁇ 4 and the like.
  • the image point Fa of a is formed on the opposite side of a with respect to the optical axis.
  • the light passing through the optical path K 2 passes through the refracting lens 21, crosses the optical axis at F, reaches Fa, and leaves the optical axis.
  • light passing through the optical path K 1 passes through the refractive lens 21, crosses the optical axis, reaches F a, and moves away from the optical axis.
  • the light passing through the optical path K 3 a crosses the optical axis at the refraction lens 21, reaches F a, and moves away from the optical axis.
  • Light passing through the optical path K 4 crosses the optical axis and passes through the refractive lens 21, and after passing through the refractive lens 21, does not cross the optical axis. It reaches F a and then approaches or moves away from the optical axis. As described above, there is a region where the light emitted from a does not pass at a position farther from the refraction lens 21 than the image point Fa of a.
  • Light from a portion farther from the optical axis than the optical path K1a between a and the refracting lens 21 is replaced by light from a point in the same plane as a where the distance from the optical axis is larger than a. It is well known in geometric optics that the image point at this point by the refraction lens 21 is farther from the optical axis than Fa. Therefore, if light from a is not received, light from a point farther from the optical axis than light will not be received, and therefore light from probe 1 will not be received.
  • Light from a portion farther from the optical axis than the optical path K 1 a ′ between 1 is replaced with light from a point greater than a ′ from the optical axis in the same plane as ⁇ ′.
  • the infrared light receiving element is located in a region sandwiched between the optical path K4a farther from the refraction lens 21 than F and the light path K4a 'farther from the refraction lens 21 than F a ′. If the infrared ray emitted from a and a 'is not received by installing 3, the infrared ray emitted from the probe 1 will not be received automatically.
  • the position of the infrared light receiving element 3 that does not receive light from the light source is obtained.
  • the infrared light receiving element 3 is farther from the refractive lens 21 than Fa. Then, stand.
  • L and F are the distance from the center of the refractive lens 21 to the image point F ⁇ of ⁇
  • f is the distance from the center of the refractive lens 21 to the focal point F
  • L 3 is the distance from the focal point F to the infrared light receiving element 3. It is.
  • the light receiving surface is farther from the refraction lens 21 than F ⁇ , so that the light receiving surface closest to the infrared light receiving element 3 in the light receiving surface is ⁇ 4 ⁇ in each of the optical paths from H to F ⁇ . Therefore, the following equation must be satisfied in order to prevent the light from being received by the infrared light receiving element 3.
  • r and S 4 are the distance from the intersection F a S 4 of the optical path K 4 a and the light receiving surface of the infrared light receiving element 3 to the optical axis, and r s is the radius of the infrared light receiving element 3.
  • the radius of the refractive lens 21 is r 3 and the distance from the optical axis to the image point F is r / F, r 3, raF, LaF, ra S 4 L 3, f satisfies Equation 17 as a geometric relationship.
  • Equation 18 is satisfied.
  • raS4 raF- (r 3-r CtF) X (- ⁇ --- l)
  • Equation 19 L3 ⁇ L a Ff + LaF ⁇ 0tF - r S)
  • Equation 20 the condition for not receiving the light emitted from ⁇ by the infrared light receiving element 3 is given by Equation 20.
  • Equation 8 the distance from the optical axis to the optical axis is r and the distance from the tip of the probe 1 to the center of the refractive lens 21 is La
  • ra, L, ra F, L a F satisfies Equation 8 described above as a geometric relationship. Therefore, Equation 9 described above is satisfied.
  • Equation 21 the condition for not receiving the light emitted from a by the infrared receiving element 3 is given by Equation 21.
  • Equation 21 The equation 11 described above holds from Gauss's formula. Therefore, the above equation 12 holds.
  • Equation 22 As described above, in order to prevent the light emitted from a from being received by the infrared light receiving element 3, it is necessary to design the optical system so as to satisfy the conditions of Equation 20, Equation 21, or Equation 22.
  • Light-receiving element 3 is refracted by L 3 given by Equation 20, Equation 21, and Equation 22
  • L 3 the infrared ray emitted from the probe 1 was not received by the infrared receiving element 3 but passed through the opening of the probe 1 emitted from or near the eardrum. Only infrared light can be received by the infrared light receiving element 3. Therefore, a waveguide that blocks infrared rays from the probe 1 is not required.
  • the refractive lens 21 is made of a synthetic resin that transmits infrared light having a wavelength of about 10 m, such as polyethylene.
  • the thermal properties of polyethylene are as follows: thermal conductivity ⁇ is 0.34 J / ms ⁇ , heat capacity is 2.12 X 10 6
  • the light-receiving unit 17 including the low-temperature refraction lens 21 cools the surrounding air, causing a state where the temperature drops below the dew point. I do.
  • the refractive lens 21 has a small heat capacity, the surface temperature tends to rise, and the heat conductivity is small, so that the surface heat does not diffuse in the thickness direction. Therefore, even if the surface of the refractive lens 21 becomes lower than the dew point, the time is short, and dew condensation hardly occurs. Therefore, even if the temperature around the radiation thermometer changes, accurate temperature detection without the influence of dew condensation is possible.
  • FIG. 8 is a sectional view showing the configuration of a light receiving section and a probe of a radiation thermometer according to Embodiment 5 of the present invention.
  • the light-collecting element 21 differs from the above-described embodiment in that a light-collecting mirror is used.
  • a and are virtual tip points where a straight line from the edge of the focusing mirror 21 to the inner wall of the probe 1 on the same side with respect to this edge and the optical axis intersects the tip surface of the probe 1, and F is the collection point.
  • the focal point of the optical mirror 21, F and F ′ are the image points of ⁇ and ′ by the focusing mirror 21, respectively, and ⁇ ⁇ is the edge of the focusing mirror 21 on the same side of the optical axis from ⁇ .
  • ⁇ ⁇ 4 is the light that is reflected from the edge of the condensing mirror 21 on the opposite side of the optical axis from ⁇ and reaches the F ( ⁇ ⁇ ⁇ ⁇ 'is the optical path of the light (marginal ray) reflected from the edge of the converging mirror 21 on the same side of the optical axis from ⁇ ' and traveling to F ⁇ '(marginal ray), ⁇ 2 ⁇ 'The optical path of light traveling from ⁇ 'parallel to the
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1.
  • the following design is performed after a configuration is adopted in which only infrared light reflected by the condensing mirror 21 is received.
  • probe 1 In order to receive only infrared light emitted from the eardrum and Z or its vicinity and passed through the opening of probe 1, make sure that infrared light emitted from probe 1 is not received. do it. Therefore, a point located at the boundary between the region where light is to be received and the region where light is not to be received is imagined, and from this point, the edge of the focusing mirror 21 on the same side as the point located at this imaginary boundary with respect to the optical axis The probe 1 should be installed so that it is located farther from the optical axis than the optical path of the reflected light (the magic light).
  • the point located at the above-mentioned virtual boundary is defined as a point ⁇ , ⁇ ′ where a straight line contacting the edge of the condenser mirror 21 and the inner wall of the probe 1 on the same side with respect to this edge and the optical axis intersects the tip surface of the probe 1.
  • the infrared light receiving element 3 is installed inside a triangle formed by F ⁇ , F ⁇ ′, and FX.
  • the probe 1 is located farther from the optical axis than the optical path K 1 ⁇ and ⁇ 1 ⁇ ′ between the condensing mirrors 21, so that an optical system that does not receive the light from the probe 1 is provided. can get.
  • the light passing through the optical path K 3 a crosses the optical axis at the collecting mirror 21 and then reaches F a while leaving the optical axis.
  • the light passing through the optical path K 4 a crosses the optical axis, is reflected by the converging mirror 21, is reflected by the converging mirror 21, and then reaches Fa without crossing the optical axis.
  • the light radiated from a passes at a position farther from the converging mirror 21 than the point FX where the optical path K 1 crosses the optical axis and closer to the converging mirror 21 than F a. There is an area that does not work.
  • a ' There are areas where the light emitted from does not pass.
  • An infrared light receiving element 3 is set inside the triangle formed by F a, F a ′, and FX in the meridional plane of this light collection element.
  • Light from a portion farther from the optical axis than the optical path ⁇ 1 ⁇ between the human condensing mirrors 21 is replaced by light from a point at a distance from the optical axis larger than ⁇ in the same plane as ⁇ . It is well known in geometrical optics that the image point at this point by the condenser mirror 21 is farther from the optical axis than F ⁇ . Therefore, if light from ⁇ is not received, light from a point farther from the optical axis than the light is not received, and therefore, light from probe 1 is not received.
  • light from a portion farther from the optical axis than the optical path K 1 ⁇ ′ between ⁇ ′ and the condensing mirror 1 2 1 is a point whose distance from the optical axis is larger than ⁇ ′ in the same plane as Replaced by light from It is well known in geometrical optics that the image point of this point by the condenser mirror 21 is farther from the optical axis than F ⁇ ′. Therefore, if light from ⁇ ′ is not received, light from a point farther from the optical axis than ⁇ ′ will not be received, and therefore no light from probe 1 will be received.
  • the position of the infrared light receiving element 3 that does not receive the light from a is obtained.
  • Equation 1 holds, and therefore Equation 2 holds.
  • L a F is the distance from the center of the focusing mirror 21 to the image point F a of a
  • f is the distance from the center of the focusing mirror 21 to the focal point F
  • L 3 is the infrared light receiving element from the focal point F Distance to three.
  • the infrared light receiving element 3 is the most light receiving surface of the light paths from a to Fa.
  • the one approaching is K la. Therefore, in order for the light from a to not be received by the infrared light receiving element 3, the expression 3 must be satisfied.
  • ra S 1 is the distance from the intersection F a S 1 between the optical path K 1 a and the light receiving surface of the infrared light receiving element 3 to the optical axis
  • rs is half of the infrared light receiving element 3. Is the diameter.
  • Equation 4 the condition for not receiving the light radiated from the light by the infrared light receiving element 3 is the equation (7).
  • Equation 9 the condition for not receiving the light radiated from a by the infrared receiving element 3 is given by Equation 10: Equation 11 holds from Gauss's formula, and equation 12 holds.
  • Equation 12 the condition for not receiving the light radiated from a by the infrared receiving element 3 is given by Equation 13.
  • Infrared light emitted from the probe 1 is received by infrared light receiving element 3 by displacing the infrared light receiving element 3 from the focal point of the focusing mirror 10 by L3 given by Equations 7, 10 and 13.
  • the infrared light receiving element 3 can receive only infrared light emitted from the eardrum and Z or its vicinity and passed through the opening of the probe 1 without receiving light by the element 3.
  • FIG. 9 is a configuration sectional view showing a light receiving unit and a probe of a radiation thermometer according to Embodiment 6 of the present invention.
  • a ' is a virtual tip point where the straight line that touches the edge of the condensing mirror 21 and the inner wall of the probe 1 on the same side with respect to this edge and the optical axis intersects the tip surface of the probe 1.
  • F F a, F a ′ are the image points of ⁇ and a ′ by the focusing mirror 21, respectively, and K 1 ⁇ is the focusing mirror of the focusing mirror 21 on the same side of the optical axis from ⁇ .
  • the optical path of light (marginal ray) reflected at the edge and traveling to F ⁇ , ⁇ 2 is the optical path of light traveling parallel to the optical axis from ⁇ and passing through the focal point F to reach F ⁇ , and ⁇ 30;
  • ⁇ 2 ⁇ ' is the optical path of light traveling parallel to the optical axis from and passing through the focal point F to reach Fa'
  • ⁇ 3 ⁇ ' is reflected from a' at the center of the condensing mirror 21 and Fa '
  • the optical path of the light that reaches, K4' is from a '
  • FX is the optical path of the light (marginal ray) reflected at the edge of the converging mirror 21 opposite to the optical axis and reaching F a ′
  • FX is the intersection of the optical path K 1 a with the optical axis.
  • An optical system is designed so that the infrared light receiving element 3 receives only infrared light passing through the opening of the probe 1.
  • the following design is performed after the configuration is such that only the infrared rays reflected by the condenser mirror 21 are received.
  • the infrared light emitted from the probe 1 may not be received. Therefore, a point located at the boundary between the area where light is to be received and the area where light is not to be received is imagined, and from this point, light is reflected by the condensing mirror 21 on the same side as the point located at this virtual boundary with respect to the optical axis.
  • the probe 1 should be installed so that it is located farther from the optical axis than the optical path of the light (the primary light).
  • the point located on the above-mentioned virtual boundary is defined as a point a, ' As a collection than Fa
  • the infrared light receiving element 3 is installed in a region between the optical path K 4 a far from the optical mirror 21 and the optical path K 4 a ′ far from the condensing mirror 21 than F a ′.
  • the probe 1 is located farther from the optical axis than the optical paths K la and K 1 a ′ between the probe a and the condensing mirror 21, so that an optical system that does not receive the light from the probe 1 is provided. can get.
  • the light emitted from the light reaches the image point F of the light through the optical paths K 1, K 2, K 3a, K 4a, and the like.
  • the image point F of a is formed on the opposite side of a with respect to the optical axis.
  • light passing through the optical path K 2 a is reflected by the condensing mirror 121, crosses the optical axis at F, reaches F a, and moves away from the optical axis.
  • light passing through the optical path K la is reflected by the condenser mirror 21, crosses the optical axis, reaches F a, and moves away from the optical axis.
  • the light passing through the optical path K 3 a crosses the optical axis at the condenser mirror 21, reaches F a, and moves away from the optical axis.
  • the light passing through the optical path K 4 crosses the optical axis and is reflected by the converging mirror 21 .After being reflected by the converging mirror 21, the light arrives at Fa without crossing the optical axis. Approaching or moving away from the axis. As described above, there is an area where light emitted from the light does not pass at a position farther from the condensing mirror 21 than the image point F a of a.
  • the infrared light is received in the region between the optical path ⁇ 4 ⁇ farther from the converging mirror 21 than F ⁇ and the optical path K4 a 'farther from the converging mirror 21 than F a ′. If the device 3 is set so as not to receive the infrared rays radiated from a and ⁇ ', the configuration is such that the infrared rays radiated from the probe 1 are not automatically received.
  • the position of the infrared light receiving element 3 that does not receive the light from a is obtained.
  • Equation 14 holds, and therefore Equation 15 holds.
  • L a F is the distance from the center of the condenser mirror 21 to the image point F of a
  • f is the distance from the center of the condenser mirror 21 to the focal point F
  • L 3 is the infrared ray from the focal point F This is the distance to the light receiving element 3.
  • ra S 4 is the distance from the intersection F a S 4 between the optical path K 4 a and the light receiving surface of the infrared light receiving element 3 to the optical axis, and rs is the radius of the infrared light receiving element 3.
  • Equation 19 is obtained by substituting Equation 18 into Equation 16. From Equations 15 and 19, the light emitted from a is The condition for preventing light from being received by the child 3 is given by Expression 20.
  • Equation 9 the condition for not receiving the light radiated from the infrared ray by the infrared light receiving element 3 is given by Equation 21.
  • Equation 1 1 holds from Gauss's formula, so Equation 1 2 holds.
  • Equation 12 the condition for not receiving light emitted from ⁇ by the infrared receiving element 3 is given by Equation 22.
  • FIG. Fig. 10 shows an example in which a converging mirror is used as a converging element, in which the first optical axis incident on the converging mirror and the second optical axis reflected and emitted from the converging mirror are bent.
  • Show. 21 is a concave mirror as a light condensing element, and its focal point is at F.
  • the optical axis passing through this center can be bent and used as shown by the dashed line. Become.
  • the infrared light receiving element 3 may be disposed behind the focal point F of the condenser mirror 21, specifically, in the range described in the above embodiment.
  • the radiation thermometer it is preferable to return to FIG. 1 and to bend the probe 1 and the main body 13 by about 115 degrees. This is because when the body 13 is held by hand and the probe 1 is inserted into the ear canal, the angle at which body temperature can be measured at a natural hand position is about 115 degrees. Therefore, if the optical axis is bent at about 115 degrees in FIG. 10, the light receiving section can be easily stored in the main body. Also, by measuring the body temperature at a natural hand position, the direction in which the probe is inserted into the ear canal can be easily stabilized, and the accuracy of measuring the body temperature can be improved.
  • the material of the condenser mirror 21 in the fifth to seventh embodiments does not need to transmit infrared light.
  • the material of the condenser mirror 21 is made of polypropylene or polycarbonate, and has a structure in which metal is deposited or plated on the surface.
  • Physical properties of Helsingborg propylene, thermal conductivity ⁇ is 0. 12 JZms ⁇ , heat capacity 1. 7 6 X 1 0 6 JZkgK , is.
  • the infrared light emitted from the probe 1 can be received by the infrared light receiving element 3 without receiving the infrared light from the eardrum and Z or the vicinity thereof without receiving the light by the infrared light receiving element 3.
  • the element 21 is hardly affected by the heat transmitted from the object to be measured, and does not require high thermal conductivity in the optical system. Since the light-collecting element has a small heat capacity and a low thermal conductivity, it can be configured to perform accurate temperature detection without being affected by dew condensation even when the temperature changes, as in the case of the refractive lens.
  • the material used for the focusing mirror is not limited to polypropylene, polycarbonate, and polyethylene.
  • the condensing mirror is used as the condensing element of the light receiving section.
  • this has an effect of increasing the amount of received light without transmission loss compared to the case of using a refractive lens.
  • the infrared light receiving element 3 is similarly arranged so that only the infrared light emitted from the eardrum and Z or its vicinity and passed through the opening of the probe 1 is received by the infrared light receiving element 3. In addition to this, there is an effect that the mirror can be easily formed.
  • the infrared light from the inner surface of the probe 1 that is transmitted or reflected by the light condensing element 21 and does not enter the infrared light receiving element 3 enters the inner surface of the light shield 22.
  • the inner surface of the light shield 22 is a reflection suppressing means, the incident infrared light is not reflected and incident on the infrared light receiving element 3. Therefore, it is possible to reliably prevent the infrared radiation from the probe 1 which causes a measurement error from being incident on the infrared light receiving element 3, thereby enabling accurate temperature detection.
  • a synthetic resin such as PC, PPS, PBT, or PP is used.
  • the emissivity of these synthetic resins is known to be as high as about 0.9. Infrared rays incident on an object are divided into a reflection component, an absorption component, and a transmission component, but when there is no transmission, the sum of the reflectance and the absorption factor is one.
  • the emissivity and the absorptance are equal, and as a result, it can be said that a synthetic resin having a high emissivity has a low reflectance.
  • the light shield 22 itself becomes a reflection suppressing means, and unnecessary infrared rays that have proceeded to positions other than the infrared light receiving element 3 are transmitted to the light shield 2. There is no possibility that the light is reflected by 2 and enters the infrared light receiving element 3. Therefore, the effect of restricting the light receiving area and preventing unnecessary infrared light from the probe 1 from being incident on the infrared light receiving element 3 can be completed.
  • the light-shielding body 22 is designed using a synthetic resin having low transmission of infrared rays and having a sufficient thickness to transmit no infrared rays.
  • the light shield 22 is made of a synthetic resin, dew condensation hardly occurs on the light shield 22 according to the same principle as that of the light-collecting element. If the light shield 22 is made of metal, As the dew moves, the light may adhere to the light-collecting element 21 and consequently degrade the light-collecting ability.
  • the infrared light emitted from the probe 1 is incident on the optical element 3
  • the light shielding body 22 is made of a resin, such a phenomenon does not occur because condensation does not occur.
  • a plurality of probes with different diameters may be provided, in addition to the difference in the length dimension shown in A to D.
  • the diameter can be reduced by disposing the same light collecting element and infrared light receiving element, and there is an effect that a probe that can be easily adapted to an infant can be provided.
  • the infrared light receiving element 3 may be used in the same configuration as long as the output is a thermopile type having a correlation with the temperature difference from the object. If the pyroelectric type has a correlation with the change, it is sufficient to provide a butterfly for forcibly changing the incident infrared light.
  • the configuration of the fever required when the infrared light receiving element 3 is of a pyroelectric type will be described based on an embodiment. Eighth embodiment
  • FIG. 11 is a block diagram showing a configuration of a radiation thermometer according to an eighth embodiment of the present invention.
  • FIG. 12 is an enlarged view of a main part of a chile, and
  • FIG. 13 is a timing chart showing a power supply pattern of a DC motor.
  • FIG. 14 is a characteristic diagram of a sound generated at the time of driving the chicken.
  • the leaf 5 has a mirror surface on the surface facing the infrared light receiving element 3 and is attached to the DC motor 6 via the joint 23 .
  • the DC motor 6 rotates the joint 23 back and forth while colliding with the stopper 24.
  • the chopper 5 When driven, the chopper 5 repeatedly switches between the input and output of the infrared light reaching the infrared light receiving element 3 and the light blocking state.
  • the infrared light receiving element 3 is a pyroelectric type, The output changes in correlation with the differential value of the amount of infrared light to be sensed.
  • Reference numeral 25 denotes a visual field limiting means provided between the chopper 5 and the infrared light receiving element 3, which has a small hole 26 through which infrared light passes, and is constituted by a light shield having at least an inner surface as a black body.
  • the field of view of the infrared light incident on the infrared light receiving element 3 is limited by the field of view limiting means 25, and the inner surface of the field of view limiting means 25 is formed of a black body. Therefore, the size of the chopper 5 can be reduced.
  • the infrared light emitted by the infrared light receiving element 3 itself is reflected by the mirror surface of the chopper 5 and passes through the small hole 26 of the visual field limiting means 25 to receive the infrared light.
  • the infrared ray radiated from the inner surface of the visual field limiting means 25 enters the infrared light receiving element 3 irrespective of the change in the state of light entering and blocking by the chopper 5, so that the output of the infrared light receiving element 3 Are offset for the infrared rays emitted from the inner surface of the visual field limiting means 25. Therefore, the infrared light receiving element 3 outputs a value correlated with the temperature difference between the eardrum and Z or its vicinity and the infrared light receiving element 3 due to the intermittent operation of the chives 5.
  • a temperature sensor 27 for detecting the temperature of the infrared light receiving element 3 is provided near the infrared light receiving element 3.
  • the temperature sensor 27 is based on a well-known common error.
  • the outputs of the infrared light receiving element 3 and the temperature sensor 27 are converted by the signal processing means 4 into temperature.
  • the output of the infrared light receiving element 3 is amplified by the amplifier 28, and the output voltage amplified by the amplifier 28
  • the output voltage of the temperature sensor 27 is digitized by the AD converter 29.
  • 30 is a temperature conversion means based on the output of the AD converter 29 and the eardrum and Z or its Perform temperature conversion of the vicinity.
  • the output of the infrared light receiving element 3 has an alternating waveform due to the intermittent operation of the fever 5, and its amplitude is proportional to the difference between the temperature of the eardrum and / or its vicinity and the fourth power of the temperature of the infrared light receiving element 3.
  • the temperature conversion means 30 performs temperature conversion of the eardrum and Z or its vicinity based on this relationship.
  • Reference numeral 31 denotes a motor control means for controlling the drive of the DC motor 6; a positioning drive means 32 for driving the DC motor 6 to perform the positioning of the butterfly 5; rotation of the DC motor 6 when temperature is detected; It has a temperature detection driving means 33 for alternately reversing the direction, a switching means 34 for switching between the position driving means 32 and the temperature detection driving means 33. Further, the temperature detection driving means 33 includes a positive power supply pattern 35 for switching from a light-shielded state to a light-in state, and a negative power supply pattern 36 for switching from the light-in state to a light-shielded state.
  • the state in which the fever 5 is stopped in a light-shielded state is indicated by a solid line
  • the state in which it is stopped in a light-entered state is indicated by a broken line.
  • the chopper 5 that shields infrared rays has a circular shape, and is fixed to the shaft 37 of the DC motor 6 by a joint 23.
  • Reference numeral 38 denotes a field of view at the light-shielding position of the infrared light receiving element 3 limited by the field of view limiting means 25, and the butterfly 5 has a configuration larger than the field of view 38.
  • the leaf 5 By making the leaf 5 larger than the field of view 38, the difference between the light incident state and the light shielding state of the amount of infrared light incident on the infrared light receiving element 3 can be increased. That is, since the amplitude of the AC waveform output from the infrared light receiving element 3 increases, the S / N ratio improves, and the temperature detection accuracy can be improved.
  • the stopper 24 is composed of a light-blocking stop 24 a to which the joint 23 contacts when the chopper 5 stops in a light-blocking state, and a light-blocking stop 24 b which contacts when the chopper 5 stops in the light-blocking state.
  • the light stop 24 a and the light stop 24 b are And movement angle 6> E from the stop position in the light state to the light input start state, provided the movement angle 0 2 and equal position from the limit position receiving light of the light shielding plate to the light shielding start state.
  • the switching means 34 first operates the positioning driving means 32 to perform the positioning of the chicken 5. That is, as shown in Fig. 13, the positioning drive means 32 is at the start of the temperature measurement. Electric power is supplied to the time DC motor 6, and the chives 5 are rotated in the light blocking direction shown in FIG. Where t. Is longer than the time required for the light shielding plate to move from the state where it stops in the state of receiving infrared rays (broken line) to the state where it stops in the state of blocking light (solid line).
  • the switching means 34 is switched to the temperature detection driving means 33, and the temperature detection driving means 33 is switched to the DC motor 6 as shown in FIG. 13 to perform temperature detection.
  • the period of t is a positive power supply period in which the chopper 5 is driven in the light incident state and stopped in the light incident state, and power is supplied by the positive power supply pattern 35.
  • period t 2 is the negative power supply period to rest in the light blocking state by driving the Chiyotsuba 5 in the light-shielding state, the power supply negative power supply pattern 3 6.
  • t la is the time required for the chives 5 to move at a movement angle 0 from the stop position in the light-shielded state to start light entry as shown in FIG. 12, and t lb is the complete time from the start of light entry Movement angle 0 until the light enters the state. It is time to move.
  • t lc is the additional time which is stopped by collision to the Sutotsuba 2 4 light incident stop 2 4 b move from there.
  • t 2 a is the time required for the chives 5 to move the movement angle 0 2 from the stop position in the light incident state to the start of shading
  • t 2 b is the complete shading state after the start of shading. The angle of movement until 0. It is time to move.
  • t 2 c is a time during which the robot further moves therefrom and collides with the shading stop 24 a of the stop ring 24 and stops.
  • the stopper 24 so that the movement angles 0 i and 0 2 are equal, t la and t 2 a are equal. Also, the movement angle is 0. Is controlled so that t lb and t 2 b are equal, and ti and t 2 are also equal, so that the infrared light input time t ld and the light shielding time t 2 d can be made equal. it can.
  • the output sensitivity (amplitude V) of the infrared light receiving element 3 can be increased. That is, during the time when the output of the infrared light receiving element 3 changes transiently, the output sensitivity is regulated by the shorter time unless the light input and light shield times are equal. Therefore, the output sensitivity can be obtained most efficiently and the temperature detection can be performed with high accuracy by making the light incident time and the light shielding time equal.
  • the stopper 24 is made of an impact buffering material that absorbs an impact caused by the collision of the joint 23, there is no deformation of the joint 23, and the effect of improving reliability and durability is provided.
  • a soft rubber material when used, the sound generated at the time of collision can be reduced, and the effect is large in a radiation thermometer in which the temperature is detected by putting it in the ear.
  • Fig. 14 shows the characteristics of the hardness of the rubber material of the stopper 24 and the level of the generated sound.
  • Figure 14 shows an experiment in which the sound level was measured at a position 10 mm from the tip of probe 1 with the above configuration. These are the results, and the hardness of the rubber material was measured with a JISK6301 hardness meter.
  • Figure 14 shows that it is desirable to use a soft rubber material of about HS40.
  • a surface treatment such as application of a powder may be performed to prevent the chopper 5 from becoming stuck due to adhesiveness.
  • the incident and blocking of infrared rays are repeated as shown in FIG.
  • the diagonal straight line in the figure indicates the state during the transition from light incident to light shielding or from light shielding to light incident
  • the horizontal straight line indicates the state where light is completely incident or blocked.
  • the output of the infrared light receiving element 3 has an alternating waveform as shown in FIG.
  • the difference (amplitude V) between the peak value in the infrared light receiving state and the peak value in the light shielding state is The value is proportional to the fourth power difference between the temperature of the eardrum or Z or its vicinity and the temperature of the infrared receiving element 3 itself.
  • the time t for switching between the light incident state and the light blocking state is longer than the response time constant ⁇ of the infrared light receiving element 3.
  • the output of the infrared light receiving element 3 becomes high and the amplification factor of the amplifier 28 can be reduced, so that the influence of noise is reduced and the temperature measurement accuracy can be improved.
  • the temperature detection driving means 33 alternately repeats the positive power supply pattern 35 and the negative power supply pattern 36, which continuously supply power, and alternately inverts the DC motor 6 so that the temperature is reduced.
  • Light-in and light-out switching by 5 are switched, so the light-in time and light-out time are stable, and there is no swinging at the stop position of the bigleaf, so the light-in and light-out state is stable even if the bigleaf is small enough. Small and accurate Temperature detection can be performed.
  • FIG. 15 is a block diagram showing a configuration of a temperature detection driving means according to the ninth embodiment of the present invention
  • FIG. 16 is a timing chart showing a power supply pattern of a DC motor.
  • the temperature detection driving means 33 alternates between a positive power supply pattern 35 for supplying power in the light incident direction and a negative power supply pattern 36 for supplying power in the light blocking direction.
  • the positive power supply pattern 35 consists of an initial power supply period 39a for supplying power first, followed by a reduced power supply period 40a for supplying power by reducing power, and the negative power supply pattern 36 An initial power supply period 39 b for supplying power first, and a reduced power supply period 40 b for reducing power supply thereafter.
  • the other components of the radiation thermometer are the same as in the eighth embodiment, and a description thereof will not be repeated.
  • the temperature detection drive means 33 controls the DC motor 6 based on the power supply pattern shown in FIG.
  • the temperature detection drive means 33 supplies power in the light incident direction. That is, in the positive power supply pattern, during the first initial power supply period tii, the power P i is supplied to the DC motor 6 in the light incident direction. During this time, the DC motor 6 rotates in the light incident direction and the gutter 5 starts to pass through the infrared light receiving element 3, switches from the light blocking state to the light receiving state, collides with the stop 24, and stops. During the subsequent reduced power supply period t 12 , the DC motor 6 is supplied with a power P 2 having a smaller value than the power P i in the light incident direction, and the chopper 5 is pressed against the stop 24 to stop. Maintain position.
  • the temperature detection driving means 33 supplies power in the light blocking direction. That is, of the negative power supply pattern, between the beginning of the initial power supply period t 2 1 of shielding the DC motor evening 6 Supply power P i in the direction.
  • the DC motor 6 rotates in the light-shielding direction, and the butterfly 5 starts to move toward the infrared light-receiving element 3, switches from the light-receiving state to the light-shielding state, collides with the stop 24, and stops. .
  • the time tn or t 2 1 of the initial power supply period, the chiyo collar 5 which experimentally determined is longer than the time required to collide with the Sutotsuba 2 4.
  • the stopper 24 is made of soft rubber, the moment that the joint 23 collides with the stopper 24, it bites into the stopper 24, rebounds and rebounds, and rocks again against the stopper 24. Occurs, albeit slightly. This swing stops naturally while damping.
  • the degree of swinging albeit much smaller, but preferably 1 initial power supply period; ⁇ , t 2 1 is required for this natural stop It should be longer than the time.
  • the power P 2 during the reduced power supply period may be power required to maintain the position of the chopper 5 stopped by the stopper 24.
  • the electric power is supplied to the DC motor 6 to drive the fever 5, and after the chopper 5 collides with the stop 24 and stops, the power is reduced and supplied. Since the position is maintained, power consumption can be reduced, the light entry time and the light blocking time are stable, and no swinging occurs at the stop position of the giant crab. It is possible to stably switch between the light and light-shielded states, enabling small-sized and highly accurate temperature detection.
  • the time t 2 1 of the initial power supply period is set to be longer than the time required for the chives 5 to collide with the stopper 24.
  • the rotor 5 collides with the stopper 24 using the inertia of the DC motor 6, the rotor 5 rotates due to the inertia of the DC motor 6.
  • a slight rebound may occur at the time of a collision with the stopper 4.
  • the dimensions of the stopper 24 are designed in consideration of the rebound, there is no problem, and further power reduction is possible.
  • FIG. 17 is an evening timing chart showing a power supply pattern in the DC mode according to the tenth embodiment of the present invention.
  • the temperature detection drive means 33 controls the DC motor based on the power supply path shown in FIG.
  • the temperature detection drive means 33 supplies power in the light incident direction. That is, during the initial power supply period t ⁇ of the positive power supply pattern, the power supply Pi is supplied to the DC motor 6 in the light incident direction. During this time, the DC motor 6 rotates in the light incident direction, and the chopper 5 starts passing through the infrared light receiving element 3, switches from the light blocking state to the light receiving state, collides with the stop 24, and stops. During the subsequent reduced power supply period t 12 , the same power P i as the power during the initial power supply period t ⁇ is intermittently supplied to the DC motor 6 in the light incident direction, and against the stopper 24 to maintain the stop position.
  • the temperature detection driving means 33 supplies power in the light blocking direction. That is, of the negative power supply pattern, between the beginning of the initial power supply period t 2 1 of supplies power P i in the light-shielding direction to the DC motor evening 6. During this time, the DC motor 6 rotates in the light-shielding direction, and the cauldron 5 starts to move toward the infrared light receiving element 3, switches from the light-receiving state to the light-shielding state, collides with the stopper 24, and stops.
  • the power is intermittently supplied. Since the position of the fever 5 is maintained, power consumption can be reduced with a simple circuit configuration as compared with the case where the power is reduced and supplied in the ninth embodiment.
  • the shading time is stable, and the shank does not swing at the stop position, so even if the shank is small enough, it can stably switch between the light input and shading conditions, and it is a small and highly accurate temperature detection It can be performed.
  • FIG. 18 is an evening timing chart showing a power supply pattern of the DC motor according to Embodiment 11 of the present invention.
  • the temperature detection drive unit 33 controls the DC motor based on the power supply pattern shown in FIG.
  • the temperature detection drive means 33 supplies power in the light incident direction. That is, during the initial power supply period tn of the positive power supply pattern, the power supply Pi is supplied to the DC motor 6 in the light incident direction. During this time, the DC motor 6 rotates in the light incident direction, and the chopper 5 starts passing through the infrared light receiving element 3, switches from the light blocking state to the light receiving state, collides with the stopper 24, and stops. Then, during the subsequent reduced power supply period t 1 2 pauses the supply of power to the DC motor 6.
  • the temperature detection driving means 33 supplies power in the light blocking direction. That is, in the negative power supply pattern, the power P i is supplied to the DC motor 6 in the light blocking direction during the first initial power supply period t 21. During this time, the DC motor 6 rotates in the light blocking direction, The stopper 5 starts to move toward the infrared light receiving element 3, switches from the light incident state to the light shielding state, and collides with the stopper 24 to stop. Then, during the subsequent reduced power supply period t 2 2 pauses the supply of power to the DC motor Isseki 6.
  • FIG. 19 is a timing chart showing a DC motor power supply pattern according to Embodiment 12 of the present invention.
  • the temperature detection drive means 33 controls the DC motor based on the power supply pattern shown in FIG.
  • the temperature detection drive means 33 supplies power in the light incident direction. That is, during the initial power supply period tii of the positive power supply pattern, the power P i is supplied to the DC motor 6 in the light incident direction. During this time, the DC motor 6 rotates in the light incident direction, the chopper 5 starts passing through the infrared light receiving element 3, and switches from the light blocking state to the light receiving state, It collides with the stopper 24 and stops. Then, during the reduced power supply period t 1 2 the beginning of t ⁇ 2 a pauses the supply of power to the DC motor evening 6 supplies power P i during the last t 1 2 b.
  • the temperature detection driving means 33 supplies power in the light blocking direction. That is, of the negative power supply pattern, between the beginning of the initial power supply period t 2 1 of supplies power P i in the light-shielding direction to the DC motor evening 6.
  • the DC motor 6 rotates in the light blocking direction
  • the chopper 5 starts to move toward the infrared light receiving element 3, switches from the light receiving state to the light blocking state, collides with the stop 24, and stops. .
  • the beginning of t 2 2 a during the subsequent reduced power supply period t 2 2 suspended the supply of power to the DC motor Isseki 6, the power P i during the last t 2 2 b Supply.
  • the incident and blocking of infrared rays are repeated as shown in FIG.
  • the time for switching between the light-entering state and the light-shielding state may be longer than the vibration cycle of the human hand.In this case, the power supply is stopped. Even if the chamber 5 is displaced from the stopper 24 due to hand vibration, the power is supplied again at last, and the direction of power supply is changed after the shifted chamber 5 hits the stopper 24. It is possible to stably switch the state of shading.
  • the power supply is stopped, and finally the power is supplied again, and then the power supply direction is changed.
  • power consumption can be reduced, the light entry time and light blocking time due to the drive of the gutter are stable, and the gutter 5 does not swing at the stop position. And the state of light shielding can be stably switched, and small and highly accurate temperature detection can be performed. 13th embodiment
  • FIG. 20 is a configuration block diagram of the temperature conversion means of Embodiment 13 of the present invention.
  • FIG. 21 is a timing chart of sampling the output of the infrared light receiving element.
  • a temperature conversion means 30 is a Fourier transform means 4 which calculates a signal component having a frequency equal to the frequency at which the rotation direction of the DC motor 6 is alternately inverted by a discrete Fourier transform from the output signal of the infrared light receiving element 3.
  • the Fourier transform means 41 includes a sine value storage means 42 for storing a plurality of constant values determined as the value of the sine function, and a cosine value storage for storing a plurality of constant values determined as the value of the cosine function.
  • An amplitude calculating means 45 for calculating an amplitude correlation value proportional to the amplitude of the signal component of the output of the infrared light receiving element 3 based on the output of 4 is provided.
  • VV 2 , V 3 ... V n are input to the temperature conversion means 30 in time series via the infrared light receiving element 3, the amplifier 28, and the AD converter 29 shown in FIG. shows the digital value, between the negative power supply period is still in driving the positive power supply period t and Chiyotsuba 5 to rest in driving the Chiyotsuba 5 a light incident state incident state in the light-shielding state shielding state t 2
  • This is a value obtained by sampling n times every sampling period ⁇ t during the basic period T, which is the total time of
  • the positive power supply period ti the negative power supply period t 2 are the same time, the temperature sensing drive unit 3 3 is then reversed alternately at equal intervals the direction of rotation of the DC motor 6.
  • the configuration of the chopper 5 is, as shown in FIG. 12, a movement angle 0 i from the stop position in the light-shielded state to the start of light entry, and the stop position in the light-entered state of the chopper 5. stock in movement angle 0 2 and is equal to the position until the light shielding start state from Par 13 is provided. That is, the time for the infrared rays to enter and the time for shading by the chives 5 are equal.
  • the sine value storage means 42 stores a plurality of values KS, KS 2 , KS 3 ... KS n determined by the sine function of Equation 23.
  • the cosine value memory means 43 a plurality of values Kd determined by cosine function of Equation 24, Kc 2, Kc 3, ... Stores Kc n.
  • n is the same value as the number of samplings n described above.
  • the Fourier coefficient calculation unit 44 as shown in equation 25, the time series of digital values V 1 V 2, V 3. . ⁇ V n and sine value memory means 42 the value stored in the K KS 2 , KS 3 ,... KS n, and the time series digital values VI, V 2, V 3... Vn and the cosine value storage means 43 as shown in Equation 26.
  • the sum V cos of the respective products with the values Kd, Kc 2 , Kc 3 ,... Kc n stored in is calculated.
  • the amplitude calculating means 45 calculates the amplitude correlation value V f based on the expression 27.
  • the Fourier transform means 41 outputs the amplitude correlation which is a signal component having a frequency equal to the frequency at which the rotation direction of the DC motor 6 is alternately reversed by the discrete Fourier transform from the output signal of the infrared light receiving element 3. Calculate the value Vf.
  • This amplitude correlation value V f is a value proportional to the amplitude V of the signal component of the output of the infrared light receiving element 3, and is proportional to the difference between the temperature of the eardrum or Z or the vicinity thereof and the fourth power of the temperature of the infrared light receiving element 3. are doing.
  • the temperature conversion means 30 converts the temperature of the eardrum and the nose or its vicinity based on this relationship.
  • the Fourier transform means 41 calculates a signal component having a frequency equal to the frequency at which the rotation direction of the DC motor 6 is alternately reversed by the discrete Fourier transform, so that harmonic noise of an integral multiple of the fundamental frequency is obtained. Components can be removed.
  • the output waveform of the infrared light receiving element 3 contains many high-order harmonic components.
  • the harmonics that can be removed by the discrete Fourier transform are harmonics with a period twice as long as the sampling period ⁇ t, that is, up to a half of the sampling frequency. Therefore, in order to remove high-order harmonic components, the sampling period ⁇ t must be sufficiently short. However, there is a limit to shorten the sampling period due to memory and processing speed, so a high-performance analog filter circuit is required.
  • the chives 5 If the time of the infrared light input and the light shielding by the chives 5 are equal, the high-order harmonic components contained in the output waveform of the infrared light receiving element 3 are small, so that the harmonic noise components can be sufficiently removed in a practical sampling period. Temperature detection can be performed with high accuracy.
  • the temperature conversion means 30 is provided for the light incident and the light shielding of the chives 5.
  • the discrete Fourier transform process was performed based on V i V n obtained in one period T of one period, but multiple periods obtained in a period of an integral multiple of T were obtained. Based-out, the total value of V, v total value of 2, ⁇ ⁇ ⁇ v n sum may be subjected to a treatment of discrete Fourier transform seeking the can random noise components removed so doing to Further accurate temperature detection becomes possible. 14th embodiment
  • FIG. 22 is a block diagram of the configuration of the motor control means of the embodiment 14 of the present invention
  • FIG. 23 is a flowchart illustrating the operation of the motor control means of the embodiment.
  • reference numeral 46 denotes a temperature detection switch as a transmitting means for transmitting a temperature detection start signal
  • reference numeral 47 denotes a continuous time during which the temperature detection start signal 46 a from the temperature detection switch 46 is in a non-receiving state.
  • the time counting means for clocking, 48 is a storage means for storing a time lapse flag when the time counting means 47 times a predetermined time
  • the 49 is for determining whether there is a time lapse flag stored in the storage means 48. This is determination means for instructing the subsequent operation of the switching means 34.
  • Step 1 4 7 clocking means 4 7 storage means 4 8 if the time for measuring has not elapsed the predetermined time t 3 is in the intact temperature detection starting signal 4 6 a wait wait
  • timekeeping means 4 7 stores the time lapse flag 4 8 storage means step 1 4 8 a time counting by a predetermined time t 3 has elapsed, the temperature detection starting signal in step 1 4 6 a Wait for reception of 4 6a.
  • thermometer switch 4 6 When the motor control means 31 receives the temperature detection start signal 46a, the judging means 49 checks whether the time lapse flag is stored in the storage means 48 in step 1448B. go. Here, if the time lapse flag is not stored, the switching means 34 immediately activates the temperature detection driving means 33 in step 13. If the time lapse flag is stored, the switching means 34 activates the positioning drive means 32 in step 1332, and then the temperature detection drive means 33 in step 1333. Switch and operate. After that, in step 147, the timer means 47 is driven to reset, and in step 148C, the time lapse flag stored in the storage means 480 is erased, the process returns to the beginning, and the same operation is repeated. .
  • the time lapse flag is stored in the storage unit 48, so the positioning of the chopper 5 is performed. Later, the temperature is detected. Therefore, even if the position of the cabbage shifts while being left with the power turned off, highly accurate temperature detection can be performed.
  • the repeated return temperature detected in a short time has not passed the predetermined time t 3 is the Chiyotsuba 5 since continued without alignment can be temperature discovery, left short time, it is possible to perform highly accurate temperature detection, without long temperature detection has elapsed for a predetermined time t 3 Even if the position of the chisel 5 shifts during the adjustment, if the temperature is to be detected again, the chopper 5 must be positioned and then the temperature will be detected. Can be. 15th embodiment
  • FIG. 24 is a configuration diagram of the mode control means of the embodiment 15 of the present invention.
  • FIG. 25 is a flow chart for explaining the operation of the motor control means of the embodiment, and
  • FIG. 26 is a circuit diagram for explaining the operation of the power control means of the embodiment.
  • reference numeral 50 denotes a power control means for controlling the turning on and off of the power of the motor control means 31 for controlling the DC motor 6, and a temperature detection start signal 46 a from the temperature detection switch 46 is not supplied. It has a timing means 47 for counting the continuous time in the receiving state.
  • the switching means 34 activates the positioning drive means 32 in step 1 32 to position the chopper 5 in steps 1 32. Adjustment is performed, and at the same time, time measurement by the time measurement means 47 is started in step 147.
  • the motor control means 31 waits for the reception of the temperature detection start signal 46 a until the time measuring means 47 measures the predetermined time t 3 in step 1 4 7 A, and the temperature detection switch 4 in the standby state
  • the switching means 34 activates the temperature detection drive means 33 at step 13 3 to start temperature detection.
  • step 1 47 A when the timer control means 31 waits for the reception of the temperature detection start signal 46 a and the timer means 47 measures a predetermined time t 3 in standby, the power control means 50 In step 150, the power supply of the motor control means 31 is cut off. Then, when it is desired to perform temperature detection after the power supply of the motor control means 31 is cut off, the power supply of the motor control means 31 is turned on again.
  • the power control means 50 is a microcomputer 51 (hereinafter referred to as a microcomputer), a rechargeable battery or dry battery 52 as a DC power supply, a PNP transistor 53, and resistors 54, 55, 56. And diodes 57, 58 and a power switch 59.
  • a microcomputer 51 hereinafter referred to as a microcomputer
  • a rechargeable battery or dry battery 52 as a DC power supply
  • PNP transistor 53 As a DC power supply
  • resistors 54, 55, 56 As a DC power supply
  • diodes 57, 58 and a power switch 59 As a microcomputer, a microcomputer 51 (hereinafter referred to as a microcomputer), a rechargeable battery or dry battery 52 as a DC power supply, a PNP transistor 53, and resistors 54, 55, 56. And diodes 57, 58 and a power switch 59.
  • Fig. 26 when the power switch 59 is pressed, current flows through the resistors 54, 55
  • the microcomputer 51 can keep the transistor 53 in the ⁇ N state even when the power switch 59 is released by setting the output terminal 51 a to Low, so that the microcomputer 51 and the motor control means 3 1 Power can be continuously supplied to the power supply.
  • the power switch 59 is pressed, a current flows from the transistor 53 to the resistor 56 and the diode 58, and the input terminal 51b of the microcomputer 51 can input Low. You can enter i.
  • the microcomputer 51 sets the output terminal 51a to Low, and continues to supply power to the microcomputer 51 and the control circuit 31.
  • the temperature detection switch 46 that transmits the temperature detection start signal 46a is pressed, current flows from the resistor 60 to the temperature detection switch 46, and the input terminal 5lc of the microcomputer 51 becomes low. This detects that the temperature switch 46 has been pressed, and measures the temperature.
  • the microcomputer 51 stops the power supply to the microcomputer 51 and the motor control means 31 at the moment the power switch 59 is released by setting the output terminal 5 la to Hi. it can.
  • the microcomputer 51 is used to avoid unnecessary battery consumption.
  • the power supply can be stopped by setting the output terminal 5 1 & to 1 ⁇ i. That is, the microcomputer 51 has a built-in time measuring means 47 and measures the continuous time during which the temperature detection switch 46 is not pressed, and when it exceeds a predetermined time, the output terminal 5 la may be set to Hi.
  • the temperature can be detected in a short time.
  • the temperature can be detected continuously without performing positioning of the chisel 5 until the timing means 47 measures a predetermined time, so that accuracy can be reduced in a short time.
  • High temperature detection can be performed without detecting the temperature for a long time Even if the position of the chisel 5 is shifted due to being left, the timekeeping means 47 measures a predetermined time and the power supply of the motor control means 31 is shut off.
  • the switching means 34 When the power of the control means 31 is turned on, the switching means 34 operates the positioning drive means 32 to align the position of the chopper 5, and then detects the temperature by the temperature detection start signal 46a. Therefore, highly accurate temperature detection can always be performed. Further, even if the power supply of the motor control means 31 is forgotten to be turned off, the power supply is automatically cut off after a lapse of a predetermined time, so that the power consumption can be reduced and the usability is improved. Industrial applicability
  • the radiation thermometer of the present invention has the following effects.
  • the output from the light receiving unit that receives only infrared rays directly radiated from the eardrum and Z or its vicinity is calculated into the temperature by the signal processing means and is notified by the notification means, so that heat radiation from areas other than the eardrum and / or its vicinity Accurate tympanic membrane temperature can be detected without being affected by the temperature.
  • the light receiving unit receives only infrared rays emitted from the eardrum and Z or its vicinity and passed through the probe
  • the signal processing unit calculates the output from the light receiving unit to temperature
  • the notification unit notifies the temperature of the calculation result.
  • the infrared light collected by the light-collecting element enters the infrared light-receiving element of the light-receiving unit, and the infrared light-receiving element receives the infrared light collected by the light-collecting element and radiates from the eardrum and / or its vicinity.
  • the infrared light receiving element spot-receives only infrared light emitted from the eardrum and / or its vicinity and passed through the probe.
  • the infrared light emitted from the inside of the probe is red
  • the light receiving area can be limited by proceeding outside the external light receiving element.
  • the light-receiving part housed in the main unit receives only infrared rays emitted from the eardrum and z or its vicinity and passed through the probe, and the probe is detachably connected to the main unit in a hollow state without a waveguide inside.
  • the probe since the probe has an open end, there is no temperature error due to variations in the infrared transmittance of the cover that covers the end, and the measurement temperature accuracy can be improved.
  • the main body since the probe is stored in the storage part during non-measurement, the main body has a shape that is easy to store, and the possibility of losing the removed probe is reduced.
  • the temperature calculated based on the output from the light receiving unit that receives only infrared radiation directly emitted from the eardrum and Z or its vicinity is reported by the reporting device that has the voice reporting device, the time during which it is inserted into the ear Regardless of this, accurate body temperature can be measured, and it is possible to measure temperature in dark places and even for people with hearing difficulties, and improve the usability.
  • a light-shielding body that blocks infrared light from outside the light-collecting element from entering the infrared light-receiving element, and reflection suppression means is provided on the infrared light-receiving element side of the light-shielding element.
  • the infrared rays that have traveled to the infrared light receiving element are reflected and incident on the infrared light receiving element. Therefore, the light receiving area is limited, and infrared light from other than the eardrum and Z or its vicinity is condensed to a point other than the light receiving element, so that accurate body temperature measurement can be performed without being affected by the temperature change of the probe.
  • reflection of infrared rays is suppressed by using a synthetic resin having a high emissivity of about 0.9 as a material of the light shielding body.
  • synthetic resin since synthetic resin has low thermal conductivity and small heat capacity, dew condensation hardly occurs on the light-shielding body surface. Therefore, due to condensation Accurate body temperature measurement without reflection or scattering of infrared rays.
  • a waveguide that blocks infrared light from the probe is not required, and a high thermal conductivity is not required for the optical system including the condensing element. Since the light-collecting element is made of a material having a low thermal conductivity and a small heat capacity, dew condensation hardly occurs on the surface of the light-collecting element, so that accurate body temperature measurement can be performed. .
  • synthetic resin is used as the material of the light-collecting element. It is generally known that synthetic resin has low thermal conductivity and low heat capacity, and it is possible to suppress condensation on the surface of the light-collecting element by using the synthetic resin. .
  • the infrared light collected by the light-collecting element enters the infrared light-receiving element, and the infrared light-receiving element passes through the edge of the light-collecting element on the same side as the virtual tip point, and the virtual tip of the light-collecting element
  • the probe inner wall is installed in a region farther from the light-collecting element than the intersection of the optical path and the optical axis reaching the image point of the point and closer to the light-collecting element than the image point of the virtual tip point by the light-collecting element.
  • Infrared rays incident on the light-collecting element from the light-receiving element can travel to positions other than the infrared light-receiving element, and the light-receiving area can be limited. As a result, it is possible to spot-detect only the radiation emitted from the eardrum and Z or its vicinity and passed through the probe.
  • the infrared light collected by the light-collecting element enters the infrared light-receiving element, and the infrared light-receiving element passes through the edge of the light-collecting element on the same side as the virtual tip point, and the virtual tip of the light-collecting element
  • the probe is placed in the triangle on the meridional plane of the light-collecting element formed by the intersection of the optical path and the optical axis reaching the image point of the point and the two image points of the virtual tip point by the light-collecting element.
  • Infrared rays entering the light-collecting element from the inner wall can travel to positions other than the infrared light-receiving element, and the light-receiving area can be limited. As a result, it is possible to spot-detect only the radiation emitted from the eardrum and Z or its vicinity and passed through the probe.
  • the infrared light condensed by the light condensing element is incident on the infrared light receiving element.
  • the element is the focal length of the condensing element ⁇ , the radius rs of the infrared light receiving element, the distance between the virtual tip point and the optical axis, the distance between the virtual tip point and the condensing element L ⁇ ;
  • the infrared light collected by the light-collecting element is incident on the infrared light-receiving element, and the infrared light-receiving element is located on the same side as the edge of the light-collecting element with respect to the optical axis from the edge of the light-collecting element.
  • the infrared light collected by the light-collecting element is incident on the infrared light-receiving element, and the infrared light-receiving element is probed on the same side of the optical axis from the edge of the light-collecting element with respect to the optical axis.
  • a straight line drawn so as to be in contact with the inner wall of the light-collecting element passes through an edge of the light-collecting element opposite to the virtual tip point across the optical axis from a virtual tip point intersecting the surface of the tip of the probe.
  • the infrared light incident on the light-collecting element from the inner wall of the probe can be detected by other than the infrared light-receiving element. Position, and the light receiving area can be limited. As a result, it becomes possible to detect only the radiation emitted from or near the eardrum and Z and passing through the probe as a spot.
  • the infrared light condensed by the light condensing element is incident on the infrared light receiving element.
  • the elements are the focal length f of the light-collecting element, the radius rs of the infrared light-receiving element, the distance ra between the virtual tip point and the optical axis, the distance La between the virtual tip point and the light-collecting element,
  • the radius r3 of the probe By using the radius r3 of the probe and setting it farther than the focal point of the light-collecting element by L3 expressed by equation 22, the infrared light incident on the light-collecting element from the inner wall of the probe can be converted to infrared light. It can be moved to a position other than the light receiving element, and the light receiving area can be limited. As a result, it is possible to spot-detect only emitted light emitted from the eardrum and Z or its vicinity and passed through the probe.
  • the condensing element is constituted by a refraction lens, so that the condensed infrared light enters the infrared light receiving element.
  • the light-collecting element is constituted by a light-collecting mirror, the collected infrared light enters the infrared light-receiving element.
  • the condensing mirror is configured such that a first optical axis incident on the converging mirror and a second optical axis emitted from the converging mirror and incident on the infrared light receiving element are bent.
  • the optical system can also be bent in accordance with this angle. Therefore, it is easy to use and easy to insert into the ear canal, so that the insertion direction is stable and accurate body temperature measurement is possible.
  • the chamber driven by the DC motor collides with the stopper provided at the stop position, the chamber stops in the light-incoming and light-blocking states of the infrared light path from the object to be measured to the infrared light receiving element.
  • the motor control means alternately reverses the direction of rotation of the DC motor to switch the state of light input and light blocking, and the signal processing means converts the temperature of the device under test based on the output of the infrared light receiving element.
  • the light entry time and light blocking time by the drive of the gutter are stable, and there is no swinging at the stop position of the gutter, so even if the size of the chopper is sufficiently small, it is possible to stably switch between the light input and the light blocking state.
  • a small and highly accurate body temperature measurement can be performed. Also, since the cycle of intermittently connecting the infrared light path by the chopper is longer than the response time constant of the infrared light receiving element, the output of the infrared light receiving element is high, so that the SZN is improved and the measurement accuracy of body temperature can be improved. it can.
  • the DC mode is controlled based on a preset power supply pattern, so that it is possible to switch between incoming and outgoing infrared rays by the chopper.
  • the rotation direction of the DC motor can be alternately reversed.
  • the power consumption can be reduced.
  • the power consumption can be further reduced.
  • the power is supplied last, so that the chopper collides again with the stopper and the DC motor is reversed, so that the power consumption can be reduced with a simple circuit configuration.
  • the time for entering and blocking the infrared light reaching the infrared light receiving element can be accurately maintained, and the body temperature can be accurately measured.
  • the initial power supply means supplies the initial power to the DC motor for an initial power supply period longer than the sum of the time when the chitsubasa arrives at the stop and the time when it rebounds from the stop and naturally stops. Since the supply is reduced, the chopper stops at the stopper position without fail, and can stably switch between incoming and outgoing light, improving body temperature measurement accuracy and saving power consumption.
  • stoves made of shock-absorbing material reduces stinging and rebounding of stingrays, stabilizes shoving, and improves body temperature measurement accuracy. At the same time, it is possible to reduce the sound of the spikes hitting the spikes.
  • a rubber stud made of a soft rubber material it is possible to reduce the biting and rebounding of the gutter, stabilize the tibbing, improve the accuracy of the body temperature measurement, and reduce the sound of the gutter hitting the stove. .
  • the chopper is configured to be larger than the field of view at the light blocking position of the infrared light receiving element. The difference in the output between the light incident and the light shielded state becomes large, and the accuracy of the body temperature measurement can be improved.
  • the view limiting means has at least the surface on the infrared light receiving element side with low reflectance, it is possible to suppress the reflection of infrared rays from the view limiting means, and the infrared rays reflected by the view limiting means are reflected by the infrared rays. Since the light does not enter the light receiving element, the field of view of the infrared light receiving element can be reliably limited, and a compact and highly accurate body temperature measurement can be performed.
  • the moving angle from the stop position in the light blocking state to the light start state in the light blocking state is equal to the moving angle from the stop position in the light receiving state to the light blocking start state in the light blocking state. Since the signals for alternately reversing the evening rotation direction are output at equal intervals, the infrared light incident time and the light shielding time due to driving of the chives become equal, and a high output of the infrared light receiving element can be obtained, and the accuracy of the infrared light receiving element can be obtained. High body temperature measurement can be performed.
  • the Fourier transform means calculates a signal component having a frequency equal to the frequency at which the rotation direction of the DC motor is alternately inverted by the discrete Fourier transform, noise components other than the signal can be removed, and furthermore, the light incident time and the light shielding time Since these are equal, high-order harmonic noise components that cannot be completely removed by the discrete Fourier transform are hardly generated, and highly accurate body temperature measurement can be performed.
  • the positioning driving means drives the DC motor to move the chopper to the stop.
  • the body temperature measurement drive means alternately reverses the direction of rotation of the DC motor, collides the chopper with the stop, stops it, and receives light from the infrared light path to the infrared light receiving element. Toggle shading.
  • the switching means switches between the positioning driving means and the body temperature measuring driving means. Therefore, it is possible to always maintain the same position at the start of temperature measurement by adjusting the position of the fever, and to stabilize the light entry time and light blocking time due to the drive of the fever when measuring the body temperature. Can be.
  • the switching means switches the body temperature measurement driving means. After the body temperature measurement is performed and the signal from the transmitting means is received after a predetermined time is measured, the switching means operates the positioning driving means to perform the positioning of the chives, and then the body temperature measuring driving means When the body temperature measurement is repeated in a short period of time, assuming that the position does not deviate from the last stop position of the chives at the time of body temperature measurement, the chopper should be aligned.
  • Temperature measurement can be performed continuously without measuring the temperature, so highly accurate temperature measurement can be performed in a short time, and the device is left without measuring the temperature for a long time Even if the position of the Chiyotsuba has deviated, because if you do the re-measurement of body temperature perform body temperature measurement after the alignment of Chiyotsuba, always it is possible to perform high temperature measurement accuracy.
  • the switching means operates the positioning drive means when the power is supplied to the motor control means to perform positioning of the fever and activates the body temperature measurement drive means when a temperature detection start signal is received from the transmission means. Since the body temperature measurement is performed in a short time, when the body temperature measurement is repeatedly performed in a short time, it is possible to efficiently and accurately perform the temperature measurement in a short time.
  • the timer means is used when the temperature detection start signal from the transmitting means is in a non-receiving state continuously.
  • the power control means cuts off the power of the motor control means.Therefore, when measuring body temperature next time, it is necessary to turn on the power of the motor control means again. is there. Therefore, in the case where the body temperature measurement is repeatedly performed in a short time, the body temperature measurement can be continuously performed without performing the positioning of the giant crab until the time measuring means measures the predetermined time, so that high accuracy can be achieved in a short time and with high accuracy.
  • the body temperature can be measured, and even if the position of the chicken is misaligned because the body temperature measurement is not performed for a long time, the timer measures the predetermined time, and the power of the motor control means is shut off. Therefore, when the body temperature measurement is performed again, the power of the motor control means is turned on, and the switching means operates the positioning drive means to perform the positioning of the fever and the body temperature is measured by the subsequent temperature measurement start signal.
  • highly accurate body temperature measurement can always be performed. Further, even if the power of the motor control means is forgotten to be turned off, the power is automatically cut off after a predetermined time, so that the power consumption can be reduced and the usability is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Radiation Pyrometers (AREA)

Description

明 細 書 放射体温計 技術分野
本発明は生体の体温を耳孔内から発せられる赤外線量を検知することにより測 定する放射体温計に関するものである。 背景技術
従来より体温計として、 耳孔内から発せられる赤外線量を非接触で検知して 体温換算する放射体温計があり、 これらは水銀や熱電対を利用した接触型のもの に対して短時間で測定可能であるという特長がある。
この種の放射体温計の一般的な例として特開平 6 — 1 6 5号公報に示される ものを図 2 7により説明する。図 2 7に示すように放射体温計は、プローブ 1と、 プローブ 1内を長さ方向に走る導波管 2と、 導波管 2内を伝搬した赤外線の放射 強度を電気信号に変換する赤外受光素子 3と、 変換された電気信号から温度を測 定する信号処理手段 4を備える。
このプローブ 1を外耳道に挿入することで、 赤外受光素子 3が鼓膜および/ またはその近傍から発せられる赤外線を受光し、 受光した赤外線量に相関を持つ た電気信号を出力し、 信号処理手段 4がその電気信号から鼓膜および/またはそ の近傍の温度を換算するというものである。
一般に赤外受光素子 3はあらゆる方向から入射する赤外線量の総量に相関を 持った電気的信号を出力するものであり、 導波管 2は少なくともその内面を金属 で構成、 またはメツキ処理を施すなどして反射率を高くしている。 このような構 成で鼓膜および Zまたはその近傍から発せられる赤外線は直接または導波管 2内 面で多重反射して赤外受光素子 3に至る。 またプローブ 1の内面等から発せられ る不要な赤外線は赤外受光素子 3には至らない。
しかし、 導波管 2内面を完全反射体 (反射率 = 1 ) にすることは困難であり、 多重反射で入射する光は反射率の n乗による反射ロスを生じる。 また 1回反射の ような浅い角度での反射は一般に垂直光より反射率が低くなり、 やはり反射ロス が生じる。 これら反射ロスに相当する部分は導波管 2から発せられる赤外線輻射 として赤外受光素子 3に入射することになり、 プロ一ブ 1を外耳道に挿入したと きに導波管 2の温度変動があれば赤外受光素子 3はその影響を受けて正確な体温 測定ができなくなる。
上記従来例においてはこの課題解決のためにプローブ 1の先端部を基幹部よ り細くして外耳道との接触を低減して導波管 2の温度変動を低減している。 また 特開平 5— 4 5 2 2 9号公報に示される例においてはプローブ表面を断熱材、 内 部を高熱伝導性材料で構成して、 外耳道からの熱の影響を受けにくくするととも に受けた熱は素早く赤外受光素子に熱伝導させて影響をキャンセルする工夫をし ている。 また特開平 8— 1 2 6 6 1 5号公報に示される例においてはプローブを 着脱自在とし、 測定ごとにプローブを交換してプローブに貯まる熱の影響を除去 するよう工夫している。
しかしながら、 外耳道から導波管に伝わる熱の影響を排除して正確に鼓膜およ び Zまたはその近傍の温度を測定するには、 上記いずれの方法も完全ではな.く、 導波管の温度変動の影響を受け、 体温測定の正確さを欠くという課題がある。 特 に短時間の間隔で繰り返し測定したときに、 徐々に導波管が温度変化しその影響 を受けて、 同一被験者であっても測定温度が徐々に変化していくという課題があ る。
この課題による測定誤差の影響を低減するために、 導波管に高い熱伝導性材料 として金属を用いると、 低温環境で導波管内部に結露が発生しやすいという課題 がある。 それは、 低温環境で耳孔に挿入することで体温に近い空気に触れても金 属表面の温度が容易に上昇しないからである。 したがって水蒸気を含む蒸気が露 点以下の金属で冷却され金属表面に結露が発生する。 この結露現象が、 導波管の ように赤外線を反射させる機能を持つ部品に発生すると、 結露により赤外線が、 吸収、 散乱を受け、 赤外受光素子に到達する赤外線が著しく減少し、 測定誤差と なる。
またこのような放射体温計を不特定多数の人が使う場合には、 一般に衛生管理 の面からプローブに衛生カバーを装着して外耳道に挿入し、 衛生カバ一を交換し 使い捨てするのが一般的である。 この衛生カバーはプローブ先端に当接する部分 を膜で閉じなければならない。 それは導波管先端部がプローブ先端部まで延びて いるためで、導波管に汚れを付着させないためには先端に膜を設ける必要がある。 一方、 家庭ゃ少人数の職場のように被験者が特定少数であれば、 個人ごとに使 うプローブを決めておけば耳からの感染は防ぐことができ、 衛生カバーは不要と なり使い捨てのような資源の消費は解消できる。 しかしこの場合でも導波管に汚 れを付着させないためにプローブの先端を赤外線透過材の膜で閉じる必要がある。 いずれにしても衛生上の問題でプローブ先端に設けた膜を透過した赤外線量を 測定することになる。 ここで赤外線が膜を透過する際には吸収または反射する成 分があり、 完全に透過させることは困難である。 この膜による赤外線の透過率は 膜の厚み等によりばらつくものであり、 特定の膜を付けた状態で調整しても、 別 の膜を付けたときには透過率のばらつきによる温度誤差が発生するという課題が ある。
また、 測定温度を音声で報知することにより、 目の不自由な人が使う場合や 暗闇で測定する場合においても測定結果がわかるなどの効果があり、 例えば特開 平 6— 1 4 2 0 6 1号公報で示される方法などが知られている。
しかし、 例えば測定の終了をビープ音で報知するのであれば 0 . 1〜 0 . 2 秒で十分であるが、 温度を音声で報知すれば 2〜 3秒要する。 すなわち、 上記し てきた構成の放射体温計で音声報知すると、 その報知が終わるまでプローブを耳 に挿入し続けていなければならず、 その間に導波管には耳の熱が伝わり温度変化 を起こす。 1回だけの測定ならよいが、 繰り返し測定する場合にはこの報知時間 中の導波管の温度変化が次の測定の測定誤差となって表れるという課題がある。 一方、 赤外受光素子として焦電型を用いた場合には次のような課題がある。 すなわち赤外受光素子は、 出力が測定対象の温度変化に対して相関がある焦電型 と、 赤外受光素子と対象物の温度差に相関があるサ一モパイル型の 2種類が一般 的であるが、 焦電型赤外受光素子を用いて、 鼓膜のような温度が安定し一定量の 赤外線を定常的に放射している物体を対象として温度を測定するためには、 入射 する赤外線を強制的に変化させることが必要となる。 このため焦電型赤外受光素 子に入射する赤外光の入光と遮光を切り替えるチヨツバが設けられている。 この チヨツバは例えば金属板のように赤外線を透過しない材料で構成し、 その端部を 直流モータや交流モー夕の回転軸に取り付け回転駆動させ、 赤外受光素子に至る 赤外光の入光と遮光を繰り返し断続させるという方法がある。 すなわち図 2 8に 示すように半円弧状のチヨツバ 5を直流または交流モー夕 6の回転軸に取り付け て矢印の方向に回転駆動することで赤外受光素子 3に入射する赤外光を断続する。 またパルスモータを回転駆動源として所定周期でパルス印加し、 所定角度を 例えば正転と反転を繰り返すことで赤外光を断続させる方法もある。 例えば特開 平 7— 2 8 0 6 5 2号公報に示す温度測定装置の例を図 2 9を参照しながら説明 する。 チヨツバ 5はパルスモ一夕と同様の原理による駆動源である水晶時計ムー ブメント 7により往復運動するように駆動され、 赤外受光素子 3に至る赤外光を 断続する。水晶時計ムーブメント 7は永久磁石 8と、コア 9とコイル 1 0を含み、 永久磁石 8にはチヨツバ 5の端部を取り付けている。 コイル 1 0は第 1および第 2の入力端子 1 1、 1 2にパルス入力を受け取り、 このパルス入力に応答して永 久磁石 8が回動し、 チヨッパ 5が矢印に示すように往復運動する。
しかしながら、 直流モー夕を駆動源としてチヨツバを回転させる上記従来例の 場合には入光時間、 遮光時間のばらつきにより、 温度測定精度が低いという課題 がある。 直流モー夕は一般に電源電圧の変動等の原因で回転数が変動する。 回転 数が変動すれば入光、 遮光の周期が変わり、 この周期の変動により赤外受光素子 の出力も変動して正確な体温測定ができない。 回転数を安定させるためには、 フ ォトインタラブ夕等の回転数を検出する手段と電源電圧を調整する手段を設け、 フィードバック制御を行うような複雑な制御回路が必要となる。
また交流モー夕を駆動源とした場合には、 商用電源のように比較的安定した周 波数のもとでは直流モー夕より回転数を安定させやすいが、 商用電源のような交 流電源を必要とするという課題がある。 これは携帯型の放射体温計のように電池 電源で構成する場合には直流電源しかなく、 安定した周波数の交流電源を作るた めの複雑な回路が必要となり実現が困難である。
また水晶時計ムーブメントやパルスモ一夕を駆動源とした場合にはマイクロプ 口セッサ等のデジタル信号を基に駆動するので、 入光、 遮光の周期は高い精度で 断続できるが、 チヨツバが揺動しながら停止するために入光、 遮光を精度よく切 り替えることが困難であるという課題がある。 すなわちこれら駆動源は磁力によ る吸引力と反発力のバランスで停止し、 磁力の極性を変えることで駆動するもの であるから、 停止の瞬間にチヨツバは揺動しながら吸引力と反発力をバランスさ せて停止するという特性がある。
図 3 0 A、 Bにパルスモータの挙動の特性を示す。 横軸は経過時間であり、 図 3 O Aは駆動パルスで一定周期 t、 デューティ 5 0 %で CW (時計方向) と C C W (反時計方向) のパルスを交互に出力している。 図 3 0 Bがパルスモー夕の回 転軸の回転角度で図のように停止位置に到達する時点でオーバ一シュートを起こ し、 その後アンダーシュートを起こし、 その振幅は小さくなりながら停止位置で 安定する。
パルスモータや水晶時計ムーブメントは一般に図 3 O A , Bに示すような挙動 の特性を持つものであるために、 これらをチヨツバの駆動源として赤外光を断続 すると、 入光から遮光、 または遮光から入光に切り替わる瞬間に非常に短い間隔 で入光と遮光が切り替わる状況が発生し、 そのために赤外受光素子の出力は不安 定になり、 体温測定の正確さを欠くという課題がある。 この課題を回避するため には、 揺動の最大値である Δ 0に対して十分大きいチヨツバの形状にする方法が あるが、 この場合には放射体温計自体も大型化してしまうという課題がある。 発明の開示
本発明はこうした課題を解決し、 耳孔により非接触で精度よく体温を測定す ることを目的とするものである。
こうした目的を果たすために、 本発明の放射体温計は、 鼓膜および Zまたは その近傍から直接放射される赤外線のみを受光する受光部と、 受光部の出力を温 度に演算する信号処理手段と、 信号処理手段の出力を報知する報知手段とからな る構成としてある。
そして、 鼓膜および/またはその近傍から直接放射される赤外線のみを受光 する受光部からの出力を信号処理手段で温度に演算し、 報知手段で報知するので 鼓膜および Zまたはその近傍以外からの熱輻射の影響を受けないで、 正確な鼓膜 温度を検出することができる。
また、 外耳道に挿入され鼓膜および Zまたはその近傍から放射された赤外線 を通過させるプローブと、 プローブを通過した赤外線を受光する受光部と、 受光 部の出力を温度に演算する信号処理手段と、 信号処理手段の出力を報知する報知 手段とからなり、 受光部は少なくともプローブを通過した赤外線を集光する集光 素子と、 集光素子で集光された赤外線を受けて鼓膜および Zまたはその近傍から 放射される赤外線のみを受光するように配置した赤外受光素子とを具備する構成 としてある。
そして、 受光部は鼓膜および Zまたはその近傍から放射されプローブを通過 した赤外線のみを受光し、 信号処理手段は受光部からの出力を温度に演算し、 演 算結果の温度を報知手段が報知する。 そして受光部の赤外受光素子には集光素子 で集光された赤外線が入射し、 また赤外受光素子は集光素子で集光された赤外線 を受けて鼓膜およびよまたはその近傍から放射される赤外線のみを受光するよう に配置することで、 鼓膜および Zまたはその近傍から放射されプローブを通過し た放射光のみをスポット的に検出することが可能となり、 正確な検温ができる。 また、 赤外受光素子を集光素子の焦点位置から後方に離して設置することに より、 受光領域を制限した構成としてあり、 赤外受光素子は鼓膜および Zまたは その近傍から放射されプローブを通過した赤外線のみをスボット的に受光し、 プ ローブ内面から放射された赤外線は赤外受光素子外へ進行させて受光領域を制限 することができる。
また、 受光部を収納する本体を有し、 プローブは内部を空洞状態にして本体 に連結し着脱自在とした構成としてあり、 本体に収納された受光部は鼓膜および
Zまたはその近傍から発せられプローブを通過した赤外線のみを受光し、 プロ一 ブは内部に導波管がなく空洞状態にして本体に着脱自在に連結しているので、 導 波管の温度変動による温度精度の悪化がなく、 プローブ交換により衛生上の問題 がなくかつプローブをはずせば突出部分がなく収納が容易になる。
また、 プローブは先端が開口している構成としてあり、 先端を覆うカバーの 赤外線透過率のばらつきによる温度誤差要因がなくなり、 測定温度精度を向上で さる。
また、 本体には非計測時にプローブを収納する収納部を有する構成としてあ り、 非計測時には収納部にプローブが収納されるので、 本体は収納しやすい形状 になり、 かつはずしたプローブを紛失する可能性は少なくなる。
また、 プローブは複数でそれぞれを目視で半 ij別可能な差異を有する構成とし てあり、 目視で判別可能な複数のプローブを備えているのでプローブごとに使用 者を特定することが可能でプローブ交換による感染の問題がない。
また、 報知手段は信号処理手段の演算結果の温度を音声で報知する音声報知 手段を有する構成としてあり、 耳に挿入している時間に拘わらず正確な体温を測 定することができる。
また、 受光部は集光素子外からの赤外線が赤外受光素子に入射するのを遮る遮 光体を有し、 遮光体の赤外受光素子側に反射抑制手段を設けた構成としてあり、 赤外受光素子以外の位置へ進行した赤外線が反射して赤外線受光素子に入射して しまうことがない。 したがって、 受光領域を制限し、 鼓膜および Zまたはその近 傍以外からの赤外線を受光素子以外の点へ集光させるので、 プローブの温度変化 の影響を受けず正確な体温測定ができる。
また、 遮光体の材質として合成樹脂を用いる構成としてある。 一般に合成樹 脂の放射率は 0 . 9前後と高い値になることが知られていて、 これを遮光体とし て用いることで赤外線の反射が抑制される。 また、 合成樹脂は熱伝導率が低く、 かつ熱容量が小さいので、 遮光体表面に結露が発生しにくい。 したがって、 結露 による赤外線の反射や散乱がなく正確な体温測定ができる。
また、 集光素子は熱伝導率が低く、 かつ熱容量が小さい材質により構成して あり、 プローブからの赤外線を遮る導波管は不要であり、 集光素子を含む光学系 に高い熱伝導率を必要としない。 そして、 集光素子は熱伝導率が低く、 かつ熱容 量が小さい材質より構成したので、 集光素子表面に結露が発生しにくく正確な体 温測定ができる。
また、 集光素子の材質として合成樹脂を用いる構成としている。 一般に合成 樹脂は熱伝導率が低く熱容量が小さいことが知られており、 合成樹脂により集光 素子表面の結露を抑制することができる。
また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子 の縁から光軸に対して集光素子の縁と同じ側のプローブの内壁に接するように引 いた直線がプローブの先端の面と交叉する仮想先端点から光軸に対して仮想先端 点と同じ側の集光素子の縁を通過して集光素子による仮想先端点の像点へ到達す る光路と光軸との交点よりも集光素子から遠くかつ集光素子による仮想先端点の 像点よりも集光素子に近い領域に設置する構成としてある。
かっこのように構成することで、 プローブ内壁から集光素子に入射する赤外 線を赤外受光素子以外の位置へ進行させることができ、 受光領域を制限すること ができる。 その結果、 鼓膜および Zまたはその近傍から放射されプローブを通過 した放射光のみをスポット的に検出することが可能となる。
また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子 の縁から光軸に対して集光素子の縁と同じ側のプローブの内壁に接するように引 いた直線がプローブの先端の面と交叉する仮想先端点から光軸に対して仮想先端 点と同じ側の集光素子の縁を通過して集光素子による仮想先端点の像点へ到達す る光路と光軸との交点と、 集光素子による仮想先端点の 2つの像点とで形成され る三角形内に設置する構成としてある。
このような構成にすることで、 プローブ内壁から集光素子に入射する赤外線 を赤外受光素子以外の位置へ進行させることができ、 受光領域を制限することが できる。 その結果、 鼓膜および/またはその近傍から放射されプローブを通過し た放射光のみをスポット的に検出することが可能となる。
また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子 の焦点距離 f と、 赤外受光素子の半径 r sと、 集光素子の縁から光軸に対して集 光素子の縁と同じ側のプローブの内壁に接するように引いた直線がプローブ先端 の面と交叉する仮想先端点と光軸との距離 r αと、 仮想先端点と集光素子との距 離 L aと、 集光素子の半径 r 3を用いて、 f x f f v Lax (r ee f —!: s (La— f) ) 。 f x f
X - L cJ -
La- f La-f r 3 (La-f) +τ α · f 一 La - f で与えられる L 3だけ集光素子の焦点よりも集光素子から遠くに設置した構成と してある。
このように構成することで、 プローブ内壁から集光素子に入射する赤外線を赤 外受光素子以外の位置へ進行させることができ、 受光領域を制限することができ る。 その結果、 鼓膜および Zまたはその近傍から放射されプローブを通過した放 射光のみをスポット的に検出することが可能となる。
また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子 の縁から光軸に対して集光素子の縁と同じ側のプローブの内壁に接するように引 いた直線がプローブの先端の面と交叉する仮想先端点の集光素子による像点より も集光素子から遠い領域に設置する構成としてあり、 プローブ内壁から集光素子 に入射する赤外線を赤外受光素子以外の位置へ進行させることができ、 受光領域 を制限することができる。 その結果、 鼓膜および/またはその近傍から放射され プローブを通過した放射光のみをスポット的に検出することが可能となる。 また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子 の縁から光軸に対して集光素子の縁と同じ側のプローブの内壁に接するように引 いた直線がプローブの先端の面と交叉する仮想先端点から光軸を挟んで仮想先端 点と反対側の集光素子の縁を通過して集光素子による仮想先端点の像点へ到達す る 2つの光路で挟まれた領域に設置する構成としてある。
このように構成することで、 プローブ内壁から集光素子に入射する赤外線を赤 外受光素子以外の位置へ進行させることができ、 受光領域を制限することができ る。 その結果、 鼓膜およびノまたはその近傍から放射されプローブを通過した放 射光のみをスポット的に検出することが可能となる。 また、 集光素子の光軸を含む断面で見たときに、 赤外受光素子を、 集光素子の 焦点距離 f と、 赤外受光素子の半径 r sと、 集光素子の縁から光軸に対して集光 素子の縁と同じ側のプローブの内壁に接するように引いた直線がプローブの先端 の面と交叉する仮想先端点と光軸との距離 r αと、 仮想先端点と集光素子との距 離 L aと、 集光素子の半径 r 3を用いて、
f X f τ 0< f X f , f X Lひ X (rひ ' f一: r s (La-f) )
La— f ― !Lひ一 f Lo— f r 3 X ひ一 f)一 rひ■ f で表される L 3だけ集光素子の焦点よりも集光素子から遠くに設置した構成とし ている。
このように構成することで、 プローブ内壁から集光素子に入射する赤外線を赤 外受光素子以外の位置へ進行させることができ、 受光領域を制限することができ る。 その結果、 鼓膜および Zまたはその近傍から放射されプローブを通過した放 射光のみをスポット的に検出することが可能となる。
また、 集光素子は屈折レンズで構成してあり、 屈折レンズにより、 赤外受光 素子には集光された赤外線が入射する。
また、 集光素子は集光ミラーで構成してあり、 集光ミラ一により、 赤外受光 素子には集光された赤外線が入射する。
また、 集光ミラ一は、 集光ミラーに入射する第 1の光軸と、 集光ミラ一から 射出し赤外受光素子に入射する第 2の光軸とを屈曲させる構成とてあり、 外耳道 に挿入して測定する放射体温計としての使い勝手を考慮しプローブと本体を屈曲 させたとき、 この角度に併せて光学系も屈曲させることができる。 したがって、 使い勝手がよく、 耳孔に挿入しやすくなることで挿入方向が安定しやすく精度よ く体温測定ができる。
また、 被測定物が放射する赤外線を検出する赤外受光素子と、 赤外受光素子 に入射する赤外線を遮光するチヨツバと、 チヨツバを駆動する直流モータと、 チ ョッパの停止位置に設けたストツバと、直流モ一夕を制御するモー夕制御手段と、 赤外受光素子の出力を基に温度換算する信号処理手段とを有し、 モー夕制御手段 は直流モータの回転方向を交互に反転させて、 赤外受光素子に至る赤外線の入光 と遮光を制御する構成としている。
そして、 直流モー夕によって駆動するチヨツバが停止位置に設けたストツバに 衝突することによって、 被測定物から赤外受光素子に至る赤外線光路の入光と遮 光のそれぞれの状態で停止する。 モ一夕制御手段は直流モータの回転方向を交互 に反転させて入光と遮光の状態を切り替え、 信号処理手段が赤外受光素子の出力 を基に被測定物の温度を換算するので、 チヨツバの駆動による入光時間、 遮光時 間は安定し、 またチヨツバの停止位置での揺動も起こさないので、 チヨツバは十 分小型にしても入光と遮光の状態を安定して切り替えることができ、 小型で精度 の高い体温測定を行うことができる。
また、 直流モー夕の回転方向を交互に反転させる時間は、 赤外受光素子の応答 時定数より長い時間で構成してあり、 赤外受光素子の出力は高出力となり、 S Z Nが向上し、 体温の測定精度を向上させることができる。
また、 モータ制御手段は予め設定された電力供給パターンに基づいて直流モー 夕に電力を供給する構成としてあり、 直流モー夕は予め設定された電力供給パ夕 —ンに基づいて制御され、 チヨッパによる赤外線の入光と遮光を切り替えること ができる。
また、 電力供給パターンは入光方向に電力を供給する正電力供給パターンと 入光方向と逆の方向に電力を供給する負電力供給パターンを有し、 正電力供給パ ターンと負電力供給パターンを交互に行う正負電力供給パターンからなる構成と してあり、 正電力供給パターンと負電力供給パターンを交互に行うことにより、 直流モー夕の回転方向を交互に反転させることができる。
また、 正負電力供給パターンは初めに電力を供給する初期電力供給期間と、 その後電力を減少させ供給する減少電力供給期間とからなる構成としてあり、 初 めの電力供給でチヨツバをストツバ位置まで移動させ、 その後は減少させた電力 を供給してチヨツバの位置を維持するので、 消費電力を低減することができる。 また、 減少電力供給期間は電力を間欠的に供給する構成としてあり、 消費電 力を低減でき、 さらに回路構成を簡単にすることができる。
また、 減少電力供給期間は電力の供給を休止する構成としてあり、 さらに消 費電力を低減することができる。
また、 減少電力供給期間は電力の供給を休止後、 最後に電力を供給する構成とし てあり、チヨッパを再度ストツバに衝突させてから直流モー夕を反転させるので、 簡単な回路構成で消費電力を低減し、 さらに赤外受光素子に至る赤外線の入光と 遮光の時間を正確に維持することができ、 体温を正確に測定できる。
また、 初期電力供給期間はチヨツバがストツバ到達に要する時間とチヨッパ がストツバから跳ね返り自然停止する時間との合計より長く設定した構成として あり、 初期電力供給手段はチヨッパがストツバに到達する時間とストツバから跳 ね返り自然停止する時間との合計より長い初期電力供給期間、 初期電力を直流モ 一夕に供給し、 その後減少電力供給手段が電力を減少させて供給するので、 チヨ ツバは確実にストツバ位置で停止し、 安定した入光、 遮光の切り替えができて体 温測定精度が向上するとともに、 消費電力を節約できる。
また、 ストッパは衝撃緩衝材料により構成してあり、 チヨツバのストツバへ の食い込み、 跳ね返りを低減してチヨッビングを安定化し体温測定精度を向上さ せるとともに、 チヨツバがストツバに衝突する音を低減することもできる。
また、 ストツバは軟性ゴム材料により構成してあり、 チヨツバのストツバへ の食い込み、 跳ね返りを低減してチヨッピングを安定化し体温測定精度を向上さ せるとともに、 チヨツバがストツバに衝突する音を低減することもできる。
また、 赤外受光素子とチヨツバの間に赤外受光素子の視野を限定する視野限 定手段を設け、 チヨッパは赤外受光素子のチヨッピング位置における視野より大 きい構成としてあり、 赤外受光素子の視野を限定することにより、 チヨツバを小 型にすることができ、 チヨツバは赤外受光素子の遮光位置における視野より大き い構成とするので、 赤外受光素子の入光と遮光の状態における出力の差が大きく なり、 体温測定の精度を向上させることができる。
また、 視野限定手段は少なくとも赤外受光素子側の面を低反射率で構成して あり、 視野限定手段からの赤外線の反射を押さえることができ、 視野限定手段で 反射した赤外線が赤外受光素子に入射することがなくなるので、 赤外受光素子の 視野を確実に限定することができ、 小型で精度の高い体温測定を行うことができ る。
また、 ストツバは、 チヨツバの遮光状態における停止位置から入光開始状態 までの移動角度と、 チヨツバの入光状態における停止位置から遮光開始状態まで の移動角度とが等しくなる位置に設け、 モー夕制御手段は直流モータの回転方向 を交互に反転させる信号を等間隔で出力する構成としてある。
そのため、 チヨツバの駆動による赤外線の入光時間と遮光時間とが等しくな り、 赤外受光素子の高出力を得ることができ、 精度の高い体温測定を行うことが できる。
また、 信号処理手段は赤外受光素子の出力信号から離散フーリエ変換により 直流モータの回転方向を交互に反転させる周波数と等しい周波数の信号成分を算 出するフーリエ変換手段を有し、 フーリエ変換手段の出力を基に被測定物の温度 を換算する構成としてある。
そのため、 信号以外のノイズ成分を除去でき、 さらに入光時間と遮光時間が 等しいので離散フーリエ変換では除去しきれない高次の高調波ノイズ成分をほと んど発生させず、 精度の高い体温測定を行うことができる。
また、 モータ制御手段は、 直流モータを駆動してチヨツバの位置合わせを行 う位置合わせ駆動手段と、 直流モー夕の回転方向を交互に反転させて赤外受光素 子に至る赤外線光路の入光と遮光を切り替えて体温測定を行う体温測定駆動手段 と、 位置合わせ駆動手段と体温測定駆動手段を切り替える切替手段を有し、 検温 開始時にチヨツバは常に同じ位置にある構成としてある。
そして、 位置合わせ駆動手段は直流モ一夕を駆動してチヨツバをストツバに 衝突させてチヨツバの位置合わせを行い、 体温測定駆動手段は直流モータの回転 方向を交互に反転させてチヨツバをストツバに衝突させて停止させ、 赤外受光素 子に至る赤外線光路の入光と遮光を切り替える。 切替手段が位置合わせ駆動手段 と体温測定駆動手段を切り替える。 したがって、 チヨツバの位置合わせにより検 温開始時にチヨツバを常に同じ位置にすることができ、 体温測定時にチヨツバの 駆動による入光時間、 遮光時間を安定させることができるので、 精度の高い体温 測定を行うことができる。
また、 検温開始信号を発信する発信手段を設け、 モー夕制御手段は発信手段 からの検温開始信号が非受信状態である連続時間を計時する計時手段を有し、 計 時手段が所定の時間を計時する前に発信手段からの検温開始信号を受信すると切 替手段が体温測定駆動手段を動作させ、 計時手段が所定の時間を計時した後に発 信手段からの検温開始信号を受信すると切替手段が位置合わせ駆動手段を動作さ せた後に体温測定駆動手段を動作させる構成としてある。
そして、 計時手段が発信手段からの検温開始信号が非受信状態である連続時 間を計時し、 計時手段が所定の時間を計時する前に検温開始信号を受信すると、 切替手段が体温測定駆動手段を動作させて体温測定を行い、 所定の時間を計時し た後に発信手段からの信号を受信すると、 切替手段が位置合わせ駆動手段を動作 させてチヨツバの位置合わせを行った後、 体温測定駆動手段に切り替えて体温測 定を行うので、 体温測定時のチヨツバの最終の停止位置から位置ずれを起こさな いことが想定されるような短時間で繰り返して体温測定を行う場合はチヨツバの 位置合わせを行わずに続けて体温測定を行うことができるので、 短時間で、 精度 の高い体温測定を行うことができ、 また、 長時間にわたり体温測定を行わず放置 されている間にチヨツバの位置がずれてしまった場合でも、 再度体温測定を行う 場合はチヨツバの位置合わせを行った後体温測定を行うので、 常に精度の高い体 温測定を行うことができる。
また、 検温開始信号を発信する発信手段を設け、 切替手段はモー夕制御手段 に電源が投入されたときに位置合わせ駆動手段を動作させ、 発信手段からの検温 開始信号を受信したときに体温測定駆動手段を動作させる構成としてある。
そして、 切替手段はモータ制御手段に電源が投入されたときに位置合わせ駆 動手段を動作させてチヨツバの位置合わせを行い、 発信手段からの検温開始信号 を受信したときに体温測定駆動手段を動作させて体温測定を行うので、 短時間で 繰り返して体温測定を行う場合に短時間で効率良く精度の高い体温測定を行うこ とができる。
また、 モー夕制御手段の電源の投入と遮断を制御する電源制御手段を設け、 電 源制御手段は発信手段からの検温開始信号が非受信状態である連続時間を計時す る計時手段を有し、 計時手段が所定の時間を計時すると電源を遮断する構成とし ている。
そして、 計時手段は発信手段からの検温開始信号が非受信状態である連続時 間を計時し、 計時手段が所定の時間を計時すると電源制御手段はモー夕制御手段 の電源を遮断するので、 次に体温測定を行う場合には再度モータ制御手段に電源 を投入する必要がある。 したがって、 計時手段が所定の時間を計時するまでは、 短時間で繰り返して体温測定を行う場合にチョッパの位置合わせを行わずに続け て体温測定を行うことができるので、 短時間で精度の高い体温測定を行うことが でき、 長時間にわたり体温測定を行わず放置されてチヨツバの位置がずれてしま つた場合でも、 計時手段が所定の時間を計時し、 モータ制御手段の電源は遮断さ れるので、再度体温測定を行うときにはモー夕制御手段の電源を投入することで、 切替手段が位置合わせ駆動手段を動作させてチヨツバの位置合わせを行い、 その 後の検温開始信号で体温測定を行うので、 常に精度の高い体温測定を行うことが できる。 また、 モー夕制御手段の電源を切り忘れた場合でも、 所定時間経過する と自動的に電源が遮断されるので、 消費電力を低減させることができ、 そして使 い勝手がよくなる。 図面の簡単な説明
図 1は本発明の実施形態 1の放射体温計の構成図である。
図 2 A〜 Dは同実施形態の異なる記号を印刷した複数のプローブの側面図で ある。
図 3 A〜 Dは同実施形態の寸法の異なる複数のプロ一ブの側面図である。 図 4は同実施形態の受光部およびプローブの構成断面図である。
図 5は本発明の実施形態 2の受光部およびプローブを示す構成断面図である。 図 6は本発明の実施形態 3の受光部およびプローブを示す構成断面図である。 図 7は本発明の実施形態 4の受光部およびプローブを示す構成断面図である。 図 8は本発明の実施形態 5の受光部およびプローブを示す構成断面図である。 図 9は本発明の実施形態 6の受光部およびプローブを示す構成断面図である。 図 1 0は本発明の実施形態 7の集光素子の構成図である。
図 1 1は本発明の実施形態 8を示す放射体温計の構成ブロック図である。 図 1 2は同実施形態のチヨツバ部分の要部拡大図である。
図 1 3は同実施形態の直流モー夕の電力供給パターンを示すタイ三 一卜である。
図 1 4は同実施形態のチヨツバ駆動時に発生する音の特性図である。
図 1 5は本発明の実施形態 9の温度検出駆動手段の構成ブロック図である 図 1 6は同実施形態の直流モー夕の電力供給パターンを示す夕イミ 一卜である。
図 1 7は本発明の実施形態 1 0の直流モー夕の電力供給パターンを示すタイ ミングチヤ一トである。
図 1 8は本発明の実施形態 1 1の直流モー夕の電力供給パターンを示す夕イミ ングチヤ一トである。
図 1 9は本発明の実施形態 1 2の直流モー夕の電力供給パターンを示すタイ ミングチヤー卜である。
図 2 0は本発明の実施形態 1 3の温度換算手段の構成ブロック図である。 図 2 1は同実施形態の赤外受光素子の出力のサンプリングのタイミングチヤ 一卜である。
図 2 2は本発明の実施形態 1 4のモー夕制御手段の構成ブロック図である。 図 2 3は同実施形態のモータ制御手段の動作を説明するフローチャート図で ある。
図 2 4は本発明の実施形態 1 5のモ一夕制御手段の構成ブロック図である。 図 2 5は同実施形態のモータ制御手段の動作を説明するフローチャート図で ある。
図 2 6は同実施形態の電源制御手段の動作を説明する回路図である。
図 2 7は従来例の放射体温計の構成ブロック図である。
図 2 8は従来例のチヨツバ部の構成図である。
図 2 9はその他の従来例のチヨッパ部の構成図である。
図 3 0 A、 Bはその他の従来例の動作を説明するタイミングチャートである。 発明を実施するための最良の形態
第 1の実施形態 以下、 本発明の実施形態 1を図 1〜図 4を参照しながら説明する。 図 1は本 発明の放射体温計の構成図である。 図 2 A〜D、 図 3 A〜Dは複数のプローブの 側面図、 図 4は受光部 1 7およびプローブ 1の構成断面図である。
図 1においてプローブ 1は体温測定に際して外耳道に挿入する部分であり、 鼓膜に向かう側の先端方向に細くした形状で、 先端は開口していて、 反対側の端 部には本体 1 3と着脱可能なように突起部 1 4を備えている。 そしてプローブ 1 を本体 1 3に取り付けるときは、 押し圧により突起部 1 4が内側に歪んで本体 1 3に取り付けられる。 はずすときはプローブ 1を指で押さえることで、 同様に突 起部 1 4を内側に歪ませてはずす。 本体 1 3には収納部 1 5があり、 体温測定を しないときはプロ一ブ 1をはずして収納部 1 5に収納する。 収納部 1 5は蓋 1 6 を備え、 収納時に開閉する。 非測定時にプローブ 1をはずすことで本体そのもの の形状となり、 収納しやすい形状となる。 またはずしたプローブ 1は収納部 1 5 で保管するので紛失する可能性は少ない。
受光部 1 7はプロ一ブ 1の開口を通過した赤外線のみを受光し、 その赤外線 量に応じた電気信号を出力する。 信号処理手段 4は受光部 1 7から入力する信号 に基づいて温度換算する。 ここで換算される温度は赤外線の照射源温度であり、 鼓膜および/またはその近傍の温度に相当する。
信号処理手段 4で換算された温度は体温として報知手段 1 8で使用者に報知 される。 報知手段 1 8は信号処理手段 4で換算した体温を数字で表示する数字表 示手段 1 9と音声報知手段 2 0からなる。 数字表示手段 1 9は例えば液晶表示器 であり、 音声報知手段 2 0は例えばスピーカである。
ここで、 受光部 1 7は後に詳述するようにプローブ 1の開口を通過した赤外 線のみを受光するのでプローブ 1の温度変動の影響を受けることはなく、 また導 波管も必要ない。 プローブ 1は着脱自在であり、 複数個具備していて、 例えば図 2 A〜Dに示すようにそれぞれ、 異なる記号を印刷している。 図 2 A〜Dでは図 2 Aには 「a」 、 図 2 Bには 「b」 、 図 2 Cには 「c」 、 図 2 Dには 「d」 の記 号を印刷している。 例えば家庭で使う場合、 4人家族であれば個人ごとに使うプ ローブを決めておけば、 記号が目印になって間違うことはなく耳からの感染は避 けることができる。 また導波管を持たないのでプローブ 1の先端部分は開口して いてもよく、 膜で覆うようなことはないので、 膜の赤外線透過率のばらつきによ る温度誤差はない。
個人ごとに使うプローブを間違えないように目視で判断可能な差異を設ける 方法として前記した記号の違いの他に、 色を変えたり異なる図柄を印刷してもよ い。 また図 3 A〜Dに示すように寸法を変えてもよい。 図 3 A〜Dでは図 3 Aを 最も短く、 図 3 B、 図 3 C、 図 3 Dの順に長くしている。 この場合には目視で判 断可能な差異により使うプローブを間違えない他に、 耳の小さい幼児ならば図 3 A、 耳の大きい大人は図 3 Dを使うなどすれば最も耳に揷入しゃすい寸法を選択 できるという効果もある。
また音声報知手段 2 0で音声報知するので、 暗闇で測定する場合や目の不自 由な人が測定する場合でも検温結果を知ることができる。 また数字表示手段 1 9 でも報知しているので、 騒音の大きい環境で測定する場合や耳の不自由な人が測 定する場合でも検温結果を知ることができる。 耳で温度を測定するので音声報知 手段 2 0は十分小さな音量で被験者に報知することができ、 被験者にのみ検温結 果が聞こえ、 被験者以外には検温結果が聞こえないようにできて、 被験者の周囲 に不要な雑音で迷惑をかけることはない。 また被験者のプライバシ一も守ること ができる。
受光部 1 7の構成を集光素子の光軸を含む断面図である図 4により説明する。 図 4において遮光体 2 2は少なくともその内面は後に詳述する合成樹脂等の反射 率の低い反射抑制手段で構成している。 A、 A ' は屈折レンズ 2 1の縁からこの 縁と同じ側のプローブ 1の内壁に接するように引いた直線とプローブ 1の先端の 面との交点で、 図 4のように開口から本体装着部分までの間が直線的なプローブ であればプローブ 1の先端内壁に位置する点である。 Bはプローブ 1の内壁にお ける点、 すなわち受光したくない領域の点、 Fは屈折レンズ 2 1の焦点、 FAは 屈折レンズ 21による Aの像点、 FA' は.屈折レンズ 21による A' の像点、 F Bは屈折レンズ 21による Bの像点、 K 1 Aは Aから光軸に対して同じ側の屈折 レンズ 21の縁を通過して F Aへ進行する光 (マージナル光線) の光路、 K2A は Aから光軸と平行に進んで焦点 Fを通過して F Aに到達する光の光路、 K3 A は Aから屈折レンズ 21の中心を通過して F Aに到達する光の光路、 K4Aは A から光軸を挟んで反対側の屈折レンズ 21の縁を通過して F Aに到達する光 (マ —ジナル光線) の光路である。 また同様に K1A' は A' から光軸に対して同じ 側の屈折レンズ 2 1の縁を通過して FA' へ進行する光 (マ一ジナル光線) の光 路、 K2A' は A' から光軸と平行に進んで焦点 Fを通過して FA' に到達する 光の光路、 K3A' は A' から屈折レンズ 21の中心を通過して FA' に到達す る光の光路、 K4A' は A' から光軸を挟んで反対側の屈折レンズ 21の縁を通 過して FA' に到達する光 (マージナル光線) の光路、 38は8から屈折レン ズ 2 1の中心を通過して F Bに到達する光の光路、 FXは光路 K 1 Aと光路 K 1 A' の交点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような光 学系を設計する。
赤外受光素子 3を遮光体 22に取り付け、 屈折レンズ 2 1を通過しない赤外 線を赤外受光素子 3が受光しないようにする。 屈折レンズ 2 1を通った赤外線の み受光する構成にした上で以下の設計を行う。
Aから放射される光は光路 K 1 A、 K2A、 K3A、 K 4 Aなどを通って Aの 像点 F Aに到達する。 幾何光学で周知の通り、 Aの像点 F Aは光軸を挟んで Aと 反対側に形成される。 図 4に示すように、 光路 K2Aを通る光は、 屈折レンズ 2 1を通過して Fで光軸と交叉したのち光軸から離れながら FAに到達する。 同じ ように、 光路 K1Aを通る光は、 屈折レンズ 2 1を通過して光軸と交叉したのち 光軸から離れながら FAに到達する。 光路 K3Aを通る光は、 屈折レンズ 2 1で 光軸と交叉したのち光軸から離れながら F Aに到達する。光路 K 4 Aを通る光は、 光軸と交叉して屈折レンズ 21を通過し、 屈折レンズ 21を通過してからは光軸 と交又せずに F Aに到達する。 このように、 光路 K 1 Aと光軸が交叉する点 FX よりも屈折レンズ 2 1から離れた位置かつ F Aよりも屈折レンズ 21に近い位置 で、 Aから放射される光が通過しない領域が存在する。 この領域は、 FXとFA と FA' が形成する三角形の内側となる。 この集光素子の子午面内にある三角形 の内側に赤外受光素子 3を設置することで、 Α、 Α' から放射される光を受光し ない受光部 17が得られる。
受光したくないプローブ 1内壁の領域中の Β点は、 Αよりも光軸から遠いため、 屈折レンズ 21による Bの像点 FBが F Aより光軸から遠くなることは周知の通 りである。 したがって、 FXと FAと FA' が形成する三角形の内側に赤外受光 素子 3を設置することによって A、 A' から放射される赤外線を受光しないよう にすれば、 自動的に Bからの赤外線も受光しない構成となる。
以上のように、 FXと FAと FA' が形成する三角形の内側に赤外受光素子 3を設置することによって、 光軸付近の受光したい領域、 すなわちプローブ 1の 開口を通過した鼓膜および Zまたはその近傍から放射される赤外線のみを受光す るような受光部が得られる。 第 2の実施形態
次に本発明の実施形態 2を図 5を用いて説明する。 図 5は本発明の実施形態 2 における放射体温計の受光部 17およびプローブ 1を示す構成断面図で。 A、 A' は屈折レンズ 21の縁からプローブ 1の内壁に接するように引いた直線とプロ一 ブ 1の先端の面との交点で、 図 5のように開口から本体装着部までの間が直線的 なプロ一ブであればプロ一ブ 1の先端内壁に位置する点である。 Bはプローブ 1 の内壁における点、 すなわち受光したくない領域の点、 Fは屈折レンズ 21の焦 点、 F Aは屈折レンズ 21による Aの像点、 FA' は屈折レンズ 21による A' の像点、 FBは屈折レンズ 21による Bの像点、 K 1 Aは Aから光軸に対して同 じ側の屈折レンズ 2 1の縁を通過して F Aへ進行する光 (マージナル光線) の光 路、 K 2 Aは Aから光軸と平行に進んで焦点 Fを通過して F Aに到達する光の光 路、 K 3 Aは Aから屈折レンズ 21の中心を通過して F Aに到達する光の光路、 K 4 Aは Aから光軸を挟んで反対側の屈折レンズ 21の縁を通過して F Aに到達 する光 (マージナル光線) の光路、 K1A' は A' から光軸に対して同じ側の屈 折レンズ 21の縁を通過して FA' へ進行する光 (マージナル光線) の光路、 K 2 A' は A' から光軸と平行に進んで焦点 Fを通過して FA' に到達する光の光 路、 K3A' は A' から屈折レンズ 21の中心を通過して FA' に到達する光の 光路、 K4A' は A' から光軸を挾んで反対側の屈折レンズ 21の縁を通過して FA' に到達する光 (マージナル光線) の光路、 K3 Bは Bから屈折レンズ 21 の中心を通過して F Bに到達する光の光路、 K 4 Bは Bから光軸を挟んで反対側 の屈折レンズ 21の縁を通過して FBに到達する光 (マージナル光線) の光路、 FXは光路 K 1 Aと光路 K 1 A' の交点、 F Yは光路 K4 Aと光路 K4 A' の交 点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような光 学系を設計する。
赤外受光素子 3を遮光体 22に取り付け、 屈折レンズ 2 1を通過しない赤外線 を赤外受光素子 3で受光しないようにする。 屈折レンズ 21を通った赤外線のみ 受光する構成にした上で以下の設計を行う。
Aから放射される光は光路 K 1 A、 K2A、 K3A、 K4Aなどを通って Aの 像点 FAに到達する。 幾何光学で周知の通り、 Aの像点 FAは光軸を挟んで Aと 反対側に形成される。 図 5中に示すように、 光路 K2Aを通る光は、 屈折レンズ 21を通過して Fで光軸と交又して F Aに到達し光軸から離れていく。 同じよう に、 光路 K1Aを通る光は、 屈折レンズ 2 1を通過して光軸と交叉して F Aに到 達し光軸から離れていく。 光路 K3Aを通る光は、 屈折レンズ 21で光軸と交叉 して FAに到達し光軸から離れていく。 光路 K4Aを通る光は、 光軸と交又して 屈折レンズ 21を通過し、 屈折レンズ 2 1を通過してからは光軸と交叉せずに F Aに到達し、 その後光軸に近づくかあるいは遠ざかつていく。 このように、 Aの 像点 F Aよりも屈折レンズから離れた位置で Aから放射される光が通過しない領 域が存在する。 この領域は、 F Aよりも屈折レンズ 21から遠い部分の光路 K4 Aと、 FA' よりも屈折レンズ 21から遠い部分の光路 K4A' で挟まれた領域 である。 この領域に赤外センサ 3を設置することで、 A、 A' から放射される赤 外線を受光しない光学系が実現できる。
受光したくないプロ一ブ 1内壁の領域中の B点は、 Aよりも光軸から遠いため、 屈折レンズ 21による Bの像点 F Bが F Aより光軸から遠くなることは周知の通 りである。 したがって、 F Aよりも屈折レンズ 21から遠い部分の光路 K4 Aと、 FA' よりも屈折レンズ 2 1から遠い部分の光路 K4A' で挟まれた領域内に赤 外受光素子を設置することによって A、 A' から放射される赤外線を受光しない ようにすれば、 自動的に Bから放射される 外線も受光しない構成となる。
以上のように、 FAよりも屈折レンズ 21から遠い部分の光路 K4Aと、 FA' よりも屈折レンズ 2 1から遠い部分の光路 K4A' で挟まれた領域内に赤外受光 素子 3を設置することによって、 光軸付近の受光したい領域、 すなわちプローブ 1の開口を通過した鼓膜および Zまたはその近傍から放射される赤外線のみを受 光するような受光部が得られる。 第 3の実施形態
次に本発明の実施形態 3を図 6を用いて説明する。 図 6は本発明の実施形態 3における放射体温計の受光部 1 7およびプローブ 1を示す構成断面図である。 ここでプローブ 1は前記実施形態と異なり、 より外耳道に挿入しやすいよう R付 けの部分を持たせている。 図 6において、 α、 α' は屈折レンズ 2 1の縁からこ の縁と光軸に対して同じ側のプローブ 1内壁へ接する直線がプローブ 1の先端面 と交わる仮想先端点、 Fは屈折レンズ 2 1の焦点、 F o;、 F a' はそれぞれ屈折 レンズ 2 1による a、 ' の像点、 K 1 aは aから光軸に対して同じ側の屈折レ ンズ 2 1の縁を通過して F aへ進行する光 (マ一ジナル光線) の光路、 K2 aは aから光軸と平行に進んで焦点 Fを通過して Fひに到達する光の光路、 K3 aは aから屈折レンズ 2 1の中心を通過して Fひに到達する光の光路、 K4 aは a力 ら光軸を挟んで反対側の屈折レンズ 2 1の縁を通過して Fひに到達する光 (マ ジナル光線) の光路、 Kl a' は a' から光軸に対して同じ側の屈折レンズ 2 1 の縁を通過して F a' へ進行する光 (マージナル光線) の光路、 Κ2 α' は a' から光軸と平行に進んで焦点 Fを通過して Fひ' に到達する光の光路、 K3ひ ' はひ' から屈折レンズ 2 1の中心を通過して F a' に到達する光の光路、 Κ4 α' は a' から光軸を挟んで反対側の屈折レンズ 2 1の縁を通過して F α' に到達す る光 (マージナル光線) の光路、 FXは光路 K 1ひと光軸との交点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような光 学系を設計する。
赤外受光素子 3を遮光体 22に取り付け、 屈折レンズ 2 1を通過する赤外線の みを赤外受光素子 3で受光するようにする。 屈折レンズ 2 1を通った赤外線のみ 受光する構成にした上で以下の設計を行う。
鼓膜および Zまたはその近傍から発せられプローブ 1の開口を通過した赤外光 のみを受光するためには、 プローブ 1から放射される赤外光を受光しないように すればよい。 そのため、 受光したい領域と受光したくない領域の境界に位置する 点を仮想し、 この点から、 光軸に対してこの仮想した境界に位置する点と同じ側 の屈折レンズ 2 1の縁を通過する光 (マージナル光線) の光路よりも、 光軸から 遠くに位置するようにプローブ 1を設置すればよい。 そこで、 上記仮想の境界に 位置する点を、 屈折レンズ 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内壁へ接する直線がプローブ 1の先端面と交わる点ひ、 α' として、 F cϊとF ' と FXで形成される三角形の内側に赤外受光素子 3を設置する。 これにより、 プロ一ブ 1をひと屈折レンズ 2 1の間で光路 K 1 α、 Κ 1 α' よりも光軸から遠 くに位置させることになるため、 プローブ 1からの光を受光しない光学系が得ら れる。
上記について詳細を以下に述べる。 ひから放射される光は光路 Κ 1 α、 Κ 2 ひ、 Κ 3 ひ、 Κ4ひなどを通って αの像点 F αに到達する。 幾何光学で周知の通 り、 αの像点 F αは光軸を挟んで αと反対側に形成される。図 6中に示すように、 光路 Κ 2 0!を通る光は、 屈折レンズ 2 1を通過して Fで光軸と交叉したのち光軸 から離れながら Fひに到達する。 同じように、 光路 Κ ΐ αを通る光は、 屈折レン ズ 2 1を通過して光軸と交叉したのち光軸から離れながら F αに到達する。 光路 Κ 3 ひを通る光は、 屈折レンズ 2 1で光軸と交叉したのち光軸から離れながら F ひに到達する。光路 Κ4 αを通る光は、光軸と交叉して屈折レンズ 2 1を通過し、 屈折レンズ 2 1を通過してからは光軸と交叉せずに F αに到達する。このように、 光路 K 1 ひと光軸が交叉する点 FXよりも屈折レンズ 2 1から離れた位置かつ F αよりも屈折レンズ 2 1に近い位置で、 αから放射される光が通過しない領域が 存在する。 同じように、 α ' についても、 光路 Κ ΐ α' と光軸が交叉する点より も屈折レンズ 2 1から離れた位置かつ Fひ'よりも屈折レンズ 2 1に近い位置で、 α' から放射される光が通過しない領域が存在する。 この、 Fひ、 F a' 、 FX で形成される三角形の内側よりに赤外受光素子 3を設置することで、 ひ、 a ' か ら放射される光を受光しない受光部が得られる。
ひと屈折レンズ 2 1の間の光路 K1ひより光軸から遠い部分からの光は、 ο; と同じ面内で光軸からの距離が αより大きい点からの光と置き換えられる。 この 点の屈折レンズ 21による像点は F αよりも光軸から遠くなることは幾何光学で 周知の通りである。 そのため、 αからの光を受光しないようにすれば、 ひよりも 光軸から遠い点からの光を受光せず、 したがってプローブ 1からの光を受光しな い。 同様に、 ひ' と屈折レンズ 21の間の光路 Κ 1ひ' より光軸から遠い部分か らの光は、 α' と同じ面内で光軸からの距離が α' より大きい点からの光と置き 換えられる。 この点の屈折レンズ 2 1による像点は F α' よりも光軸から遠くな ることは幾何光学で周知の通りである。 そのため、 α' からの光を受光しないよ うにすれば、 ひ' よりも光軸から遠い点からの光を受光せず、 したがってプロ一 ブ 1からの光を受光しない。
このように、 F aと F a' と F Xで形成される三角形の内側に赤外受光素子
3を設置することでひ、 α' から放射される赤外線を受光しないようにすれば、 自動的にプローブ 1から放射される赤外線も受光しない構成となる。
以下、 aからの光を受光しないような赤外受光素子 3の位置を求める。
赤外受光素子 3は Fひよりも屈折レンズ 21に近い。 このとき、 次式が成り立 つ。
L aF≥ f +L 3 式 1
したがって
L 3≤L a F- f 式 2
ここで L a Fは屈折レンズ 21の中心から aの像点 F aまでの距離、 f は屈折 レンズ 21の中心から焦点 Fまでの距離、 L 3は焦点 Fから赤外受光素子 3まで の距離である。
図 6に示すように、 受光面は光路 K 1 aと光軸が交わる点 FXと F aとの間で あるので、 ひから F αまでの各光路のうち受光面で赤外受光素子 3に最も近づく ものは K 1ひである。 したがって、 αからの光を赤外受光素子 3で受光しないた めには、 次式を満たす必要がある。
r a S 1 r s 式 3
ここで、 r a S 1は光路 K 1 αと赤外受光素子 3の受光面との交点 F a S 1力、 ら光軸までの距離、 r sは赤外受光素子 3の半径である。 また屈折レンズ 2 1の 半径を r 3、 光軸から像点 Fひまでの距離を r aFとしたとき、 幾何光学で周知 の通り r 3 r aF r a S l L 3 f は幾何関係として式 4を満たす。
r 3 + r F —— r aF-r aSl _
LaF LaF - (f +L3)
式 4
したがって、 式 5を満たす。
f + T Q
raS l = r<XF- Cr 3 + r<xF) X (1 - )
Figure imgf000030_0001
式 5
式 5を式 3へ代入することで式 6が得られる 式 6
式 2、 式 6から、 aから放射される光を赤外受光素子 3で受光しないための条件 は式 7となる。
r LaFx aF-r S)
LaF一 r 3 + r gF < L 3 ≤ LaF"f
式 7
さらにひから光軸までの距離を r , プロ一ブ 1の先端から屈折レンズ 2 1の 中心までの距離を Lひとしたときに、 幾何光学で周知の通り、 r a L a r F L a Fは幾何関係として式 8を満たす。 r a r OtF
La LaF
式 8
したがって、 式 9を満たす。
^ v L OtF
r aF = r 0ί X
La
式 9
式 9を式 7へ代入することにより、 aから放射される光を赤外受光素子 3で受光 しないための条件は式 1 0となる。
式 1 0 また、 ガウスの公式から式 1 1が成り立つ。 f L ¥ La
式 1 1
したがって、 式 1 2が成り立つ。
τ TP f -LCt
LaF = -
L a - 1
式 1 2
式 1 2を式 1 0に代入することにより、 aから放射される光を赤外受光素子 4で 受光しないための条件は式 1 3となる。
fxf f xLax (ra-f-rs .cx-f))_<T
La-f La-f r 3x +ra* f
Figure imgf000031_0001
式 1 3 以上のように、 プローブ 1先端のひから放射される光を赤外受光素子 3で受 光しないためには、 式 7、 あるいは式 1 0、 あるいは式 1 3を満たすよう光学系 を設計する必要がある。 式 7、 式 1 0、 式 1 3で与えられる L 3だけ、 赤外受光 素子 3を屈折レンズ 2 1の焦点からずらして設置することで、 プローブ 1から放 射される赤外線を赤外受光素子 3で受光せずに、 鼓膜および/またはその近傍か ら発せられプローブ 1の開口を通過した赤外線のみを赤外受光素子 3で受光させ ることができる。 第 4の実施形態
次に本発明の実施形態 4を図 7に基づいて説明する。 図 7は本発明の実施形態 4における放射体温計の受光部 1 7およびプローブ 1を示す構成断面図である。 図 7において、 プローブ 1は実施形態 3と同様に R付けの部分を持たせている。
, α' は屈折レンズ 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内 壁へ接する直線がプローブ 1の先端面と交わる仮想先端点、 Fは屈折レンズ 2 1 の焦点、 F a、 F ' はそれぞれ屈折レンズ 2 1による α、 a ' の像点、 K 1 ο; は αから光軸に対して同じ側の屈折レンズ 2 1の縁を通過して Fひへ進行する光 (マ一ジナル光線) の光路、 Κ2 αは αから光軸と平行に進んで焦点 Fを通過し て F αに到達する光の光路、 Κ 3 αはひから屈折レンズ 2 1の中心を通過して F ひに到達する光の光路、 Κ4 αはひから光軸を挟んで反対側の屈折レンズ 2 1の 縁を通過して F αに到達する光 (マージナル光線) の光路、 Κ ΐ α' は α' から 光軸に対して同じ側の屈折レンズ 2 1の縁を通過して F α' へ進行する光 (マー ジナル光線) の光路、 Κ2 α' は α' から光軸と平行に進んで焦点 Fを通過して F a ' に到達する光の光路、 Κ3 α' は α' から屈折レンズ 2 1の中心を通過し て F a' に到達する光の光路、 Κ4 α' は a ' から光軸を挟んで反対側の屈折レ ンズ 2 1の縁を通過して F a' に到達する光 (マージナル光線) の光路、 FXは 光路 K l aと光軸との交点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような光 学系を設計する。 赤外受光素子 3を遮光体 2 2に取り付け、 屈折レンズ 2 1を通過する赤外線の みを赤外受光素子 3で受光するようにする。 屈折レンズ 2 1を通った赤外線のみ 受光する構成にした上で以下の設計を行う。
鼓膜および Zまたはその近傍から発せられプローブ 1の開口を通過した赤外光 のみを受光するためには、 プローブ 1から放射される赤外光を受光しないように すればよい。 そのため、 受光したい領域と受光したくない領域の境界に位置する 点を仮想し、 この点から、 光軸に対してこの仮想した境界に位置する点と同じ側 の屈折レンズ 2 1の縁を通過する光 (マージナル光線) の光路よりも、 光軸から 遠くに位置するようにプローブ 1を設置すればよい。 そこで、 上記仮想の境界に 位置する点を、 屈折レンズ 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内壁へ接する直線がプローブ 1の先端面と交わる点ひ、 ' として、 F aより も屈折レンズ 2 1から遠い部分の光路 K 4 aと、 F a ' よりも屈折レンズ 2 1か ら遠い部分の光路 K 4ひ ' で挟まれた領域に赤外受光素子 3を設置する。 これに より、 プローブ 1をひと屈折レンズ 2 1の間で光路 Κ Γひ、' K 1 a ' よりも光軸 から遠くに位置させることになるため、 プローブ 1からの光を受光しない光学系 が得られる。
上記について詳細を以下に述べる。
ひから放射される光は光路 K 1ひ、 K 2 a、 Κ 3 α、 Κ 4ひなどを通って a の像点 Fひに到達する。 幾何光学で周知の通り、 aの像点 F aは光軸を挟んで a と反対側に形成される。 図 7中に示すように、 光路 K 2ひを通る光は、 屈折レン ズ 2 1を通過して Fで光軸と交叉して F aに到達し光軸から離れていく。 同じよ うに、 光路 K 1ひを通る光は、 屈折レンズ 2 1を通過して光軸と交叉して F aに 到達し光軸から離れていく。 光路 K 3 aを通る光は、 屈折レンズ 2 1で光軸と交 叉して F aに到達し光軸から離れていく。 光路 K 4ひを通る光は、 光軸と交叉し て屈折レンズ 2 1を通過し、 屈折レンズ 2 1を通過してからは光軸と交叉せずに F aに到達し、 その後光軸に近づくかあるいは遠ざかつていく。 このように、 a の像点 F aよりも屈折レンズ 2 1から離れた位置で aから放射される光が通過し ない領域が存在する。 同じように a' についても、 ひ' の像点 F a' よりも屈折 レンズ 2 1から離れた位置で a'から放射される光が通過しない領域が存在する。 この、 Fひよりも屈折レンズ 2 1から遠い部分の光路 K4 aと、 F a ' よりも屈 折レンズ 2 1から遠い部分の光路 K4 a ' で挟まれた領域内に赤外受光素子を設 置することによって a、 ひ' から放射される赤外線を受光しない受光部が得られ る。
aと屈折レンズ 2 1の間の光路 K 1 aより光軸から遠い部分からの光は、 a と同じ面内で光軸からの距離が aより大きい点からの光と置き換えられる。 この 点の屈折レンズ 2 1による像点は F aよりも光軸から遠くなることは幾何光学で 周知の通りである。 そのため、 aからの光を受光しないようにすれば、 ひよりも 光軸から遠い点からの光を受光せず、 したがってプローブ 1からの光を受光しな レ^ 同様に、 ひ' と屈折レンズ 2 1の間の光路 K 1 a' より光軸から遠い部分か らの光は、 α' と同じ面内で光軸からの距離が a ' より大きい点からの光と置き 換えられる。 この点の屈折レンズ 2 1による像点は F a' よりも光軸から遠くな ることは幾何光学で周知の通りである。 そのため、 a ' からの光を受光しないよ うにすれば、 α' よりも光軸から遠い点からの光を受光せず、 したがってプロ一 ブ 1からの光を受光しない。
このように、 F «よりも屈折レンズ 2 1から遠い部分の光路 K4 aと、 F a ' よりも屈折レンズ 2 1から遠い部分の光路 K 4 a' で挟まれた領域に赤外受光素 子 3を設置することで a、 a'から放射される赤外線を受光しないようにすれば、 自動的にプローブ 1から放射される赤外線も受光しない構成となる。
以下、 ひからの光を受光しないような赤外受光素子 3の位置を求める。
赤外受光素子 3は F aよりも屈折レンズ 2 1から遠い。 このとき、 次式が成り 立つ。
L a F≤ f +L 3 式 14
したがって
L 3≥L a F- f 式 15
ここで Lひ Fは屈折レンズ 21の中心から αの像点 F αまでの距離、 f は屈折 レンズ 21の中心から焦点 Fまでの距離、 L 3は焦点 Fから赤外受光素子 3まで の距離である。
図 7に示すように、 受光面は F αよりも屈折レンズ 21から遠いので、 ひから F αまでの各光路のうち受光面で赤外受光素子 3に最も近づくものは Κ4 αであ る。 したがって、 ひからの光を赤外受光素子 3で受光しないためには、 次式を満 たす必要がある。
r a S 4> r s 式 16
ここで、 rひ S 4は光路 K 4 aと赤外受光素子 3の受光面との交点 F a S 4か ら光軸までの距離、 r sは赤外受光素子 3の半径である。 また屈折レンズ 2 1の 半径を r 3、 光軸から像点 F aまでの距離を rひ Fとしたとき、 幾何光学で周知 の通り r 3、 r aF、 L aF、 r a S 4 L 3、 f は幾何関係として式 1 7を満 たす。
r 3 - r aF r aF - r as 4
LaF f +L3 -LaF
式 17
したがって式 18を満たす。
, 、 , f + L 3 、
raS4=raF- (r 3 - r CtF) X (- ~~—- l)
、 LaF y
式 18
式 18を式 16へ代入することで式 19が得られる。 L3<LaF-f + LaF\ 0tF- r S)
r 3 - r αΓ
式 1 9
式 1 5、 式 19から、 αから放射される光を赤外受光素子 3で受光しないための 条件は式 20となる。
LaF- f ≤L3<L«F- f _
r 3 _ - r aF
式 20
さらにひから光軸までの距離を rひ、 プロ一ブ 1の先端から屈折レンズ 21の 中心までの距離を L aとしたときに、 幾何光学で周知の通り、 r a、 Lひ、 r a F、 L a Fは幾何関係として前記した式 8を満たす。 したがって前記した式 9を 満たす。
式 9を式 20へ代入することにより、 aから放射される光を赤外受光素子 3で 受光しないための条件は式 21となる。
LaF-f gL3<LaF-f + L OtF (― な F- r S ^ a) r 3 * La- ra » LaF
式 2 1 また、 ガウスの公式から前記した式 1 1が成り立つ。 したがって前記した式 12 が成り立つ。
式 1 2を式 2 1に代入することにより、 aから放射される光を赤外受光素子
3で受光しないための条件は式 22となる。
f Xf .τ β< f_Xf_ . _ _ χ L X (r a - f -r s (La-f ) )
La一 f 一 Lひ一 f L -f r3X (Lo一 f)一 fひ ' f
式 22 以上のように、 aから放射される光を赤外受光素子 3で受光しないためには、 式 20、 あるいは式 21、 あるいは式 22の条件を満たすよう光学系を設計する 必要がある。 式 20、 式 21、 式 22で与えられる L 3だけ、 受光素子 3を屈折 レンズ 21の焦点からずらして設置することで、 プローブ 1から放射される赤外 線を赤外受光素子 3で受光せずに、 鼓膜およびノまたはその近傍から発せられプ ローブ 1の開口を通過した赤外線のみを赤外受光素子 3で受光させることができ る。 したがってプローブ 1からの赤外線を遮る導波管は不要となる。 また、 プロ —ブ 1からの熱を受ける導波管がないため、 屈折レンズ 2 1に高い熱伝導率の材 質を使用する必要がない。
以上の実施形態 1〜4において、 屈折レンズ 2 1は、 例えばポリエチレン等 のような 10 m前後の波長の赤外線を透過する合成樹脂を用いる。 ポリエチレ ンの熱物性値は、 熱伝導率 λが 0. 34 J/ms Κ、 熱容量は 2. 12 X 106
JZkgK、 である。 参考までに金属体の、 例えば銅の物性値を掲載すると熱 伝導率 λが 398 J Zm s K、 熱容量は 3. 43 X 106 J/k gK, となり、 合成樹脂の熱伝導率が小さくまた熱容量が小さいことがわかる。
このとき、低温の室内に放置されていた放射体温計を高温の室内に持ち込むと、 低温の屈折レンズ 21を含む受光部 17が、 その周囲の空気を冷却し露点以下に なる状態が過渡的に発生する。
しかし、 屈折レンズ 2 1は、 熱容量が小さいので表面の温度が上昇しやすく、 また熱伝導率が小さいので表面の熱が厚さ方向に拡散しない。 よって、 屈折レン ズ 21の表面が露点以下になったとしてもその時間は短く、結露は発生しにくい。 したがって、 放射体温計の周囲の温度が変化した場合でも結露の影響がない正確 な温度検出が可能な構成である。
以上、 受光部の集光素子として屈折レンズを用いた例を説明したが、 透過型 回折レンズを用いても同様に赤外受光素子を配置することにより鼓膜および Zま たはその近傍から発せられプローブ 1の開口を通過した赤外線のみを赤外受光素 子 3で受光させることができる他、 レンズの成形が容易という効果がある。 第 5の実施形態
次に本発明の実施形態 5を図 8を用いて説明する。 図 8は本発明の実施形態 5 における放射体温計の受光部およびプローブを示す構成断面図である。 ここで集 光素子 2 1は前記実施形態と異なり、 集光ミラーを用いている。 図 8において、 a, ひ' は集光ミラー 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内 壁へ接する直線がプローブ 1の先端面と交わる仮想先端点、 Fは集光ミラー 2 1 の焦点、 Fひ、 F ' はそれぞれ集光ミラ一 2 1による α、 ' の像点、 Κ ΐ α は αから光軸に対して同じ側の集光ミラー 2 1の縁で反射して F αへ進行する光 (マージナル光線) の光路、 Κ2 «は αから光軸と平行に進んで焦点 Fを通過し て Fひに到達する光の光路、 Κ3ひは αから集光ミラ一 2 1の中心で反射して F αに到達する光の光路、 Κ4ひは αから光軸を挟んで反対側の集光ミラー 2 1の 縁で反射して Fひに到達する光 (マージナル光線) の光路、 Κΐ α' は α' から 光軸に対して同じ側の集光ミラー 2 1の縁で反射して F α' へ進行する光 (マー ジナル光線) の光路、 Κ2 α' は α' から光軸と平行に進んで焦点 Fを通過して F a' に到達する光の光路、 Κ3 α' はひ' から集光ミラ一 2 1の中心で反射し て F a' に到達する光の光路、 K4ひ' は a' から光軸を挟んで反対側の集光ミ ラ一 2 1の縁で反射して F a' に到達する光 (マージナル光線) の光路、 FXは 光路 K 1 と光軸との交点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような 光学系を設計する。
赤外受光素子 3を遮光体 22に取り付け、 集光ミラー 2 1で反射する赤外線の みを赤外受光素子 3で受光するようにする。 集光ミラ一 2 1で反射した赤外線の みを受光する構成にした上で以下の設計を行う。
鼓膜および Zまたはその近傍から発せられプローブ 1の開口を通過した赤外光 のみを受光するためには、 プローブ 1から放射される赤外光を受光しないように すればよい。 そのため、 受光したい領域と受光したくない領域の境界に位置する 点を仮想し、 この点から、 光軸に対してこの仮想した境界に位置する点と同じ側 の集光ミラー 2 1の縁で反射する光 (マ一ジナル光線) の光路よりも、 光軸から 遠くに位置するようにプローブ 1を設置すればよい。 そこで、 上記仮想の境界に 位置する点を、 集光ミラー 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内壁へ接する直線がプローブ 1の先端面と交わる点 α、 α ' として、 F αとF α ' と F Xで形成される三角形の内側に赤外受光素子 3を設置する。 これにより、 プローブ 1をひと集光ミラ一 2 1の間で光路 K 1 α、 Κ 1 α ' よりも光軸から遠 くに位置させることになるため、 プローブ 1からの光を受光しない光学系が得ら れる。
上記について詳細を以下に述べる。 αから放射される光は光路 Κ 1 α、 Κ 2 ひ、 Κ 3 α、 Κ 4 αなどを通って αの像点 F aに到達する。 幾何光学で周知の通 り、 ひの像点 F aは光軸を挟んでひと反対側に形成される。図 8中に示すように、 光路 K 2 aを通る光は、 集光ミラー 2 1で反射して Fで光軸と交叉したのち光軸 から離れながら F aに到達する。 同じように、 光路 K l aを通る光は、 集光ミラ 一 2 1で反射して光軸と交叉したのち光軸から離れながら Fひに到達する。 光路 K 3 aを通る光は、 集光ミラ一 2 1で光軸と交叉したのち光軸から離れながら F aに到達する。光路 K 4 aを通る光は、光軸と交叉して集光ミラ一 2 1で反射し、 集光ミラー 2 1で反射してからは光軸と交叉せずに F aに到達する。このように、 光路 K 1 ひと光軸が交叉する点 F Xよりも集光ミラー 2 1から離れた位置かつ F aよりも集光ミラ一 2 1に近い位置で、 aから放射される光が通過しない領域が 存在する。 同じように、 a ' についても、 光路 K 1ひ' と光軸が交叉する点より も集光ミラ一 2 1から離れた位置かつ F a 'よりも集光ミラー 2 1に近い位置で、 a ' から放射される光が通過しない領域が存在する。 この集光素子の子午面内に ある、 F a、 F a ' 、 F Xで形成される三角形の内側よりに赤外受光素子 3を設 置することで、 ひ、 α ' から放射される光を受光しない受光部が得られる。
ひと集光ミラー 2 1の間の光路 Κ 1 αより光軸から遠い部分からの光は、 α と同じ面内で光軸からの距離が αより大きい点からの光と置き換えられる。 この 点の集光ミラー 2 1による像点は F αよりも光軸から遠くなることは幾何光学で 周知の通りである。 そのため、 αからの光を受光しないようにすれば、 ひよりも 光軸から遠い点からの光を受光せず、 したがってプローブ 1からの光を受光しな い。 同様に、 α ' と集光ミラ一 2 1の間の光路 K 1 α ' より光軸から遠い部分か らの光は、 ひ' と同じ面内で光軸からの距離が α ' より大きい点からの光と置き 換えられる。 この点の集光ミラー 2 1による像点は F α ' よりも光軸から遠くな ることは幾何光学で周知の通りである。 そのため、 α ' からの光を受光しないよ うにすれば、 α ' よりも光軸から遠い点からの光を受光せず、 したがってプロ一 ブ 1からの光を受光しない。
このように、 F aと F a ' と F Xで形成される三角形の内側に赤外受光素子 3を設置することでひ、 a ' から放射される赤外線を受光しないようにすれば、 自動的にプローブ 1から放射される赤外線も受光しない構成となる。
以下、 aからの光を受光しないような赤外受光素子 3の位置を求める。
赤外受光素子 3は F aよりも集光ミラー 2 1に近い。 このとき、 式 1が成り立 ち、 したがって式 2が成り立つ。 ここで L a Fは集光ミラー 2 1の中心から aの 像点 F aまでの距離、 f は集光ミラー 2 1の中心から焦点 Fまでの距離、 L 3は 焦点 Fから赤外受光素子 3までの距離である。
図 8に示すように、 受光面は光路 K 1 と光軸が交わる点 F Xと F aとの間で あるので、 aから F aまでの各光路のうち受光面で赤外受光素子 3に最も近づく ものは K l aである。 したがって、 aからの光を赤外受光素子 3で受光しないた めには、 式 3を満たす必要がある。 ここで、 r a S 1は光路 K 1 aと赤外受光素 子 3の受光面との交点 F a S 1から光軸までの距離、 r sは赤外受光素子 3の半 径である。 また集光ミラー 2 1の半径を r 3、 光軸から像点 F αまでの距離を r a Fとしたとき、 幾何光学で周知の通り r 3、 r a F、 r a S l、 L 3、 f は幾 何関係として式 4を満たし、 したがって式 5を満たす。 また式 5を式 3へ代入す ることで式 6が得られる。 式 2、 式 6から、 ひから放射される光を赤外受光素子 3で受光しないための条件は式 7となる。
さらに αから光軸までの距離を r , プローブ 1の先端から屈折レンズ 2 1の 中心までの距離を L αとしたときに、 幾何光学で周知の通り、 r a、 L a , r F、 L a Fは幾何関係として式 8を満たし、 したがって、 式 9を満たす。 式 9を 式 7へ代入することにより、 aから放射される光を赤外受光素子 3で受光しない ための条件は式 1 0となる。 また、 ガウスの公式から式 1 1が成り立ち、 したが つて、 式 1 2が成り立つ。 式 1 2を式 1 0に代入することにより、 aから放射さ れる光を赤外受光素子 3で受光しないための条件は式 1 3となる。
以上のように、 プローブ 1先端の aから放射される光を赤外受光素子 3で受 光しないためには、 式 7、 あるいは式 1 0、 あるいは式 1 3を満たすよう光学系 を設計する必要がある。 式 7、 式 1 0、 式 1 3で与えられる L 3だけ、 赤外受光 素子 3を集光ミラー 1 0の焦点からずらして設置することで、 プローブ 1から放 射される赤外線を赤外受光素子 3で受光せずに、 鼓膜および Zまたはその近傍か ら発せられプローブ 1の開口を通過した赤外線のみを赤外受光素子 3で受光させ ることができる。 第 6の実施形態
次に本発明の実施形態 6を図 9に基づいて説明する。 図 9は本発明の実施形態 6における放射体温計の受光部およびプローブを示す構成断面図である。 図 9に おいて、 ひ、 a ' は集光ミラ一 2 1の縁からこの縁と光軸に対して同じ側のプロ ーブ 1内壁へ接する直線がプローブ 1の先端面と交わる仮想先端点、 Fは集光ミ ラー 2 1の焦点、 F a、 F a ' はそれぞれ集光ミラ一 2 1による α、 a ' の像点、 K 1 αは αから光軸に対して同じ側の集光ミラ一 2 1の縁で反射して F αへ進行 する光 (マージナル光線) の光路、 Κ2 は αから光軸と平行に進んで焦点 Fを 通過して F αに到達する光の光路、 Κ 30;は αから集光ミラー 2 1の中心で反射 して F αに到達する光の光路、 Κ 4 αは αから光軸を挟んで反対側の集光ミラ一 2 1の縁で反射して F αに到達する光 (マージナル光線) の光路、 K1 α' は α ' から光軸に対して同じ側の集光ミラー 2 1の縁を通過して F α'へ進行する光(マ —ジナル光線) の光路、 Κ2 α' は から光軸と平行に進んで焦点 Fを通過し て F a' に到達する光の光路、 Κ3 α' は a' から集光ミラ一 2 1の中心で反射 して F a' に到達する光の光路、 K4ひ' は a' から光軸を挟んで反対側の集光 ミラー 2 1の縁で反射して F a' に到達する光 (マージナル光線) の光路、 FX は光路 K 1 aと光軸との交点である。
プローブ 1の開口を通過する赤外線のみを赤外受光素子 3で受光するような光 学系を設計する。
赤外受光素子 3を遮光体 22に取り付け、 集光ミラー 2 1で反射する赤外線の みを赤外受光素子 3で受光するようにする。 集光ミラー 2 1で反射した赤外線の み受光する構成にした上で以下の設計を行う。
鼓膜および Zまたはその近傍から発せられプローブ 1の開口を通過した赤外光 のみを受光するためには、 プローブ 1から放射される赤外光を受光しないように すればよい。 そのため、 受光したい領域と受光したくない領域の境界に位置する 点を仮想し、 この点から、 光軸に対してこの仮想した境界に位置する点と同じ側 の集光ミラ一 2 1で反射する光 (マ一ジナル光線) の光路よりも、 光軸から遠く に位置するようにプローブ 1を設置すればよい。 そこで、 上記仮想の境界に位置 する点を、 集光ミラー 2 1の縁からこの縁と光軸に対して同じ側のプローブ 1内 壁へ接する直線がプローブ 1の先端面と交わる点 a、 ' として、 F aよりも集 光ミラー 2 1から遠い部分の光路 K 4 aと、 F a ' よりも集光ミラ一 2 1から遠 い部分の光路 K 4 a 'で挟まれた領域に赤外受光素子 3を設置する。 これにより、 プローブ 1を aと集光ミラ一 2 1の間で光路 K l a、 K 1 a ' よりも光軸から遠 くに位置させることになるため、 プローブ 1からの光を受光しない光学系が得ら れる。
上記について詳細を以下に述べる。
ひから放射される光は光路 K 1 ひ、 K 2 ひ、 K 3 a , K 4 aなどを通ってひ の像点 Fひに到達する。 幾何光学で周知の通り、 aの像点 Fひは光軸を挟んで a と反対側に形成される。 図 9中に示すように、 光路 K 2 aを通る光は、 集光ミラ 一 2 1で反射して Fで光軸と交叉して F aに到達し光軸から離れていく。 同じよ うに、 光路 K l aを通る光は、 集光ミラ一 2 1で反射して光軸と交叉して F aに 到達し光軸から離れていく。 光路 K 3 aを通る光は、 集光ミラー 2 1で光軸と交 叉して F aに到達し光軸から離れていく。 光路 K 4ひを通る光は、 光軸と交叉し て集光ミラー 2 1で反射し、 集光ミラー 2 1で反射してからは光軸と交叉せずに F aに到達し、 その後光軸に近づくかあるいは遠ざかつていく。 このように、 a の像点 F aよりも集光ミラ一 2 1から離れた位置でひから放射される光が通過し ない領域が存在する。 同じように a ' についても、 aの像点 F aよりも集光ミラ 一 2 1から離れた位置で aから放射される光が通過しない領域が存在する。この、 F aよりも集光ミラー 2 1から遠い部分の光路 K 4 と、 F a ' よりも集光ミラ — 2 1から遠い部分の光路 K 4ひ' で挟まれた領域内に赤外受光素子 3を設置す ることによって a、 から放射される赤外線を受光しない受光部が得られる。 aと集光ミラー 2 1の間の光路 K 1 aより光軸から遠い部分からの光は、 ひ と同じ面内で光軸からの距離が aより大きい点からの光と置き換えられる。 この 点の集光ミラー 2 1による像点は F aよりも光軸から遠くなることは幾何光学で 周知の通りである。 そのため、 ひからの光を受光しないようにすれば、 aよりも 光軸から遠い点からの光を受光せず、 したがってプローブ 1からの光を受光しな い。 同様に、 α' と集光ミラー 2 1の間の光路 K 1 α' より光軸から遠い部分か らの光は、 α' と同じ面内で光軸からの距離が α' より大きい点からの光と置き 換えられる。 この点の集光ミラ一 21による像点は Fひ' よりも光軸から遠くな ることは幾何光学で周知の通りである。 そのため、 ひ' からの光を受光しないよ うにすれば、 α' よりも光軸から遠い点からの光を受光せず、 したがってプロ一 ブ 1からの光を受光しない。
このように、 F αよりも集光ミラ一 2 1から遠い部分の光路 Κ4 αと、 F a' よりも集光ミラー 2 1から遠い部分の光路 K4 a' で挟まれた領域に赤外受光素 子 3を設置することで a、 α'から放射される赤外線を受光しないようにすれば、 自動的にプローブ 1から放射される赤外線も受光しない構成となる。
以下、 aからの光を受光しないような赤外受光素子 3の位置を求める。
赤外受光素子 3は F ο;よりも集光ミラ一 21から遠い。 このとき、 式 14が成 り立ち、 したがって式 15が成り立つ。 ここで L a Fは集光ミラ一 2 1の中心か ら aの像点 Fひまでの距離、 f は集光ミラー 2 1の中心から焦点 Fまでの距離、 L 3は焦点 Fから赤外受光素子 3までの距離である。
図 9に示すように、 受光面は F aよりも集光ミラー 21から遠いので、 ひから F aまでの各光路のうち受光面で赤外受光素子 3に最も近づくものは K4 aであ る。 したがって、 ひからの光を赤外受光素子 3で受光しないためには、 式 16を 満たす必要がある。 ここで、 r a S 4は光路 K 4 aと赤外受光素子 3の受光面と の交点 F a S 4から光軸までの距離、 r sは赤外受光素子 3の半径である。 また 集光ミラー 2 1の半径を r 3、光軸から像点 F aまでの距離を r a Fとしたとき、 幾何光学で周知の通り r 3、 r aF、 L aF、 r aS4、 L 3、 f は幾何関係と して式 17を満たし、 したがって式 18を満たす。 式 18を式 16へ代入するこ とで式 19が得られる。 式 1 5、 式 19から、 aから放射される光を赤外受光素 子 3で受光しないための条件は式 2 0となる。
さらに αから光軸までの距離を rひ、 プローブ 1の先端から集光ミラ一 2 1の 中心までの距離を Lひとしたときに、 幾何光学で周知の通り、 rひ、 L a , r F、 Lひ Fは幾何関係として式 8を満たし、 したがって式 9を満たす。 式 9を式 2 0へ代入することにより、 ひから放射される光を赤外受光素子 3で受光しない ための条件は式 2 1となる。 また、 ガウスの公式から式 1 1が成り立つので、 式 1 2が成り立つ。 式 1 2を式 2 1に代入することにより、 αから放射される光を 赤外受光素子 3で受光しないための条件は式 2 2となる。
以上のように、 αから放射される光を赤外受光素子 3で受光しないためには、 式 2 0、 あるいは式 2 1、 あるいは式 2 2の条件を満たすよう光学系を設計する 必要がある。 式 2 0、 式 2 1、 式 2 2で与えられる L 3だけ、 赤外受光素子 3を 集光ミラ一 2 1の焦点からずらして設置することで、 プローブ 1から放射される 赤外線を赤外受光素子 3で受光せずに、 鼓膜および Ζまたはその近傍から発せら れプローブ 1の開口を通過した赤外線のみを赤外受光素子 3で受光させることが できる。 第 7の実施形態
次に本発明の実施形態 7を図 1 0を用いて説明する。 図 1 0は集光素子とし て集光ミラーを用いた例において、 集光ミラーに入射する第 1の光軸と反射して 集光ミラーから出射する第 2の光軸を屈曲させた例を示す。 2 1は集光素子とし ての凹面鏡でその焦点は Fにある。 このうちの一部太線で示す Α〜Α ' の部分の みを切り出して集光ミラーとして使うことにより、 この中心を通る光軸は一点鎖 線で示すように屈曲させて使うことができるようになる。 ここで赤外受光素子 3 は集光ミラー 2 1の焦点 Fより後方に、 詳細には前記した実施形態で示す範囲に 配置すればよい。 放射体温計の使いやすさを考慮すると、 図 1に戻ってプローブ 1と本体 13 を約 115度屈曲させるのが好ましい。 それは本体 13を手で持って、 プローブ 1を外耳道に挿入する場合、 自然な手の位置で体温測定できる角度が約 115度 だからである。 したがって、 図 10において光軸を約 115度屈曲させる構成を とると受光部は本体に収納しやすくなる。 また自然な手の位置で体温測定するこ とで、 プローブを外耳道に挿入する方向は安定しやすくなり、 体温の測定精度も 向上させることができる。
前記実施形態 5〜 7において集光ミラー 21の材料は、 実施形態 1〜 4で説明 した屈折レンズと異なり、 赤外線を透過させる必要がない。 例えば、 集光ミラー 21の材料としてここでは、 ポリプロピレン, ポリ力一ボネイトを用い、 その表 面に金属の蒸着またはメツキを施した構成とする。 ボリプロピレンの物性値は、 熱伝導率 λが 0. 12 JZms Κ、 熱容量は 1. 7 6 X 1 06 JZkgK、 で ある。 またポリ力一ポネイトの物性値は、 熱伝導率 λが 0. 19 JZmsK、 熱 容量は 1. 5 1 X 1 06 J/kgK、 であり、 双方とも屈折レンズの例で説明 したポリエチレンと同様に十分小さい。
この構成により、 プローブ 1から放射される赤外線を赤外受光素子 3で受光せ ずに鼓膜および Zまたはその近傍からの放射光のみを赤外受光素子 3で受光させ ることができるので、 集光素子 21が被測定物から伝わる熱の影響を受け難く、 光学系に高い熱伝導性を必要としない。 そして、 集光素子は、 熱容量と熱伝導率 が小さいので、 屈折レンズの例と同様に、 温度が変化した場合でも結露の影響が ない正確な温度検出が可能な構成とすることができる。
ただし、集光ミラーに用いる材質としてはポリプロピレン,ポリ力一ボネィト, ポリエチレンに限られるものではない。
以上、 受光部の集光素子として集光ミラ一を用いた例を説明したが、 これは 屈折レンズを使う場合に比べ、 透過損失がなく受光量を増大させる効果がある。 また、 反射型回折レンズを用いても同様に赤外受光素子 3を配置することにより 鼓膜および Zまたはその近傍から発せられプローブ 1の開口を通過した赤外線の みを赤外受光素子 3で受光させることができる他、 ミラーの成形が容易という効 果がある。
前記の各実施形態において、 集光素子 2 1で透過または反射し、 赤外受光素子 3に入射しないプローブ 1の内面からの赤外線は、 遮光体 2 2の内面に入射する ことになる。 しかし、 この遮光体 2 2の内面は反射抑制手段であるため、 入射し た赤外線が反射して赤外受光素子 3に入射するようなことはない。 したがつて、 測定誤差の要因となるプローブ 1からの赤外線放射が赤外受光素子 3に入射する のを確実に阻止し、 正確な温度検出ができる。
遮光体 2 2は、 例えば P C、 P P S、 P B T、 P P等のような合成樹脂を用い る。 一般にこれら合成樹脂の放射率は 0 . 9前後と高い値になることが知られて いる。 また、 物体に入射する赤外線は、 反射成分と吸収成分と透過成分に分けら れるが、 透過のない場合を考えると、 反射率と吸収率の和は 1になる。 ここでキ ルヒホッフの法則より、 放射率と吸収率は等しいので、 結果として放射率の高い 合成樹脂は反射率が低いということが言える。 したがって、 これらの合成樹脂を 使用して遮光体 2 2を構成することで、 遮光体 2 2自体が反射抑制手段となり、 赤外受光素子 3以外の位置へ進行した不要な赤外線が、 遮光体 2 2で反射して赤 外受光素子 3に入射してしまうことがない。 したがって、 受光領域を制限しプロ —ブ 1からの不要な赤外線を赤外受光素子 3に入射させない作用を完全なものと することができる。
また、 遮光体 2 2は赤外線の透過の小さい合成樹脂を用い、 また赤外線が透過 しないだけの十分な厚さを持たせて設計することはいうまでもない。 また、 遮光 体 2 2を合成樹脂とすることにより、 集光素子と同様の原理により遮光体 2 2に も結露が発生しにくい。 もし遮光体 2 2が金属ならば、 遮光体 2 2に発生した結 露が移動することにより集光素子 2 1に付着し、 その結果、 集光能力を低下させ る可能性があり、 また遮光体 2 2に発生した結露により赤外光が散乱して赤外受 光素子 3にプローブ 1から放射された赤外光が入射する可能性もあるが、 遮光体 2 2が樹脂ならば結露が発生しないためそのようなことがない。
また、 以上説明した集光素子 2 1と赤外受光素子 3の配置で、 プローブから 放射される赤外線が赤外受光素子 3に至らない範囲内でプローブの形状を変える ことは可能であり、 図 3 A〜Dに示した長さ方向の寸法の違いだけでなく、 径の 違う複数のプローブを備えてもよい。 特に長さ方向の寸法を短くすれば、 同じ集 光素子と赤外受光素子の配置で径を細くでき、 幼児に対応しやすいプローブも備 えることができる効果がある。
以上の各実施形態において赤外受光素子 3はその出力が対象物との温度差に 相関のあるサーモパイル型であればそのままの構成で使えばよく、 赤外受光素子 3の出力が測定対象の温度変化に対して相関のある焦電型であれば、 入射する赤 外線を強制的に変化させるチヨツバを設ければよい。 次にこの赤外受光素子 3が 焦電型である場合に必要なチヨツバの構成について実施形態に基づき説明する。 第 8の実施形態
本発明の実施形態 8を図 1 1〜図 1 4を用いて説明する。 図 1 1は本発明の 実施形態 8を示す放射体温計の構成ブロック図であり、 図 1 2はチヨツバ部分の 要部拡大図であり、 図 1 3は直流モー夕の電力供給パターンを示すタイミングチ ャ一トであり、 図 1 4はチヨツバ駆動時に発生する音の特性図である。
チヨツバ 5は赤外受光素子 3に対面する面を鏡面とし、 継手 2 3を介して直 流モータ 6に取り付けられており、 直流モー夕 6により継手 2 3がストッパ 2 4 に衝突しながら往復回転駆動し、 チヨッパ 5は赤外受光素子 3に至る赤外線の入 光、 遮光状態の切り替えを繰り返し断続する。 赤外受光素子 3は焦電型であり、 感知する赤外線量の微分値に相関を持って出力が変化する。 2 5はチヨッパ 5と 赤外受光素子 3の間に設けた視野限定手段で、赤外線が通過する小孔 2 6を持ち、 少なくとも内面を黒体とした遮光体で構成している。
上記構成において、 チヨツバ 5が入光状態にあるとき、 図 1 1中の点線で光 線を示すように、 小孔 2 6を通過して赤外受光素子 3に入射する赤外線は、 集光 素子 2 1で反射したプローブ 1の先端開口部を通過した赤外線のみであり、 例え ば集光素子 2 1以外から放射され、 小孔 2 6を通過した赤外線は視野限定手段 2 5の黒体の内面で吸収され赤外受光素子 3には入射しない。 したがって、 視野限 定手段 2 5により赤外受光素子 3に入射する赤外線の視野を限定し、 さらに、 視 野限定手段 2 5の内面を黒体で構成することで、 赤外受光素子 3の視野を確実に 限定することができるので、 チヨッパ 5を小型にすることができる。
一方、 チヨッパ 5が遮光状態にあるときは、 赤外受光素子 3自身が放射する赤 外線がチヨッパ 5の鏡面で反射され、 視野限定手段 2 5の小孔 2 6を通過して赤 外受光素子 3に入光する。 ここで、 視野限定手段 2 5の内面から放射される赤外 線はチヨッパ 5による入光と遮光の状態の変化にかかわらず赤外受光素子 3に入 射するので、 赤外受光素子 3の出力は視野限定手段 2 5の内面から放射される赤 外線については相殺される。 したがって、 赤外受光素子 3は、 チヨツバ 5の断続 動作により鼓膜および Zまたはその近傍と赤外受光素子 3の温度差に相関のある 値を出力する。
また、 赤外受光素子 3の近傍には赤外受光素子 3の温度を検知するための温 度センサ 2 7を配設している。 温度センサ 2 7は一般周知のサ一ミス夕によるも のである。 赤外受光素子 3と温度センサ 2 7の出力は信号処理手段 4で温度換算 されるものであり、 赤外受光素子 3の出力は増幅器 2 8で増幅し、 増幅器 2 8で 増幅した出力電圧と温度センサ 2 7の出力電圧は A D変換器 2 9でデジタル化す る。 3 0は温度換算手段で A D変換器 2 9の出力を基に鼓膜および Zまたはその 近傍の温度換算を行う。 赤外受光素子 3の出力はチヨツバ 5の断続動作により交 流波形となり、 その振幅は鼓膜および/またはその近傍の温度と赤外受光素子 3 の温度の 4乗の差に比例する。 温度換算手段 3 0はこの関係に基づき、 鼓膜およ び Zまたはその近傍の温度換算を行う。
また、 3 1は直流モータ 6の駆動制御を行うモー夕制御手段で、 直流モー夕 6を駆動してチヨツバ 5の位置合わせを行う位置合わせ駆動手段 3 2、 温度検出 時に直流モー夕 6の回転方向を交互に反転させる温度検出駆動手段 3 3、 位置合 わせ駆動手段 3 2と温度検出駆動手段 3 3を切り替える切替手段 3 4とを有して いる。 さらに温度検出駆動手段 3 3は遮光状態から入光状態に切り替える正電力 供給パターン 3 5と、 入光状態から遮光状態に切り替える負電力供給パターン 3 6よりなる。
次に、 図 1 2を用いてチヨツバ部の構成について詳しく説明する。 図 1 2に おいて、 チヨツバ 5が遮光状態で停止している状態を実線で示し、 入光状態で停 止している状態を破線で示している。 赤外線を遮光するチヨッパ 5は円形形状で あり、 継手 2 3によって直流モ一夕 6のシャフト 3 7に固定されている。 3 8は 視野限定手段 2 5によって限定された赤外受光素子 3の遮光位置における視野を 示しており、 チヨツバ 5は視野 3 8より大きい構成とする。 チヨツバ 5を円形形 状とすることにより、 角がなくなり、 小型にすることができる。 また、 チヨツバ 5を視野 3 8より大きくすることにより、 赤外受光素子 3に入射する赤外線量の 入光状態と遮光状態の差を大きくすることができる。 すなわち、 赤外受光素子 3 の出力である交流波形の振幅が大きくなるため、 S /Nが向上し、 温度検出精度 を向上させることができる。
また、 ストッパ 2 4はチョッパ 5が遮光状態で停止するときに継手 2 3が接 する遮光停止部 2 4 aと、 入光状態で停止するときに接する入光停止部 2 4 bと からなつており、 遮光停止部 2 4 aおよび入光停止部 2 4 bは、 チヨッパ 5の遮 光状態における停止位置から入光開始状態までの移動角度 6>ェと、 遮光板の入光 状態における停止位置から遮光開始状態までの移動角度 0 2とが等しくなる位置 に設ける。 上記構成で直流モ一夕 6が正転、 反転を繰り返すとチヨツバ 5はスト ッパ 2 4の入光停止部 2 4 aと遮光停止部 2 4 bに衝突して停止する。
次に、 図 1 3を用いてモー夕制御手段 3 1の具体的動作を説明する。 図 1 3の 直流モータ 6への供給電圧を示す図において、 検温開始時には、 切替手段 3 4は まず位置合わせ駆動手段 3 2を動作させてチヨツバ 5の位置合わせを行う。 すな わち図 1 3に示すように、 位置合わせ駆動手段 3 2は検温開始時に t。時間直流 モー夕 6に電力を供給し、 チヨツバ 5を図 1 2に示す遮光方向に回転させる。 こ こで t。は遮光板が赤外線の入光状態で停止している状態 (破線) から遮光状態 で停止する状態 (実線) に移動するのに要する時間より長い時間とする。 これに より、 検温開始以前にチヨッパ 5が遮光停止部 2 4 aと入光停止部 2 4 bの間の どの位置に停止していたとしても、チヨッパ 5を遮光停止部 2 4 aに衝突させて、 常に遮光状態で停止させることができ、 チヨツバ 5の位置合わせを行うことがで きる。
そして、 チヨッパ 5の位置合わせを行った後、 切替手段 3 4は温度検出駆動 手段 3 3に切り替え、 温度検出駆動手段 3 3は温度検出を行うために図 1 3示す ように直流モー夕 6に電力を供給し、 チヨッパ 5を駆動する
tェの期間はチヨッパ 5を入光状態に駆動し入光状態で静止させる正電力供給 期間で、 正電力供給パターン 3 5により電力供給する。 t 2の期間はチヨツバ 5 を遮光状態に駆動し遮光状態で静止させる負電力供給期間で、 負電力供給パター ン 3 6で電力供給する。
正電力供給期間 t iと負電力供給期間 t 2とは同じ時間であり、 温度検出駆動 手段 3 3は直流モー夕 6の回転方向を等間隔で交互に反転させている。 そして、 チヨツバ 5の駆動により、 図 1 3に示すように赤外線の入光と遮光とが繰り返さ れる。 t l aは、 図 1 2で示したようにチヨツバ 5が遮光状態における停止位置 から入光を開始するまでの移動角度 0 を移動する時間であり、 t l bは入光を開 始してから完全に入光状態となるまでの移動角度 0。を移動する時間である。 そ して、 t l cは、 さらにそこから移動してストツバ 2 4の入光停止部 2 4 bに衝 突して停止している時間である。 また同様に、 t 2 aはチヨツバ 5が入光状態に おける停止位置から遮光を開始するまでの移動角度 0 2を移動する時間であり、 t 2 bは遮光を開始してから完全に遮光状態となるまでの移動角度 0。を移動する 時間である。 そして、 t 2 cは、 さらにそこから移動してストツバ 2 4の遮光停 止部 2 4 aに衝突して停止している時間である。
今、 移動角度 0 iと 0 2とが等しくなるようにストツバ 2 4を設けたことによ り t l aと t 2 aが等しい。 また、 移動角度 0。を移動する時間である t l bと t 2 b も等しく、 さらに、 t iと t 2が等しくなるよう制御しているので、 赤外線の入 光時間 t l dと遮光時間 t 2 dとを等しくすることができる。
このように正確にデューティ 5 0 %で入光を断続することで、 赤外受光素子 3の出力感度 (振幅 V) を大きく得ることができる。 すなわち、 赤外受光素子 3 の出力が過渡的に変化する時間内においては入光と遮光の時間が等しくなければ 出力感度は短い方の時間で規制される性質がある。 したがって、 入光時間と遮光 時間を等しくすることで、 最も効率良く出力感度を得ることができ、 精度の高い 温度検出を行うことができる。
また、 ストッパ 2 4は、 継手 2 3の衝突による衝撃を吸収する衝撃緩衝材で 構成しているので、 継手 2 3の変形等がなく、 信頼性、 耐久性を高める効果があ る。 特に軟性ゴム材料で構成した場合には、 衝突するときに発生する音を低減で き、 耳に入れて温度検出を行うような放射体温計においては効果が大きい。 図 1 4にストツバ 2 4のゴム材料の硬度と発生する音のレベルの特性を示す。 図 1 4 は上記構成でプローブ 1の先端から 1 0 mmの位置で音のレベルを計測した実験 結果であり、ゴム材料の硬度は J I S K 6 3 0 1の硬度計で測定したものである。 図示したようにストツバ材料としては軟らかいほど静音効果があるが、 ある程度 以上衝突音を低減しても直流モー夕 6自身の回転により発生する音が勝り音レべ ルは下がらない。 図 1 4は H S 4 0程度の軟性ゴム材料で構成することが望まし いことを意味している。 なお軟性ゴム材料を使用する場合、 粘着性によりチヨッ パ 5が動かなくなることを避けるために、 粉体を塗布するなどの表面処理を施し てもよい。
このようにして正電力供給パターン 3 5と負電力供給パターン 3 6とを交互 に繰り返す電力供給パターンに基づいて、 図 1 3に示すように赤外線の入光と遮 光とが繰り返される。 ここで、 図の斜めの直線は入光から遮光へ、 または遮光か ら入光へと変化する途中の状態を示しており、 水平の直線は完全に入光または遮 光している状態を示している。 このとき、 赤外受光素子 3の出力は、 図 1 3に示 すような交流的波形となり、 赤外線の入光状態におけるピーク値と遮光状態にお けるピーク値との差 (振幅 V) は、 鼓膜および Zまたはその近傍の温度と赤外受 光素子 3自身の温度の 4乗差に比例した値となる。
また、 入光状態と遮光状態とを切りかえる時間 tい すなわち、 直流モータ 6 の回転方向を交互に反転させる時間は、 赤外受光素子 3の応答時定数 τより長い 時間とする。 これにより、 赤外受光素子 3の出力は高出力となり、 増幅器 2 8の 増幅率を小さくすることができるので、 ノイズの影響が小さくなり、 温度測定精 度を向上させることができる。
また、 温度検出駆動手段 3 3は、 連続して電力を供給する正電力供給パ夕一 ン 3 5と負電力供給パターン 3 6とを交互に繰り返して、 直流モー夕 6を交互に 反転させチヨツバ 5による入光と遮光を切り替えるので、 入光時間、 遮光時間は 安定し、 またチヨツバの停止位置での揺動も起こさないので、 チヨツバは十分小 型にしても入光と遮光の状態を安定して切り替えることができ、 小型で精度の高 い温度検出を行うことができる。 第 9の実施形態
次に温度検出駆動手段による正負電力供給パターンが前記実施形態とは異な る例を図 1 5〜図 1 6を基に説明する。 図 1 5は本発明の実施形態 9の温度検出 駆動手段の構成ブロック図であり'、 図 1 6は直流モー夕の電力供給パターンを示 すタイミングチャートである。
図 1 5において、 温度検出駆動手段 3 3は入光方向に電力を供給する正電力 供給パターン 3 5と、 遮光方向に電力を供給する負電力供給パターン 3 6とを交 互に繰り返す。 正電力供給パターン 3 5は初めに電力を供給する初期電力供給期 間 3 9 aと、 その後電力を減少させて供給する減少電力供給期間 4 0 aとからな り、 負電力供給パターン 3 6は、 初めに電力を供給する初期電力供給期間 3 9 b と、その後電力を減少させて供給する減少電力供給期間 4 0 bとからなる。なお、 放射体温計のその他の構成要素は第 8の実施形態と同様であり、説明を省略する。 上記構成において、 温度検出駆動手段 3 3は図 1 6に示す電力供給パターン に基づいて直流モータ 6を制御する。
まず、 温度検出駆動手段 3 3は入光方向に電力を供給する。 すなわち、 正電力 供給パターンのうち、 初めの初期電力供給期間 t i iの間は直流モ一夕 6に入光 方向に電力 P iを供給する。 この間に、 直流モ一夕 6は入光方向に回転してチヨ ツバ 5が赤外受光素子 3を通過し始め、 遮光状態から入光状態へと切り替わり、 ストツバ 2 4に衝突して停止する。 そして、 その後の減少電力供給期間 t 1 2の 間は、 直流モー夕 6に入光方向に、 電力 P iより小さい値の電力 P 2を供給し、 チヨッパ 5をストツバ 2 4に押し当てて停止位置を維持する。
次に、 温度検出駆動手段 3 3は遮光方向に電力を供給する。 すなわち、 負電力 供給パターンのうち、 初めの初期電力供給期間 t 2 1の間は直流モー夕 6に遮光 方向に電力 P iを供給する。 この間、 直流モ一夕 6は遮光方向に回転して、 チヨ ツバ 5が赤外受光素子 3に向かって動き始め、 入光状態から遮光状態へと切り替 わり、 ストツバ 2 4と衝突して停止する。 そして、 その後の減少電力供給期間 t 2 2の間は、 直流モー夕 6に遮光方向に、 電力 P iより小さい値の電力 P 2を供給 し、 チヨツバ 5をストツバ 2 4に押し当てて停止位置を維持する。
ここで、 初期電力供給期間の時間 t nまたは t 2 1は、 実験により求めたチヨ ツバ 5がストツバ 2 4に衝突するのに要する時間より長い時間である。 詳細には ストッパ 2 4を軟性ゴムとした場合、 継手 2 3の部分がストツバ 2 4に衝突した 瞬間にストッパ 2 4に食い込み、 その反動で跳ね返り、 さらにストッパ 2 4に再 度押し当てる揺動がわずかではあるが発生する。 この揺動は減衰しながら自然停 止する。 もちろん従来例で示した水晶時計のムーブメントやパルスモータを使う 場合よりは揺動の程度ははるかに小さいのではあるが、 望ましくは初期電力供給 期間 1; ^、 t 2 1はこの自然停止に要する時間よりも長くするのがよい。 また、 減少電力供給期間の電力 P 2は、 ストッパ 2 4によって停止したチヨッパ 5の位 置を維持するのに必要な電力でよい。
このようにして正電力供給パターン 3 5と負電力供給パターン 3 6とを交互に 繰り返す電力供給パターンに基づいて、 図 1 6に示すように赤外線の入光と遮光 とが繰り返される。 したがって、 本実施形態によると、 直流モー夕 6に電力を供 給してチヨツバ 5を駆動させ、チヨッパ 5がストツバ 2 4に衝突して停止した後、 電力を減少させて供給し、 チヨツバ 5の位置を維持するので、 消費電力を低減す ることができ、 そして、 入光時間、 遮光時間は安定し、 またチヨツバの停止位置 での揺動も起こさないので、 チヨツバは十分小型にしても入光と遮光の状態を安 定して切り替えることができ、 小型で精度の高い温度検出を行うことができる。 なお、 本実施形態では初期電力供給期間の時間 t iい t 2 1はチヨツバ 5がス トッパ 2 4に衝突するのに要する時間より長い時間としたが、 それよりも短い時 間として、 初期電力 の供給後、 直流モー夕 6の慣性を利用してチヨツバ 5を ストツバ 2 4に衝突させる場合、 直流モー夕 6が慣性で回転しているため、 チヨ ッパ 5はストツバ 2 4との衝突時に若干の跳ね返りを起こす恐れがあるが、 この 跳ね返りを考慮してストッパ 2 4の寸法を設計すれば問題はなく、 これにより、 さらなる電力低減が可能となる。 第 1 0の実施形態
図 1 7は本発明の実施形態 1 0の直流モー夕の電力供給パターンを示す夕イミ ングチヤ一卜である。 本実施形態では、 温度検出駆動手段 3 3は図 1 7に示す電 力供給パ夕一ンに基づいて直流モー夕を制御する。
まず、 温度検出駆動手段 3 3は入光方向に電力を供給する。 すなわち、 正電力 供給パターンのうち初めの初期電力供給期間 t ^の間は、 直流モー夕 6に入光 方向に電力 P iを供給する。 この間に、 直流モータ 6は入光方向に回転してチヨ ッパ 5が赤外受光素子 3を通過し始め、 遮光状態から入光状態へと切り替わり、 ストツバ 2 4に衝突して停止する。 そして、 その後の減少電力供給期間 t 1 2の 間は、 直流モー夕 6に入光方向に、 初期電力供給期間 t ^の間の電力と同じ電 力 P iを間欠的に供給し、 チヨツバ 5をストッパ 2 4に間欠的に押し当てて停止 位置を維持する。
次に、 温度検出駆動手段 3 3は遮光方向に電力を供給する。 すなわち、 負電力 供給パターンのうち、 初めの初期電力供給期間 t 2 1の間は直流モー夕 6に遮光 方向に電力 P iを供給する。 この間、 直流モー夕 6は遮光方向に回転して、 チヨ ツバ 5が赤外受光素子 3に向かって動き始め、 入光状態から遮光状態へと切り替 わり、 ストッパ 2 4と衝突して停止する。 そして、 その後の減少電力供給期間 t 2 2の間は、 直流モー夕 6に遮光方向に、 初期電力供給期間 t 2 1の間の電力と同 じ電力 P を間欠的に供給し、 チヨツバ 5をストツバ 2 4に間欠的に押し当てて 停止位置を維持する。
このようにして図 1 7に示す電力供給パターンに基づいて直流モー夕 6を制御 することにより、 図 1 7に示すように赤外線の入光と遮光とが繰り返される。 したがって、 本実施形態によると、 直流モータ 6に初めに電力を供給してチヨ ツバ 5を駆動させ、 チヨツバ 5をストツバ 2 4に衝突させて停止させた後は、 電 力を間欠的に供給してチヨツバ 5の位置を維持するので、 実施形態 9において電 力を減少させて供給する場合に比べて簡単な回路構成で消費電力を低減すること ができ、 そして、 チヨツバの駆動による入光時間、 遮光時間は安定し、 またチヨ ツバの停止位置での揺動も起こさないので、 チヨツバは十分小型にしても入光と 遮光の状態を安定して切り替えることができ、 小型で精度の高い温度検出を行う ことができる。 第 1 1の実施形態
図 1 8は本発明の実施形態 1 1の直流モータの電力供給パターンを示す夕イミ ングチャートである。 本実施形態では、 温度検出駆動手段 3 3は図 1 8に示す電 力供給パターンに基づいて直流モータを制御する。
まず、 温度検出駆動手段 3 3は入光方向に電力を供給する。 すなわち、 正電力 供給パターンのうち初めの初期電力供給期間 t nの間は、 直流モー夕 6に入光 方向に電力 P iを供給する。 この間に、 直流モー夕 6は入光方向に回転してチヨ ッパ 5が赤外受光素子 3を通過し始め、 遮光状態から入光状態へと切り替わり、 ストッパ 2 4に衝突して停止する。 そして、 その後の減少電力供給期間 t 1 2の 間は、 直流モータ 6への電力の供給を休止する。
次に、 温度検出駆動手段 3 3は遮光方向に電力を供給する。 すなわち、 負電力 供給パターンのうち、 初めの初期電力供給期間 t 2 1の間は直流モータ 6に遮光 方向に電力 P iを供給する。 この間、 直流モ一夕 6は遮光方向に回転して、 チヨ ッパ 5が赤外受光素子 3に向かって動き始め、 入光状態から遮光状態へと切り替 わり、 ストッパ 2 4と衝突して停止する。 そして、 その後の減少電力供給期間 t 2 2の間は、 直流モ一夕 6への電力の供給を休止する。
ここで、 減少電力供給期間 t 1 2、 t 2 2が十分短ければこの間の電力供給を休 止してもチヨッパ 5がストツバ 2 4からずれることはない。 それはチヨツバ 5が ストッパ 2 4からずれる要因として人の手の振動が考えられるが、 t 1 2、 t 2 2 が十分短く例えば 0 . 1秒未満のような時間であれば、 人の手の振動周期の方が 十分長いのでチヨッパ 5はほとんどずれないからである。
このようにして図 1 8に示す電力供給パターンに基づいて直流モー夕 6を制御 することにより、 図 1 8に示すように赤外線の入光と遮光とが繰り返される。 したがって、 本実施形態によると、 初期の電力供給でチヨツバ 5がストツバ 2 4と衝突して停止後、 電力を供給しないので、 さらに消費電力を減少させること ができる。 そして、 チヨツバの駆動による入光時間、 遮光時間は安定し、 またチ ョツバの停止位置での揺動も起こさないので、 チヨツバは十分小型にしても入光 と遮光の状態を安定して切り替えることができ、 小型で精度の高い温度検出を行 うことができる。 第 1 2の実施形態
図 1 9は本発明の実施形態 1 2の直流モー夕の電力供給パターンを示すタイ ミングチャートである。 本実施形態では、 温度検出駆動手段 3 3は図 1 9に示 す電力供給パターンに基づいて直流モー夕を制御する。
まず、 温度検出駆動手段 3 3は入光方向に電力を供給する。 すなわち、 正電力 供給パターンのうち初めの初期電力供給期間 t i iの間は、 直流モータ 6に入光 方向に電力 P iを供給する。 この間に、 直流モー夕 6は入光方向に回転してチヨ ッパ 5が赤外受光素子 3を通過し始め、 遮光状態から入光状態へと切り替わり、 ストッパ 2 4に衝突して停止する。 その後、 減少電力供給期間 t 1 2の初めの t 丄 2 aの間は直流モー夕 6への電力の供給を休止し、 最後の t 1 2 bの間に電力 P iを 供給する。
次に、 温度検出駆動手段 3 3は遮光方向に電力を供給する。 すなわち、 負電力 供給パターンのうち、 初めの初期電力供給期間 t 2 1の間は直流モー夕 6に遮光 方向に電力 P iを供給する。 この間、 直流モー夕 6は遮光方向に回転して、 チヨ ッパ 5が赤外受光素子 3に向かって動き始め、 入光状態から遮光状態へと切り替 わり、 ストツバ 2 4と衝突して停止する。 そして、 その後の減少電力供給期間 t 2 2の間の初めの t 2 2 aの間は直流モ一夕 6への電力の供給を休止し、 最後の t 2 2 bの間に電力 P iを供給する。
このようにして図 1 9に示す電力供給パターンに基づいて直流モー夕 6を制御 することにより、 図 1 9に示すように赤外線の入光と遮光とが繰り返される。 ここで、 応答の遅い赤外受光素子を使用した場合に、 入光状態と遮光状態とを 切りかえる時間が人の手の振動周期より長くなることが考えられるが、この場合、 電力の供給を休止中に手の振動によりチヨツバ 5がストッパ 2 4からずれても、 最後に再び電力を供給することで、 ずれたチヨツバ 5をストッパ 2 4に当ててか ら電力の供給方向を変えるので入光と遮光の状態を安定して切り替えることがで さる。
したがって、 本実施形態によると、 初期の電力供給でチヨツバ 5がストツバ 2 4と衝突して停止後、 電力の供給を休止して最後に再び電力を供給してから、 電 力の供給方向を変えるので、 消費電力を減少させることができ、 チヨツバの駆動 による入光時間、 遮光時間は安定し、 またチヨツバ 5の停止位置での揺動も起こ さないので、 チヨッパは十分小型にしても入光と遮光の状態を安定して切り替え ることができ、 小型で精度の高い温度検出を行うことができる。 第 1 3の実施形態
次に本発明における温度換算手段の異なる方式の例を図 2 0、 図 2 1を参照し ながら説明する。 図 2 0は本発明の実施形態 1 3の温度換算手段の構成ブロック 図である。 また図 2 1は赤外受光素子の出力のサンプリングのタイミングチヤ一 卜図である。
図 2 0において、 温度換算手段 3 0は、 赤外受光素子 3の出力信号から離散 フーリェ変換により直流モータ 6の回転方向を交互に反転させる周波数と等しい 周波数の信号成分を算出するフーリエ変換手段 4 1を有している。 そして、 フー リエ変換手段 4 1は正弦関数の値として定まる複数の定数値を記憶している正弦 値記憶手段 4 2と、 余弦関数の値として定まる複数の定数値を記憶している余弦 値記憶手段 4 3と、 赤外受光素子 3の出力と正弦値記憶手段 4 2および余弦値記 憶手段 4 3の出力を基にフーリエ係数を算出するフーリェ係数算出手段 4 4と、 フーリェ係数算出手段 4 4の出力を基に赤外受光素子 3の出力の信号成分の振幅 に比例する振幅相関値を算出する振幅算出手段 4 5を有している。
図 2 1において、 V V 2、 V 3. . . V nは、 図 1 1に示す赤外受光素子 3、 増幅器 2 8、 A D変換器 2 9を介して時系列に温度換算手段 3 0に入力されるデ ジタル値を示し、 チヨツバ 5を入光状態に駆動し入光状態で静止させる正電力供 給期間 t とチヨツバ 5を遮光状態に駆動し遮光状態で静止させる負電力供給期 間 t 2との合計時間である基本周期 Tの間に、 サンプリング周期△ t時間ごとに n回サンプリングして得られる値である。
ここで、 正電力供給期間 t iと負電力供給期間 t 2とは同じ時間であり、 温度 検出駆動手段 3 3は直流モータ 6の回転方向を等間隔で交互に反転させている。 また、 チヨッパ 5の構成は図 1 2で示したように、 チヨツバ 5の遮光状態におけ る停止位置から入光開始状態までの移動角度 0 iと、 チヨツバ 5の入光状態にお ける停止位置から遮光開始状態までの移動角度 0 2とが等しくなる位置にストッ パ 13を設けている。 すなわち、 チヨツバ 5による赤外線の入光と遮光の時間が 等しくなる。
再び図 20にもどって、 温度換算手段 30の動作について説明する。
正弦値記憶手段 42は、 式 23の正弦関数により定まる複数の値 KSい KS 2、 KS 3 . . . KSnを記憶している。
KS 二 sin X—— ) ,ζ二 l〜ft
n
式 23
また、 余弦値記憶手段 43は、 式 24の余弦関数により定まる複数の値 Kd、 Kc2、 Kc3、 . . . Kcnを記憶している。
KCi = cos(z x—— ) ,ί = 1〜η
n
式 24
ここで、 nは先に示したサンプリングの回数 nと同じ値である。
また、 フーリエ係数算出手段 44は、 式 25で示されるように、 時系列のデ ジタル値 V1 V2、 V3. . · Vnと正弦値記憶手段 42に記憶されている値 K KS2、 KS3、 . . . KS nとのそれぞれの積の和 Vsinと、 式 26で示 されるように、 時系列のデジタル値 V I、 V2、 V 3. . . Vnと余弦値記憶手 段 43に記憶されている値 Kd、 Kc2、 Kc3、 . . . Kcnとのそれぞれの積の 和 Vcosとを算出する。
Vsin二 ΣΚ^ χ ;
i-l
式 25 i-l
式 26 そして、 振幅算出手段 4 5が式 2 7に基づき振幅相関値 V f を算出する。
7/ - /Γ sin2 + F cos2
式 2 7
このようにして、 フーリエ変換手段 4 1は赤外受光素子 3の出力信号から離 散フーリエ変換により直流モー夕 6の回転方向を交互に反転させる周波数と等し い周波数の信号成分である振幅相関値 V f を算出する。
この振幅相関値 V f は赤外受光素子 3の出力の信号成分の振幅 Vに比例した値 であり、 鼓膜および Zまたはその近傍の温度と赤外受光素子 3の温度の 4乗の差 に比例している。 温度換算手段 3 0はこの関係に基づき鼓膜およびノまたはその 近傍の温度換算を行う。
したがって、 フーリエ変換手段 4 1が、 離散フ一リエ変換により直流モータ 6の回転方向を交互に反転させる周波数と等しい周波数の信号成分を算出するこ とにより、 基本周波数の整数倍の高調波のノイズ成分を除去することができる。
しかし、 チヨッパ 5による赤外線の入光と遮光の時間が等しくなければ、 赤 外受光素子 3の出力波形には高次の高調波成分が多く含まれる。 離散フーリエ変 換で除去することができる高調波は、 サンプリング周期 Δ tの 2倍の周期の高調 波、 すなわち、 サンプリング周波数の 2分の 1の高調波までである。 したがって、 高次の高調波成分を除去するにはサンプリング周期 Δ tを十分に短くしなければ ならない。 しかし、 メモリや処理速度からサンプリング周期を短くするには限界 があるため、 高性能のアナログフィル夕回路が必要となる。
チヨツバ 5による赤外線の入光と遮光の時間が等しければ、 赤外受光素子 3 の出力波形に含まれる高次の高調波成分が少ないので、 実用的なサンプリング周 期で十分高調波ノイズ成分を除去することができ、 精度の高い温度検出を行うこ とができる。
なお、 実施形態 1 3において、 温度換算手段 3 0はチヨツバ 5の入光、 遮光 の 1周期 Tの期間に得られる V i V nに基づき離散フーリエ変換の処理を行つ たが、 複数周期、 すなわち Tの整数倍の期間に得られる複数の 〜 。に基づ き、 V の合計値、 v 2の合計値、 · · · vnの合計値を求めて離散フーリエ変換 の処理を行ってもよく、 そうすることでランダム性のノイズ成分が除去できさら に精度の高い温度検出が可能となる。 第 1 4の実施形態
次にモー夕制御手段により、 位置合わせ駆動手段と温度検出駆動手段を切り 替える別の方法として実施形態 1 4を図 2 2、 図 2 3を参照しながら説明する。 図 2 2は本発明の実施形態 1 4のモ一夕制御手段の構成ブロック図で、 図 2 3は 同実施形態のモー夕制御手段の動作を説明するフローチャート図である。
図 2 2において、 4 6は温度検出開始信号を発信する発信手段としての検温 スィッチであり、 4 7は検温スィッチ 4 6からの温度検出開始信号 4 6 aが非受 信状態である連続時間を計時する計時手段、 4 8は計時手段 4 7が所定の時間を 計時したときに時間経過フラグを記憶する記憶手段、 4 9は記憶手段 4 8に記憶 される時間経過フラグの有無を判定して、 切替手段 3 4のその後の動作を指示す る判定手段である。
次に、 モ一夕制御手段 3 1の動作を図 2 3を用いて具体的に説明する。 まず、 モータ制御手段 3 1の電源が投入されたときにステップ 1 4 8で記憶手段 4 8に 初期状態として時間経過フラグが記憶され、 以下の動作を繰り返し行う。 すなわ ち、 ステップ 1 4 7で計時手段 4 7が計時する時間が所定の時間 t 3を経過して いなければ記憶手段 4 8はそのままの状態にして温度検出開始信号 4 6 aの受信 を待って待機し、 計時手段 4 7が計時する時間が所定の時間 t 3経過すると記憶 手段ステップ 1 4 8 Aで 4 8に時間経過フラグを記憶して、 ステップ 1 4 6 Aで 温度検出開始信号 4 6 aの受信を待って待機する。 やがて、 検温スィッチ 4 6が 押され、 モー夕制御手段 3 1が温度検出開始信号 4 6 aを受信すると、 判定手段 4 9がステップ 1 4 8 Bで記憶手段 4 8に時間経過フラグが記憶されているかど うかを見に行く。 ここで、 時間経過フラグが記憶されていない場合、 切替手段 3 4はステップ 1 3 3ですぐに温度検出駆動手段 3 3を作動させる。 また、 時間経 過フラグが記憶されている場合は切替手段 3 4がステップ 1 3 2で位置合わせ駆 動手段 3 2を作動させた後、 続けてステップ 1 3 3で温度検出駆動手段 3 3に切 り替えて作動させる。 その後、 ステップ 1 4 7で計時手段 4 7をリセット駆動さ せて、 さらにステップ 1 4 8 Cで記憶手段 4 8に記憶されている時間経過フラグ を消去して、 最初に戻り、 同じことを繰り返す。
上記構成によって、 モ一夕制御手段 3 1の電源が投入された後、 初めて温度 検出を行う場合は記憶手段 4 8に時間経過フラグが記憶されているので、 チヨッ パ 5の位置合わせを行った後、 温度検出を行う。 よって、 電源を切った状態で放 置されている間にチヨツバの位置がずれてしまった場合でも、 精度の高い温度検 出を行うことができる。 そして、 電源投入後 2回目以降の温度検出においては、 連続して温度検出を行う場合や、 所定の時間 t 3を経過していない短時間で繰り 返して温度検出を行う場合は、 チヨツバ 5の位置合わせを行わずに続けて温度検 出を行うことができるので、 短時間で、 精度の高い温度検出を行うことができ、 所定の時間 t 3を経過して長時間温度検出を行わず放置されている間にチヨツバ 5の位置がずれてしまつた場合でも、 再度温度検出を行う場合はチョッパ 5の位 置合わせを行った後、 温度検出を行うので、 常に精度の高い温度検出を行うこと ができる。 第 1 5の実施形態
またモー夕制御手段の別の方法として実施形態 1 5を図 2 4〜図 2 6を参照 しながら説明する。 図 2 4は本発明の実施形態 1 5のモー夕制御手段の構成プロ ック図、 図 2 5は同実施形態のモー夕制御手段の動作を説明するフローチャート 図で、 図 2 6は同実施形態の電源制御手段の動作を説明する回路図である。 図 2 4において、 5 0は直流モータ 6を制御するモ一夕制御手段 3 1の電源の投入と 遮断を制御する電源制御手段で、 検温スィツチ 4 6からの温度検出開始信号 4 6 aが非受信状態である連続時間を計時する計時手段 4 7を有している。
次に、 モータ制御手段 3 1の動作を図 2 5を用いて具体的に説明する。 まず、 電源制御手段 5 0により、 モー夕制御手段 3 1の電源が投入されたときに、 ステ ップ 1 3 2で切替手段 3 4は位置合わせ駆動手段 3 2を作動させチヨッパ 5の位 置合わせを行い、同時にステップ 1 4 7で計時手段 4 7による計時を開始させる。 モータ制御手段 3 1はステップ 1 4 7 Aで計時手段 4 7が所定の時間 t 3を計時 するまでは温度検出開始信号 4 6 aの受信を待って待機しており、 待機中検温ス イッチ 4 6が押されてステップ 1 4 6 Aで温度検出開始信号 4 6 aを受信すると、 切替手段 3 4がステップ 1 3 3で温度検出駆動手段 3 3を作動させ、 温度検出を 開始する。 その後、 計時手段 4 7をセットして再び計時を開始し、 同様のことを 繰り返す。 また、 ステップ 1 4 7 Aでモー夕制御手段 3 1が温度検出開始信号 4 6 aの受信を待って待機中に計時手段 4 7が所定の時間 t 3を計時すると、 電源 制御手段 5 0がステップ 1 5 0でモータ制御手段 3 1の電源を遮断する。そして、 モータ制御手段 3 1の電源が遮断された後に温度検出を行いたいときはモー夕制 御手段 3 1の電源の投入から再度やりなおすものである。
次に図 2 6を用いて電源制御手段 5 0について説明する。 電源制御手段 5 0 はマイクロコンピュー夕 (以後マイコンと記す) 5 1と、 直流電源である充電池 あるいは乾電池 5 2と、 P N P型のトランジスタ 5 3と、 抵抗器 5 4、 5 5、 5 6と、 ダイオード 5 7、 5 8と、 電源スィッチ 5 9により構成している。 図 2 6 において、 電源スィッチ 5 9を押すと抵抗器 5 4、 5 5、 ダイオード 5 7、 電源 スィッチ 5 9に電流が流れトランジス夕 5 3が O N状態となり、 マイコン 5 1 、 モータ制御手段 3 1に電源が供給される。 ここで、 マイコン 5 1は出力端子 5 1 aを L o wにすることにより電源スィツチ 5 9が離されてもトランジスタ 5 3を 〇N状態で保持できて、 マイコン 5 1、 モー夕制御手段 3 1に電源を供給し続け ることができる。 一方、 電源スィッチ 5 9が押されているときはトランジスタ 5 3から抵抗器 5 6、 ダイオード 5 8に電流が流れマイコン 5 1の入力端子 5 1 b は L o wを入力でき、 離されれば H iを入力できる。
一般的な使い方においては、 電源スィッチ 5 9が押されるとマイコン 5 1は 出力端子 5 l aを L o wにして、 マイコン 5 1、 モ一夕制御手段 3 1に電源を供 給し続ける。 ここで、 温度検出開始信号 4 6 aを発信する検温スィッチ 4 6が押 されると抵抗器 6 0から検温スィッチ 4 6を電流が流れ、 マイコン 5 1は入力端 子 5 l cが L o wになることで検温スィツチ 4 6が押されたことを検知して温度 測定を行う。 再度電源スィッチ 5 9が押されるとマイコン 5 1は出力端子 5 l a を H iにすることで、 電源スィッチ 5 9が離された瞬間にマイコン 5 1、 モー夕 制御手段 3 1の電源供給を停止できる。
また、 使用者が再度電源スィッチ 5 9を押すことを忘れてマイコン 5 1、 モ 一夕制御手段 3 1に電源が供給され続けている場合には無駄な電池消耗を避ける ためにマイコン 5 1は出力端子 5 1 &を1^ iにして電源供給を停止することがで きる。 それは、 マイコン 5 1が計時手段 4 7を内蔵していて検温スィッチ 4 6が 押されない連続時間を計時し、 それが所定時間を超えたところで出力端子 5 l a を H iにすればよい。
したがって、 本実施形態によると、 チヨツバ 5の位置合わせをモー夕制御手 段 3 1の電源投入時に行うので、温度検出を短時間で行うことができる。そして、 繰り返して温度検出を行う場合に、計時手段 4 7が所定の時間を計時するまでは、 チヨツバ 5の位置合わせを行わずに続けて温度検出を行うことができるので、 短 時間で精度の高い温度検出を行うことができ、 長時間にわたり温度検出を行わず 放置されてチヨツバ 5の位置がずれてしまった場合でも、 計時手段 4 7が所定の 時間を計時し、 モ一夕制御手段 3 1の電源は遮断されるので、 再度温度検出を行 うときにはモータ制御手段 3 1の電源を投入することで、 切替手段 3 4が位置合 わせ駆動手段 3 2を動作させてチヨッパ 5の位置合わせを行い、 その後の温度検 出開始信号 4 6 aで温度検出を行うので、 常に精度の高い温度検出を行うことが できる。 また、 モー夕制御手段 3 1の電源を切り忘れた場合でも、 所定時間経過 すると自動的に電源が遮断されるので、 消費電力を低減させることができ、 そし て使い勝手がよくなる。 産業上の利用の可能性
以上説明したように本発明の放射体温計は以下の効果を有する。
鼓膜および Zまたはその近傍から直接放射される赤外線のみを受光する受光 部からの出力を信号処理手段で温度に演算し、 報知手段で報知するので鼓膜およ び/またはその近傍以外からの熱輻射の影響を受けないで、 正確な鼓膜温度を検 出することができる。
また、 受光部は鼓膜および Zまたはその近傍から放射されプローブを通過し た赤外線のみを受光し、 信号処理手段は受光部からの出力を温度に演算し、 演算 結果の温度を報知手段が報知する。 そして受光部の赤外受光素子には集光素子で 集光された赤外線が入射し、 また赤外受光素子は集光素子で集光された赤外線を 受けて鼓膜およびよまたはその近傍から放射される赤外線のみを受光するように 配置することで、 鼓膜および Zまたはその近傍から放射されプローブを通過した 放射光のみをスポット的に検出することが可能となり、 正確な検温ができる。
また、 赤外受光素子を集光素子の焦点位置から後方に離して設置することに より、 赤外受光素子は鼓膜および/またはその近傍から放射されプローブを通過 した赤外線のみをスポット的に受光し、 プローブ内面から放射された赤外線は赤 外受光素子外へ進行させて受光領域を制限することができる。
また、 本体に収納された受光部は鼓膜および zまたはその近傍から発せられ プローブを通過した赤外線のみを受光し、 プローブは内部に導波管がなく空洞状 態にして本体に着脱自在に連結しているので、 導波管の温度変動による温度精度 の悪化がなく、 プローブ交換により衛生上の問題がなくかつプローブをはずせば 突出部分がなく収納が容易になる。
また、 プローブは先端が開口しているので、 先端を覆うカバーの赤外線透過 率のばらつきによる温度誤差要因がなくなり、 測定温度精度を向上できる。
また、 非計測時には収納部にプローブが収納されるので、 本体は収納しやす い形状になり、 かつはずしたプローブを紛失する可能性は少なくなる。
また、 目視で判別可能な複数のプローブを備えているのでプローブごとに使 用者を特定することは可能でプローブ交換による感染の問題がない。
また、 鼓膜および Zまたはその近傍から直接放射される赤外線のみを受光す る受光部からの出力に基づいて演算した温度を音声報知手段を有する報知手段で 報知するので、 耳に挿入している時間に拘わらず正確な体温を測定することがで き、 暗い場所での測定や耳の不自由な人でも検温可能で使い勝手を向上できる。 また、 集光素子外からの赤外線が赤外受光素子に入射するのを遮る遮光体を有 し、 遮光体の赤外受光素子側に反射抑制手段を設けたので赤外受光素子以外の位 置へ進行した赤外線が反射して赤外線受光素子に入射してしまうことがない。 し たがって、 受光領域を制限し、 鼓膜および Zまたはその近傍以外からの赤外線を 受光素子以外の点へ集光させるので、 プローブの温度変化の影響を受けず正確な 体温測定ができる。
また、 遮光体の材質として放射率が 0 . 9前後と高い合成樹脂を用いる構成と したことで赤外線の反射が抑制される。 また、 合成樹脂は熱伝導率が低く、 かつ 熱容量が小さいので、 遮光体表面に結露が発生しにくい。 したがって、 結露によ る赤外線の反射や散乱がなく正確な体温測定ができる。
また、 プローブからの赤外線を遮る導波管は不要であり、 集光素子を含む光学 系に高い熱伝導率を必要としない。 そして、 集光素子は熱伝導率が低く、 かつ熱 容量が小さい材質より構成したので、 集光素子表面に結露が発生しにくく正確な 体温測定ができる。 .
また、 集光素子の材質として合成樹脂を用いる構成とし、 一般に合成樹脂は 熱伝導率が低く熱容量が小さいことが知られており、 合成樹脂により集光素子表 面の結露を抑制することができる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受 光素子は仮想先端点と同じ側の集光素子の縁を通過して集光素子による仮想先端 点の像点へ到達する光路と光軸との交点よりも集光素子から遠くかつ集光素子に よる仮想先端点の像点よりも集光素子に近い領域に設置することで、 プローブ内 壁から集光素子に入射する赤外線を赤外受光素子以外の位置へ進行させることが でき、 受光領域を制限することができる。 その結果、 鼓膜および Zまたはその近 傍から放射されプローブを通過した放射光のみをスポット的に検出することが可 能となる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受 光素子は仮想先端点と同じ側の集光素子の縁を通過して集光素子による仮想先端 点の像点へ到達する光路と光軸との交点と、 集光素子による仮想先端点の 2つの 像点とで形成される集光素子の子午面内の三角形内に設置することで、 プローブ 内壁から集光素子に入射する赤外線を赤外受光素子以外の位置へ進行させること ができ、 受光領域を制限することができる。 その結果、 鼓膜および Zまたはその 近傍から放射されプローブを通過した放射光のみをスポット的に検出することが 可能となる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受光 素子は集光素子の焦点距離 ίと、 赤外受光素子の半径 r sと、 仮想先端点と光軸 との距離 と、 仮想先端点と集光素子との距離 L ο;と、 集光素子の半径 r 3を 用いて、 式 1 3で与えられる L 3だけ集光素子の焦点よりも集光素子から遠くに 設置することで、 プローブ内壁から集光素子に入射する赤外線を赤外受光素子以 外の位置へ進行させることができ、受光領域を制限することができる。その結果、 鼓膜および/またはその近傍から放射されプローブを通過した放射光のみをスポ ット的に検出することが可能となる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受 光素子を、 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブ の内壁に接するように引いた直線が前記プローブの先端の面と交叉する仮想先端 点の集光素子による像点よりも前記集光素子から遠い領域に設置することで、 プ ローブ内壁から集光素子に入射する赤外線を赤外受光素子以外の位置へ進行させ ることができ、 受光領域を制限することができる。 その結果、 鼓膜および Zまた はその近傍から放射されプローブを通過した放射光のみをスポット的に検出する ことが可能となる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受光 素子を、 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブの 内壁に接するように引いた直線が前記プローブの先端の面と交叉する仮想先端点 から光軸を挟んで前記仮想先端点と反対側の前記集光素子の縁を通過して前記集 光素子による前記仮想先端点の像点へ到達する集光素子の子午面内の 2つの光路 で挟まれた領域に設置することで、 プローブ内壁から集光素子に入射する赤外線 を赤外受光素子以外の位置へ進行させることができ、 受光領域を制限することが できる。 その結果、 鼓膜および Zまたはその近傍から放射されプローブを通過し た放射光のみをスポット的に検出することが可能となる。
また、 赤外受光素子には集光素子で集光された赤外線が入射し、 また赤外受光 素子は集光素子の焦点距離 f と、 赤外受光素子の半径 r sと、 仮想先端点と光軸 との距離 r aと、 仮想先端点と前記集光素子との距離 L aと、 集光素子の半径 r 3を用いて、 式 2 2で表される L 3だけ前記集光素子の焦点よりも集光素子から 遠くに設置することで、 プローブ内壁から集光素子に入射する赤外線を赤外受光 素子以外の位置へ進行させることができ、 受光領域を制限することができる。 そ の結果、 鼓膜および Zまたはその近傍から放射されプローブを通過した放射光の みをスポット的に検出することが可能となる。
また、 集光素子は屈折レンズで構成することにより、 赤外受光素子には集光 された赤外線が入射する。
また、 集光素子は集光ミラーで構成することにより、 赤外受光素子には集光 された赤外線が入射する。
また、 集光ミラ一は、 前記集光ミラ一に入射する第 1の光軸と、 前記集光ミラー から射出し赤外受光素子に入射する第 2の光軸とを屈曲させる構成することで、 外耳道に挿入して測定する放射体温計としての使い勝手を考慮しプローブと本体 を屈曲させたとき、 この角度に併せて光学系も屈曲させることができる。 したが つて、 使い勝手がよく、 耳孔に挿入しやすくなることで挿入方向が安定しやすく 精度よく体温測定ができる。
また、 直流モータによって駆動するチヨツバが停止位置に設けたストッパに衝 突することによって、 被測定物から赤外受光素子に至る赤外線光路の入光と遮光 のそれぞれの状態で停止する。 モ一夕制御手段は直流モー夕の回転方向を交互に 反転させて入光と遮光の状態を切り替え、 信号処理手段が赤外受光素子の出力を 基に被測定物の温度を換算するので、 チヨツバの駆動による入光時間、 遮光時間 は安定し、 またチヨツバの停止位置での揺動も起こさないので、 チヨッパは十分 小型にしても入光と遮光の状態を安定して切り替えることができ、 小型で精度の 高い体温測定を行うことができる。 また、 チヨッパにより赤外線光路を断続する周期が赤外受光素子の応答時定数 より長いので、 赤外受光素子の出力は高出力となり、 S ZNが向上し、 体温の測 定精度を向上させることができる。
また、直流モー夕は予め設定された電力供給パターンに基づいて制御され、 チヨッパによる赤外線の入光と遮光を切り替えることができる。
また、 正電力供給パターンと負電力供給パターンを交互に行うことにより、 直流モ一夕の回転方向を交互に反転させることができる。
また、 初めの電力供給でチヨツバをストツバ位置まで移動させ、 その後は減 少させた電力を供給してチヨツバの位置を維持するので、 消費電力を低減するこ とができる。
また、減少電力供給期間は電力を間欠的に供給するので、消費電力を低減でき、 さらに回路構成を簡単にすることができる。
また、 減少電力供給期間は電力の供給を休止するので、 さらに消費電力を低減 することができる。
また、 減少電力供給期間は電力の供給を休止後、 最後に電力を供給することに より、 チヨッパを再度ストツバに衝突させてから直流モータを反転させるので、 簡単な回路構成で消費電力を低減し、 さらに赤外受光素子に至る赤外線の入光と 遮光の時間を正確に維持することができ、 体温を正確に測定できる。
また、 初期電力供給手段はチヨツバがストツバに到達する時間とストツバから 跳ね返り自然停止する時間との合計より長い初期電力供給期間、 初期電力を直流 モー夕に供給し、 その後減少電力供給手段が電力を減少させて供給するので、 チ ョッパは確実にストッパ位置で停止し、 安定した入光、 遮光の切り替えができて 体温測定精度が向上するとともに、 消費電力を節約できる。
また、 衝撃緩衝材料よりなるストツバを用いることで、 チヨツバのストツバ への食い込み、 跳ね返りを低減してチヨッビングを安定化し体温測定精度を向上 させるとともに、 チヨツバがストツバに衝突する音を低減することもできる。 また、 軟性ゴム材料よりなるストツバを用いることで、 チヨツバのストツバ への食い込み、 跳ね返りを低減してチヨッビングを安定化し体温測定精度を向上 させるとともに、 チヨツバがストツバに衝突する音を低減することもできる。 また、 視野限定手段により赤外受光素子の視野を限定することにより、 チヨ ツバを小型にすることができ、 チヨッパは赤外受光素子の遮光位置における視野 より大きい構成とするので、 赤外受光素子の入光と遮光の状態における出力の差 が大きくなり、 体温測定の精度を向上させることができる。
また、 視野限定手段は少なくとも赤外受光素子側の面を低反射率で構成して いるので、 視野限定手段からの赤外線の反射を押さえることができ、 視野限定手 段で反射した赤外線が赤外受光素子に入射することがなくなるので、 赤外受光素 子の視野を確実に限定することができ、 小型で精度の高い体温測定を行うことが できる。
また、 チヨツバの遮光状態における停止位置から入光開始状態までの移動角 度と、 チヨツバの入光状態における停止位置から遮光開始状態までの移動角度と が等しくなり、 モー夕制御手段は直流モ一夕の回転方向を交互に反転させる信号 を等間隔で出力するので、 チヨツバの駆動による赤外線の入光時間と遮光時間と が等しくなり、 赤外受光素子の高出力を得ることができ、 精度の高い体温測定を 行うことができる。
また、 フーリエ変換手段が、 離散フーリエ変換により直流モー夕の回転方向 を交互に反転させる周波数と等しい周波数の信号成分を算出するので、 信号以外 のノイズ成分を除去でき、 さらに入光時間と遮光時間が等しいので離散フーリエ 変換では除去しきれない高次の高調波ノイズ成分をほとんど発生させず、 精度の 高い体温測定を行うことができる。
また、 位置合わせ駆動手段は直流モー夕を駆動してチヨッパをストツバに衝 突させてチヨツバの位置合わせを行い、 体温測定駆動手段は直流モー夕の回転方 向を交互に反転させてチヨッパをストツバに衝突させて停止させ、 赤外受光素子 に至る赤外線光路の入光と遮光を切り替える。 切替手段が位置合わせ駆動手段と 体温測定駆動手段を切り替える。 したがって、 チヨツバの位置合わせにより検温 開始時にチヨツバを常に同じ位置にすることができ、 体温測定時にチヨツバの駆 動による入光時間、 遮光時間を安定させることが、 精度の高い体温測定を行うこ とができる。
また、 計時手段が発信手段からの検温開始信号が非受信状態である連続時間 を計時し、 計時手段が所定の時間を計時する前に検温開始信号を受信すると、 切 替手段が体温測定駆動手段を動作させて体温測定を行い、 所定の時間を計時した 後に発信手段からの信号を受信すると、 切替手段が位置合わせ駆動手段を動作さ せてチヨツバの位置合わせを行った後、 体温測定駆動手段に切り替えて体温測定 を行うので、 体温測定時のチヨツバの最終の停止位置から位置ずれを起こさない ことが想定されるような短時間で繰り返して体温測定を行う場合はチョッパの位 置合わせを行わずに続けて体温測定を行うことができるので、 短時間で、 精度の 高い体温測定を行うことができ、 また、 長時間にわたり体温測定を行わず放置さ れている間にチヨツバの位置がずれてしまった場合でも、 再度体温測定を行う場 合はチヨツバの位置合わせを行った後体温測定を行うので、 常に精度の高い体温 測定を行うことができる。
また、 切替手段はモータ制御手段に電源が投入されたときに位置合わせ駆動 手段を動作させてチヨツバの位置合わせを行い、 発信手段からの検温開始信号を 受信したときに体温測定駆動手段を動作させて体温測定を行うので、 短時間で繰 り返して体温測定を行う場合に短時間で効率良く精度の高い体温測定を行うこと ができる。
また、 計時手段は発信手段からの検温開始信号が非受信状態である連続時 間を計時し、 計時手段が所定の時間を計時すると電源制御手段はモー夕制御手段 の電源を遮断するので、 次に体温測定を行う場合には再度モー夕制御手段に電源 を投入する必要がある。 したがって、 計時手段が所定の時間を計時するまでは、 短時間で繰り返して体温測定を行う場合にチヨツバの位置合わせを行わずに続け て体温測定を行うことができるので、 短時間で精度の高い体温測定を行うことが でき、 長時間にわたり体温測定を行わず放置されてチヨツバの位置がずれてしま つた場合でも、 計時手段が所定の時間を計時し、 モー夕制御手段の電源は遮断さ れるので、再度体温測定を行うときにはモー夕制御手段の電源を投入することで、 切替手段が位置合わせ駆動手段を動作させてチヨツバの位置合わせを行い、 その 後の検温開始信号で体温測定を行うので、 常に精度の高い体温測定を行うことが できる。 また、 モー夕制御手段の電源を切り忘れた場合でも、 所定時間経過する と自動的に電源が遮断されるので、 消費電力を低減させることができ、 そして使 い勝手がよくなる。

Claims

請 求 の 範 囲
1 . 鼓膜およびノまたはその近傍から直接放射される赤外線のみを受光する構成 とした受光部と、 前記受光部の出力を温度に演算する信号処理手段と、 前記信号 処理手段の出力を報知する報知手段とからなる放射体温計。
2 . 外耳道に挿入され鼓膜および Zまたはその近傍から放射された赤外線を通過 させるプローブをさらに備え、 前記受光部は少なくともプローブを通過した赤外 線を集光する集光素子と、 前記集光素子で集光された赤外線を受けて鼓膜および Zまたはその近傍から放射される赤外線のみを受光するように配置した赤外受光 素子とを具備することを特徴とする請求項 1記載の放射体温計。
3 . 前記赤外受光素子を前記集光素子の焦点位置から後方に離して設置すること により、 受光領域を制限したことを特徴とする請求項 2記載の放射体温計。
4 . 前記受光部を収納する本体を有し、 前記プローブは内部を空洞状態にして前 記本体に連結し着脱自在とした請求項 2または 3記載の放射体温計。
5 . 前記プローブは先端が開口していることを特徴とする請求項 4記載の放射体 温計。
6 . 前記本体には非計測時に前記プローブを収納する収納部を有する請求項 4記 載の放射体温計。
7 . 前記プローブは複数個からなり、 それぞれを目視で判別可能な差異を有する 構成としたことを特徴とする請求項 4記載の放射体温計。
8 . 前記報知手段は前記信号処理手段の演算結果の温度を音声で報知する音声報 知手段を有する請求項 1または 2記載の放射体温計。
9 . 前記受光部は前記集光素子外からの赤外線が前記赤外受光素子に入射するの を遮る遮光体を有し、 前記遮光体の前記赤外受光素子側に反射抑制手段を設けた 請求項 2記載の放射体温計。
1 0 . 前記遮光体の材質として合成樹脂を用いる請求項 9記載の赤外受光素子。
1 1 . 前記集光素子は熱伝導率が低く、 かつ熱容量が小さい材質よりなる請求項 2または 3記載の放射体温計。
1 2 .前記集光素子の材質として合成樹脂を用いる請求項 1 1記載の放射体温計。
1 3 . 前記集光素子の光軸を含む断面で見たときに、 前記赤外受光素子を、 前記 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブの内壁に接 するように引いた直線が前記プローブの先端の面と交叉する仮想先端点から光軸 に対して前記仮想先端点と同じ側の前記集光素子の縁を通過して前記集光素子に よる前記仮想先端点の像点へ到達する光路と光軸との交点よりも前記集光素子か ら遠くかつ前記集光素子による前記仮想先端点の像点よりも前記集光素子に近い 領域に設置することを特徴とする請求項 2〜 1 2記載の放射体温計。
1 4 . 前記集光素子の光軸を含む断面で見たときに、 前記赤外受光素子を、 前記 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブの内壁に接 するように引いた直線が前記プローブの先端の面と交叉する仮想先端点から光軸 に対して前記仮想先端点と同じ側の前記集光素子の縁を通過して前記集光素子に よる前記仮想先端点の像点へ到達する光路と光軸との交点と、 前記集光素子によ る前記仮想先端点の 2つの像点とで形成される三角形内に設置することを特徴と する請求項 13記載の放射体温計。
15. 前記赤外受光素子を、 前記集光素子の焦点距離 f と、 前記赤外受光素子の 半径 r sと、 前記集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプ ローブの内壁に接するように引いた直線が前記プロ一ブ先端の面と交叉する仮想 先端点と光軸との距離 rひと、 前記仮想先端点と前記集光素子との距離 L αと、 前記集光素子の半径 r 3を用いて、
fxf f xL«x (ra,f - rs (La - f)) ぐ f xf
La-f Lx-f r3x (La-f) +rw f "La-f で与えられる L 3だけ前記集光素子の焦点よりも集光素子から遠くに設置したこ とを特徴とする請求項 14記載の放射体温計。
16. 前記集光素子の光軸を含む断面で見たときに、 前記赤外受光素子を、 前記 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブの内壁に接 するように引いた直線が前記プローブの先端の面と交又する仮想先端点の前記集 光素子による像点よりも前記集光素子から遠い領域に設置することを特徴とする 請求項 2〜 12記載の放射体温計。
17. 前記集光素子の光軸を含む断面で見たときに、 前記赤外受光素子を、 前記 集光素子の縁から光軸に対して前記集光素子の縁と同じ側のプローブの内壁に接 するように引いた直線が前記プローブの先端の面と交叉する仮想先端点から光軸 を挟んで前記仮想先端点と反対側の前記集光素子の縁を通過して前記集光素子に よる前記仮想先端点の像点へ到達する 2つの光路で挟まれた領域に設置すること を特徴とする請求項 1 6記載の放射体温計。
1 8 . 前記赤外受光素子を、 前記集光素子の焦点距離 f と、 前記赤外受光素子の 半径 r sと、 前記集光素子の縁から光軸に対して前記集光素子の縁と同じ側の前 記プローブの内壁に接するように引いた直線が前記プローブの先端の面と交叉す る仮想先端点と光軸との距離 r αと、 前記仮想先端点と前記集光素子との距離 L αと、 前記集光素子の半径 r 3を用いて、 f " +. Lo X (r o - f
X 一 r s (Lo— f) )
Lひ一 f
Figure imgf000079_0001
" Lひ一 f r 3 X (しひ一 f)一 rひ ' f で表される L 3だけ前記集光素子の焦点よりも集光素子から遠くに設置したこと を特徴とする請求項 1 7記載の放射体温計。
1 9 . 前記集光素子が屈折レンズであることを特徴とする請求項 2 8記載の 放射体温計。
2 0 . 前記集光素子が集光ミラーであることを特徴とする請求項 2 8記載の 放射体温計。
2 1 . 前記集光ミラ一は、 前記集光ミラーに入射する第 1の光軸と、 前記集光ミ ラーから射出し前記赤外受光素子に入射する第 2の光軸とを屈曲させる構成とし た請求項 2 0記載の放射体温計。
2 2 . 被測定物が放射する赤外線を検出する赤外受光素子と、 前記赤外受光素子 に入射する赤外線を遮光するチヨツバと、前記チヨツバを駆動する直流モ一夕と、 前記チヨツバの停止位置に設けたストツバと、 前記直流モー夕を制御するモー夕 制御手段と、前記赤外受光素子の出力を基に温度換算する信号処理手段とを有し、 前記モー夕制御手段は前記直流モータの回転方向を交互に反転させて、 前記赤外 受光素子に至る赤外線の入光と遮光を制御する放射体温計。
2 3 . 前記直流モー夕の回転方向を交互に反転させる時間は、 前記赤外受光素子 の応答時定数より長い時間とする請求項 2 2記載の放射体温計。
2 4 . 前記モー夕制御手段は予め設定された電力供給パターンに基づいて前記直 流モー夕に電力を供給する請求項 2 2記載の放射体温計。
2 5 . 前記電力供給パターンは入光方向に電力を供給する正電力供給パターンと 入光方向と逆の方向に電力を供給する負電力供給パターンを有し、 前記正電力供 給パターンと前記負電力供給パターンを交互に行う正負電力供給パターンからな る請求項 2 4記載の放射体温計。
2 6 . 前記正負電力供給パターンは初めに電力を供給する初期電力供給期間と、 その後電力を減少させ供給する減少電力供給期間とからなる請求項 2 5記載の放 射体温計。
2 7 . 前記減少電力供給期間は電力を間欠的に供給する請求項 2 6記載の放射体 ί皿 α
2 8 . 前記減少電力供給期間は電力の供給を休止する請求項 2 6記載の放射体温 計。
2 9 . 前記減少電力供給期間は電力の供給を休止後、 最後に電力を供給する請求 項 2 6記載の放射体温計。
3 0 . 前記初期電力供給期間はチヨツバがストツバ到達に要する時間とチヨツバ がストッパから跳ね返り自然停止する時間との合計より長く設定した請求項 2 6 記載の放射体温計。
3 1 . 前記ストッパは衝撃緩衝材料により構成した請求項 2 2〜3 0記載の放射 体温計。
3 2 .前記ストツバは軟性ゴム材料により構成した請求項 3 1記載の放射体温計。
3 3 . 前記赤外受光素子と前記チヨツバの間に前記赤外受光素子の視野を限定す る視野限定手段を設け、 前記チヨツバは前記赤外受光素子のチヨッピング位置に おける視野より大きい構成とした請求項 2 2〜3 2記載の放射体温計。
3 4 . 前記視野限定手段は少なくとも前記赤外受光素子側の面を低反射率とした 請求項 3 3記載の放射体温計。
3 5 . 前記ストツバは、 前記チヨツバの遮光状態における停止位置から入光開始 状態までの移動角度と、 前記チヨツバの入光状態における停止位置から遮光開始 状態までの移動角度とが等しくなる位置に設け、 前記モータ制御手段は前記直流 モー夕の回転方向を交互に反転させる信号を等間隔で出力する請求項 3 3記載の 放射体温計。
3 6 . 前記信号処理手段は前記赤外受光素子の出力信号から離散フーリエ変換に より前記直流モー夕の回転方向を交互に反転させる周波数と等しい周波数の信号 成分を算出するフーリェ変換手段を有し、 前記フ一リェ変換手段の出力を基に被 測定物の温度を換算する請求項 3 5記載の放射体温計。
3 7 . 前記モータ制御手段は、 前記直流モー夕を駆動して前記チヨツバの位置合 わせを行う位置合わせ駆動手段と、 前記直流モ一夕の回転方向を交互に反転させ て前記赤外受光素子に至る赤外線光路の入光と遮光を切り替えて体温測定を行う 体温測定駆動手段と、 前記位置合わせ駆動手段と前記体温測定駆動手段を切り替 える切替手段を有し、 検温開始時に前記チヨッパは常に同じ位置にあることを特 徵とする請求項 2 2〜3 6記載の放射体温計。
3 8 . 検温開始信号を発信する発信手段を設け、 前記モータ制御手段は前記発信 手段からの検温開始信号が非受信状態である連続時間を計時する計時手段を有し、 前記計時手段が所定の時間を計時する前に前記発信手段からの検温開始信号を受 信すると切替手段が体温測定駆動手段を動作させ、 前記計時手段が所定の時間を 計時した後に発信手段からの検温開始信号を受信すると前記切替手段が位置合わ せ駆動手段を動作させた後に前記体温測定駆動手段を動作させる構成の請求項 3 7記載の放射体温計。
3 9 . 検温開始信号を発信する発信手段を設け、 前記切替手段は前記モータ制御 手段に電源が投入されたときに位置合わせ駆動手段を動作させ、 前記発信手段か らの検温開始信号を受信したときに前記体温測定駆動手段を動作させる構成の請 求項 3 7記載の放射体温計。
4 0 . 前記モー夕制御手段の電源の投入と遮断を制御する電源制御手段を設け、 前記電源制御手段は発信手段からの検温開始信号が非受信状態である連続時間を 計時する計時手段を有し、 前記計時手段が所定の時間を計時すると電源を遮断す る構成の請求項 3 9記載の放射体温計。
PCT/JP1998/003333 1997-07-28 1998-07-27 Thermometre medical a rayonnement WO1999005489A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002267573A CA2267573A1 (en) 1997-07-28 1998-07-27 Radiation thermometer
EP98933941A EP0937971A4 (en) 1997-07-28 1998-07-27 RADIATION MEDICAL THERMOMETER
US09/269,530 US6371925B1 (en) 1997-07-28 1998-07-27 Radiation clinical thermometer
CNB988010690A CN100385215C (zh) 1997-07-28 1998-07-27 辐射体温计

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP9/201095 1997-07-28
JP20109597A JP3838748B2 (ja) 1997-07-28 1997-07-28 赤外センサ
JP30419497A JP3817867B2 (ja) 1997-11-06 1997-11-06 温度検出装置
JP9/304194 1997-11-06
JP10/3000 1998-01-09
JP10003000A JPH11197117A (ja) 1998-01-09 1998-01-09 放射体温計
JP10003003A JPH11197119A (ja) 1998-01-09 1998-01-09 放射体温計
JP10/3003 1998-01-09

Publications (1)

Publication Number Publication Date
WO1999005489A1 true WO1999005489A1 (fr) 1999-02-04

Family

ID=27453763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003333 WO1999005489A1 (fr) 1997-07-28 1998-07-27 Thermometre medical a rayonnement

Country Status (6)

Country Link
US (1) US6371925B1 (ja)
EP (1) EP0937971A4 (ja)
KR (1) KR100353380B1 (ja)
CN (1) CN100385215C (ja)
CA (1) CA2267573A1 (ja)
WO (1) WO1999005489A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776935A (zh) * 2015-04-15 2015-07-15 中国电子科技集团公司第三十四研究所 接触式热辐射光纤三色高温计

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322107B1 (ko) * 1997-07-16 2002-02-06 데루모 가부시끼 가이샤 이어 타입 체온계
ES2205878T3 (es) * 1998-09-16 2004-05-01 Braun Gmbh Metodo para determinara una temperatura a si como termometro de radiacion con varios elementos sensores infrarrojos.
DE10065723A1 (de) * 2000-12-29 2002-07-04 Bosch Gmbh Robert Anordnung zur Temperaturmessung und -regelung
KR100571811B1 (ko) 2003-05-09 2006-04-17 삼성전자주식회사 귀속형 생체 신호 측정 장치
US20050083991A1 (en) * 2003-10-17 2005-04-21 Anthony Wong Probe cover storage system for ear thermometer
US20050085733A1 (en) * 2003-10-17 2005-04-21 Anthony Wong Ear thermometer illumination system
JP4751174B2 (ja) * 2005-10-21 2011-08-17 株式会社バイオエコーネット 耳式体温計
US7536568B2 (en) 2005-12-01 2009-05-19 Covidien Ag Ultra low power wake-up circuit
US7507019B2 (en) 2006-05-19 2009-03-24 Covidien Ag Thermometer calibration
US7549792B2 (en) 2006-10-06 2009-06-23 Covidien Ag Electronic thermometer with selectable modes
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
EP2400884B1 (en) 2009-02-25 2018-03-07 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
US9801552B2 (en) 2011-08-02 2017-10-31 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US9357930B2 (en) * 2012-03-19 2016-06-07 Welch Allyn, Inc. Temperature measurement system
CN108937908B (zh) 2013-01-28 2021-08-10 瓦伦赛尔公司 具有与身体运动脱开的感测元件的生理监测装置
US20160029898A1 (en) 2014-07-30 2016-02-04 Valencell, Inc. Physiological Monitoring Devices and Methods Using Optical Sensors
WO2016022295A1 (en) 2014-08-06 2016-02-11 Valencell, Inc. Optical physiological sensor modules with reduced signal noise
US9891110B1 (en) * 2014-08-07 2018-02-13 Maxim Integrated Products, Inc. System including distance sensor for non-contact temperature sensing
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
CN104627084A (zh) * 2015-02-15 2015-05-20 北京海瑞克科技发展有限公司 一种热感应挪车呼叫通信装置
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
CN106444904A (zh) * 2016-09-18 2017-02-22 大顺国际花卉股份有限公司 一种温室高温自启动的光电开关及使用方法
WO2018119573A1 (zh) * 2016-12-26 2018-07-05 沈阳泰合冶金测控技术有限公司 表面温度和发射率的测量装置和测量方法
JP6780510B2 (ja) * 2017-01-10 2020-11-04 コニカミノルタ株式会社 超音波探触子および超音波診断装置
CN107343129B (zh) 2017-08-16 2020-07-24 中磊电子(苏州)有限公司 监视装置
EP3448059A1 (en) * 2017-08-22 2019-02-27 Nxp B.V. Audio processor with temperature adjustment
CN109060136A (zh) * 2018-06-05 2018-12-21 哈尔滨工程大学 一种基于围道积分的涡轮叶片辐射测温中背景辐射影响修正方法
US10801894B2 (en) * 2018-07-18 2020-10-13 Radiant Innovation Inc. Reflecting shell and temperature detecting device
CN115040788B (zh) * 2021-07-31 2023-08-04 天一智能科技(东莞)有限公司 基于全光谱led的皮肤光疗装置及设备

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633517A (en) * 1979-08-28 1981-04-04 Fujitsu Ltd Infrared ray detector
JPS63157626U (ja) * 1987-04-03 1988-10-17
JPH0118973Y2 (ja) * 1982-05-28 1989-06-02
JPH02110836U (ja) * 1989-02-22 1990-09-05
JPH047515A (ja) * 1990-04-25 1992-01-10 Sanyo Electric Co Ltd 液晶チョッパ
JPH05503440A (ja) * 1989-12-04 1993-06-10 ダイアテク エル ビー 赤外線体温計
JPH05277079A (ja) * 1992-03-30 1993-10-26 Shimadzu Corp 体温計
JPH05346347A (ja) * 1992-06-16 1993-12-27 Murata Mfg Co Ltd 赤外線検出装置
JPH0694538A (ja) * 1992-09-17 1994-04-05 Matsushita Electric Ind Co Ltd 熱画像検出装置
JPH06142061A (ja) * 1991-09-25 1994-05-24 Terumo Corp 鼓膜温度体温計
JPH0653939U (ja) * 1992-12-30 1994-07-22 株式会社堀場製作所 鼓膜体温計のプローブカバー
JPH07155296A (ja) * 1993-12-08 1995-06-20 Casio Comput Co Ltd 体温計
JPH07253358A (ja) * 1993-10-01 1995-10-03 Texas Instr Inc <Ti> 赤外検出器用シールド
JPH07280652A (ja) * 1992-05-28 1995-10-27 Dan Moran 温度測定装置
JPH07318432A (ja) * 1994-05-25 1995-12-08 Horiba Ltd 光チョッパ
JPH0854281A (ja) * 1994-08-15 1996-02-27 Matsushita Electric Ind Co Ltd 焦電センサのチョッピング機構
JPH08126615A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Works Ltd 耳体温計
JPH08275925A (ja) * 1995-04-07 1996-10-22 Matsushita Electric Ind Co Ltd 放射体温計
JPH08292093A (ja) * 1995-04-24 1996-11-05 Seikosha Co Ltd 焦電型赤外線検出装置
JPH08313342A (ja) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd 焦電型赤外線センサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34789E (en) * 1985-04-17 1994-11-15 Thermoscan Inc. Infrared electronic thermometer and method for measuring temperature
JP2551567B2 (ja) 1986-12-20 1996-11-06 松下電工株式会社 充電制御回路
JPS6418973A (en) 1987-07-10 1989-01-23 Agency Ind Science Techn Bioceramic material
EP0411121A4 (en) * 1987-12-25 1991-05-15 Nippon Steel Corporation Optical thermometer
JP2826337B2 (ja) * 1988-04-12 1998-11-18 シチズン時計株式会社 放射体温計
USRE34507E (en) * 1988-04-12 1994-01-11 Citizen Watch Co., Ltd. Radiation clinical thermometer
JPH02110836A (ja) 1988-10-20 1990-04-24 Canon Inc 光学的情報記録再生装置
US5445158A (en) * 1988-12-06 1995-08-29 Exergen Corporation Radiation detector probe
AU1152592A (en) * 1990-12-12 1992-07-08 Sherwood Ims, Inc. Infrared thermometer utilizing calibration mapping
JPH0545229A (ja) 1991-08-09 1993-02-23 Omron Corp 赤外線体温計
JP3167790B2 (ja) 1992-06-18 2001-05-21 テルモ株式会社 赤外線体温計用プローブ
JPH0653939A (ja) 1992-07-31 1994-02-25 Nec Corp パリティ計数方式
US5991652A (en) * 1997-03-17 1999-11-23 Thermoscan Inc. Protective two position shell for an infrared thermometer

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633517A (en) * 1979-08-28 1981-04-04 Fujitsu Ltd Infrared ray detector
JPH0118973Y2 (ja) * 1982-05-28 1989-06-02
JPS63157626U (ja) * 1987-04-03 1988-10-17
JPH02110836U (ja) * 1989-02-22 1990-09-05
JPH05503440A (ja) * 1989-12-04 1993-06-10 ダイアテク エル ビー 赤外線体温計
JPH047515A (ja) * 1990-04-25 1992-01-10 Sanyo Electric Co Ltd 液晶チョッパ
JPH06142061A (ja) * 1991-09-25 1994-05-24 Terumo Corp 鼓膜温度体温計
JPH05277079A (ja) * 1992-03-30 1993-10-26 Shimadzu Corp 体温計
JPH07280652A (ja) * 1992-05-28 1995-10-27 Dan Moran 温度測定装置
JPH05346347A (ja) * 1992-06-16 1993-12-27 Murata Mfg Co Ltd 赤外線検出装置
JPH0694538A (ja) * 1992-09-17 1994-04-05 Matsushita Electric Ind Co Ltd 熱画像検出装置
JPH0653939U (ja) * 1992-12-30 1994-07-22 株式会社堀場製作所 鼓膜体温計のプローブカバー
JPH07253358A (ja) * 1993-10-01 1995-10-03 Texas Instr Inc <Ti> 赤外検出器用シールド
JPH07155296A (ja) * 1993-12-08 1995-06-20 Casio Comput Co Ltd 体温計
JPH07318432A (ja) * 1994-05-25 1995-12-08 Horiba Ltd 光チョッパ
JPH0854281A (ja) * 1994-08-15 1996-02-27 Matsushita Electric Ind Co Ltd 焦電センサのチョッピング機構
JPH08126615A (ja) * 1994-10-31 1996-05-21 Matsushita Electric Works Ltd 耳体温計
JPH08275925A (ja) * 1995-04-07 1996-10-22 Matsushita Electric Ind Co Ltd 放射体温計
JPH08292093A (ja) * 1995-04-24 1996-11-05 Seikosha Co Ltd 焦電型赤外線検出装置
JPH08313342A (ja) * 1995-05-19 1996-11-29 Matsushita Electric Ind Co Ltd 焦電型赤外線センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0937971A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104776935A (zh) * 2015-04-15 2015-07-15 中国电子科技集团公司第三十四研究所 接触式热辐射光纤三色高温计

Also Published As

Publication number Publication date
KR20000068652A (ko) 2000-11-25
CA2267573A1 (en) 1999-02-04
CN1236432A (zh) 1999-11-24
KR100353380B1 (ko) 2002-09-18
EP0937971A4 (en) 2001-11-07
CN100385215C (zh) 2008-04-30
EP0937971A1 (en) 1999-08-25
US6371925B1 (en) 2002-04-16

Similar Documents

Publication Publication Date Title
WO1999005489A1 (fr) Thermometre medical a rayonnement
US6527439B1 (en) Infrared thermometer
US7390124B2 (en) Device for contact-free measurement of temperature
WO2015019878A1 (ja) 赤外線体温計
US20030099277A1 (en) Infrared thermometer
JP2011156313A (ja) 生体情報検出器、生体情報測定装置および生体情報検出器における反射部の設計方法
JPH06102097A (ja) 温度分布測定装置および人体検知システム
US10801894B2 (en) Reflecting shell and temperature detecting device
JP4126792B2 (ja) 放射体温計
TWI359936B (ja)
JP4250790B2 (ja) 耳孔式体温計
JP3775034B2 (ja) 赤外線検出器およびこれを用いた放射体温計
JP4162066B2 (ja) 放射体温計
JP4006803B2 (ja) 放射体温計
ES2790587T3 (es) Aparato y método para detectar el ángulo azimutal de una fuente de calor
JP2007195653A (ja) 放射分光濃度計
JP4006804B2 (ja) 放射体温計
JP2000227361A (ja) 赤外線体温計
JPH11197119A (ja) 放射体温計
JP2854310B2 (ja) 人体検知器
JP3898833B2 (ja) 光学的測定装置
US10006983B2 (en) Apparatus and method for detecting azimuthal angle of heat source
JP2000217791A (ja) 脈波検出機能付き放射体温計
JPH09200022A (ja) タッチキー
JP2000139849A (ja) 赤外線検出器およびこれを用いた放射体温計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801069.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997002668

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2267573

Country of ref document: CA

Ref document number: 2267573

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998933941

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1999 269530

Country of ref document: US

Date of ref document: 19990419

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09269530

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998933941

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002668

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002668

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1998933941

Country of ref document: EP