WO2018119573A1 - 表面温度和发射率的测量装置和测量方法 - Google Patents

表面温度和发射率的测量装置和测量方法 Download PDF

Info

Publication number
WO2018119573A1
WO2018119573A1 PCT/CN2016/112100 CN2016112100W WO2018119573A1 WO 2018119573 A1 WO2018119573 A1 WO 2018119573A1 CN 2016112100 W CN2016112100 W CN 2016112100W WO 2018119573 A1 WO2018119573 A1 WO 2018119573A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
emissivity
measurement position
measured
radiance
Prior art date
Application number
PCT/CN2016/112100
Other languages
English (en)
French (fr)
Inventor
谢植
车勋建
谢淇先
王立忠
Original Assignee
沈阳泰合冶金测控技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳泰合冶金测控技术有限公司 filed Critical 沈阳泰合冶金测控技术有限公司
Priority to US16/461,212 priority Critical patent/US11047739B2/en
Priority to EP16925986.8A priority patent/EP3489645A4/en
Priority to PCT/CN2016/112100 priority patent/WO2018119573A1/zh
Publication of WO2018119573A1 publication Critical patent/WO2018119573A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0815Light concentrators, collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/085Optical arrangements having a through-hole enabling the optical elements to fulfil an additional optical function, e.g. mirrors or gratings having a through-hole for a light collecting or light injecting optical fiber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Definitions

  • the present invention relates to the field of measurement technology, and in particular, to a surface temperature and emissivity measuring device and a measuring method.
  • the measurement of the surface temperature is affected by the emissivity, which has always been an unsolved problem in the field of metrology testing.
  • Various types of radiation thermometers widely used in the prior art are calibrated under the condition of a laboratory standard measuring instrument, a black body radiation source (emissivity ⁇ 1).
  • the measured temperature T can be obtained from the radiation signal and the calibration equation.
  • the actual object's emissivity is less than 1, and only the brightness temperature is obtained during the measurement, which is not the true surface temperature.
  • the emissivity of an actual object is complex and undetermined, depending on the composition of the object, its surface state, its wavelength, and its temperature. So only know the value of the emissivity to get the true surface temperature.
  • a reflector-based on-line blackbody temperature measurement method is proposed (MDDrury, KPPerry, and T. Land, "Pyrometers for surface temperature measurement,” J. Iron St. Inst ., vol.169, pp.245–250, 1951.): a cold high-reflectivity reflector is placed on the high-temperature surface to form a cavity. There are multiple reflections between the surface to be measured and the reflector. The effective radiation increases, close to the black body radiation state, that is, the effective emissivity is close to 1.
  • Xie Zhi et al proposed the concept of 'the second type of black body radiation source' (Xie Zhi et al., Industrial Radiation Measurement Temperature Measurement, Northeastern University) Press, 1994): "If the isothermal surface formed by the non-transparent material forms a closed cavity with the ideal reflector, the radiation emitted from any surface source of the isothermal surface is the black body radiation at the isothermal surface source temperature.”
  • the radiation thermometer is placed in front of a reflector to increase the effective emissivity and thus reduce the measurement error.
  • EP 0 942 269 A1 discloses a temperature measuring method and measuring device based on the above principle: using a gold-plated hyperbolic concave mirror For emissivity intensifiers, multiple reflection effects are used to increase effective radiation, thereby reducing measurement errors.
  • the invention can reduce, rather than completely eliminate, the effect of emissivity, and still requires the user to enter an empirical value of the effective emissivity, the empirical value in EP1103801B1 is set to 0.95. To completely eliminate the effect of emissivity and accurately measure the surface temperature, it is necessary to accurately solve the expression of the effective emissivity.
  • the above two inventions cannot measure the emissivity and can only measure the surface temperature.
  • the multi-spectral emissivity on-line measuring apparatus and method based on a hemispherical and cylindrical pre-reflector are respectively disclosed in Chinese Patent Application Publication No. CN102353691A and Patent Application No. CN102252755A.
  • the reflector of the invention can be moved on the guide rail and can be switched between two kinds of radiation states: 1) moving the reflector into the detection field of view, detecting the light beam passing through the light radiation hole, and obtaining the radiation signal. 2) Move the reflector out of the field of view to obtain the inherent radiation signal without the reflector.
  • the emissivity ⁇ ( ⁇ , T) is obtained, where f( ⁇ ( ⁇ , T)) is a function of the effective emissivity of the reflector.
  • the reflector has a destructive effect on the temperature field of the measured surface, so the reflector cannot be measured for a long time (Gao Kuiming et al., Research on Radiation Thermometer of Pre-reflector, 1984, Figure 5).
  • the reflector measures stainless steel at 700 ° C
  • the measured surface temperature rises by about 4 ° C in the reflector for 1 second and rises by 6 ° C in 2 seconds. Therefore, rapid measurement is required, and the above patent switches between two kinds of radiation states, at least the distance of the reflector radius is required to be moved, and the temperature field is inevitably destroyed during the switching process, thereby affecting the measurement accuracy.
  • the above two patents are tested when the reflector is removed.
  • the surface is exposed to the space, and the surrounding background radiation is reflected by the surface to be tested into the optical sighting probe. Therefore, the measurement signal is disturbed by the background radiation and can only be used in an ideal laboratory with cold wall surrounding. It cannot be used in industry. on site. 4)
  • the above two patents only measure the normal emissivity and cannot measure the directional emissivity.
  • the measuring device disclosed in the above two patents must install the guide rail and the support frame before the measurement, and ensure that the adjustment guide rail and the measured surface are horizontal.
  • the required installation space is large, the requirements are high, the cost is high, the portability is poor, and it is greatly affected by the background radiation. It is not suitable for industrial sites with strong background radiation, such as occasions with limited space, or where fast and convenient measurement is required, or the guide rail cannot be installed.
  • the occasion of the bracket For example, the surface of the steel slab in the steel furnace is heated by the background radiation, and the surface of the slab is continuously connected.
  • An object of the present invention is to provide a measuring apparatus and a measuring method capable of measuring the surface temperature and emissivity of a surface to be measured more accurately.
  • a first aspect of the invention provides a device for measuring surface temperature and emissivity, the measuring device comprising a reflection converter, a light receiver and a data processing system, the light receiver being coupled to the reflection converter, the light Receiving, by the receiver, radiation rays emitted by the surface to be measured and passing through the reflection converter and converting the radiation into electrical signals, the data processing system being coupled to the optical receiver to receive the electricity And forming, according to the electrical signal, the measured surface temperature and emissivity, the reflective converter comprising a reflector and an absorber, the reflector having a through hole, the absorber being positionable relative to the reflector Changingly disposed to switch the absorption tube between a first measurement position and a second measurement position, wherein in the first measurement position, the absorption tube is passed through the through hole through the reflector
  • the light incident end of the inner to the absorption tube approaches or contacts the surface to be measured, so that the light receiver directly receives the intrinsic radiation emitted by the surface to be measured and forms a first electrical signal;
  • a second aspect of the invention provides a method of measuring surface temperature and emissivity, the method comprising measuring the surface temperature and emissivity using the measuring device of the first aspect of the invention.
  • the first electrical signal is a first voltage signal
  • the second electrical signal is a second voltage signal
  • the measuring method includes:
  • the position radiance expression L 2 ( ⁇ i , T 0 ) f( ⁇ i )L 0 ( ⁇ i , T 0 ), and simultaneously calculate n emissivity ⁇ i and true temperature T 0 .
  • the absorber tube can be switched between the first measuring position and the second measuring position, the above device can make the light receiver can be used only by the movement of the absorber tube Obtaining the inherent radiation of the surface to be measured and obtaining the above-mentioned intrinsic radiation plus the reflected radiation between the reflector and the surface to be measured, the data processing system can simultaneously obtain the measured surface according to the measurement data obtained by the absorption tube at different measurement positions. Temperature and emissivity.
  • the invention is based on the second type of black body radiation source theory, and proposes a reflection converter with a reflector and an absorption tube with a variable position relative to the reflector, realizing rapid conversion of two radiation states (reflected radiation and intrinsic radiation),
  • the advantages are:
  • the measurement accuracy is improved because: 1) in order to obtain two kinds of radiation states, there is no need to move the reflector, and the gap between the reflector and the surface to be tested can be smaller or even no gap (the reflector can be in contact with the surface to be measured), The radiation light emitted by the measured surface through the bottom surface gap is reduced or eliminated, thereby improving the measurement accuracy; 2) the two radiation states can be switched by simply moving the absorption tube, and the absorption tube volume is compared with the moving reflector.
  • the measurement space is small, the installation requirements are small, the cost is low, portable, and there is no background radiation interference; and is suitable for limited space occasions. It may be used for quick measurement or when the rail support frame cannot be installed. For example, the surface of the steel slab in the steel furnace is heated by the background radiation, and the surface of the slab is continuously connected.
  • FIG. 1 is a schematic structural view of a measuring apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the measuring device shown in FIG. 1 at a first measurement position.
  • FIG. 3 is a schematic view showing the structure of the measuring device shown in FIG. 1 at a second measuring position.
  • FIG. 4 is a schematic view of reflected radiation of a reflector in the measuring device shown in FIG. 1.
  • Fig. 5 is a schematic structural view of a measuring apparatus according to a third embodiment of the present invention.
  • Fig. 6 is a schematic structural view of a measuring apparatus according to a fifth embodiment of the present invention.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • One device or special The spatial positional relationship with other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described. For example, if the device in the figures is inverted, the device described as “above other devices or configurations” or “above other devices or configurations” will be positioned “below other devices or configurations” or “at Under other devices or configurations.”
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 90° or at other orientations) and the corresponding description of the space used herein is explained accordingly.
  • Embodiments of the present invention provide a measuring device for surface temperature and emissivity, which is capable of measuring the surface temperature and emissivity of the surface to be measured 9 more accurately.
  • the measuring device of the present invention includes a reflection converter 1, an optical receiver 5, and a data processing system 6.
  • the light receiver 5 is coupled to a reflection converter 1 which receives the radiation light emitted by the surface to be measured 9 and which passes through the reflection converter 1 and converts the radiation light into an electrical signal.
  • the data processing system 6 is coupled to the optical receiver 5 to receive an electrical signal and to form a surface temperature and an emissivity of the surface 9 to be measured based on the electrical signal.
  • the reflection converter 1 includes a reflector 1-1 and an absorption tube 1-2.
  • the reflector 1-1 has a through hole 7.
  • the absorber tube 1-2 is variably positioned relative to the reflector 1-1 to switch the absorber tube 1-2 between the first measurement position and the second measurement position.
  • the absorption tube 1-2 passes through the through hole 7 through the inside of the reflector 1-1 to the light incident end of the absorption tube 1-2 to approach or contact the surface to be tested 9 to make the light receiver 5 Directly receiving the intrinsic radiation emitted by the surface to be tested 9 and forming a first electrical signal; in the second measurement position, the light incident end of the absorption tube 1-2 is located at the through hole 7 of the reflector 1-1 or outside the through hole 7
  • the light receiver 5 is caused to receive the intrinsic radiation emitted by the surface to be tested 9 and the reflected radiation between the reflecting surface 10 of the reflector 1-1 and the surface 9 to be measured and form a second electrical signal.
  • the data processing system 6 forms the surface temperature and emissivity of the surface to be tested 9 based on the first electrical signal and the second electrical signal.
  • the above measuring device can cause the light receiver 5 to obtain both the inherent radiation of the surface to be tested 9 only by the movement of the absorption tube 1-2.
  • the above-mentioned intrinsic radiation can be obtained plus the reflected radiation between the reflecting surface 10 of the reflector 1-1 and the surface 9 to be measured, and the data processing system 6 can obtain the measured number of the absorption tube at different measurement positions.
  • the surface temperature and emissivity of the surface 9 to be tested are simultaneously obtained.
  • the invention is based on the second type of black body radiation source theory, and proposes a reflection converter with a reflector and an absorption tube with a variable position relative to the reflector, realizing rapid conversion of two radiation states (reflected radiation and intrinsic radiation),
  • the advantages are:
  • the measurement accuracy 1) In order to obtain two kinds of radiation states, there is no need to move the reflector, and the gap between the reflector and the surface to be tested can be smaller or even no gap (the reflector can be in contact with the surface to be measured), so that the measured The radiation light emitted from the surface through the bottom gap is reduced or eliminated, and the measurement accuracy is improved. 2) The two radiation states can be switched by simply moving the absorption tube, and the absorption tube is smaller in volume than the moving reflector.
  • the device completely eliminates the background radiation interference, and can ensure the measurement accuracy in the industrial field with strong background radiation. 4) Not only the normal emissivity but also the relative position of the absorption tube and the reflector can be designed to measure the illegal emissivity. .
  • the measurement space is small, the installation requirements are small, the cost is low, portable, and there is no background radiation interference; and is suitable for limited space occasions. It may be used for quick measurement or when the rail support frame cannot be installed. For example, the surface of the steel slab in the steel furnace is heated by the background radiation, and the surface of the slab is continuously connected.
  • the measuring device since the absorption tube only needs to be moved by acquiring different radiation states, the measuring device has a simple structure, a fast measuring speed, is portable and easier to operate and arrange.
  • the first electrical signal is a first voltage signal and the second electrical signal is a second voltage signal
  • the data processing system 6 processes the first voltage signal and the second voltage signal as follows:
  • L 2 ( ⁇ i , T 0 ) f( ⁇ i )L 0 ( ⁇ i , T 0 ), wherein L 2 ( ⁇ i , T 0 ) is the radiance of the radiance at the wavelength ⁇ i emitted by the photodetector 5 from the surface to be measured 9 and obtained by the second voltage signal and the spectral response function of the photoreceiver 5; ( ⁇ i ) is an effective emissivity function of the reflector 1-1 at the wavelength ⁇ i ;
  • the reflecting surface 10 of the reflector 1-1 is preferably a spherical surface. More preferably, the reflecting surface is a hemispherical surface.
  • the bottom surface of the hemisphere is located on the bottom surface of the reflector 1-1, and the reflector 1-1 can be directly placed on the surface 9 to be measured while measuring the temperature and emissivity of the surface 9 to be measured, thereby ensuring the surface 9 to be tested.
  • the relative position of the reflector 1-1 causes the center of the reflector 1-1 to fall on the surface to be measured 9, improving the accuracy of the measurement result.
  • the reflecting surface 10 can also be a hyperboloid, a cylindrical surface, a paraboloid, a wedge surface or a conical surface or other types of reflecting surfaces.
  • the reflecting surface 10 is a spherical surface, such as a hemispherical surface
  • the absorption tube 1-2 is a straight tube. In the first measuring position and the second measuring position, the axis of the absorption tube 1-2 passes the ball. The center of the crown 11 . This setting can improve the accuracy of the measurement results.
  • the axis of the absorption tube 1-2 forms an angle ⁇ with the diameter perpendicular to the bottom surface of the reflector, and the range is 0° to 80°.
  • the included angle ⁇ may be 0°, 5°, 10°, 20°, 30°, 45°, 55°, 60°, 70°, 80°, or the like.
  • the ratio of the diameter of the through hole 7 to the diameter of the reflecting surface 10 of the spherical cap surface ranges as small as possible to ensure smooth light discharge and to ensure that the absorption tube 1-2 can smoothly pass through the through hole 7 when necessary, for example, /10 to 1/2, of course, it can be less than 1/10.
  • the absorber tube 1-2 is arranged to reciprocate along its own axis.
  • the absorption tube may be a telescopic tube, and the light incident end is located at an end of the telescopic portion of the telescopic tube.
  • the structure of the absorption tube in the above setting is relatively simple, and the control of the motion process is convenient and accurate.
  • the absorption tube when the absorption tube is a telescopic tube and can be switched between the first measurement position and the second measurement position by means of self-expansion, the absorption tube itself can be divided into a first tube body and a second tube body.
  • the first tube body may be fixedly disposed relative to the reflector, the second tube body is telescopically disposed relative to the first tube body, and the light incident end is at an end of the second tube body remote from the first tube body.
  • the second tube In the first measurement position, the second tube extends from the first tube and extends into proximity to or in contact with the surface to be measured.
  • the second tube body In the second measurement position, the second tube body is retracted into the first tube body, and the light entrance end is at or outside the through hole.
  • the inner surface of the absorber tube 1-2 is a rough surface and forms a coating of high absorbency.
  • the inner surface of the absorption tube 1-2 may be internally threaded to form a rough surface, and then subjected to an oxidation treatment.
  • This arrangement can increase the absorption rate of the inner wall of the absorption tube 1-2 to absorb the radiation rays directed toward the inner surface, and only transmit the light directly transmitted from the central hole of the absorption tube 1-2, so that the light absorber 5 receives only the light from The intrinsic radiation of the surface 9 to be measured, at which time the reflection of the reflector 1-1 fails.
  • the reflective converter 1 further comprises a light guiding structure 4 between the absorber tube 1-2 and the light receiver 5.
  • the light guiding structure 4 is for transmitting the radiation light passing through the center hole of the absorption tube 1-2 to the light receiver 5.
  • the light directing structure 4 comprises a lens assembly and/or an optical fiber.
  • the light receiver 5 includes a photoelectric conversion unit for converting radiation light into an electrical signal.
  • the photoelectric conversion unit includes one or more photodiodes, or the photoelectric conversion unit includes a thermopile.
  • the semiconductor materials of the photodiode include, but are not limited to, Si, InGaAs, Ge, etc., and the photodiode receiving wavelength ranges from 0.25 um to 14 um.
  • the light receiver 5 further comprises a spectrometer 2, which is coupled to the absorption tube 1-2 and the photoelectric conversion unit, respectively.
  • the spectrometer 2 can receive a wavelength range of 0.2 um to 1000 um.
  • the spectrometer 2 can be, for example, a prism spectrometer, a grating spectrometer or a Fourier spectrometer.
  • the light guiding structure 4 is disposed on the absorption tube 1-2 and the optical connection When the receiver 5 is between, the spectrometer 2 is located between the light guiding structure 4 and the photoelectric conversion unit, for example, between the lens assembly and the photodiode.
  • the spectrometer 2 is configured to receive the radiation light transmitted by the absorption tube 1-2 or the light guiding structure 4, divide the radiation light into monochromatic light, and transmit the monochromatic light to the photoelectric conversion unit, so that the data is in the rationality system 6 to obtain different An expression of brightness temperature and emissivity over a range of wavelengths or bands.
  • the measuring device further comprises a driving mechanism 3, the driving mechanism 3 comprising a power device 8, and the power device 8 is drivingly connected with the absorption tube 1-2 to drive The absorber tube 1-2 switches between a first measurement position and a second measurement position.
  • the data processing system 6 is coupled to the power unit 8 to control the action of the drive mechanism 3.
  • the power unit 8 can be an electromagnet or a motor or a pneumatic or hydraulic device.
  • the data processing system 6 can control the action of the absorber tube 1-2 by controlling the magnitude of the current or the amount of current when the electromagnet, the motor, or the solenoid valve coupled to the pneumatic or hydraulic device is powered or de-energized.
  • the driving mechanism 3 further comprises a hollow box body, and the power device 8 and the absorption tube 1-2 are respectively connected to the hollow box body, and the measuring device further comprises a light guiding structure 4, and the light guiding structure 4 is arranged to absorb Between the tube 1-2 and the light receiver 5, wherein the light guiding structure 4 is located in the hollow casing.
  • This arrangement allows the drive mechanism 3 to drive the movement of the absorber tube without affecting the operation of the light guiding structure 4.
  • the drive mechanism 3 is not essential, and the action of the absorption tube 1-2 can be directly or indirectly manipulated by human power.
  • the reflecting surface 10 is a mirror surface.
  • the mirror surface can be formed by mechanically polishing the inner surface of the reflector and then plated with a film having high reflectivity.
  • the film is a metal film.
  • the material of the metal thin film may be, for example, gold, silver or aluminum.
  • a protective film may be further formed on the metal film to prevent the reflective surface from being scratched, such as a magnesium fluoride protective film.
  • the measuring device also includes a measurement result output device such as a display device or a sounding device.
  • the measurement result output device is coupled to the data processing system to output a measurement result formed by the data processing system.
  • the present invention provides a measuring method for accurately measuring the surface temperature and emissivity of the surface to be tested 9, which method comprises measuring the emissivity and temperature of the surface 9 to be measured using any of the above measuring devices.
  • the measuring method preferably comprises the following steps:
  • the signal is obtained from the spectral response function of the optical receiver 5; f( ⁇ i ) is the effective emissivity function of the reflector 1-1 at the wavelength ⁇ i ; L 0 ( ⁇ i , T 0 ) is the same as the measured surface 9
  • the present invention does not limit the order of the first measurement position radiance expression obtaining step and the second measurement position radiance expression obtaining step, that is, the first measurement position radiance expression obtaining step may be radiant expression at the second measurement position Before the obtaining step, after the radiance expression obtaining step of the second measuring position, when n is greater than 1, the first measuring position radiance expression obtaining step and the second measuring position radiance expression obtaining step may also be crossed. Execution does not limit the order of intersections or the number of expressions obtained each time it crosses during cross-execution.
  • the data processor 6 may first obtain an expression of radiance at two wavelengths or two bands at the first measurement position, and then the data processor 6 obtains two at the second measurement position. An expression of radiance at or below two wavelengths; or it may be first at the second measurement location The processor 6 obtains an expression of the radiance at two wavelengths or two bands, and then causes the data processor 6 to obtain an expression of the radiance at two wavelengths or two bands at the first measurement position; First, at the first measurement position, the data processor 6 obtains an expression of the radiance at the first wavelength or the first band, and then causes the data processor 6 to obtain the first wavelength or the second at the second measurement position.
  • An expression of the radiance at one band, and then at the second measurement position causes the data processor 6 to obtain an expression of the radiance at the second or second band, and then process the data at the first measurement position
  • the device 6 obtains an expression of the radiance at the second wavelength or the second band, and the like.
  • the order in which the expression of the radiance is obtained is not limited in the present invention as long as the required number of expressions can be obtained.
  • the radiance expression obtaining step is performed at the second measurement position, and the effective emissivity function may be formed by deriving or simulating according to physical parameters of the measuring device, the physical parameters including the spectral reflectance of the reflecting surface 10, the geometric parameter of the reflecting surface 10, and the reflection The measured distance of the face 10 from the surface to be tested 9, the positional parameters of the absorber tube 1-2 and the reflector 2, and the emission and reflection characteristics of the surface 9 to be measured.
  • the structure of the reflecting surface 10 is simple and can be easily described by a mathematical expression
  • an effective emissivity function can be formed by derivation; and in the reflector 1-1 and the reflection
  • an empirical formula or a graph may be formed.
  • the reflecting surface 10 of the reflector 1-1 is a spherical surface
  • the temperature measuring method further comprises: ensuring that the spherical center of the reflecting surface 10 falls exactly on the measured surface and remains unchanged during the measurement. This setting facilitates accurate measurement results.
  • the surface to be measured 9 is a diffuse emission and a diffuse reflection surface
  • the reflection surface 10 of the reflector 1-1 is a hemispherical surface
  • the axis of the absorption tube 1-2 is a surface to be measured.
  • the effective emissivity function is:
  • ⁇ i is the spectral reflectance of the reflector 1-1; r is the radius of the through hole in meters; and R is the radius of the reflector in meters.
  • 1 to 3 show the structure and operation principle of a measuring apparatus according to a first embodiment of the present invention.
  • the measuring apparatus of the first embodiment includes a reflection converter 1, a driving device 3, a light receiver 5, a data processing system 6, and a display device as a measurement result output device.
  • the reflection converter 1 comprises a reflector 1-1, an absorption tube 1-2 and a light guiding structure 4.
  • the light guiding structure 4 is specifically a lens assembly.
  • the reflector has a through hole 7, and the reflecting surface 10 of the reflector 1-1 is a hemispherical surface.
  • the reflecting surface 10 of the reflector 1-1 is a hemispherical surface.
  • the bottom surface of the reflector 1-1 is a flat surface, and the bottom surface of the hemispherical surface is rounded on the bottom surface.
  • the ratio of the diameter of the through hole 7 of the reflector 1-1 to the diameter of the reflecting surface 10 is 0.16.
  • the outer diameter of the absorption tube 1-2 is smaller than the diameter of the through hole 7.
  • the length of the absorber tube 1-2 is greater than the radius of the hemispherical surface of the reflector 1-1.
  • the absorber tube 1-2 is variably positioned relative to the reflector 1-1 to switch the absorber tube 1-2 between the first measurement position and the second measurement position.
  • the absorption tube 1-2 in the first measurement position, is passed through the through hole 7 through the inside of the reflector 1-1 to the light entrance end of the absorption tube 1-2 at the low position 14, and the proximity or contact is measured.
  • the surface 9 is such that the light receiver 5 directly receives the intrinsic radiation emitted by the surface to be tested 9. As shown in FIG.
  • the light incident end of the absorption tube 1-2 is at the high position 13, located at the through hole 7 of the reflector 1-1 or outside the through hole 7 to allow the light receiver 5 to receive the measured
  • the optical receiver 5 is coupled to the reflection converter 1.
  • the light receiver 5 receives the radiation light of the reflection converter 1 and converts the radiation light into an electrical signal.
  • the light receiver 5 is coupled to the reflective converter 1 by coupling with the lens assembly.
  • Data processing system 6 is coupled to optical receiver 5 to receive electrical signals and form a surface to be measured based on the electrical signals 9 surface temperature and emissivity.
  • the display device is coupled to the data processing system 6 to display the surface temperature and emissivity formed by the data processing system.
  • the absorber tube 1-2 is a straight tube. In the first measurement position and the second measurement position, the axis of the absorption tube 1-2 passes through the center 11 of the spherical surface.
  • the reflector 1-1 is in contact with the surface to be measured 9, ensuring that the core 11 of the reflecting surface 10 is on the surface to be tested 9 and remains unchanged.
  • the axis of the absorption tube 1-2 is at an angle of 0 to the diameter perpendicular to the bottom surface of the reflector 1-1.
  • the axis of the absorption tube 1-2 at the time of measurement is at an angle of 90 to the surface 9 to be measured.
  • internal threads are provided on the inner surface of the absorption tube 1-2 to form a rough surface, and a coating having a high absorption rate is formed as an absorption layer on the absorption surface.
  • the light guiding structure 4 is located between the absorption tube 1-2 and the light receiver 5.
  • the light guiding structure 4 in this embodiment includes a lens assembly.
  • the absorption tube 1-2 needs to be aligned with the spot on the surface 9 to be measured, the spot being located at the center of the hemisphere.
  • the light receiver 5 includes a photoelectric conversion unit for converting radiation light into an electrical signal.
  • the photoelectric conversion unit includes a photodiode.
  • the photoelectric conversion unit includes two photodiodes of an overlapping structure.
  • the photoelectric conversion unit can simultaneously receive light energy of two bands. Therefore, the measuring device of this embodiment can obtain expressions of two radiances at the first measurement position and the second measurement position, respectively.
  • the data processing system 6 can calculate the surface temperature and emissivity including the two bands or wavelengths using the obtained four expressions.
  • the absorber tube 1-2 In order to switch between the first measuring position and the second measuring position of the absorber tube 1-2, the absorber tube 1-2 is arranged reciprocally along its own axis. In the setting, the structure of the absorption tube 1-2 is simple, and the movement process control is convenient and accurate.
  • the absorption tube 1-2 is accurately and timely controlled to switch between the first measurement position and the second measurement position
  • the drive device 3 is drivingly coupled to the absorption tube 1-2
  • the data processing system 6 is also coupled to the drive unit 3. Coupling to control the action of the drive device 3, thereby enabling automatic control of the absorber tube 1-2 at the first measurement position and Switch between the second measurement positions.
  • the drive mechanism 3 includes a power unit 8 that is drivingly coupled to the absorber tube 1-2 to drive the absorber tube 1-2 to switch between a first measurement position and a second measurement position.
  • the power unit 8 is specifically an electromagnet.
  • the data processing system 6 is coupled to an electromagnet to control the action of the absorber tube 1-2 by controlling the energization or de-energization of the electromagnet.
  • the driving mechanism 3 is driven by an electromagnet. When the electromagnet is de-energized, the spring on the electromagnet pushes the absorption tube 1-2 to the first measurement position (low position) and holds; when the electromagnet is energized, the absorption tube is driven. 1-2 to the second measurement position (high position).
  • the driving mechanism 3 further comprises a hollow box body, and the power unit 8 and the absorber tube 1-2 are respectively connected to the hollow box body.
  • the light guiding structure 4 is located inside the hollow casing.
  • the reflector 1-1 is made of stainless steel.
  • the reflecting surface 10 is mechanically polished and then plated with a layer of gold to form a mirror surface, and then a magnesium fluoride protective film is formed on the gold plating surface to prevent scratching of the reflecting surface 10.
  • the absorber tube 1-2 and the drive mechanism 3 are reciprocally movable with respect to the reflector 1-1, the light receiver 5, and the data processing system 6.
  • the moving direction of the absorption tube 1-2 is the axial direction of the absorption tube 1-2.
  • the axis of the absorber tube 1-2 passes through the center of the ball 11.
  • the upper end of the absorber tube 1-2 is connected to the drive mechanism 3, and the lower end as the light incident end can extend through the through hole 7 and the reflecting surface 10 into the inside of the reflector 1-1.
  • the absorption tube 1-2 moves toward the center of the ball 11 until the lower end approaches or contacts the surface to be tested 9, and the light incident end of the absorption tube 1-2 is at the lower position 14 shown in FIG. 2;
  • the absorption tube 1-2 is pulled out to the light entrance end outside the reflection surface 10 of the reflector 1-1, that is, at the high position 13 as shown in FIG.
  • the lens assembly as the light guiding structure 4 faces the center 11 of the hemispherical surface at one end and the photodiode as the photoreceiver 5 at the other end.
  • the light guiding structure 4 forms a part of the receiving light path. Radiation light emitted from the spot of the surface 9 to be measured is incident into the lens assembly through the inside of the absorption tube 1-2, and the lens assembly concentrates the radiation on the receiving surface of the photodiode.
  • the receiving optical path formed by the lens assembly 4 satisfies two conditions: a. the position of the spot is exactly at the center of the ball; b. the diameter of the spot is smaller than the inner diameter of the absorption tube 1-2, and the absorption tube 1-2 is in the first measurement. When the position and the second measurement position are not blocked, the receiving light path is not blocked.
  • the spot diameter and the diameter of the hemispherical surface The ratio is 0.02.
  • the second embodiment is a measuring method for measuring the surface temperature and emissivity of the surface to be tested 9 by the measuring apparatus of the first embodiment.
  • the specific measurement steps of the measurement method are as follows:
  • the first measurement position radiance expression obtaining step The reflector 1-1 of the measuring device is placed on the surface to be tested 9, and the absorption tube 1-2 is moved by the driving mechanism 3 to the first measuring position and remains stationary, and the reflector 1-1 of the measuring device is placed on the measured On the surface 9, the reflector 1-1 is brought into contact with and held by the surface to be tested 9, at which time the reflection of the reflector 1-1 fails, and a part of the radiant energy emitted from the core 11 is absorbed by the inner surface of the absorption tube 1-2. The other portion is projected onto the photodiode through the lens assembly along the axial direction of the absorption tube 1-2.
  • the data processor 6 obtains the first measurement position radiance expression in two bands:
  • L 1 ( ⁇ i , T 0 ) is the radiance of the light receiver (5) at the wavelength ⁇ i
  • ⁇ ( ⁇ i ) is the measured surface (9) at the wavelength ⁇ i
  • the emissivity, L 0 ( ⁇ i , T 0 ) is the radiance of the black body under the same conditions of the surface (9) under test; ⁇ i is the effective wavelength in meters; T 0 is the surface of the surface to be tested (9) Temperature in K.
  • ⁇ i is an effective wavelength in meters;
  • T bi is the brightness of the absorption tube 1-2 at the first measurement position and the wavelength ⁇ i Temperature, the unit is K;
  • T 0 is the true temperature of the surface 9 to be measured, the unit K;
  • ⁇ i is the emissivity under the condition of the wavelength ⁇ i and the temperature T 0 .
  • the second measurement position radiance expression obtaining step The reflector 1-1 holding the measuring device is located on the surface to be tested 9, and the driving mechanism 3 drives the absorption tube 1-2 to move to the second measuring position and is held.
  • the reflector 1-1 has a reflection effect on the core 11, and a part of the radiation light emitted from the core 11 is directly received by the light receiver 5, and the other part is in the multiple reflection process of the reflector 1-1 and the core 11, Received by the optical receiver 5.
  • the data processor 6 obtains the second measurement position radiance expression in two bands:
  • L 2 ( ⁇ i , T 0 ) is the radiance of the light receiver (5) at the wavelength ⁇ i ; f( ⁇ i ) is the reflector (1-1) at the wavelength ⁇ i
  • the effective emissivity function; L 0 ( ⁇ i , T 0 ) is the radiance of the black body under the same conditions of the surface (9) under test; ⁇ i is the effective wavelength in meters; T 0 is the surface to be measured (9) Surface temperature in K.
  • T ai is the brightness temperature of the absorption tube 1-2 at the second measurement position and the wavelength ⁇ i , the unit is K; f( ⁇ i ) is a function of the effective emissivity of the reflector 1-1.
  • the reflecting surface 10 is disposed as a hemispherical surface, and the positional relationship between the reflecting surface and the measuring surface when measuring is that the spherical center of the hemispherical surface is on the measured surface 9, in FIG. 4,
  • the symmetry of the light only draws the radiated light from the normal to the right.
  • the spot has the following characteristics:
  • the radiation path at the spot is simple. All the radiation rays emitted from the spot are reflected back to the origin after being reflected by the hemispherical surface, reflected by the measured surface 9 and then reflected back to the origin by the hemispherical mirror, and so on. At the same time, the surface to be tested 9 is removed from the spot. Radiation rays from other points do not fall on the spot;
  • the spot is the radiant point of 'isolation'. Since there is no heat radiation exchange between the spot and the non-spot, the measurement range is only the temperature and emissivity at the spot, regardless of the state at the non-spot. When the emissivity and temperature distribution of the surface to be tested 9 are not uniform, even if the area of the surface 9 to be measured is smaller than the coverage area of the hemispherical mirror, the measurement results are not affected.
  • ⁇ i is the spectral reflectance of the reflector 1-1
  • r and R are the radius of the through hole 7 and the radius of the reflector 1-1, respectively.
  • T bi and T ai are the luminance temperatures of the first and second measurement locations, respectively, in K).
  • the data processing system 6 simultaneously calculates the two emissivity ⁇ i and the true temperature T 0 of the measured surface 9 and displays them. The measurement results are displayed on the device.
  • T bi , T ai , ⁇ i can be directly measured by the measuring device, C 2 is a constant, and the spectral reflectance ⁇ i of the reflector 1-1 is the physical property of the reflector 1-1, and The state of the surface is measured. It is known from the prior art that if the reflecting surface 10 is plated with gold, ⁇ i is nearly equal in the infrared spectrum ⁇ > 1 um.
  • the difference between this embodiment and the first embodiment is that the axis of the absorption tube 1-2 forms an angle ⁇ with the diameter perpendicular to the bottom surface of the reflector 1-1, so that the bottom surface is measured during measurement.
  • the axis of the absorption tube 1-2 is at an angle ⁇ to the normal to the surface 9 to be measured.
  • This embodiment can measure the emissivity in the ⁇ angular direction.
  • the angle ⁇ is 30°.
  • the fourth embodiment is different from the first embodiment in that the reflection of the measuring device
  • the light guiding structure 4 in the converter 1 is an optical fiber.
  • the optical receiver 5 further includes a spectrometer 2.
  • the spectrometer 2 is specifically a Fourier spectrometer. The radiant light entering the reflection converter 1 through the absorption tube 1-2 is introduced into the spectrometer 2 via the optical fiber 4, and then decomposed into monochromatic light by the spectrometer 2, and then projected into the photodiode.
  • the fifth embodiment is a measuring method of measuring the surface temperature and emissivity of the surface to be tested 9 by the measuring apparatus of a modification of the first embodiment.
  • the photoelectric conversion unit includes a photodiode that receives radiation light of one wavelength band.
  • the reflectivity ⁇ 1 is given empirically, where there are only two unknowns ⁇ 1 and T 0 , which can be solved simultaneously using two equations.
  • the sixth embodiment measures the surface temperature and emission of the surface to be measured 9 by using a measuring device in which the reflecting surface of the reflector is a non-hemispherical surface (the reflecting surface is an aspherical structure, or the reflector is a spherical surface but the spherical center is not on the surface to be measured). A measure of the rate.
  • the expression of the effective emissivity function f( ⁇ i ) is different from that of the second embodiment.
  • the expression of its effective emissivity function f( ⁇ i ) can be obtained from empirical formulas or simulation calculations:
  • the relevant parameter is that the physical parameters according to the measuring device include the spectral reflectance ⁇ i of the reflecting surface 10, the geometric parameter ⁇ of the reflecting surface 10, the measuring distance h of the reflecting surface 10 and the measured surface 9, the absorption tube 1 The angle ⁇ of the axis 2 to the surface 9 to be measured, and the emission and reflection characteristic parameter ⁇ of the surface 9 to be measured.
  • the measuring device or the measuring method for measuring the surface temperature and the emissivity of the measured surface 9 of the above embodiment of the present invention has the advantages of being portable, requiring a small measuring space, no background radiation interference, convenient use, and high measurement accuracy.
  • the invention can be used for on-line measurement of surface temperature and emissivity, for setting the emissivity parameter of a general radiation thermometer, as a measuring standard for emissivity and surface temperature, and also for a metrology test department.
  • the present invention is not limited to the above embodiment, for example, if the temperature and emissivity of the moving surface to be measured are measured, a non-hemispherical spherical crown surface or a hyperboloid may be employed as the reflecting surface of the reflector.
  • the reflecting surface of the reflector is kept at a certain distance from the surface to be measured, so that the relative movement between the surface to be measured and the reflector of the measuring device is kept smooth.
  • the spherical center of the spherical crown surface is advantageously kept on the surface to be measured.
  • the distance between the reflector and the surface to be measured is advantageously within the effective measurement range during measurement during the measurement of the hyperboloid.
  • the measuring point of the aligned measured surface changes when the absorption tube is in the first measuring position and the second measuring position, for a continuous measured surface
  • the temperature and emissivity in a certain area do not change drastically. Therefore, the measured surface temperature and emissivity at this time are not obtained from the parameters of the same measuring point of the surface to be measured, but still measured.
  • the result obtained can still represent the surface temperature and emissivity of the surface to be tested in a certain area, and therefore has practical significance.

Abstract

一种表面温度和发射率的测量装置,包括反射转换器(1)、光接收器(5)和数据处理系统(6),反射转换器(1)包括反射器(1-1)和吸收管(1-2),反射器(1-1)具有通孔(7),吸收管(1-2)相对于反射器(1-1)在第一测量位置(14)和第二测量位置(13)之间切换,在第一测量位置(14),吸收管(1-2)的入光端接近或接触被测表面(9),以使光接收器(5)直接接收被测表面(9)发出的固有辐射光线并形成第一电信号;在第二测量位置(13),吸收管(1-2)的入光端位于反射器(1-1)的通孔(7)处或通孔(7)外,以使光接收器(5)接收被测表面(9)发出的固有辐射光线和反射器(1-1)的反射面(10)与被测表面(9)之间的反射辐射光线并形成第二电信号;数据处理系统(6)根据第一电信号和第二电信号形成表面温度和发射率。还公开了一种使用该装置的测量方法。该装置和方法能精确测量表面温度和发射率。

Description

表面温度和发射率的测量装置和测量方法 技术领域
本发明涉及测量技术领域,特别涉及一种表面温度和发射率的测量装置和测量方法。
背景技术
利用辐射测温仪测量表面温度时,表面温度的测量受发射率影响,一直是计量测试领域的一个没有解决的难题。现有技术中广泛使用的各种辐射测温仪均是在实验室标准计量器具——黑体辐射源(发射率≈1)条件下标定的。在测量时,根据辐射信号和标定方程即可获得测量温度T。然而,实际物体的发射率小于1,测量时获得的只是亮度温度,并不是真实的表面温度。实际物体的发射率是复杂的、不能确定的,与物体的组份、表面状态、波长和温度有关。所以只有知道发射率的值,才能获得真实的表面温度。
为减小或消除发射率的影响,一种基于反射器的在线黑体的温度测量方法被提出(M.D.Drury,K.P.Perry,and T.Land,“Pyrometers for surface temperature measurement,”J.Iron St.Inst.,vol.169,pp.245–250,1951.):在高温表面覆盖一个冷的高反射率的反射器构成一个空腔,被测表面与反射器之间存在多次反射,被测表面的有效辐射增大,接近黑体辐射状态,即有效的发射率接近于1。1994年,谢植等人提出‘第二类黑体辐射源’概念(谢植等,工业辐射测温度测量,东北大学出版社,1994):“若非透明材料形成的等温面与理想反射体构成密闭空腔,则从等温面的任意面源上发出的辐射是该等温面源温度下的黑体辐射。”据此原理,将辐射测温仪前置一个反射器,可增大有效发射率,从而减小测量误差。
公告号为EP1103801B1的专利和公开号为EP0942269A1的专利申请基于以上原理公开了一种温度测量方法和测量装置:使用一种镀金的双曲线型凹面镜作 为发射率增强仪,利用多次反射效应来增大有效辐射,从而减小测量误差。然而,实际上不存在理想反射体,其反射率小于1,且在反射器上有光辐射孔和与被测表面之间的间隙,空腔不密闭,所以其有效发射率不能达到1,因此该项发明能减小而非完全消除发射率的影响,仍要求用户输入有效发射率的经验值,在EP1103801B1中的经验值设为0.95。若要彻底消除发射率影响,精确的测量表面温度,需要精确的求解出有效发射率的表达式,而上述两项发明不能测量发射率,只能测量表面温度。
公开号为CN102353691A的中国专利申请和公开号为CN102252755A的发明专利申请分别公开了一种基于半球型和圆筒型的前置反射器的多光谱发射率在线测量装置及方法。该发明中的反射器可在导轨上移动,可在两种辐射状态上做切换:1)将反射器移至探测视野内,探测通过光辐射孔的光束,获得辐射信号
Figure PCTCN2016112100-appb-000001
2)再将反射器移出视野范围外,获得无反射器作用下的固有辐射信号
Figure PCTCN2016112100-appb-000002
根据公式
Figure PCTCN2016112100-appb-000003
获得发射率ε(λ,T),其中f(ε(λ,T))为反射器有效发射率函数。
在实现本发明的过程中,发明人发现公开号为CN102353691A的中国专利申请和公开号为CN102252755A的发明专利仍具有以下不足之处:
第一,从精度方面:1)上述两个专利文件中的反射器需要安装在导轨上,以实现在被测表面上方移动,与被测表面必然存在间隙,被测表面发出的辐射光线会从间隙中逸出,从而影响测量精度;同时,理论计算可知,半球型反射器对与被测表面之间的距离特别敏感,若球心偏离被测表面,会造成有效发射率的急剧下降,所以底面间隙对测量精度的影响显著。2)反射器对被测表面温度场具有破坏作用,所以反射器不能长时间测量(高魁明等,前置反射器辐射温度计的研究,1984,图5)。如反射器测量700℃的不锈钢时,被测表面温度在反射器覆盖1秒钟上升约4℃,2秒上升6℃。所以需要快速的测量,而上述专利在两种辐射状态上切换,至少需要移动两倍反射器半径的距离,在切换过程中不可避免地破坏温度场,从而影响测量精度。3)上述两个专利在反射器移开时,被测 表面暴露在空间中,周围背景辐射会被待测表面反射到光学瞄准探头中,所以测量信号会受到背景辐射干扰,只能应用在具有冷壁包围的理想的实验室中使用,不能应用在工业现场。4)上述两个专利只测法向发射率,而不能测量方向发射率。
第二,应用方面。上述公开2个专利的测量装置在测量前必须安装导轨和支撑架,并保证调整导轨与被测面水平,当反射器的尺寸相同时,需要至少一倍于反射器的覆盖空间供其移动。所需安装空间大、要求高,成本高、便携性差,受背景辐射影响大,不适合具有强背景辐射的工业现场,如空间有限的的场合,或需要快速便捷测量的场合、或不能安装导轨支架的场合。如背景辐射显著的钢厂加热炉内钢坯表面,连铸坯表面等。
发明内容
本发明的目的在于提供一种能更精确地测量被测表面的表面温度和发射率的测量装置和测量方法。
本发明第一方面提供一种表面温度和发射率的测量装置,所述测量装置包括反射转换器、光接收器和数据处理系统,所述光接收器与所述反射转换器耦合,所述光接收器接收由所述被测表面发出的、并通过所述反射转换器的辐射光线并将所述辐射光线转换为电信号,所述数据处理系统与所述光接收器耦合以接收所述电信号并根据所述电信号形成所述被测表面温度和发射率,所述反射转换器包括反射器和吸收管,所述反射器具有通孔,所述吸收管相对于所述反射器位置可变地设置以使所述吸收管在第一测量位置和第二测量位置之间切换,其中,在所述第一测量位置,所述吸收管通过所述通孔穿设于所述反射器的内部至所述吸收管的入光端接近或接触所述被测表面,以使所述光接收器直接接收所述被测表面发出的固有辐射光线并形成第一电信号;在所述第二测量位置,所述吸收管的所述入光端位于所述反射器的所述通孔处或所述通孔外,以使所述光接收器接收所述被测表面发出的固有辐射光线和所述反射器的反射面与被测表面之间的反射 辐射光线并形成第二电信号;所述数据处理系统根据所述第一电信号和所述第二电信号形成所述被测表面的表面温度和发射率。
本发明第二方面提供一种表面温度和发射率的测量方法,所述测量方法包括采用本发明第一方面所述的测量装置测量所述表面温度和发射率。
优选地,所述第一电信号为第一电压信号,所述第二电信号为第二电压信号,所述测量方法包括:
第一测量位置辐射亮度表达式获得步骤,使所述吸收管处于第一测量位置,根据以下公式获得n个波长下或n个波段下的第一测量位置辐射亮度表达式:L1i,T)=ε(λi)L0i,T0),其中,L1i,T0)是所述光接收器接收所述被测表面发出的在波长λi下的辐射亮度,并由所述第一电压信号与所述光接收器的光谱响应函数获得;ε(λi)是所述被测表面在波长λi下的发射率;L0i,T0)是所述被测表面在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;T0为所述被测表面的表面温度,单位为K;
第二测量位置辐射亮度表达式获得步骤,使所述吸收管处于第二测量位置,根据以下公式获得n个波长下或n个波段下的第二测量位置辐射亮度表达式:L2i,T0)=f(εi)L0i,T0),其中,L2i,T0)是所述光接收器接收所述被测表面发出的在波长λi下的辐射亮度,并由所述第二电压信号与所述光接收器的光谱响应函数获得;f(εi)是所述反射器在波长λi下的有效发射率函数;
测量结果获得步骤,根据n个所述第一测量位置辐射亮度表达式L1i,T0)=ε(λi)L0i,T0)和n个所述第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0),同时计算出n个发射率εi和真实温度T0
基于本发明提供的表面温度和发射率的测量装置和测量方法,由于吸收管可以在第一测量位置和第二测量位置之间切换,以上装置可以仅通过吸收管的运动使光接收器既能获得被测表面的固有辐射光线又能获得上述固有辐射光线加上反射器与被测表面之间的反射辐射光线,数据处理系统可以根据吸收管在不同测量位置得到的测量数据同时获得被测表面温度和发射率。
本发明基于第二类黑体辐射源理论,提出了带有反射器和相对于反射器位置可变的吸收管的反射转换器,实现两种辐射状态(反射辐射和固有辐射)的快速转换,除实现同时测量表面温度和发射率外,其优点还在于:
第一,测量精度提高,原因在于:1)为获得两种辐射状态,不需要移动反射器,反射器与被测表面的间隙可以更小甚至无间隙(反射器可与被测表面接触),使得被测表面发出的经底面间隙逸出的辐射光线减少或消除,提高测量精度;2)只需移动吸收管,即可实现两种辐射状态的切换,相比于移动反射器,吸收管体积更小质量更轻,且移动更短的距离(若为半球型反射器,则需移动1倍半径距离),从而切换速度更快,对表面温度场破坏更小,测量更精确;3)不需移动反射器,彻底消除了背景辐射干扰,在强背景辐射的工业现场也能够保证测量精度;4)不仅可测法向发射率,同时可设计吸收管与反射器的相对位置,从而测量非法向发射率。
第二,应用方面,由于不需要导轨、支撑架等辅助结构,且不需要移动反射器,所需测量空间小,安装要求少,成本低,便携,无背景辐射干扰;适用于有限空间场合,或需快速测量场合,或不能安装导轨支撑架的场合。如背景辐射显著的钢厂加热炉内钢坯表面,连铸坯表面等。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明第一实施例的测量装置的结构示意图。
图2为图1所示的测量装置在第一测量位置下的结构示意图。
图3为图1所示的测量装置在第二测量位置下的结构示意图。
图4为图1所示的测量装置中反射器的反射辐射光线示意图。
图5为本发明第三实施例的测量装置的结构示意图。
图6为本发明第五实施例的测量装置的结构示意图。
图1至图6中,各附图标记分别代表:
1、反射转换器;1-1、反射器;1-2、吸收管;2、光谱仪;3、驱动机构;4、导光结构;5、光接收器;6、数据处理系统;7、通孔;9、被测表面;10、反射面;11、球心;13、第二测量位置;14、第一测量位置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特 征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90°或处于其他方位),并且对这里所使用的空间相对描述做出相应解释。
本发明实施例提供一种表面温度和发射率的测量装置,该测量装置能够更精确地测量被测表面9的表面温度和发射率。
如图1至图6所示,本发明的测量装置包括反射转换器1、光接收器5和数据处理系统6。光接收器5与反射转换器1耦合,光接收器5接收由被测表面9发出的、并通过反射转换器1的辐射光线并将辐射光线转换为电信号。数据处理系统6与光接收器5耦合以接收电信号并根据电信号形成被测表面9的表面温度和发射率。反射转换器1包括反射器1-1和吸收管1-2。反射器1-1具有通孔7。吸收管1-2相对于反射器1-1位置可变地设置以使吸收管1-2在第一测量位置和第二测量位置之间切换。其中,在第一测量位置,吸收管1-2通过通孔7穿设于反射器1-1的内部至吸收管1-2的入光端接近或接触被测表面9以使光接收器5直接接收被测表面9发出的固有辐射光线并形成第一电信号;在第二测量位置,吸收管1-2的入光端位于反射器1-1的通孔7处或通孔7外以使光接收器5接收被测表面9发出的固有辐射光线和反射器1-1的反射面10与被测表面9之间的反射辐射光线并形成第二电信号。数据处理系统6根据第一电信号和第二电信号形成被测表面9的表面温度和发射率。
由于吸收管1-2可以在第一测量位置和第二测量位置之间切换,以上测量装置可以仅通过吸收管1-2的运动使光接收器5既能获得被测表面9的固有辐射光线,又能获得上述固有辐射光线加上反射器1-1的反射面10与被测表面9之间的反射辐射光线,数据处理系统6可以根据吸收管在不同测量位置得到的测量数 据同时获得被测表面9的表面温度和发射率。
本发明基于第二类黑体辐射源理论,提出了带有反射器和相对于反射器位置可变的吸收管的反射转换器,实现两种辐射状态(反射辐射和固有辐射)的快速转换,除实现同时测量表面温度和发射率外,其优点还在于:
第一,测量精度方面:1)为获得两种辐射状态,不需要移动反射器,反射器与被测表面的间隙可以更小甚至无间隙(反射器可与被测表面接触),使得被测表面发出的经底面间隙逸出的辐射光线减少或消除,提高测量精度;2)只需移动吸收管,即可实现两种辐射状态的切换,相比于移动反射器,吸收管体积更小质量更轻,且移动更短的距离(若为半球型反射器,则需移动1倍半径距离),从而切换速度更快,对表面温度场破坏更小,测量更精确;3)不需移动反射器,彻底消除了背景辐射干扰,在强背景辐射的工业现场也能够保证测量精度;4)不仅可测法向发射率,同时可设计吸收管与反射器的相对位置,从而测量非法向发射率。
第二,应用方面,由于不需要导轨、支撑架等辅助结构,且不需要移动反射器,所需测量空间小,安装要求少,成本低,便携,无背景辐射干扰;适用于有限空间场合,或需快速测量场合,或不能安装导轨支撑架的场合。如背景辐射显著的钢厂加热炉内钢坯表面,连铸坯表面等。
可见,由于获取不同的辐射状态仅需移动吸收管,该测量装置的结构简单,测量速度快,便携且更易操作和布置。
优选地,第一电信号为第一电压信号,第二电信号为第二电压信号,数据处理系统6对第一电压信号和第二电压信号进行如下处理:
根据以下公式获得n个波长下或n个波段下的第一测量位置辐射亮度表达式:L1i,T)=ε(λi)L0i,T0),其中,L1i,T0)是光接收器5接收的由被测表面9发出的在波长λi下的辐射亮度,并由第一电压信号与光接收器5的光谱响应函数获得;ε(λi)是被测表面9在波长λi下的发射率;L0i,T0)是被测表面9在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单 位为米;T0为被测表面9的表面温度,单位为K;
根据以下公式获得n个波长下或n个波段下的第二测量位置辐射亮度表达式:L2i,T0)=f(εi)L0i,T0),其中,L2i,T0)是光接收器5接收的由被测表面9发出的在波长λi下的辐射亮度,并由第二电压信号与光接收器5的光谱响应函数获得;f(εi)是反射器1-1在波长λi下的有效发射率函数;
根据n个第一测量位置辐射亮度表达式L1i,T0)=ε(λi)L0i,T0)和n个第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0),同时计算出表面温度T0和n个波长下的发射率εi
其中,反射器1-1的反射面10优选地为球冠面。更优选地,反射面为半球面。
半球面的底面圆位于反射器1-1的底面上,可以在测量被测表面9的温度和发射率时,使反射器1-1直接放置于被测表面9上,而保证被测表面9与反射器1-1的相对位置,使反射器1-1的球心落入被测表面9上,提高测量结果的准确性。
当然,反射面10也可以为双曲面、圆柱面、抛物面、楔形面或圆锥面或其它类型的反射面。
在一个优选地实施方式中,反射面10为球冠面,例如为半球面,吸收管1-2为直管,在第一测量位置和第二测量位置,吸收管1-2的轴线经过球冠面的球心11。该设置可以提高测量结果的准确性。
在反射面10为球冠面的情况下,吸收管1-2的轴线与垂直于反射器的底面的直径所成夹角为θ,其范围为0°~80°。例如,夹角θ可以为0°、5°、10°、20°、30°、45°、55°、60°、70°、80°等。
通孔7的直径与球冠面的反射面10的直径的比值范围在保证顺利出光以及在需要时保证吸收管1-2可以顺畅穿过通孔7时越小越好,例如,可以是1/10~1/2,当然,也可以小于1/10。
为了实现吸收管1-2在第一测量位置和第二测量位置之间的切换,优选地, 吸收管1-2沿自身轴线往复移动地设置。或者,吸收管可以为伸缩管,入光端位于伸缩管的伸缩部分的端部。以上设置中吸收管的结构均较为简单,运动过程的控制较为方便、准确。
例如,在吸收管为伸缩管、可以通过自身伸缩的方式实现在第一测量位置与第二测量位置之间的切换时,吸收管本身可以分为第一管体和第二管体两段管体,第一管体可以相对于反射器固定设置,第二管体相对于第一管体可伸缩地设置,入光端处于第二管体的远离第一管体的端部。在第一测量位置,第二管体从第一管体中伸出并伸入至使入光端与被测表面接近或接触。在第二测量位置,第二管体缩入第一管体中,并使入光端处于通孔处或通孔外。
优选地,吸收管1-2的内表面为粗糙表面且形成高吸收率的涂层。例如,可以通过使吸收管1-2的内表面设置内螺纹以形成粗糙表面,再进行氧化处理。该设置可以增加吸收管1-2的内壁的吸收率,以吸收射向内表面的辐射光线,而仅传递直接从吸收管1-2的中心孔传递的光线,使光吸收器5只接收来自被测表面9的固有辐射光线,此时反射器1-1的反射作用失效。
优选地,反射转换器1还包括导光结构4,导光结构4位于吸收管1-2和光接收器5之间。导光结构4用于将通过吸收管1-2的中心孔的辐射光线传递至光接收器5。优选地,导光结构4包括透镜组件和/或光纤。
光接收器5包括光电转换单元,光电转换单元用于将辐射光线转换为电信号。例如,光电转换单元包括一个或多个光电二极管,或者光电转换单元包括热电堆。
其中光电二极管的半导体材料包括但不局限于Si、InGaAs、Ge等,光电二极管接收波长范围为0.25um~14um。
优选地,光接收器5还包括光谱仪2,光谱仪2分别与吸收管1-2和光电转换单元耦合。
光谱仪2接收的波长范围可以达到0.2um~1000um。光谱仪2例如可以为棱镜光谱仪、光栅光谱仪或傅立叶光谱仪。在导光结构4设置于吸收管1-2与光接 收器5之间时,光谱仪2位于导光结构4和光电转换单元之间,例如设置于透镜组件和光电二极管之间。光谱仪2用于接收吸收管1-2或导光结构4传递的辐射光线,将辐射光线分为单色光,并将单色光传递给光电转换单元,最终使数据处于理系统6获得不同的波长或波段范围内的亮度温度与发射率的表达式。
为了控制吸收管1-2在第一测量位置和第二测量位置之间切换,测量装置还包括驱动机构3,驱动机构3包括动力装置8,动力装置8与吸收管1-2驱动连接以带动吸收管1-2在第一测量位置和第二测量位置之间切换。
其中优选地,数据处理系统6与动力装置8耦合以控制驱动机构3的动作。例如,动力装置8可以为电磁铁或电机或气动装置或液压装置。数据处理系统6可以通过控制电磁铁、电机或与气动装置或液压装置耦合的电磁阀等的得电或失电或得电时电流的大小来控制吸收管1-2的动作。
在一个优选的实施方式中,驱动机构3还包括中空盒体,动力装置8与吸收管1-2分别连接于中空盒体上,测量装置还包括导光结构4,导光结构4设置于吸收管1-2和光接收器5之间,其中,导光结构4位于中空盒体内。该设置可以使驱动机构3带动吸收管的运动不影响导光结构4的工作。
当然,驱动机构3并不是必须的,也可以通过人力直接或间接操控吸收管1-2的动作。
反射面10为镜面。镜面的形成可以通过机械抛光处理反射器的内表面后,再镀上具有高反射率的薄膜。优选地,薄膜为金属薄膜。金属薄膜的材质例如可以为金或银或铝等。更优选地,还可以在金属薄膜上再形成一层保护膜以防反射面被刮伤,例如氟化镁保护膜。
测量装置还包括测量结果输出装置,例如显示装置或发声装置。测量结果输出装置与数据处理系统耦合,以输出数据处理系统形成的测量结果。
本发明提供一种精确测量被测表面9的表面温度和发射率的测量方法,该测量方法包括采用以上任一测量装置测量被测表面9的发射率和温度。
该测量方法优选地包括以下步骤:
第一测量位置辐射亮度表达式获得步骤,使吸收管1-2处于第一测量位置,根据以下公式获得n个波长下或n个波段下的第一测量位置辐射亮度表达式:L1i,T)=ε(λi)L0i,T0),其中,L1i,T0)是光接收器5在波长λi下的辐射亮度,由第一电压信号与光接收器5的光谱响应函数获得;ε(λi)是被测表面9在波长λi下的发射率;L0i,T0)是被测表面9在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;T0为被测表面9的表面温度,单位为K;
第二测量位置辐射亮度表达式获得步骤,使吸收管1-2处于第二测量位置,根据以下公式获得n个波长下或n个波段下的第二测量位置辐射亮度表达式:L2i,T0)=f(εi)L0i,T0),其中,L2i,T0)是光接收器5在波长λi下的辐射亮度,由第二电压信号与光接收器5的光谱响应函数获得;f(εi)是反射器1-1在波长λi下的有效发射率函数;L0i,T0)是被测表面9在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;T0为被测表面9的表面温度,单位为K;
测量结果获得步骤,根据n个第一测量位置辐射亮度表达式L1i,T0)=ε(λi)L0i,T0)和n个第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0),同时计算出n个发射率εi和真实温度T0
本发明并不限制第一测量位置辐射亮度表达式获得步骤和第二测量位置辐射亮度表达式获得步骤的次序,即第一测量位置辐射亮度表达式获得步骤可以在第二测量位置辐射亮度表达式获得步骤之前,也可以在第二测量位置辐射亮度表达式获得步骤之后,在n大于1时,还可以是第一测量位置辐射亮度表达式获得步骤与第二测量位置辐射亮度表达式获得步骤交叉执行,在交叉执行的过程中也不限制交叉的次序或每次交叉时获得表达式的数量。
例如,n为2时,可以是先在第一测量位置使数据处理器6获得两个波长下或两个波段下的辐射亮度的表达式,再在第二测量位置使数据处理器6获得两个波长下或两个波段下的辐射亮度的表达式;也可以是先在第二测量位置使数据处 理器6获得两个波长下或两个波段下的辐射亮度的表达式,再在第一测量位置使数据处理器6获得两个波长下或两个波段下的辐射亮度的表达式;还可以是先在第一测量位置使数据处理器6获得第一个波长下或第一个波段下的辐射亮度的表达式,再在第二测量位置使数据处理器6获得第一个波长下或第一个波段下的辐射亮度的表达式,然后在第二测量位置使数据处理器6获得第二个波长下或第二个波段下的辐射亮度的表达式,再在第一测量位置使数据处理器6获得第二个波长下或第二个波段下的辐射亮度的表达式等等。总之,只要能获得需要数量的表达式,获得辐射亮度的表达式的次序在本发明中不受限制。
其中,在第二测量位置辐射亮度表达式获得步骤,有效发射率函数可以根据测量装置的物理参数通过推导或模拟形成,物理参数包括反射面10的光谱反射率、反射面10的几何参数、反射面10与被测表面9的测量距离、吸收管1-2与反射器2的位置参数和被测表面9的发射和反射特性。在反射面10的结构简单,用数学表达式易描述的情况下,例如在反射面10为半球面的情况下,可以通过推导的方式形成有效发射率函数;而在反射器1-1及反射面10的形状复杂的情况下,例如在反射面为双曲面或圆柱面等情况下则可以形成经验公式或图表等形式表达。
在一个优选地实施方式中,反射器1-1的反射面10是球冠面,温度测量方法还包括:在测量时保证反射面10的球心正好落在被测面上且保持不变。该设置利于获得准确的测量结果。
此时,可以采用公式进行描述的一个例子为:在被测表面9为漫发射、漫反射表面,反射器1-1的反射面10是半球面,吸收管1-2的轴线与被测表面9夹角为90°时,有效发射率函数为:
Figure PCTCN2016112100-appb-000004
其中,ρi为反射器1-1的光谱反射率;r为通孔的半径,单位为米;R为反射器的半径,单位为米。
以上测量方法具有与对应的测量装置相应的优点。
以下将进一步结合图1至图6对本发明各实施例进行更详细的说明。
第一实施例
图1至图3示出了本发明第一实施例的测量装置的结构和工作原理。
如图1至图3所示,第一实施例的测量装置包括反射转换器1、驱动装置3、光接收器5、数据处理系统6和作为测量结果输出装置的显示装置。
反射转换器1包括反射器1-1、吸收管1-2和光导结构4。本实施例中,光导结构4具体地为透镜组件。
反射器具有通孔7,反射器1-1的反射面10为半球面。其中,反射器1-1的反射面10为半球面。反射器1-1的底面为平面,半球面的底面圆位于底面上。
本实施例中,反射器1-1的通孔7的直径与反射面10的直径的比值是0.16。
为了使吸收管1-2顺利地在通孔7内运动,吸收管1-2的外径小于通孔7的直径。为了使吸收管1-2的入光端达到相应的测量位置,吸收管1-2的长度大于反射器1-1的半球面的半径。
第一实施例中,吸收管1-2相对于反射器1-1位置可变地设置以使吸收管1-2在第一测量位置和第二测量位置之间切换。如图2所示,在第一测量位置,吸收管1-2通过通孔7穿设于反射器1-1的内部至吸收管1-2的入光端处于低位14,接近或接触被测表面9以使光接收器5直接接收被测表面9发出的固有辐射光线。如图3所示,在第二测量位置,吸收管1-2的入光端处于高位13,位于反射器1-1的通孔7处或通孔7外以使光接收器5接收被测表面9发出的固有辐射光线和反射器1-1的反射面10与被测表面9之间的反射辐射光线。
光接收器5与反射转换器1耦合。光接收器5接收反射转换器1的辐射光线并将辐射光线转换为电信号。本实施例中,光接收器5通过与透镜组件耦合实现与反射转换器1的耦合。
数据处理系统6与光接收器5耦合以接收电信号并根据电信号形成被测表面 9的表面温度和发射率。
显示装置与数据处理系统6耦合,显示数据处理系统形成的表面温度和发射率。
吸收管1-2为直管。在第一测量位置和第二测量位置,吸收管1-2的轴线经过球冠面的球心11。测量时,反射器1-1与被测表面9接触,保证反射面10的球心11在被测表面9上且保持不变。
在本实施例中,吸收管1-2的轴线与垂直于反射器1-1的底面的直径所成夹角为0°。在测量时吸收管1-2的轴线与被测表面9成90°角。
本实施例中,在吸收管1-2的内表面设置内螺纹以形成粗糙表面,并在吸收表面形成具有高吸收率的涂层作为吸收层。
导光结构4位于吸收管1-2和光接收器5之间。本实施例中导光结构4包括透镜组件。在导光结构4包括透镜组件时,吸收管1-2在测量时需对准在被测表面9上的光斑,光斑位于半球面的球心处。
光接收器5包括光电转换单元,光电转换单元用于将辐射光线转换为电信号。本实施例中,光电转换单元包括光电二极管。
在本实施例中具体地,光电转换单元包括两个重叠式结构的光电二极管。该光电转换单元可同时接收两个波段的光能量。因此,该实施例的测量装置在第一测量位置和第二测量位置可以分别获得两个辐射亮度的表达式。从而数据处理系统6可以利用获得的四个表达式计算得出包括两个波段或波长下的表面温度和发射率。
为了实现吸收管1-2在第一测量位置和第二测量位置之间的切换,吸收管1-2沿自身轴线往复移动地设置。该设置中吸收管1-2的结构简单,运动过程控制方便、准确。
为了更好地测量,准确适时地控制吸收管1-2在第一测量位置和第二测量位置之间切换,驱动装置3与吸收管1-2驱动连接,数据处理系统6还与驱动装置3耦合以控制驱动装置3动作,从而实现自动控制吸收管1-2在第一测量位置和 第二测量位置之间切换。
如图1至图3所示,驱动机构3包括动力装置8,动力装置8与吸收管1-2驱动连接以带动吸收管1-2在第一测量位置和第二测量位置之间切换。本实施例中,动力装置8具体地为电磁铁。数据处理系统6与电磁铁耦合以通过控制电磁铁的得电或失电控制吸收管1-2的动作。具体地,驱动机构3由电磁铁带动,当电磁铁断电时,电磁铁上的弹簧将吸收管1-2推至第一测量位置(低位)并保持;当电磁铁通电时,带动吸收管1-2至第二测量位置(高位)。
如图1至图3所示,在一个优选的实施方式中,驱动机构3还包括中空盒体,动力装置8与吸收管1-2分别连接于中空盒体上。导光结构4位于中空盒体内。
本实施例中,反射器1-1由不锈钢制成。反射面10经过机械抛光处理再镀上一层金以形成镜面,然后再在镀金表面形成一层氟化镁保护膜以防刮伤反射面10。
本实施例中,吸收管1-2和驱动机构3相对于反射器1-1、光接收器5和数据处理系统6是可往复移动的。吸收管1-2的移动方向为吸收管1-2轴线方向。吸收管1-2的轴线经过球心11。吸收管1-2的上端与驱动机构3连接,下端作为入光端可穿过通孔7和反射面10伸入反射器1-1内部。在第一测量位置,吸收管1-2朝着球心11方向运动,直至下端与被测表面9接近或接触,吸收管1-2的入光端即处于图2所示的低位14;在第二测量位置,吸收管1-2抽离至入光端位于反射器1-1的反射面10以外即处于如图3所示的高位13。
作为导光结构4的透镜组件一端对着半球面的球心11,另一端对着作为光接收器5的光电二极管。导光结构4形成了接收光路的一部分。被测表面9的光斑处发出的辐射光线经吸收管1-2内部射入透镜组件,透镜组件将辐射光线汇聚在光电二极管的接收面上。
本实施例中,透镜组件4形成的接收光路满足两个条件:a.光斑的位置正好在球心处;b.光斑的直径小于吸收管1-2内径,吸收管1-2在第一测量位置和第二测量位置时,不阻挡接收光路。例如,本实施例中,光斑直径与半球面的直径 的比值是0.02。
第二实施例
第二实施例为一个采用第一实施例的测量装置测量被测表面9的表面温度和发射率的测量方法。
在本实施例中,该测量方法的具体测量步骤如下:
第一测量位置辐射亮度表达式获得步骤。使测量装置的反射器1-1位于被测表面9上,通过驱动机构3带动吸收管1-2移动至第一测量位置并保持不动,将测量装置的反射器1-1放置在被测表面9上,使反射器1-1与被测表面9接触并保持,此时反射器1-1的反射作用失效,球心11处发出的辐射能量一部分被吸收管1-2的内表面吸收,另一部分沿吸收管1-2的轴线方向,经过透镜组件投射到光电二极管上。数据处理器6获得两个波段下的第一测量位置辐射亮度表达式:
L1i,T)=ε(λi)L0i,T0)
其中,i=1、2;L1i,T0)是光接收器(5)在波长λi下的辐射亮度,ε(λi)是被测表面(9)在波长λi下的发射率,L0i,T0)是被测表面(9)在相同条件下黑体的辐射亮度;λi为有效波长,单位为米;T0为被测表面(9)的表面温度,单位为K。
该第一测量位置辐射亮度表达式获得步骤中,第一测量位置辐射亮度表达式L1i,T)=ε(λi)L0i,T0)可以采用不同的具体表达形式。例如,在本实施例中采用如下公式:
Figure PCTCN2016112100-appb-000005
其中,i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;Tbi为吸收管1-2处于第一测量位置、波长λi状态下的亮度温度,单位为K;T0为被测表面9的真实温度,单位K;εi为波长λi,温度T0条件下的发射率。
第二测量位置辐射亮度表达式获得步骤。保持测量装置的反射器1-1位于被测表面9上,通过驱动机构3带动吸收管1-2移动至第二测量位置并保持,此时 反射器1-1对球心11处具有反射作用,球心11处发出的辐射光线一部分被光接收器5直接接收,另一部分在反射器1-1与球心11的多次反射过程中,被光接收器5接收。此时数据处理器6获得两个波段下的第二测量位置辐射亮度表达式:
L2i,T0)=f(εi)L0i,T0)
其中,i=1、2;L2i,T0)是光接收器(5)在波长λi下的辐射亮度;f(εi)是反射器(1-1)在波长λi下的有效发射率函数;L0i,T0)是被测表面(9)在相同条件下黑体的辐射亮度;λi为有效波长,单位为米;T0为被测表面(9)的表面温度,单位为K。
该第二测量位置辐射亮度表达式获得步骤中,第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0)可以采用不同的具体表达形式。例如,在本实施例中采用如下公式:
Figure PCTCN2016112100-appb-000006
其中Tai为吸收管1-2处于第二测量位置、波长λi状态下的亮度温度,单位为K;f(εi)为反射器1-1的有效发射率函数。
如图4所示,本实施例中,反射面10设置为半球面,且在测量时反射面与测量表面的位置关系为半球面的球心处在被测表面9上,图4中,由于光线的对称性只画出法向右边的辐射光线。在该情况下,光斑具有如下特点:
1)光斑处辐射光线路线简单。光斑处发出的所有辐射光线经半球面只经一次反射后均被反射回原点,经被测表面9反射后再经半球镜反射回原点,依此类推;同时,在被测表面9除光斑以外其他点发出的辐射光线均不落在光斑处;
2)光斑处为‘孤立’的辐射点。由于光斑处与非光斑处无热辐射交换,所以测量范围只有光斑处的温度和发射率,与非光斑处状态无关。当被测表面9的发射率和温度分布不均匀,甚至被测表面9的面积小于半球镜覆盖面积时,均不影响测量结果。
以上2点决定,其f(ε)表达式是可以精确计算出的,只与光斑处的固有发射率、反射器的反射率有关。
由于半球型反射的球心在被测表面9上,光斑11和反射器1-1的反射辐射 光线路线简单,其f(εi)表达式可精确求出:
Figure PCTCN2016112100-appb-000007
其中,ρi为反射器1-1的光谱反射率,r、R分别为通孔7半径和反射器1-1的半径。
测量结果获得步骤。将测量装置移开被测表面9,根据第一测量位置辐射亮度表达式获得步骤和第二测量位置辐射亮度表达式获得步骤获得的4个方程L1i,T0)=ε(λi)L0i,T0)和L2i,T0)=f(εi)L0i,T0)(本实施例中具体地为
Figure PCTCN2016112100-appb-000008
Figure PCTCN2016112100-appb-000009
其中Tbi和Tai分别为第一、第二测量位置的亮度温度,单位为K)由数据处理系统6同时计算出被测表面9的两个发射率εi和真实温度T0,并在显示装置上显示测量结果。
4个方程中,Tbi、Tai、λi均可通过测量装置直接测得,C2为常数,反射器1-1的光谱反射率ρi是反射器1-1的物理属性,与被测表面的状态无关。由现有技术可知,若反射面10镀金,则ρi在红外谱段λ>1um近乎相等。则可假设ρi=ρ为与波长无关的未知数,则有4个方程有4个未知数,包括两个发射率ε1、ε2、反射率ρ和表面温度T0,通过求解非线性方程组即可得到发射率和表面温度值。
第二实施例中其它未说明的部分均可参考其它各实施例的相关内容。
第三实施例
如图5所示,本实施例与第一实施例的差别在于,吸收管1-2的轴线与垂直于反射器1-1的底面的直径形成一夹角θ,从而在测量时,将底面置于被测表面9之后,吸收管1-2的轴线与被测表面9的法向成一夹角θ。本实施例可测量θ角方向发射率。本实施例中夹角θ为30°。
第三实施例中其它未说明的部分均可参考其它各实施例的相关内容。
第四实施例
如图6所示,第四实施例与第一实施例的不同之处在于,测量装置的反射转 换器1中导光结构4为光纤。另外,光接收器5还包括光谱仪2。光谱仪2具体地为傅立叶光谱仪。经吸收管1-2进入反射转换器1的辐射光线经光纤4导入光谱仪2中,再由光谱仪2分解成单色光,再投射到光电二极管中。
第四实施例中其它未说明的部分均可参考其它各实施例的相关内容。
第五实施例
第五实施例是采用第一实施例的一个变形例的测量装置测量被测表面9的表面温度和发射率的一个测量方法。该变形例中,光电转换单元包括一个光电二极管,该光电二极管接收一个波段的辐射光线。与第二实施例不同的是,数据处理器6只获得该一个波段下的辐射亮度的表达式,在第一测量位置和第二测量位置的表达式分别为:L21,T0)=εa1)L01,T0)和L21,T0)=f(ε1)L01,T0)。此时
Figure PCTCN2016112100-appb-000010
反射率ρ1由经验给出,此时只有两个未知数ε1和T0,利用两个方程可同时求解这两个未知数。
第五实施例中其它未说明的部分均可参考其它各实施例的相关内容。
第六实施例
第六实施例是采用反射器的反射面为非半球面(反射面为非球面结构,或反射器为球面但球心不在被测面上)的测量装置测量被测表面9的表面温度和发射率的一个测量方法。
由于该反射器的反射面为非球面结构,或反射器为球面但球心不在被测面上,有效发射率函数f(εi)的表达式与第二实施例不同。其有效发射率函数f(εi)的表达式可以根据经验公式或仿真计算获得:
f(εi)=f(εii,θ,h,Ω,η)
其相关参数为,根据所述测量装置所述物理参数包括反射面10的光谱反射率ρi、反射面10的几何参数Ω、反射面10与被测表面9的测量距离h、吸收管 1-2轴线与被测表面9的角度θ,和被测表面9的发射和反射特性参数η。
第六实施例中其它未说明的部分均可参考其它各实施例的相关内容。
本发明以上实施例的测量被测表面9的表面温度和发射率的测量装置或测量方法具有便携、所需测量空间小,无背景辐射干扰,使用方便、测量精度高的优点。本发明可用于表面温度和发射率的在线测量,用于设置一般辐射测温仪的发射率参数,也可作为发射率和表面温度的计量标准器,也可应用到计量测试部门。
本发明并不限于以上实施例,例如,如果测量移动的被测表面的温度和发射率,则可以采用非半球形的球冠面或双曲面作为反射器的反射面。此时,反射器的反射面与被测表面当保持一定的距离,使被测表面相对于测量装置的反射器之间相对运动保持顺畅。在反射面为球冠面时测量过程中有利地使球冠面的球心保持位于被测表面上。在反射面为双曲面时测量过程中有利地使反射器和被测表面之间的距离处于有效测量范围之内。
在采用本发明的测量装置测量移动的被测表面时,虽然在吸收管处于第一测量位置和第二测量位置时对准的被测表面的测量点发生变化,但对于一个连续的被测表面而言,其一定区域内的温度和发射率并不会发生剧烈的变化,因此,此时测得的表面温度和发射率虽然不是由被测表面的同一测量点的参数获得,但仍然是测得的结果仍然可以代表一定区域范围内的被测表面的表面温度和发射率,因此,同样具有实际意义。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (18)

  1. 一种表面温度和发射率的测量装置,包括反射转换器(1)、光接收器(5)和数据处理系统(6),所述光接收器(5)与所述反射转换器(1)耦合,所述光接收器(5)接收由被测表面(9)发出的、并通过所述反射转换器(1)的辐射光线并将所述辐射光线转换为电信号,所述数据处理系统(6)与所述光接收器(5)耦合以接收所述电信号并根据所述电信号形成所述被测表面(9)的表面温度和发射率,其特征在于,
    所述反射转换器(1)包括反射器(1-1)和吸收管(1-2),所述反射器(1-1)具有通孔(7),所述吸收管(1-2)相对于所述反射器(1-1)位置可变地设置以使所述吸收管(1-2)在第一测量位置和第二测量位置之间切换,其中,
    在所述第一测量位置,所述吸收管(1-2)通过所述通孔(7)穿设于所述反射器(1-1)的内部至所述吸收管(1-2)的入光端接近或接触所述被测表面(9),以使所述光接收器(5)直接接收所述被测表面(9)发出的固有辐射光线并形成第一电信号;
    在所述第二测量位置,所述吸收管(1-2)的所述入光端位于所述反射器(1-1)的所述通孔(7)处或所述通孔(7)外,以使所述光接收器(5)接收所述被测表面(9)发出的固有辐射光线和所述反射器(1-1)的反射面(10)与所述被测表面(9)之间的反射辐射光线并形成第二电信号;
    所述数据处理系统(6)根据所述第一电信号和所述第二电信号形成所述被测表面(9)的表面温度和发射率。
  2. 根据权利要求1所述的测量装置,其特征在于,所述第一电信号为第一电压信号,所述第二电信号为第二电压信号,所述数据处理系统(6)对所述第一电压信号和所述第二电压信号进行如下处理:
    根据以下公式获得n个波长下或n个波段下的第一测量位置辐射亮度表达式:L1i,T)=ε(λi)L0i,T0),其中,L1i,T0)是所述光接收器(5)接收的由被测 表面(9)发出的在波长λi下的辐射亮度,并由所述第一电压信号与所述光接收器(5)的光谱响应函数获得;ε(λi)是所述被测表面(9)在波长λi下的发射率;L0i,T0)是所述被测表面(9)在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;T0为所述被测表面(9)的表面温度,单位为K;
    根据以下公式获得n个波长下或n个波段下的第二测量位置辐射亮度表达式:L2i,T0)=f(εi)L0i,T0),其中,L2i,T0)是所述光接收器(5)接收的由被测表面(9)发出的在波长λi下的辐射亮度,并由所述第二电压信号与所述光接收器(5)的光谱响应函数获得;f(εi)是所述反射器(1-1)在波长λi下的有效发射率函数;
    根据n个第一测量位置辐射亮度表达式L1i,T0)=ε(λi)L0i,T0)和n个第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0),同时计算出表面温度T0和n个波长下的发射率εi
  3. 根据权利要求1所述的测量装置,其特征在于,所述反射器(1-1)的反射面(10)包括球冠面、双曲面、圆柱面、抛物面、楔形面或圆锥面。
  4. 根据权利要求3所述的测量装置,其特征在于,所述反射面(10)为半球面。
  5. 根据权利要求1所述的测量装置,其特征在于,所述反射面(10)为球冠面,所述吸收管(1-2)为直管,在所述第一测量位置和所述第二测量位置,所述吸收管(1-2)的轴线经过所述球冠面的球心(11)。
  6. 根据权利要求5所述的测量装置,其特征在于,所述吸收管(1-2)的轴线与垂直于所述反射器(1-1)的底面的直径所成夹角为θ,其范围为0°~80°。
  7. 根据权利要求1所述的测量装置,其特征在于,所述吸收管(1-2)沿自身轴线相对于所述反射器(1-1)往复移动地设置;或者,所述吸收管为伸缩管,所述入光端位于所述伸缩管的可伸缩部分的端部。
  8. 根据权利要求1所述的测量装置,其特征在于,所述反射转换器(1)还 包括导光结构(4),所述导光结构(4)位于所述吸收管(1-2)和所述光接收器(5)之间。
  9. 根据权利要求1所述的测量装置,其特征在于,所述光接收器(5)包括光电转换单元,所述光电转换单元与所述吸收管(1-2)耦合用于将辐射光线转换为电信号。
  10. 根据权利要求9所述的测量装置,其特征在于,所述光接收器(5)还包括光谱仪(15),所述光谱仪(15)分别与所述吸收管(1-2)和所述光电转换单元耦合。
  11. 根据权利要求1至10中任一项所述的测量装置,其特征在于,所述测量装置还包括驱动机构(3),所述驱动机构(3)包括动力装置(8),所述动力装置(8)与所述吸收管(1-2)驱动连接以带动所述吸收管(1-2)在所述第一测量位置和所述第二测量位置之间切换。
  12. 根据权利要求11所述的测量装置,其特征在于,所述数据处理系统(6)与所述动力装置(8)耦合以控制所述驱动机构(3)的动作。
  13. 根据权利要求11所述的测量装置,其特征在于,所述动力装置(8)为电磁铁或电机或气动装置或液压装置。
  14. 根据权利要求11所述的测量装置,其特征在于,所述驱动机构(3)还包括中空盒体,所述动力装置(8)与所述吸收管(1-2)分别连接于所述中空盒体上,所述反射转换器(1)还包括导光结构(4),所述导光结构(4)位于所述吸收管(1-2)与所述光接收器(5)之间,其中,所述导光结构(4)设置于所述中空盒体内。
  15. 一种表面温度和发射率的测量方法,其特征在于,所述测量方法包括采用权利要求1至14中任一项所述的测量装置测量所述表面温度和发射率。
  16. 根据权利要求15所述的测量方法,其特征在于,所述第一电信号为第一电压信号,所述第二电信号为第二电压信号,所述测量方法包括:
    第一测量位置辐射亮度表达式获得步骤,使所述吸收管(1-2)处于第一测 量位置,根据以下公式获得n个波长下或n个波段下的第一测量位置辐射亮度表达式:L1i,T)=ε(λi)L0i,T0),其中,L1i,T0)是所述光接收器(5)接收的由被测表面(9)发出的在波长λi下的辐射亮度,并由所述第一电压信号与所述光接收器(5)的光谱响应函数获得;ε(λi)是所述被测表面(9)在波长λi下的发射率;L0i,T0)是所述被测表面(9)在相同条件下黑体的辐射亮度;i=1~n,i、n为大于等于1的正整数;λi为有效波长,单位为米;T0为所述被测表面(9)的表面温度,单位为K;
    第二测量位置辐射亮度表达式获得步骤,使所述吸收管(1-2)处于第二测量位置,根据以下公式获得n个波长下或n个波段下的第二测量位置辐射亮度表达式:L2i,T0)=f(εi)L0i,T0),其中,L2i,T0)是所述光接收器(5)接收的由被测表面(9)发出的在波长λi下的辐射亮度,并由所述第二电压信号与所述光接收器(5)的光谱响应函数获得;f(εi)是所述反射器(1-1)在波长λi下的有效发射率函数;
    测量结果获得步骤,根据n个所述第一测量位置辐射亮度表达式L1i,T0)=ε(λi)L0i,T0)和n个所述第二测量位置辐射亮度表达式L2i,T0)=f(εi)L0i,T0),同时计算出n个波长下的发射率εi和表面温度T0
  17. 根据权利要求16所述的测量方法,其特征在于,在所述第二测量位置辐射亮度表达式获得步骤,所述有效发射率函数f(εi)根据所述测量装置的物理参数通过推导或模拟形成,所述物理参数包括所述反射面(10)的光谱反射率、、所述反射面(10)与所述被测表面(9)的测量距离、所述反射面(10)的几何参数、所述吸收管(1-2)与所述反射器(1-1)的位置参数和所述被测表面(9)的发射和反射特性。
  18. 根据权利要求15所述的温度测量方法,其特征在于,所述反射器(1-1)的反射面(10)是球冠面,所述温度测量方法还包括:在测量时保证所述反射面(10)的球心正好落在所述被测表面(9)上且保持不变。
PCT/CN2016/112100 2016-12-26 2016-12-26 表面温度和发射率的测量装置和测量方法 WO2018119573A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/461,212 US11047739B2 (en) 2016-12-26 2016-12-26 Measurement device and measurement method for measuring temperature and emissivity of a measured surface
EP16925986.8A EP3489645A4 (en) 2016-12-26 2016-12-26 SURFACE TEMPERATURE AND EMISSIVITY MEASURING DEVICE AND MEASURING METHOD
PCT/CN2016/112100 WO2018119573A1 (zh) 2016-12-26 2016-12-26 表面温度和发射率的测量装置和测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112100 WO2018119573A1 (zh) 2016-12-26 2016-12-26 表面温度和发射率的测量装置和测量方法

Publications (1)

Publication Number Publication Date
WO2018119573A1 true WO2018119573A1 (zh) 2018-07-05

Family

ID=62706984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112100 WO2018119573A1 (zh) 2016-12-26 2016-12-26 表面温度和发射率的测量装置和测量方法

Country Status (3)

Country Link
US (1) US11047739B2 (zh)
EP (1) EP3489645A4 (zh)
WO (1) WO2018119573A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763657B (zh) * 2019-11-20 2022-05-13 江苏赛诺格兰医疗科技有限公司 用于反射材料反射率测试系统的光电数字转换系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326173A (en) * 1993-01-11 1994-07-05 Alcan International Limited Apparatus and method for remote temperature measurement
JPH07174634A (ja) * 1993-12-20 1995-07-14 Nippon Steel Corp 炉内物体の温度測定方法
JPH10185691A (ja) * 1996-12-26 1998-07-14 Nkk Corp 物体の放射率及び温度の測定方法並びにその装置
CN201811795U (zh) * 2010-10-21 2011-04-27 华中科技大学 一种用于高温高压容器内转动部件的表面温度检测装置
CN102252755A (zh) * 2011-06-23 2011-11-23 哈尔滨工业大学 基于圆筒型前置反射器的多光谱发射率在线测量装置及方法
CN102353691A (zh) * 2011-06-23 2012-02-15 哈尔滨工业大学 基于半球型前置反射器的多光谱发射率在线测量装置及方法
CN104439122A (zh) * 2014-12-25 2015-03-25 东华理工大学 一种复合式连铸铸坯表面测温方法及测温仪

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657397A (en) * 1982-06-25 1987-04-14 Oskar Oehler Light collector and its use for spectroscopic purposes
GB9411153D0 (en) * 1994-06-03 1994-07-27 Land Infrared Ltd Temperature monitoring
KR100353380B1 (ko) * 1997-07-28 2002-09-18 마쯔시다덴기산교 가부시키가이샤 방사 체온계
US6007241A (en) * 1998-02-20 1999-12-28 Applied Materials, Inc. Apparatus and method for measuring substrate temperature
GB9805110D0 (en) 1998-03-10 1998-05-06 Land Instr Int Ltd Radiation sensing apparatus
GB9928171D0 (en) * 1999-11-29 2000-01-26 Land Instr Int Ltd Temperature measuring method
US6375350B1 (en) * 2000-08-08 2002-04-23 Quantum Logic Corp Range pyrometer
US8581159B2 (en) * 2007-06-05 2013-11-12 Miele & Cie. Kg Control method for a cooktop and cooktop for carrying out said method
US9028135B1 (en) * 2012-01-12 2015-05-12 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pyrometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326173A (en) * 1993-01-11 1994-07-05 Alcan International Limited Apparatus and method for remote temperature measurement
JPH07174634A (ja) * 1993-12-20 1995-07-14 Nippon Steel Corp 炉内物体の温度測定方法
JPH10185691A (ja) * 1996-12-26 1998-07-14 Nkk Corp 物体の放射率及び温度の測定方法並びにその装置
CN201811795U (zh) * 2010-10-21 2011-04-27 华中科技大学 一种用于高温高压容器内转动部件的表面温度检测装置
CN102252755A (zh) * 2011-06-23 2011-11-23 哈尔滨工业大学 基于圆筒型前置反射器的多光谱发射率在线测量装置及方法
CN102353691A (zh) * 2011-06-23 2012-02-15 哈尔滨工业大学 基于半球型前置反射器的多光谱发射率在线测量装置及方法
CN104439122A (zh) * 2014-12-25 2015-03-25 东华理工大学 一种复合式连铸铸坯表面测温方法及测温仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3489645A4 *

Also Published As

Publication number Publication date
EP3489645A4 (en) 2020-04-08
US20190277701A1 (en) 2019-09-12
EP3489645A1 (en) 2019-05-29
US11047739B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
US5326173A (en) Apparatus and method for remote temperature measurement
US6007241A (en) Apparatus and method for measuring substrate temperature
WO2000008429A1 (en) A sensor for measuring a substrate temperature
JPH11316159A (ja) 熱処理チャンバ中の物体温度決定装置および方法
CN102749306B (zh) 双向反射分布函数(brdf)绝对测量装置
US8506161B2 (en) Compensation of stray light interference in substrate temperature measurement
CN110530525B (zh) 一种基于反射法的方向发射率测量装置及测量方法
Hernandez et al. Experimental validation of a pyroreflectometric method to determine the true temperature on opaque surface without hampering reflections
Pfänder et al. Infrared temperature measurements on solar trough absorber tubes
Zhang et al. Multi-Angle method to retrieve infrared spectral properties of a high-transparency material at high temperatures
WO2018119573A1 (zh) 表面温度和发射率的测量装置和测量方法
JP2006098295A (ja) 放射率測定装置
CN106768372A (zh) 一种低温辐射计黑体腔
CN106525249B (zh) 一种镜面红外测温装置及测温方法
CN206330670U (zh) 表面温度和发射率的测量装置
CN108240865B (zh) 表面温度和发射率的测量装置和测量方法
Li et al. Measurements of spectral emissivity, reflectance and transmittance at high temperatures using laser heating and auxiliary light source
Che et al. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation
CN109030556A (zh) 一种基于太阳能模拟器加热的不透明固体材料法向发射率测量装置及测量方法
JPH04130746A (ja) ウエハ温度測定用の放射温度計およびウエハ温度測定方法
CN206114119U (zh) 一种用于光学镜面的红外测温装置
CN206114120U (zh) 一种镜面红外测温装置
CN110926614A (zh) 一种自反射式红外发射率及温度测量装置
CN220230728U (zh) 一种黑体辐射单色辐出度最大值对应波长的测量装置
JP3259815B2 (ja) 物体の放射率及び温度の測定方法及び装置、並びに棒状放射源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016925986

Country of ref document: EP

Effective date: 20190215

NENP Non-entry into the national phase

Ref country code: DE